Linux Audio

Check our new training course

Loading...
v3.15
 
  1/* handling of writes to regular files and writing back to the server
  2 *
  3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 
 11#include <linux/backing-dev.h>
 12#include <linux/slab.h>
 13#include <linux/fs.h>
 14#include <linux/pagemap.h>
 15#include <linux/writeback.h>
 16#include <linux/pagevec.h>
 17#include <linux/aio.h>
 
 18#include "internal.h"
 19
 20static int afs_write_back_from_locked_page(struct afs_writeback *wb,
 21					   struct page *page);
 22
 23/*
 24 * mark a page as having been made dirty and thus needing writeback
 25 */
 26int afs_set_page_dirty(struct page *page)
 27{
 28	_enter("");
 29	return __set_page_dirty_nobuffers(page);
 30}
 31
 32/*
 33 * unlink a writeback record because its usage has reached zero
 34 * - must be called with the wb->vnode->writeback_lock held
 35 */
 36static void afs_unlink_writeback(struct afs_writeback *wb)
 37{
 38	struct afs_writeback *front;
 39	struct afs_vnode *vnode = wb->vnode;
 40
 41	list_del_init(&wb->link);
 42	if (!list_empty(&vnode->writebacks)) {
 43		/* if an fsync rises to the front of the queue then wake it
 44		 * up */
 45		front = list_entry(vnode->writebacks.next,
 46				   struct afs_writeback, link);
 47		if (front->state == AFS_WBACK_SYNCING) {
 48			_debug("wake up sync");
 49			front->state = AFS_WBACK_COMPLETE;
 50			wake_up(&front->waitq);
 51		}
 52	}
 53}
 54
 55/*
 56 * free a writeback record
 57 */
 58static void afs_free_writeback(struct afs_writeback *wb)
 59{
 60	_enter("");
 61	key_put(wb->key);
 62	kfree(wb);
 63}
 64
 65/*
 66 * dispose of a reference to a writeback record
 67 */
 68void afs_put_writeback(struct afs_writeback *wb)
 69{
 70	struct afs_vnode *vnode = wb->vnode;
 71
 72	_enter("{%d}", wb->usage);
 73
 74	spin_lock(&vnode->writeback_lock);
 75	if (--wb->usage == 0)
 76		afs_unlink_writeback(wb);
 77	else
 78		wb = NULL;
 79	spin_unlock(&vnode->writeback_lock);
 80	if (wb)
 81		afs_free_writeback(wb);
 82}
 83
 84/*
 85 * partly or wholly fill a page that's under preparation for writing
 86 */
 87static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
 88			 loff_t pos, struct page *page)
 89{
 90	loff_t i_size;
 91	int ret;
 92	int len;
 93
 94	_enter(",,%llu", (unsigned long long)pos);
 95
 96	i_size = i_size_read(&vnode->vfs_inode);
 97	if (pos + PAGE_CACHE_SIZE > i_size)
 98		len = i_size - pos;
 99	else
100		len = PAGE_CACHE_SIZE;
101
102	ret = afs_vnode_fetch_data(vnode, key, pos, len, page);
103	if (ret < 0) {
104		if (ret == -ENOENT) {
105			_debug("got NOENT from server"
106			       " - marking file deleted and stale");
107			set_bit(AFS_VNODE_DELETED, &vnode->flags);
108			ret = -ESTALE;
109		}
110	}
111
112	_leave(" = %d", ret);
113	return ret;
114}
115
116/*
117 * prepare to perform part of a write to a page
118 */
119int afs_write_begin(struct file *file, struct address_space *mapping,
120		    loff_t pos, unsigned len, unsigned flags,
121		    struct page **pagep, void **fsdata)
122{
123	struct afs_writeback *candidate, *wb;
124	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
125	struct page *page;
126	struct key *key = file->private_data;
127	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
128	unsigned to = from + len;
129	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
130	int ret;
131
132	_enter("{%x:%u},{%lx},%u,%u",
133	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
134
135	candidate = kzalloc(sizeof(*candidate), GFP_KERNEL);
136	if (!candidate)
137		return -ENOMEM;
138	candidate->vnode = vnode;
139	candidate->first = candidate->last = index;
140	candidate->offset_first = from;
141	candidate->to_last = to;
142	INIT_LIST_HEAD(&candidate->link);
143	candidate->usage = 1;
144	candidate->state = AFS_WBACK_PENDING;
145	init_waitqueue_head(&candidate->waitq);
146
147	page = grab_cache_page_write_begin(mapping, index, flags);
148	if (!page) {
149		kfree(candidate);
150		return -ENOMEM;
151	}
152	*pagep = page;
153	/* page won't leak in error case: it eventually gets cleaned off LRU */
154
155	if (!PageUptodate(page) && len != PAGE_CACHE_SIZE) {
156		ret = afs_fill_page(vnode, key, index << PAGE_CACHE_SHIFT, page);
157		if (ret < 0) {
158			kfree(candidate);
159			_leave(" = %d [prep]", ret);
160			return ret;
161		}
162		SetPageUptodate(page);
163	}
164
165try_again:
166	spin_lock(&vnode->writeback_lock);
167
168	/* see if this page is already pending a writeback under a suitable key
169	 * - if so we can just join onto that one */
170	wb = (struct afs_writeback *) page_private(page);
171	if (wb) {
172		if (wb->key == key && wb->state == AFS_WBACK_PENDING)
173			goto subsume_in_current_wb;
174		goto flush_conflicting_wb;
175	}
176
177	if (index > 0) {
178		/* see if we can find an already pending writeback that we can
179		 * append this page to */
180		list_for_each_entry(wb, &vnode->writebacks, link) {
181			if (wb->last == index - 1 && wb->key == key &&
182			    wb->state == AFS_WBACK_PENDING)
183				goto append_to_previous_wb;
184		}
 
185	}
186
187	list_add_tail(&candidate->link, &vnode->writebacks);
188	candidate->key = key_get(key);
189	spin_unlock(&vnode->writeback_lock);
190	SetPagePrivate(page);
191	set_page_private(page, (unsigned long) candidate);
192	_leave(" = 0 [new]");
193	return 0;
194
195subsume_in_current_wb:
196	_debug("subsume");
197	ASSERTRANGE(wb->first, <=, index, <=, wb->last);
198	if (index == wb->first && from < wb->offset_first)
199		wb->offset_first = from;
200	if (index == wb->last && to > wb->to_last)
201		wb->to_last = to;
202	spin_unlock(&vnode->writeback_lock);
203	kfree(candidate);
204	_leave(" = 0 [sub]");
205	return 0;
206
207append_to_previous_wb:
208	_debug("append into %lx-%lx", wb->first, wb->last);
209	wb->usage++;
210	wb->last++;
211	wb->to_last = to;
212	spin_unlock(&vnode->writeback_lock);
213	SetPagePrivate(page);
214	set_page_private(page, (unsigned long) wb);
215	kfree(candidate);
216	_leave(" = 0 [app]");
217	return 0;
218
219	/* the page is currently bound to another context, so if it's dirty we
220	 * need to flush it before we can use the new context */
221flush_conflicting_wb:
 
