Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
 
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_TDB,
  46	REGSET_SYSTEM_CALL,
  47	REGSET_GENERAL_EXTENDED,
  48};
  49
  50void update_cr_regs(struct task_struct *task)
  51{
  52	struct pt_regs *regs = task_pt_regs(task);
  53	struct thread_struct *thread = &task->thread;
  54	struct per_regs old, new;
  55
  56#ifdef CONFIG_64BIT
 
 
 
 
 
 
  57	/* Take care of the enable/disable of transactional execution. */
  58	if (MACHINE_HAS_TE) {
  59		unsigned long cr, cr_new;
  60
  61		__ctl_store(cr, 0, 0);
  62		/* Set or clear transaction execution TXC bit 8. */
  63		cr_new = cr | (1UL << 55);
  64		if (task->thread.per_flags & PER_FLAG_NO_TE)
  65			cr_new &= ~(1UL << 55);
  66		if (cr_new != cr)
  67			__ctl_load(cr_new, 0, 0);
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		__ctl_store(cr, 2, 2);
  70		cr_new = cr & ~3UL;
  71		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  72			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  73				cr_new |= 1UL;
  74			else
  75				cr_new |= 2UL;
  76		}
  77		if (cr_new != cr)
  78			__ctl_load(cr_new, 2, 2);
  79	}
  80#endif
 
 
 
 
 
 
 
 
 
 
 
 
  81	/* Copy user specified PER registers */
  82	new.control = thread->per_user.control;
  83	new.start = thread->per_user.start;
  84	new.end = thread->per_user.end;
  85
  86	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  87	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
 
  88		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  89			new.control |= PER_EVENT_BRANCH;
  90		else
  91			new.control |= PER_EVENT_IFETCH;
  92#ifdef CONFIG_64BIT
  93		new.control |= PER_CONTROL_SUSPENSION;
  94		new.control |= PER_EVENT_TRANSACTION_END;
  95#endif
 
  96		new.start = 0;
  97		new.end = PSW_ADDR_INSN;
  98	}
  99
 100	/* Take care of the PER enablement bit in the PSW. */
 101	if (!(new.control & PER_EVENT_MASK)) {
 102		regs->psw.mask &= ~PSW_MASK_PER;
 103		return;
 104	}
 105	regs->psw.mask |= PSW_MASK_PER;
 106	__ctl_store(old, 9, 11);
 107	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 108		__ctl_load(new, 9, 11);
 109}
 110
 111void user_enable_single_step(struct task_struct *task)
 112{
 113	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 114	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 115}
 116
 117void user_disable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_enable_block_step(struct task_struct *task)
 124{
 125	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 126	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127}
 128
 129/*
 130 * Called by kernel/ptrace.c when detaching..
 131 *
 132 * Clear all debugging related fields.
 133 */
 134void ptrace_disable(struct task_struct *task)
 135{
 136	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 137	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 138	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 139	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 140	task->thread.per_flags = 0;
 141}
 142
 143#ifndef CONFIG_64BIT
 144# define __ADDR_MASK 3
 145#else
 146# define __ADDR_MASK 7
 147#endif
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150					    addr_t addr)
 151{
 152	struct per_struct_kernel *dummy = NULL;
 153
 154	if (addr == (addr_t) &dummy->cr9)
 155		/* Control bits of the active per set. */
 156		return test_thread_flag(TIF_SINGLE_STEP) ?
 157			PER_EVENT_IFETCH : child->thread.per_user.control;
 158	else if (addr == (addr_t) &dummy->cr10)
 159		/* Start address of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			0 : child->thread.per_user.start;
 162	else if (addr == (addr_t) &dummy->cr11)
 163		/* End address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			PSW_ADDR_INSN : child->thread.per_user.end;
 166	else if (addr == (addr_t) &dummy->bits)
 167		/* Single-step bit. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			(1UL << (BITS_PER_LONG - 1)) : 0;
 170	else if (addr == (addr_t) &dummy->starting_addr)
 171		/* Start address of the user specified per set. */
 172		return child->thread.per_user.start;
 173	else if (addr == (addr_t) &dummy->ending_addr)
 174		/* End address of the user specified per set. */
 175		return child->thread.per_user.end;
 176	else if (addr == (addr_t) &dummy->perc_atmid)
 177		/* PER code, ATMID and AI of the last PER trap */
 178		return (unsigned long)
 179			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180	else if (addr == (addr_t) &dummy->address)
 181		/* Address of the last PER trap */
 182		return child->thread.per_event.address;
 183	else if (addr == (addr_t) &dummy->access_id)
 184		/* Access id of the last PER trap */
 185		return (unsigned long)
 186			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187	return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201	struct user *dummy = NULL;
 202	addr_t offset, tmp;
 203
 204	if (addr < (addr_t) &dummy->regs.acrs) {
 205		/*
 206		 * psw and gprs are stored on the stack
 207		 */
 208		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209		if (addr == (addr_t) &dummy->regs.psw.mask) {
 210			/* Return a clean psw mask. */
 211			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212			tmp |= PSW_USER_BITS;
 213		}
 214
 215	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216		/*
 217		 * access registers are stored in the thread structure
 218		 */
 219		offset = addr - (addr_t) &dummy->regs.acrs;
 220#ifdef CONFIG_64BIT
 221		/*
 222		 * Very special case: old & broken 64 bit gdb reading
 223		 * from acrs[15]. Result is a 64 bit value. Read the
 224		 * 32 bit acrs[15] value and shift it by 32. Sick...
 225		 */
 226		if (addr == (addr_t) &dummy->regs.acrs[15])
 227			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 228		else
 229#endif
 230		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 
 
 
 
 
 
 
 245	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 246		/* 
 247		 * floating point regs. are stored in the thread structure
 
 248		 */
 249		offset = addr - (addr_t) &dummy->regs.fp_regs;
 250		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 251		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 252			tmp <<= BITS_PER_LONG - 32;
 
 
 
 253
 254	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 255		/*
 256		 * Handle access to the per_info structure.
 257		 */
 258		addr -= (addr_t) &dummy->regs.per_info;
 259		tmp = __peek_user_per(child, addr);
 260
 261	} else
 262		tmp = 0;
 263
 264	return tmp;
 265}
 266
 267static int
 268peek_user(struct task_struct *child, addr_t addr, addr_t data)
 269{
 270	addr_t tmp, mask;
 271
 272	/*
 273	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 274	 * an alignment of 4. Programmers from hell...
 275	 */
 276	mask = __ADDR_MASK;
 277#ifdef CONFIG_64BIT
 278	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 279	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 280		mask = 3;
 281#endif
 282	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 283		return -EIO;
 284
 285	tmp = __peek_user(child, addr);
 286	return put_user(tmp, (addr_t __user *) data);
 287}
 288
 289static inline void __poke_user_per(struct task_struct *child,
 290				   addr_t addr, addr_t data)
 291{
 292	struct per_struct_kernel *dummy = NULL;
 293
 294	/*
 295	 * There are only three fields in the per_info struct that the
 296	 * debugger user can write to.
 297	 * 1) cr9: the debugger wants to set a new PER event mask
 298	 * 2) starting_addr: the debugger wants to set a new starting
 299	 *    address to use with the PER event mask.
 300	 * 3) ending_addr: the debugger wants to set a new ending
 301	 *    address to use with the PER event mask.
 302	 * The user specified PER event mask and the start and end
 303	 * addresses are used only if single stepping is not in effect.
 304	 * Writes to any other field in per_info are ignored.
 305	 */
 306	if (addr == (addr_t) &dummy->cr9)
 307		/* PER event mask of the user specified per set. */
 308		child->thread.per_user.control =
 309			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 310	else if (addr == (addr_t) &dummy->starting_addr)
 311		/* Starting address of the user specified per set. */
 312		child->thread.per_user.start = data;
 313	else if (addr == (addr_t) &dummy->ending_addr)
 314		/* Ending address of the user specified per set. */
 315		child->thread.per_user.end = data;
 316}
 317
 318/*
 319 * Write a word to the user area of a process at location addr. This
 320 * operation does have an additional problem compared to peek_user.
 321 * Stores to the program status word and on the floating point
 322 * control register needs to get checked for validity.
 323 */
 324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 325{
 326	struct user *dummy = NULL;
 327	addr_t offset;
 328
 
 329	if (addr < (addr_t) &dummy->regs.acrs) {
 
 330		/*
 331		 * psw and gprs are stored on the stack
 332		 */
 333		if (addr == (addr_t) &dummy->regs.psw.mask) {
 334			unsigned long mask = PSW_MASK_USER;
 335
 336			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 337			if ((data & ~mask) != PSW_USER_BITS)
 
 
 
 
 338				return -EINVAL;
 339			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 
 340				return -EINVAL;
 341		}
 342		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 343
 
 
 
 
 
 
 
 344	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 345		/*
 346		 * access registers are stored in the thread structure
 347		 */
 348		offset = addr - (addr_t) &dummy->regs.acrs;
 349#ifdef CONFIG_64BIT
 350		/*
 351		 * Very special case: old & broken 64 bit gdb writing
 352		 * to acrs[15] with a 64 bit value. Ignore the lower
 353		 * half of the value and write the upper 32 bit to
 354		 * acrs[15]. Sick...
 355		 */
 356		if (addr == (addr_t) &dummy->regs.acrs[15])
 357			child->thread.acrs[15] = (unsigned int) (data >> 32);
 358		else
 359#endif
 360		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 361
 362	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 363		/*
 364		 * orig_gpr2 is stored on the kernel stack
 365		 */
 366		task_pt_regs(child)->orig_gpr2 = data;
 367
 368	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 369		/*
 370		 * prevent writes of padding hole between
 371		 * orig_gpr2 and fp_regs on s390.
 372		 */
 373		return 0;
 374
 
