Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.15
 
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_req {
  70	struct kref		kref;		/* release manager */
  71
  72	/* I/O parameters */
  73	struct nfs_open_context	*ctx;		/* file open context info */
  74	struct nfs_lock_context *l_ctx;		/* Lock context info */
  75	struct kiocb *		iocb;		/* controlling i/o request */
  76	struct inode *		inode;		/* target file of i/o */
  77
  78	/* completion state */
  79	atomic_t		io_count;	/* i/os we're waiting for */
  80	spinlock_t		lock;		/* protect completion state */
 
 
  81	ssize_t			count,		/* bytes actually processed */
 
  82				bytes_left,	/* bytes left to be sent */
  83				error;		/* any reported error */
  84	struct completion	completion;	/* wait for i/o completion */
  85
  86	/* commit state */
  87	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  88	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  89	struct work_struct	work;
  90	int			flags;
 
  91#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  92#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  93	struct nfs_writeverf	verf;		/* unstable write verifier */
 
 
  94};
  95
  96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  99static void nfs_direct_write_schedule_work(struct work_struct *work);
 100
 101static inline void get_dreq(struct nfs_direct_req *dreq)
 102{
 103	atomic_inc(&dreq->io_count);
 104}
 105
 106static inline int put_dreq(struct nfs_direct_req *dreq)
 107{
 108	return atomic_dec_and_test(&dreq->io_count);
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * nfs_direct_IO - NFS address space operation for direct I/O
 113 * @rw: direction (read or write)
 114 * @iocb: target I/O control block
 115 * @iov: array of vectors that define I/O buffer
 116 * @pos: offset in file to begin the operation
 117 * @nr_segs: size of iovec array
 118 *
 119 * The presence of this routine in the address space ops vector means
 120 * the NFS client supports direct I/O. However, for most direct IO, we
 121 * shunt off direct read and write requests before the VFS gets them,
 122 * so this method is only ever called for swap.
 123 */
 124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 125{
 126#ifndef CONFIG_NFS_SWAP
 127	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
 128			iocb->ki_filp, (long long) pos, nr_segs);
 129
 130	return -EINVAL;
 131#else
 132	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
 133
 134	if (rw == READ || rw == KERNEL_READ)
 135		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
 136				rw == READ ? true : false);
 137	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
 138				rw == WRITE ? true : false);
 139#endif /* CONFIG_NFS_SWAP */
 140}
 141
 142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 143{
 144	unsigned int i;
 145	for (i = 0; i < npages; i++)
 146		page_cache_release(pages[i]);
 147}
 148
 149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 150			      struct nfs_direct_req *dreq)
 151{
 152	cinfo->lock = &dreq->lock;
 153	cinfo->mds = &dreq->mds_cinfo;
 154	cinfo->ds = &dreq->ds_cinfo;
 155	cinfo->dreq = dreq;
 156	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 157}
 158
 159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 160{
 161	struct nfs_direct_req *dreq;
 162
 163	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 164	if (!dreq)
 165		return NULL;
 166
 167	kref_init(&dreq->kref);
 168	kref_get(&dreq->kref);
 169	init_completion(&dreq->completion);
 170	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
 171	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 172	spin_lock_init(&dreq->lock);
 173
 174	return dreq;
 175}
 176
 177static void nfs_direct_req_free(struct kref *kref)
 178{
 179	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 180
 
 181	if (dreq->l_ctx != NULL)
 182		nfs_put_lock_context(dreq->l_ctx);
 183	if (dreq->ctx != NULL)
 184		put_nfs_open_context(dreq->ctx);
 185	kmem_cache_free(nfs_direct_cachep, dreq);
 186}
 187
 188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 189{
 190	kref_put(&dreq->kref, nfs_direct_req_free);
 191}
 192
 193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 194{
 195	return dreq->bytes_left;
 196}
 197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 198
 199/*
 200 * Collects and returns the final error value/byte-count.
 201 */
 202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 203{
 204	ssize_t result = -EIOCBQUEUED;
 205
 206	/* Async requests don't wait here */
 207	if (dreq->iocb)
 208		goto out;
 209
 210	result = wait_for_completion_killable(&dreq->completion);
 211
 
 
 
 
 212	if (!result)
 213		result = dreq->error;
 214	if (!result)
 215		result = dreq->count;
 216
 217out:
 218	return (ssize_t) result;
 219}
 220
 221/*
 222 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 223 * the iocb is still valid here if this is a synchronous request.
 224 */
 225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 226{
 227	struct inode *inode = dreq->inode;
 228
 229	if (dreq->iocb && write) {
 230		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 231
 232		spin_lock(&inode->i_lock);
 233		if (i_size_read(inode) < pos)
 234			i_size_write(inode, pos);
 235		spin_unlock(&inode->i_lock);
 236	}
 237
 238	if (write)
 239		nfs_zap_mapping(inode, inode->i_mapping);
 240
 241	inode_dio_done(inode);
 242
 243	if (dreq->iocb) {
 244		long res = (long) dreq->error;
 245		if (!res)
 246			res = (long) dreq->count;
 247		aio_complete(dreq->iocb, res, 0);
 
 
 248	}
 249
 250	complete_all(&dreq->completion);
 251
 252	nfs_direct_req_release(dreq);
 253}
 254
 255static void nfs_direct_readpage_release(struct nfs_page *req)
 256{
 257	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 258		req->wb_context->dentry->d_inode->i_sb->s_id,
 259		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
 260		req->wb_bytes,
 261		(long long)req_offset(req));
 262	nfs_release_request(req);
 263}
 264
 265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 266{
 267	unsigned long bytes = 0;
 268	struct nfs_direct_req *dreq = hdr->dreq;
 269
 270	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 
 
 271		goto out_put;
 
 272
 273	spin_lock(&dreq->lock);
 274	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 275		dreq->error = hdr->error;
 276	else
 277		dreq->count += hdr->good_bytes;
 278	spin_unlock(&dreq->lock);
 279
 280	while (!list_empty(&hdr->pages)) {
 281		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 282		struct page *page = req->wb_page;
 283
 284		if (!PageCompound(page) && bytes < hdr->good_bytes)
 
 285			set_page_dirty(page);
 286		bytes += req->wb_bytes;
 287		nfs_list_remove_request(req);
 288		nfs_direct_readpage_release(req);
 289	}
 290out_put:
 291	if (put_dreq(dreq))
 292		nfs_direct_complete(dreq, false);
 293	hdr->release(hdr);
 294}
 295
 296static void nfs_read_sync_pgio_error(struct list_head *head)
 297{
 298	struct nfs_page *req;
 299
 300	while (!list_empty(head)) {
 301		req = nfs_list_entry(head->next);
 302		nfs_list_remove_request(req);
 303		nfs_release_request(req);
 304	}
 305}
 306
 307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 308{
 309	get_dreq(hdr->dreq);
 310}
 311
 312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 313	.error_cleanup = nfs_read_sync_pgio_error,
 314	.init_hdr = nfs_direct_pgio_init,
 315	.completion = nfs_direct_read_completion,
 316};
 317
 318/*
 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 320 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 321 * bail and stop sending more reads.  Read length accounting is
 322 * handled automatically by nfs_direct_read_result().  Otherwise, if
 323 * no requests have been sent, just return an error.
 324 */
 325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
 326						const struct iovec *iov,
 327						loff_t pos, bool uio)
 328{
 329	struct nfs_direct_req *dreq = desc->pg_dreq;
 330	struct nfs_open_context *ctx = dreq->ctx;
 331	struct inode *inode = ctx->dentry->d_inode;
 332	unsigned long user_addr = (unsigned long)iov->iov_base;
 333	size_t count = iov->iov_len;
 334	size_t rsize = NFS_SERVER(inode)->rsize;
 335	unsigned int pgbase;
 336	int result;
 337	ssize_t started = 0;
 338	struct page **pagevec = NULL;
 339	unsigned int npages;
 340
 341	do {
 342		size_t bytes;
 343		int i;
 344
 345		pgbase = user_addr & ~PAGE_MASK;
 346		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 
 
