Loading...
1/*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20/*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62#include <linux/fs.h>
63#include <linux/blkdev.h>
64#include <linux/interrupt.h>
65#include <linux/completion.h>
66#include <linux/kthread.h>
67#include <linux/buffer_head.h> /* for sync_blockdev() */
68#include <linux/bio.h>
69#include <linux/freezer.h>
70#include <linux/export.h>
71#include <linux/delay.h>
72#include <linux/mutex.h>
73#include <linux/seq_file.h>
74#include <linux/slab.h>
75#include "jfs_incore.h"
76#include "jfs_filsys.h"
77#include "jfs_metapage.h"
78#include "jfs_superblock.h"
79#include "jfs_txnmgr.h"
80#include "jfs_debug.h"
81
82
83/*
84 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
85 */
86static struct lbuf *log_redrive_list;
87static DEFINE_SPINLOCK(log_redrive_lock);
88
89
90/*
91 * log read/write serialization (per log)
92 */
93#define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
94#define LOG_LOCK(log) mutex_lock(&((log)->loglock))
95#define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
96
97
98/*
99 * log group commit serialization (per log)
100 */
101
102#define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
103#define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
104#define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
105#define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
106
107/*
108 * log sync serialization (per log)
109 */
110#define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
111#define LOGSYNC_BARRIER(logsize) ((logsize)/4)
112/*
113#define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
114#define LOGSYNC_BARRIER(logsize) ((logsize)/2)
115*/
116
117
118/*
119 * log buffer cache synchronization
120 */
121static DEFINE_SPINLOCK(jfsLCacheLock);
122
123#define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
124#define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
125
126/*
127 * See __SLEEP_COND in jfs_locks.h
128 */
129#define LCACHE_SLEEP_COND(wq, cond, flags) \
130do { \
131 if (cond) \
132 break; \
133 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
134} while (0)
135
136#define LCACHE_WAKEUP(event) wake_up(event)
137
138
139/*
140 * lbuf buffer cache (lCache) control
141 */
142/* log buffer manager pageout control (cumulative, inclusive) */
143#define lbmREAD 0x0001
144#define lbmWRITE 0x0002 /* enqueue at tail of write queue;
145 * init pageout if at head of queue;
146 */
147#define lbmRELEASE 0x0004 /* remove from write queue
148 * at completion of pageout;
149 * do not free/recycle it yet:
150 * caller will free it;
151 */
152#define lbmSYNC 0x0008 /* do not return to freelist
153 * when removed from write queue;
154 */
155#define lbmFREE 0x0010 /* return to freelist
156 * at completion of pageout;
157 * the buffer may be recycled;
158 */
159#define lbmDONE 0x0020
160#define lbmERROR 0x0040
161#define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
162 * of log page
163 */
164#define lbmDIRECT 0x0100
165
166/*
167 * Global list of active external journals
168 */
169static LIST_HEAD(jfs_external_logs);
170static struct jfs_log *dummy_log = NULL;
171static DEFINE_MUTEX(jfs_log_mutex);
172
173/*
174 * forward references
175 */
176static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
177 struct lrd * lrd, struct tlock * tlck);
178
179static int lmNextPage(struct jfs_log * log);
180static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
181 int activate);
182
183static int open_inline_log(struct super_block *sb);
184static int open_dummy_log(struct super_block *sb);
185static int lbmLogInit(struct jfs_log * log);
186static void lbmLogShutdown(struct jfs_log * log);
187static struct lbuf *lbmAllocate(struct jfs_log * log, int);
188static void lbmFree(struct lbuf * bp);
189static void lbmfree(struct lbuf * bp);
190static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
191static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
192static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
193static int lbmIOWait(struct lbuf * bp, int flag);
194static bio_end_io_t lbmIODone;
195static void lbmStartIO(struct lbuf * bp);
196static void lmGCwrite(struct jfs_log * log, int cant_block);
197static int lmLogSync(struct jfs_log * log, int hard_sync);
198
199
200
201/*
202 * statistics
203 */
204#ifdef CONFIG_JFS_STATISTICS
205static struct lmStat {
206 uint commit; /* # of commit */
207 uint pagedone; /* # of page written */
208 uint submitted; /* # of pages submitted */
209 uint full_page; /* # of full pages submitted */
210 uint partial_page; /* # of partial pages submitted */
211} lmStat;
212#endif
213
214static void write_special_inodes(struct jfs_log *log,
215 int (*writer)(struct address_space *))
216{
217 struct jfs_sb_info *sbi;
218
219 list_for_each_entry(sbi, &log->sb_list, log_list) {
220 writer(sbi->ipbmap->i_mapping);
221 writer(sbi->ipimap->i_mapping);
222 writer(sbi->direct_inode->i_mapping);
223 }
224}
225
226/*
227 * NAME: lmLog()
228 *
229 * FUNCTION: write a log record;
230 *
231 * PARAMETER:
232 *
233 * RETURN: lsn - offset to the next log record to write (end-of-log);
234 * -1 - error;
235 *
236 * note: todo: log error handler
237 */
238int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
239 struct tlock * tlck)
240{
241 int lsn;
242 int diffp, difft;
243 struct metapage *mp = NULL;
244 unsigned long flags;
245
246 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
247 log, tblk, lrd, tlck);
248
249 LOG_LOCK(log);
250
251 /* log by (out-of-transaction) JFS ? */
252 if (tblk == NULL)
253 goto writeRecord;
254
255 /* log from page ? */
256 if (tlck == NULL ||
257 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
258 goto writeRecord;
259
260 /*
261 * initialize/update page/transaction recovery lsn
262 */
263 lsn = log->lsn;
264
265 LOGSYNC_LOCK(log, flags);
266
267 /*
268 * initialize page lsn if first log write of the page
269 */
270 if (mp->lsn == 0) {
271 mp->log = log;
272 mp->lsn = lsn;
273 log->count++;
274
275 /* insert page at tail of logsynclist */
276 list_add_tail(&mp->synclist, &log->synclist);
277 }
278
279 /*
280 * initialize/update lsn of tblock of the page
281 *
282 * transaction inherits oldest lsn of pages associated
283 * with allocation/deallocation of resources (their
284 * log records are used to reconstruct allocation map
285 * at recovery time: inode for inode allocation map,
286 * B+-tree index of extent descriptors for block
287 * allocation map);
288 * allocation map pages inherit transaction lsn at
289 * commit time to allow forwarding log syncpt past log
290 * records associated with allocation/deallocation of
291 * resources only after persistent map of these map pages
292 * have been updated and propagated to home.
293 */
294 /*
295 * initialize transaction lsn:
296 */
297 if (tblk->lsn == 0) {
298 /* inherit lsn of its first page logged */
299 tblk->lsn = mp->lsn;
300 log->count++;
301
302 /* insert tblock after the page on logsynclist */
303 list_add(&tblk->synclist, &mp->synclist);
304 }
305 /*
306 * update transaction lsn:
307 */
308 else {
309 /* inherit oldest/smallest lsn of page */
310 logdiff(diffp, mp->lsn, log);
311 logdiff(difft, tblk->lsn, log);
312 if (diffp < difft) {
313 /* update tblock lsn with page lsn */
314 tblk->lsn = mp->lsn;
315
316 /* move tblock after page on logsynclist */
317 list_move(&tblk->synclist, &mp->synclist);
318 }
319 }
320
321 LOGSYNC_UNLOCK(log, flags);
322
323 /*
324 * write the log record
325 */
326 writeRecord:
327 lsn = lmWriteRecord(log, tblk, lrd, tlck);
328
329 /*
330 * forward log syncpt if log reached next syncpt trigger
331 */
332 logdiff(diffp, lsn, log);
333 if (diffp >= log->nextsync)
334 lsn = lmLogSync(log, 0);
335
336 /* update end-of-log lsn */
337 log->lsn = lsn;
338
339 LOG_UNLOCK(log);
340
341 /* return end-of-log address */
342 return lsn;
343}
344
345/*
346 * NAME: lmWriteRecord()
347 *
348 * FUNCTION: move the log record to current log page
349 *
350 * PARAMETER: cd - commit descriptor
351 *
352 * RETURN: end-of-log address
353 *
354 * serialization: LOG_LOCK() held on entry/exit
355 */
356static int
357lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
358 struct tlock * tlck)
359{
360 int lsn = 0; /* end-of-log address */
361 struct lbuf *bp; /* dst log page buffer */
362 struct logpage *lp; /* dst log page */
363 caddr_t dst; /* destination address in log page */
364 int dstoffset; /* end-of-log offset in log page */
365 int freespace; /* free space in log page */
366 caddr_t p; /* src meta-data page */
367 caddr_t src;
368 int srclen;
369 int nbytes; /* number of bytes to move */
370 int i;
371 int len;
372 struct linelock *linelock;
373 struct lv *lv;
374 struct lvd *lvd;
375 int l2linesize;
376
377 len = 0;
378
379 /* retrieve destination log page to write */
380 bp = (struct lbuf *) log->bp;
381 lp = (struct logpage *) bp->l_ldata;
382 dstoffset = log->eor;
383
384 /* any log data to write ? */
385 if (tlck == NULL)
386 goto moveLrd;
387
388 /*
389 * move log record data
390 */
391 /* retrieve source meta-data page to log */
392 if (tlck->flag & tlckPAGELOCK) {
393 p = (caddr_t) (tlck->mp->data);
394 linelock = (struct linelock *) & tlck->lock;
395 }
396 /* retrieve source in-memory inode to log */
397 else if (tlck->flag & tlckINODELOCK) {
398 if (tlck->type & tlckDTREE)
399 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
400 else
401 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
402 linelock = (struct linelock *) & tlck->lock;
403 }
404#ifdef _JFS_WIP
405 else if (tlck->flag & tlckINLINELOCK) {
406
407 inlinelock = (struct inlinelock *) & tlck;
408 p = (caddr_t) & inlinelock->pxd;
409 linelock = (struct linelock *) & tlck;
410 }
411#endif /* _JFS_WIP */
412 else {
413 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
414 return 0; /* Probably should trap */
415 }
416 l2linesize = linelock->l2linesize;
417
418 moveData:
419 ASSERT(linelock->index <= linelock->maxcnt);
420
421 lv = linelock->lv;
422 for (i = 0; i < linelock->index; i++, lv++) {
423 if (lv->length == 0)
424 continue;
425
426 /* is page full ? */
427 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
428 /* page become full: move on to next page */
429 lmNextPage(log);
430
431 bp = log->bp;
432 lp = (struct logpage *) bp->l_ldata;
433 dstoffset = LOGPHDRSIZE;
434 }
435
436 /*
437 * move log vector data
438 */
439 src = (u8 *) p + (lv->offset << l2linesize);
440 srclen = lv->length << l2linesize;
441 len += srclen;
442 while (srclen > 0) {
443 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
444 nbytes = min(freespace, srclen);
445 dst = (caddr_t) lp + dstoffset;
446 memcpy(dst, src, nbytes);
447 dstoffset += nbytes;
448
449 /* is page not full ? */
450 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
451 break;
452
453 /* page become full: move on to next page */
454 lmNextPage(log);
455
456 bp = (struct lbuf *) log->bp;
457 lp = (struct logpage *) bp->l_ldata;
458 dstoffset = LOGPHDRSIZE;
459
460 srclen -= nbytes;
461 src += nbytes;
462 }
463
464 /*
465 * move log vector descriptor
466 */
467 len += 4;
468 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
469 lvd->offset = cpu_to_le16(lv->offset);
470 lvd->length = cpu_to_le16(lv->length);
471 dstoffset += 4;
472 jfs_info("lmWriteRecord: lv offset:%d length:%d",
473 lv->offset, lv->length);
474 }
475
476 if ((i = linelock->next)) {
477 linelock = (struct linelock *) lid_to_tlock(i);
478 goto moveData;
479 }
480
481 /*
482 * move log record descriptor
483 */
484 moveLrd:
485 lrd->length = cpu_to_le16(len);
486
487 src = (caddr_t) lrd;
488 srclen = LOGRDSIZE;
489
490 while (srclen > 0) {
491 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
492 nbytes = min(freespace, srclen);
493 dst = (caddr_t) lp + dstoffset;
494 memcpy(dst, src, nbytes);
495
496 dstoffset += nbytes;
497 srclen -= nbytes;
498
499 /* are there more to move than freespace of page ? */
500 if (srclen)
501 goto pageFull;
502
503 /*
504 * end of log record descriptor
505 */
506
507 /* update last log record eor */
508 log->eor = dstoffset;
509 bp->l_eor = dstoffset;
510 lsn = (log->page << L2LOGPSIZE) + dstoffset;
511
512 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
513 tblk->clsn = lsn;
514 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
515 bp->l_eor);
516
517 INCREMENT(lmStat.commit); /* # of commit */
518
519 /*
520 * enqueue tblock for group commit:
521 *
522 * enqueue tblock of non-trivial/synchronous COMMIT
523 * at tail of group commit queue
524 * (trivial/asynchronous COMMITs are ignored by
525 * group commit.)
526 */
527 LOGGC_LOCK(log);
528
529 /* init tblock gc state */
530 tblk->flag = tblkGC_QUEUE;
531 tblk->bp = log->bp;
532 tblk->pn = log->page;
533 tblk->eor = log->eor;
534
535 /* enqueue transaction to commit queue */
536 list_add_tail(&tblk->cqueue, &log->cqueue);
537
538 LOGGC_UNLOCK(log);
539 }
540
541 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
542 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
543
544 /* page not full ? */
545 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
546 return lsn;
547
548 pageFull:
549 /* page become full: move on to next page */
550 lmNextPage(log);
551
552 bp = (struct lbuf *) log->bp;
553 lp = (struct logpage *) bp->l_ldata;
554 dstoffset = LOGPHDRSIZE;
555 src += nbytes;
556 }
557
558 return lsn;
559}
560
561
562/*
563 * NAME: lmNextPage()
564 *
565 * FUNCTION: write current page and allocate next page.
566 *
567 * PARAMETER: log
568 *
569 * RETURN: 0
570 *
571 * serialization: LOG_LOCK() held on entry/exit
572 */
573static int lmNextPage(struct jfs_log * log)
574{
575 struct logpage *lp;
576 int lspn; /* log sequence page number */
577 int pn; /* current page number */
578 struct lbuf *bp;
579 struct lbuf *nextbp;
580 struct tblock *tblk;
581
582 /* get current log page number and log sequence page number */
583 pn = log->page;
584 bp = log->bp;
585 lp = (struct logpage *) bp->l_ldata;
586 lspn = le32_to_cpu(lp->h.page);
587
588 LOGGC_LOCK(log);
589
590 /*
591 * write or queue the full page at the tail of write queue
592 */
593 /* get the tail tblk on commit queue */
594 if (list_empty(&log->cqueue))
595 tblk = NULL;
596 else
597 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
598
599 /* every tblk who has COMMIT record on the current page,
600 * and has not been committed, must be on commit queue
601 * since tblk is queued at commit queueu at the time
602 * of writing its COMMIT record on the page before
603 * page becomes full (even though the tblk thread
604 * who wrote COMMIT record may have been suspended
605 * currently);
606 */
607
608 /* is page bound with outstanding tail tblk ? */
609 if (tblk && tblk->pn == pn) {
610 /* mark tblk for end-of-page */
611 tblk->flag |= tblkGC_EOP;
612
613 if (log->cflag & logGC_PAGEOUT) {
614 /* if page is not already on write queue,
615 * just enqueue (no lbmWRITE to prevent redrive)
616 * buffer to wqueue to ensure correct serial order
617 * of the pages since log pages will be added
618 * continuously
619 */
620 if (bp->l_wqnext == NULL)
621 lbmWrite(log, bp, 0, 0);
622 } else {
623 /*
624 * No current GC leader, initiate group commit
625 */
626 log->cflag |= logGC_PAGEOUT;
627 lmGCwrite(log, 0);
628 }
629 }
630 /* page is not bound with outstanding tblk:
631 * init write or mark it to be redriven (lbmWRITE)
632 */
633 else {
634 /* finalize the page */
635 bp->l_ceor = bp->l_eor;
636 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
637 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
638 }
639 LOGGC_UNLOCK(log);
640
641 /*
642 * allocate/initialize next page
643 */
644 /* if log wraps, the first data page of log is 2
645 * (0 never used, 1 is superblock).
646 */
647 log->page = (pn == log->size - 1) ? 2 : pn + 1;
648 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
649
650 /* allocate/initialize next log page buffer */
651 nextbp = lbmAllocate(log, log->page);
652 nextbp->l_eor = log->eor;
653 log->bp = nextbp;
654
655 /* initialize next log page */
656 lp = (struct logpage *) nextbp->l_ldata;
657 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
658 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
659
660 return 0;
661}
662
663
664/*
665 * NAME: lmGroupCommit()
666 *
667 * FUNCTION: group commit
668 * initiate pageout of the pages with COMMIT in the order of
669 * page number - redrive pageout of the page at the head of
670 * pageout queue until full page has been written.
671 *
672 * RETURN:
673 *
674 * NOTE:
675 * LOGGC_LOCK serializes log group commit queue, and
676 * transaction blocks on the commit queue.
677 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
678 */
679int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
680{
681 int rc = 0;
682
683 LOGGC_LOCK(log);
684
685 /* group committed already ? */
686 if (tblk->flag & tblkGC_COMMITTED) {
687 if (tblk->flag & tblkGC_ERROR)
688 rc = -EIO;
689
690 LOGGC_UNLOCK(log);
691 return rc;
692 }
693 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
694
695 if (tblk->xflag & COMMIT_LAZY)
696 tblk->flag |= tblkGC_LAZY;
697
698 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
699 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
700 || jfs_tlocks_low)) {
701 /*
702 * No pageout in progress
703 *
704 * start group commit as its group leader.