 
 
 
 
 
 
 
 
 375	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 376		/*
 377		 * floating point regs. are stored in the thread structure
 
 378		 */
 379		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 380			if ((unsigned int) data != 0 ||
 381			    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 382				return -EINVAL;
 383		offset = addr - (addr_t) &dummy->regs.fp_regs;
 384		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 385
 386	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 387		/*
 388		 * Handle access to the per_info structure.
 389		 */
 390		addr -= (addr_t) &dummy->regs.per_info;
 391		__poke_user_per(child, addr, data);
 392
 393	}
 394
 395	return 0;
 396}
 397
 398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 399{
 400	addr_t mask;
 401
 402	/*
 403	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 404	 * an alignment of 4. Programmers from hell indeed...
 405	 */
 406	mask = __ADDR_MASK;
 407#ifdef CONFIG_64BIT
 408	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 409	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 410		mask = 3;
 411#endif
 412	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 413		return -EIO;
 414
 415	return __poke_user(child, addr, data);
 416}
 417
 418long arch_ptrace(struct task_struct *child, long request,
 419		 unsigned long addr, unsigned long data)
 420{
 421	ptrace_area parea; 
 422	int copied, ret;
 423
 424	switch (request) {
 425	case PTRACE_PEEKUSR:
 426		/* read the word at location addr in the USER area. */
 427		return peek_user(child, addr, data);
 428
 429	case PTRACE_POKEUSR:
 430		/* write the word at location addr in the USER area */
 431		return poke_user(child, addr, data);
 432
 433	case PTRACE_PEEKUSR_AREA:
 434	case PTRACE_POKEUSR_AREA:
 435		if (copy_from_user(&parea, (void __force __user *) addr,
 436							sizeof(parea)))
 437			return -EFAULT;
 438		addr = parea.kernel_addr;
 439		data = parea.process_addr;
 440		copied = 0;
 441		while (copied < parea.len) {
 442			if (request == PTRACE_PEEKUSR_AREA)
 443				ret = peek_user(child, addr, data);
 444			else {
 445				addr_t utmp;
 446				if (get_user(utmp,
 447					     (addr_t __force __user *) data))
 448					return -EFAULT;
 449				ret = poke_user(child, addr, utmp);
 450			}
 451			if (ret)
 452				return ret;
 453			addr += sizeof(unsigned long);
 454			data += sizeof(unsigned long);
 455			copied += sizeof(unsigned long);
 456		}
 457		return 0;
 458	case PTRACE_GET_LAST_BREAK:
 459		put_user(task_thread_info(child)->last_break,
 460			 (unsigned long __user *) data);
 461		return 0;
 462	case PTRACE_ENABLE_TE:
 463		if (!MACHINE_HAS_TE)
 464			return -EIO;
 465		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 466		return 0;
 467	case PTRACE_DISABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags |= PER_FLAG_NO_TE;
 471		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 472		return 0;
 473	case PTRACE_TE_ABORT_RAND:
 474		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 475			return -EIO;
 476		switch (data) {
 477		case 0UL:
 478			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 479			break;
 480		case 1UL:
 481			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 482			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 483			break;
 484		case 2UL:
 485			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 486			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 487			break;
 488		default:
 489			return -EINVAL;
 490		}
 491		return 0;
 492	default:
 493		/* Removing high order bit from addr (only for 31 bit). */
 494		addr &= PSW_ADDR_INSN;
 495		return ptrace_request(child, request, addr, data);
 496	}
 497}
 498
 499#ifdef CONFIG_COMPAT
 500/*
 501 * Now the fun part starts... a 31 bit program running in the
 502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 504 * to handle, the difference to the 64 bit versions of the requests
 505 * is that the access is done in multiples of 4 byte instead of
 506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 509 * is a 31 bit program too, the content of struct user can be
 510 * emulated. A 31 bit program peeking into the struct user of
 511 * a 64 bit program is a no-no.
 512 */
 513
 514/*
 515 * Same as peek_user_per but for a 31 bit program.
 516 */
 517static inline __u32 __peek_user_per_compat(struct task_struct *child,
 518					   addr_t addr)
 519{
 520	struct compat_per_struct_kernel *dummy32 = NULL;
 521
 522	if (addr == (addr_t) &dummy32->cr9)
 523		/* Control bits of the active per set. */
 524		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 525			PER_EVENT_IFETCH : child->thread.per_user.control;
 526	else if (addr == (addr_t) &dummy32->cr10)
 527		/* Start address of the active per set. */
 528		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 529			0 : child->thread.per_user.start;
 530	else if (addr == (addr_t) &dummy32->cr11)
 531		/* End address of the active per set. */
 532		return test_thread_flag(TIF_SINGLE_STEP) ?
 533			PSW32_ADDR_INSN : child->thread.per_user.end;
 534	else if (addr == (addr_t) &dummy32->bits)
 535		/* Single-step bit. */
 536		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 537			0x80000000 : 0;
 538	else if (addr == (addr_t) &dummy32->starting_addr)
 539		/* Start address of the user specified per set. */
 540		return (__u32) child->thread.per_user.start;
 541	else if (addr == (addr_t) &dummy32->ending_addr)
 542		/* End address of the user specified per set. */
 543		return (__u32) child->thread.per_user.end;
 544	else if (addr == (addr_t) &dummy32->perc_atmid)
 545		/* PER code, ATMID and AI of the last PER trap */
 546		return (__u32) child->thread.per_event.cause << 16;
 547	else if (addr == (addr_t) &dummy32->address)
 548		/* Address of the last PER trap */
 549		return (__u32) child->thread.per_event.address;
 550	else if (addr == (addr_t) &dummy32->access_id)
 551		/* Access id of the last PER trap */
 552		return (__u32) child->thread.per_event.paid << 24;
 553	return 0;
 554}
 555
 556/*
 557 * Same as peek_user but for a 31 bit program.
 558 */
 559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 560{
 561	struct compat_user *dummy32 = NULL;
 562	addr_t offset;
 563	__u32 tmp;
 564
 565	if (addr < (addr_t) &dummy32->regs.acrs) {
 566		struct pt_regs *regs = task_pt_regs(child);
 567		/*
 568		 * psw and gprs are stored on the stack
 569		 */
 570		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 571			/* Fake a 31 bit psw mask. */
 572			tmp = (__u32)(regs->psw.mask >> 32);
 573			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 574			tmp |= PSW32_USER_BITS;
 575		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 576			/* Fake a 31 bit psw address. */
 577			tmp = (__u32) regs->psw.addr |
 578				(__u32)(regs->psw.mask & PSW_MASK_BA);
 579		} else {
 580			/* gpr 0-15 */
 581			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 582		}
 583	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 584		/*
 585		 * access registers are stored in the thread structure
 586		 */
 587		offset = addr - (addr_t) &dummy32->regs.acrs;
 588		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 589
 590	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 591		/*
 592		 * orig_gpr2 is stored on the kernel stack
 593		 */
 594		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 595
 596	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 597		/*
 598		 * prevent reads of padding hole between
 599		 * orig_gpr2 and fp_regs on s390.
 600		 */
 601		tmp = 0;
 602
 
 
 
 
 
 
 603	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 604		/*
 605		 * floating point regs. are stored in the thread structure 
 
 606		 */
 607	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 608		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 609
 610	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 611		/*
 612		 * Handle access to the per_info structure.
 613		 */
 614		addr -= (addr_t) &dummy32->regs.per_info;
 615		tmp = __peek_user_per_compat(child, addr);
 616
 617	} else
 618		tmp = 0;
 619
 620	return tmp;
 621}
 622
 623static int peek_user_compat(struct task_struct *child,
 624			    addr_t addr, addr_t data)
 625{
 626	__u32 tmp;
 627
 628	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 629		return -EIO;
 630
 631	tmp = __peek_user_compat(child, addr);
 632	return put_user(tmp, (__u32 __user *) data);
 633}
 634
 635/*
 636 * Same as poke_user_per but for a 31 bit program.
 637 */
 638static inline void __poke_user_per_compat(struct task_struct *child,
 639					  addr_t addr, __u32 data)
 640{
 641	struct compat_per_struct_kernel *dummy32 = NULL;
 642
 643	if (addr == (addr_t) &dummy32->cr9)
 644		/* PER event mask of the user specified per set. */
 645		child->thread.per_user.control =
 646			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 647	else if (addr == (addr_t) &dummy32->starting_addr)
 648		/* Starting address of the user specified per set. */
 649		child->thread.per_user.start = data;
 650	else if (addr == (addr_t) &dummy32->ending_addr)
 651		/* Ending address of the user specified per set. */
 652		child->thread.per_user.end = data;
 653}
 654
 655/*
 656 * Same as poke_user but for a 31 bit program.
 657 */
 658static int __poke_user_compat(struct task_struct *child,
 659			      addr_t addr, addr_t data)
 660{
 661	struct compat_user *dummy32 = NULL;
 662	__u32 tmp = (__u32) data;
 663	addr_t offset;
 664
 665	if (addr < (addr_t) &dummy32->regs.acrs) {
 666		struct pt_regs *regs = task_pt_regs(child);
 667		/*
 668		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 669		 */
 670		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 671			__u32 mask = PSW32_MASK_USER;
 672
 673			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 674			/* Build a 64 bit psw mask from 31 bit mask. */
 675			if ((tmp & ~mask) != PSW32_USER_BITS)
 676				/* Invalid psw mask. */
 677				return -EINVAL;
 
