Linux Audio

Check our new training course

Loading...
v3.15
 
  1#ifndef BLK_INTERNAL_H
  2#define BLK_INTERNAL_H
  3
  4#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5
  6/* Amount of time in which a process may batch requests */
  7#define BLK_BATCH_TIME	(HZ/50UL)
  8
  9/* Number of requests a "batching" process may submit */
 10#define BLK_BATCH_REQ	32
 11
 12extern struct kmem_cache *blk_requestq_cachep;
 13extern struct kmem_cache *request_cachep;
 14extern struct kobj_type blk_queue_ktype;
 15extern struct ida blk_queue_ida;
 16
 
 
 
 
 
 
 17static inline void __blk_get_queue(struct request_queue *q)
 18{
 19	kobject_get(&q->kobj);
 20}
 21
 22int blk_init_rl(struct request_list *rl, struct request_queue *q,
 
 
 
 
 
 
 
 
 
 23		gfp_t gfp_mask);
 24void blk_exit_rl(struct request_list *rl);
 25void init_request_from_bio(struct request *req, struct bio *bio);
 26void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
 27			struct bio *bio);
 28int blk_rq_append_bio(struct request_queue *q, struct request *rq,
 29		      struct bio *bio);
 30void blk_queue_bypass_start(struct request_queue *q);
 31void blk_queue_bypass_end(struct request_queue *q);
 32void blk_dequeue_request(struct request *rq);
 33void __blk_queue_free_tags(struct request_queue *q);
 34bool __blk_end_bidi_request(struct request *rq, int error,
 35			    unsigned int nr_bytes, unsigned int bidi_bytes);
 36
 37void blk_rq_timed_out_timer(unsigned long data);
 38void blk_rq_check_expired(struct request *rq, unsigned long *next_timeout,
 39			  unsigned int *next_set);
 40void __blk_add_timer(struct request *req, struct list_head *timeout_list);
 41void blk_delete_timer(struct request *);
 42void blk_add_timer(struct request *);
 43
 44
 45bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
 46			     struct bio *bio);
 47bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
 48			    struct bio *bio);
 49bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 50			    unsigned int *request_count);
 51
 52void blk_account_io_start(struct request *req, bool new_io);
 53void blk_account_io_completion(struct request *req, unsigned int bytes);
 54void blk_account_io_done(struct request *req);
 
 
 
 55
 56/*
 57 * Internal atomic flags for request handling
 58 */
 59enum rq_atomic_flags {
 60	REQ_ATOM_COMPLETE = 0,
 61	REQ_ATOM_STARTED,
 62};
 
 
 
 
 
 
 
 
 63
 64/*
 65 * EH timer and IO completion will both attempt to 'grab' the request, make
 66 * sure that only one of them succeeds
 67 */
 68static inline int blk_mark_rq_complete(struct request *rq)
 
 69{
 70	return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 
 71}
 72
 73static inline void blk_clear_rq_complete(struct request *rq)
 
 
 
 
 74{
 75	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 
 76}
 77
 78/*
 79 * Internal elevator interface
 80 */
 81#define ELV_ON_HASH(rq) ((rq)->cmd_flags & REQ_HASHED)
 82
 83void blk_insert_flush(struct request *rq);
 84void blk_abort_flushes(struct request_queue *q);
 
 
 
 
 
 
 
 85
 86static inline struct request *__elv_next_request(struct request_queue *q)
 
 87{
 88	struct request *rq;
 