705 */
706 log->cflag |= logGC_PAGEOUT;
707
708 lmGCwrite(log, 0);
709 }
710
711 if (tblk->xflag & COMMIT_LAZY) {
712 /*
713 * Lazy transactions can leave now
714 */
715 LOGGC_UNLOCK(log);
716 return 0;
717 }
718
719 /* lmGCwrite gives up LOGGC_LOCK, check again */
720
721 if (tblk->flag & tblkGC_COMMITTED) {
722 if (tblk->flag & tblkGC_ERROR)
723 rc = -EIO;
724
725 LOGGC_UNLOCK(log);
726 return rc;
727 }
728
729 /* upcount transaction waiting for completion
730 */
731 log->gcrtc++;
732 tblk->flag |= tblkGC_READY;
733
734 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
735 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
736
737 /* removed from commit queue */
738 if (tblk->flag & tblkGC_ERROR)
739 rc = -EIO;
740
741 LOGGC_UNLOCK(log);
742 return rc;
743}
744
745/*
746 * NAME: lmGCwrite()
747 *
748 * FUNCTION: group commit write
749 * initiate write of log page, building a group of all transactions
750 * with commit records on that page.
751 *
752 * RETURN: None
753 *
754 * NOTE:
755 * LOGGC_LOCK must be held by caller.
756 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
757 */
758static void lmGCwrite(struct jfs_log * log, int cant_write)
759{
760 struct lbuf *bp;
761 struct logpage *lp;
762 int gcpn; /* group commit page number */
763 struct tblock *tblk;
764 struct tblock *xtblk = NULL;
765
766 /*
767 * build the commit group of a log page
768 *
769 * scan commit queue and make a commit group of all
770 * transactions with COMMIT records on the same log page.
771 */
772 /* get the head tblk on the commit queue */
773 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
774
775 list_for_each_entry(tblk, &log->cqueue, cqueue) {
776 if (tblk->pn != gcpn)
777 break;
778
779 xtblk = tblk;
780
781 /* state transition: (QUEUE, READY) -> COMMIT */
782 tblk->flag |= tblkGC_COMMIT;
783 }
784 tblk = xtblk; /* last tblk of the page */
785
786 /*
787 * pageout to commit transactions on the log page.
788 */
789 bp = (struct lbuf *) tblk->bp;
790 lp = (struct logpage *) bp->l_ldata;
791 /* is page already full ? */
792 if (tblk->flag & tblkGC_EOP) {
793 /* mark page to free at end of group commit of the page */
794 tblk->flag &= ~tblkGC_EOP;
795 tblk->flag |= tblkGC_FREE;
796 bp->l_ceor = bp->l_eor;
797 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
798 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
799 cant_write);
800 INCREMENT(lmStat.full_page);
801 }
802 /* page is not yet full */
803 else {
804 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
805 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
806 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
807 INCREMENT(lmStat.partial_page);
808 }
809}
810
811/*
812 * NAME: lmPostGC()
813 *
814 * FUNCTION: group commit post-processing
815 * Processes transactions after their commit records have been written
816 * to disk, redriving log I/O if necessary.
817 *
818 * RETURN: None
819 *
820 * NOTE:
821 * This routine is called a interrupt time by lbmIODone
822 */
823static void lmPostGC(struct lbuf * bp)
824{
825 unsigned long flags;
826 struct jfs_log *log = bp->l_log;
827 struct logpage *lp;
828 struct tblock *tblk, *temp;
829
830 //LOGGC_LOCK(log);
831 spin_lock_irqsave(&log->gclock, flags);
832 /*
833 * current pageout of group commit completed.
834 *
835 * remove/wakeup transactions from commit queue who were
836 * group committed with the current log page
837 */
838 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
839 if (!(tblk->flag & tblkGC_COMMIT))
840 break;
841 /* if transaction was marked GC_COMMIT then
842 * it has been shipped in the current pageout
843 * and made it to disk - it is committed.
844 */
845
846 if (bp->l_flag & lbmERROR)
847 tblk->flag |= tblkGC_ERROR;
848
849 /* remove it from the commit queue */
850 list_del(&tblk->cqueue);
851 tblk->flag &= ~tblkGC_QUEUE;
852
853 if (tblk == log->flush_tblk) {
854 /* we can stop flushing the log now */
855 clear_bit(log_FLUSH, &log->flag);
856 log->flush_tblk = NULL;
857 }
858
859 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
860 tblk->flag);
861
862 if (!(tblk->xflag & COMMIT_FORCE))
863 /*
864 * Hand tblk over to lazy commit thread
865 */
866 txLazyUnlock(tblk);
867 else {
868 /* state transition: COMMIT -> COMMITTED */
869 tblk->flag |= tblkGC_COMMITTED;
870
871 if (tblk->flag & tblkGC_READY)
872 log->gcrtc--;
873
874 LOGGC_WAKEUP(tblk);
875 }
876
877 /* was page full before pageout ?
878 * (and this is the last tblk bound with the page)
879 */
880 if (tblk->flag & tblkGC_FREE)
881 lbmFree(bp);
882 /* did page become full after pageout ?
883 * (and this is the last tblk bound with the page)
884 */
885 else if (tblk->flag & tblkGC_EOP) {
886 /* finalize the page */
887 lp = (struct logpage *) bp->l_ldata;
888 bp->l_ceor = bp->l_eor;
889 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
890 jfs_info("lmPostGC: calling lbmWrite");
891 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
892 1);
893 }
894
895 }
896
897 /* are there any transactions who have entered lnGroupCommit()
898 * (whose COMMITs are after that of the last log page written.
899 * They are waiting for new group commit (above at (SLEEP 1))
900 * or lazy transactions are on a full (queued) log page,
901 * select the latest ready transaction as new group leader and
902 * wake her up to lead her group.
903 */
904 if ((!list_empty(&log->cqueue)) &&
905 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
906 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
907 /*
908 * Call lmGCwrite with new group leader
909 */
910 lmGCwrite(log, 1);
911
912 /* no transaction are ready yet (transactions are only just
913 * queued (GC_QUEUE) and not entered for group commit yet).
914 * the first transaction entering group commit
915 * will elect herself as new group leader.
916 */
917 else
918 log->cflag &= ~logGC_PAGEOUT;
919
920 //LOGGC_UNLOCK(log);
921 spin_unlock_irqrestore(&log->gclock, flags);
922 return;
923}
924
925/*
926 * NAME: lmLogSync()
927 *
928 * FUNCTION: write log SYNCPT record for specified log
929 * if new sync address is available
930 * (normally the case if sync() is executed by back-ground
931 * process).
932 * calculate new value of i_nextsync which determines when
933 * this code is called again.
934 *
935 * PARAMETERS: log - log structure
936 * hard_sync - 1 to force all metadata to be written
937 *
938 * RETURN: 0
939 *
940 * serialization: LOG_LOCK() held on entry/exit
941 */
942static int lmLogSync(struct jfs_log * log, int hard_sync)
943{
944 int logsize;
945 int written; /* written since last syncpt */
946 int free; /* free space left available */
947 int delta; /* additional delta to write normally */
948 int more; /* additional write granted */
949 struct lrd lrd;
950 int lsn;
951 struct logsyncblk *lp;
952 unsigned long flags;
953
954 /* push dirty metapages out to disk */
955 if (hard_sync)
956 write_special_inodes(log, filemap_fdatawrite);
957 else
958 write_special_inodes(log, filemap_flush);
959
960 /*
961 * forward syncpt
962 */
963 /* if last sync is same as last syncpt,
964 * invoke sync point forward processing to update sync.
965 */
966
967 if (log->sync == log->syncpt) {
968 LOGSYNC_LOCK(log, flags);
969 if (list_empty(&log->synclist))
970 log->sync = log->lsn;
971 else {
972 lp = list_entry(log->synclist.next,
973 struct logsyncblk, synclist);
974 log->sync = lp->lsn;
975 }
976 LOGSYNC_UNLOCK(log, flags);
977
978 }
979
980 /* if sync is different from last syncpt,
981 * write a SYNCPT record with syncpt = sync.
982 * reset syncpt = sync
983 */
984 if (log->sync != log->syncpt) {
985 lrd.logtid = 0;
986 lrd.backchain = 0;
987 lrd.type = cpu_to_le16(LOG_SYNCPT);
988 lrd.length = 0;
989 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
990 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
991
992 log->syncpt = log->sync;
993 } else
994 lsn = log->lsn;
995
996 /*
997 * setup next syncpt trigger (SWAG)
998 */
999 logsize = log->logsize;
1000
1001 logdiff(written, lsn, log);
1002 free = logsize - written;
1003 delta = LOGSYNC_DELTA(logsize);
1004 more = min(free / 2, delta);
1005 if (more < 2 * LOGPSIZE) {
1006 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1007 /*
1008 * log wrapping
1009 *
1010 * option 1 - panic ? No.!
1011 * option 2 - shutdown file systems
1012 * associated with log ?
1013 * option 3 - extend log ?
1014 * option 4 - second chance
1015 *
1016 * mark log wrapped, and continue.
1017 * when all active transactions are completed,
1018 * mark log valid for recovery.
1019 * if crashed during invalid state, log state
1020 * implies invalid log, forcing fsck().
1021 */
1022 /* mark log state log wrap in log superblock */
1023 /* log->state = LOGWRAP; */
1024
1025 /* reset sync point computation */
1026 log->syncpt = log->sync = lsn;
1027 log->nextsync = delta;
1028 } else
1029 /* next syncpt trigger = written + more */
1030 log->nextsync = written + more;
1031
1032 /* if number of bytes written from last sync point is more
1033 * than 1/4 of the log size, stop new transactions from
1034 * starting until all current transactions are completed
1035 * by setting syncbarrier flag.
1036 */
1037 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1038 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1039 set_bit(log_SYNCBARRIER, &log->flag);
1040 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1041 log->syncpt);
1042 /*
1043 * We may have to initiate group commit
1044 */
1045 jfs_flush_journal(log, 0);
1046 }
1047
1048 return lsn;
1049}
1050
1051/*
1052 * NAME: jfs_syncpt
1053 *
1054 * FUNCTION: write log SYNCPT record for specified log
1055 *
1056 * PARAMETERS: log - log structure
1057 * hard_sync - set to 1 to force metadata to be written
1058 */
1059void jfs_syncpt(struct jfs_log *log, int hard_sync)
1060{ LOG_LOCK(log);
1061 if (!test_bit(log_QUIESCE, &log->flag))
1062 lmLogSync(log, hard_sync);
1063 LOG_UNLOCK(log);
1064}
1065
1066/*
1067 * NAME: lmLogOpen()
1068 *
1069 * FUNCTION: open the log on first open;
1070 * insert filesystem in the active list of the log.
1071 *
1072 * PARAMETER: ipmnt - file system mount inode
1073 * iplog - log inode (out)
1074 *
1075 * RETURN:
1076 *
1077 * serialization:
1078 */
1079int lmLogOpen(struct super_block *sb)
1080{
1081 int rc;
1082 struct block_device *bdev;
1083 struct jfs_log *log;
1084 struct jfs_sb_info *sbi = JFS_SBI(sb);
1085
1086 if (sbi->flag & JFS_NOINTEGRITY)
1087 return open_dummy_log(sb);
1088
1089 if (sbi->mntflag & JFS_INLINELOG)
1090 return open_inline_log(sb);
1091
1092 mutex_lock(&jfs_log_mutex);
1093 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1094 if (log->bdev->bd_dev == sbi->logdev) {
1095 if (memcmp(log->uuid, sbi->loguuid,
1096 sizeof(log->uuid))) {
1097 jfs_warn("wrong uuid on JFS journal\n");
1098 mutex_unlock(&jfs_log_mutex);
1099 return -EINVAL;
1100 }
1101 /*
1102 * add file system to log active file system list
1103 */
1104 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1105 mutex_unlock(&jfs_log_mutex);
1106 return rc;
1107 }
1108 goto journal_found;
1109 }
1110 }
1111
1112 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1113 mutex_unlock(&jfs_log_mutex);
1114 return -ENOMEM;
1115 }
1116 INIT_LIST_HEAD(&log->sb_list);
1117 init_waitqueue_head(&log->syncwait);
1118
1119 /*
1120 * external log as separate logical volume
1121 *
1122 * file systems to log may have n-to-1 relationship;
1123 */
1124
1125 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1126 log);
1127 if (IS_ERR(bdev)) {
1128 rc = PTR_ERR(bdev);
1129 goto free;
1130 }
1131
1132 log->bdev = bdev;
1133 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1134
1135 /*
1136 * initialize log:
1137 */
1138 if ((rc = lmLogInit(log)))
1139 goto close;
1140
1141 list_add(&log->journal_list, &jfs_external_logs);
1142
1143 /*
1144 * add file system to log active file system list
1145 */
1146 if ((rc = lmLogFileSystem(log, sbi, 1)))
1147 goto shutdown;
1148
1149journal_found:
1150 LOG_LOCK(log);
1151 list_add(&sbi->log_list, &log->sb_list);
1152 sbi->log = log;
1153 LOG_UNLOCK(log);
1154
1155 mutex_unlock(&jfs_log_mutex);
1156 return 0;
1157
1158 /*
1159 * unwind on error
1160 */
1161 shutdown: /* unwind lbmLogInit() */
1162 list_del(&log->journal_list);
1163 lbmLogShutdown(log);
1164
1165 close: /* close external log device */
1166 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1167
1168 free: /* free log descriptor */
1169 mutex_unlock(&jfs_log_mutex);
1170 kfree(log);
1171
1172 jfs_warn("lmLogOpen: exit(%d)", rc);
1173 return rc;
1174}
1175
1176static int open_inline_log(struct super_block *sb)
1177{
1178 struct jfs_log *log;
1179 int rc;
1180
1181 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1182 return -ENOMEM;
1183 INIT_LIST_HEAD(&log->sb_list);
1184 init_waitqueue_head(&log->syncwait);
1185
1186 set_bit(log_INLINELOG, &log->flag);
1187 log->bdev = sb->s_bdev;
1188 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1189 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1190 (L2LOGPSIZE - sb->s_blocksize_bits);
1191 log->l2bsize = sb->s_blocksize_bits;
1192 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1193
1194 /*
1195 * initialize log.
1196 */
1197 if ((rc = lmLogInit(log))) {
1198 kfree(log);
1199 jfs_warn("lmLogOpen: exit(%d)", rc);
1200 return rc;
1201 }
1202
1203 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1204 JFS_SBI(sb)->log = log;
1205
1206 return rc;
1207}
1208
1209static int open_dummy_log(struct super_block *sb)
1210{
1211 int rc;
1212
1213 mutex_lock(&jfs_log_mutex);
1214 if (!dummy_log) {
1215 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1216 if (!dummy_log) {
1217 mutex_unlock(&jfs_log_mutex);
1218 return -ENOMEM;
1219 }
1220 INIT_LIST_HEAD(&dummy_log->sb_list);
1221 init_waitqueue_head(&dummy_log->syncwait);
1222 dummy_log->no_integrity = 1;
1223 /* Make up some stuff */
1224 dummy_log->base = 0;
1225 dummy_log->size = 1024;
1226 rc = lmLogInit(dummy_log);
1227 if (rc) {
1228 kfree(dummy_log);
1229 dummy_log = NULL;
1230 mutex_unlock(&jfs_log_mutex);
1231 return rc;
1232 }
1233 }
1234
1235 LOG_LOCK(dummy_log);
1236 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1237 JFS_SBI(sb)->log = dummy_log;
1238 LOG_UNLOCK(dummy_log);
1239 mutex_unlock(&jfs_log_mutex);
1240
1241 return 0;
1242}
1243
1244/*
1245 * NAME: lmLogInit()
1246 *
1247 * FUNCTION: log initialization at first log open.
1248 *
1249 * logredo() (or logformat()) should have been run previously.
1250 * initialize the log from log superblock.
1251 * set the log state in the superblock to LOGMOUNT and
1252 * write SYNCPT log record.
1253 *
1254 * PARAMETER: log - log structure
1255 *
1256 * RETURN: 0 - if ok
1257 * -EINVAL - bad log magic number or superblock dirty
1258 * error returned from logwait()
1259 *
1260 * serialization: single first open thread
1261 */
1262int lmLogInit(struct jfs_log * log)
1263{
1264 int rc = 0;
1265 struct lrd lrd;
1266 struct logsuper *logsuper;
1267 struct lbuf *bpsuper;
1268 struct lbuf *bp;
1269 struct logpage *lp;
1270 int lsn = 0;
1271
1272 jfs_info("lmLogInit: log:0x%p", log);
1273
1274 /* initialize the group commit serialization lock */
1275 LOGGC_LOCK_INIT(log);
1276
1277 /* allocate/initialize the log write serialization lock */
1278 LOG_LOCK_INIT(log);
1279
1280 LOGSYNC_LOCK_INIT(log);
1281
1282 INIT_LIST_HEAD(&log->synclist);
1283
1284 INIT_LIST_HEAD(&log->cqueue);
1285 log->flush_tblk = NULL;
1286
1287 log->count = 0;
1288
1289 /*
1290 * initialize log i/o
1291 */
1292 if ((rc = lbmLogInit(log)))
1293 return rc;
1294
1295 if (!test_bit(log_INLINELOG, &log->flag))
1296 log->l2bsize = L2LOGPSIZE;
1297
1298 /* check for disabled journaling to disk */
1299 if (log->no_integrity) {
1300 /*
1301 * Journal pages will still be filled. When the time comes
1302 * to actually do the I/O, the write is not done, and the
1303 * endio routine is called directly.