 
 
 678			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 679				(regs->psw.mask & PSW_MASK_BA) |
 680				(__u64)(tmp & mask) << 32;
 681		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 682			/* Build a 64 bit psw address from 31 bit address. */
 683			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 684			/* Transfer 31 bit amode bit to psw mask. */
 685			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 686				(__u64)(tmp & PSW32_ADDR_AMODE);
 687		} else {
 
 
 
 
 
 
 688			/* gpr 0-15 */
 689			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 690		}
 691	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 692		/*
 693		 * access registers are stored in the thread structure
 694		 */
 695		offset = addr - (addr_t) &dummy32->regs.acrs;
 696		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 697
 698	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 699		/*
 700		 * orig_gpr2 is stored on the kernel stack
 701		 */
 702		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 703
 704	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 705		/*
 706		 * prevent writess of padding hole between
 707		 * orig_gpr2 and fp_regs on s390.
 708		 */
 709		return 0;
 710
 711	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 712		/*
 713		 * floating point regs. are stored in the thread structure 
 714		 */
 715		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 716		    test_fp_ctl(tmp))
 717			return -EINVAL;
 718	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 719		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 720
 721	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 722		/*
 723		 * Handle access to the per_info structure.
 724		 */
 725		addr -= (addr_t) &dummy32->regs.per_info;
 726		__poke_user_per_compat(child, addr, data);
 727	}
 728
 729	return 0;
 730}
 731
 732static int poke_user_compat(struct task_struct *child,
 733			    addr_t addr, addr_t data)
 734{
 735	if (!is_compat_task() || (addr & 3) ||
 736	    addr > sizeof(struct compat_user) - 3)
 737		return -EIO;
 738
 739	return __poke_user_compat(child, addr, data);
 740}
 741
 742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 743			compat_ulong_t caddr, compat_ulong_t cdata)
 744{
 745	unsigned long addr = caddr;
 746	unsigned long data = cdata;
 747	compat_ptrace_area parea;
 748	int copied, ret;
 749
 750	switch (request) {
 751	case PTRACE_PEEKUSR:
 752		/* read the word at location addr in the USER area. */
 753		return peek_user_compat(child, addr, data);
 754
 755	case PTRACE_POKEUSR:
 756		/* write the word at location addr in the USER area */
 757		return poke_user_compat(child, addr, data);
 758
 759	case PTRACE_PEEKUSR_AREA:
 760	case PTRACE_POKEUSR_AREA:
 761		if (copy_from_user(&parea, (void __force __user *) addr,
 762							sizeof(parea)))
 763			return -EFAULT;
 764		addr = parea.kernel_addr;
 765		data = parea.process_addr;
 766		copied = 0;
 767		while (copied < parea.len) {
 768			if (request == PTRACE_PEEKUSR_AREA)
 769				ret = peek_user_compat(child, addr, data);
 770			else {
 771				__u32 utmp;
 772				if (get_user(utmp,
 773					     (__u32 __force __user *) data))
 774					return -EFAULT;
 775				ret = poke_user_compat(child, addr, utmp);
 776			}
 777			if (ret)
 778				return ret;
 779			addr += sizeof(unsigned int);
 780			data += sizeof(unsigned int);
 781			copied += sizeof(unsigned int);
 782		}
 783		return 0;
 784	case PTRACE_GET_LAST_BREAK:
 785		put_user(task_thread_info(child)->last_break,
 786			 (unsigned int __user *) data);
 787		return 0;
 788	}
 789	return compat_ptrace_request(child, request, addr, data);
 790}
 791#endif
 792
 793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 794{
 795	long ret = 0;
 796
 797	/* Do the secure computing check first. */
 798	if (secure_computing(regs->gprs[2])) {
 799		/* seccomp failures shouldn't expose any additional code. */
 800		ret = -1;
 801		goto out;
 802	}
 803
 804	/*
 805	 * The sysc_tracesys code in entry.S stored the system
 806	 * call number to gprs[2].
 807	 */
 808	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 809	    (tracehook_report_syscall_entry(regs) ||
 810	     regs->gprs[2] >= NR_syscalls)) {
 811		/*
 812		 * Tracing decided this syscall should not happen or the
 813		 * debugger stored an invalid system call number. Skip
 814		 * the system call and the system call restart handling.
 815		 */
 816		clear_thread_flag(TIF_SYSCALL);
 817		ret = -1;
 818	}
 819
 820	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 821		trace_sys_enter(regs, regs->gprs[2]);
 822
 823	audit_syscall_entry(is_compat_task() ?
 824				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 825			    regs->gprs[2], regs->orig_gpr2,
 826			    regs->gprs[3], regs->gprs[4],
 827			    regs->gprs[5]);
 828out:
 829	return ret ?: regs->gprs[2];
 830}
 831
 832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 833{
 834	audit_syscall_exit(regs);
 835
 836	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 837		trace_sys_exit(regs, regs->gprs[2]);
 838
 839	if (test_thread_flag(TIF_SYSCALL_TRACE))
 840		tracehook_report_syscall_exit(regs, 0);
 841}
 842
 843/*
 844 * user_regset definitions.
 845 */
 846
 847static int s390_regs_get(struct task_struct *target,
 848			 const struct user_regset *regset,
 849			 unsigned int pos, unsigned int count,
 850			 void *kbuf, void __user *ubuf)
 851{
 
 852	if (target == current)
 853		save_access_regs(target->thread.acrs);
 854
 855	if (kbuf) {
 856		unsigned long *k = kbuf;
 857		while (count > 0) {
 858			*k++ = __peek_user(target, pos);
 859			count -= sizeof(*k);
 860			pos += sizeof(*k);
 861		}
 862	} else {
 863		unsigned long __user *u = ubuf;
 864		while (count > 0) {
 865			if (__put_user(__peek_user(target, pos), u++))
 866				return -EFAULT;
 867			count -= sizeof(*u);
 868			pos += sizeof(*u);
 869		}
 870	}
 871	return 0;
 872}
 873
 874static int s390_regs_set(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 const void *kbuf, const void __user *ubuf)
 878{
 879	int rc = 0;
 880
 881	if (target == current)
 882		save_access_regs(target->thread.acrs);
 883
 884	if (kbuf) {
 885		const unsigned long *k = kbuf;
 886		while (count > 0 && !rc) {
 887			rc = __poke_user(target, pos, *k++);
 888			count -= sizeof(*k);
 889			pos += sizeof(*k);
 890		}
 891	} else {
 892		const unsigned long  __user *u = ubuf;
 893		while (count > 0 && !rc) {
 894			unsigned long word;
 895			rc = __get_user(word, u++);
 896			if (rc)
 897				break;
 898			rc = __poke_user(target, pos, word);
 899			count -= sizeof(*u);
 900			pos += sizeof(*u);
 901		}
 902	}
 903
 904	if (rc == 0 && target == current)
 905		restore_access_regs(target->thread.acrs);
 906
 907	return rc;
 908}
 909
 910static int s390_fpregs_get(struct task_struct *target,
 911			   const struct user_regset *regset, unsigned int pos,
 912			   unsigned int count, void *kbuf, void __user *ubuf)
 913{
 914	if (target == current) {
 915		save_fp_ctl(&target->thread.fp_regs.fpc);
 916		save_fp_regs(target->thread.fp_regs.fprs);
 917	}
 
 
 
 918
 919	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 920				   &target->thread.fp_regs, 0, -1);
 921}
 922
 923static int s390_fpregs_set(struct task_struct *target,
 924			   const struct user_regset *regset, unsigned int pos,
 925			   unsigned int count, const void *kbuf,
 926			   const void __user *ubuf)
 927{
 928	int rc = 0;
 
 929
 930	if (target == current) {
 931		save_fp_ctl(&target->thread.fp_regs.fpc);
 932		save_fp_regs(target->thread.fp_regs.fprs);
 933	}
 
 
 
 934
 935	/* If setting FPC, must validate it first. */
 936	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 937		u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
 938		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 939					0, offsetof(s390_fp_regs, fprs));
 940		if (rc)
 941			return rc;
 942		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 943			return -EINVAL;
 944		target->thread.fp_regs.fpc = ufpc[0];
 945	}
 946
 947	if (rc == 0 && count > 0)
 948		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 949					target->thread.fp_regs.fprs,
 950					offsetof(s390_fp_regs, fprs), -1);
 951
 952	if (rc == 0 && target == current) {
 953		restore_fp_ctl(&target->thread.fp_regs.fpc);
 954		restore_fp_regs(target->thread.fp_regs.fprs);
 955	}
 