 89
 90	while (1) {
 91		if (!list_empty(&q->queue_head)) {
 92			rq = list_entry_rq(q->queue_head.next);
 93			return rq;
 94		}
 95
 96		/*
 97		 * Flush request is running and flush request isn't queueable
 98		 * in the drive, we can hold the queue till flush request is
 99		 * finished. Even we don't do this, driver can't dispatch next
100		 * requests and will requeue them. And this can improve
101		 * throughput too. For example, we have request flush1, write1,
102		 * flush 2. flush1 is dispatched, then queue is hold, write1
103		 * isn't inserted to queue. After flush1 is finished, flush2
104		 * will be dispatched. Since disk cache is already clean,
105		 * flush2 will be finished very soon, so looks like flush2 is
106		 * folded to flush1.
107		 * Since the queue is hold, a flag is set to indicate the queue
108		 * should be restarted later. Please see flush_end_io() for
109		 * details.
110		 */
111		if (q->flush_pending_idx != q->flush_running_idx &&
112				!queue_flush_queueable(q)) {
113			q->flush_queue_delayed = 1;
114			return NULL;
115		}
116		if (unlikely(blk_queue_bypass(q)) ||
117		    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
118			return NULL;
119	}
120}
121
122static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
123{
124	struct elevator_queue *e = q->elevator;
125
126	if (e->type->ops.elevator_activate_req_fn)
127		e->type->ops.elevator_activate_req_fn(q, rq);
128}
129
130static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
131{
132	struct elevator_queue *e = q->elevator;
 
 
 
 
 
 
133
134	if (e->type->ops.elevator_deactivate_req_fn)
135		e->type->ops.elevator_deactivate_req_fn(q, rq);
136}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138#ifdef CONFIG_FAIL_IO_TIMEOUT
139int blk_should_fake_timeout(struct request_queue *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
141ssize_t part_timeout_store(struct device *, struct device_attribute *,
142				const char *, size_t);
143#else
144static inline int blk_should_fake_timeout(struct request_queue *q)
145{
146	return 0;
147}
148#endif
149
150int ll_back_merge_fn(struct request_queue *q, struct request *req,
151		     struct bio *bio);
152int ll_front_merge_fn(struct request_queue *q, struct request *req, 
153		      struct bio *bio);
154int attempt_back_merge(struct request_queue *q, struct request *rq);
155int attempt_front_merge(struct request_queue *q, struct request *rq);
156int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
157				struct request *next);
158void blk_recalc_rq_segments(struct request *rq);
159void blk_rq_set_mixed_merge(struct request *rq);
160bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
161int blk_try_merge(struct request *rq, struct bio *bio);
162
163void blk_queue_congestion_threshold(struct request_queue *q);
164
165void __blk_run_queue_uncond(struct request_queue *q);
166
167int blk_dev_init(void);
168
169
170/*
171 * Return the threshold (number of used requests) at which the queue is
172 * considered to be congested.  It include a little hysteresis to keep the
173 * context switch rate down.
 
174 */
175static inline int queue_congestion_on_threshold(struct request_queue *q)
 
 
 
 
 
176{
177	return q->nr_congestion_on;
 
 
178}
179
180/*
181 * The threshold at which a queue is considered to be uncongested
 
 
182 */
183static inline int queue_congestion_off_threshold(struct request_queue *q)
184{
185	return q->nr_congestion_off;
186}
187
188/*
189 * Contribute to IO statistics IFF:
190 *
191 *	a) it's attached to a gendisk, and
192 *	b) the queue had IO stats enabled when this request was started, and
193 *	c) it's a file system request
194 */
195static inline int blk_do_io_stat(struct request *rq)
 
196{
197	return rq->rq_disk &&
198	       (rq->cmd_flags & REQ_IO_STAT) &&
199		(rq->cmd_type == REQ_TYPE_FS);
200}
201
202/*
203 * Internal io_context interface
204 */
205void get_io_context(struct io_context *ioc);
206struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
207struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
208			     gfp_t gfp_mask);
209void ioc_clear_queue(struct request_queue *q);
210
211int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
212
213/**
214 * create_io_context - try to create task->io_context
215 * @gfp_mask: allocation mask
216 * @node: allocation node
217 *
218 * If %current->io_context is %NULL, allocate a new io_context and install
219 * it.  Returns the current %current->io_context which may be %NULL if
220 * allocation failed.
221 *
222 * Note that this function can't be called with IRQ disabled because
223 * task_lock which protects %current->io_context is IRQ-unsafe.
224 */
225static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
226{
227	WARN_ON_ONCE(irqs_disabled());
228	if (unlikely(!current->io_context))
229		create_task_io_context(current, gfp_mask, node);
230	return current->io_context;
231}
232
233/*
234 * Internal throttling interface
235 */
236#ifdef CONFIG_BLK_DEV_THROTTLING
237extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
238extern void blk_throtl_drain(struct request_queue *q);
239extern int blk_throtl_init(struct request_queue *q);
240extern void blk_throtl_exit(struct request_queue *q);
 