222	_debug("flush conflict");
223	if (wb->state == AFS_WBACK_PENDING)
224		wb->state = AFS_WBACK_CONFLICTING;
225	spin_unlock(&vnode->writeback_lock);
226	if (PageDirty(page)) {
227		ret = afs_write_back_from_locked_page(wb, page);
228		if (ret < 0) {
229			afs_put_writeback(candidate);
230			_leave(" = %d", ret);
231			return ret;
232		}
233	}
234
235	/* the page holds a ref on the writeback record */
236	afs_put_writeback(wb);
237	set_page_private(page, 0);
238	ClearPagePrivate(page);
239	goto try_again;
 
 
 
 
 
240}
241
242/*
243 * finalise part of a write to a page
244 */
245int afs_write_end(struct file *file, struct address_space *mapping,
246		  loff_t pos, unsigned len, unsigned copied,
247		  struct page *page, void *fsdata)
248{
249	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
 
 
 
250	loff_t i_size, maybe_i_size;
251
252	_enter("{%x:%u},{%lx}",
253	       vnode->fid.vid, vnode->fid.vnode, page->index);
254
 
 
 
 
 
 
 
 
 
 
 
 
255	maybe_i_size = pos + copied;
256
257	i_size = i_size_read(&vnode->vfs_inode);
258	if (maybe_i_size > i_size) {
259		spin_lock(&vnode->writeback_lock);
260		i_size = i_size_read(&vnode->vfs_inode);
261		if (maybe_i_size > i_size)
262			i_size_write(&vnode->vfs_inode, maybe_i_size);
263		spin_unlock(&vnode->writeback_lock);
264	}
265
266	set_page_dirty(page);
267	if (PageDirty(page))
268		_debug("dirtied");
269	unlock_page(page);
270	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
 
 
 
272	return copied;
273}
274
275/*
276 * kill all the pages in the given range
277 */
278static void afs_kill_pages(struct afs_vnode *vnode, bool error,
279			   pgoff_t first, pgoff_t last)
280{
 
281	struct pagevec pv;
282	unsigned count, loop;
283
284	_enter("{%x:%u},%lx-%lx",
285	       vnode->fid.vid, vnode->fid.vnode, first, last);
286
287	pagevec_init(&pv, 0);
288
289	do {
290		_debug("kill %lx-%lx", first, last);
291
292		count = last - first + 1;
293		if (count > PAGEVEC_SIZE)
294			count = PAGEVEC_SIZE;
295		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
296					      first, count, pv.pages);
297		ASSERTCMP(pv.nr, ==, count);
298
299		for (loop = 0; loop < count; loop++) {
300			ClearPageUptodate(pv.pages[loop]);
301			if (error)
302				SetPageError(pv.pages[loop]);
303			end_page_writeback(pv.pages[loop]);
 
 
 
 
 
 
 
304		}
305
306		__pagevec_release(&pv);
307	} while (first < last);
308
309	_leave("");
310}
311
312/*
313 * synchronously write back the locked page and any subsequent non-locked dirty
314 * pages also covered by the same writeback record
315 */
316static int afs_write_back_from_locked_page(struct afs_writeback *wb,
317					   struct page *primary_page)
 
318{
319	struct page *pages[8], *page;
320	unsigned long count;
321	unsigned n, offset, to;
322	pgoff_t start, first, last;
323	int loop, ret;
324
325	_enter(",%lx", primary_page->index);
 
326
327	count = 1;
328	if (!clear_page_dirty_for_io(primary_page))
329		BUG();
330	if (test_set_page_writeback(primary_page))
331		BUG();
332
333	/* find all consecutive lockable dirty pages, stopping when we find a
334	 * page that is not immediately lockable, is not dirty or is missing,
335	 * or we reach the end of the range */
336	start = primary_page->index;
337	if (start >= wb->last)
338		goto no_more;
339	start++;
340	do {
341		_debug("more %lx [%lx]", start, count);
342		n = wb->last - start + 1;
343		if (n > ARRAY_SIZE(pages))
344			n = ARRAY_SIZE(pages);
345		n = find_get_pages_contig(wb->vnode->vfs_inode.i_mapping,
346					  start, n, pages);
347		_debug("fgpc %u", n);
348		if (n == 0)
349			goto no_more;
350		if (pages[0]->index != start) {
351			do {
352				put_page(pages[--n]);
353			} while (n > 0);
354			goto no_more;
355		}
356
357		for (loop = 0; loop < n; loop++) {
358			page = pages[loop];
359			if (page->index > wb->last)
360				break;
361			if (!trylock_page(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362				break;
363			if (!PageDirty(page) ||
364			    page_private(page) != (unsigned long) wb) {
 
 
 
 
 
365				unlock_page(page);
 
366				break;
367			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368			if (!clear_page_dirty_for_io(page))
369				BUG();
370			if (test_set_page_writeback(page))
371				BUG();
 
 
372			unlock_page(page);
373			put_page(page);
374		}
375		count += loop;
376		if (loop < n) {
377			for (; loop < n; loop++)
378				put_page(pages[loop]);
379			goto no_more;
380		}
381
382		start += loop;
383	} while (start <= wb->last && count < 65536);
 