 
 347
 348		result = -ENOMEM;
 349		npages = nfs_page_array_len(pgbase, bytes);
 350		if (!pagevec)
 351			pagevec = kmalloc(npages * sizeof(struct page *),
 352					  GFP_KERNEL);
 353		if (!pagevec)
 354			break;
 355		if (uio) {
 356			down_read(&current->mm->mmap_sem);
 357			result = get_user_pages(current, current->mm, user_addr,
 358					npages, 1, 0, pagevec, NULL);
 359			up_read(&current->mm->mmap_sem);
 360			if (result < 0)
 361				break;
 362		} else {
 363			WARN_ON(npages != 1);
 364			result = get_kernel_page(user_addr, 1, pagevec);
 365			if (WARN_ON(result != 1))
 366				break;
 367		}
 368
 369		if ((unsigned)result < npages) {
 370			bytes = result * PAGE_SIZE;
 371			if (bytes <= pgbase) {
 372				nfs_direct_release_pages(pagevec, result);
 373				break;
 374			}
 375			bytes -= pgbase;
 376			npages = result;
 377		}
 378
 
 
 
 
 
 
 
 
 379		for (i = 0; i < npages; i++) {
 380			struct nfs_page *req;
 381			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 382			/* XXX do we need to do the eof zeroing found in async_filler? */
 383			req = nfs_create_request(dreq->ctx, dreq->inode,
 384						 pagevec[i],
 385						 pgbase, req_len);
 386			if (IS_ERR(req)) {
 387				result = PTR_ERR(req);
 388				break;
 389			}
 390			req->wb_index = pos >> PAGE_SHIFT;
 391			req->wb_offset = pos & ~PAGE_MASK;
 392			if (!nfs_pageio_add_request(desc, req)) {
 393				result = desc->pg_error;
 394				nfs_release_request(req);
 395				break;
 396			}
 397			pgbase = 0;
 398			bytes -= req_len;
 399			started += req_len;
 400			user_addr += req_len;
 401			pos += req_len;
 402			count -= req_len;
 403			dreq->bytes_left -= req_len;
 404		}
 405		/* The nfs_page now hold references to these pages */
 406		nfs_direct_release_pages(pagevec, npages);
 407	} while (count != 0 && result >= 0);
 408
 409	kfree(pagevec);
 410
 411	if (started)
 412		return started;
 413	return result < 0 ? (ssize_t) result : -EFAULT;
 414}
 415
 416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 417					      const struct iovec *iov,
 418					      unsigned long nr_segs,
 419					      loff_t pos, bool uio)
 420{
 421	struct nfs_pageio_descriptor desc;
 422	struct inode *inode = dreq->inode;
 423	ssize_t result = -EINVAL;
 424	size_t requested_bytes = 0;
 425	unsigned long seg;
 426
 427	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
 428			     &nfs_direct_read_completion_ops);
 429	get_dreq(dreq);
 430	desc.pg_dreq = dreq;
 431	atomic_inc(&inode->i_dio_count);
 432
 433	for (seg = 0; seg < nr_segs; seg++) {
 434		const struct iovec *vec = &iov[seg];
 435		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
 436		if (result < 0)
 437			break;
 438		requested_bytes += result;
 439		if ((size_t)result < vec->iov_len)
 440			break;
 441		pos += vec->iov_len;
 442	}
 443
 444	nfs_pageio_complete(&desc);
 445
 446	/*
 447	 * If no bytes were started, return the error, and let the
 448	 * generic layer handle the completion.
 449	 */
 450	if (requested_bytes == 0) {
 451		inode_dio_done(inode);
 452		nfs_direct_req_release(dreq);
 453		return result < 0 ? result : -EIO;
 454	}
 455
 456	if (put_dreq(dreq))
 457		nfs_direct_complete(dreq, false);
 458	return 0;
 459}
 460
 461/**
 462 * nfs_file_direct_read - file direct read operation for NFS files
 463 * @iocb: target I/O control block
 464 * @iov: vector of user buffers into which to read data
 465 * @nr_segs: size of iov vector
 466 * @pos: byte offset in file where reading starts
 467 *
 468 * We use this function for direct reads instead of calling
 469 * generic_file_aio_read() in order to avoid gfar's check to see if
 470 * the request starts before the end of the file.  For that check
 471 * to work, we must generate a GETATTR before each direct read, and
 472 * even then there is a window between the GETATTR and the subsequent
 473 * READ where the file size could change.  Our preference is simply
 474 * to do all reads the application wants, and the server will take
 475 * care of managing the end of file boundary.
 476 *
 477 * This function also eliminates unnecessarily updating the file's
 478 * atime locally, as the NFS server sets the file's atime, and this
 479 * client must read the updated atime from the server back into its
 480 * cache.
 481 */
 482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 483				unsigned long nr_segs, loff_t pos, bool uio)
 484{
 485	struct file *file = iocb->ki_filp;
 486	struct address_space *mapping = file->f_mapping;
 487	struct inode *inode = mapping->host;
 488	struct nfs_direct_req *dreq;
 489	struct nfs_lock_context *l_ctx;
 490	ssize_t result = -EINVAL;
 491	size_t count;
 492
 493	count = iov_length(iov, nr_segs);
 494	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 495
 496	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 497		file, count, (long long) pos);
 498
 499	result = 0;
 500	if (!count)
 501		goto out;
 502
 503	mutex_lock(&inode->i_mutex);
 504	result = nfs_sync_mapping(mapping);
 505	if (result)
 506		goto out_unlock;
 507
 508	task_io_account_read(count);
 509
 510	result = -ENOMEM;
 511	dreq = nfs_direct_req_alloc();
 512	if (dreq == NULL)
 513		goto out_unlock;
 514
 515	dreq->inode = inode;
 516	dreq->bytes_left = iov_length(iov, nr_segs);
 
 517	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 518	l_ctx = nfs_get_lock_context(dreq->ctx);
 519	if (IS_ERR(l_ctx)) {
 520		result = PTR_ERR(l_ctx);
 
 521		goto out_release;
 522	}
 523	dreq->l_ctx = l_ctx;
 524	if (!is_sync_kiocb(iocb))
 525		dreq->iocb = iocb;
 526
 527	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
 528	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 529
 530	mutex_unlock(&inode->i_mutex);
 531
 532	if (!result) {
 
 
 
 
 
 533		result = nfs_direct_wait(dreq);
 534		if (result > 0)
 535			iocb->ki_pos = pos + result;
 
 
 
 
 