 956
 957	return rc;
 958}
 959
 960#ifdef CONFIG_64BIT
 961
 962static int s390_last_break_get(struct task_struct *target,
 963			       const struct user_regset *regset,
 964			       unsigned int pos, unsigned int count,
 965			       void *kbuf, void __user *ubuf)
 966{
 967	if (count > 0) {
 968		if (kbuf) {
 969			unsigned long *k = kbuf;
 970			*k = task_thread_info(target)->last_break;
 971		} else {
 972			unsigned long  __user *u = ubuf;
 973			if (__put_user(task_thread_info(target)->last_break, u))
 974				return -EFAULT;
 975		}
 976	}
 977	return 0;
 978}
 979
 980static int s390_last_break_set(struct task_struct *target,
 981			       const struct user_regset *regset,
 982			       unsigned int pos, unsigned int count,
 983			       const void *kbuf, const void __user *ubuf)
 984{
 985	return 0;
 986}
 987
 988static int s390_tdb_get(struct task_struct *target,
 989			const struct user_regset *regset,
 990			unsigned int pos, unsigned int count,
 991			void *kbuf, void __user *ubuf)
 992{
 993	struct pt_regs *regs = task_pt_regs(target);
 994	unsigned char *data;
 995
 996	if (!(regs->int_code & 0x200))
 997		return -ENODATA;
 998	data = target->thread.trap_tdb;
 999	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003			const struct user_regset *regset,
1004			unsigned int pos, unsigned int count,
1005			const void *kbuf, const void __user *ubuf)
1006{
1007	return 0;
1008}
1009
1010#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012static int s390_system_call_get(struct task_struct *target,
1013				const struct user_regset *regset,
1014				unsigned int pos, unsigned int count,
1015				void *kbuf, void __user *ubuf)
1016{
1017	unsigned int *data = &task_thread_info(target)->system_call;
1018	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019				   data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023				const struct user_regset *regset,
1024				unsigned int pos, unsigned int count,
1025				const void *kbuf, const void __user *ubuf)
1026{
1027	unsigned int *data = &task_thread_info(target)->system_call;
1028	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029				  data, 0, sizeof(unsigned int));
1030}
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032static const struct user_regset s390_regsets[] = {
1033	[REGSET_GENERAL] = {
1034		.core_note_type = NT_PRSTATUS,
1035		.n = sizeof(s390_regs) / sizeof(long),
1036		.size = sizeof(long),
1037		.align = sizeof(long),
1038		.get = s390_regs_get,
1039		.set = s390_regs_set,
1040	},
1041	[REGSET_FP] = {
1042		.core_note_type = NT_PRFPREG,
1043		.n = sizeof(s390_fp_regs) / sizeof(long),
1044		.size = sizeof(long),
1045		.align = sizeof(long),
1046		.get = s390_fpregs_get,
1047		.set = s390_fpregs_set,
1048	},
1049#ifdef CONFIG_64BIT
1050	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
1051		.core_note_type = NT_S390_LAST_BREAK,
1052		.n = 1,
1053		.size = sizeof(long),
1054		.align = sizeof(long),
1055		.get = s390_last_break_get,
1056		.set = s390_last_break_set,
1057	},
1058	[REGSET_TDB] = {
1059		.core_note_type = NT_S390_TDB,
1060		.n = 1,
1061		.size = 256,
1062		.align = 1,
1063		.get = s390_tdb_get,
1064		.set = s390_tdb_set,
1065	},
1066#endif
1067	[REGSET_SYSTEM_CALL] = {
1068		.core_note_type = NT_S390_SYSTEM_CALL,
1069		.n = 1,
1070		.size = sizeof(unsigned int),
1071		.align = sizeof(unsigned int),
1072		.get = s390_system_call_get,
1073		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	},
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078	.name = UTS_MACHINE,
1079	.e_machine = EM_S390,
1080	.regsets = s390_regsets,
1081	.n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086				const struct user_regset *regset,
1087				unsigned int pos, unsigned int count,
1088				void *kbuf, void __user *ubuf)
1089{
 
 
1090	if (target == current)
1091		save_access_regs(target->thread.acrs);
1092
1093	if (kbuf) {
1094		compat_ulong_t *k = kbuf;
1095		while (count > 0) {
1096			*k++ = __peek_user_compat(target, pos);
1097			count -= sizeof(*k);
1098			pos += sizeof(*k);
1099		}
1100	} else {
1101		compat_ulong_t __user *u = ubuf;
1102		while (count > 0) {
1103			if (__put_user(__peek_user_compat(target, pos), u++))
1104				return -EFAULT;
1105			count -= sizeof(*u);
1106			pos += sizeof(*u);
1107		}
1108	}
1109	return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113				const struct user_regset *regset,
1114				unsigned int pos, unsigned int count,
1115				const void *kbuf, const void __user *ubuf)
1116{
1117	int rc = 0;
1118
1119	if (target == current)
1120		save_access_regs(target->thread.acrs);
1121
1122	if (kbuf) {
1123		const compat_ulong_t *k = kbuf;
1124		while (count > 0 && !rc) {
1125			rc = __poke_user_compat(target, pos, *k++);
1126			count -= sizeof(*k);
1127			pos += sizeof(*k);
1128		}
1129	} else {
1130		const compat_ulong_t  __user *u = ubuf;
1131		while (count > 0 && !rc) {
1132			compat_ulong_t word;
1133			rc = __get_user(word, u++);
1134			if (rc)
1135				break;
1136			rc = __poke_user_compat(target, pos, word);
1137			count -= sizeof(*u);
1138			pos += sizeof(*u);
1139		}
1140	}
1141
1142	if (rc == 0 && target == current)
1143		restore_access_regs(target->thread.acrs);
1144
1145	return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149				     const struct user_regset *regset,
1150				     unsigned int pos, unsigned int count,
1151				     void *kbuf, void __user *ubuf)
1152{
1153	compat_ulong_t *gprs_high;
 
1154
1155	gprs_high = (compat_ulong_t *)
1156		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157	if (kbuf) {
1158		compat_ulong_t *k = kbuf;
1159		while (count > 0) {
1160			*k++ = *gprs_high;
1161			gprs_high += 2;
1162			count -= sizeof(*k);
1163		}
1164	} else {
1165		compat_ulong_t __user *u = ubuf;
1166		while (count > 0) {
1167			if (__put_user(*gprs_high, u++))
1168				return -EFAULT;
1169			gprs_high += 2;
1170			count -= sizeof(*u);
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177				     const struct user_regset *regset,
1178				     unsigned int pos, unsigned int count,
1179				     const void *kbuf, const void __user *ubuf)
1180{
1181	compat_ulong_t *gprs_high;
1182	int rc = 0;
1183
1184	gprs_high = (compat_ulong_t *)
1185		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186	if (kbuf) {
1187		const compat_ulong_t *k = kbuf;
1188		while (count > 0) {
1189			*gprs_high = *k++;
1190			*gprs_high += 2;
1191			count -= sizeof(*k);
1192		}
1193	} else {
1194		const compat_ulong_t  __user *u = ubuf;
1195		while (count > 0 && !rc) {
1196			unsigned long word;
1197			rc = __get_user(word, u++);
1198			if (rc)
1199				break;
1200			*gprs_high = word;
1201			*gprs_high += 2;
1202			count -= sizeof(*u);
1203		}
1204	}
1205
1206	return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210				      const struct user_regset *regset,
1211				      unsigned int pos, unsigned int count,
1212				      void *kbuf, void __user *ubuf)
1213{
1214	compat_ulong_t last_break;
1215
1216	if (count > 0) {
1217		last_break = task_thread_info(target)->last_break;
1218		if (kbuf) {
1219			unsigned long *k = kbuf;
1220			*k = last_break;
1221		} else {
1222			unsigned long  __user *u = ubuf;
1223			if (__put_user(last_break, u))
1224				return -EFAULT;
1225		}
1226	}
1227	return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231				      const struct user_regset *regset,
1232				      unsigned int pos, unsigned int count,
1233				      const void *kbuf, const void __user *ubuf)
1234{
1235	return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239	[REGSET_GENERAL] = {
1240		.core_note_type = NT_PRSTATUS,
1241		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242		.size = sizeof(compat_long_t),
1243		.align = sizeof(compat_long_t),
1244		.get = s390_compat_regs_get,
1245		.set = s390_compat_regs_set,
1246	},
1247	[REGSET_FP] = {
1248		.core_note_type = NT_PRFPREG,
1249		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250		.size = sizeof(compat_long_t),
1251		.align = sizeof(compat_long_t),
1252		.get = s390_fpregs_get,
1253		.set = s390_fpregs_set,
1254	},
1255	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1256		.core_note_type = NT_S390_LAST_BREAK,
1257		.n = 1,
1258		.size = sizeof(long),
1259		.align = sizeof(long),
1260		.get = s390_compat_last_break_get,
1261		.set = s390_compat_last_break_set,
1262	},
1263	[REGSET_TDB] = {
1264		.core_note_type = NT_S390_TDB,
1265		.n = 1,
1266		.size = 256,
1267		.align = 1,
1268		.get = s390_tdb_get,
1269		.set = s390_tdb_set,
1270	},
1271	[REGSET_SYSTEM_CALL] = {
1272		.core_note_type = NT_S390_SYSTEM_CALL,
1273		.n = 1,
1274		.size = sizeof(compat_uint_t),
1275		.align = sizeof(compat_uint_t),
1276		.get = s390_system_call_get,
1277		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
1278	},
1279	[REGSET_GENERAL_EXTENDED] = {
1280		.core_note_type = NT_S390_HIGH_GPRS,
1281		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282		.size = sizeof(compat_long_t),
1283		.align = sizeof(compat_long_t),
1284		.get = s390_compat_regs_high_get,
1285		.set = s390_compat_regs_high_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	},
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290	.name = "s390",
1291	.e_machine = EM_S390,
1292	.regsets = s390_compat_regsets,
1293	.n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300	if (test_tsk_thread_flag(task, TIF_31BIT))
1301		return &user_s390_compat_view;
1302#endif
1303	return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1308	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313	if (offset >= NUM_GPRS)
1314		return 0;
1315	return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320	unsigned long offset;
1321
1322	if (!name || *name != 'r')
1323		return -EINVAL;
1324	if (kstrtoul(name + 1, 10, &offset))
1325		return -EINVAL;
1326	if (offset >= NUM_GPRS)
1327		return -EINVAL;
1328	return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333	if (offset >= NUM_GPRS)
1334		return NULL;
1335	return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340	unsigned long ksp = kernel_stack_pointer(regs);
1341
1342	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356	unsigned long addr;
1357
1358	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359	if (!regs_within_kernel_stack(regs, addr))
1360		return 0;
1361	return *(unsigned long *)addr;
1362}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
  24#include <linux/tracehook.h>
  25#include <linux/seccomp.h>
  26#include <linux/compat.h>
  27#include <trace/syscall.h>
 