384
385no_more:
386	/* we now have a contiguous set of dirty pages, each with writeback set
387	 * and the dirty mark cleared; the first page is locked and must remain
388	 * so, all the rest are unlocked */
389	first = primary_page->index;
390	last = first + count - 1;
391
392	offset = (first == wb->first) ? wb->offset_first : 0;
393	to = (last == wb->last) ? wb->to_last : PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
395	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
396
397	ret = afs_vnode_store_data(wb, first, last, offset, to);
398	if (ret < 0) {
399		switch (ret) {
400		case -EDQUOT:
401		case -ENOSPC:
402			set_bit(AS_ENOSPC,
403				&wb->vnode->vfs_inode.i_mapping->flags);
404			break;
405		case -EROFS:
406		case -EIO:
407		case -EREMOTEIO:
408		case -EFBIG:
409		case -ENOENT:
410		case -ENOMEDIUM:
411		case -ENXIO:
412			afs_kill_pages(wb->vnode, true, first, last);
413			set_bit(AS_EIO, &wb->vnode->vfs_inode.i_mapping->flags);
414			break;
415		case -EACCES:
416		case -EPERM:
417		case -ENOKEY:
418		case -EKEYEXPIRED:
419		case -EKEYREJECTED:
420		case -EKEYREVOKED:
421			afs_kill_pages(wb->vnode, false, first, last);
422			break;
423		default:
424			break;
425		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426	} else {
427		ret = count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428	}
429
430	_leave(" = %d", ret);
431	return ret;
432}
433
434/*
435 * write a page back to the server
436 * - the caller locked the page for us
437 */
438int afs_writepage(struct page *page, struct writeback_control *wbc)
439{
440	struct afs_writeback *wb;
441	int ret;
442
443	_enter("{%lx},", page->index);
444
445	wb = (struct afs_writeback *) page_private(page);
446	ASSERT(wb != NULL);
447
448	ret = afs_write_back_from_locked_page(wb, page);
449	unlock_page(page);
450	if (ret < 0) {
451		_leave(" = %d", ret);
452		return 0;
453	}
454
455	wbc->nr_to_write -= ret;
456
457	_leave(" = 0");
458	return 0;
459}
460
461/*
462 * write a region of pages back to the server
463 */
464static int afs_writepages_region(struct address_space *mapping,
465				 struct writeback_control *wbc,
466				 pgoff_t index, pgoff_t end, pgoff_t *_next)
467{
468	struct afs_writeback *wb;
469	struct page *page;
470	int ret, n;
 
471
472	_enter(",,%lx,%lx,", index, end);
473
474	do {
475		n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
476				       1, &page);
 
 
477		if (!n)
478			break;
479
480		_debug("wback %lx", page->index);
481
482		if (page->index > end) {
483			*_next = index;
484			page_cache_release(page);
485			_leave(" = 0 [%lx]", *_next);
486			return 0;
487		}
488
489		/* at this point we hold neither mapping->tree_lock nor lock on
490		 * the page itself: the page may be truncated or invalidated
491		 * (changing page->mapping to NULL), or even swizzled back from
492		 * swapper_space to tmpfs file mapping
493		 */
494		lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
495
496		if (page->mapping != mapping) {
 
497			unlock_page(page);
498			page_cache_release(page);
499			continue;
500		}
501
502		if (wbc->sync_mode != WB_SYNC_NONE)
503			wait_on_page_writeback(page);
504
505		if (PageWriteback(page) || !PageDirty(page)) {
506			unlock_page(page);
 
 
 
507			continue;
508		}
509
510		wb = (struct afs_writeback *) page_private(page);
511		ASSERT(wb != NULL);
512
513		spin_lock(&wb->vnode->writeback_lock);
514		wb->state = AFS_WBACK_WRITING;
515		spin_unlock(&wb->vnode->writeback_lock);
516
517		ret = afs_write_back_from_locked_page(wb, page);
518		unlock_page(page);
519		page_cache_release(page);
520		if (ret < 0) {
521			_leave(" = %d", ret);
522			return ret;
523		}
524
525		wbc->nr_to_write -= ret;
526
527		cond_resched();
528	} while (index < end && wbc->nr_to_write > 0);
529
530	*_next = index;
531	_leave(" = 0 [%lx]", *_next);
532	return 0;
533}
534
535/*
536 * write some of the pending data back to the server
537 */
538int afs_writepages(struct address_space *mapping,
539		   struct writeback_control *wbc)
540{
541	pgoff_t start, end, next;
 
542	int ret;
543
544	_enter("");
545
 
 
 
 
 
 
 
 
 
546	if (wbc->range_cyclic) {
547		start = mapping->writeback_index;
548		end = -1;
549		ret = afs_writepages_region(mapping, wbc, start, end, &next);
550		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
551			ret = afs_writepages_region(mapping, wbc, 0, start,
552						    &next);
553		mapping->writeback_index = next;
 
 
 
 
 
554	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
555		end = (pgoff_t)(LLONG_MAX >> PAGE_CACHE_SHIFT);
556		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
557		if (wbc->nr_to_write > 0)
558			mapping->writeback_index = next;
559	} else {
560		start = wbc->range_start >> PAGE_CACHE_SHIFT;
561		end = wbc->range_end >> PAGE_CACHE_SHIFT;
562		ret = afs_writepages_region(mapping, wbc, start, end, &next);
563	}
564
 
565	_leave(" = %d", ret);
566	return ret;
567}
568
569/*
570 * completion of write to server
571 */
572void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
573{
574	struct afs_writeback *wb = call->wb;
575	struct pagevec pv;
576	unsigned count, loop;
577	pgoff_t first = call->first, last = call->last;
578	bool free_wb;
579
580	_enter("{%x:%u},{%lx-%lx}",
581	       vnode->fid.vid, vnode->fid.vnode, first, last);
582
583	ASSERT(wb != NULL);
584
585	pagevec_init(&pv, 0);
586
587	do {
588		_debug("done %lx-%lx", first, last);
589
590		count = last - first + 1;
591		if (count > PAGEVEC_SIZE)
592			count = PAGEVEC_SIZE;
593		pv.nr = find_get_pages_contig(call->mapping, first, count,
594					      pv.pages);
595		ASSERTCMP(pv.nr, ==, count);
596
597		spin_lock(&vnode->writeback_lock);
598		for (loop = 0; loop < count; loop++) {
599			struct page *page = pv.pages[loop];
600			end_page_writeback(page);
601			if (page_private(page) == (unsigned long) wb) {
602				set_page_private(page, 0);
603				ClearPagePrivate(page);
604				wb->usage--;
605			}
606		}
607		free_wb = false;
608		if (wb->usage == 0) {
609			afs_unlink_writeback(wb);
610			free_wb = true;
611		}
612		spin_unlock(&vnode->writeback_lock);
613		first += count;
614		if (free_wb) {
615			afs_free_writeback(wb);
616			wb = NULL;
617		}
618
619		__pagevec_release(&pv);
620	} while (first <= last);
621
622	_leave("");
623}
624
625/*
626 * write to an AFS file
627 */
628ssize_t afs_file_write(struct kiocb *iocb, const struct iovec *iov,
629		       unsigned long nr_segs, loff_t pos)
630{
631	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
 
