Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Functions related to segment and merge handling
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/bio.h>
  7#include <linux/blkdev.h>
  8#include <linux/scatterlist.h>
  9
 
 
 10#include "blk.h"
 
 11
 12static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
 13					     struct bio *bio)
 14{
 15	struct bio_vec bv, bvprv = { NULL };
 16	int cluster, high, highprv = 1;
 17	unsigned int seg_size, nr_phys_segs;
 18	struct bio *fbio, *bbio;
 19	struct bvec_iter iter;
 20
 21	if (!bio)
 22		return 0;
 23
 24	/*
 25	 * This should probably be returning 0, but blk_add_request_payload()
 26	 * (Christoph!!!!)
 
 27	 */
 28	if (bio->bi_rw & REQ_DISCARD)
 29		return 1;
 
 
 
 
 30
 31	if (bio->bi_rw & REQ_WRITE_SAME)
 32		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	fbio = bio;
 35	cluster = blk_queue_cluster(q);
 36	seg_size = 0;
 37	nr_phys_segs = 0;
 38	for_each_bio(bio) {
 39		bio_for_each_segment(bv, bio, iter) {
 40			/*
 41			 * the trick here is making sure that a high page is
 42			 * never considered part of another segment, since that
 43			 * might change with the bounce page.
 44			 */
 45			high = page_to_pfn(bv.bv_page) > queue_bounce_pfn(q);
 46			if (!high && !highprv && cluster) {
 47				if (seg_size + bv.bv_len
 48				    > queue_max_segment_size(q))
 49					goto new_segment;
 50				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
 51					goto new_segment;
 52				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
 53					goto new_segment;
 54
 55				seg_size += bv.bv_len;
 56				bvprv = bv;
 57				continue;
 58			}
 59new_segment:
 60			if (nr_phys_segs == 1 && seg_size >
 61			    fbio->bi_seg_front_size)
 62				fbio->bi_seg_front_size = seg_size;
 63
 64			nr_phys_segs++;
 65			bvprv = bv;
 66			seg_size = bv.bv_len;
 67			highprv = high;
 68		}
 69		bbio = bio;
 70	}
 71
 72	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
 73		fbio->bi_seg_front_size = seg_size;
 74	if (seg_size > bbio->bi_seg_back_size)
 75		bbio->bi_seg_back_size = seg_size;
 76
 77	return nr_phys_segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78}
 79
 80void blk_recalc_rq_segments(struct request *rq)
 
 
 
 81{
 82	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
 
 
 
 
 
 
 
 
 83}
 84
 85void blk_recount_segments(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 86{
 87	struct bio *nxt = bio->bi_next;
 
 
 
 
 88
 89	bio->bi_next = NULL;
 90	bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
 91	bio->bi_next = nxt;
 92	bio->bi_flags |= (1 << BIO_SEG_VALID);
 
 
 93}
 94EXPORT_SYMBOL(blk_recount_segments);
 95
 96static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
 97				   struct bio *nxt)
 
 98{
 99	struct bio_vec end_bv = { NULL }, nxt_bv;
100	struct bvec_iter iter;
101
102	if (!blk_queue_cluster(q))
103		return 0;
104
105	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
106	    queue_max_segment_size(q))
107		return 0;
 
 
 
 
108
109	if (!bio_has_data(bio))
110		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
112	bio_for_each_segment(end_bv, bio, iter)
113		if (end_bv.bv_len == iter.bi_size)
114			break;
 
115
116	nxt_bv = bio_iovec(nxt);
117
118	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
119		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121	/*
122	 * bio and nxt are contiguous in memory; check if the queue allows
123	 * these two to be merged into one
 
124	 */
125	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
126		return 1;
127
128	return 0;
129}
130
131static inline void
132__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
133		     struct scatterlist *sglist, struct bio_vec *bvprv,
134		     struct scatterlist **sg, int *nsegs, int *cluster)
 
 
 
 
 
 
 
 
 
135{
 
 
136
137	int nbytes = bvec->bv_len;
138
139	if (*sg && *cluster) {
140		if ((*sg)->length + nbytes > queue_max_segment_size(q))
141			goto new_segment;
142
143		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
144			goto new_segment;
145		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
146			goto new_segment;
147
148		(*sg)->length += nbytes;
149	} else {
150new_segment:
151		if (!*sg)
152			*sg = sglist;
153		else {
154			/*
155			 * If the driver previously mapped a shorter
156			 * list, we could see a termination bit
157			 * prematurely unless it fully inits the sg
158			 * table on each mapping. We KNOW that there
159			 * must be more entries here or the driver
160			 * would be buggy, so force clear the
161			 * termination bit to avoid doing a full
162			 * sg_init_table() in drivers for each command.
163			 */
164			sg_unmark_end(*sg);
165			*sg = sg_next(*sg);
166		}
 
 
 
167
168		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
169		(*nsegs)++;
 
 
 
 
 
 
 
 
170	}
171	*bvprv = *bvec;
172}
173
174static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
175			     struct scatterlist *sglist,
176			     struct scatterlist **sg)
 
 
 
 
 
 
 
 
177{
178	struct bio_vec bvec, bvprv = { NULL };
179	struct bvec_iter iter;
180	int nsegs, cluster;
181
182	nsegs = 0;
183	cluster = blk_queue_cluster(q);
 
184
185	if (bio->bi_rw & REQ_DISCARD) {
186		/*
187		 * This is a hack - drivers should be neither modifying the
188		 * biovec, nor relying on bi_vcnt - but because of
189		 * blk_add_request_payload(), a discard bio may or may not have
190		 * a payload we need to set up here (thank you Christoph) and
191		 * bi_vcnt is really the only way of telling if we need to.
192		 */
193
194		if (bio->bi_vcnt)
195			goto single_segment;
196
 
 
 
 
 
 
 
 
 
 
 
 
197		return 0;
 
 
198	}
199
200	if (bio->bi_rw & REQ_WRITE_SAME) {
201single_segment:
202		*sg = sglist;
203		bvec = bio_iovec(bio);
204		sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
205		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206	}
207
208	for_each_bio(bio)
209		bio_for_each_segment(bvec, bio, iter)
210			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
211					     &nsegs, &cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return nsegs;
214}
215
216/*
217 * map a request to scatterlist, return number of sg entries setup. Caller
218 * must make sure sg can hold rq->nr_phys_segments entries
219 */
220int blk_rq_map_sg(struct request_queue *q, struct request *rq,
221		  struct scatterlist *sglist)
222{
223	struct scatterlist *sg = NULL;
224	int nsegs = 0;
225
226	if (rq->bio)
227		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
 
 
 