 536	}
 537
 538	nfs_direct_req_release(dreq);
 539	return result;
 540
 541out_release:
 542	nfs_direct_req_release(dreq);
 543out_unlock:
 544	mutex_unlock(&inode->i_mutex);
 545out:
 546	return result;
 547}
 548
 549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 551{
 552	struct nfs_pageio_descriptor desc;
 553	struct nfs_page *req, *tmp;
 554	LIST_HEAD(reqs);
 555	struct nfs_commit_info cinfo;
 556	LIST_HEAD(failed);
 557
 558	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 559	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
 560	spin_lock(cinfo.lock);
 561	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
 562	spin_unlock(cinfo.lock);
 563
 564	dreq->count = 0;
 
 
 
 
 565	get_dreq(dreq);
 566
 567	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
 568			      &nfs_direct_write_completion_ops);
 569	desc.pg_dreq = dreq;
 570
 571	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 
 
 572		if (!nfs_pageio_add_request(&desc, req)) {
 573			nfs_list_remove_request(req);
 574			nfs_list_add_request(req, &failed);
 575			spin_lock(cinfo.lock);
 576			dreq->flags = 0;
 577			dreq->error = -EIO;
 578			spin_unlock(cinfo.lock);
 
 
 
 579		}
 580		nfs_release_request(req);
 581	}
 582	nfs_pageio_complete(&desc);
 583
 584	while (!list_empty(&failed)) {
 585		req = nfs_list_entry(failed.next);
 586		nfs_list_remove_request(req);
 587		nfs_unlock_and_release_request(req);
 588	}
 589
 590	if (put_dreq(dreq))
 591		nfs_direct_write_complete(dreq, dreq->inode);
 592}
 593
 594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 595{
 
 596	struct nfs_direct_req *dreq = data->dreq;
 597	struct nfs_commit_info cinfo;
 598	struct nfs_page *req;
 599	int status = data->task.tk_status;
 600
 601	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 602	if (status < 0) {
 603		dprintk("NFS: %5u commit failed with error %d.\n",
 604			data->task.tk_pid, status);
 605		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 606	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 607		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 609	}
 
 
 610
 611	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 612	while (!list_empty(&data->pages)) {
 613		req = nfs_list_entry(data->pages.next);
 614		nfs_list_remove_request(req);
 615		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 616			/* Note the rewrite will go through mds */
 617			nfs_mark_request_commit(req, NULL, &cinfo);
 618		} else
 
 
 
 
 
 619			nfs_release_request(req);
 620		nfs_unlock_and_release_request(req);
 621	}
 622
 623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 624		nfs_direct_write_complete(dreq, data->inode);
 625}
 626
 627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
 628{
 629	/* There is no lock to clear */
 
 
 
 
 
 
 630}
 631
 632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 633	.completion = nfs_direct_commit_complete,
 634	.error_cleanup = nfs_direct_error_cleanup,
 635};
 636
 637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 638{
 639	int res;
 640	struct nfs_commit_info cinfo;
 641	LIST_HEAD(mds_list);
 642
 643	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 644	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 645	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 646	if (res < 0) /* res == -ENOMEM */
 647		nfs_direct_write_reschedule(dreq);
 648}
 649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650static void nfs_direct_write_schedule_work(struct work_struct *work)
 651{
 652	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 653	int flags = dreq->flags;
 654
 655	dreq->flags = 0;
 656	switch (flags) {
 657		case NFS_ODIRECT_DO_COMMIT:
 658			nfs_direct_commit_schedule(dreq);
 659			break;
 660		case NFS_ODIRECT_RESCHED_WRITES:
 661			nfs_direct_write_reschedule(dreq);
 662			break;
 663		default:
 664			nfs_direct_complete(dreq, true);
 
 
 665	}
 666}
 667
 668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 669{
 670	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 671}
 672
 673#else
 674static void nfs_direct_write_schedule_work(struct work_struct *work)
 675{
 676}
 677
 678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 679{
 680	nfs_direct_complete(dreq, true);
 681}
 682#endif
 683
 684/*
 685 * NB: Return the value of the first error return code.  Subsequent
 686 *     errors after the first one are ignored.
 687 */
 688/*
 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 690 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 691 * bail and stop sending more writes.  Write length accounting is
 692 * handled automatically by nfs_direct_write_result().  Otherwise, if
 693 * no requests have been sent, just return an error.
 694 */
 695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
 696						 const struct iovec *iov,
 697						 loff_t pos, bool uio)
 698{
 699	struct nfs_direct_req *dreq = desc->pg_dreq;
 700	struct nfs_open_context *ctx = dreq->ctx;
 701	struct inode *inode = ctx->dentry->d_inode;
 702	unsigned long user_addr = (unsigned long)iov->iov_base;
 703	size_t count = iov->iov_len;
 704	size_t wsize = NFS_SERVER(inode)->wsize;
 705	unsigned int pgbase;
 706	int result;
 707	ssize_t started = 0;
 708	struct page **pagevec = NULL;
 709	unsigned int npages;
 710
 711	do {
 712		size_t bytes;
 713		int i;
 714
 715		pgbase = user_addr & ~PAGE_MASK;
 716		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
 717
 718		result = -ENOMEM;
 719		npages = nfs_page_array_len(pgbase, bytes);
 720		if (!pagevec)
 721			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
 722		if (!pagevec)
 723			break;
 724
 725		if (uio) {
 726			down_read(&current->mm->mmap_sem);
 727			result = get_user_pages(current, current->mm, user_addr,
 728						npages, 0, 0, pagevec, NULL);
 729			up_read(&current->mm->mmap_sem);
 730			if (result < 0)
 731				break;
 732		} else {
 733			WARN_ON(npages != 1);
 734			result = get_kernel_page(user_addr, 0, pagevec);
 735			if (WARN_ON(result != 1))
 736				break;
 737		}
 738
 739		if ((unsigned)result < npages) {
 740			bytes = result * PAGE_SIZE;
 741			if (bytes <= pgbase) {
 742				nfs_direct_release_pages(pagevec, result);
 743				break;
 744			}
 745			bytes -= pgbase;
 746			npages = result;
 747		}
 748
 749		for (i = 0; i < npages; i++) {
 750			struct nfs_page *req;
 751			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 752
 753			req = nfs_create_request(dreq->ctx, dreq->inode,
 754						 pagevec[i],
 755						 pgbase, req_len);
 756			if (IS_ERR(req)) {
 757				result = PTR_ERR(req);
 758				break;
 759			}
 760			nfs_lock_request(req);
 761			req->wb_index = pos >> PAGE_SHIFT;
 762			req->wb_offset = pos & ~PAGE_MASK;
 763			if (!nfs_pageio_add_request(desc, req)) {
 764				result = desc->pg_error;
 765				nfs_unlock_and_release_request(req);
 766				break;
 767			}
 768			pgbase = 0;
 769			bytes -= req_len;
 770			started += req_len;
 771			user_addr += req_len;
 772			pos += req_len;
 773			count -= req_len;
 774			dreq->bytes_left -= req_len;
 775		}
 776		/* The nfs_page now hold references to these pages */
 777		nfs_direct_release_pages(pagevec, npages);
 778	} while (count != 0 && result >= 0);
 779
 780	kfree(pagevec);
 781
 782	if (started)
 783		return started;
 784	return result < 0 ? (ssize_t) result : -EFAULT;
 785}
 786
 787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 788{
 789	struct nfs_direct_req *dreq = hdr->dreq;
 790	struct nfs_commit_info cinfo;
 791	int bit = -1;
 792	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 793
 794	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 795		goto out_put;
 796
 797	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 798
 799	spin_lock(&dreq->lock);
 