  28#include <asm/page.h>
  29#include <linux/uaccess.h>
 
 
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
  32#include <asm/runtime_instr.h>
  33#include <asm/facility.h>
  34
  35#include "entry.h"
  36
  37#ifdef CONFIG_COMPAT
  38#include "compat_ptrace.h"
  39#endif
  40
 
 
 
 
 
 
 
 
 
 
 
 
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	struct per_regs old, new;
  46	union ctlreg0 cr0_old, cr0_new;
  47	union ctlreg2 cr2_old, cr2_new;
  48	int cr0_changed, cr2_changed;
  49
  50	__ctl_store(cr0_old.val, 0, 0);
  51	__ctl_store(cr2_old.val, 2, 2);
  52	cr0_new = cr0_old;
  53	cr2_new = cr2_old;
  54	/* Take care of the enable/disable of transactional execution. */
  55	if (MACHINE_HAS_TE) {
 
 
 
  56		/* Set or clear transaction execution TXC bit 8. */
  57		cr0_new.tcx = 1;
  58		if (task->thread.per_flags & PER_FLAG_NO_TE)
  59			cr0_new.tcx = 0;
 
 
  60		/* Set or clear transaction execution TDC bits 62 and 63. */
  61		cr2_new.tdc = 0;
 
  62		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  63			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  64				cr2_new.tdc = 1;
  65			else
  66				cr2_new.tdc = 2;
  67		}
 
 
  68	}
  69	/* Take care of enable/disable of guarded storage. */
  70	if (MACHINE_HAS_GS) {
  71		cr2_new.gse = 0;
  72		if (task->thread.gs_cb)
  73			cr2_new.gse = 1;
  74	}
  75	/* Load control register 0/2 iff changed */
  76	cr0_changed = cr0_new.val != cr0_old.val;
  77	cr2_changed = cr2_new.val != cr2_old.val;
  78	if (cr0_changed)
  79		__ctl_load(cr0_new.val, 0, 0);
  80	if (cr2_changed)
  81		__ctl_load(cr2_new.val, 2, 2);
  82	/* Copy user specified PER registers */
  83	new.control = thread->per_user.control;
  84	new.start = thread->per_user.start;
  85	new.end = thread->per_user.end;
  86
  87	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  88	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  89	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  90		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  91			new.control |= PER_EVENT_BRANCH;
  92		else
  93			new.control |= PER_EVENT_IFETCH;
 
  94		new.control |= PER_CONTROL_SUSPENSION;
  95		new.control |= PER_EVENT_TRANSACTION_END;
  96		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  97			new.control |= PER_EVENT_IFETCH;
  98		new.start = 0;
  99		new.end = -1UL;
 100	}
 101
 102	/* Take care of the PER enablement bit in the PSW. */
 103	if (!(new.control & PER_EVENT_MASK)) {
 104		regs->psw.mask &= ~PSW_MASK_PER;
 105		return;
 106	}
 107	regs->psw.mask |= PSW_MASK_PER;
 108	__ctl_store(old, 9, 11);
 109	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 110		__ctl_load(new, 9, 11);
 111}
 112
 113void user_enable_single_step(struct task_struct *task)
 114{
 115	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 116	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 117}
 118
 119void user_disable_single_step(struct task_struct *task)
 120{
 121	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 122	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 123}
 124
 125void user_enable_block_step(struct task_struct *task)
 126{
 127	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 128	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 129}
 130
 131/*
 132 * Called by kernel/ptrace.c when detaching..
 133 *
 134 * Clear all debugging related fields.
 135 */
 136void ptrace_disable(struct task_struct *task)
 137{
 138	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 139	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 140	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 141	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 142	task->thread.per_flags = 0;
 143}
 144
 145#define __ADDR_MASK 7
 
 
 
 
 146
 147static inline unsigned long __peek_user_per(struct task_struct *child,
 148					    addr_t addr)
 149{
 150	struct per_struct_kernel *dummy = NULL;
 151
 152	if (addr == (addr_t) &dummy->cr9)
 153		/* Control bits of the active per set. */
 154		return test_thread_flag(TIF_SINGLE_STEP) ?
 155			PER_EVENT_IFETCH : child->thread.per_user.control;
 156	else if (addr == (addr_t) &dummy->cr10)
 157		/* Start address of the active per set. */
 158		return test_thread_flag(TIF_SINGLE_STEP) ?
 159			0 : child->thread.per_user.start;
 160	else if (addr == (addr_t) &dummy->cr11)
 161		/* End address of the active per set. */
 162		return test_thread_flag(TIF_SINGLE_STEP) ?
 163			-1UL : child->thread.per_user.end;
 164	else if (addr == (addr_t) &dummy->bits)
 165		/* Single-step bit. */
 166		return test_thread_flag(TIF_SINGLE_STEP) ?
 167			(1UL << (BITS_PER_LONG - 1)) : 0;
 168	else if (addr == (addr_t) &dummy->starting_addr)
 169		/* Start address of the user specified per set. */
 170		return child->thread.per_user.start;
 171	else if (addr == (addr_t) &dummy->ending_addr)
 172		/* End address of the user specified per set. */
 173		return child->thread.per_user.end;
 174	else if (addr == (addr_t) &dummy->perc_atmid)
 175		/* PER code, ATMID and AI of the last PER trap */
 176		return (unsigned long)
 177			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 178	else if (addr == (addr_t) &dummy->address)
 179		/* Address of the last PER trap */
 180		return child->thread.per_event.address;
 181	else if (addr == (addr_t) &dummy->access_id)
 182		/* Access id of the last PER trap */
 183		return (unsigned long)
 184			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 185	return 0;
 186}
 187
 188/*
 189 * Read the word at offset addr from the user area of a process. The
 190 * trouble here is that the information is littered over different
 191 * locations. The process registers are found on the kernel stack,
 192 * the floating point stuff and the trace settings are stored in
 193 * the task structure. In addition the different structures in
 194 * struct user contain pad bytes that should be read as zeroes.
 195 * Lovely...
 196 */
 197static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 198{
 199	struct user *dummy = NULL;
 200	addr_t offset, tmp;
 201
 202	if (addr < (addr_t) &dummy->regs.acrs) {
 203		/*
 204		 * psw and gprs are stored on the stack
 205		 */
 206		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 207		if (addr == (addr_t) &dummy->regs.psw.mask) {
 208			/* Return a clean psw mask. */
 209			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 210			tmp |= PSW_USER_BITS;
 211		}
 212
 213	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 214		/*
 215		 * access registers are stored in the thread structure
 216		 */
 217		offset = addr - (addr_t) &dummy->regs.acrs;
 
 218		/*
 219		 * Very special case: old & broken 64 bit gdb reading
 220		 * from acrs[15]. Result is a 64 bit value. Read the
 221		 * 32 bit acrs[15] value and shift it by 32. Sick...
 222		 */
 223		if (addr == (addr_t) &dummy->regs.acrs[15])
 224			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 225		else
 226			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 227
 228	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 229		/*
 230		 * orig_gpr2 is stored on the kernel stack
 231		 */
 232		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 233
 234	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 235		/*
 236		 * prevent reads of padding hole between
 237		 * orig_gpr2 and fp_regs on s390.
 238		 */
 239		tmp = 0;
 240
 241	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 242		/*
 243		 * floating point control reg. is in the thread structure
 244		 */
 245		tmp = child->thread.fpu.fpc;
 246		tmp <<= BITS_PER_LONG - 32;
 247
 248	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 249		/*
 250		 * floating point regs. are either in child->thread.fpu
 251		 * or the child->thread.fpu.vxrs array
 252		 */
 253		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 254		if (MACHINE_HAS_VX)
 255			tmp = *(addr_t *)
 256			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 257		else
 258			tmp = *(addr_t *)
 259			       ((addr_t) child->thread.fpu.fprs + offset);
 260
 261	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 262		/*
 263		 * Handle access to the per_info structure.
 264		 */
 265		addr -= (addr_t) &dummy->regs.per_info;
 266		tmp = __peek_user_per(child, addr);
 267
 268	} else
 269		tmp = 0;
 270
 271	return tmp;
 272}
 273
 274static int
 275peek_user(struct task_struct *child, addr_t addr, addr_t data)
 276{
 277	addr_t tmp, mask;
 278
 279	/*
 280	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 281	 * an alignment of 4. Programmers from hell...
 282	 */
 283	mask = __ADDR_MASK;
 
 284	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 285	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 286		mask = 3;
 