 
228
229	if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
230	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
231		unsigned int pad_len =
232			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
233
234		sg->length += pad_len;
235		rq->extra_len += pad_len;
236	}
237
238	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
239		if (rq->cmd_flags & REQ_WRITE)
240			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
241
242		sg->page_link &= ~0x02;
243		sg = sg_next(sg);
244		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
245			    q->dma_drain_size,
246			    ((unsigned long)q->dma_drain_buffer) &
247			    (PAGE_SIZE - 1));
248		nsegs++;
249		rq->extra_len += q->dma_drain_size;
250	}
251
252	if (sg)
253		sg_mark_end(sg);
 
 
 
254
255	return nsegs;
256}
257EXPORT_SYMBOL(blk_rq_map_sg);
258
259/**
260 * blk_bio_map_sg - map a bio to a scatterlist
261 * @q: request_queue in question
262 * @bio: bio being mapped
263 * @sglist: scatterlist being mapped
264 *
265 * Note:
266 *    Caller must make sure sg can hold bio->bi_phys_segments entries
267 *
268 * Will return the number of sg entries setup
269 */
270int blk_bio_map_sg(struct request_queue *q, struct bio *bio,
271		   struct scatterlist *sglist)
272{
273	struct scatterlist *sg = NULL;
274	int nsegs;
275	struct bio *next = bio->bi_next;
276	bio->bi_next = NULL;
277
278	nsegs = __blk_bios_map_sg(q, bio, sglist, &sg);
279	bio->bi_next = next;
280	if (sg)
281		sg_mark_end(sg);
282
283	BUG_ON(bio->bi_phys_segments && nsegs > bio->bi_phys_segments);
284	return nsegs;
285}
286EXPORT_SYMBOL(blk_bio_map_sg);
287
288static inline int ll_new_hw_segment(struct request_queue *q,
289				    struct request *req,
290				    struct bio *bio)
291{
292	int nr_phys_segs = bio_phys_segments(q, bio);
293
294	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
295		goto no_merge;
296
297	if (bio_integrity(bio) && blk_integrity_merge_bio(q, req, bio))
 
 
 
 
298		goto no_merge;
299
300	/*
301	 * This will form the start of a new hw segment.  Bump both
302	 * counters.
303	 */
304	req->nr_phys_segments += nr_phys_segs;
305	return 1;
306
307no_merge:
308	req->cmd_flags |= REQ_NOMERGE;
309	if (req == q->last_merge)
310		q->last_merge = NULL;
311	return 0;
312}
313
314int ll_back_merge_fn(struct request_queue *q, struct request *req,
315		     struct bio *bio)
316{
 
 
 
 
 
 
 
317	if (blk_rq_sectors(req) + bio_sectors(bio) >
318	    blk_rq_get_max_sectors(req)) {
319		req->cmd_flags |= REQ_NOMERGE;
320		if (req == q->last_merge)
321			q->last_merge = NULL;
322		return 0;
323	}
324	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
325		blk_recount_segments(q, req->biotail);
326	if (!bio_flagged(bio, BIO_SEG_VALID))
327		blk_recount_segments(q, bio);
328
329	return ll_new_hw_segment(q, req, bio);
330}
331
332int ll_front_merge_fn(struct request_queue *q, struct request *req,
333		      struct bio *bio)
334{
 
 
 
 
 
 
 
335	if (blk_rq_sectors(req) + bio_sectors(bio) >
336	    blk_rq_get_max_sectors(req)) {
337		req->cmd_flags |= REQ_NOMERGE;
338		if (req == q->last_merge)
339			q->last_merge = NULL;
340		return 0;
341	}
342	if (!bio_flagged(bio, BIO_SEG_VALID))
343		blk_recount_segments(q, bio);
344	if (!bio_flagged(req->bio, BIO_SEG_VALID))
345		blk_recount_segments(q, req->bio);
346
347	return ll_new_hw_segment(q, req, bio);
348}
349
350/*
351 * blk-mq uses req->special to carry normal driver per-request payload, it
352 * does not indicate a prepared command that we cannot merge with.
353 */
354static bool req_no_special_merge(struct request *req)
355{
356	struct request_queue *q = req->q;
357
358	return !q->mq_ops && req->special;
 
 
 
 
 
 
 
 
 
 
359}
360
361static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
362				struct request *next)
363{
364	int total_phys_segments;
365	unsigned int seg_size =
366		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
367
368	/*
369	 * First check if the either of the requests are re-queued
370	 * requests.  Can't merge them if they are.
371	 */
372	if (req_no_special_merge(req) || req_no_special_merge(next))
373		return 0;
374
375	/*
376	 * Will it become too large?
377	 */
378	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
379	    blk_rq_get_max_sectors(req))
380		return 0;
381
382	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
383	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
384		if (req->nr_phys_segments == 1)
385			req->bio->bi_seg_front_size = seg_size;
386		if (next->nr_phys_segments == 1)
387			next->biotail->bi_seg_back_size = seg_size;
388		total_phys_segments--;
389	}
390
391	if (total_phys_segments > queue_max_segments(q))
392		return 0;
393
394	if (blk_integrity_rq(req) && blk_integrity_merge_rq(q, req, next))
395		return 0;
396
397	/* Merge is OK... */
398	req->nr_phys_segments = total_phys_segments;
399	return 1;
400}
401
402/**
403 * blk_rq_set_mixed_merge - mark a request as mixed merge
404 * @rq: request to mark as mixed merge
405 *
406 * Description:
407 *     @rq is about to be mixed merged.  Make sure the attributes
408 *     which can be mixed are set in each bio and mark @rq as mixed
409 *     merged.
410 */
411void blk_rq_set_mixed_merge(struct request *rq)
412{
413	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
414	struct bio *bio;
415
416	if (rq->cmd_flags & REQ_MIXED_MERGE)
417		return;
418
419	/*
420	 * @rq will no longer represent mixable attributes for all the
421	 * contained bios.  It will just track those of the first one.
422	 * Distributes the attributs to each bio.
423	 */
424	for (bio = rq->bio; bio; bio = bio->bi_next) {
425		WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
426			     (bio->bi_rw & REQ_FAILFAST_MASK) != ff);
427		bio->bi_rw |= ff;
428	}
429	rq->cmd_flags |= REQ_MIXED_MERGE;
430}
431
432static void blk_account_io_merge(struct request *req)
433{
434	if (blk_do_io_stat(req)) {
435		struct hd_struct *part;
436		int cpu;
437
438		cpu = part_stat_lock();
439		part = req->part;
440
441		part_round_stats(cpu, part);
442		part_dec_in_flight(part, rq_data_dir(req));
443
444		hd_struct_put(part);
445		part_stat_unlock();
446	}
447}
448
 