632	ssize_t result;
633	size_t count = iov_length(iov, nr_segs);
634
635	_enter("{%x.%u},{%zu},%lu,",
636	       vnode->fid.vid, vnode->fid.vnode, count, nr_segs);
637
638	if (IS_SWAPFILE(&vnode->vfs_inode)) {
639		printk(KERN_INFO
640		       "AFS: Attempt to write to active swap file!\n");
641		return -EBUSY;
642	}
643
644	if (!count)
645		return 0;
646
647	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
648	if (IS_ERR_VALUE(result)) {
649		_leave(" = %zd", result);
650		return result;
651	}
 
652
653	_leave(" = %zd", result);
654	return result;
655}
656
657/*
658 * flush the vnode to the fileserver
 
 
659 */
660int afs_writeback_all(struct afs_vnode *vnode)
661{
662	struct address_space *mapping = vnode->vfs_inode.i_mapping;
663	struct writeback_control wbc = {
664		.sync_mode	= WB_SYNC_ALL,
665		.nr_to_write	= LONG_MAX,
666		.range_cyclic	= 1,
667	};
668	int ret;
669
670	_enter("");
 
 
671
672	ret = mapping->a_ops->writepages(mapping, &wbc);
673	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 
674
675	_leave(" = %d", ret);
676	return ret;
677}
678
679/*
680 * flush any dirty pages for this process, and check for write errors.
681 * - the return status from this call provides a reliable indication of
682 *   whether any write errors occurred for this process.
683 */
684int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
685{
686	struct dentry *dentry = file->f_path.dentry;
687	struct inode *inode = file->f_mapping->host;
688	struct afs_writeback *wb, *xwb;
689	struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
690	int ret;
 
 
691
692	_enter("{%x:%u},{n=%s},%d",
693	       vnode->fid.vid, vnode->fid.vnode, dentry->d_name.name,
694	       datasync);
695
696	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
697	if (ret)
698		return ret;
699	mutex_lock(&inode->i_mutex);
700
701	/* use a writeback record as a marker in the queue - when this reaches
702	 * the front of the queue, all the outstanding writes are either
703	 * completed or rejected */
704	wb = kzalloc(sizeof(*wb), GFP_KERNEL);
705	if (!wb) {
706		ret = -ENOMEM;
707		goto out;
708	}
709	wb->vnode = vnode;
710	wb->first = 0;
711	wb->last = -1;
712	wb->offset_first = 0;
713	wb->to_last = PAGE_SIZE;
714	wb->usage = 1;
715	wb->state = AFS_WBACK_SYNCING;
716	init_waitqueue_head(&wb->waitq);
717
718	spin_lock(&vnode->writeback_lock);
719	list_for_each_entry(xwb, &vnode->writebacks, link) {
720		if (xwb->state == AFS_WBACK_PENDING)
721			xwb->state = AFS_WBACK_CONFLICTING;
722	}
723	list_add_tail(&wb->link, &vnode->writebacks);
724	spin_unlock(&vnode->writeback_lock);
725
726	/* push all the outstanding writebacks to the server */
727	ret = afs_writeback_all(vnode);
728	if (ret < 0) {
729		afs_put_writeback(wb);
730		_leave(" = %d [wb]", ret);
 
 
 
 
 
 
 
731		goto out;
732	}
733
734	/* wait for the preceding writes to actually complete */
735	ret = wait_event_interruptible(wb->waitq,
736				       wb->state == AFS_WBACK_COMPLETE ||
737				       vnode->writebacks.next == &wb->link);
738	afs_put_writeback(wb);
739	_leave(" = %d", ret);
 
 
 
 
 
 
740out:
741	mutex_unlock(&inode->i_mutex);
742	return ret;
743}
744
745/*
746 * notification that a previously read-only page is about to become writable
747 * - if it returns an error, the caller will deliver a bus error signal
748 */
749int afs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
750{
751	struct afs_vnode *vnode = AFS_FS_I(vma->vm_file->f_mapping->host);
 
752
753	_enter("{{%x:%u}},{%lx}",
754	       vnode->fid.vid, vnode->fid.vnode, page->index);
755
756	/* wait for the page to be written to the cache before we allow it to
757	 * be modified */
758#ifdef CONFIG_AFS_FSCACHE
759	fscache_wait_on_page_write(vnode->cache, page);
760#endif
 
 
761
762	_leave(" = 0");
763	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* handling of writes to regular files and writing back to the server
  3 *
  4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7
  8#include <linux/backing-dev.h>
  9#include <linux/slab.h>
 10#include <linux/fs.h>
 11#include <linux/pagemap.h>
 12#include <linux/writeback.h>
 13#include <linux/pagevec.h>
 14#include <linux/netfs.h>
 15#include <linux/fscache.h>
 16#include "internal.h"
 17
 
 
 
 18/*
 19 * mark a page as having been made dirty and thus needing writeback
 20 */
 21int afs_set_page_dirty(struct page *page)
 22{
 23	_enter("");
 24	return __set_page_dirty_nobuffers(page);
 25}
 26
 27/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28 * prepare to perform part of a write to a page
 29 */
 30int afs_write_begin(struct file *file, struct address_space *mapping,
 31		    loff_t pos, unsigned len, unsigned flags,
 32		    struct page **_page, void **fsdata)
 33{
 
 34	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
 35	struct page *page;
 36	unsigned long priv;
 37	unsigned f, from;
 38	unsigned t, to;
 39	pgoff_t index;
 40	int ret;
 41
 42	_enter("{%llx:%llu},%llx,%x",
 43	       vnode->fid.vid, vnode->fid.vnode, pos, len);
 44
 45	/* Prefetch area to be written into the cache if we're caching this
 46	 * file.  We need to do this before we get a lock on the page in case
 47	 * there's more than one writer competing for the same cache block.
 48	 */
 49	ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
 50				&afs_req_ops, NULL);
 51	if (ret < 0)
 52		return ret;
 
 
 
 
 
 
 
 
 
 
 
 53
 54	index = page->index;
 55	from = pos - index * PAGE_SIZE;
 56	to = from + len;
 
 
 
 
 