 
 
241#else /* CONFIG_BLK_DEV_THROTTLING */
242static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
243{
244	return false;
245}
246static inline void blk_throtl_drain(struct request_queue *q) { }
247static inline int blk_throtl_init(struct request_queue *q) { return 0; }
248static inline void blk_throtl_exit(struct request_queue *q) { }
 
 
 
249#endif /* CONFIG_BLK_DEV_THROTTLING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
251#endif /* BLK_INTERNAL_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef BLK_INTERNAL_H
  3#define BLK_INTERNAL_H
  4
  5#include <linux/idr.h>
  6#include <linux/blk-mq.h>
  7#include <linux/part_stat.h>
  8#include <linux/blk-crypto.h>
  9#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
 10#include <xen/xen.h>
 11#include "blk-crypto-internal.h"
 12#include "blk-mq.h"
 13#include "blk-mq-sched.h"
 14
 15/* Max future timer expiry for timeouts */
 16#define BLK_MAX_TIMEOUT		(5 * HZ)
 17
 18extern struct dentry *blk_debugfs_root;
 19
 20struct blk_flush_queue {
 21	unsigned int		flush_pending_idx:1;
 22	unsigned int		flush_running_idx:1;
 23	blk_status_t 		rq_status;
 24	unsigned long		flush_pending_since;
 25	struct list_head	flush_queue[2];
 26	struct list_head	flush_data_in_flight;
 27	struct request		*flush_rq;
 28
 29	spinlock_t		mq_flush_lock;
 30};
 
 
 
 31
 32extern struct kmem_cache *blk_requestq_cachep;
 