 
 
 
 
 
 
 
 
 
 
449/*
450 * Has to be called with the request spinlock acquired
 
451 */
452static int attempt_merge(struct request_queue *q, struct request *req,
453			  struct request *next)
454{
455	if (!rq_mergeable(req) || !rq_mergeable(next))
456		return 0;
457
458	if (!blk_check_merge_flags(req->cmd_flags, next->cmd_flags))
459		return 0;
460
461	/*
462	 * not contiguous
463	 */
464	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
465		return 0;
466
467	if (rq_data_dir(req) != rq_data_dir(next)
468	    || req->rq_disk != next->rq_disk
469	    || req_no_special_merge(next))
470		return 0;
471
472	if (req->cmd_flags & REQ_WRITE_SAME &&
473	    !blk_write_same_mergeable(req->bio, next->bio))
474		return 0;
 
 
 
 
 
 
 
 
 
 
475
476	/*
477	 * If we are allowed to merge, then append bio list
478	 * from next to rq and release next. merge_requests_fn
479	 * will have updated segment counts, update sector
480	 * counts here.
 
481	 */
482	if (!ll_merge_requests_fn(q, req, next))
483		return 0;
 
 
 
 
 
 
 
 
 
 
 
484
485	/*
486	 * If failfast settings disagree or any of the two is already
487	 * a mixed merge, mark both as mixed before proceeding.  This
488	 * makes sure that all involved bios have mixable attributes
489	 * set properly.
490	 */
491	if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
492	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
493	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
494		blk_rq_set_mixed_merge(req);
495		blk_rq_set_mixed_merge(next);
496	}
497
498	/*
499	 * At this point we have either done a back merge
500	 * or front merge. We need the smaller start_time of
501	 * the merged requests to be the current request
502	 * for accounting purposes.
503	 */
504	if (time_after(req->start_time, next->start_time))
505		req->start_time = next->start_time;
506
507	req->biotail->bi_next = next->bio;
508	req->biotail = next->biotail;
509
510	req->__data_len += blk_rq_bytes(next);
511
512	elv_merge_requests(q, req, next);
 
513
514	/*
515	 * 'next' is going away, so update stats accordingly
516	 */
517	blk_account_io_merge(next);
518
519	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
520	if (blk_rq_cpu_valid(next))
521		req->cpu = next->cpu;
522
523	/* owner-ship of bio passed from next to req */
 
 
 
524	next->bio = NULL;
525	__blk_put_request(q, next);
526	return 1;
527}
528
529int attempt_back_merge(struct request_queue *q, struct request *rq)
 
530{
531	struct request *next = elv_latter_request(q, rq);
532
533	if (next)
534		return attempt_merge(q, rq, next);
535
536	return 0;
537}
538
539int attempt_front_merge(struct request_queue *q, struct request *rq)
 
540{
541	struct request *prev = elv_former_request(q, rq);
542
543	if (prev)
544		return attempt_merge(q, prev, rq);
545
546	return 0;
547}
548
549int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
550			  struct request *next)
 
 
 
 
 
551{
552	return attempt_merge(q, rq, next);
553}
554
555bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
556{
557	if (!rq_mergeable(rq) || !bio_mergeable(bio))
558		return false;
559
560	if (!blk_check_merge_flags(rq->cmd_flags, bio->bi_rw))
561		return false;
562
563	/* different data direction or already started, don't merge */
564	if (bio_data_dir(bio) != rq_data_dir(rq))
565		return false;
566
567	/* must be same device and not a special request */
568	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
569		return false;
570
571	/* only merge integrity protected bio into ditto rq */
572	if (bio_integrity(bio) != blk_integrity_rq(rq))
 
 
 
 
573		return false;
574
575	/* must be using the same buffer */
576	if (rq->cmd_flags & REQ_WRITE_SAME &&
577	    !blk_write_same_mergeable(rq->bio, bio))
578		return false;
579
 
 
 
 
 
 
 
 
 
 
580	return true;
581}
582
583int blk_try_merge(struct request *rq, struct bio *bio)
584{
585	if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 
 
586		return ELEVATOR_BACK_MERGE;
587	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
588		return ELEVATOR_FRONT_MERGE;
589	return ELEVATOR_NO_MERGE;
590}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to segment and merge handling
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/scatterlist.h>
  10
  11#include <trace/events/block.h>
  12
  13#include "blk.h"
  14#include "blk-rq-qos.h"
  15
  16static inline bool bio_will_gap(struct request_queue *q,
  17		struct request *prev_rq, struct bio *prev, struct bio *next)
  18{
  19	struct bio_vec pb, nb;
 
 
 
 
  20
  21	if (!bio_has_data(prev) || !queue_virt_boundary(q))
  22		return false;
  23
  24	/*
  25	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
  26	 * is quite difficult to respect the sg gap limit.  We work hard to
  27	 * merge a huge number of small single bios in case of mkfs.
  28	 */
  29	if (prev_rq)
  30		bio_get_first_bvec(prev_rq->bio, &pb);
  31	else
  32		bio_get_first_bvec(prev, &pb);
  33	if (pb.bv_offset & queue_virt_boundary(q))
  34		return true;
  35
  36	/*
  37	 * We don't need to worry about the situation that the merged segment
  38	 * ends in unaligned virt boundary:
  39	 *
  40	 * - if 'pb' ends aligned, the merged segment ends aligned
  41	 * - if 'pb' ends unaligned, the next bio must include
  42	 *   one single bvec of 'nb', otherwise the 'nb' can't
  43	 *   merge with 'pb'
  44	 */
  45	bio_get_last_bvec(prev, &pb);
  46	bio_get_first_bvec(next, &nb);
  47	if (biovec_phys_mergeable(q, &pb, &nb))
  48		return false;
  49	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
  50}
  51
  52static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
  53{
  54	return bio_will_gap(req->q, req, req->biotail, bio);
  55}
  56
  57static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
  58{
  59	return bio_will_gap(req->q, NULL, bio, req->bio);
  60}
  61
  62static struct bio *blk_bio_discard_split(struct request_queue *q,
  63					 struct bio *bio,
  64					 struct bio_set *bs,
  65					 unsigned *nsegs)
  66{
  67	unsigned int max_discard_sectors, granularity;
  68	int alignment;
  69	sector_t tmp;
  70	unsigned split_sectors;
  71
  72	*nsegs = 1;
  73
  74	/* Zero-sector (unknown) and one-sector granularities are the same.  */
  75	granularity = max(q->limits.discard_granularity >> 9, 1U);
  76
  77	max_discard_sectors = min(q->limits.max_discard_sectors,
  78			bio_allowed_max_sectors(q));
  79	max_discard_sectors -= max_discard_sectors % granularity;
  80
  81	if (unlikely(!max_discard_sectors)) {
  82		/* XXX: warn */
  83		return NULL;
 