 
 
 
 800
 801	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 802		dreq->flags = 0;
 803		dreq->error = hdr->error;
 804	}
 805	if (dreq->error != 0)
 806		bit = NFS_IOHDR_ERROR;
 807	else {
 808		dreq->count += hdr->good_bytes;
 809		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 810			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 811			bit = NFS_IOHDR_NEED_RESCHED;
 812		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 813			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 814				bit = NFS_IOHDR_NEED_RESCHED;
 815			else if (dreq->flags == 0) {
 816				memcpy(&dreq->verf, hdr->verf,
 817				       sizeof(dreq->verf));
 818				bit = NFS_IOHDR_NEED_COMMIT;
 819				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 820			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 821				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
 822					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 823					bit = NFS_IOHDR_NEED_RESCHED;
 824				} else
 825					bit = NFS_IOHDR_NEED_COMMIT;
 826			}
 827		}
 828	}
 829	spin_unlock(&dreq->lock);
 830
 831	while (!list_empty(&hdr->pages)) {
 
 832		req = nfs_list_entry(hdr->pages.next);
 833		nfs_list_remove_request(req);
 834		switch (bit) {
 835		case NFS_IOHDR_NEED_RESCHED:
 836		case NFS_IOHDR_NEED_COMMIT:
 
 
 
 
 837			kref_get(&req->wb_kref);
 838			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 839		}
 840		nfs_unlock_and_release_request(req);
 841	}
 842
 843out_put:
 844	if (put_dreq(dreq))
 845		nfs_direct_write_complete(dreq, hdr->inode);
 846	hdr->release(hdr);
 847}
 848
 849static void nfs_write_sync_pgio_error(struct list_head *head)
 850{
 851	struct nfs_page *req;
 852
 853	while (!list_empty(head)) {
 854		req = nfs_list_entry(head->next);
 855		nfs_list_remove_request(req);
 856		nfs_unlock_and_release_request(req);
 857	}
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 861	.error_cleanup = nfs_write_sync_pgio_error,
 862	.init_hdr = nfs_direct_pgio_init,
 863	.completion = nfs_direct_write_completion,
 
 864};
 865
 
 
 
 
 
 
 
 
 
 
 
 
 866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 867					       const struct iovec *iov,
 868					       unsigned long nr_segs,
 869					       loff_t pos, bool uio)
 870{
 871	struct nfs_pageio_descriptor desc;
 872	struct inode *inode = dreq->inode;
 873	ssize_t result = 0;
 874	size_t requested_bytes = 0;
 875	unsigned long seg;
 876
 877	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
 878			      &nfs_direct_write_completion_ops);
 879	desc.pg_dreq = dreq;
 880	get_dreq(dreq);
 881	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
 882
 883	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
 884	for (seg = 0; seg < nr_segs; seg++) {
 885		const struct iovec *vec = &iov[seg];
 886		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
 887		if (result < 0)
 888			break;
 889		requested_bytes += result;
 890		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891			break;
 892		pos += vec->iov_len;
 893	}
 894	nfs_pageio_complete(&desc);
 895
 896	/*
 897	 * If no bytes were started, return the error, and let the
 898	 * generic layer handle the completion.
 899	 */
 900	if (requested_bytes == 0) {
 901		inode_dio_done(inode);
 902		nfs_direct_req_release(dreq);
 903		return result < 0 ? result : -EIO;
 904	}
 905
 906	if (put_dreq(dreq))
 907		nfs_direct_write_complete(dreq, dreq->inode);
 908	return 0;
 909}
 910
 911/**
 912 * nfs_file_direct_write - file direct write operation for NFS files
 913 * @iocb: target I/O control block
 914 * @iov: vector of user buffers from which to write data
 915 * @nr_segs: size of iov vector
 916 * @pos: byte offset in file where writing starts
 917 *
 918 * We use this function for direct writes instead of calling
 919 * generic_file_aio_write() in order to avoid taking the inode
 920 * semaphore and updating the i_size.  The NFS server will set
 921 * the new i_size and this client must read the updated size
 922 * back into its cache.  We let the server do generic write
 923 * parameter checking and report problems.
 924 *
 925 * We eliminate local atime updates, see direct read above.
 926 *
 927 * We avoid unnecessary page cache invalidations for normal cached
 928 * readers of this file.
 929 *
 930 * Note that O_APPEND is not supported for NFS direct writes, as there
 931 * is no atomic O_APPEND write facility in the NFS protocol.
 932 */
 933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 934				unsigned long nr_segs, loff_t pos, bool uio)
 935{
 936	ssize_t result = -EINVAL;
 
 937	struct file *file = iocb->ki_filp;
 938	struct address_space *mapping = file->f_mapping;
 939	struct inode *inode = mapping->host;
 940	struct nfs_direct_req *dreq;
 941	struct nfs_lock_context *l_ctx;
 942	loff_t end;
 943	size_t count;
 944
 945	count = iov_length(iov, nr_segs);
 946	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 947
 948	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 949
 950	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 951		file, count, (long long) pos);
 952
 953	result = generic_write_checks(file, &pos, &count, 0);
 954	if (result)
 955		goto out;
 956
 957	result = -EINVAL;
 958	if ((ssize_t) count < 0)
 959		goto out;
 960	result = 0;
 961	if (!count)
 962		goto out;
 963
 964	mutex_lock(&inode->i_mutex);
 965
 966	result = nfs_sync_mapping(mapping);
 967	if (result)
 968		goto out_unlock;
 969
 970	if (mapping->nrpages) {
 971		result = invalidate_inode_pages2_range(mapping,
 972					pos >> PAGE_CACHE_SHIFT, end);
 973		if (result)
 974			goto out_unlock;
 975	}
 976
 977	task_io_account_write(count);
 978
 979	result = -ENOMEM;
 980	dreq = nfs_direct_req_alloc();
 981	if (!dreq)
 982		goto out_unlock;
 983
 984	dreq->inode = inode;
 985	dreq->bytes_left = count;
 
 986	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 987	l_ctx = nfs_get_lock_context(dreq->ctx);
 988	if (IS_ERR(l_ctx)) {
 989		result = PTR_ERR(l_ctx);
 
 990		goto out_release;
 991	}
 992	dreq->l_ctx = l_ctx;
 993	if (!is_sync_kiocb(iocb))
 994		dreq->iocb = iocb;
 
 995
 996	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 
 
 997
 998	if (mapping->nrpages) {
 999		invalidate_inode_pages2_range(mapping,
1000					      pos >> PAGE_CACHE_SHIFT, end);
1001	}
1002
1003	mutex_unlock(&inode->i_mutex);
1004
1005	if (!result) {
1006		result = nfs_direct_wait(dreq);
1007		if (result > 0) {
1008			struct inode *inode = mapping->host;
1009
1010			iocb->ki_pos = pos + result;
1011			spin_lock(&inode->i_lock);
1012			if (i_size_read(inode) < iocb->ki_pos)
1013				i_size_write(inode, iocb->ki_pos);
1014			spin_unlock(&inode->i_lock);
1015		}
 
 
 