1304 */
1305 bp = lbmAllocate(log , 0);
1306 log->bp = bp;
1307 bp->l_pn = bp->l_eor = 0;
1308 } else {
1309 /*
1310 * validate log superblock
1311 */
1312 if ((rc = lbmRead(log, 1, &bpsuper)))
1313 goto errout10;
1314
1315 logsuper = (struct logsuper *) bpsuper->l_ldata;
1316
1317 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1318 jfs_warn("*** Log Format Error ! ***");
1319 rc = -EINVAL;
1320 goto errout20;
1321 }
1322
1323 /* logredo() should have been run successfully. */
1324 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1325 jfs_warn("*** Log Is Dirty ! ***");
1326 rc = -EINVAL;
1327 goto errout20;
1328 }
1329
1330 /* initialize log from log superblock */
1331 if (test_bit(log_INLINELOG,&log->flag)) {
1332 if (log->size != le32_to_cpu(logsuper->size)) {
1333 rc = -EINVAL;
1334 goto errout20;
1335 }
1336 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1337 "size:0x%x", log,
1338 (unsigned long long) log->base, log->size);
1339 } else {
1340 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1341 jfs_warn("wrong uuid on JFS log device");
1342 goto errout20;
1343 }
1344 log->size = le32_to_cpu(logsuper->size);
1345 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1346 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1347 "size:0x%x", log,
1348 (unsigned long long) log->base, log->size);
1349 }
1350
1351 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1352 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1353
1354 /*
1355 * initialize for log append write mode
1356 */
1357 /* establish current/end-of-log page/buffer */
1358 if ((rc = lbmRead(log, log->page, &bp)))
1359 goto errout20;
1360
1361 lp = (struct logpage *) bp->l_ldata;
1362
1363 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1364 le32_to_cpu(logsuper->end), log->page, log->eor,
1365 le16_to_cpu(lp->h.eor));
1366
1367 log->bp = bp;
1368 bp->l_pn = log->page;
1369 bp->l_eor = log->eor;
1370
1371 /* if current page is full, move on to next page */
1372 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1373 lmNextPage(log);
1374
1375 /*
1376 * initialize log syncpoint
1377 */
1378 /*
1379 * write the first SYNCPT record with syncpoint = 0
1380 * (i.e., log redo up to HERE !);
1381 * remove current page from lbm write queue at end of pageout
1382 * (to write log superblock update), but do not release to
1383 * freelist;
1384 */
1385 lrd.logtid = 0;
1386 lrd.backchain = 0;
1387 lrd.type = cpu_to_le16(LOG_SYNCPT);
1388 lrd.length = 0;
1389 lrd.log.syncpt.sync = 0;
1390 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1391 bp = log->bp;
1392 bp->l_ceor = bp->l_eor;
1393 lp = (struct logpage *) bp->l_ldata;
1394 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1395 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1396 if ((rc = lbmIOWait(bp, 0)))
1397 goto errout30;
1398
1399 /*
1400 * update/write superblock
1401 */
1402 logsuper->state = cpu_to_le32(LOGMOUNT);
1403 log->serial = le32_to_cpu(logsuper->serial) + 1;
1404 logsuper->serial = cpu_to_le32(log->serial);
1405 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1406 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1407 goto errout30;
1408 }
1409
1410 /* initialize logsync parameters */
1411 log->logsize = (log->size - 2) << L2LOGPSIZE;
1412 log->lsn = lsn;
1413 log->syncpt = lsn;
1414 log->sync = log->syncpt;
1415 log->nextsync = LOGSYNC_DELTA(log->logsize);
1416
1417 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1418 log->lsn, log->syncpt, log->sync);
1419
1420 /*
1421 * initialize for lazy/group commit
1422 */
1423 log->clsn = lsn;
1424
1425 return 0;
1426
1427 /*
1428 * unwind on error
1429 */
1430 errout30: /* release log page */
1431 log->wqueue = NULL;
1432 bp->l_wqnext = NULL;
1433 lbmFree(bp);
1434
1435 errout20: /* release log superblock */
1436 lbmFree(bpsuper);
1437
1438 errout10: /* unwind lbmLogInit() */
1439 lbmLogShutdown(log);
1440
1441 jfs_warn("lmLogInit: exit(%d)", rc);
1442 return rc;
1443}
1444
1445
1446/*
1447 * NAME: lmLogClose()
1448 *
1449 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1450 * and close it on last close.
1451 *
1452 * PARAMETER: sb - superblock
1453 *
1454 * RETURN: errors from subroutines
1455 *
1456 * serialization:
1457 */
1458int lmLogClose(struct super_block *sb)
1459{
1460 struct jfs_sb_info *sbi = JFS_SBI(sb);
1461 struct jfs_log *log = sbi->log;
1462 struct block_device *bdev;
1463 int rc = 0;
1464
1465 jfs_info("lmLogClose: log:0x%p", log);
1466
1467 mutex_lock(&jfs_log_mutex);
1468 LOG_LOCK(log);
1469 list_del(&sbi->log_list);
1470 LOG_UNLOCK(log);
1471 sbi->log = NULL;
1472
1473 /*
1474 * We need to make sure all of the "written" metapages
1475 * actually make it to disk
1476 */
1477 sync_blockdev(sb->s_bdev);
1478
1479 if (test_bit(log_INLINELOG, &log->flag)) {
1480 /*
1481 * in-line log in host file system
1482 */
1483 rc = lmLogShutdown(log);
1484 kfree(log);
1485 goto out;
1486 }
1487
1488 if (!log->no_integrity)
1489 lmLogFileSystem(log, sbi, 0);
1490
1491 if (!list_empty(&log->sb_list))
1492 goto out;
1493
1494 /*
1495 * TODO: ensure that the dummy_log is in a state to allow
1496 * lbmLogShutdown to deallocate all the buffers and call
1497 * kfree against dummy_log. For now, leave dummy_log & its
1498 * buffers in memory, and resuse if another no-integrity mount
1499 * is requested.
1500 */
1501 if (log->no_integrity)
1502 goto out;
1503
1504 /*
1505 * external log as separate logical volume
1506 */
1507 list_del(&log->journal_list);
1508 bdev = log->bdev;
1509 rc = lmLogShutdown(log);
1510
1511 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1512
1513 kfree(log);
1514
1515 out:
1516 mutex_unlock(&jfs_log_mutex);
1517 jfs_info("lmLogClose: exit(%d)", rc);
1518 return rc;
1519}
1520
1521
1522/*
1523 * NAME: jfs_flush_journal()
1524 *
1525 * FUNCTION: initiate write of any outstanding transactions to the journal
1526 * and optionally wait until they are all written to disk
1527 *
1528 * wait == 0 flush until latest txn is committed, don't wait
1529 * wait == 1 flush until latest txn is committed, wait
1530 * wait > 1 flush until all txn's are complete, wait
1531 */
1532void jfs_flush_journal(struct jfs_log *log, int wait)
1533{
1534 int i;
1535 struct tblock *target = NULL;
1536
1537 /* jfs_write_inode may call us during read-only mount */
1538 if (!log)
1539 return;
1540
1541 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1542
1543 LOGGC_LOCK(log);
1544
1545 if (!list_empty(&log->cqueue)) {
1546 /*
1547 * This ensures that we will keep writing to the journal as long
1548 * as there are unwritten commit records
1549 */
1550 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1551
1552 if (test_bit(log_FLUSH, &log->flag)) {
1553 /*
1554 * We're already flushing.
1555 * if flush_tblk is NULL, we are flushing everything,
1556 * so leave it that way. Otherwise, update it to the
1557 * latest transaction
1558 */
1559 if (log->flush_tblk)
1560 log->flush_tblk = target;
1561 } else {
1562 /* Only flush until latest transaction is committed */
1563 log->flush_tblk = target;
1564 set_bit(log_FLUSH, &log->flag);
1565
1566 /*
1567 * Initiate I/O on outstanding transactions
1568 */
1569 if (!(log->cflag & logGC_PAGEOUT)) {
1570 log->cflag |= logGC_PAGEOUT;
1571 lmGCwrite(log, 0);
1572 }
1573 }
1574 }
1575 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1576 /* Flush until all activity complete */
1577 set_bit(log_FLUSH, &log->flag);
1578 log->flush_tblk = NULL;
1579 }
1580
1581 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1582 DECLARE_WAITQUEUE(__wait, current);
1583
1584 add_wait_queue(&target->gcwait, &__wait);
1585 set_current_state(TASK_UNINTERRUPTIBLE);
1586 LOGGC_UNLOCK(log);
1587 schedule();
1588 __set_current_state(TASK_RUNNING);
1589 LOGGC_LOCK(log);
1590 remove_wait_queue(&target->gcwait, &__wait);
1591 }
1592 LOGGC_UNLOCK(log);
1593
1594 if (wait < 2)
1595 return;
1596
1597 write_special_inodes(log, filemap_fdatawrite);
1598
1599 /*
1600 * If there was recent activity, we may need to wait
1601 * for the lazycommit thread to catch up
1602 */
1603 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1604 for (i = 0; i < 200; i++) { /* Too much? */
1605 msleep(250);
1606 write_special_inodes(log, filemap_fdatawrite);
1607 if (list_empty(&log->cqueue) &&
1608 list_empty(&log->synclist))
1609 break;
1610 }
1611 }
1612 assert(list_empty(&log->cqueue));
1613
1614#ifdef CONFIG_JFS_DEBUG
1615 if (!list_empty(&log->synclist)) {
1616 struct logsyncblk *lp;
1617
1618 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1619 list_for_each_entry(lp, &log->synclist, synclist) {
1620 if (lp->xflag & COMMIT_PAGE) {
1621 struct metapage *mp = (struct metapage *)lp;
1622 print_hex_dump(KERN_ERR, "metapage: ",
1623 DUMP_PREFIX_ADDRESS, 16, 4,
1624 mp, sizeof(struct metapage), 0);
1625 print_hex_dump(KERN_ERR, "page: ",
1626 DUMP_PREFIX_ADDRESS, 16,
1627 sizeof(long), mp->page,
1628 sizeof(struct page), 0);
1629 } else
1630 print_hex_dump(KERN_ERR, "tblock:",
1631 DUMP_PREFIX_ADDRESS, 16, 4,
1632 lp, sizeof(struct tblock), 0);
1633 }
1634 }
1635#else
1636 WARN_ON(!list_empty(&log->synclist));
1637#endif
1638 clear_bit(log_FLUSH, &log->flag);
1639}
1640
1641/*
1642 * NAME: lmLogShutdown()
1643 *
1644 * FUNCTION: log shutdown at last LogClose().
1645 *
1646 * write log syncpt record.
1647 * update super block to set redone flag to 0.
1648 *
1649 * PARAMETER: log - log inode
1650 *
1651 * RETURN: 0 - success
1652 *
1653 * serialization: single last close thread
1654 */
1655int lmLogShutdown(struct jfs_log * log)
1656{
1657 int rc;
1658 struct lrd lrd;
1659 int lsn;
1660 struct logsuper *logsuper;
1661 struct lbuf *bpsuper;
1662 struct lbuf *bp;
1663 struct logpage *lp;
1664
1665 jfs_info("lmLogShutdown: log:0x%p", log);
1666
1667 jfs_flush_journal(log, 2);
1668
1669 /*
1670 * write the last SYNCPT record with syncpoint = 0
1671 * (i.e., log redo up to HERE !)
1672 */
1673 lrd.logtid = 0;
1674 lrd.backchain = 0;
1675 lrd.type = cpu_to_le16(LOG_SYNCPT);
1676 lrd.length = 0;
1677 lrd.log.syncpt.sync = 0;
1678
1679 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1680 bp = log->bp;
1681 lp = (struct logpage *) bp->l_ldata;
1682 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1683 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1684 lbmIOWait(log->bp, lbmFREE);
1685 log->bp = NULL;
1686
1687 /*
1688 * synchronous update log superblock
1689 * mark log state as shutdown cleanly
1690 * (i.e., Log does not need to be replayed).
1691 */
1692 if ((rc = lbmRead(log, 1, &bpsuper)))
1693 goto out;
1694
1695 logsuper = (struct logsuper *) bpsuper->l_ldata;
1696 logsuper->state = cpu_to_le32(LOGREDONE);
1697 logsuper->end = cpu_to_le32(lsn);
1698 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1699 rc = lbmIOWait(bpsuper, lbmFREE);
1700
1701 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1702 lsn, log->page, log->eor);
1703
1704 out:
1705 /*
1706 * shutdown per log i/o
1707 */
1708 lbmLogShutdown(log);
1709
1710 if (rc) {
1711 jfs_warn("lmLogShutdown: exit(%d)", rc);
1712 }
1713 return rc;
1714}
1715
1716
1717/*
1718 * NAME: lmLogFileSystem()
1719 *
1720 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1721 * file system into/from log active file system list.
1722 *
1723 * PARAMETE: log - pointer to logs inode.
1724 * fsdev - kdev_t of filesystem.
1725 * serial - pointer to returned log serial number
1726 * activate - insert/remove device from active list.
1727 *
1728 * RETURN: 0 - success
1729 * errors returned by vms_iowait().
1730 */
1731static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1732 int activate)
1733{
1734 int rc = 0;
1735 int i;
1736 struct logsuper *logsuper;
1737 struct lbuf *bpsuper;
1738 char *uuid = sbi->uuid;
1739
1740 /*
1741 * insert/remove file system device to log active file system list.
1742 */
1743 if ((rc = lbmRead(log, 1, &bpsuper)))
1744 return rc;
1745
1746 logsuper = (struct logsuper *) bpsuper->l_ldata;
1747 if (activate) {
1748 for (i = 0; i < MAX_ACTIVE; i++)
1749 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1750 memcpy(logsuper->active[i].uuid, uuid, 16);
1751 sbi->aggregate = i;
1752 break;
1753 }
1754 if (i == MAX_ACTIVE) {
1755 jfs_warn("Too many file systems sharing journal!");
1756 lbmFree(bpsuper);
1757 return -EMFILE; /* Is there a better rc? */
1758 }
1759 } else {
1760 for (i = 0; i < MAX_ACTIVE; i++)
1761 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1762 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1763 break;
1764 }
1765 if (i == MAX_ACTIVE) {
1766 jfs_warn("Somebody stomped on the journal!");
1767 lbmFree(bpsuper);
1768 return -EIO;
1769 }
1770
1771 }
1772
1773 /*
1774 * synchronous write log superblock:
1775 *
1776 * write sidestream bypassing write queue:
1777 * at file system mount, log super block is updated for
1778 * activation of the file system before any log record
1779 * (MOUNT record) of the file system, and at file system
1780 * unmount, all meta data for the file system has been
1781 * flushed before log super block is updated for deactivation
1782 * of the file system.
1783 */
1784 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1785 rc = lbmIOWait(bpsuper, lbmFREE);
1786
1787 return rc;
1788}
1789
1790/*
1791 * log buffer manager (lbm)
1792 * ------------------------
1793 *
1794 * special purpose buffer manager supporting log i/o requirements.
1795 *
1796 * per log write queue:
1797 * log pageout occurs in serial order by fifo write queue and
1798 * restricting to a single i/o in pregress at any one time.
1799 * a circular singly-linked list
1800 * (log->wrqueue points to the tail, and buffers are linked via
1801 * bp->wrqueue field), and
1802 * maintains log page in pageout ot waiting for pageout in serial pageout.
1803 */
1804
1805/*
1806 * lbmLogInit()
1807 *
1808 * initialize per log I/O setup at lmLogInit()
1809 */
1810static int lbmLogInit(struct jfs_log * log)
1811{ /* log inode */
1812 int i;
1813 struct lbuf *lbuf;
1814
1815 jfs_info("lbmLogInit: log:0x%p", log);
1816
1817 /* initialize current buffer cursor */
1818 log->bp = NULL;
1819
1820 /* initialize log device write queue */
1821 log->wqueue = NULL;
1822
1823 /*
1824 * Each log has its own buffer pages allocated to it. These are
1825 * not managed by the page cache. This ensures that a transaction
1826 * writing to the log does not block trying to allocate a page from
1827 * the page cache (for the log). This would be bad, since page
1828 * allocation waits on the kswapd thread that may be committing inodes
1829 * which would cause log activity. Was that clear? I'm trying to
1830 * avoid deadlock here.
1831 */
1832 init_waitqueue_head(&log->free_wait);
1833
1834 log->lbuf_free = NULL;
1835
1836 for (i = 0; i < LOGPAGES;) {
1837 char *buffer;
1838 uint offset;
1839 struct page *page;
1840
1841 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1842 if (buffer == NULL)
1843 goto error;
1844 page = virt_to_page(buffer);
1845 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1846 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1847 if (lbuf == NULL) {
1848 if (offset == 0)
1849 free_page((unsigned long) buffer);
1850 goto error;
1851 }
1852 if (offset) /* we already have one reference */
1853 get_page(page);
1854 lbuf->l_offset = offset;
1855 lbuf->l_ldata = buffer + offset;
1856 lbuf->l_page = page;
1857 lbuf->l_log = log;
1858 init_waitqueue_head(&lbuf->l_ioevent);
1859
1860 lbuf->l_freelist = log->lbuf_free;
1861 log->lbuf_free = lbuf;
1862 i++;
1863 }
1864 }
1865
1866 return (0);
1867
1868 error:
1869 lbmLogShutdown(log);
1870 return -ENOMEM;
1871}
1872
1873
1874/*
1875 * lbmLogShutdown()
1876 *
1877 * finalize per log I/O setup at lmLogShutdown()
1878 */
1879static void lbmLogShutdown(struct jfs_log * log)
1880{
1881 struct lbuf *lbuf;
1882
1883 jfs_info("lbmLogShutdown: log:0x%p", log);
1884
1885 lbuf = log->lbuf_free;
1886 while (lbuf) {
1887 struct lbuf *next = lbuf->l_freelist;
1888 __free_page(lbuf->l_page);
1889 kfree(lbuf);
1890 lbuf = next;
1891 }
1892}
1893
1894
1895/*
1896 * lbmAllocate()
1897 *
1898 * allocate an empty log buffer
1899 */
1900static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1901{
1902 struct lbuf *bp;
1903 unsigned long flags;
1904
1905 /*
1906 * recycle from log buffer freelist if any
1907 */
1908 LCACHE_LOCK(flags);
1909 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1910 log->lbuf_free = bp->l_freelist;
1911 LCACHE_UNLOCK(flags);
1912
1913 bp->l_flag = 0;
1914
1915 bp->l_wqnext = NULL;
1916 bp->l_freelist = NULL;
1917
1918 bp->l_pn = pn;
1919 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1920 bp->l_ceor = 0;
1921
1922 return bp;
1923}
1924
1925
1926/*
1927 * lbmFree()
1928 *
1929 * release a log buffer to freelist
1930 */
1931static void lbmFree(struct lbuf * bp)
1932{
1933 unsigned long flags;
1934
1935 LCACHE_LOCK(flags);
1936
1937 lbmfree(bp);
1938
1939 LCACHE_UNLOCK(flags);
1940}
1941
1942static void lbmfree(struct lbuf * bp)
1943{
1944 struct jfs_log *log = bp->l_log;
1945
1946 assert(bp->l_wqnext == NULL);
1947
1948 /*
1949 * return the buffer to head of freelist
1950 */
1951 bp->l_freelist = log->lbuf_free;
1952 log->lbuf_free = bp;
1953
1954 wake_up(&log->free_wait);
1955 return;
1956}
1957
1958
1959/*
1960 * NAME: lbmRedrive
1961 *
1962 * FUNCTION: add a log buffer to the log redrive list
1963 *
1964 * PARAMETER:
1965 * bp - log buffer
1966 *
1967 * NOTES:
1968 * Takes log_redrive_lock.