 
 
 
  84	}
  85
  86	if (bio_sectors(bio) <= max_discard_sectors)
  87		return NULL;
 
 
  88
  89	split_sectors = max_discard_sectors;
  90
  91	/*
  92	 * If the next starting sector would be misaligned, stop the discard at
  93	 * the previous aligned sector.
  94	 */
  95	alignment = (q->limits.discard_alignment >> 9) % granularity;
  96
  97	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
  98	tmp = sector_div(tmp, granularity);
  99
 100	if (split_sectors > tmp)
 101		split_sectors -= tmp;
 102
 103	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 104}
 105
 106static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
 107		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
 108{
 109	*nsegs = 0;
 110
 111	if (!q->limits.max_write_zeroes_sectors)
 112		return NULL;
 113
 114	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
 115		return NULL;
 116
 117	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
 118}
 119
 120static struct bio *blk_bio_write_same_split(struct request_queue *q,
 121					    struct bio *bio,
 122					    struct bio_set *bs,
 123					    unsigned *nsegs)
 124{
 125	*nsegs = 1;
 126
 127	if (!q->limits.max_write_same_sectors)
 128		return NULL;
 129
 130	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 131		return NULL;
 132
 133	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 134}
 135
 136/*
 137 * Return the maximum number of sectors from the start of a bio that may be
 138 * submitted as a single request to a block device. If enough sectors remain,
 139 * align the end to the physical block size. Otherwise align the end to the
 140 * logical block size. This approach minimizes the number of non-aligned
 141 * requests that are submitted to a block device if the start of a bio is not
 142 * aligned to a physical block boundary.
 143 */
 144static inline unsigned get_max_io_size(struct request_queue *q,
 145				       struct bio *bio)
 146{
 147	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
 148	unsigned max_sectors = sectors;
 149	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
 150	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
 151	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
 152
 153	max_sectors += start_offset;
 154	max_sectors &= ~(pbs - 1);
 155	if (max_sectors > start_offset)
 156		return max_sectors - start_offset;
 157
 158	return sectors & ~(lbs - 1);
 159}
 
 160
 161static inline unsigned get_max_segment_size(const struct request_queue *q,
 162					    struct page *start_page,
 163					    unsigned long offset)
 164{
 165	unsigned long mask = queue_segment_boundary(q);
 
 166
 167	offset = mask & (page_to_phys(start_page) + offset);
 
 168
 169	/*
 170	 * overflow may be triggered in case of zero page physical address
 171	 * on 32bit arch, use queue's max segment size when that happens.
 172	 */
 173	return min_not_zero(mask - offset + 1,
 174			(unsigned long)queue_max_segment_size(q));
 175}
 176
 177/**
 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 179 * @q:        [in] request queue associated with the bio associated with @bv
 180 * @bv:       [in] bvec to examine
 181 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 182 *            by the number of segments from @bv that may be appended to that
 183 *            bio without exceeding @max_segs
 184 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
 185 *            by the number of sectors from @bv that may be appended to that
 186 *            bio without exceeding @max_sectors
 187 * @max_segs: [in] upper bound for *@nsegs
 188 * @max_sectors: [in] upper bound for *@sectors
 189 *
 190 * When splitting a bio, it can happen that a bvec is encountered that is too
 191 * big to fit in a single segment and hence that it has to be split in the
 192 * middle. This function verifies whether or not that should happen. The value
 193 * %true is returned if and only if appending the entire @bv to a bio with
 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 195 * the block driver.
 196 */
 197static bool bvec_split_segs(const struct request_queue *q,
 198			    const struct bio_vec *bv, unsigned *nsegs,
 199			    unsigned *sectors, unsigned max_segs,
 200			    unsigned max_sectors)
 201{
 202	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
 203	unsigned len = min(bv->bv_len, max_len);
 204	unsigned total_len = 0;
 205	unsigned seg_size = 0;
 206
 207	while (len && *nsegs < max_segs) {
 208		seg_size = get_max_segment_size(q, bv->bv_page,
 209						bv->bv_offset + total_len);
 210		seg_size = min(seg_size, len);
 211
 212		(*nsegs)++;
 213		total_len += seg_size;
 214		len -= seg_size;
 215
 216		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
 
 217			break;
 218	}
 219
 220	*sectors += total_len >> 9;
 221
 222	/* tell the caller to split the bvec if it is too big to fit */
 223	return len > 0 || bv->bv_len > max_len;
 224}
 225
 226/**
 227 * blk_bio_segment_split - split a bio in two bios
 228 * @q:    [in] request queue pointer
 229 * @bio:  [in] bio to be split
 230 * @bs:	  [in] bio set to allocate the clone from
 231 * @segs: [out] number of segments in the bio with the first half of the sectors
 232 *
 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 235 * following is guaranteed for the cloned bio:
 236 * - That it has at most get_max_io_size(@q, @bio) sectors.
 237 * - That it has at most queue_max_segments(@q) segments.
 238 *
 239 * Except for discard requests the cloned bio will point at the bi_io_vec of
 240 * the original bio. It is the responsibility of the caller to ensure that the
 241 * original bio is not freed before the cloned bio. The caller is also
 242 * responsible for ensuring that @bs is only destroyed after processing of the
 243 * split bio has finished.
 244 */
 245static struct bio *blk_bio_segment_split(struct request_queue *q,
 246					 struct bio *bio,
 247					 struct bio_set *bs,
 248					 unsigned *segs)
 249{
 250	struct bio_vec bv, bvprv, *bvprvp = NULL;
 251	struct bvec_iter iter;
 252	unsigned nsegs = 0, sectors = 0;
 253	const unsigned max_sectors = get_max_io_size(q, bio);
 254	const unsigned max_segs = queue_max_segments(q);
 255
 256	bio_for_each_bvec(bv, bio, iter) {
 257		/*
 258		 * If the queue doesn't support SG gaps and adding this
 259		 * offset would create a gap, disallow it.
 260		 */
 261		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
 262			goto split;
 263
 264		if (nsegs < max_segs &&
 265		    sectors + (bv.bv_len >> 9) <= max_sectors &&
 266		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 267			nsegs++;
 268			sectors += bv.bv_len >> 9;
 269		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
 270					 max_sectors)) {
 271			goto split;
 272		}
 273
 274		bvprv = bv;
 275		bvprvp = &bvprv;
 276	}
 277
 278	*segs = nsegs;
 279	return NULL;
 280split:
 281	*segs = nsegs;
 282
 283	/*
 284	 * Bio splitting may cause subtle trouble such as hang when doing sync
 285	 * iopoll in direct IO routine. Given performance gain of iopoll for
 286	 * big IO can be trival, disable iopoll when split needed.
 287	 */
 288	bio->bi_opf &= ~REQ_HIPRI;
 