1016	}
1017	nfs_direct_req_release(dreq);
1018	return result;
1019
1020out_release:
1021	nfs_direct_req_release(dreq);
1022out_unlock:
1023	mutex_unlock(&inode->i_mutex);
1024out:
1025	return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035						sizeof(struct nfs_direct_req),
1036						0, (SLAB_RECLAIM_ACCOUNT|
1037							SLAB_MEM_SPREAD),
1038						NULL);
1039	if (nfs_direct_cachep == NULL)
1040		return -ENOMEM;
1041
1042	return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051	kmem_cache_destroy(nfs_direct_cachep);
1052}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/fs/nfs/direct.c
  4 *
  5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  6 *
  7 * High-performance uncached I/O for the Linux NFS client
  8 *
  9 * There are important applications whose performance or correctness
 10 * depends on uncached access to file data.  Database clusters
 11 * (multiple copies of the same instance running on separate hosts)
 12 * implement their own cache coherency protocol that subsumes file
 13 * system cache protocols.  Applications that process datasets
 14 * considerably larger than the client's memory do not always benefit
 15 * from a local cache.  A streaming video server, for instance, has no
 16 * need to cache the contents of a file.
 17 *
 18 * When an application requests uncached I/O, all read and write requests
 19 * are made directly to the server; data stored or fetched via these
 20 * requests is not cached in the Linux page cache.  The client does not
 21 * correct unaligned requests from applications.  All requested bytes are
 22 * held on permanent storage before a direct write system call returns to
 23 * an application.
 24 *
 25 * Solaris implements an uncached I/O facility called directio() that
 26 * is used for backups and sequential I/O to very large files.  Solaris
 27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 28 * an undocumented mount option.
 29 *
 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 31 * help from Andrew Morton.
 32 *
 33 * 18 Dec 2001	Initial implementation for 2.4  --cel
 34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 35 * 08 Jun 2003	Port to 2.5 APIs  --cel
 36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 37 * 15 Sep 2004	Parallel async reads  --cel
 38 * 04 May 2005	support O_DIRECT with aio  --cel
 39 *
 40 */
 41
 42#include <linux/errno.h>
 43#include <linux/sched.h>
 44#include <linux/kernel.h>
 45#include <linux/file.h>
 46#include <linux/pagemap.h>
 47#include <linux/kref.h>
 48#include <linux/slab.h>
 49#include <linux/task_io_accounting_ops.h>
 50#include <linux/module.h>
 51
 52#include <linux/nfs_fs.h>
 53#include <linux/nfs_page.h>
 54#include <linux/sunrpc/clnt.h>
 55
 56#include <linux/uaccess.h>
 57#include <linux/atomic.h>
 58
 59#include "internal.h"
 60#include "iostat.h"
 61#include "pnfs.h"
 62
 63#define NFSDBG_FACILITY		NFSDBG_VFS
 64
 65static struct kmem_cache *nfs_direct_cachep;
 66
 
 
 
 67struct nfs_direct_req {
 68	struct kref		kref;		/* release manager */
 69
 70	/* I/O parameters */
 71	struct nfs_open_context	*ctx;		/* file open context info */
 72	struct nfs_lock_context *l_ctx;		/* Lock context info */
 73	struct kiocb *		iocb;		/* controlling i/o request */
 74	struct inode *		inode;		/* target file of i/o */
 75
 76	/* completion state */
 77	atomic_t		io_count;	/* i/os we're waiting for */
 78	spinlock_t		lock;		/* protect completion state */
 79
 80	loff_t			io_start;	/* Start offset for I/O */
 81	ssize_t			count,		/* bytes actually processed */
 82				max_count,	/* max expected count */
 83				bytes_left,	/* bytes left to be sent */
 84				error;		/* any reported error */
 85	struct completion	completion;	/* wait for i/o completion */
 86
 87	/* commit state */
 88	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
 89	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
 90	struct work_struct	work;
 91	int			flags;
 92	/* for write */
 93#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 94#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 95	/* for read */
 96#define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
 97#define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
 98};
 99
100static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103static void nfs_direct_write_schedule_work(struct work_struct *work);
104
105static inline void get_dreq(struct nfs_direct_req *dreq)
106{
107	atomic_inc(&dreq->io_count);
108}
109
110static inline int put_dreq(struct nfs_direct_req *dreq)
111{
112	return atomic_dec_and_test(&dreq->io_count);
113}
114
115static void
116nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117			    const struct nfs_pgio_header *hdr,
118			    ssize_t dreq_len)
119{
120	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122		return;
123	if (dreq->max_count >= dreq_len) {
124		dreq->max_count = dreq_len;
125		if (dreq->count > dreq_len)
126			dreq->count = dreq_len;
127
128		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129			dreq->error = hdr->error;
130		else /* Clear outstanding error if this is EOF */
131			dreq->error = 0;
132	}
133}
134
135static void
136nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137		       const struct nfs_pgio_header *hdr)
138{
139	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140	ssize_t dreq_len = 0;
141
142	if (hdr_end > dreq->io_start)
143		dreq_len = hdr_end - dreq->io_start;
144
145	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146
147	if (dreq_len > dreq->max_count)
148		dreq_len = dreq->max_count;
149
150	if (dreq->count < dreq_len)
151		dreq->count = dreq_len;
152}
153
154/**
155 * nfs_direct_IO - NFS address space operation for direct I/O
 
156 * @iocb: target I/O control block
157 * @iter: I/O buffer
 
 
158 *
159 * The presence of this routine in the address space ops vector means
160 * the NFS client supports direct I/O. However, for most direct IO, we
161 * shunt off direct read and write requests before the VFS gets them,
162 * so this method is only ever called for swap.
163 */
164ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165{
166	struct inode *inode = iocb->ki_filp->f_mapping->host;
167
168	/* we only support swap file calling nfs_direct_IO */
169	if (!IS_SWAPFILE(inode))
170		return 0;
171
172	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173
174	if (iov_iter_rw(iter) == READ)
175		return nfs_file_direct_read(iocb, iter);
176	return nfs_file_direct_write(iocb, iter);
 
 
 
177}
178
179static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180{
181	unsigned int i;
182	for (i = 0; i < npages; i++)
183		put_page(pages[i]);
184}
185
186void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187			      struct nfs_direct_req *dreq)
188{
189	cinfo->inode = dreq->inode;
190	cinfo->mds = &dreq->mds_cinfo;
191	cinfo->ds = &dreq->ds_cinfo;
192	cinfo->dreq = dreq;
193	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194}
195
196static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197{
198	struct nfs_direct_req *dreq;
199
200	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201	if (!dreq)
202		return NULL;
203
204	kref_init(&dreq->kref);
205	kref_get(&dreq->kref);
206	init_completion(&dreq->completion);
207	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
210	spin_lock_init(&dreq->lock);
211
212	return dreq;
213}
214
215static void nfs_direct_req_free(struct kref *kref)
216{
217	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218
219	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220	if (dreq->l_ctx != NULL)
221		nfs_put_lock_context(dreq->l_ctx);
222	if (dreq->ctx != NULL)
223		put_nfs_open_context(dreq->ctx);
224	kmem_cache_free(nfs_direct_cachep, dreq);
225}
226
227static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228{
229	kref_put(&dreq->kref, nfs_direct_req_free);
230}
231
232ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233{
234	return dreq->bytes_left;
235}
236EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237
238/*
239 * Collects and returns the final error value/byte-count.
240 */
241static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242{
243	ssize_t result = -EIOCBQUEUED;
244
245	/* Async requests don't wait here */
246	if (dreq->iocb)
247		goto out;
248
249	result = wait_for_completion_killable(&dreq->completion);
250
251	if (!result) {
252		result = dreq->count;
253		WARN_ON_ONCE(dreq->count < 0);
254	}
255	if (!result)
256		result = dreq->error;
 