 33extern struct kobj_type blk_queue_ktype;
 34extern struct ida blk_queue_ida;
 35
 36static inline struct blk_flush_queue *
 37blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
 38{
 39	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
 40}
 41
 42static inline void __blk_get_queue(struct request_queue *q)
 43{
 44	kobject_get(&q->kobj);
 45}
 46
 47bool is_flush_rq(struct request *req);
 48
 49struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
 50					      gfp_t flags);
 51void blk_free_flush_queue(struct blk_flush_queue *q);
 52
 53void blk_freeze_queue(struct request_queue *q);
 54
 55#define BIO_INLINE_VECS 4
 56struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 57		gfp_t gfp_mask);
 58void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60static inline bool biovec_phys_mergeable(struct request_queue *q,
 61		struct bio_vec *vec1, struct bio_vec *vec2)
 62{
 63	unsigned long mask = queue_segment_boundary(q);
 64	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
 65	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
 66
 67	if (addr1 + vec1->bv_len != addr2)
 68		return false;
 69	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
 70		return false;
 71	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
 72		return false;
 73	return true;
 74}
 75
 76static inline bool __bvec_gap_to_prev(struct request_queue *q,
 77		struct bio_vec *bprv, unsigned int offset)
 78{
 79	return (offset & queue_virt_boundary(q)) ||
 80		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
 81}
 82
 83/*
 84 * Check if adding a bio_vec after bprv with offset would create a gap in
 85 * the SG list. Most drivers don't care about this, but some do.
 86 */
 87static inline bool bvec_gap_to_prev(struct request_queue *q,
 88		struct bio_vec *bprv, unsigned int offset)
 89{
 90	if (!queue_virt_boundary(q))
 91		return false;
 92	return __bvec_gap_to_prev(q, bprv, offset);
 93}
 94
 95#ifdef CONFIG_BLK_DEV_INTEGRITY
 96void blk_flush_integrity(void);
 97bool __bio_integrity_endio(struct bio *);
 98void bio_integrity_free(struct bio *bio);
 99static inline bool bio_integrity_endio(struct bio *bio)
100{
101	if (bio_integrity(bio))
102		return __bio_integrity_endio(bio);
103	return true;
104}
105
106bool blk_integrity_merge_rq(struct request_queue *, struct request *,
107		struct request *);
108bool blk_integrity_merge_bio(struct request_queue *, struct request *,
109		struct bio *);
110
111static inline bool integrity_req_gap_back_merge(struct request *req,
112		struct bio *next)
113{
114	struct bio_integrity_payload *bip = bio_integrity(req->bio);
115	struct bio_integrity_payload *bip_next = bio_integrity(next);
116
117	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
118				bip_next->bip_vec[0].bv_offset);
119}
120
121static inline bool integrity_req_gap_front_merge(struct request *req,
122		struct bio *bio)
123{
124	struct bio_integrity_payload *bip = bio_integrity(bio);
125	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
126
127	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
128				bip_next->bip_vec[0].bv_offset);
129}
130
131void blk_integrity_add(struct gendisk *);
132void blk_integrity_del(struct gendisk *);
133#else /* CONFIG_BLK_DEV_INTEGRITY */
134static inline bool blk_integrity_merge_rq(struct request_queue *rq,
135		struct request *r1, struct request *r2)
136{
137	return true;
138}
139static inline bool blk_integrity_merge_bio(struct request_queue *rq,
140		struct request *r, struct bio *b)
141{
142	return true;
143}
144static inline bool integrity_req_gap_back_merge(struct request *req,
145		struct bio *next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146{
147	return false;
148}
149static inline bool integrity_req_gap_front_merge(struct request *req,
150		struct bio *bio)
151{
152	return false;
153}
154
155static inline void blk_flush_integrity(void)
156{
157}
158static inline bool bio_integrity_endio(struct bio *bio)
159{
160	return true;
161}
162static inline void bio_integrity_free(struct bio *bio)
163{
164}
165static inline void blk_integrity_add(struct gendisk *disk)
166{
167}
168static inline void blk_integrity_del(struct gendisk *disk)
169{
170}
171#endif /* CONFIG_BLK_DEV_INTEGRITY */
172
173unsigned long blk_rq_timeout(unsigned long timeout);
174void blk_add_timer(struct request *req);
175
176bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
177		unsigned int nr_segs, struct request **same_queue_rq);
178bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
179			struct bio *bio, unsigned int nr_segs);
180
181void blk_account_io_start(struct request *req);
182void blk_account_io_done(struct request *req, u64 now);
183
184/*
185 * Internal elevator interface
186 */
187#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
188
189void blk_insert_flush(struct request *rq);
190
191int elevator_switch_mq(struct request_queue *q,
192			      struct elevator_type *new_e);
193void __elevator_exit(struct request_queue *, struct elevator_queue *);
194int elv_register_queue(struct request_queue *q, bool uevent);
195void elv_unregister_queue(struct request_queue *q);
196
197static inline void elevator_exit(struct request_queue *q,
198		struct elevator_queue *e)
199{
200	lockdep_assert_held(&q->sysfs_lock);
201
202	blk_mq_sched_free_requests(q);
203	__elevator_exit(q, e);
204}
205
206ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
207		char *buf);
208ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
209		char *buf);
210ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
211		char *buf);
212ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
213		char *buf);
214ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
215		const char *buf, size_t count);
216ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
217ssize_t part_timeout_store(struct device *, struct device_attribute *,
218				const char *, size_t);
 
 
 
 
 
 
219
220void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
221int ll_back_merge_fn(struct request *req, struct bio *bio,
222		unsigned int nr_segs);
223bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 
 
 
224				struct request *next);
225unsigned int blk_recalc_rq_segments(struct request *rq);
226void blk_rq_set_mixed_merge(struct request *rq);
227bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
228enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
 
 
 
 
229
230int blk_dev_init(void);
231
 
232/*
233 * Contribute to IO statistics IFF:
234 *
235 *	a) it's attached to a gendisk, and
236 *	b) the queue had IO stats enabled when this request was started
237 */
238static inline bool blk_do_io_stat(struct request *rq)
239{
240	return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
241}
242
243static inline void req_set_nomerge(struct request_queue *q, struct request *req)
244{
245	req->cmd_flags |= REQ_NOMERGE;
246	if (req == q->last_merge)
247		q->last_merge = NULL;
248}
249
250/*
251 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
252 * is defined as 'unsigned int', meantime it has to aligned to with logical
253 * block size which is the minimum accepted unit by hardware.
254 */
255static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
256{
257	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
258}
259
260/*
261 * The max bio size which is aligned to q->limits.discard_granularity. This
262 * is a hint to split large discard bio in generic block layer, then if device
263 * driver needs to split the discard bio into smaller ones, their bi_size can
264 * be very probably and easily aligned to discard_granularity of the device's
265 * queue.
266 */
267static inline unsigned int bio_aligned_discard_max_sectors(
268					struct request_queue *q)
269{
270	return round_down(UINT_MAX, q->limits.discard_granularity) >>
271			SECTOR_SHIFT;
 