 287	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 288		return -EIO;
 289
 290	tmp = __peek_user(child, addr);
 291	return put_user(tmp, (addr_t __user *) data);
 292}
 293
 294static inline void __poke_user_per(struct task_struct *child,
 295				   addr_t addr, addr_t data)
 296{
 297	struct per_struct_kernel *dummy = NULL;
 298
 299	/*
 300	 * There are only three fields in the per_info struct that the
 301	 * debugger user can write to.
 302	 * 1) cr9: the debugger wants to set a new PER event mask
 303	 * 2) starting_addr: the debugger wants to set a new starting
 304	 *    address to use with the PER event mask.
 305	 * 3) ending_addr: the debugger wants to set a new ending
 306	 *    address to use with the PER event mask.
 307	 * The user specified PER event mask and the start and end
 308	 * addresses are used only if single stepping is not in effect.
 309	 * Writes to any other field in per_info are ignored.
 310	 */
 311	if (addr == (addr_t) &dummy->cr9)
 312		/* PER event mask of the user specified per set. */
 313		child->thread.per_user.control =
 314			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 315	else if (addr == (addr_t) &dummy->starting_addr)
 316		/* Starting address of the user specified per set. */
 317		child->thread.per_user.start = data;
 318	else if (addr == (addr_t) &dummy->ending_addr)
 319		/* Ending address of the user specified per set. */
 320		child->thread.per_user.end = data;
 321}
 322
 323/*
 324 * Write a word to the user area of a process at location addr. This
 325 * operation does have an additional problem compared to peek_user.
 326 * Stores to the program status word and on the floating point
 327 * control register needs to get checked for validity.
 328 */
 329static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 330{
 331	struct user *dummy = NULL;
 332	addr_t offset;
 333
 334
 335	if (addr < (addr_t) &dummy->regs.acrs) {
 336		struct pt_regs *regs = task_pt_regs(child);
 337		/*
 338		 * psw and gprs are stored on the stack
 339		 */
 340		if (addr == (addr_t) &dummy->regs.psw.mask) {
 341			unsigned long mask = PSW_MASK_USER;
 342
 343			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 344			if ((data ^ PSW_USER_BITS) & ~mask)
 345				/* Invalid psw mask. */
 346				return -EINVAL;
 347			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 348				/* Invalid address-space-control bits */
 349				return -EINVAL;
 350			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 351				/* Invalid addressing mode bits */
 352				return -EINVAL;
 353		}
 
 354
 355		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 356			addr == offsetof(struct user, regs.gprs[2])) {
 357			struct pt_regs *regs = task_pt_regs(child);
 358
 359			regs->int_code = 0x20000 | (data & 0xffff);
 360		}
 361		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 362	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 363		/*
 364		 * access registers are stored in the thread structure
 365		 */
 366		offset = addr - (addr_t) &dummy->regs.acrs;
 
 367		/*
 368		 * Very special case: old & broken 64 bit gdb writing
 369		 * to acrs[15] with a 64 bit value. Ignore the lower
 370		 * half of the value and write the upper 32 bit to
 371		 * acrs[15]. Sick...
 372		 */
 373		if (addr == (addr_t) &dummy->regs.acrs[15])
 374			child->thread.acrs[15] = (unsigned int) (data >> 32);
 375		else
 376			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 377
 378	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 379		/*
 380		 * orig_gpr2 is stored on the kernel stack
 381		 */
 382		task_pt_regs(child)->orig_gpr2 = data;
 383
 384	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 385		/*
 386		 * prevent writes of padding hole between
 387		 * orig_gpr2 and fp_regs on s390.
 388		 */
 389		return 0;
 390
 391	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 392		/*
 393		 * floating point control reg. is in the thread structure
 394		 */
 395		if ((unsigned int) data != 0 ||
 396		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 397			return -EINVAL;
 398		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 399
 400	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 401		/*
 402		 * floating point regs. are either in child->thread.fpu
 403		 * or the child->thread.fpu.vxrs array
 404		 */
 405		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 406		if (MACHINE_HAS_VX)
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.vxrs + 2*offset) = data;
 409		else
 410			*(addr_t *)((addr_t)
 411				child->thread.fpu.fprs + offset) = data;
 412
 413	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 414		/*
 415		 * Handle access to the per_info structure.
 416		 */
 417		addr -= (addr_t) &dummy->regs.per_info;
 418		__poke_user_per(child, addr, data);
 419
 420	}
 421
 422	return 0;
 423}
 424
 425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 426{
 427	addr_t mask;
 428
 429	/*
 430	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 431	 * an alignment of 4. Programmers from hell indeed...
 432	 */
 433	mask = __ADDR_MASK;
 
 434	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 435	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 436		mask = 3;
 
 437	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 438		return -EIO;
 439
 440	return __poke_user(child, addr, data);
 441}
 442
 443long arch_ptrace(struct task_struct *child, long request,
 444		 unsigned long addr, unsigned long data)
 445{
 446	ptrace_area parea; 
 447	int copied, ret;
 448
 449	switch (request) {
 450	case PTRACE_PEEKUSR:
 451		/* read the word at location addr in the USER area. */
 452		return peek_user(child, addr, data);
 453
 454	case PTRACE_POKEUSR:
 455		/* write the word at location addr in the USER area */
 456		return poke_user(child, addr, data);
 457
 458	case PTRACE_PEEKUSR_AREA:
 459	case PTRACE_POKEUSR_AREA:
 460		if (copy_from_user(&parea, (void __force __user *) addr,
 461							sizeof(parea)))
 462			return -EFAULT;
 463		addr = parea.kernel_addr;
 464		data = parea.process_addr;
 465		copied = 0;
 466		while (copied < parea.len) {
 467			if (request == PTRACE_PEEKUSR_AREA)
 468				ret = peek_user(child, addr, data);
 469			else {
 470				addr_t utmp;
 471				if (get_user(utmp,
 472					     (addr_t __force __user *) data))
 473					return -EFAULT;
 474				ret = poke_user(child, addr, utmp);
 475			}
 476			if (ret)
 477				return ret;
 478			addr += sizeof(unsigned long);
 479			data += sizeof(unsigned long);
 480			copied += sizeof(unsigned long);
 481		}
 482		return 0;
 483	case PTRACE_GET_LAST_BREAK:
 484		put_user(child->thread.last_break,
 485			 (unsigned long __user *) data);
 486		return 0;
 487	case PTRACE_ENABLE_TE:
 488		if (!MACHINE_HAS_TE)
 489			return -EIO;
 490		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 491		return 0;
 492	case PTRACE_DISABLE_TE:
 493		if (!MACHINE_HAS_TE)
 494			return -EIO;
 495		child->thread.per_flags |= PER_FLAG_NO_TE;
 496		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 497		return 0;
 498	case PTRACE_TE_ABORT_RAND:
 499		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 500			return -EIO;
 501		switch (data) {
 502		case 0UL:
 503			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 504			break;
 505		case 1UL:
 506			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 507			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 508			break;
 509		case 2UL:
 510			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 511			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 512			break;
 513		default:
 514			return -EINVAL;
 515		}
 516		return 0;
 517	default:
 