 289
 290	return bio_split(bio, sectors, GFP_NOIO, bs);
 291}
 292
 293/**
 294 * __blk_queue_split - split a bio and submit the second half
 295 * @bio:     [in, out] bio to be split
 296 * @nr_segs: [out] number of segments in the first bio
 297 *
 298 * Split a bio into two bios, chain the two bios, submit the second half and
 299 * store a pointer to the first half in *@bio. If the second bio is still too
 300 * big it will be split by a recursive call to this function. Since this
 301 * function may allocate a new bio from q->bio_split, it is the responsibility
 302 * of the caller to ensure that q->bio_split is only released after processing
 303 * of the split bio has finished.
 304 */
 305void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
 306{
 307	struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
 308	struct bio *split = NULL;
 309
 310	switch (bio_op(*bio)) {
 311	case REQ_OP_DISCARD:
 312	case REQ_OP_SECURE_ERASE:
 313		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
 314		break;
 315	case REQ_OP_WRITE_ZEROES:
 316		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
 317				nr_segs);
 318		break;
 319	case REQ_OP_WRITE_SAME:
 320		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
 321				nr_segs);
 322		break;
 323	default:
 324		/*
 325		 * All drivers must accept single-segments bios that are <=
 326		 * PAGE_SIZE.  This is a quick and dirty check that relies on
 327		 * the fact that bi_io_vec[0] is always valid if a bio has data.
 328		 * The check might lead to occasional false negatives when bios
 329		 * are cloned, but compared to the performance impact of cloned
 330		 * bios themselves the loop below doesn't matter anyway.
 331		 */
 332		if (!q->limits.chunk_sectors &&
 333		    (*bio)->bi_vcnt == 1 &&
 334		    ((*bio)->bi_io_vec[0].bv_len +
 335		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
 336			*nr_segs = 1;
 337			break;
 
 338		}
 339		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
 340		break;
 341	}
 342
 343	if (split) {
 344		/* there isn't chance to merge the splitted bio */
 345		split->bi_opf |= REQ_NOMERGE;
 346
 347		bio_chain(split, *bio);
 348		trace_block_split(split, (*bio)->bi_iter.bi_sector);
 349		submit_bio_noacct(*bio);
 350		*bio = split;
 351
 352		blk_throtl_charge_bio_split(*bio);
 353	}
 
 354}
 355
 356/**
 357 * blk_queue_split - split a bio and submit the second half
 358 * @bio: [in, out] bio to be split
 359 *
 360 * Split a bio into two bios, chains the two bios, submit the second half and
 361 * store a pointer to the first half in *@bio. Since this function may allocate
 362 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
 363 * that q->bio_split is only released after processing of the split bio has
 364 * finished.
 365 */
 366void blk_queue_split(struct bio **bio)
 367{
 368	unsigned int nr_segs;
 
 
 369
 370	__blk_queue_split(bio, &nr_segs);
 371}
 372EXPORT_SYMBOL(blk_queue_split);
 373
 374unsigned int blk_recalc_rq_segments(struct request *rq)
 375{
 376	unsigned int nr_phys_segs = 0;
 377	unsigned int nr_sectors = 0;
 378	struct req_iterator iter;
 379	struct bio_vec bv;
 
 
 380
 381	if (!rq->bio)
 382		return 0;
 383
 384	switch (bio_op(rq->bio)) {
 385	case REQ_OP_DISCARD:
 386	case REQ_OP_SECURE_ERASE:
 387		if (queue_max_discard_segments(rq->q) > 1) {
 388			struct bio *bio = rq->bio;
 389
 390			for_each_bio(bio)
 391				nr_phys_segs++;
 392			return nr_phys_segs;
 393		}
 394		return 1;
 395	case REQ_OP_WRITE_ZEROES:
 396		return 0;
 397	case REQ_OP_WRITE_SAME:
 398		return 1;
 399	}
 400
 401	rq_for_each_bvec(bv, rq, iter)
 402		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
 403				UINT_MAX, UINT_MAX);
 404	return nr_phys_segs;
 405}
 406
 407static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 408		struct scatterlist *sglist)
 409{
 410	if (!*sg)
 411		return sglist;
 412
 413	/*
 414	 * If the driver previously mapped a shorter list, we could see a
 415	 * termination bit prematurely unless it fully inits the sg table
 416	 * on each mapping. We KNOW that there must be more entries here
 417	 * or the driver would be buggy, so force clear the termination bit
 418	 * to avoid doing a full sg_init_table() in drivers for each command.
 419	 */
 420	sg_unmark_end(*sg);
 421	return sg_next(*sg);
 422}
 423
 424static unsigned blk_bvec_map_sg(struct request_queue *q,
 425		struct bio_vec *bvec, struct scatterlist *sglist,
 426		struct scatterlist **sg)
 427{
 428	unsigned nbytes = bvec->bv_len;
 429	unsigned nsegs = 0, total = 0;
 430
 431	while (nbytes > 0) {
 432		unsigned offset = bvec->bv_offset + total;
 433		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
 434					offset), nbytes);
 435		struct page *page = bvec->bv_page;
 436
 437		/*
 438		 * Unfortunately a fair number of drivers barf on scatterlists
 439		 * that have an offset larger than PAGE_SIZE, despite other
 440		 * subsystems dealing with that invariant just fine.  For now
 441		 * stick to the legacy format where we never present those from
 442		 * the block layer, but the code below should be removed once
 443		 * these offenders (mostly MMC/SD drivers) are fixed.
 444		 */
 445		page += (offset >> PAGE_SHIFT);
 446		offset &= ~PAGE_MASK;
 447
 448		*sg = blk_next_sg(sg, sglist);
 449		sg_set_page(*sg, page, len, offset);
 450
 451		total += len;
 452		nbytes -= len;
 453		nsegs++;
 454	}
 455
 456	return nsegs;
 457}
 458
 459static inline int __blk_bvec_map_sg(struct bio_vec bv,
 460		struct scatterlist *sglist, struct scatterlist **sg)
 461{
 462	*sg = blk_next_sg(sg, sglist);
 463	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 464	return 1;
 465}
 466
 467/* only try to merge bvecs into one sg if they are from two bios */
 468static inline bool
 469__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 470			   struct bio_vec *bvprv, struct scatterlist **sg)
 471{
 472
 473	int nbytes = bvec->bv_len;
 474
 475	if (!*sg)
 476		return false;
 477
 478	if ((*sg)->length + nbytes > queue_max_segment_size(q))
 479		return false;
 480
 481	if (!biovec_phys_mergeable(q, bvprv, bvec))
 482		return false;
 483
 484	(*sg)->length += nbytes;
 485
 486	return true;
 487}
 488
 489static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 490			     struct scatterlist *sglist,
 491			     struct scatterlist **sg)
 492{
 493	struct bio_vec bvec, bvprv = { NULL };
 494	struct bvec_iter iter;
 495	int nsegs = 0;
 496	bool new_bio = false;
 497
 498	for_each_bio(bio) {
 499		bio_for_each_bvec(bvec, bio, iter) {
 500			/*
 501			 * Only try to merge bvecs from two bios given we
 502			 * have done bio internal merge when adding pages
 503			 * to bio
 504			 */
 505			if (new_bio &&
 506			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 507				goto next_bvec;
 508
 509			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 510				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 511			else
 512				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 513 next_bvec:
 514			new_bio = false;
 515		}
 516		if (likely(bio->bi_iter.bi_size)) {
 517			bvprv = bvec;
 518			new_bio = true;
 519		}
 520	}
 521
 522	return nsegs;
 523}
 524
 525/*
 526 * map a request to scatterlist, return number of sg entries setup. Caller
 527 * must make sure sg can hold rq->nr_phys_segments entries
 528 */
 529int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
 530		struct scatterlist *sglist, struct scatterlist **last_sg)
 531{
 