 
 57
 58try_again:
 59	/* See if this page is already partially written in a way that we can
 60	 * merge the new write with.
 61	 */
 62	if (PagePrivate(page)) {
 63		priv = page_private(page);
 64		f = afs_page_dirty_from(page, priv);
 65		t = afs_page_dirty_to(page, priv);
 66		ASSERTCMP(f, <=, t);
 67
 68		if (PageWriteback(page)) {
 69			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
 70			goto flush_conflicting_write;
 71		}
 72		/* If the file is being filled locally, allow inter-write
 73		 * spaces to be merged into writes.  If it's not, only write
 74		 * back what the user gives us.
 75		 */
 76		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
 77		    (to < f || from > t))
 78			goto flush_conflicting_write;
 79	}
 80
 81	*_page = page;
 82	_leave(" = 0");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83	return 0;
 84
 85	/* The previous write and this write aren't adjacent or overlapping, so
 86	 * flush the page out.
 87	 */
 88flush_conflicting_write:
 89	_debug("flush conflict");
 90	ret = write_one_page(page);
 91	if (ret < 0)
 92		goto error;
 93
 94	ret = lock_page_killable(page);
 95	if (ret < 0)
 96		goto error;
 
 
 
 
 
 
 
 
 
 97	goto try_again;
 98
 99error:
100	put_page(page);
101	_leave(" = %d", ret);
102	return ret;
103}
104
105/*
106 * finalise part of a write to a page
107 */
108int afs_write_end(struct file *file, struct address_space *mapping,
109		  loff_t pos, unsigned len, unsigned copied,
110		  struct page *page, void *fsdata)
111{
112	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113	unsigned long priv;
114	unsigned int f, from = pos & (thp_size(page) - 1);
115	unsigned int t, to = from + copied;
116	loff_t i_size, maybe_i_size;
117
118	_enter("{%llx:%llu},{%lx}",
119	       vnode->fid.vid, vnode->fid.vnode, page->index);
120
121	if (!PageUptodate(page)) {
122		if (copied < len) {
123			copied = 0;
124			goto out;
125		}
126
127		SetPageUptodate(page);
128	}
129
130	if (copied == 0)
131		goto out;
132
133	maybe_i_size = pos + copied;
134
135	i_size = i_size_read(&vnode->vfs_inode);
136	if (maybe_i_size > i_size) {
137		write_seqlock(&vnode->cb_lock);
138		i_size = i_size_read(&vnode->vfs_inode);
139		if (maybe_i_size > i_size)
140			afs_set_i_size(vnode, maybe_i_size);
141		write_sequnlock(&vnode->cb_lock);
142	}
143
144	if (PagePrivate(page)) {
145		priv = page_private(page);
146		f = afs_page_dirty_from(page, priv);
147		t = afs_page_dirty_to(page, priv);
148		if (from < f)
149			f = from;
150		if (to > t)
151			t = to;
152		priv = afs_page_dirty(page, f, t);
153		set_page_private(page, priv);
154		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155	} else {
156		priv = afs_page_dirty(page, from, to);
157		attach_page_private(page, (void *)priv);
158		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159	}
160
161	if (set_page_dirty(page))
162		_debug("dirtied %lx", page->index);
163
164out:
165	unlock_page(page);
166	put_page(page);
167	return copied;
168}
169
170/*
171 * kill all the pages in the given range
172 */
173static void afs_kill_pages(struct address_space *mapping,
174			   loff_t start, loff_t len)
175{
176	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177	struct pagevec pv;
178	unsigned int loop, psize;
179
180	_enter("{%llx:%llu},%llx @%llx",
181	       vnode->fid.vid, vnode->fid.vnode, len, start);
182
183	pagevec_init(&pv);
184
185	do {
186		_debug("kill %llx @%llx", len, start);
187
188		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189					      PAGEVEC_SIZE, pv.pages);
190		if (pv.nr == 0)
191			break;
192
193		for (loop = 0; loop < pv.nr; loop++) {
194			struct page *page = pv.pages[loop];
195
196			if (page->index * PAGE_SIZE >= start + len)
197				break;
198
199			psize = thp_size(page);
200			start += psize;
201			len -= psize;
202			ClearPageUptodate(page);
203			end_page_writeback(page);
204			lock_page(page);
205			generic_error_remove_page(mapping, page);
206			unlock_page(page);
207		}
208
209		__pagevec_release(&pv);
210	} while (len > 0);
211
212	_leave("");
213}
214
215/*
216 * Redirty all the pages in a given range.
 
217 */
218static void afs_redirty_pages(struct writeback_control *wbc,
219			      struct address_space *mapping,
220			      loff_t start, loff_t len)
221{
222	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223	struct pagevec pv;
224	unsigned int loop, psize;
 
 
225
226	_enter("{%llx:%llu},%llx @%llx",
227	       vnode->fid.vid, vnode->fid.vnode, len, start);
228
229	pagevec_init(&pv);
 
 
 
 
230
 
 
 
 
 
 
 
231	do {
232		_debug("redirty %llx @%llx", len, start);
233
234		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235					      PAGEVEC_SIZE, pv.pages);
236		if (pv.nr == 0)
237			break;
238
239		for (loop = 0; loop < pv.nr; loop++) {
240			struct page *page = pv.pages[loop];
241
242			if (page->index * PAGE_SIZE >= start + len)
 
 
 
 
 
 
 