1969 */
1970static inline void lbmRedrive(struct lbuf *bp)
1971{
1972 unsigned long flags;
1973
1974 spin_lock_irqsave(&log_redrive_lock, flags);
1975 bp->l_redrive_next = log_redrive_list;
1976 log_redrive_list = bp;
1977 spin_unlock_irqrestore(&log_redrive_lock, flags);
1978
1979 wake_up_process(jfsIOthread);
1980}
1981
1982
1983/*
1984 * lbmRead()
1985 */
1986static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1987{
1988 struct bio *bio;
1989 struct lbuf *bp;
1990
1991 /*
1992 * allocate a log buffer
1993 */
1994 *bpp = bp = lbmAllocate(log, pn);
1995 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1996
1997 bp->l_flag |= lbmREAD;
1998
1999 bio = bio_alloc(GFP_NOFS, 1);
2000
2001 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2002 bio->bi_bdev = log->bdev;
2003 bio->bi_io_vec[0].bv_page = bp->l_page;
2004 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2005 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2006
2007 bio->bi_vcnt = 1;
2008 bio->bi_iter.bi_size = LOGPSIZE;
2009
2010 bio->bi_end_io = lbmIODone;
2011 bio->bi_private = bp;
2012 /*check if journaling to disk has been disabled*/
2013 if (log->no_integrity) {
2014 bio->bi_iter.bi_size = 0;
2015 lbmIODone(bio, 0);
2016 } else {
2017 submit_bio(READ_SYNC, bio);
2018 }
2019
2020 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2021
2022 return 0;
2023}
2024
2025
2026/*
2027 * lbmWrite()
2028 *
2029 * buffer at head of pageout queue stays after completion of
2030 * partial-page pageout and redriven by explicit initiation of
2031 * pageout by caller until full-page pageout is completed and
2032 * released.
2033 *
2034 * device driver i/o done redrives pageout of new buffer at
2035 * head of pageout queue when current buffer at head of pageout
2036 * queue is released at the completion of its full-page pageout.
2037 *
2038 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2039 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2040 */
2041static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2042 int cant_block)
2043{
2044 struct lbuf *tail;
2045 unsigned long flags;
2046
2047 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2048
2049 /* map the logical block address to physical block address */
2050 bp->l_blkno =
2051 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2052
2053 LCACHE_LOCK(flags); /* disable+lock */
2054
2055 /*
2056 * initialize buffer for device driver
2057 */
2058 bp->l_flag = flag;
2059
2060 /*
2061 * insert bp at tail of write queue associated with log
2062 *
2063 * (request is either for bp already/currently at head of queue
2064 * or new bp to be inserted at tail)
2065 */
2066 tail = log->wqueue;
2067
2068 /* is buffer not already on write queue ? */
2069 if (bp->l_wqnext == NULL) {
2070 /* insert at tail of wqueue */
2071 if (tail == NULL) {
2072 log->wqueue = bp;
2073 bp->l_wqnext = bp;
2074 } else {
2075 log->wqueue = bp;
2076 bp->l_wqnext = tail->l_wqnext;
2077 tail->l_wqnext = bp;
2078 }
2079
2080 tail = bp;
2081 }
2082
2083 /* is buffer at head of wqueue and for write ? */
2084 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2085 LCACHE_UNLOCK(flags); /* unlock+enable */
2086 return;
2087 }
2088
2089 LCACHE_UNLOCK(flags); /* unlock+enable */
2090
2091 if (cant_block)
2092 lbmRedrive(bp);
2093 else if (flag & lbmSYNC)
2094 lbmStartIO(bp);
2095 else {
2096 LOGGC_UNLOCK(log);
2097 lbmStartIO(bp);
2098 LOGGC_LOCK(log);
2099 }
2100}
2101
2102
2103/*
2104 * lbmDirectWrite()
2105 *
2106 * initiate pageout bypassing write queue for sidestream
2107 * (e.g., log superblock) write;
2108 */
2109static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2110{
2111 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2112 bp, flag, bp->l_pn);
2113
2114 /*
2115 * initialize buffer for device driver
2116 */
2117 bp->l_flag = flag | lbmDIRECT;
2118
2119 /* map the logical block address to physical block address */
2120 bp->l_blkno =
2121 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2122
2123 /*
2124 * initiate pageout of the page
2125 */
2126 lbmStartIO(bp);
2127}
2128
2129
2130/*
2131 * NAME: lbmStartIO()
2132 *
2133 * FUNCTION: Interface to DD strategy routine
2134 *
2135 * RETURN: none
2136 *
2137 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2138 */
2139static void lbmStartIO(struct lbuf * bp)
2140{
2141 struct bio *bio;
2142 struct jfs_log *log = bp->l_log;
2143
2144 jfs_info("lbmStartIO\n");
2145
2146 bio = bio_alloc(GFP_NOFS, 1);
2147 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2148 bio->bi_bdev = log->bdev;
2149 bio->bi_io_vec[0].bv_page = bp->l_page;
2150 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2151 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2152
2153 bio->bi_vcnt = 1;
2154 bio->bi_iter.bi_size = LOGPSIZE;
2155
2156 bio->bi_end_io = lbmIODone;
2157 bio->bi_private = bp;
2158
2159 /* check if journaling to disk has been disabled */
2160 if (log->no_integrity) {
2161 bio->bi_iter.bi_size = 0;
2162 lbmIODone(bio, 0);
2163 } else {
2164 submit_bio(WRITE_SYNC, bio);
2165 INCREMENT(lmStat.submitted);
2166 }
2167}
2168
2169
2170/*
2171 * lbmIOWait()
2172 */
2173static int lbmIOWait(struct lbuf * bp, int flag)
2174{
2175 unsigned long flags;
2176 int rc = 0;
2177
2178 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2179
2180 LCACHE_LOCK(flags); /* disable+lock */
2181
2182 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2183
2184 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2185
2186 if (flag & lbmFREE)
2187 lbmfree(bp);
2188
2189 LCACHE_UNLOCK(flags); /* unlock+enable */
2190
2191 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2192 return rc;
2193}
2194
2195/*
2196 * lbmIODone()
2197 *
2198 * executed at INTIODONE level
2199 */
2200static void lbmIODone(struct bio *bio, int error)
2201{
2202 struct lbuf *bp = bio->bi_private;
2203 struct lbuf *nextbp, *tail;
2204 struct jfs_log *log;
2205 unsigned long flags;
2206
2207 /*
2208 * get back jfs buffer bound to the i/o buffer
2209 */
2210 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2211
2212 LCACHE_LOCK(flags); /* disable+lock */
2213
2214 bp->l_flag |= lbmDONE;
2215
2216 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2217 bp->l_flag |= lbmERROR;
2218
2219 jfs_err("lbmIODone: I/O error in JFS log");
2220 }
2221
2222 bio_put(bio);
2223
2224 /*
2225 * pagein completion
2226 */
2227 if (bp->l_flag & lbmREAD) {
2228 bp->l_flag &= ~lbmREAD;
2229
2230 LCACHE_UNLOCK(flags); /* unlock+enable */
2231
2232 /* wakeup I/O initiator */
2233 LCACHE_WAKEUP(&bp->l_ioevent);
2234
2235 return;
2236 }
2237
2238 /*
2239 * pageout completion
2240 *
2241 * the bp at the head of write queue has completed pageout.
2242 *
2243 * if single-commit/full-page pageout, remove the current buffer
2244 * from head of pageout queue, and redrive pageout with
2245 * the new buffer at head of pageout queue;
2246 * otherwise, the partial-page pageout buffer stays at
2247 * the head of pageout queue to be redriven for pageout
2248 * by lmGroupCommit() until full-page pageout is completed.
2249 */
2250 bp->l_flag &= ~lbmWRITE;
2251 INCREMENT(lmStat.pagedone);
2252
2253 /* update committed lsn */
2254 log = bp->l_log;
2255 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2256
2257 if (bp->l_flag & lbmDIRECT) {
2258 LCACHE_WAKEUP(&bp->l_ioevent);
2259 LCACHE_UNLOCK(flags);
2260 return;
2261 }
2262
2263 tail = log->wqueue;
2264
2265 /* single element queue */
2266 if (bp == tail) {
2267 /* remove head buffer of full-page pageout
2268 * from log device write queue
2269 */
2270 if (bp->l_flag & lbmRELEASE) {
2271 log->wqueue = NULL;
2272 bp->l_wqnext = NULL;
2273 }
2274 }
2275 /* multi element queue */
2276 else {
2277 /* remove head buffer of full-page pageout
2278 * from log device write queue
2279 */
2280 if (bp->l_flag & lbmRELEASE) {
2281 nextbp = tail->l_wqnext = bp->l_wqnext;
2282 bp->l_wqnext = NULL;
2283
2284 /*
2285 * redrive pageout of next page at head of write queue:
2286 * redrive next page without any bound tblk
2287 * (i.e., page w/o any COMMIT records), or
2288 * first page of new group commit which has been
2289 * queued after current page (subsequent pageout
2290 * is performed synchronously, except page without
2291 * any COMMITs) by lmGroupCommit() as indicated
2292 * by lbmWRITE flag;
2293 */
2294 if (nextbp->l_flag & lbmWRITE) {
2295 /*
2296 * We can't do the I/O at interrupt time.
2297 * The jfsIO thread can do it
2298 */
2299 lbmRedrive(nextbp);
2300 }
2301 }
2302 }
2303
2304 /*
2305 * synchronous pageout:
2306 *
2307 * buffer has not necessarily been removed from write queue
2308 * (e.g., synchronous write of partial-page with COMMIT):
2309 * leave buffer for i/o initiator to dispose
2310 */
2311 if (bp->l_flag & lbmSYNC) {
2312 LCACHE_UNLOCK(flags); /* unlock+enable */
2313
2314 /* wakeup I/O initiator */
2315 LCACHE_WAKEUP(&bp->l_ioevent);
2316 }
2317
2318 /*
2319 * Group Commit pageout:
2320 */
2321 else if (bp->l_flag & lbmGC) {
2322 LCACHE_UNLOCK(flags);
2323 lmPostGC(bp);
2324 }
2325
2326 /*
2327 * asynchronous pageout:
2328 *
2329 * buffer must have been removed from write queue:
2330 * insert buffer at head of freelist where it can be recycled
2331 */
2332 else {
2333 assert(bp->l_flag & lbmRELEASE);
2334 assert(bp->l_flag & lbmFREE);
2335 lbmfree(bp);
2336
2337 LCACHE_UNLOCK(flags); /* unlock+enable */
2338 }
2339}
2340
2341int jfsIOWait(void *arg)
2342{
2343 struct lbuf *bp;
2344
2345 do {
2346 spin_lock_irq(&log_redrive_lock);
2347 while ((bp = log_redrive_list)) {
2348 log_redrive_list = bp->l_redrive_next;
2349 bp->l_redrive_next = NULL;
2350 spin_unlock_irq(&log_redrive_lock);
2351 lbmStartIO(bp);
2352 spin_lock_irq(&log_redrive_lock);
2353 }
2354
2355 if (freezing(current)) {
2356 spin_unlock_irq(&log_redrive_lock);
2357 try_to_freeze();
2358 } else {
2359 set_current_state(TASK_INTERRUPTIBLE);
2360 spin_unlock_irq(&log_redrive_lock);
2361 schedule();
2362 __set_current_state(TASK_RUNNING);
2363 }
2364 } while (!kthread_should_stop());
2365
2366 jfs_info("jfsIOWait being killed!");
2367 return 0;
2368}
2369
2370/*
2371 * NAME: lmLogFormat()/jfs_logform()
2372 *
2373 * FUNCTION: format file system log
2374 *
2375 * PARAMETERS:
2376 * log - volume log
2377 * logAddress - start address of log space in FS block
2378 * logSize - length of log space in FS block;
2379 *
2380 * RETURN: 0 - success
2381 * -EIO - i/o error
2382 *
2383 * XXX: We're synchronously writing one page at a time. This needs to
2384 * be improved by writing multiple pages at once.
2385 */
2386int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2387{
2388 int rc = -EIO;
2389 struct jfs_sb_info *sbi;
2390 struct logsuper *logsuper;
2391 struct logpage *lp;
2392 int lspn; /* log sequence page number */
2393 struct lrd *lrd_ptr;
2394 int npages = 0;
2395 struct lbuf *bp;
2396
2397 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2398 (long long)logAddress, logSize);
2399
2400 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2401
2402 /* allocate a log buffer */
2403 bp = lbmAllocate(log, 1);
2404
2405 npages = logSize >> sbi->l2nbperpage;
2406
2407 /*
2408 * log space:
2409 *
2410 * page 0 - reserved;
2411 * page 1 - log superblock;
2412 * page 2 - log data page: A SYNC log record is written
2413 * into this page at logform time;
2414 * pages 3-N - log data page: set to empty log data pages;
2415 */
2416 /*
2417 * init log superblock: log page 1
2418 */
2419 logsuper = (struct logsuper *) bp->l_ldata;
2420
2421 logsuper->magic = cpu_to_le32(LOGMAGIC);
2422 logsuper->version = cpu_to_le32(LOGVERSION);
2423 logsuper->state = cpu_to_le32(LOGREDONE);
2424 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2425 logsuper->size = cpu_to_le32(npages);
2426 logsuper->bsize = cpu_to_le32(sbi->bsize);
2427 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2428 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2429
2430 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2431 bp->l_blkno = logAddress + sbi->nbperpage;
2432 lbmStartIO(bp);
2433 if ((rc = lbmIOWait(bp, 0)))
2434 goto exit;
2435
2436 /*
2437 * init pages 2 to npages-1 as log data pages:
2438 *
2439 * log page sequence number (lpsn) initialization:
2440 *
2441 * pn: 0 1 2 3 n-1
2442 * +-----+-----+=====+=====+===.....===+=====+
2443 * lspn: N-1 0 1 N-2
2444 * <--- N page circular file ---->
2445 *
2446 * the N (= npages-2) data pages of the log is maintained as
2447 * a circular file for the log records;
2448 * lpsn grows by 1 monotonically as each log page is written
2449 * to the circular file of the log;
2450 * and setLogpage() will not reset the page number even if
2451 * the eor is equal to LOGPHDRSIZE. In order for binary search
2452 * still work in find log end process, we have to simulate the
2453 * log wrap situation at the log format time.
2454 * The 1st log page written will have the highest lpsn. Then
2455 * the succeeding log pages will have ascending order of
2456 * the lspn starting from 0, ... (N-2)
2457 */
2458 lp = (struct logpage *) bp->l_ldata;
2459 /*
2460 * initialize 1st log page to be written: lpsn = N - 1,
2461 * write a SYNCPT log record is written to this page
2462 */
2463 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2464 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2465
2466 lrd_ptr = (struct lrd *) &lp->data;
2467 lrd_ptr->logtid = 0;
2468 lrd_ptr->backchain = 0;
2469 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2470 lrd_ptr->length = 0;
2471 lrd_ptr->log.syncpt.sync = 0;
2472
2473 bp->l_blkno += sbi->nbperpage;
2474 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2475 lbmStartIO(bp);
2476 if ((rc = lbmIOWait(bp, 0)))
2477 goto exit;
2478
2479 /*
2480 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2481 */
2482 for (lspn = 0; lspn < npages - 3; lspn++) {
2483 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2484 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2485
2486 bp->l_blkno += sbi->nbperpage;
2487 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2488 lbmStartIO(bp);
2489 if ((rc = lbmIOWait(bp, 0)))
2490 goto exit;
2491 }
2492
2493 rc = 0;
2494exit:
2495 /*
2496 * finalize log
2497 */
2498 /* release the buffer */
2499 lbmFree(bp);
2500
2501 return rc;
2502}
2503
2504#ifdef CONFIG_JFS_STATISTICS
2505static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2506{
2507 seq_printf(m,
2508 "JFS Logmgr stats\n"
2509 "================\n"
2510 "commits = %d\n"
2511 "writes submitted = %d\n"
2512 "writes completed = %d\n"
2513 "full pages submitted = %d\n"
2514 "partial pages submitted = %d\n",
2515 lmStat.commit,
2516 lmStat.submitted,
2517 lmStat.pagedone,
2518 lmStat.full_page,
2519 lmStat.partial_page);
2520 return 0;
2521}
2522
2523static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2524{
2525 return single_open(file, jfs_lmstats_proc_show, NULL);
2526}
2527
2528const struct file_operations jfs_lmstats_proc_fops = {
2529 .owner = THIS_MODULE,
2530 .open = jfs_lmstats_proc_open,
2531 .read = seq_read,
2532 .llseek = seq_lseek,
2533 .release = single_release,
2534};
2535#endif /* CONFIG_JFS_STATISTICS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 */
6
7/*
8 * jfs_logmgr.c: log manager
9 *
10 * for related information, see transaction manager (jfs_txnmgr.c), and
11 * recovery manager (jfs_logredo.c).
12 *
13 * note: for detail, RTFS.
14 *
15 * log buffer manager:
16 * special purpose buffer manager supporting log i/o requirements.