 532	int nsegs = 0;
 533
 534	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 535		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
 536	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
 537		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
 538	else if (rq->bio)
 539		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 540
 541	if (*last_sg)
 542		sg_mark_end(*last_sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	/*
 545	 * Something must have been wrong if the figured number of
 546	 * segment is bigger than number of req's physical segments
 547	 */
 548	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 549
 550	return nsegs;
 551}
 552EXPORT_SYMBOL(__blk_rq_map_sg);
 553
 554static inline unsigned int blk_rq_get_max_segments(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	if (req_op(rq) == REQ_OP_DISCARD)
 557		return queue_max_discard_segments(rq->q);
 558	return queue_max_segments(rq->q);
 
 
 
 
 
 
 
 
 
 559}
 
 560
 561static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 562		unsigned int nr_phys_segs)
 
 563{
 564	if (blk_integrity_merge_bio(req->q, req, bio) == false)
 
 
 565		goto no_merge;
 566
 567	/* discard request merge won't add new segment */
 568	if (req_op(req) == REQ_OP_DISCARD)
 569		return 1;
 570
 571	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
 572		goto no_merge;
 573
 574	/*
 575	 * This will form the start of a new hw segment.  Bump both
 576	 * counters.
 577	 */
 578	req->nr_phys_segments += nr_phys_segs;
 579	return 1;
 580
 581no_merge:
 582	req_set_nomerge(req->q, req);
 
 
 583	return 0;
 584}
 585
 586int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
 587{
 588	if (req_gap_back_merge(req, bio))
 589		return 0;
 590	if (blk_integrity_rq(req) &&
 591	    integrity_req_gap_back_merge(req, bio))
 592		return 0;
 593	if (!bio_crypt_ctx_back_mergeable(req, bio))
 594		return 0;
 595	if (blk_rq_sectors(req) + bio_sectors(bio) >
 596	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 597		req_set_nomerge(req->q, req);
 
 
 598		return 0;
 599	}
 
 
 
 
 600
 601	return ll_new_hw_segment(req, bio, nr_segs);
 602}
 603
 604static int ll_front_merge_fn(struct request *req, struct bio *bio,
 605		unsigned int nr_segs)
 606{
 607	if (req_gap_front_merge(req, bio))
 608		return 0;
 609	if (blk_integrity_rq(req) &&
 610	    integrity_req_gap_front_merge(req, bio))
 611		return 0;
 612	if (!bio_crypt_ctx_front_mergeable(req, bio))
 613		return 0;
 614	if (blk_rq_sectors(req) + bio_sectors(bio) >
 615	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 616		req_set_nomerge(req->q, req);
 
 
 617		return 0;
 618	}
 
 
 
 
 619
 620	return ll_new_hw_segment(req, bio, nr_segs);
 621}
 622
 623static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 624		struct request *next)
 
 
 
 625{
 626	unsigned short segments = blk_rq_nr_discard_segments(req);
 627
 628	if (segments >= queue_max_discard_segments(q))
 629		goto no_merge;
 630	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 631	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 632		goto no_merge;
 633
 634	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 635	return true;
 636no_merge:
 637	req_set_nomerge(q, req);
 638	return false;
 639}
 640
 641static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 642				struct request *next)
 643{
 644	int total_phys_segments;
 
 
 645
 646	if (req_gap_back_merge(req, next->bio))
 
 
 
 
 647		return 0;
 648
 649	/*
 650	 * Will it become too large?
 651	 */
 652	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 653	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 654		return 0;
 655
 656	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 657	if (total_phys_segments > blk_rq_get_max_segments(req))
 658		return 0;
 
 
 
 
 
 659
 660	if (blk_integrity_merge_rq(q, req, next) == false)
 661		return 0;
 662
 663	if (!bio_crypt_ctx_merge_rq(req, next))
 664		return 0;
 665
 666	/* Merge is OK... */
 667	req->nr_phys_segments = total_phys_segments;
 668	return 1;
 669}
 670
 671/**
 672 * blk_rq_set_mixed_merge - mark a request as mixed merge
 673 * @rq: request to mark as mixed merge
 674 *
 675 * Description:
 676 *     @rq is about to be mixed merged.  Make sure the attributes
 677 *     which can be mixed are set in each bio and mark @rq as mixed
 678 *     merged.
 679 */
 680void blk_rq_set_mixed_merge(struct request *rq)
 681{
 682	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 683	struct bio *bio;
 684
 685	if (rq->rq_flags & RQF_MIXED_MERGE)
 686		return;
 687
 688	/*
 689	 * @rq will no longer represent mixable attributes for all the
 690	 * contained bios.  It will just track those of the first one.
 691	 * Distributes the attributs to each bio.
 692	 */
 693	for (bio = rq->bio; bio; bio = bio->bi_next) {
 694		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 695			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 696		bio->bi_opf |= ff;
 697	}
 698	rq->rq_flags |= RQF_MIXED_MERGE;
 699}
 700
 701static void blk_account_io_merge_request(struct request *req)
 702{
 703	if (blk_do_io_stat(req)) {
 704		part_stat_lock();
 705		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 
 