 
243				break;
244
245			psize = thp_size(page);
246			start += psize;
247			len -= psize;
248			redirty_page_for_writepage(wbc, page);
249			end_page_writeback(page);
250		}
251
252		__pagevec_release(&pv);
253	} while (len > 0);
254
255	_leave("");
256}
257
258/*
259 * completion of write to server
260 */
261static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
262{
263	struct address_space *mapping = vnode->vfs_inode.i_mapping;
264	struct page *page;
265	pgoff_t end;
266
267	XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
268
269	_enter("{%llx:%llu},{%x @%llx}",
270	       vnode->fid.vid, vnode->fid.vnode, len, start);
271
272	rcu_read_lock();
273
274	end = (start + len - 1) / PAGE_SIZE;
275	xas_for_each(&xas, page, end) {
276		if (!PageWriteback(page)) {
277			kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278			ASSERT(PageWriteback(page));
279		}
280
281		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282		detach_page_private(page);
283		page_endio(page, true, 0);
284	}
285
286	rcu_read_unlock();
287
288	afs_prune_wb_keys(vnode);
289	_leave("");
290}
291
292/*
293 * Find a key to use for the writeback.  We cached the keys used to author the
294 * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295 * and we need to start from there if it's set.
296 */
297static int afs_get_writeback_key(struct afs_vnode *vnode,
298				 struct afs_wb_key **_wbk)
299{
300	struct afs_wb_key *wbk = NULL;
301	struct list_head *p;
302	int ret = -ENOKEY, ret2;
303
304	spin_lock(&vnode->wb_lock);
305	if (*_wbk)
306		p = (*_wbk)->vnode_link.next;
307	else
308		p = vnode->wb_keys.next;
309
310	while (p != &vnode->wb_keys) {
311		wbk = list_entry(p, struct afs_wb_key, vnode_link);
312		_debug("wbk %u", key_serial(wbk->key));
313		ret2 = key_validate(wbk->key);
314		if (ret2 == 0) {
315			refcount_inc(&wbk->usage);
316			_debug("USE WB KEY %u", key_serial(wbk->key));
317			break;
318		}
319
320		wbk = NULL;
321		if (ret == -ENOKEY)
322			ret = ret2;
323		p = p->next;
324	}
325
326	spin_unlock(&vnode->wb_lock);
327	if (*_wbk)
328		afs_put_wb_key(*_wbk);
329	*_wbk = wbk;
330	return 0;
331}
332
333static void afs_store_data_success(struct afs_operation *op)
334{
335	struct afs_vnode *vnode = op->file[0].vnode;
336
337	op->ctime = op->file[0].scb.status.mtime_client;
338	afs_vnode_commit_status(op, &op->file[0]);
339	if (op->error == 0) {
340		if (!op->store.laundering)
341			afs_pages_written_back(vnode, op->store.pos, op->store.size);
342		afs_stat_v(vnode, n_stores);
343		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
344	}
345}
346
347static const struct afs_operation_ops afs_store_data_operation = {
348	.issue_afs_rpc	= afs_fs_store_data,
349	.issue_yfs_rpc	= yfs_fs_store_data,
350	.success	= afs_store_data_success,
351};
352
353/*
354 * write to a file
355 */
356static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357			  bool laundering)
358{
359	struct afs_operation *op;
360	struct afs_wb_key *wbk = NULL;
361	loff_t size = iov_iter_count(iter), i_size;
362	int ret = -ENOKEY;
363
364	_enter("%s{%llx:%llu.%u},%llx,%llx",
365	       vnode->volume->name,
366	       vnode->fid.vid,
367	       vnode->fid.vnode,
368	       vnode->fid.unique,
369	       size, pos);
370
371	ret = afs_get_writeback_key(vnode, &wbk);
372	if (ret) {
373		_leave(" = %d [no keys]", ret);
374		return ret;
375	}
376
377	op = afs_alloc_operation(wbk->key, vnode->volume);
378	if (IS_ERR(op)) {
379		afs_put_wb_key(wbk);
380		return -ENOMEM;
381	}
382
383	i_size = i_size_read(&vnode->vfs_inode);
384
385	afs_op_set_vnode(op, 0, vnode);
386	op->file[0].dv_delta = 1;
387	op->file[0].modification = true;
388	op->store.write_iter = iter;
389	op->store.pos = pos;
390	op->store.size = size;
391	op->store.i_size = max(pos + size, i_size);
392	op->store.laundering = laundering;
393	op->mtime = vnode->vfs_inode.i_mtime;
394	op->flags |= AFS_OPERATION_UNINTR;
395	op->ops = &afs_store_data_operation;
396
397try_next_key:
398	afs_begin_vnode_operation(op);
399	afs_wait_for_operation(op);
400
401	switch (op->error) {
402	case -EACCES:
403	case -EPERM:
404	case -ENOKEY:
405	case -EKEYEXPIRED:
406	case -EKEYREJECTED:
407	case -EKEYREVOKED:
408		_debug("next");
409
410		ret = afs_get_writeback_key(vnode, &wbk);
411		if (ret == 0) {
412			key_put(op->key);
413			op->key = key_get(wbk->key);
414			goto try_next_key;
415		}
416		break;
417	}
418
419	afs_put_wb_key(wbk);
420	_leave(" = %d", op->error);
421	return afs_put_operation(op);
422}
423
424/*
425 * Extend the region to be written back to include subsequent contiguously
426 * dirty pages if possible, but don't sleep while doing so.
427 *
428 * If this page holds new content, then we can include filler zeros in the
429 * writeback.
430 */
431static void afs_extend_writeback(struct address_space *mapping,
432				 struct afs_vnode *vnode,
433				 long *_count,
434				 loff_t start,
435				 loff_t max_len,
436				 bool new_content,
437				 unsigned int *_len)
438{
439	struct pagevec pvec;
440	struct page *page;
441	unsigned long priv;
442	unsigned int psize, filler = 0;
443	unsigned int f, t;
444	loff_t len = *_len;
445	pgoff_t index = (start + len) / PAGE_SIZE;
446	bool stop = true;
447	unsigned int i;
448
449	XA_STATE(xas, &mapping->i_pages, index);
450	pagevec_init(&pvec);
451
452	do {
453		/* Firstly, we gather up a batch of contiguous dirty pages
454		 * under the RCU read lock - but we can't clear the dirty flags
455		 * there if any of those pages are mapped.
456		 */
457		rcu_read_lock();
458
459		xas_for_each(&xas, page, ULONG_MAX) {
460			stop = true;
461			if (xas_retry(&xas, page))
462				continue;
463			if (xa_is_value(page))
464				break;
465			if (page->index != index)
466				break;
467
468			if (!page_cache_get_speculative(page)) {
469				xas_reset(&xas);
470				continue;
471			}
472
473			/* Has the page moved or been split? */
474			if (unlikely(page != xas_reload(&xas))) {
475				put_page(page);
476				break;
477			}
478
479			if (!trylock_page(page)) {
480				put_page(page);
481				break;
482			}
483			if (!PageDirty(page) || PageWriteback(page)) {
484				unlock_page(page);
485				put_page(page);
486				break;
487			}
488
489			psize = thp_size(page);
490			priv = page_private(page);
491			f = afs_page_dirty_from(page, priv);
492			t = afs_page_dirty_to(page, priv);
493			if (f != 0 && !new_content) {
494				unlock_page(page);
495				put_page(page);
496				break;
497			}
498
499			len += filler + t;
500			filler = psize - t;
501			if (len >= max_len || *_count <= 0)
502				stop = true;
503			else if (t == psize || new_content)
504				stop = false;
505
506			index += thp_nr_pages(page);
507			if (!pagevec_add(&pvec, page))
508				break;
509			if (stop)
510				break;
511		}
512
513		if (!stop)
514			xas_pause(&xas);
515		rcu_read_unlock();
516
517		/* Now, if we obtained any pages, we can shift them to being
518		 * writable and mark them for caching.
519		 */
520		if (!pagevec_count(&pvec))
521			break;
522
523		for (i = 0; i < pagevec_count(&pvec); i++) {
524			page = pvec.pages[i];
525			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
526
527			if (!clear_page_dirty_for_io(page))
528				BUG();
529			if (test_set_page_writeback(page))
530				BUG();
531
532			*_count -= thp_nr_pages(page);
533			unlock_page(page);
 