17 * per log serial pageout of logpage
18 * queuing i/o requests and redrive i/o at iodone
19 * maintain current logpage buffer
20 * no caching since append only
21 * appropriate jfs buffer cache buffers as needed
22 *
23 * group commit:
24 * transactions which wrote COMMIT records in the same in-memory
25 * log page during the pageout of previous/current log page(s) are
26 * committed together by the pageout of the page.
27 *
28 * TBD lazy commit:
29 * transactions are committed asynchronously when the log page
30 * containing it COMMIT is paged out when it becomes full;
31 *
32 * serialization:
33 * . a per log lock serialize log write.
34 * . a per log lock serialize group commit.
35 * . a per log lock serialize log open/close;
36 *
37 * TBD log integrity:
38 * careful-write (ping-pong) of last logpage to recover from crash
39 * in overwrite.
40 * detection of split (out-of-order) write of physical sectors
41 * of last logpage via timestamp at end of each sector
42 * with its mirror data array at trailer).
43 *
44 * alternatives:
45 * lsn - 64-bit monotonically increasing integer vs
46 * 32-bit lspn and page eor.
47 */
48
49#include <linux/fs.h>
50#include <linux/blkdev.h>
51#include <linux/interrupt.h>
52#include <linux/completion.h>
53#include <linux/kthread.h>
54#include <linux/buffer_head.h> /* for sync_blockdev() */
55#include <linux/bio.h>
56#include <linux/freezer.h>
57#include <linux/export.h>
58#include <linux/delay.h>
59#include <linux/mutex.h>
60#include <linux/seq_file.h>
61#include <linux/slab.h>
62#include "jfs_incore.h"
63#include "jfs_filsys.h"
64#include "jfs_metapage.h"
65#include "jfs_superblock.h"
66#include "jfs_txnmgr.h"
67#include "jfs_debug.h"
68
69
70/*
71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
72 */
73static struct lbuf *log_redrive_list;
74static DEFINE_SPINLOCK(log_redrive_lock);
75
76
77/*
78 * log read/write serialization (per log)
79 */
80#define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
81#define LOG_LOCK(log) mutex_lock(&((log)->loglock))
82#define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
83
84
85/*
86 * log group commit serialization (per log)
87 */
88
89#define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
90#define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
91#define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
92#define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
93
94/*
95 * log sync serialization (per log)
96 */
97#define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
98#define LOGSYNC_BARRIER(logsize) ((logsize)/4)
99/*
100#define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
101#define LOGSYNC_BARRIER(logsize) ((logsize)/2)
102*/
103
104
105/*
106 * log buffer cache synchronization
107 */
108static DEFINE_SPINLOCK(jfsLCacheLock);
109
110#define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
111#define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
112
113/*
114 * See __SLEEP_COND in jfs_locks.h
115 */
116#define LCACHE_SLEEP_COND(wq, cond, flags) \
117do { \
118 if (cond) \
119 break; \
120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
121} while (0)
122
123#define LCACHE_WAKEUP(event) wake_up(event)
124
125
126/*
127 * lbuf buffer cache (lCache) control
128 */
129/* log buffer manager pageout control (cumulative, inclusive) */
130#define lbmREAD 0x0001
131#define lbmWRITE 0x0002 /* enqueue at tail of write queue;
132 * init pageout if at head of queue;
133 */
134#define lbmRELEASE 0x0004 /* remove from write queue
135 * at completion of pageout;
136 * do not free/recycle it yet:
137 * caller will free it;
138 */
139#define lbmSYNC 0x0008 /* do not return to freelist
140 * when removed from write queue;
141 */
142#define lbmFREE 0x0010 /* return to freelist
143 * at completion of pageout;
144 * the buffer may be recycled;
145 */
146#define lbmDONE 0x0020
147#define lbmERROR 0x0040
148#define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
149 * of log page
150 */
151#define lbmDIRECT 0x0100
152
153/*
154 * Global list of active external journals
155 */
156static LIST_HEAD(jfs_external_logs);
157static struct jfs_log *dummy_log;
158static DEFINE_MUTEX(jfs_log_mutex);
159
160/*
161 * forward references
162 */
163static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
164 struct lrd * lrd, struct tlock * tlck);
165
166static int lmNextPage(struct jfs_log * log);
167static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
168 int activate);
169
170static int open_inline_log(struct super_block *sb);
171static int open_dummy_log(struct super_block *sb);
172static int lbmLogInit(struct jfs_log * log);
173static void lbmLogShutdown(struct jfs_log * log);
174static struct lbuf *lbmAllocate(struct jfs_log * log, int);
175static void lbmFree(struct lbuf * bp);
176static void lbmfree(struct lbuf * bp);
177static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
178static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
179static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
180static int lbmIOWait(struct lbuf * bp, int flag);
181static bio_end_io_t lbmIODone;
182static void lbmStartIO(struct lbuf * bp);
183static void lmGCwrite(struct jfs_log * log, int cant_block);
184static int lmLogSync(struct jfs_log * log, int hard_sync);
185
186
187
188/*
189 * statistics
190 */
191#ifdef CONFIG_JFS_STATISTICS
192static struct lmStat {
193 uint commit; /* # of commit */
194 uint pagedone; /* # of page written */
195 uint submitted; /* # of pages submitted */
196 uint full_page; /* # of full pages submitted */
197 uint partial_page; /* # of partial pages submitted */
198} lmStat;
199#endif
200
201static void write_special_inodes(struct jfs_log *log,
202 int (*writer)(struct address_space *))
203{
204 struct jfs_sb_info *sbi;
205
206 list_for_each_entry(sbi, &log->sb_list, log_list) {
207 writer(sbi->ipbmap->i_mapping);
208 writer(sbi->ipimap->i_mapping);
209 writer(sbi->direct_inode->i_mapping);
210 }
211}
212
213/*
214 * NAME: lmLog()
215 *
216 * FUNCTION: write a log record;
217 *
218 * PARAMETER:
219 *
220 * RETURN: lsn - offset to the next log record to write (end-of-log);
221 * -1 - error;
222 *
223 * note: todo: log error handler
224 */
225int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
226 struct tlock * tlck)
227{
228 int lsn;
229 int diffp, difft;
230 struct metapage *mp = NULL;
231 unsigned long flags;
232
233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
234 log, tblk, lrd, tlck);
235
236 LOG_LOCK(log);
237
238 /* log by (out-of-transaction) JFS ? */
239 if (tblk == NULL)
240 goto writeRecord;
241
242 /* log from page ? */
243 if (tlck == NULL ||
244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
245 goto writeRecord;
246
247 /*
248 * initialize/update page/transaction recovery lsn
249 */
250 lsn = log->lsn;
251
252 LOGSYNC_LOCK(log, flags);
253
254 /*
255 * initialize page lsn if first log write of the page
256 */
257 if (mp->lsn == 0) {
258 mp->log = log;
259 mp->lsn = lsn;
260 log->count++;
261
262 /* insert page at tail of logsynclist */
263 list_add_tail(&mp->synclist, &log->synclist);
264 }
265
266 /*
267 * initialize/update lsn of tblock of the page
268 *
269 * transaction inherits oldest lsn of pages associated
270 * with allocation/deallocation of resources (their
271 * log records are used to reconstruct allocation map
272 * at recovery time: inode for inode allocation map,
273 * B+-tree index of extent descriptors for block
274 * allocation map);
275 * allocation map pages inherit transaction lsn at
276 * commit time to allow forwarding log syncpt past log
277 * records associated with allocation/deallocation of
278 * resources only after persistent map of these map pages
279 * have been updated and propagated to home.
280 */
281 /*
282 * initialize transaction lsn:
283 */
284 if (tblk->lsn == 0) {
285 /* inherit lsn of its first page logged */
286 tblk->lsn = mp->lsn;
287 log->count++;
288
289 /* insert tblock after the page on logsynclist */
290 list_add(&tblk->synclist, &mp->synclist);
291 }
292 /*
293 * update transaction lsn:
294 */
295 else {
296 /* inherit oldest/smallest lsn of page */
297 logdiff(diffp, mp->lsn, log);
298 logdiff(difft, tblk->lsn, log);
299 if (diffp < difft) {
300 /* update tblock lsn with page lsn */
301 tblk->lsn = mp->lsn;
302
303 /* move tblock after page on logsynclist */
304 list_move(&tblk->synclist, &mp->synclist);
305 }
306 }
307
308 LOGSYNC_UNLOCK(log, flags);
309
310 /*
311 * write the log record
312 */
313 writeRecord:
314 lsn = lmWriteRecord(log, tblk, lrd, tlck);
315
316 /*
317 * forward log syncpt if log reached next syncpt trigger
318 */
319 logdiff(diffp, lsn, log);
320 if (diffp >= log->nextsync)
321 lsn = lmLogSync(log, 0);
322
323 /* update end-of-log lsn */
324 log->lsn = lsn;
325
326 LOG_UNLOCK(log);
327
328 /* return end-of-log address */
329 return lsn;
330}
331
332/*
333 * NAME: lmWriteRecord()
334 *
335 * FUNCTION: move the log record to current log page
336 *
337 * PARAMETER: cd - commit descriptor
338 *
339 * RETURN: end-of-log address
340 *
341 * serialization: LOG_LOCK() held on entry/exit
342 */
343static int
344lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
345 struct tlock * tlck)
346{
347 int lsn = 0; /* end-of-log address */
348 struct lbuf *bp; /* dst log page buffer */
349 struct logpage *lp; /* dst log page */
350 caddr_t dst; /* destination address in log page */
351 int dstoffset; /* end-of-log offset in log page */
352 int freespace; /* free space in log page */
353 caddr_t p; /* src meta-data page */
354 caddr_t src;
355 int srclen;
356 int nbytes; /* number of bytes to move */
357 int i;
358 int len;
359 struct linelock *linelock;
360 struct lv *lv;
361 struct lvd *lvd;
362 int l2linesize;
363
364 len = 0;
365
366 /* retrieve destination log page to write */
367 bp = (struct lbuf *) log->bp;
368 lp = (struct logpage *) bp->l_ldata;
369 dstoffset = log->eor;
370
371 /* any log data to write ? */
372 if (tlck == NULL)
373 goto moveLrd;
374
375 /*
376 * move log record data
377 */
378 /* retrieve source meta-data page to log */
379 if (tlck->flag & tlckPAGELOCK) {
380 p = (caddr_t) (tlck->mp->data);
381 linelock = (struct linelock *) & tlck->lock;
382 }
383 /* retrieve source in-memory inode to log */
384 else if (tlck->flag & tlckINODELOCK) {
385 if (tlck->type & tlckDTREE)
386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
387 else
388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
389 linelock = (struct linelock *) & tlck->lock;
390 }
391#ifdef _JFS_WIP
392 else if (tlck->flag & tlckINLINELOCK) {
393
394 inlinelock = (struct inlinelock *) & tlck;
395 p = (caddr_t) & inlinelock->pxd;
396 linelock = (struct linelock *) & tlck;
397 }
398#endif /* _JFS_WIP */
399 else {
400 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
401 return 0; /* Probably should trap */
402 }
403 l2linesize = linelock->l2linesize;
404
405 moveData:
406 ASSERT(linelock->index <= linelock->maxcnt);
407
408 lv = linelock->lv;
409 for (i = 0; i < linelock->index; i++, lv++) {
410 if (lv->length == 0)
411 continue;
412
413 /* is page full ? */
414 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
415 /* page become full: move on to next page */
416 lmNextPage(log);
417
418 bp = log->bp;
419 lp = (struct logpage *) bp->l_ldata;
420 dstoffset = LOGPHDRSIZE;
421 }
422
423 /*
424 * move log vector data
425 */
426 src = (u8 *) p + (lv->offset << l2linesize);
427 srclen = lv->length << l2linesize;
428 len += srclen;
429 while (srclen > 0) {
430 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
431 nbytes = min(freespace, srclen);
432 dst = (caddr_t) lp + dstoffset;
433 memcpy(dst, src, nbytes);
434 dstoffset += nbytes;
435
436 /* is page not full ? */
437 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
438 break;
439
440 /* page become full: move on to next page */
441 lmNextPage(log);
442
443 bp = (struct lbuf *) log->bp;
444 lp = (struct logpage *) bp->l_ldata;
445 dstoffset = LOGPHDRSIZE;
446
447 srclen -= nbytes;
448 src += nbytes;
449 }
450
451 /*
452 * move log vector descriptor
453 */
454 len += 4;
455 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
456 lvd->offset = cpu_to_le16(lv->offset);
457 lvd->length = cpu_to_le16(lv->length);
458 dstoffset += 4;
459 jfs_info("lmWriteRecord: lv offset:%d length:%d",
460 lv->offset, lv->length);
461 }
462
463 if ((i = linelock->next)) {
464 linelock = (struct linelock *) lid_to_tlock(i);
465 goto moveData;
466 }
467
468 /*
469 * move log record descriptor
470 */
471 moveLrd:
472 lrd->length = cpu_to_le16(len);
473
474 src = (caddr_t) lrd;
475 srclen = LOGRDSIZE;
476
477 while (srclen > 0) {
478 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
479 nbytes = min(freespace, srclen);
480 dst = (caddr_t) lp + dstoffset;
481 memcpy(dst, src, nbytes);
482
483 dstoffset += nbytes;
484 srclen -= nbytes;
485
486 /* are there more to move than freespace of page ? */
487 if (srclen)
488 goto pageFull;
489
490 /*
491 * end of log record descriptor
492 */
493
494 /* update last log record eor */
495 log->eor = dstoffset;
496 bp->l_eor = dstoffset;
497 lsn = (log->page << L2LOGPSIZE) + dstoffset;
498
499 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
500 tblk->clsn = lsn;
501 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
502 bp->l_eor);
503
504 INCREMENT(lmStat.commit); /* # of commit */
505
506 /*
507 * enqueue tblock for group commit:
508 *
509 * enqueue tblock of non-trivial/synchronous COMMIT
510 * at tail of group commit queue
511 * (trivial/asynchronous COMMITs are ignored by
512 * group commit.)
513 */
514 LOGGC_LOCK(log);
515
516 /* init tblock gc state */
517 tblk->flag = tblkGC_QUEUE;
518 tblk->bp = log->bp;
519 tblk->pn = log->page;
520 tblk->eor = log->eor;
521
522 /* enqueue transaction to commit queue */
523 list_add_tail(&tblk->cqueue, &log->cqueue);
524
525 LOGGC_UNLOCK(log);
526 }
527
528 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
529 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
530
531 /* page not full ? */
532 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
533 return lsn;
534
535 pageFull:
536 /* page become full: move on to next page */
537 lmNextPage(log);
538
539 bp = (struct lbuf *) log->bp;
540 lp = (struct logpage *) bp->l_ldata;
541 dstoffset = LOGPHDRSIZE;
542 src += nbytes;
543 }
544
545 return lsn;
546}
547
548
549/*
550 * NAME: lmNextPage()
551 *
552 * FUNCTION: write current page and allocate next page.
553 *
554 * PARAMETER: log
555 *
556 * RETURN: 0
557 *
558 * serialization: LOG_LOCK() held on entry/exit
559 */
560static int lmNextPage(struct jfs_log * log)
561{
562 struct logpage *lp;
563 int lspn; /* log sequence page number */
564 int pn; /* current page number */
565 struct lbuf *bp;
566 struct lbuf *nextbp;
567 struct tblock *tblk;
568
569 /* get current log page number and log sequence page number */
570 pn = log->page;
571 bp = log->bp;
572 lp = (struct logpage *) bp->l_ldata;
573 lspn = le32_to_cpu(lp->h.page);
574
575 LOGGC_LOCK(log);
576
577 /*
578 * write or queue the full page at the tail of write queue
579 */
580 /* get the tail tblk on commit queue */
581 if (list_empty(&log->cqueue))
582 tblk = NULL;
583 else
584 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
585
586 /* every tblk who has COMMIT record on the current page,
587 * and has not been committed, must be on commit queue
588 * since tblk is queued at commit queueu at the time
589 * of writing its COMMIT record on the page before
590 * page becomes full (even though the tblk thread
591 * who wrote COMMIT record may have been suspended
592 * currently);
593 */
594
595 /* is page bound with outstanding tail tblk ? */
596 if (tblk && tblk->pn == pn) {
597 /* mark tblk for end-of-page */
598 tblk->flag |= tblkGC_EOP;
599
600 if (log->cflag & logGC_PAGEOUT) {
601 /* if page is not already on write queue,
602 * just enqueue (no lbmWRITE to prevent redrive)
603 * buffer to wqueue to ensure correct serial order
604 * of the pages since log pages will be added
605 * continuously
606 */
607 if (bp->l_wqnext == NULL)
608 lbmWrite(log, bp, 0, 0);
609 } else {
610 /*
611 * No current GC leader, initiate group commit
612 */
613 log->cflag |= logGC_PAGEOUT;
614 lmGCwrite(log, 0);
615 }
616 }
617 /* page is not bound with outstanding tblk:
618 * init write or mark it to be redriven (lbmWRITE)
619 */
620 else {
621 /* finalize the page */
622 bp->l_ceor = bp->l_eor;
623 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
624 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
625 }
626 LOGGC_UNLOCK(log);
627
628 /*
629 * allocate/initialize next page
630 */
631 /* if log wraps, the first data page of log is 2
632 * (0 never used, 1 is superblock).
633 */
634 log->page = (pn == log->size - 1) ? 2 : pn + 1;
635 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
636
637 /* allocate/initialize next log page buffer */
638 nextbp = lbmAllocate(log, log->page);
639 nextbp->l_eor = log->eor;
640 log->bp = nextbp;
641
642 /* initialize next log page */
643 lp = (struct logpage *) nextbp->l_ldata;
644 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
645 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
646
647 return 0;
648}
649
650
651/*
652 * NAME: lmGroupCommit()
653 *
654 * FUNCTION: group commit
655 * initiate pageout of the pages with COMMIT in the order of
656 * page number - redrive pageout of the page at the head of
657 * pageout queue until full page has been written.
658 *
659 * RETURN:
660 *
661 * NOTE:
662 * LOGGC_LOCK serializes log group commit queue, and
663 * transaction blocks on the commit queue.