 
 518		return ptrace_request(child, request, addr, data);
 519	}
 520}
 521
 522#ifdef CONFIG_COMPAT
 523/*
 524 * Now the fun part starts... a 31 bit program running in the
 525 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 526 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 527 * to handle, the difference to the 64 bit versions of the requests
 528 * is that the access is done in multiples of 4 byte instead of
 529 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 530 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 531 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 532 * is a 31 bit program too, the content of struct user can be
 533 * emulated. A 31 bit program peeking into the struct user of
 534 * a 64 bit program is a no-no.
 535 */
 536
 537/*
 538 * Same as peek_user_per but for a 31 bit program.
 539 */
 540static inline __u32 __peek_user_per_compat(struct task_struct *child,
 541					   addr_t addr)
 542{
 543	struct compat_per_struct_kernel *dummy32 = NULL;
 544
 545	if (addr == (addr_t) &dummy32->cr9)
 546		/* Control bits of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			PER_EVENT_IFETCH : child->thread.per_user.control;
 549	else if (addr == (addr_t) &dummy32->cr10)
 550		/* Start address of the active per set. */
 551		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 552			0 : child->thread.per_user.start;
 553	else if (addr == (addr_t) &dummy32->cr11)
 554		/* End address of the active per set. */
 555		return test_thread_flag(TIF_SINGLE_STEP) ?
 556			PSW32_ADDR_INSN : child->thread.per_user.end;
 557	else if (addr == (addr_t) &dummy32->bits)
 558		/* Single-step bit. */
 559		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 560			0x80000000 : 0;
 561	else if (addr == (addr_t) &dummy32->starting_addr)
 562		/* Start address of the user specified per set. */
 563		return (__u32) child->thread.per_user.start;
 564	else if (addr == (addr_t) &dummy32->ending_addr)
 565		/* End address of the user specified per set. */
 566		return (__u32) child->thread.per_user.end;
 567	else if (addr == (addr_t) &dummy32->perc_atmid)
 568		/* PER code, ATMID and AI of the last PER trap */
 569		return (__u32) child->thread.per_event.cause << 16;
 570	else if (addr == (addr_t) &dummy32->address)
 571		/* Address of the last PER trap */
 572		return (__u32) child->thread.per_event.address;
 573	else if (addr == (addr_t) &dummy32->access_id)
 574		/* Access id of the last PER trap */
 575		return (__u32) child->thread.per_event.paid << 24;
 576	return 0;
 577}
 578
 579/*
 580 * Same as peek_user but for a 31 bit program.
 581 */
 582static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 583{
 584	struct compat_user *dummy32 = NULL;
 585	addr_t offset;
 586	__u32 tmp;
 587
 588	if (addr < (addr_t) &dummy32->regs.acrs) {
 589		struct pt_regs *regs = task_pt_regs(child);
 590		/*
 591		 * psw and gprs are stored on the stack
 592		 */
 593		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 594			/* Fake a 31 bit psw mask. */
 595			tmp = (__u32)(regs->psw.mask >> 32);
 596			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 597			tmp |= PSW32_USER_BITS;
 598		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 599			/* Fake a 31 bit psw address. */
 600			tmp = (__u32) regs->psw.addr |
 601				(__u32)(regs->psw.mask & PSW_MASK_BA);
 602		} else {
 603			/* gpr 0-15 */
 604			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 605		}
 606	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 607		/*
 608		 * access registers are stored in the thread structure
 609		 */
 610		offset = addr - (addr_t) &dummy32->regs.acrs;
 611		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 612
 613	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 614		/*
 615		 * orig_gpr2 is stored on the kernel stack
 616		 */
 617		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 618
 619	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 620		/*
 621		 * prevent reads of padding hole between
 622		 * orig_gpr2 and fp_regs on s390.
 623		 */
 624		tmp = 0;
 625
 626	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 627		/*
 628		 * floating point control reg. is in the thread structure
 629		 */
 630		tmp = child->thread.fpu.fpc;
 631
 632	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 633		/*
 634		 * floating point regs. are either in child->thread.fpu
 635		 * or the child->thread.fpu.vxrs array
 636		 */
 637		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 638		if (MACHINE_HAS_VX)
 639			tmp = *(__u32 *)
 640			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 641		else
 642			tmp = *(__u32 *)
 643			       ((addr_t) child->thread.fpu.fprs + offset);
 644
 645	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 646		/*
 647		 * Handle access to the per_info structure.
 648		 */
 649		addr -= (addr_t) &dummy32->regs.per_info;
 650		tmp = __peek_user_per_compat(child, addr);
 651
 652	} else
 653		tmp = 0;
 654
 655	return tmp;
 656}
 657
 658static int peek_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	__u32 tmp;
 662
 663	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 664		return -EIO;
 665
 666	tmp = __peek_user_compat(child, addr);
 667	return put_user(tmp, (__u32 __user *) data);
 668}
 669
 670/*
 671 * Same as poke_user_per but for a 31 bit program.
 672 */
 673static inline void __poke_user_per_compat(struct task_struct *child,
 674					  addr_t addr, __u32 data)
 675{
 676	struct compat_per_struct_kernel *dummy32 = NULL;
 677
 678	if (addr == (addr_t) &dummy32->cr9)
 679		/* PER event mask of the user specified per set. */
 680		child->thread.per_user.control =
 681			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 682	else if (addr == (addr_t) &dummy32->starting_addr)
 683		/* Starting address of the user specified per set. */
 684		child->thread.per_user.start = data;
 685	else if (addr == (addr_t) &dummy32->ending_addr)
 686		/* Ending address of the user specified per set. */
 687		child->thread.per_user.end = data;
 688}
 689
 690/*
 691 * Same as poke_user but for a 31 bit program.
 692 */
 693static int __poke_user_compat(struct task_struct *child,
 694			      addr_t addr, addr_t data)
 695{
 696	struct compat_user *dummy32 = NULL;
 697	__u32 tmp = (__u32) data;
 698	addr_t offset;
 699
 700	if (addr < (addr_t) &dummy32->regs.acrs) {
 701		struct pt_regs *regs = task_pt_regs(child);
 702		/*
 703		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 704		 */
 705		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 706			__u32 mask = PSW32_MASK_USER;
 707
 708			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 709			/* Build a 64 bit psw mask from 31 bit mask. */
 710			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 711				/* Invalid psw mask. */
 712				return -EINVAL;
 713			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 714				/* Invalid address-space-control bits */
 715				return -EINVAL;
 716			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 717				(regs->psw.mask & PSW_MASK_BA) |
 718				(__u64)(tmp & mask) << 32;
 719		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 720			/* Build a 64 bit psw address from 31 bit address. */
 721			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 722			/* Transfer 31 bit amode bit to psw mask. */
 723			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 724				(__u64)(tmp & PSW32_ADDR_AMODE);
 725		} else {
 726			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 727				addr == offsetof(struct compat_user, regs.gprs[2])) {
 728				struct pt_regs *regs = task_pt_regs(child);
 729
 730				regs->int_code = 0x20000 | (data & 0xffff);
 731			}
 732			/* gpr 0-15 */
 733			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 734		}
 735	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 736		/*
 737		 * access registers are stored in the thread structure
 738		 */
 739		offset = addr - (addr_t) &dummy32->regs.acrs;
 740		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 741
 742	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 743		/*
 744		 * orig_gpr2 is stored on the kernel stack
 745		 */
 746		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 747
 748	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 749		/*
 750		 * prevent writess of padding hole between
 751		 * orig_gpr2 and fp_regs on s390.
 752		 */
 753		return 0;
 754
 755	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 756		/*
 757		 * floating point control reg. is in the thread structure
 758		 */
 759		if (test_fp_ctl(tmp))
 
 760			return -EINVAL;
 761		child->thread.fpu.fpc = data;
 762
 763	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 764		/*
 765		 * floating point regs. are either in child->thread.fpu
 766		 * or the child->thread.fpu.vxrs array
 767		 */
 768		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 769		if (MACHINE_HAS_VX)
 770			*(__u32 *)((addr_t)
 771				child->thread.fpu.vxrs + 2*offset) = tmp;
 772		else
 773			*(__u32 *)((addr_t)
 774				child->thread.fpu.fprs + offset) = tmp;
 775
 776	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 777		/*
 778		 * Handle access to the per_info structure.
 779		 */
 780		addr -= (addr_t) &dummy32->regs.per_info;
 781		__poke_user_per_compat(child, addr, data);
 782	}
 783
 784	return 0;
 785}
 786
 787static int poke_user_compat(struct task_struct *child,
 788			    addr_t addr, addr_t data)
 789{
 790	if (!is_compat_task() || (addr & 3) ||
 791	    addr > sizeof(struct compat_user) - 3)
 792		return -EIO;
 793
 794	return __poke_user_compat(child, addr, data);
 795}
 796
 797long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 798			compat_ulong_t caddr, compat_ulong_t cdata)
 799{
 800	unsigned long addr = caddr;
 801	unsigned long data = cdata;
 802	compat_ptrace_area parea;
 803	int copied, ret;
 804
 805	switch (request) {
 806	case PTRACE_PEEKUSR:
 807		/* read the word at location addr in the USER area. */
 808		return peek_user_compat(child, addr, data);
 809
 810	case PTRACE_POKEUSR:
 811		/* write the word at location addr in the USER area */
 812		return poke_user_compat(child, addr, data);
 813
 814	case PTRACE_PEEKUSR_AREA:
 815	case PTRACE_POKEUSR_AREA:
 816		if (copy_from_user(&parea, (void __force __user *) addr,
 817							sizeof(parea)))
 818			return -EFAULT;
 819		addr = parea.kernel_addr;
 820		data = parea.process_addr;
 821		copied = 0;
 822		while (copied < parea.len) {
 823			if (request == PTRACE_PEEKUSR_AREA)
 824				ret = peek_user_compat(child, addr, data);
 825			else {
 826				__u32 utmp;
 827				if (get_user(utmp,
 828					     (__u32 __force __user *) data))
 829					return -EFAULT;
 830				ret = poke_user_compat(child, addr, utmp);
 831			}
 832			if (ret)
 833				return ret;
 834			addr += sizeof(unsigned int);
 835			data += sizeof(unsigned int);
 836			copied += sizeof(unsigned int);
 837		}
 838		return 0;
 839	case PTRACE_GET_LAST_BREAK:
 840		put_user(child->thread.last_break,
 841			 (unsigned int __user *) data);
 842		return 0;
 843	}
 844	return compat_ptrace_request(child, request, addr, data);
 845}
 846#endif
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * user_regset definitions.
 850 */
 851
 852static int s390_regs_get(struct task_struct *target,
 853			 const struct user_regset *regset,
 854			 struct membuf to)
 
 855{
 856	unsigned pos;
 857	if (target == current)
 858		save_access_regs(target->thread.acrs);
 859
 860	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 861		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	return 0;
 863}
 864
 865static int s390_regs_set(struct task_struct *target,
 866			 const struct user_regset *regset,
 867			 unsigned int pos, unsigned int count,
 868			 const void *kbuf, const void __user *ubuf)
 869{
 870	int rc = 0;
 871
 872	if (target == current)
 873		save_access_regs(target->thread.acrs);
 874
 875	if (kbuf) {
 876		const unsigned long *k = kbuf;
 877		while (count > 0 && !rc) {
 878			rc = __poke_user(target, pos, *k++);
 879			count -= sizeof(*k);
 880			pos += sizeof(*k);
 881		}
 882	} else {
 883		const unsigned long  __user *u = ubuf;
 884		while (count > 0 && !rc) {
 885			unsigned long word;
 886			rc = __get_user(word, u++);
 887			if (rc)
 888				break;
 889			rc = __poke_user(target, pos, word);
 890			count -= sizeof(*u);
 891			pos += sizeof(*u);
 892		}
 893	}
 894
 895	if (rc == 0 && target == current)
 896		restore_access_regs(target->thread.acrs);
 897
 898	return rc;
 899}
 900
 901static int s390_fpregs_get(struct task_struct *target,
 902			   const struct user_regset *regset,
 903			   struct membuf to)
 904{
 905	_s390_fp_regs fp_regs;
 906
 907	if (target == current)
 908		save_fpu_regs();
 909
 910	fp_regs.fpc = target->thread.fpu.fpc;
 911	fpregs_store(&fp_regs, &target->thread.fpu);
 912
 913	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 914}
 915
 916static int s390_fpregs_set(struct task_struct *target,
 917			   const struct user_regset *regset, unsigned int pos,
 918			   unsigned int count, const void *kbuf,
 919			   const void __user *ubuf)
 920{
 921	int rc = 0;
 922	freg_t fprs[__NUM_FPRS];
 923
 924	if (target == current)
 925		save_fpu_regs();
 926
 927	if (MACHINE_HAS_VX)
 928		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 929	else
 930		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 931
 932	/* If setting FPC, must validate it first. */
 933	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 934		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 935		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 936					0, offsetof(s390_fp_regs, fprs));
 937		if (rc)
 938			return rc;
 939		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 940			return -EINVAL;
 941		target->thread.fpu.fpc = ufpc[0];
 942	}
 943
 944	if (rc == 0 && count > 0)
 945		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 946					fprs, offsetof(s390_fp_regs, fprs), -1);
 947	if (rc)
 948		return rc;
 949
 950	if (MACHINE_HAS_VX)
 951		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 952	else
 953		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 954
 955	return rc;
 956}
 957
 