 
 
 
 
 
 
534		}
535
536		pagevec_release(&pvec);
537		cond_resched();
538	} while (!stop);
539
540	*_len = len;
541}
 
 
 
 
542
543/*
544 * Synchronously write back the locked page and any subsequent non-locked dirty
545 * pages.
546 */
547static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548					       struct writeback_control *wbc,
549					       struct page *page,
550					       loff_t start, loff_t end)
551{
552	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553	struct iov_iter iter;
554	unsigned long priv;
555	unsigned int offset, to, len, max_len;
556	loff_t i_size = i_size_read(&vnode->vfs_inode);
557	bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558	long count = wbc->nr_to_write;
559	int ret;
560
561	_enter(",%lx,%llx-%llx", page->index, start, end);
562
563	if (test_set_page_writeback(page))
564		BUG();
565
566	count -= thp_nr_pages(page);
567
568	/* Find all consecutive lockable dirty pages that have contiguous
569	 * written regions, stopping when we find a page that is not
570	 * immediately lockable, is not dirty or is missing, or we reach the
571	 * end of the range.
572	 */
573	priv = page_private(page);
574	offset = afs_page_dirty_from(page, priv);
575	to = afs_page_dirty_to(page, priv);
576	trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
577
578	len = to - offset;
579	start += offset;
580	if (start < i_size) {
581		/* Trim the write to the EOF; the extra data is ignored.  Also
582		 * put an upper limit on the size of a single storedata op.
583		 */
584		max_len = 65536 * 4096;
585		max_len = min_t(unsigned long long, max_len, end - start + 1);
586		max_len = min_t(unsigned long long, max_len, i_size - start);
587
588		if (len < max_len &&
589		    (to == thp_size(page) || new_content))
590			afs_extend_writeback(mapping, vnode, &count,
591					     start, max_len, new_content, &len);
592		len = min_t(loff_t, len, max_len);
593	}
594
595	/* We now have a contiguous set of dirty pages, each with writeback
596	 * set; the first page is still locked at this point, but all the rest
597	 * have been unlocked.
598	 */
599	unlock_page(page);
600
601	if (start < i_size) {
602		_debug("write back %x @%llx [%llx]", len, start, i_size);
603
604		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605		ret = afs_store_data(vnode, &iter, start, false);
606	} else {
607		_debug("write discard %x @%llx [%llx]", len, start, i_size);
608
609		/* The dirty region was entirely beyond the EOF. */
610		afs_pages_written_back(vnode, start, len);
611		ret = 0;
612	}
613
614	switch (ret) {
615	case 0:
616		wbc->nr_to_write = count;
617		ret = len;
618		break;
619
620	default:
621		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
622		fallthrough;
623	case -EACCES:
624	case -EPERM:
625	case -ENOKEY:
626	case -EKEYEXPIRED:
627	case -EKEYREJECTED:
628	case -EKEYREVOKED:
629		afs_redirty_pages(wbc, mapping, start, len);
630		mapping_set_error(mapping, ret);
631		break;
632
633	case -EDQUOT:
634	case -ENOSPC:
635		afs_redirty_pages(wbc, mapping, start, len);
636		mapping_set_error(mapping, -ENOSPC);
637		break;
638
639	case -EROFS:
640	case -EIO:
641	case -EREMOTEIO:
642	case -EFBIG:
643	case -ENOENT:
644	case -ENOMEDIUM:
645	case -ENXIO:
646		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
647		afs_kill_pages(mapping, start, len);
648		mapping_set_error(mapping, ret);
649		break;
650	}
651
652	_leave(" = %d", ret);
653	return ret;
654}
655
656/*
657 * write a page back to the server
658 * - the caller locked the page for us
659 */
660int afs_writepage(struct page *page, struct writeback_control *wbc)
661{
662	ssize_t ret;
663	loff_t start;
664
665	_enter("{%lx},", page->index);
666
667	start = page->index * PAGE_SIZE;
668	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
669					      start, LLONG_MAX - start);
 
 
670	if (ret < 0) {
671		_leave(" = %zd", ret);
672		return ret;
673	}
674
 
 
675	_leave(" = 0");
676	return 0;
677}
678
679/*
680 * write a region of pages back to the server
681 */
682static int afs_writepages_region(struct address_space *mapping,
683				 struct writeback_control *wbc,
684				 loff_t start, loff_t end, loff_t *_next)
685{
 
686	struct page *page;
687	ssize_t ret;
688	int n;
689
690	_enter("%llx,%llx,", start, end);
691
692	do {
693		pgoff_t index = start / PAGE_SIZE;
694
695		n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
696					     PAGECACHE_TAG_DIRTY, 1, &page);
697		if (!n)
698			break;
699
700		start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
701
702		_debug("wback %lx", page->index);
 
 
 
 
 
703
704		/* At this point we hold neither the i_pages lock nor the
705		 * page lock: the page may be truncated or invalidated
706		 * (changing page->mapping to NULL), or even swizzled
707		 * back from swapper_space to tmpfs file mapping
708		 */
709		if (wbc->sync_mode != WB_SYNC_NONE) {
710			ret = lock_page_killable(page);
711			if (ret < 0) {
712				put_page(page);
713				return ret;
714			}
715		} else {
716			if (!trylock_page(page)) {
717				put_page(page);
718				return 0;
719			}
720		}
721
722		if (page->mapping != mapping || !PageDirty(page)) {
723			start += thp_size(page);
724			unlock_page(page);
725			put_page(page);
726			continue;
727		}
728
729		if (PageWriteback(page)) {
 
 
 
730			unlock_page(page);
731			if (wbc->sync_mode != WB_SYNC_NONE)
732				wait_on_page_writeback(page);
733			put_page(page);
734			continue;
735		}
736
737		if (!clear_page_dirty_for_io(page))
738			BUG();
739		ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
740		put_page(page);
 
 
 
 
 