272}
273
274/*
275 * Internal io_context interface
276 */
277void get_io_context(struct io_context *ioc);
278struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
279struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
280			     gfp_t gfp_mask);
281void ioc_clear_queue(struct request_queue *q);
282
283int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285/*
286 * Internal throttling interface
287 */
288#ifdef CONFIG_BLK_DEV_THROTTLING
 
 
289extern int blk_throtl_init(struct request_queue *q);
290extern void blk_throtl_exit(struct request_queue *q);
291extern void blk_throtl_register_queue(struct request_queue *q);
292extern void blk_throtl_charge_bio_split(struct bio *bio);
293bool blk_throtl_bio(struct bio *bio);
294#else /* CONFIG_BLK_DEV_THROTTLING */
 
 
 
 
 
295static inline int blk_throtl_init(struct request_queue *q) { return 0; }
296static inline void blk_throtl_exit(struct request_queue *q) { }
297static inline void blk_throtl_register_queue(struct request_queue *q) { }
298static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
299static inline bool blk_throtl_bio(struct bio *bio) { return false; }
300#endif /* CONFIG_BLK_DEV_THROTTLING */
301#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
302extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
303extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
304	const char *page, size_t count);
305extern void blk_throtl_bio_endio(struct bio *bio);
306extern void blk_throtl_stat_add(struct request *rq, u64 time);
307#else
308static inline void blk_throtl_bio_endio(struct bio *bio) { }
309static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
310#endif
311
312void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
313
314static inline bool blk_queue_may_bounce(struct request_queue *q)
315{
316	return IS_ENABLED(CONFIG_BOUNCE) &&
317		q->limits.bounce == BLK_BOUNCE_HIGH &&
318		max_low_pfn >= max_pfn;
319}
320
321static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
322{
323	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
324		__blk_queue_bounce(q, bio);	
325}
326
327#ifdef CONFIG_BLK_CGROUP_IOLATENCY
328extern int blk_iolatency_init(struct request_queue *q);
329#else
330static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
331#endif
332
333struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
334
335#ifdef CONFIG_BLK_DEV_ZONED
336void blk_queue_free_zone_bitmaps(struct request_queue *q);
337void blk_queue_clear_zone_settings(struct request_queue *q);
338#else
339static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
340static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
341#endif
342
343int blk_alloc_ext_minor(void);
344void blk_free_ext_minor(unsigned int minor);
345char *disk_name(struct gendisk *hd, int partno, char *buf);
346#define ADDPART_FLAG_NONE	0
347#define ADDPART_FLAG_RAID	1
348#define ADDPART_FLAG_WHOLEDISK	2
349int bdev_add_partition(struct block_device *bdev, int partno,
350		sector_t start, sector_t length);
351int bdev_del_partition(struct block_device *bdev, int partno);
352int bdev_resize_partition(struct block_device *bdev, int partno,
353		sector_t start, sector_t length);
354
355int bio_add_hw_page(struct request_queue *q, struct bio *bio,
356		struct page *page, unsigned int len, unsigned int offset,
357		unsigned int max_sectors, bool *same_page);
358
359struct request_queue *blk_alloc_queue(int node_id);
360
361void disk_alloc_events(struct gendisk *disk);
362void disk_add_events(struct gendisk *disk);
363void disk_del_events(struct gendisk *disk);
364void disk_release_events(struct gendisk *disk);
365extern struct device_attribute dev_attr_events;
366extern struct device_attribute dev_attr_events_async;
367extern struct device_attribute dev_attr_events_poll_msecs;
368
369#endif /* BLK_INTERNAL_H */