 
257
258out:
259	return (ssize_t) result;
260}
261
262/*
263 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
264 * the iocb is still valid here if this is a synchronous request.
265 */
266static void nfs_direct_complete(struct nfs_direct_req *dreq)
267{
268	struct inode *inode = dreq->inode;
269
270	inode_dio_end(inode);
 
 
 
 
 
 
 
 
 
 
 
 
271
272	if (dreq->iocb) {
273		long res = (long) dreq->error;
274		if (dreq->count != 0) {
275			res = (long) dreq->count;
276			WARN_ON_ONCE(dreq->count < 0);
277		}
278		dreq->iocb->ki_complete(dreq->iocb, res, 0);
279	}
280
281	complete(&dreq->completion);
282
283	nfs_direct_req_release(dreq);
284}
285
 
 
 
 
 
 
 
 
 
 
286static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287{
288	unsigned long bytes = 0;
289	struct nfs_direct_req *dreq = hdr->dreq;
290
291	spin_lock(&dreq->lock);
292	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
293		spin_unlock(&dreq->lock);
294		goto out_put;
295	}
296
297	nfs_direct_count_bytes(dreq, hdr);
 
 
 
 
298	spin_unlock(&dreq->lock);
299
300	while (!list_empty(&hdr->pages)) {
301		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302		struct page *page = req->wb_page;
303
304		if (!PageCompound(page) && bytes < hdr->good_bytes &&
305		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306			set_page_dirty(page);
307		bytes += req->wb_bytes;
308		nfs_list_remove_request(req);
309		nfs_release_request(req);
310	}
311out_put:
312	if (put_dreq(dreq))
313		nfs_direct_complete(dreq);
314	hdr->release(hdr);
315}
316
317static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318{
319	struct nfs_page *req;
320
321	while (!list_empty(head)) {
322		req = nfs_list_entry(head->next);
323		nfs_list_remove_request(req);
324		nfs_release_request(req);
325	}
326}
327
328static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329{
330	get_dreq(hdr->dreq);
331}
332
333static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334	.error_cleanup = nfs_read_sync_pgio_error,
335	.init_hdr = nfs_direct_pgio_init,
336	.completion = nfs_direct_read_completion,
337};
338
339/*
340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
342 * bail and stop sending more reads.  Read length accounting is
343 * handled automatically by nfs_direct_read_result().  Otherwise, if
344 * no requests have been sent, just return an error.
345 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
347static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348					      struct iov_iter *iter,
349					      loff_t pos)
350{
351	struct nfs_pageio_descriptor desc;
352	struct inode *inode = dreq->inode;
353	ssize_t result = -EINVAL;
354	size_t requested_bytes = 0;
355	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356
357	nfs_pageio_init_read(&desc, dreq->inode, false,
358			     &nfs_direct_read_completion_ops);
359	get_dreq(dreq);
360	desc.pg_dreq = dreq;
361	inode_dio_begin(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362
363	while (iov_iter_count(iter)) {
364		struct page **pagevec;
365		size_t bytes;
366		size_t pgbase;
367		unsigned npages, i;
 
 
 
 
368
369		result = iov_iter_get_pages_alloc(iter, &pagevec, 
370						  rsize, &pgbase);
371		if (result < 0)
372			break;
373	
374		bytes = result;
375		iov_iter_advance(iter, bytes);
376		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377		for (i = 0; i < npages; i++) {
378			struct nfs_page *req;
379			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380			/* XXX do we need to do the eof zeroing found in async_filler? */
381			req = nfs_create_request(dreq->ctx, pagevec[i],
 
382						 pgbase, req_len);
383			if (IS_ERR(req)) {
384				result = PTR_ERR(req);
385				break;
386			}
387			req->wb_index = pos >> PAGE_SHIFT;
388			req->wb_offset = pos & ~PAGE_MASK;
389			if (!nfs_pageio_add_request(&desc, req)) {
390				result = desc.pg_error;
391				nfs_release_request(req);
392				break;
393			}
394			pgbase = 0;
395			bytes -= req_len;
396			requested_bytes += req_len;
 
397			pos += req_len;
 
398			dreq->bytes_left -= req_len;
399		}
 
400		nfs_direct_release_pages(pagevec, npages);
401		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402		if (result < 0)
403			break;
 
 
 
 
404	}
405
406	nfs_pageio_complete(&desc);
407
408	/*
409	 * If no bytes were started, return the error, and let the
410	 * generic layer handle the completion.
411	 */
412	if (requested_bytes == 0) {
413		inode_dio_end(inode);
414		nfs_direct_req_release(dreq);
415		return result < 0 ? result : -EIO;
416	}
417
418	if (put_dreq(dreq))
419		nfs_direct_complete(dreq);
420	return requested_bytes;
421}
422
423/**
424 * nfs_file_direct_read - file direct read operation for NFS files
425 * @iocb: target I/O control block
426 * @iter: vector of user buffers into which to read data
 
 
427 *
428 * We use this function for direct reads instead of calling
429 * generic_file_aio_read() in order to avoid gfar's check to see if
430 * the request starts before the end of the file.  For that check
431 * to work, we must generate a GETATTR before each direct read, and
432 * even then there is a window between the GETATTR and the subsequent
433 * READ where the file size could change.  Our preference is simply
434 * to do all reads the application wants, and the server will take
435 * care of managing the end of file boundary.
436 *
437 * This function also eliminates unnecessarily updating the file's
438 * atime locally, as the NFS server sets the file's atime, and this
439 * client must read the updated atime from the server back into its
440 * cache.
441 */
442ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
 
443{
444	struct file *file = iocb->ki_filp;
445	struct address_space *mapping = file->f_mapping;
446	struct inode *inode = mapping->host;
447	struct nfs_direct_req *dreq;
448	struct nfs_lock_context *l_ctx;
449	ssize_t result, requested;
450	size_t count = iov_iter_count(iter);
 
 
451	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
452
453	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
454		file, count, (long long) iocb->ki_pos);
455
456	result = 0;
457	if (!count)
458		goto out;
459
 
 
 
 
 
460	task_io_account_read(count);
461
462	result = -ENOMEM;
463	dreq = nfs_direct_req_alloc();
464	if (dreq == NULL)
465		goto out;
466
467	dreq->inode = inode;
468	dreq->bytes_left = dreq->max_count = count;
469	dreq->io_start = iocb->ki_pos;
470	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
471	l_ctx = nfs_get_lock_context(dreq->ctx);
472	if (IS_ERR(l_ctx)) {
473		result = PTR_ERR(l_ctx);
474		nfs_direct_req_release(dreq);
475		goto out_release;
476	}
477	dreq->l_ctx = l_ctx;
478	if (!is_sync_kiocb(iocb))
479		dreq->iocb = iocb;
480
481	if (iter_is_iovec(iter))
482		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
483
484	nfs_start_io_direct(inode);
485
486	NFS_I(inode)->read_io += count;
487	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
488
489	nfs_end_io_direct(inode);
490
491	if (requested > 0) {
492		result = nfs_direct_wait(dreq);
493		if (result > 0) {
494			requested -= result;
495			iocb->ki_pos += result;
496		}
497		iov_iter_revert(iter, requested);
498	} else {
499		result = requested;
500	}
501
 