 
 
 
 
 
 
 706		part_stat_unlock();
 707	}
 708}
 709
 710static enum elv_merge blk_try_req_merge(struct request *req,
 711					struct request *next)
 712{
 713	if (blk_discard_mergable(req))
 714		return ELEVATOR_DISCARD_MERGE;
 715	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 716		return ELEVATOR_BACK_MERGE;
 717
 718	return ELEVATOR_NO_MERGE;
 719}
 720
 721/*
 722 * For non-mq, this has to be called with the request spinlock acquired.
 723 * For mq with scheduling, the appropriate queue wide lock should be held.
 724 */
 725static struct request *attempt_merge(struct request_queue *q,
 726				     struct request *req, struct request *next)
 727{
 728	if (!rq_mergeable(req) || !rq_mergeable(next))
 729		return NULL;
 730
 731	if (req_op(req) != req_op(next))
 732		return NULL;
 
 
 
 
 
 
 733
 734	if (rq_data_dir(req) != rq_data_dir(next)
 735	    || req->rq_disk != next->rq_disk)
 736		return NULL;
 
 737
 738	if (req_op(req) == REQ_OP_WRITE_SAME &&
 739	    !blk_write_same_mergeable(req->bio, next->bio))
 740		return NULL;
 741
 742	/*
 743	 * Don't allow merge of different write hints, or for a hint with
 744	 * non-hint IO.
 745	 */
 746	if (req->write_hint != next->write_hint)
 747		return NULL;
 748
 749	if (req->ioprio != next->ioprio)
 750		return NULL;
 751
 752	/*
 753	 * If we are allowed to merge, then append bio list
 754	 * from next to rq and release next. merge_requests_fn
 755	 * will have updated segment counts, update sector
 756	 * counts here. Handle DISCARDs separately, as they
 757	 * have separate settings.
 758	 */
 759
 760	switch (blk_try_req_merge(req, next)) {
 761	case ELEVATOR_DISCARD_MERGE:
 762		if (!req_attempt_discard_merge(q, req, next))
 763			return NULL;
 764		break;
 765	case ELEVATOR_BACK_MERGE:
 766		if (!ll_merge_requests_fn(q, req, next))
 767			return NULL;
 768		break;
 769	default:
 770		return NULL;
 771	}
 772
 773	/*
 774	 * If failfast settings disagree or any of the two is already
 775	 * a mixed merge, mark both as mixed before proceeding.  This
 776	 * makes sure that all involved bios have mixable attributes
 777	 * set properly.
 778	 */
 779	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 780	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
 781	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
 782		blk_rq_set_mixed_merge(req);
 783		blk_rq_set_mixed_merge(next);
 784	}
 785
 786	/*
 787	 * At this point we have either done a back merge or front merge. We
 788	 * need the smaller start_time_ns of the merged requests to be the
 789	 * current request for accounting purposes.
 
 790	 */
 791	if (next->start_time_ns < req->start_time_ns)
 792		req->start_time_ns = next->start_time_ns;
 793
 794	req->biotail->bi_next = next->bio;
 795	req->biotail = next->biotail;
 796
 797	req->__data_len += blk_rq_bytes(next);
 798
 799	if (!blk_discard_mergable(req))
 800		elv_merge_requests(q, req, next);
 801
 802	/*
 803	 * 'next' is going away, so update stats accordingly
 804	 */
 805	blk_account_io_merge_request(next);
 806
 807	trace_block_rq_merge(next);
 
 
 808
 809	/*
 810	 * ownership of bio passed from next to req, return 'next' for
 811	 * the caller to free
 812	 */
 813	next->bio = NULL;
 814	return next;
 