 
741		if (ret < 0) {
742			_leave(" = %zd", ret);
743			return ret;
744		}
745
746		start += ret;
747
748		cond_resched();
749	} while (wbc->nr_to_write > 0);
750
751	*_next = start;
752	_leave(" = 0 [%llx]", *_next);
753	return 0;
754}
755
756/*
757 * write some of the pending data back to the server
758 */
759int afs_writepages(struct address_space *mapping,
760		   struct writeback_control *wbc)
761{
762	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
763	loff_t start, next;
764	int ret;
765
766	_enter("");
767
768	/* We have to be careful as we can end up racing with setattr()
769	 * truncating the pagecache since the caller doesn't take a lock here
770	 * to prevent it.
771	 */
772	if (wbc->sync_mode == WB_SYNC_ALL)
773		down_read(&vnode->validate_lock);
774	else if (!down_read_trylock(&vnode->validate_lock))
775		return 0;
776
777	if (wbc->range_cyclic) {
778		start = mapping->writeback_index * PAGE_SIZE;
779		ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
780		if (ret == 0) {
781			mapping->writeback_index = next / PAGE_SIZE;
782			if (start > 0 && wbc->nr_to_write > 0) {
783				ret = afs_writepages_region(mapping, wbc, 0,
784							    start, &next);
785				if (ret == 0)
786					mapping->writeback_index =
787						next / PAGE_SIZE;
788			}
789		}
790	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
791		ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
792		if (wbc->nr_to_write > 0 && ret == 0)
793			mapping->writeback_index = next / PAGE_SIZE;
 
794	} else {
795		ret = afs_writepages_region(mapping, wbc,
796					    wbc->range_start, wbc->range_end, &next);
 
797	}
798
799	up_read(&vnode->validate_lock);
800	_leave(" = %d", ret);
801	return ret;
802}
803
804/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805 * write to an AFS file
806 */
807ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
 
808{
809	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
810	struct afs_file *af = iocb->ki_filp->private_data;
811	ssize_t result;
812	size_t count = iov_iter_count(from);
813
814	_enter("{%llx:%llu},{%zu},",
815	       vnode->fid.vid, vnode->fid.vnode, count);
816
817	if (IS_SWAPFILE(&vnode->vfs_inode)) {
818		printk(KERN_INFO
819		       "AFS: Attempt to write to active swap file!\n");
820		return -EBUSY;
821	}
822
823	if (!count)
824		return 0;
825
826	result = afs_validate(vnode, af->key);
827	if (result < 0)
 
828		return result;
829
830	result = generic_file_write_iter(iocb, from);
831
832	_leave(" = %zd", result);
833	return result;
834}
835
836/*
837 * flush any dirty pages for this process, and check for write errors.
838 * - the return status from this call provides a reliable indication of
839 *   whether any write errors occurred for this process.
840 */
841int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
842{
843	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
844	struct afs_file *af = file->private_data;
 
 
 
 
845	int ret;
846
847	_enter("{%llx:%llu},{n=%pD},%d",
848	       vnode->fid.vid, vnode->fid.vnode, file,
849	       datasync);
850
851	ret = afs_validate(vnode, af->key);
852	if (ret < 0)
853		return ret;
854
855	return file_write_and_wait_range(file, start, end);
 
856}
857
858/*
859 * notification that a previously read-only page is about to become writable
860 * - if it returns an error, the caller will deliver a bus error signal
 
861 */
862vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
863{
864	struct page *page = thp_head(vmf->page);
865	struct file *file = vmf->vma->vm_file;
866	struct inode *inode = file_inode(file);
867	struct afs_vnode *vnode = AFS_FS_I(inode);
868	struct afs_file *af = file->private_data;
869	unsigned long priv;
870	vm_fault_t ret = VM_FAULT_RETRY;
871
872	_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
 
 
873
874	afs_validate(vnode, af->key);
875
876	sb_start_pagefault(inode->i_sb);
 
877
878	/* Wait for the page to be written to the cache before we allow it to
879	 * be modified.  We then assume the entire page will need writing back.
880	 */
881#ifdef CONFIG_AFS_FSCACHE
882	if (PageFsCache(page) &&
883	    wait_on_page_fscache_killable(page) < 0)
884		goto out;
885#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886
887	if (wait_on_page_writeback_killable(page))
888		goto out;
889
890	if (lock_page_killable(page) < 0)
891		goto out;
892
893	/* We mustn't change page->private until writeback is complete as that
894	 * details the portion of the page we need to write back and we might
895	 * need to redirty the page if there's a problem.
896	 */
897	if (wait_on_page_writeback_killable(page) < 0) {
898		unlock_page(page);
899		goto out;
900	}
901
902	priv = afs_page_dirty(page, 0, thp_size(page));
903	priv = afs_page_dirty_mmapped(priv);
904	if (PagePrivate(page)) {
905		set_page_private(page, priv);
906		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
907	} else {
908		attach_page_private(page, (void *)priv);
909		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
910	}
911	file_update_time(file);
912
913	ret = VM_FAULT_LOCKED;
914out:
915	sb_end_pagefault(inode->i_sb);
916	return ret;
917}
918
919/*
920 * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
 
921 */
922void afs_prune_wb_keys(struct afs_vnode *vnode)
923{
924	LIST_HEAD(graveyard);
925	struct afs_wb_key *wbk, *tmp;
926
927	/* Discard unused keys */
928	spin_lock(&vnode->wb_lock);
929
930	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
931	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
932		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
933			if (refcount_read(&wbk->usage) == 1)
934				list_move(&wbk->vnode_link, &graveyard);
935		}
936	}
937
938	spin_unlock(&vnode->wb_lock);
939
940	while (!list_empty(&graveyard)) {
941		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
942		list_del(&wbk->vnode_link);
943		afs_put_wb_key(wbk);
944	}
945}
946
947/*
948 * Clean up a page during invalidation.
949 */
950int afs_launder_page(struct page *page)
951{
952	struct address_space *mapping = page->mapping;
953	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
954	struct iov_iter iter;
955	struct bio_vec bv[1];
956	unsigned long priv;
957	unsigned int f, t;
958	int ret = 0;
959
960	_enter("{%lx}", page->index);
961
962	priv = page_private(page);
963	if (clear_page_dirty_for_io(page)) {
964		f = 0;
965		t = thp_size(page);
966		if (PagePrivate(page)) {
967			f = afs_page_dirty_from(page, priv);
968			t = afs_page_dirty_to(page, priv);
969		}
970
971		bv[0].bv_page = page;
972		bv[0].bv_offset = f;
973		bv[0].bv_len = t - f;
974		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
975
976		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
977		ret = afs_store_data(vnode, &iter, page_offset(page) + f, true);
978	}
979
980	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
981	detach_page_private(page);
982	wait_on_page_fscache(page);
983	return ret;
984}