 
 
502out_release:
503	nfs_direct_req_release(dreq);
 
 
504out:
505	return result;
506}
507
508static void
509nfs_direct_join_group(struct list_head *list, struct inode *inode)
510{
511	struct nfs_page *req, *next;
512
513	list_for_each_entry(req, list, wb_list) {
514		if (req->wb_head != req || req->wb_this_page == req)
515			continue;
516		for (next = req->wb_this_page;
517				next != req->wb_head;
518				next = next->wb_this_page) {
519			nfs_list_remove_request(next);
520			nfs_release_request(next);
521		}
522		nfs_join_page_group(req, inode);
523	}
524}
525
526static void
527nfs_direct_write_scan_commit_list(struct inode *inode,
528				  struct list_head *list,
529				  struct nfs_commit_info *cinfo)
530{
531	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
532	pnfs_recover_commit_reqs(list, cinfo);
533	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
534	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
535}
536
537static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
538{
539	struct nfs_pageio_descriptor desc;
540	struct nfs_page *req, *tmp;
541	LIST_HEAD(reqs);
542	struct nfs_commit_info cinfo;
543	LIST_HEAD(failed);
544
545	nfs_init_cinfo_from_dreq(&cinfo, dreq);
546	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
547
548	nfs_direct_join_group(&reqs, dreq->inode);
 
549
550	dreq->count = 0;
551	dreq->max_count = 0;
552	list_for_each_entry(req, &reqs, wb_list)
553		dreq->max_count += req->wb_bytes;
554	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
555	get_dreq(dreq);
556
557	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
558			      &nfs_direct_write_completion_ops);
559	desc.pg_dreq = dreq;
560
561	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
562		/* Bump the transmission count */
563		req->wb_nio++;
564		if (!nfs_pageio_add_request(&desc, req)) {
565			nfs_list_move_request(req, &failed);
566			spin_lock(&cinfo.inode->i_lock);
 
567			dreq->flags = 0;
568			if (desc.pg_error < 0)
569				dreq->error = desc.pg_error;
570			else
571				dreq->error = -EIO;
572			spin_unlock(&cinfo.inode->i_lock);
573		}
574		nfs_release_request(req);
575	}
576	nfs_pageio_complete(&desc);
577
578	while (!list_empty(&failed)) {
579		req = nfs_list_entry(failed.next);
580		nfs_list_remove_request(req);
581		nfs_unlock_and_release_request(req);
582	}
583
584	if (put_dreq(dreq))
585		nfs_direct_write_complete(dreq);
586}
587
588static void nfs_direct_commit_complete(struct nfs_commit_data *data)
589{
590	const struct nfs_writeverf *verf = data->res.verf;
591	struct nfs_direct_req *dreq = data->dreq;
592	struct nfs_commit_info cinfo;
593	struct nfs_page *req;
594	int status = data->task.tk_status;
595
 
596	if (status < 0) {
597		/* Errors in commit are fatal */
598		dreq->error = status;
599		dreq->max_count = 0;
600		dreq->count = 0;
601		dreq->flags = NFS_ODIRECT_DONE;
602	} else if (dreq->flags == NFS_ODIRECT_DONE)
603		status = dreq->error;
604
605	nfs_init_cinfo_from_dreq(&cinfo, dreq);
606
 
607	while (!list_empty(&data->pages)) {
608		req = nfs_list_entry(data->pages.next);
609		nfs_list_remove_request(req);
610		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
611			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
612			/*
613			 * Despite the reboot, the write was successful,
614			 * so reset wb_nio.
615			 */
616			req->wb_nio = 0;
617			nfs_mark_request_commit(req, NULL, &cinfo, 0);
618		} else /* Error or match */
619			nfs_release_request(req);
620		nfs_unlock_and_release_request(req);
621	}
622
623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
624		nfs_direct_write_complete(dreq);
625}
626
627static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
628		struct nfs_page *req)
629{
630	struct nfs_direct_req *dreq = cinfo->dreq;
631
632	spin_lock(&dreq->lock);
633	if (dreq->flags != NFS_ODIRECT_DONE)
634		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
635	spin_unlock(&dreq->lock);
636	nfs_mark_request_commit(req, NULL, cinfo, 0);
637}
638
639static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
640	.completion = nfs_direct_commit_complete,
641	.resched_write = nfs_direct_resched_write,
642};
643
644static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
645{
646	int res;
647	struct nfs_commit_info cinfo;
648	LIST_HEAD(mds_list);
649
650	nfs_init_cinfo_from_dreq(&cinfo, dreq);
651	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
652	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
653	if (res < 0) /* res == -ENOMEM */
654		nfs_direct_write_reschedule(dreq);
655}
656
657static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
658{
659	struct nfs_commit_info cinfo;
660	struct nfs_page *req;
661	LIST_HEAD(reqs);
662
663	nfs_init_cinfo_from_dreq(&cinfo, dreq);
664	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
665
666	while (!list_empty(&reqs)) {
667		req = nfs_list_entry(reqs.next);
668		nfs_list_remove_request(req);
669		nfs_release_request(req);
670		nfs_unlock_and_release_request(req);
671	}
672}
673
674static void nfs_direct_write_schedule_work(struct work_struct *work)
675{
676	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
677	int flags = dreq->flags;
678
679	dreq->flags = 0;
680	switch (flags) {
681		case NFS_ODIRECT_DO_COMMIT:
682			nfs_direct_commit_schedule(dreq);
683			break;
684		case NFS_ODIRECT_RESCHED_WRITES:
685			nfs_direct_write_reschedule(dreq);
686			break;
687		default:
688			nfs_direct_write_clear_reqs(dreq);
689			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
690			nfs_direct_complete(dreq);
691	}
692}
693
694static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 
 
 
 
 
 
 
 
 
 
695{
696	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697}
698
699static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
700{
701	struct nfs_direct_req *dreq = hdr->dreq;
702	struct nfs_commit_info cinfo;
 
703	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
704	int flags = NFS_ODIRECT_DONE;
 