 815}
 816
 817static struct request *attempt_back_merge(struct request_queue *q,
 818		struct request *rq)
 819{
 820	struct request *next = elv_latter_request(q, rq);
 821
 822	if (next)
 823		return attempt_merge(q, rq, next);
 824
 825	return NULL;
 826}
 827
 828static struct request *attempt_front_merge(struct request_queue *q,
 829		struct request *rq)
 830{
 831	struct request *prev = elv_former_request(q, rq);
 832
 833	if (prev)
 834		return attempt_merge(q, prev, rq);
 835
 836	return NULL;
 837}
 838
 839/*
 840 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 841 * otherwise. The caller is responsible for freeing 'next' if the merge
 842 * happened.
 843 */
 844bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 845			   struct request *next)
 846{
 847	return attempt_merge(q, rq, next);
 848}
 849
 850bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 851{
 852	if (!rq_mergeable(rq) || !bio_mergeable(bio))
 853		return false;
 854
 855	if (req_op(rq) != bio_op(bio))
 856		return false;
 857
 858	/* different data direction or already started, don't merge */
 859	if (bio_data_dir(bio) != rq_data_dir(rq))
 860		return false;
 861
 862	/* must be same device */
 863	if (rq->rq_disk != bio->bi_bdev->bd_disk)
 864		return false;
 865
 866	/* only merge integrity protected bio into ditto rq */
 867	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 868		return false;
 869
 870	/* Only merge if the crypt contexts are compatible */
 871	if (!bio_crypt_rq_ctx_compatible(rq, bio))
 872		return false;
 873
 874	/* must be using the same buffer */
 875	if (req_op(rq) == REQ_OP_WRITE_SAME &&
 876	    !blk_write_same_mergeable(rq->bio, bio))
 877		return false;
 878
 879	/*
 880	 * Don't allow merge of different write hints, or for a hint with
 881	 * non-hint IO.
 882	 */
 883	if (rq->write_hint != bio->bi_write_hint)
 884		return false;
 885
 886	if (rq->ioprio != bio_prio(bio))
 887		return false;
 888
 889	return true;
 890}
 891
 892enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 893{
 894	if (blk_discard_mergable(rq))
 895		return ELEVATOR_DISCARD_MERGE;
 896	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 897		return ELEVATOR_BACK_MERGE;
 898	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 899		return ELEVATOR_FRONT_MERGE;
 900	return ELEVATOR_NO_MERGE;
 901}
 902
 903static void blk_account_io_merge_bio(struct request *req)
 904{
 905	if (!blk_do_io_stat(req))
 906		return;
 907
 908	part_stat_lock();
 909	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 910	part_stat_unlock();
 911}
 912
 913enum bio_merge_status {
 914	BIO_MERGE_OK,
 915	BIO_MERGE_NONE,
 916	BIO_MERGE_FAILED,
 917};
 918
 919static enum bio_merge_status bio_attempt_back_merge(struct request *req,
 920		struct bio *bio, unsigned int nr_segs)
 921{
 922	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 923
 924	if (!ll_back_merge_fn(req, bio, nr_segs))
 925		return BIO_MERGE_FAILED;
 926
 927	trace_block_bio_backmerge(bio);
 928	rq_qos_merge(req->q, req, bio);
 929
 930	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 931		blk_rq_set_mixed_merge(req);
 932
 933	req->biotail->bi_next = bio;
 934	req->biotail = bio;
 935	req->__data_len += bio->bi_iter.bi_size;
 936
 937	bio_crypt_free_ctx(bio);
 938
 939	blk_account_io_merge_bio(req);
 940	return BIO_MERGE_OK;
 941}
 942
 943static enum bio_merge_status bio_attempt_front_merge(struct request *req,
 944		struct bio *bio, unsigned int nr_segs)
 945{
 946	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 947
 948	if (!ll_front_merge_fn(req, bio, nr_segs))
 949		return BIO_MERGE_FAILED;
 950
 951	trace_block_bio_frontmerge(bio);
 952	rq_qos_merge(req->q, req, bio);
 953
 954	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 955		blk_rq_set_mixed_merge(req);
 956
 957	bio->bi_next = req->bio;
 958	req->bio = bio;
 959
 960	req->__sector = bio->bi_iter.bi_sector;
 961	req->__data_len += bio->bi_iter.bi_size;
 962
 963	bio_crypt_do_front_merge(req, bio);
 964
 965	blk_account_io_merge_bio(req);
 966	return BIO_MERGE_OK;
 967}
 968
 969static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
 970		struct request *req, struct bio *bio)
 971{
 972	unsigned short segments = blk_rq_nr_discard_segments(req);
 973
 974	if (segments >= queue_max_discard_segments(q))
 975		goto no_merge;
 976	if (blk_rq_sectors(req) + bio_sectors(bio) >
 977	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 978		goto no_merge;
 979
 980	rq_qos_merge(q, req, bio);
 981
 982	req->biotail->bi_next = bio;
 983	req->biotail = bio;
 984	req->__data_len += bio->bi_iter.bi_size;
 985	req->nr_phys_segments = segments + 1;
 986
 987	blk_account_io_merge_bio(req);
 988	return BIO_MERGE_OK;
 989no_merge:
 990	req_set_nomerge(q, req);
 991	return BIO_MERGE_FAILED;
 992}
 993
 994static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
 995						   struct request *rq,
 996						   struct bio *bio,
 997						   unsigned int nr_segs,
 998						   bool sched_allow_merge)
 999{
1000	if (!blk_rq_merge_ok(rq, bio))
1001		return BIO_MERGE_NONE;
1002
1003	switch (blk_try_merge(rq, bio)) {
1004	case ELEVATOR_BACK_MERGE:
1005		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1006			return bio_attempt_back_merge(rq, bio, nr_segs);
1007		break;
1008	case ELEVATOR_FRONT_MERGE:
1009		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1010			return bio_attempt_front_merge(rq, bio, nr_segs);
1011		break;
1012	case ELEVATOR_DISCARD_MERGE:
1013		return bio_attempt_discard_merge(q, rq, bio);
1014	default:
1015		return BIO_MERGE_NONE;
1016	}
1017
1018	return BIO_MERGE_FAILED;
1019}
1020
1021/**
1022 * blk_attempt_plug_merge - try to merge with %current's plugged list
1023 * @q: request_queue new bio is being queued at
1024 * @bio: new bio being queued
1025 * @nr_segs: number of segments in @bio
1026 * @same_queue_rq: pointer to &struct request that gets filled in when
1027 * another request associated with @q is found on the plug list
1028 * (optional, may be %NULL)
1029 *
1030 * Determine whether @bio being queued on @q can be merged with a request
1031 * on %current's plugged list.  Returns %true if merge was successful,
1032 * otherwise %false.
1033 *
1034 * Plugging coalesces IOs from the same issuer for the same purpose without
1035 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1036 * than scheduling, and the request, while may have elvpriv data, is not
1037 * added on the elevator at this point.  In addition, we don't have
1038 * reliable access to the elevator outside queue lock.  Only check basic
1039 * merging parameters without querying the elevator.
1040 *
1041 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1042 */
1043bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1044		unsigned int nr_segs, struct request **same_queue_rq)
1045{
1046	struct blk_plug *plug;
1047	struct request *rq;
1048	struct list_head *plug_list;
1049
1050	plug = blk_mq_plug(q, bio);
1051	if (!plug)
1052		return false;
1053
1054	plug_list = &plug->mq_list;
1055
1056	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1057		if (rq->q == q && same_queue_rq) {
1058			/*
1059			 * Only blk-mq multiple hardware queues case checks the
1060			 * rq in the same queue, there should be only one such
1061			 * rq in a queue
1062			 **/
1063			*same_queue_rq = rq;
1064		}
1065
1066		if (rq->q != q)
1067			continue;
1068
1069		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1070		    BIO_MERGE_OK)
1071			return true;
1072	}
1073
1074	return false;
1075}
1076
1077/*
1078 * Iterate list of requests and see if we can merge this bio with any
1079 * of them.
1080 */
1081bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1082			struct bio *bio, unsigned int nr_segs)
1083{
1084	struct request *rq;
1085	int checked = 8;
1086
1087	list_for_each_entry_reverse(rq, list, queuelist) {
1088		if (!checked--)
1089			break;
1090
1091		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1092		case BIO_MERGE_NONE:
1093			continue;
1094		case BIO_MERGE_OK:
1095			return true;
1096		case BIO_MERGE_FAILED:
1097			return false;
1098		}
1099
1100	}
1101
1102	return false;
1103}
1104EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1105
1106bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1107		unsigned int nr_segs, struct request **merged_request)
1108{
1109	struct request *rq;
1110
1111	switch (elv_merge(q, &rq, bio)) {
1112	case ELEVATOR_BACK_MERGE:
1113		if (!blk_mq_sched_allow_merge(q, rq, bio))
1114			return false;
1115		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1116			return false;
1117		*merged_request = attempt_back_merge(q, rq);
1118		if (!*merged_request)
1119			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1120		return true;
1121	case ELEVATOR_FRONT_MERGE:
1122		if (!blk_mq_sched_allow_merge(q, rq, bio))
1123			return false;
1124		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1125			return false;
1126		*merged_request = attempt_front_merge(q, rq);
1127		if (!*merged_request)
1128			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1129		return true;
1130	case ELEVATOR_DISCARD_MERGE:
1131		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1132	default:
1133		return false;
1134	}
1135}
1136EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);