664 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
665 */
666int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
667{
668 int rc = 0;
669
670 LOGGC_LOCK(log);
671
672 /* group committed already ? */
673 if (tblk->flag & tblkGC_COMMITTED) {
674 if (tblk->flag & tblkGC_ERROR)
675 rc = -EIO;
676
677 LOGGC_UNLOCK(log);
678 return rc;
679 }
680 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
681
682 if (tblk->xflag & COMMIT_LAZY)
683 tblk->flag |= tblkGC_LAZY;
684
685 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
686 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
687 || jfs_tlocks_low)) {
688 /*
689 * No pageout in progress
690 *
691 * start group commit as its group leader.
692 */
693 log->cflag |= logGC_PAGEOUT;
694
695 lmGCwrite(log, 0);
696 }
697
698 if (tblk->xflag & COMMIT_LAZY) {
699 /*
700 * Lazy transactions can leave now
701 */
702 LOGGC_UNLOCK(log);
703 return 0;
704 }
705
706 /* lmGCwrite gives up LOGGC_LOCK, check again */
707
708 if (tblk->flag & tblkGC_COMMITTED) {
709 if (tblk->flag & tblkGC_ERROR)
710 rc = -EIO;
711
712 LOGGC_UNLOCK(log);
713 return rc;
714 }
715
716 /* upcount transaction waiting for completion
717 */
718 log->gcrtc++;
719 tblk->flag |= tblkGC_READY;
720
721 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
722 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
723
724 /* removed from commit queue */
725 if (tblk->flag & tblkGC_ERROR)
726 rc = -EIO;
727
728 LOGGC_UNLOCK(log);
729 return rc;
730}
731
732/*
733 * NAME: lmGCwrite()
734 *
735 * FUNCTION: group commit write
736 * initiate write of log page, building a group of all transactions
737 * with commit records on that page.
738 *
739 * RETURN: None
740 *
741 * NOTE:
742 * LOGGC_LOCK must be held by caller.
743 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
744 */
745static void lmGCwrite(struct jfs_log * log, int cant_write)
746{
747 struct lbuf *bp;
748 struct logpage *lp;
749 int gcpn; /* group commit page number */
750 struct tblock *tblk;
751 struct tblock *xtblk = NULL;
752
753 /*
754 * build the commit group of a log page
755 *
756 * scan commit queue and make a commit group of all
757 * transactions with COMMIT records on the same log page.
758 */
759 /* get the head tblk on the commit queue */
760 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
761
762 list_for_each_entry(tblk, &log->cqueue, cqueue) {
763 if (tblk->pn != gcpn)
764 break;
765
766 xtblk = tblk;
767
768 /* state transition: (QUEUE, READY) -> COMMIT */
769 tblk->flag |= tblkGC_COMMIT;
770 }
771 tblk = xtblk; /* last tblk of the page */
772
773 /*
774 * pageout to commit transactions on the log page.
775 */
776 bp = (struct lbuf *) tblk->bp;
777 lp = (struct logpage *) bp->l_ldata;
778 /* is page already full ? */
779 if (tblk->flag & tblkGC_EOP) {
780 /* mark page to free at end of group commit of the page */
781 tblk->flag &= ~tblkGC_EOP;
782 tblk->flag |= tblkGC_FREE;
783 bp->l_ceor = bp->l_eor;
784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
785 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
786 cant_write);
787 INCREMENT(lmStat.full_page);
788 }
789 /* page is not yet full */
790 else {
791 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
792 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
793 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
794 INCREMENT(lmStat.partial_page);
795 }
796}
797
798/*
799 * NAME: lmPostGC()
800 *
801 * FUNCTION: group commit post-processing
802 * Processes transactions after their commit records have been written
803 * to disk, redriving log I/O if necessary.
804 *
805 * RETURN: None
806 *
807 * NOTE:
808 * This routine is called a interrupt time by lbmIODone
809 */
810static void lmPostGC(struct lbuf * bp)
811{
812 unsigned long flags;
813 struct jfs_log *log = bp->l_log;
814 struct logpage *lp;
815 struct tblock *tblk, *temp;
816
817 //LOGGC_LOCK(log);
818 spin_lock_irqsave(&log->gclock, flags);
819 /*
820 * current pageout of group commit completed.
821 *
822 * remove/wakeup transactions from commit queue who were
823 * group committed with the current log page
824 */
825 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
826 if (!(tblk->flag & tblkGC_COMMIT))
827 break;
828 /* if transaction was marked GC_COMMIT then
829 * it has been shipped in the current pageout
830 * and made it to disk - it is committed.
831 */
832
833 if (bp->l_flag & lbmERROR)
834 tblk->flag |= tblkGC_ERROR;
835
836 /* remove it from the commit queue */
837 list_del(&tblk->cqueue);
838 tblk->flag &= ~tblkGC_QUEUE;
839
840 if (tblk == log->flush_tblk) {
841 /* we can stop flushing the log now */
842 clear_bit(log_FLUSH, &log->flag);
843 log->flush_tblk = NULL;
844 }
845
846 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
847 tblk->flag);
848
849 if (!(tblk->xflag & COMMIT_FORCE))
850 /*
851 * Hand tblk over to lazy commit thread
852 */
853 txLazyUnlock(tblk);
854 else {
855 /* state transition: COMMIT -> COMMITTED */
856 tblk->flag |= tblkGC_COMMITTED;
857
858 if (tblk->flag & tblkGC_READY)
859 log->gcrtc--;
860
861 LOGGC_WAKEUP(tblk);
862 }
863
864 /* was page full before pageout ?
865 * (and this is the last tblk bound with the page)
866 */
867 if (tblk->flag & tblkGC_FREE)
868 lbmFree(bp);
869 /* did page become full after pageout ?
870 * (and this is the last tblk bound with the page)
871 */
872 else if (tblk->flag & tblkGC_EOP) {
873 /* finalize the page */
874 lp = (struct logpage *) bp->l_ldata;
875 bp->l_ceor = bp->l_eor;
876 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
877 jfs_info("lmPostGC: calling lbmWrite");
878 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
879 1);
880 }
881
882 }
883
884 /* are there any transactions who have entered lnGroupCommit()
885 * (whose COMMITs are after that of the last log page written.
886 * They are waiting for new group commit (above at (SLEEP 1))
887 * or lazy transactions are on a full (queued) log page,
888 * select the latest ready transaction as new group leader and
889 * wake her up to lead her group.
890 */
891 if ((!list_empty(&log->cqueue)) &&
892 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
893 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
894 /*
895 * Call lmGCwrite with new group leader
896 */
897 lmGCwrite(log, 1);
898
899 /* no transaction are ready yet (transactions are only just
900 * queued (GC_QUEUE) and not entered for group commit yet).
901 * the first transaction entering group commit
902 * will elect herself as new group leader.
903 */
904 else
905 log->cflag &= ~logGC_PAGEOUT;
906
907 //LOGGC_UNLOCK(log);
908 spin_unlock_irqrestore(&log->gclock, flags);
909 return;
910}
911
912/*
913 * NAME: lmLogSync()
914 *
915 * FUNCTION: write log SYNCPT record for specified log
916 * if new sync address is available
917 * (normally the case if sync() is executed by back-ground
918 * process).
919 * calculate new value of i_nextsync which determines when
920 * this code is called again.
921 *
922 * PARAMETERS: log - log structure
923 * hard_sync - 1 to force all metadata to be written
924 *
925 * RETURN: 0
926 *
927 * serialization: LOG_LOCK() held on entry/exit
928 */
929static int lmLogSync(struct jfs_log * log, int hard_sync)
930{
931 int logsize;
932 int written; /* written since last syncpt */
933 int free; /* free space left available */
934 int delta; /* additional delta to write normally */
935 int more; /* additional write granted */
936 struct lrd lrd;
937 int lsn;
938 struct logsyncblk *lp;
939 unsigned long flags;
940
941 /* push dirty metapages out to disk */
942 if (hard_sync)
943 write_special_inodes(log, filemap_fdatawrite);
944 else
945 write_special_inodes(log, filemap_flush);
946
947 /*
948 * forward syncpt
949 */
950 /* if last sync is same as last syncpt,
951 * invoke sync point forward processing to update sync.
952 */
953
954 if (log->sync == log->syncpt) {
955 LOGSYNC_LOCK(log, flags);
956 if (list_empty(&log->synclist))
957 log->sync = log->lsn;
958 else {
959 lp = list_entry(log->synclist.next,
960 struct logsyncblk, synclist);
961 log->sync = lp->lsn;
962 }
963 LOGSYNC_UNLOCK(log, flags);
964
965 }
966
967 /* if sync is different from last syncpt,
968 * write a SYNCPT record with syncpt = sync.
969 * reset syncpt = sync
970 */
971 if (log->sync != log->syncpt) {
972 lrd.logtid = 0;
973 lrd.backchain = 0;
974 lrd.type = cpu_to_le16(LOG_SYNCPT);
975 lrd.length = 0;
976 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
977 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
978
979 log->syncpt = log->sync;
980 } else
981 lsn = log->lsn;
982
983 /*
984 * setup next syncpt trigger (SWAG)
985 */
986 logsize = log->logsize;
987
988 logdiff(written, lsn, log);
989 free = logsize - written;
990 delta = LOGSYNC_DELTA(logsize);
991 more = min(free / 2, delta);
992 if (more < 2 * LOGPSIZE) {
993 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
994 /*
995 * log wrapping
996 *
997 * option 1 - panic ? No.!
998 * option 2 - shutdown file systems
999 * associated with log ?
1000 * option 3 - extend log ?
1001 * option 4 - second chance
1002 *
1003 * mark log wrapped, and continue.
1004 * when all active transactions are completed,
1005 * mark log valid for recovery.
1006 * if crashed during invalid state, log state
1007 * implies invalid log, forcing fsck().
1008 */
1009 /* mark log state log wrap in log superblock */
1010 /* log->state = LOGWRAP; */
1011
1012 /* reset sync point computation */
1013 log->syncpt = log->sync = lsn;
1014 log->nextsync = delta;
1015 } else
1016 /* next syncpt trigger = written + more */
1017 log->nextsync = written + more;
1018
1019 /* if number of bytes written from last sync point is more
1020 * than 1/4 of the log size, stop new transactions from
1021 * starting until all current transactions are completed
1022 * by setting syncbarrier flag.
1023 */
1024 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1025 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1026 set_bit(log_SYNCBARRIER, &log->flag);
1027 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1028 log->syncpt);
1029 /*
1030 * We may have to initiate group commit
1031 */
1032 jfs_flush_journal(log, 0);
1033 }
1034
1035 return lsn;
1036}
1037
1038/*
1039 * NAME: jfs_syncpt
1040 *
1041 * FUNCTION: write log SYNCPT record for specified log
1042 *
1043 * PARAMETERS: log - log structure
1044 * hard_sync - set to 1 to force metadata to be written
1045 */
1046void jfs_syncpt(struct jfs_log *log, int hard_sync)
1047{ LOG_LOCK(log);
1048 if (!test_bit(log_QUIESCE, &log->flag))
1049 lmLogSync(log, hard_sync);
1050 LOG_UNLOCK(log);
1051}
1052
1053/*
1054 * NAME: lmLogOpen()
1055 *
1056 * FUNCTION: open the log on first open;
1057 * insert filesystem in the active list of the log.
1058 *
1059 * PARAMETER: ipmnt - file system mount inode
1060 * iplog - log inode (out)
1061 *
1062 * RETURN:
1063 *
1064 * serialization:
1065 */
1066int lmLogOpen(struct super_block *sb)
1067{
1068 int rc;
1069 struct block_device *bdev;
1070 struct jfs_log *log;
1071 struct jfs_sb_info *sbi = JFS_SBI(sb);
1072
1073 if (sbi->flag & JFS_NOINTEGRITY)
1074 return open_dummy_log(sb);
1075
1076 if (sbi->mntflag & JFS_INLINELOG)
1077 return open_inline_log(sb);
1078
1079 mutex_lock(&jfs_log_mutex);
1080 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1081 if (log->bdev->bd_dev == sbi->logdev) {
1082 if (!uuid_equal(&log->uuid, &sbi->loguuid)) {
1083 jfs_warn("wrong uuid on JFS journal");
1084 mutex_unlock(&jfs_log_mutex);
1085 return -EINVAL;
1086 }
1087 /*
1088 * add file system to log active file system list
1089 */
1090 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1091 mutex_unlock(&jfs_log_mutex);
1092 return rc;
1093 }
1094 goto journal_found;
1095 }
1096 }
1097
1098 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1099 mutex_unlock(&jfs_log_mutex);
1100 return -ENOMEM;
1101 }
1102 INIT_LIST_HEAD(&log->sb_list);
1103 init_waitqueue_head(&log->syncwait);
1104
1105 /*
1106 * external log as separate logical volume
1107 *
1108 * file systems to log may have n-to-1 relationship;
1109 */
1110
1111 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1112 log);
1113 if (IS_ERR(bdev)) {
1114 rc = PTR_ERR(bdev);
1115 goto free;
1116 }
1117
1118 log->bdev = bdev;
1119 uuid_copy(&log->uuid, &sbi->loguuid);
1120
1121 /*
1122 * initialize log:
1123 */
1124 if ((rc = lmLogInit(log)))
1125 goto close;
1126
1127 list_add(&log->journal_list, &jfs_external_logs);
1128
1129 /*
1130 * add file system to log active file system list
1131 */
1132 if ((rc = lmLogFileSystem(log, sbi, 1)))
1133 goto shutdown;
1134
1135journal_found:
1136 LOG_LOCK(log);
1137 list_add(&sbi->log_list, &log->sb_list);
1138 sbi->log = log;
1139 LOG_UNLOCK(log);
1140
1141 mutex_unlock(&jfs_log_mutex);
1142 return 0;
1143
1144 /*
1145 * unwind on error
1146 */
1147 shutdown: /* unwind lbmLogInit() */
1148 list_del(&log->journal_list);
1149 lbmLogShutdown(log);
1150
1151 close: /* close external log device */
1152 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1153
1154 free: /* free log descriptor */
1155 mutex_unlock(&jfs_log_mutex);
1156 kfree(log);
1157
1158 jfs_warn("lmLogOpen: exit(%d)", rc);
1159 return rc;
1160}
1161
1162static int open_inline_log(struct super_block *sb)
1163{
1164 struct jfs_log *log;
1165 int rc;
1166
1167 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1168 return -ENOMEM;
1169 INIT_LIST_HEAD(&log->sb_list);
1170 init_waitqueue_head(&log->syncwait);
1171
1172 set_bit(log_INLINELOG, &log->flag);
1173 log->bdev = sb->s_bdev;
1174 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1175 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1176 (L2LOGPSIZE - sb->s_blocksize_bits);
1177 log->l2bsize = sb->s_blocksize_bits;
1178 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1179
1180 /*
1181 * initialize log.
1182 */
1183 if ((rc = lmLogInit(log))) {
1184 kfree(log);
1185 jfs_warn("lmLogOpen: exit(%d)", rc);
1186 return rc;
1187 }
1188
1189 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1190 JFS_SBI(sb)->log = log;
1191
1192 return rc;
1193}
1194
1195static int open_dummy_log(struct super_block *sb)
1196{
1197 int rc;
1198
1199 mutex_lock(&jfs_log_mutex);
1200 if (!dummy_log) {
1201 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1202 if (!dummy_log) {
1203 mutex_unlock(&jfs_log_mutex);
1204 return -ENOMEM;
1205 }
1206 INIT_LIST_HEAD(&dummy_log->sb_list);
1207 init_waitqueue_head(&dummy_log->syncwait);
1208 dummy_log->no_integrity = 1;
1209 /* Make up some stuff */
1210 dummy_log->base = 0;
1211 dummy_log->size = 1024;
1212 rc = lmLogInit(dummy_log);
1213 if (rc) {
1214 kfree(dummy_log);
1215 dummy_log = NULL;
1216 mutex_unlock(&jfs_log_mutex);
1217 return rc;
1218 }
1219 }
1220
1221 LOG_LOCK(dummy_log);
1222 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1223 JFS_SBI(sb)->log = dummy_log;
1224 LOG_UNLOCK(dummy_log);
1225 mutex_unlock(&jfs_log_mutex);
1226
1227 return 0;
1228}
1229
1230/*
1231 * NAME: lmLogInit()
1232 *
1233 * FUNCTION: log initialization at first log open.
1234 *
1235 * logredo() (or logformat()) should have been run previously.
1236 * initialize the log from log superblock.
1237 * set the log state in the superblock to LOGMOUNT and
1238 * write SYNCPT log record.
1239 *
1240 * PARAMETER: log - log structure
1241 *
1242 * RETURN: 0 - if ok
1243 * -EINVAL - bad log magic number or superblock dirty
1244 * error returned from logwait()
1245 *
1246 * serialization: single first open thread
1247 */
1248int lmLogInit(struct jfs_log * log)
1249{
1250 int rc = 0;
1251 struct lrd lrd;
1252 struct logsuper *logsuper;
1253 struct lbuf *bpsuper;
1254 struct lbuf *bp;
1255 struct logpage *lp;
1256 int lsn = 0;
1257
1258 jfs_info("lmLogInit: log:0x%p", log);
1259
1260 /* initialize the group commit serialization lock */
1261 LOGGC_LOCK_INIT(log);
1262
1263 /* allocate/initialize the log write serialization lock */
1264 LOG_LOCK_INIT(log);
1265
1266 LOGSYNC_LOCK_INIT(log);
1267
1268 INIT_LIST_HEAD(&log->synclist);
1269
1270 INIT_LIST_HEAD(&log->cqueue);
1271 log->flush_tblk = NULL;
1272
1273 log->count = 0;
1274
1275 /*
1276 * initialize log i/o
1277 */
1278 if ((rc = lbmLogInit(log)))
1279 return rc;
1280
1281 if (!test_bit(log_INLINELOG, &log->flag))
1282 log->l2bsize = L2LOGPSIZE;
1283
1284 /* check for disabled journaling to disk */
1285 if (log->no_integrity) {
1286 /*
1287 * Journal pages will still be filled. When the time comes
1288 * to actually do the I/O, the write is not done, and the
1289 * endio routine is called directly.