 
705
706	nfs_init_cinfo_from_dreq(&cinfo, dreq);
707
708	spin_lock(&dreq->lock);
709	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
710		spin_unlock(&dreq->lock);
711		goto out_put;
712	}
713
714	nfs_direct_count_bytes(dreq, hdr);
715	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
716		if (!dreq->flags)
717			dreq->flags = NFS_ODIRECT_DO_COMMIT;
718		flags = dreq->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719	}
720	spin_unlock(&dreq->lock);
721
722	while (!list_empty(&hdr->pages)) {
723
724		req = nfs_list_entry(hdr->pages.next);
725		nfs_list_remove_request(req);
726		if (flags == NFS_ODIRECT_DO_COMMIT) {
727			kref_get(&req->wb_kref);
728			memcpy(&req->wb_verf, &hdr->verf.verifier,
729			       sizeof(req->wb_verf));
730			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
731				hdr->ds_commit_idx);
732		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
733			kref_get(&req->wb_kref);
734			nfs_mark_request_commit(req, NULL, &cinfo, 0);
735		}
736		nfs_unlock_and_release_request(req);
737	}
738
739out_put:
740	if (put_dreq(dreq))
741		nfs_direct_write_complete(dreq);
742	hdr->release(hdr);
743}
744
745static void nfs_write_sync_pgio_error(struct list_head *head, int error)
746{
747	struct nfs_page *req;
748
749	while (!list_empty(head)) {
750		req = nfs_list_entry(head->next);
751		nfs_list_remove_request(req);
752		nfs_unlock_and_release_request(req);
753	}
754}
755
756static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
757{
758	struct nfs_direct_req *dreq = hdr->dreq;
759
760	spin_lock(&dreq->lock);
761	if (dreq->error == 0) {
762		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
763		/* fake unstable write to let common nfs resend pages */
764		hdr->verf.committed = NFS_UNSTABLE;
765		hdr->good_bytes = hdr->args.offset + hdr->args.count -
766			hdr->io_start;
767	}
768	spin_unlock(&dreq->lock);
769}
770
771static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
772	.error_cleanup = nfs_write_sync_pgio_error,
773	.init_hdr = nfs_direct_pgio_init,
774	.completion = nfs_direct_write_completion,
775	.reschedule_io = nfs_direct_write_reschedule_io,
776};
777
778
779/*
780 * NB: Return the value of the first error return code.  Subsequent
781 *     errors after the first one are ignored.
782 */
783/*
784 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
785 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
786 * bail and stop sending more writes.  Write length accounting is
787 * handled automatically by nfs_direct_write_result().  Otherwise, if
788 * no requests have been sent, just return an error.
789 */
790static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
791					       struct iov_iter *iter,
792					       loff_t pos)
 
793{
794	struct nfs_pageio_descriptor desc;
795	struct inode *inode = dreq->inode;
796	ssize_t result = 0;
797	size_t requested_bytes = 0;
798	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
799
800	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
801			      &nfs_direct_write_completion_ops);
802	desc.pg_dreq = dreq;
803	get_dreq(dreq);
804	inode_dio_begin(inode);
805
806	NFS_I(inode)->write_io += iov_iter_count(iter);
807	while (iov_iter_count(iter)) {
808		struct page **pagevec;
809		size_t bytes;
810		size_t pgbase;
811		unsigned npages, i;
812
813		result = iov_iter_get_pages_alloc(iter, &pagevec, 
814						  wsize, &pgbase);
 
 
815		if (result < 0)
816			break;
817
818		bytes = result;
819		iov_iter_advance(iter, bytes);
820		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
821		for (i = 0; i < npages; i++) {
822			struct nfs_page *req;
823			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
824
825			req = nfs_create_request(dreq->ctx, pagevec[i],
826						 pgbase, req_len);
827			if (IS_ERR(req)) {
828				result = PTR_ERR(req);
829				break;
830			}
831
832			if (desc.pg_error < 0) {
833				nfs_free_request(req);
834				result = desc.pg_error;
835				break;
836			}
837
838			nfs_lock_request(req);
839			req->wb_index = pos >> PAGE_SHIFT;
840			req->wb_offset = pos & ~PAGE_MASK;
841			if (!nfs_pageio_add_request(&desc, req)) {
842				result = desc.pg_error;
843				nfs_unlock_and_release_request(req);
844				break;
845			}
846			pgbase = 0;
847			bytes -= req_len;
848			requested_bytes += req_len;
849			pos += req_len;
850			dreq->bytes_left -= req_len;
851		}
852		nfs_direct_release_pages(pagevec, npages);
853		kvfree(pagevec);
854		if (result < 0)
855			break;
 
856	}
857	nfs_pageio_complete(&desc);
858
859	/*
860	 * If no bytes were started, return the error, and let the
861	 * generic layer handle the completion.
862	 */
863	if (requested_bytes == 0) {
864		inode_dio_end(inode);
865		nfs_direct_req_release(dreq);
866		return result < 0 ? result : -EIO;
867	}
868
869	if (put_dreq(dreq))
870		nfs_direct_write_complete(dreq);
871	return requested_bytes;
872}
873
874/**
875 * nfs_file_direct_write - file direct write operation for NFS files
876 * @iocb: target I/O control block
877 * @iter: vector of user buffers from which to write data
 
 
878 *
879 * We use this function for direct writes instead of calling
880 * generic_file_aio_write() in order to avoid taking the inode
881 * semaphore and updating the i_size.  The NFS server will set
882 * the new i_size and this client must read the updated size
883 * back into its cache.  We let the server do generic write
884 * parameter checking and report problems.
885 *
886 * We eliminate local atime updates, see direct read above.
887 *
888 * We avoid unnecessary page cache invalidations for normal cached
889 * readers of this file.
890 *
891 * Note that O_APPEND is not supported for NFS direct writes, as there
892 * is no atomic O_APPEND write facility in the NFS protocol.
893 */
894ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 
895{
896	ssize_t result, requested;
897	size_t count;
898	struct file *file = iocb->ki_filp;
899	struct address_space *mapping = file->f_mapping;
900	struct inode *inode = mapping->host;
901	struct nfs_direct_req *dreq;
902	struct nfs_lock_context *l_ctx;
903	loff_t pos, end;
 
 
 
 
 
 
904
905	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
906		file, iov_iter_count(iter), (long long) iocb->ki_pos);
 
 
 
 
 
 
 
 
 
 
 
907
908	result = generic_write_checks(iocb, iter);
909	if (result <= 0)
910		return result;
911	count = result;
912	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
913
914	pos = iocb->ki_pos;
915	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
 
 
916
917	task_io_account_write(count);
918
919	result = -ENOMEM;
920	dreq = nfs_direct_req_alloc();
921	if (!dreq)
922		goto out;
923
924	dreq->inode = inode;
925	dreq->bytes_left = dreq->max_count = count;
926	dreq->io_start = pos;
927	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
928	l_ctx = nfs_get_lock_context(dreq->ctx);
929	if (IS_ERR(l_ctx)) {
930		result = PTR_ERR(l_ctx);
931		nfs_direct_req_release(dreq);
932		goto out_release;
933	}
934	dreq->l_ctx = l_ctx;
935	if (!is_sync_kiocb(iocb))
936		dreq->iocb = iocb;
937	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
938
939	nfs_start_io_direct(inode);
940
941	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
942
943	if (mapping->nrpages) {
944		invalidate_inode_pages2_range(mapping,
945					      pos >> PAGE_SHIFT, end);
946	}
947
948	nfs_end_io_direct(inode);
949
950	if (requested > 0) {
951		result = nfs_direct_wait(dreq);
952		if (result > 0) {
953			requested -= result;
 
954			iocb->ki_pos = pos + result;
955			/* XXX: should check the generic_write_sync retval */
956			generic_write_sync(iocb, result);
 
 
957		}
958		iov_iter_revert(iter, requested);
959	} else {
960		result = requested;
961	}
 
 
 
962out_release:
963	nfs_direct_req_release(dreq);
 
 
964out:
965	return result;
966}
967
968/**
969 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
970 *
971 */
972int __init nfs_init_directcache(void)
973{
974	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
975						sizeof(struct nfs_direct_req),
976						0, (SLAB_RECLAIM_ACCOUNT|
977							SLAB_MEM_SPREAD),
978						NULL);
979	if (nfs_direct_cachep == NULL)
980		return -ENOMEM;
981
982	return 0;
983}
984
985/**
986 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
987 *
988 */
989void nfs_destroy_directcache(void)
990{
991	kmem_cache_destroy(nfs_direct_cachep);
992}