1290 */
1291 bp = lbmAllocate(log , 0);
1292 log->bp = bp;
1293 bp->l_pn = bp->l_eor = 0;
1294 } else {
1295 /*
1296 * validate log superblock
1297 */
1298 if ((rc = lbmRead(log, 1, &bpsuper)))
1299 goto errout10;
1300
1301 logsuper = (struct logsuper *) bpsuper->l_ldata;
1302
1303 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1304 jfs_warn("*** Log Format Error ! ***");
1305 rc = -EINVAL;
1306 goto errout20;
1307 }
1308
1309 /* logredo() should have been run successfully. */
1310 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1311 jfs_warn("*** Log Is Dirty ! ***");
1312 rc = -EINVAL;
1313 goto errout20;
1314 }
1315
1316 /* initialize log from log superblock */
1317 if (test_bit(log_INLINELOG,&log->flag)) {
1318 if (log->size != le32_to_cpu(logsuper->size)) {
1319 rc = -EINVAL;
1320 goto errout20;
1321 }
1322 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x",
1323 log, (unsigned long long)log->base, log->size);
1324 } else {
1325 if (!uuid_equal(&logsuper->uuid, &log->uuid)) {
1326 jfs_warn("wrong uuid on JFS log device");
1327 rc = -EINVAL;
1328 goto errout20;
1329 }
1330 log->size = le32_to_cpu(logsuper->size);
1331 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1332 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x",
1333 log, (unsigned long long)log->base, log->size);
1334 }
1335
1336 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1337 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1338
1339 /*
1340 * initialize for log append write mode
1341 */
1342 /* establish current/end-of-log page/buffer */
1343 if ((rc = lbmRead(log, log->page, &bp)))
1344 goto errout20;
1345
1346 lp = (struct logpage *) bp->l_ldata;
1347
1348 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1349 le32_to_cpu(logsuper->end), log->page, log->eor,
1350 le16_to_cpu(lp->h.eor));
1351
1352 log->bp = bp;
1353 bp->l_pn = log->page;
1354 bp->l_eor = log->eor;
1355
1356 /* if current page is full, move on to next page */
1357 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1358 lmNextPage(log);
1359
1360 /*
1361 * initialize log syncpoint
1362 */
1363 /*
1364 * write the first SYNCPT record with syncpoint = 0
1365 * (i.e., log redo up to HERE !);
1366 * remove current page from lbm write queue at end of pageout
1367 * (to write log superblock update), but do not release to
1368 * freelist;
1369 */
1370 lrd.logtid = 0;
1371 lrd.backchain = 0;
1372 lrd.type = cpu_to_le16(LOG_SYNCPT);
1373 lrd.length = 0;
1374 lrd.log.syncpt.sync = 0;
1375 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1376 bp = log->bp;
1377 bp->l_ceor = bp->l_eor;
1378 lp = (struct logpage *) bp->l_ldata;
1379 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1380 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1381 if ((rc = lbmIOWait(bp, 0)))
1382 goto errout30;
1383
1384 /*
1385 * update/write superblock
1386 */
1387 logsuper->state = cpu_to_le32(LOGMOUNT);
1388 log->serial = le32_to_cpu(logsuper->serial) + 1;
1389 logsuper->serial = cpu_to_le32(log->serial);
1390 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1391 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1392 goto errout30;
1393 }
1394
1395 /* initialize logsync parameters */
1396 log->logsize = (log->size - 2) << L2LOGPSIZE;
1397 log->lsn = lsn;
1398 log->syncpt = lsn;
1399 log->sync = log->syncpt;
1400 log->nextsync = LOGSYNC_DELTA(log->logsize);
1401
1402 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1403 log->lsn, log->syncpt, log->sync);
1404
1405 /*
1406 * initialize for lazy/group commit
1407 */
1408 log->clsn = lsn;
1409
1410 return 0;
1411
1412 /*
1413 * unwind on error
1414 */
1415 errout30: /* release log page */
1416 log->wqueue = NULL;
1417 bp->l_wqnext = NULL;
1418 lbmFree(bp);
1419
1420 errout20: /* release log superblock */
1421 lbmFree(bpsuper);
1422
1423 errout10: /* unwind lbmLogInit() */
1424 lbmLogShutdown(log);
1425
1426 jfs_warn("lmLogInit: exit(%d)", rc);
1427 return rc;
1428}
1429
1430
1431/*
1432 * NAME: lmLogClose()
1433 *
1434 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1435 * and close it on last close.
1436 *
1437 * PARAMETER: sb - superblock
1438 *
1439 * RETURN: errors from subroutines
1440 *
1441 * serialization:
1442 */
1443int lmLogClose(struct super_block *sb)
1444{
1445 struct jfs_sb_info *sbi = JFS_SBI(sb);
1446 struct jfs_log *log = sbi->log;
1447 struct block_device *bdev;
1448 int rc = 0;
1449
1450 jfs_info("lmLogClose: log:0x%p", log);
1451
1452 mutex_lock(&jfs_log_mutex);
1453 LOG_LOCK(log);
1454 list_del(&sbi->log_list);
1455 LOG_UNLOCK(log);
1456 sbi->log = NULL;
1457
1458 /*
1459 * We need to make sure all of the "written" metapages
1460 * actually make it to disk
1461 */
1462 sync_blockdev(sb->s_bdev);
1463
1464 if (test_bit(log_INLINELOG, &log->flag)) {
1465 /*
1466 * in-line log in host file system
1467 */
1468 rc = lmLogShutdown(log);
1469 kfree(log);
1470 goto out;
1471 }
1472
1473 if (!log->no_integrity)
1474 lmLogFileSystem(log, sbi, 0);
1475
1476 if (!list_empty(&log->sb_list))
1477 goto out;
1478
1479 /*
1480 * TODO: ensure that the dummy_log is in a state to allow
1481 * lbmLogShutdown to deallocate all the buffers and call
1482 * kfree against dummy_log. For now, leave dummy_log & its
1483 * buffers in memory, and resuse if another no-integrity mount
1484 * is requested.
1485 */
1486 if (log->no_integrity)
1487 goto out;
1488
1489 /*
1490 * external log as separate logical volume
1491 */
1492 list_del(&log->journal_list);
1493 bdev = log->bdev;
1494 rc = lmLogShutdown(log);
1495
1496 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1497
1498 kfree(log);
1499
1500 out:
1501 mutex_unlock(&jfs_log_mutex);
1502 jfs_info("lmLogClose: exit(%d)", rc);
1503 return rc;
1504}
1505
1506
1507/*
1508 * NAME: jfs_flush_journal()
1509 *
1510 * FUNCTION: initiate write of any outstanding transactions to the journal
1511 * and optionally wait until they are all written to disk
1512 *
1513 * wait == 0 flush until latest txn is committed, don't wait
1514 * wait == 1 flush until latest txn is committed, wait
1515 * wait > 1 flush until all txn's are complete, wait
1516 */
1517void jfs_flush_journal(struct jfs_log *log, int wait)
1518{
1519 int i;
1520 struct tblock *target = NULL;
1521
1522 /* jfs_write_inode may call us during read-only mount */
1523 if (!log)
1524 return;
1525
1526 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1527
1528 LOGGC_LOCK(log);
1529
1530 if (!list_empty(&log->cqueue)) {
1531 /*
1532 * This ensures that we will keep writing to the journal as long
1533 * as there are unwritten commit records
1534 */
1535 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1536
1537 if (test_bit(log_FLUSH, &log->flag)) {
1538 /*
1539 * We're already flushing.
1540 * if flush_tblk is NULL, we are flushing everything,
1541 * so leave it that way. Otherwise, update it to the
1542 * latest transaction
1543 */
1544 if (log->flush_tblk)
1545 log->flush_tblk = target;
1546 } else {
1547 /* Only flush until latest transaction is committed */
1548 log->flush_tblk = target;
1549 set_bit(log_FLUSH, &log->flag);
1550
1551 /*
1552 * Initiate I/O on outstanding transactions
1553 */
1554 if (!(log->cflag & logGC_PAGEOUT)) {
1555 log->cflag |= logGC_PAGEOUT;
1556 lmGCwrite(log, 0);
1557 }
1558 }
1559 }
1560 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1561 /* Flush until all activity complete */
1562 set_bit(log_FLUSH, &log->flag);
1563 log->flush_tblk = NULL;
1564 }
1565
1566 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1567 DECLARE_WAITQUEUE(__wait, current);
1568
1569 add_wait_queue(&target->gcwait, &__wait);
1570 set_current_state(TASK_UNINTERRUPTIBLE);
1571 LOGGC_UNLOCK(log);
1572 schedule();
1573 LOGGC_LOCK(log);
1574 remove_wait_queue(&target->gcwait, &__wait);
1575 }
1576 LOGGC_UNLOCK(log);
1577
1578 if (wait < 2)
1579 return;
1580
1581 write_special_inodes(log, filemap_fdatawrite);
1582
1583 /*
1584 * If there was recent activity, we may need to wait
1585 * for the lazycommit thread to catch up
1586 */
1587 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1588 for (i = 0; i < 200; i++) { /* Too much? */
1589 msleep(250);
1590 write_special_inodes(log, filemap_fdatawrite);
1591 if (list_empty(&log->cqueue) &&
1592 list_empty(&log->synclist))
1593 break;
1594 }
1595 }
1596 assert(list_empty(&log->cqueue));
1597
1598#ifdef CONFIG_JFS_DEBUG
1599 if (!list_empty(&log->synclist)) {
1600 struct logsyncblk *lp;
1601
1602 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1603 list_for_each_entry(lp, &log->synclist, synclist) {
1604 if (lp->xflag & COMMIT_PAGE) {
1605 struct metapage *mp = (struct metapage *)lp;
1606 print_hex_dump(KERN_ERR, "metapage: ",
1607 DUMP_PREFIX_ADDRESS, 16, 4,
1608 mp, sizeof(struct metapage), 0);
1609 print_hex_dump(KERN_ERR, "page: ",
1610 DUMP_PREFIX_ADDRESS, 16,
1611 sizeof(long), mp->page,
1612 sizeof(struct page), 0);
1613 } else
1614 print_hex_dump(KERN_ERR, "tblock:",
1615 DUMP_PREFIX_ADDRESS, 16, 4,
1616 lp, sizeof(struct tblock), 0);
1617 }
1618 }
1619#else
1620 WARN_ON(!list_empty(&log->synclist));
1621#endif
1622 clear_bit(log_FLUSH, &log->flag);
1623}
1624
1625/*
1626 * NAME: lmLogShutdown()
1627 *
1628 * FUNCTION: log shutdown at last LogClose().
1629 *
1630 * write log syncpt record.
1631 * update super block to set redone flag to 0.
1632 *
1633 * PARAMETER: log - log inode
1634 *
1635 * RETURN: 0 - success
1636 *
1637 * serialization: single last close thread
1638 */
1639int lmLogShutdown(struct jfs_log * log)
1640{
1641 int rc;
1642 struct lrd lrd;
1643 int lsn;
1644 struct logsuper *logsuper;
1645 struct lbuf *bpsuper;
1646 struct lbuf *bp;
1647 struct logpage *lp;
1648
1649 jfs_info("lmLogShutdown: log:0x%p", log);
1650
1651 jfs_flush_journal(log, 2);
1652
1653 /*
1654 * write the last SYNCPT record with syncpoint = 0
1655 * (i.e., log redo up to HERE !)
1656 */
1657 lrd.logtid = 0;
1658 lrd.backchain = 0;
1659 lrd.type = cpu_to_le16(LOG_SYNCPT);
1660 lrd.length = 0;
1661 lrd.log.syncpt.sync = 0;
1662
1663 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1664 bp = log->bp;
1665 lp = (struct logpage *) bp->l_ldata;
1666 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1667 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1668 lbmIOWait(log->bp, lbmFREE);
1669 log->bp = NULL;
1670
1671 /*
1672 * synchronous update log superblock
1673 * mark log state as shutdown cleanly
1674 * (i.e., Log does not need to be replayed).
1675 */
1676 if ((rc = lbmRead(log, 1, &bpsuper)))
1677 goto out;
1678
1679 logsuper = (struct logsuper *) bpsuper->l_ldata;
1680 logsuper->state = cpu_to_le32(LOGREDONE);
1681 logsuper->end = cpu_to_le32(lsn);
1682 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1683 rc = lbmIOWait(bpsuper, lbmFREE);
1684
1685 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1686 lsn, log->page, log->eor);
1687
1688 out:
1689 /*
1690 * shutdown per log i/o
1691 */
1692 lbmLogShutdown(log);
1693
1694 if (rc) {
1695 jfs_warn("lmLogShutdown: exit(%d)", rc);
1696 }
1697 return rc;
1698}
1699
1700
1701/*
1702 * NAME: lmLogFileSystem()
1703 *
1704 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1705 * file system into/from log active file system list.
1706 *
1707 * PARAMETE: log - pointer to logs inode.
1708 * fsdev - kdev_t of filesystem.
1709 * serial - pointer to returned log serial number
1710 * activate - insert/remove device from active list.
1711 *
1712 * RETURN: 0 - success
1713 * errors returned by vms_iowait().
1714 */
1715static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1716 int activate)
1717{
1718 int rc = 0;
1719 int i;
1720 struct logsuper *logsuper;
1721 struct lbuf *bpsuper;
1722 uuid_t *uuid = &sbi->uuid;
1723
1724 /*
1725 * insert/remove file system device to log active file system list.
1726 */
1727 if ((rc = lbmRead(log, 1, &bpsuper)))
1728 return rc;
1729
1730 logsuper = (struct logsuper *) bpsuper->l_ldata;
1731 if (activate) {
1732 for (i = 0; i < MAX_ACTIVE; i++)
1733 if (uuid_is_null(&logsuper->active[i].uuid)) {
1734 uuid_copy(&logsuper->active[i].uuid, uuid);
1735 sbi->aggregate = i;
1736 break;
1737 }
1738 if (i == MAX_ACTIVE) {
1739 jfs_warn("Too many file systems sharing journal!");
1740 lbmFree(bpsuper);
1741 return -EMFILE; /* Is there a better rc? */
1742 }
1743 } else {
1744 for (i = 0; i < MAX_ACTIVE; i++)
1745 if (uuid_equal(&logsuper->active[i].uuid, uuid)) {
1746 uuid_copy(&logsuper->active[i].uuid,
1747 &uuid_null);
1748 break;
1749 }
1750 if (i == MAX_ACTIVE) {
1751 jfs_warn("Somebody stomped on the journal!");
1752 lbmFree(bpsuper);
1753 return -EIO;
1754 }
1755
1756 }
1757
1758 /*
1759 * synchronous write log superblock:
1760 *
1761 * write sidestream bypassing write queue:
1762 * at file system mount, log super block is updated for
1763 * activation of the file system before any log record
1764 * (MOUNT record) of the file system, and at file system
1765 * unmount, all meta data for the file system has been
1766 * flushed before log super block is updated for deactivation
1767 * of the file system.
1768 */
1769 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1770 rc = lbmIOWait(bpsuper, lbmFREE);
1771
1772 return rc;
1773}
1774
1775/*
1776 * log buffer manager (lbm)
1777 * ------------------------
1778 *
1779 * special purpose buffer manager supporting log i/o requirements.
1780 *
1781 * per log write queue:
1782 * log pageout occurs in serial order by fifo write queue and
1783 * restricting to a single i/o in pregress at any one time.
1784 * a circular singly-linked list
1785 * (log->wrqueue points to the tail, and buffers are linked via
1786 * bp->wrqueue field), and
1787 * maintains log page in pageout ot waiting for pageout in serial pageout.
1788 */
1789
1790/*
1791 * lbmLogInit()
1792 *
1793 * initialize per log I/O setup at lmLogInit()
1794 */
1795static int lbmLogInit(struct jfs_log * log)
1796{ /* log inode */
1797 int i;
1798 struct lbuf *lbuf;
1799
1800 jfs_info("lbmLogInit: log:0x%p", log);
1801
1802 /* initialize current buffer cursor */
1803 log->bp = NULL;
1804
1805 /* initialize log device write queue */
1806 log->wqueue = NULL;
1807
1808 /*
1809 * Each log has its own buffer pages allocated to it. These are
1810 * not managed by the page cache. This ensures that a transaction
1811 * writing to the log does not block trying to allocate a page from
1812 * the page cache (for the log). This would be bad, since page
1813 * allocation waits on the kswapd thread that may be committing inodes
1814 * which would cause log activity. Was that clear? I'm trying to
1815 * avoid deadlock here.
1816 */
1817 init_waitqueue_head(&log->free_wait);
1818
1819 log->lbuf_free = NULL;
1820
1821 for (i = 0; i < LOGPAGES;) {
1822 char *buffer;
1823 uint offset;
1824 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1825
1826 if (!page)
1827 goto error;
1828 buffer = page_address(page);
1829 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1830 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1831 if (lbuf == NULL) {
1832 if (offset == 0)
1833 __free_page(page);
1834 goto error;
1835 }
1836 if (offset) /* we already have one reference */
1837 get_page(page);
1838 lbuf->l_offset = offset;
1839 lbuf->l_ldata = buffer + offset;
1840 lbuf->l_page = page;
1841 lbuf->l_log = log;
1842 init_waitqueue_head(&lbuf->l_ioevent);
1843
1844 lbuf->l_freelist = log->lbuf_free;
1845 log->lbuf_free = lbuf;
1846 i++;
1847 }
1848 }
1849
1850 return (0);
1851
1852 error:
1853 lbmLogShutdown(log);
1854 return -ENOMEM;
1855}
1856
1857
1858/*
1859 * lbmLogShutdown()
1860 *
1861 * finalize per log I/O setup at lmLogShutdown()
1862 */
1863static void lbmLogShutdown(struct jfs_log * log)
1864{
1865 struct lbuf *lbuf;
1866
1867 jfs_info("lbmLogShutdown: log:0x%p", log);
1868
1869 lbuf = log->lbuf_free;
1870 while (lbuf) {
1871 struct lbuf *next = lbuf->l_freelist;
1872 __free_page(lbuf->l_page);
1873 kfree(lbuf);
1874 lbuf = next;
1875 }
1876}
1877
1878
1879/*
1880 * lbmAllocate()
1881 *
1882 * allocate an empty log buffer
1883 */
1884static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1885{
1886 struct lbuf *bp;
1887 unsigned long flags;
1888
1889 /*
1890 * recycle from log buffer freelist if any
1891 */
1892 LCACHE_LOCK(flags);
1893 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1894 log->lbuf_free = bp->l_freelist;
1895 LCACHE_UNLOCK(flags);
1896
1897 bp->l_flag = 0;
1898
1899 bp->l_wqnext = NULL;
1900 bp->l_freelist = NULL;
1901
1902 bp->l_pn = pn;
1903 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1904 bp->l_ceor = 0;
1905
1906 return bp;
1907}
1908
1909
1910/*
1911 * lbmFree()
1912 *
1913 * release a log buffer to freelist
1914 */
1915static void lbmFree(struct lbuf * bp)
1916{
1917 unsigned long flags;
1918
1919 LCACHE_LOCK(flags);
1920
1921 lbmfree(bp);
1922
1923 LCACHE_UNLOCK(flags);
1924}
1925
1926static void lbmfree(struct lbuf * bp)
1927{
1928 struct jfs_log *log = bp->l_log;
1929
1930 assert(bp->l_wqnext == NULL);
1931
1932 /*
1933 * return the buffer to head of freelist
1934 */
1935 bp->l_freelist = log->lbuf_free;
1936 log->lbuf_free = bp;
1937
1938 wake_up(&log->free_wait);
1939 return;
1940}
1941
1942
1943/*
1944 * NAME: lbmRedrive
1945 *
1946 * FUNCTION: add a log buffer to the log redrive list
1947 *
1948 * PARAMETER:
1949 * bp - log buffer
1950 *
1951 * NOTES:
1952 * Takes log_redrive_lock.
1953 */
1954static inline void lbmRedrive(struct lbuf *bp)
1955{
1956 unsigned long flags;
1957
1958 spin_lock_irqsave(&log_redrive_lock, flags);
1959 bp->l_redrive_next = log_redrive_list;
1960 log_redrive_list = bp;
1961 spin_unlock_irqrestore(&log_redrive_lock, flags);
1962
1963 wake_up_process(jfsIOthread);
1964}
1965
1966
1967/*
1968 * lbmRead()
1969 */
1970static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1971{
1972 struct bio *bio;
1973 struct lbuf *bp;
1974
1975 /*
1976 * allocate a log buffer
1977 */
1978 *bpp = bp = lbmAllocate(log, pn);
1979 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1980
1981 bp->l_flag |= lbmREAD;
1982
1983 bio = bio_alloc(GFP_NOFS, 1);
1984
1985 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
1986 bio_set_dev(bio, log->bdev);
1987
1988 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
1989 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
1990
1991 bio->bi_end_io = lbmIODone;
1992 bio->bi_private = bp;
1993 bio->bi_opf = REQ_OP_READ;
1994 /*check if journaling to disk has been disabled*/
1995 if (log->no_integrity) {
1996 bio->bi_iter.bi_size = 0;
1997 lbmIODone(bio);
1998 } else {
1999 submit_bio(bio);
2000 }
2001
2002 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2003
2004 return 0;
2005}
2006
2007
2008/*
2009 * lbmWrite()
2010 *
2011 * buffer at head of pageout queue stays after completion of
2012 * partial-page pageout and redriven by explicit initiation of
2013 * pageout by caller until full-page pageout is completed and
2014 * released.
2015 *
2016 * device driver i/o done redrives pageout of new buffer at
2017 * head of pageout queue when current buffer at head of pageout
2018 * queue is released at the completion of its full-page pageout.
2019 *
2020 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2021 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2022 */
2023static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2024 int cant_block)
2025{
2026 struct lbuf *tail;
2027 unsigned long flags;
2028
2029 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2030
2031 /* map the logical block address to physical block address */
2032 bp->l_blkno =
2033 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2034
2035 LCACHE_LOCK(flags); /* disable+lock */
2036
2037 /*
2038 * initialize buffer for device driver
2039 */
2040 bp->l_flag = flag;
2041
2042 /*
2043 * insert bp at tail of write queue associated with log
2044 *
2045 * (request is either for bp already/currently at head of queue
2046 * or new bp to be inserted at tail)
2047 */
2048 tail = log->wqueue;
2049
2050 /* is buffer not already on write queue ? */
2051 if (bp->l_wqnext == NULL) {
2052 /* insert at tail of wqueue */
2053 if (tail == NULL) {
2054 log->wqueue = bp;
2055 bp->l_wqnext = bp;
2056 } else {
2057 log->wqueue = bp;
2058 bp->l_wqnext = tail->l_wqnext;
2059 tail->l_wqnext = bp;
2060 }
2061
2062 tail = bp;
2063 }
2064
2065 /* is buffer at head of wqueue and for write ? */
2066 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2067 LCACHE_UNLOCK(flags); /* unlock+enable */
2068 return;
2069 }
2070
2071 LCACHE_UNLOCK(flags); /* unlock+enable */
2072
2073 if (cant_block)
2074 lbmRedrive(bp);
2075 else if (flag & lbmSYNC)
2076 lbmStartIO(bp);
2077 else {
2078 LOGGC_UNLOCK(log);
2079 lbmStartIO(bp);
2080 LOGGC_LOCK(log);
2081 }
2082}
2083
2084
2085/*
2086 * lbmDirectWrite()
2087 *
2088 * initiate pageout bypassing write queue for sidestream
2089 * (e.g., log superblock) write;
2090 */
2091static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2092{
2093 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2094 bp, flag, bp->l_pn);
2095
2096 /*
2097 * initialize buffer for device driver
2098 */
2099 bp->l_flag = flag | lbmDIRECT;
2100
2101 /* map the logical block address to physical block address */
2102 bp->l_blkno =
2103 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2104
2105 /*
2106 * initiate pageout of the page
2107 */
2108 lbmStartIO(bp);
2109}
2110
2111
2112/*
2113 * NAME: lbmStartIO()
2114 *
2115 * FUNCTION: Interface to DD strategy routine
2116 *
2117 * RETURN: none
2118 *
2119 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2120 */
2121static void lbmStartIO(struct lbuf * bp)
2122{
2123 struct bio *bio;
2124 struct jfs_log *log = bp->l_log;
2125
2126 jfs_info("lbmStartIO");
2127
2128 bio = bio_alloc(GFP_NOFS, 1);
2129 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2130 bio_set_dev(bio, log->bdev);
2131
2132 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
2133 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
2134
2135 bio->bi_end_io = lbmIODone;
2136 bio->bi_private = bp;
2137 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2138
2139 /* check if journaling to disk has been disabled */
2140 if (log->no_integrity) {
2141 bio->bi_iter.bi_size = 0;
2142 lbmIODone(bio);
2143 } else {
2144 submit_bio(bio);
2145 INCREMENT(lmStat.submitted);
2146 }
2147}
2148
2149
2150/*
2151 * lbmIOWait()
2152 */
2153static int lbmIOWait(struct lbuf * bp, int flag)
2154{
2155 unsigned long flags;
2156 int rc = 0;
2157
2158 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2159
2160 LCACHE_LOCK(flags); /* disable+lock */
2161
2162 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2163
2164 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2165
2166 if (flag & lbmFREE)
2167 lbmfree(bp);
2168
2169 LCACHE_UNLOCK(flags); /* unlock+enable */
2170
2171 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2172 return rc;
2173}
2174
2175/*
2176 * lbmIODone()
2177 *
2178 * executed at INTIODONE level
2179 */
2180static void lbmIODone(struct bio *bio)
2181{
2182 struct lbuf *bp = bio->bi_private;
2183 struct lbuf *nextbp, *tail;
2184 struct jfs_log *log;
2185 unsigned long flags;
2186
2187 /*
2188 * get back jfs buffer bound to the i/o buffer
2189 */
2190 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2191
2192 LCACHE_LOCK(flags); /* disable+lock */
2193
2194 bp->l_flag |= lbmDONE;
2195
2196 if (bio->bi_status) {
2197 bp->l_flag |= lbmERROR;
2198
2199 jfs_err("lbmIODone: I/O error in JFS log");
2200 }
2201
2202 bio_put(bio);
2203
2204 /*
2205 * pagein completion
2206 */
2207 if (bp->l_flag & lbmREAD) {
2208 bp->l_flag &= ~lbmREAD;
2209
2210 LCACHE_UNLOCK(flags); /* unlock+enable */
2211
2212 /* wakeup I/O initiator */
2213 LCACHE_WAKEUP(&bp->l_ioevent);
2214
2215 return;
2216 }
2217
2218 /*
2219 * pageout completion
2220 *
2221 * the bp at the head of write queue has completed pageout.
2222 *
2223 * if single-commit/full-page pageout, remove the current buffer
2224 * from head of pageout queue, and redrive pageout with
2225 * the new buffer at head of pageout queue;
2226 * otherwise, the partial-page pageout buffer stays at
2227 * the head of pageout queue to be redriven for pageout
2228 * by lmGroupCommit() until full-page pageout is completed.
2229 */
2230 bp->l_flag &= ~lbmWRITE;
2231 INCREMENT(lmStat.pagedone);
2232
2233 /* update committed lsn */
2234 log = bp->l_log;
2235 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2236
2237 if (bp->l_flag & lbmDIRECT) {
2238 LCACHE_WAKEUP(&bp->l_ioevent);
2239 LCACHE_UNLOCK(flags);
2240 return;
2241 }
2242
2243 tail = log->wqueue;
2244
2245 /* single element queue */
2246 if (bp == tail) {
2247 /* remove head buffer of full-page pageout
2248 * from log device write queue
2249 */
2250 if (bp->l_flag & lbmRELEASE) {
2251 log->wqueue = NULL;
2252 bp->l_wqnext = NULL;
2253 }
2254 }
2255 /* multi element queue */
2256 else {
2257 /* remove head buffer of full-page pageout
2258 * from log device write queue
2259 */
2260 if (bp->l_flag & lbmRELEASE) {
2261 nextbp = tail->l_wqnext = bp->l_wqnext;
2262 bp->l_wqnext = NULL;
2263
2264 /*
2265 * redrive pageout of next page at head of write queue:
2266 * redrive next page without any bound tblk
2267 * (i.e., page w/o any COMMIT records), or
2268 * first page of new group commit which has been
2269 * queued after current page (subsequent pageout
2270 * is performed synchronously, except page without
2271 * any COMMITs) by lmGroupCommit() as indicated
2272 * by lbmWRITE flag;
2273 */
2274 if (nextbp->l_flag & lbmWRITE) {
2275 /*
2276 * We can't do the I/O at interrupt time.
2277 * The jfsIO thread can do it
2278 */
2279 lbmRedrive(nextbp);
2280 }
2281 }
2282 }
2283
2284 /*
2285 * synchronous pageout:
2286 *
2287 * buffer has not necessarily been removed from write queue
2288 * (e.g., synchronous write of partial-page with COMMIT):
2289 * leave buffer for i/o initiator to dispose
2290 */
2291 if (bp->l_flag & lbmSYNC) {
2292 LCACHE_UNLOCK(flags); /* unlock+enable */
2293
2294 /* wakeup I/O initiator */
2295 LCACHE_WAKEUP(&bp->l_ioevent);
2296 }
2297
2298 /*
2299 * Group Commit pageout:
2300 */
2301 else if (bp->l_flag & lbmGC) {
2302 LCACHE_UNLOCK(flags);
2303 lmPostGC(bp);
2304 }
2305
2306 /*
2307 * asynchronous pageout:
2308 *
2309 * buffer must have been removed from write queue:
2310 * insert buffer at head of freelist where it can be recycled
2311 */
2312 else {
2313 assert(bp->l_flag & lbmRELEASE);
2314 assert(bp->l_flag & lbmFREE);
2315 lbmfree(bp);
2316
2317 LCACHE_UNLOCK(flags); /* unlock+enable */
2318 }
2319}
2320
2321int jfsIOWait(void *arg)
2322{
2323 struct lbuf *bp;
2324
2325 do {
2326 spin_lock_irq(&log_redrive_lock);
2327 while ((bp = log_redrive_list)) {
2328 log_redrive_list = bp->l_redrive_next;
2329 bp->l_redrive_next = NULL;
2330 spin_unlock_irq(&log_redrive_lock);
2331 lbmStartIO(bp);
2332 spin_lock_irq(&log_redrive_lock);
2333 }
2334
2335 if (freezing(current)) {
2336 spin_unlock_irq(&log_redrive_lock);
2337 try_to_freeze();
2338 } else {
2339 set_current_state(TASK_INTERRUPTIBLE);
2340 spin_unlock_irq(&log_redrive_lock);
2341 schedule();
2342 }
2343 } while (!kthread_should_stop());
2344
2345 jfs_info("jfsIOWait being killed!");
2346 return 0;
2347}
2348
2349/*
2350 * NAME: lmLogFormat()/jfs_logform()
2351 *
2352 * FUNCTION: format file system log
2353 *
2354 * PARAMETERS:
2355 * log - volume log
2356 * logAddress - start address of log space in FS block
2357 * logSize - length of log space in FS block;
2358 *
2359 * RETURN: 0 - success
2360 * -EIO - i/o error
2361 *
2362 * XXX: We're synchronously writing one page at a time. This needs to
2363 * be improved by writing multiple pages at once.
2364 */
2365int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2366{
2367 int rc = -EIO;
2368 struct jfs_sb_info *sbi;
2369 struct logsuper *logsuper;
2370 struct logpage *lp;
2371 int lspn; /* log sequence page number */
2372 struct lrd *lrd_ptr;
2373 int npages = 0;
2374 struct lbuf *bp;
2375
2376 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2377 (long long)logAddress, logSize);
2378
2379 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2380
2381 /* allocate a log buffer */
2382 bp = lbmAllocate(log, 1);
2383
2384 npages = logSize >> sbi->l2nbperpage;
2385
2386 /*
2387 * log space:
2388 *
2389 * page 0 - reserved;
2390 * page 1 - log superblock;
2391 * page 2 - log data page: A SYNC log record is written
2392 * into this page at logform time;
2393 * pages 3-N - log data page: set to empty log data pages;
2394 */
2395 /*
2396 * init log superblock: log page 1
2397 */
2398 logsuper = (struct logsuper *) bp->l_ldata;
2399
2400 logsuper->magic = cpu_to_le32(LOGMAGIC);
2401 logsuper->version = cpu_to_le32(LOGVERSION);
2402 logsuper->state = cpu_to_le32(LOGREDONE);
2403 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2404 logsuper->size = cpu_to_le32(npages);
2405 logsuper->bsize = cpu_to_le32(sbi->bsize);
2406 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2407 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2408
2409 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2410 bp->l_blkno = logAddress + sbi->nbperpage;
2411 lbmStartIO(bp);
2412 if ((rc = lbmIOWait(bp, 0)))
2413 goto exit;
2414
2415 /*
2416 * init pages 2 to npages-1 as log data pages:
2417 *
2418 * log page sequence number (lpsn) initialization:
2419 *
2420 * pn: 0 1 2 3 n-1
2421 * +-----+-----+=====+=====+===.....===+=====+
2422 * lspn: N-1 0 1 N-2
2423 * <--- N page circular file ---->
2424 *
2425 * the N (= npages-2) data pages of the log is maintained as
2426 * a circular file for the log records;
2427 * lpsn grows by 1 monotonically as each log page is written
2428 * to the circular file of the log;
2429 * and setLogpage() will not reset the page number even if
2430 * the eor is equal to LOGPHDRSIZE. In order for binary search
2431 * still work in find log end process, we have to simulate the
2432 * log wrap situation at the log format time.
2433 * The 1st log page written will have the highest lpsn. Then
2434 * the succeeding log pages will have ascending order of
2435 * the lspn starting from 0, ... (N-2)
2436 */
2437 lp = (struct logpage *) bp->l_ldata;
2438 /*
2439 * initialize 1st log page to be written: lpsn = N - 1,
2440 * write a SYNCPT log record is written to this page
2441 */
2442 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2443 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2444
2445 lrd_ptr = (struct lrd *) &lp->data;
2446 lrd_ptr->logtid = 0;
2447 lrd_ptr->backchain = 0;
2448 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2449 lrd_ptr->length = 0;
2450 lrd_ptr->log.syncpt.sync = 0;
2451
2452 bp->l_blkno += sbi->nbperpage;
2453 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2454 lbmStartIO(bp);
2455 if ((rc = lbmIOWait(bp, 0)))
2456 goto exit;
2457
2458 /*
2459 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2460 */
2461 for (lspn = 0; lspn < npages - 3; lspn++) {
2462 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2463 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2464
2465 bp->l_blkno += sbi->nbperpage;
2466 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2467 lbmStartIO(bp);
2468 if ((rc = lbmIOWait(bp, 0)))
2469 goto exit;
2470 }
2471
2472 rc = 0;
2473exit:
2474 /*
2475 * finalize log
2476 */
2477 /* release the buffer */
2478 lbmFree(bp);
2479
2480 return rc;
2481}
2482
2483#ifdef CONFIG_JFS_STATISTICS
2484int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2485{
2486 seq_printf(m,
2487 "JFS Logmgr stats\n"
2488 "================\n"
2489 "commits = %d\n"
2490 "writes submitted = %d\n"
2491 "writes completed = %d\n"
2492 "full pages submitted = %d\n"
2493 "partial pages submitted = %d\n",
2494 lmStat.commit,
2495 lmStat.submitted,
2496 lmStat.pagedone,
2497 lmStat.full_page,
2498 lmStat.partial_page);
2499 return 0;
2500}
2501#endif /* CONFIG_JFS_STATISTICS */