 
 958static int s390_last_break_get(struct task_struct *target,
 959			       const struct user_regset *regset,
 960			       struct membuf to)
 
 961{
 962	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 963}
 964
 965static int s390_last_break_set(struct task_struct *target,
 966			       const struct user_regset *regset,
 967			       unsigned int pos, unsigned int count,
 968			       const void *kbuf, const void __user *ubuf)
 969{
 970	return 0;
 971}
 972
 973static int s390_tdb_get(struct task_struct *target,
 974			const struct user_regset *regset,
 975			struct membuf to)
 
 976{
 977	struct pt_regs *regs = task_pt_regs(target);
 978	size_t size;
 979
 980	if (!(regs->int_code & 0x200))
 981		return -ENODATA;
 982	size = sizeof(target->thread.trap_tdb.data);
 983	return membuf_write(&to, target->thread.trap_tdb.data, size);
 984}
 985
 986static int s390_tdb_set(struct task_struct *target,
 987			const struct user_regset *regset,
 988			unsigned int pos, unsigned int count,
 989			const void *kbuf, const void __user *ubuf)
 990{
 991	return 0;
 992}
 993
 994static int s390_vxrs_low_get(struct task_struct *target,
 995			     const struct user_regset *regset,
 996			     struct membuf to)
 997{
 998	__u64 vxrs[__NUM_VXRS_LOW];
 999	int i;
1000
1001	if (!MACHINE_HAS_VX)
1002		return -ENODEV;
1003	if (target == current)
1004		save_fpu_regs();
1005	for (i = 0; i < __NUM_VXRS_LOW; i++)
1006		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1007	return membuf_write(&to, vxrs, sizeof(vxrs));
1008}
1009
1010static int s390_vxrs_low_set(struct task_struct *target,
1011			     const struct user_regset *regset,
1012			     unsigned int pos, unsigned int count,
1013			     const void *kbuf, const void __user *ubuf)
1014{
1015	__u64 vxrs[__NUM_VXRS_LOW];
1016	int i, rc;
1017
1018	if (!MACHINE_HAS_VX)
1019		return -ENODEV;
1020	if (target == current)
1021		save_fpu_regs();
1022
1023	for (i = 0; i < __NUM_VXRS_LOW; i++)
1024		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1025
1026	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1027	if (rc == 0)
1028		for (i = 0; i < __NUM_VXRS_LOW; i++)
1029			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1030
1031	return rc;
1032}
1033
1034static int s390_vxrs_high_get(struct task_struct *target,
1035			      const struct user_regset *regset,
1036			      struct membuf to)
1037{
1038	if (!MACHINE_HAS_VX)
1039		return -ENODEV;
1040	if (target == current)
1041		save_fpu_regs();
1042	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1043			    __NUM_VXRS_HIGH * sizeof(__vector128));
1044}
1045
1046static int s390_vxrs_high_set(struct task_struct *target,
1047			      const struct user_regset *regset,
1048			      unsigned int pos, unsigned int count,
1049			      const void *kbuf, const void __user *ubuf)
1050{
1051	int rc;
1052
1053	if (!MACHINE_HAS_VX)
1054		return -ENODEV;
1055	if (target == current)
1056		save_fpu_regs();
1057
1058	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1059				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1060	return rc;
1061}
1062
1063static int s390_system_call_get(struct task_struct *target,
1064				const struct user_regset *regset,
1065				struct membuf to)
 
1066{
1067	return membuf_store(&to, target->thread.system_call);
 
 
1068}
1069
1070static int s390_system_call_set(struct task_struct *target,
1071				const struct user_regset *regset,
1072				unsigned int pos, unsigned int count,
1073				const void *kbuf, const void __user *ubuf)
1074{
1075	unsigned int *data = &target->thread.system_call;
1076	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1077				  data, 0, sizeof(unsigned int));
1078}
1079
1080static int s390_gs_cb_get(struct task_struct *target,
1081			  const struct user_regset *regset,
1082			  struct membuf to)
1083{
1084	struct gs_cb *data = target->thread.gs_cb;
1085
1086	if (!MACHINE_HAS_GS)
1087		return -ENODEV;
1088	if (!data)
1089		return -ENODATA;
1090	if (target == current)
1091		save_gs_cb(data);
1092	return membuf_write(&to, data, sizeof(struct gs_cb));
1093}
1094
1095static int s390_gs_cb_set(struct task_struct *target,
1096			  const struct user_regset *regset,
1097			  unsigned int pos, unsigned int count,
1098			  const void *kbuf, const void __user *ubuf)
1099{
1100	struct gs_cb gs_cb = { }, *data = NULL;
1101	int rc;
1102
1103	if (!MACHINE_HAS_GS)
1104		return -ENODEV;
1105	if (!target->thread.gs_cb) {
1106		data = kzalloc(sizeof(*data), GFP_KERNEL);
1107		if (!data)
1108			return -ENOMEM;
1109	}
1110	if (!target->thread.gs_cb)
1111		gs_cb.gsd = 25;
1112	else if (target == current)
1113		save_gs_cb(&gs_cb);
1114	else
1115		gs_cb = *target->thread.gs_cb;
1116	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1117				&gs_cb, 0, sizeof(gs_cb));
1118	if (rc) {
1119		kfree(data);
1120		return -EFAULT;
1121	}
1122	preempt_disable();
1123	if (!target->thread.gs_cb)
1124		target->thread.gs_cb = data;
1125	*target->thread.gs_cb = gs_cb;
1126	if (target == current) {
1127		__ctl_set_bit(2, 4);
1128		restore_gs_cb(target->thread.gs_cb);
1129	}
1130	preempt_enable();
1131	return rc;
1132}
1133
1134static int s390_gs_bc_get(struct task_struct *target,
1135			  const struct user_regset *regset,
1136			  struct membuf to)
1137{
1138	struct gs_cb *data = target->thread.gs_bc_cb;
1139
1140	if (!MACHINE_HAS_GS)
1141		return -ENODEV;
1142	if (!data)
1143		return -ENODATA;
1144	return membuf_write(&to, data, sizeof(struct gs_cb));
1145}
1146
1147static int s390_gs_bc_set(struct task_struct *target,
1148			  const struct user_regset *regset,
1149			  unsigned int pos, unsigned int count,
1150			  const void *kbuf, const void __user *ubuf)
1151{
1152	struct gs_cb *data = target->thread.gs_bc_cb;
1153
1154	if (!MACHINE_HAS_GS)
1155		return -ENODEV;
1156	if (!data) {
1157		data = kzalloc(sizeof(*data), GFP_KERNEL);
1158		if (!data)
1159			return -ENOMEM;
1160		target->thread.gs_bc_cb = data;
1161	}
1162	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1163				  data, 0, sizeof(struct gs_cb));
1164}
1165
1166static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1167{
1168	return (cb->rca & 0x1f) == 0 &&
1169		(cb->roa & 0xfff) == 0 &&
1170		(cb->rla & 0xfff) == 0xfff &&
1171		cb->s == 1 &&
1172		cb->k == 1 &&
1173		cb->h == 0 &&
1174		cb->reserved1 == 0 &&
1175		cb->ps == 1 &&
1176		cb->qs == 0 &&
1177		cb->pc == 1 &&
1178		cb->qc == 0 &&
1179		cb->reserved2 == 0 &&
1180		cb->reserved3 == 0 &&
1181		cb->reserved4 == 0 &&
1182		cb->reserved5 == 0 &&
1183		cb->reserved6 == 0 &&
1184		cb->reserved7 == 0 &&
1185		cb->reserved8 == 0 &&
1186		cb->rla >= cb->roa &&
1187		cb->rca >= cb->roa &&
1188		cb->rca <= cb->rla+1 &&
1189		cb->m < 3;
1190}
1191
1192static int s390_runtime_instr_get(struct task_struct *target,
1193				const struct user_regset *regset,
1194				struct membuf to)
1195{
1196	struct runtime_instr_cb *data = target->thread.ri_cb;
1197
1198	if (!test_facility(64))
1199		return -ENODEV;
1200	if (!data)
1201		return -ENODATA;
1202
1203	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1204}
1205
1206static int s390_runtime_instr_set(struct task_struct *target,
1207				  const struct user_regset *regset,
1208				  unsigned int pos, unsigned int count,
1209				  const void *kbuf, const void __user *ubuf)
1210{
1211	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1212	int rc;
1213
1214	if (!test_facility(64))
1215		return -ENODEV;
1216
1217	if (!target->thread.ri_cb) {
1218		data = kzalloc(sizeof(*data), GFP_KERNEL);
1219		if (!data)
1220			return -ENOMEM;
1221	}
1222
1223	if (target->thread.ri_cb) {
1224		if (target == current)
1225			store_runtime_instr_cb(&ri_cb);
1226		else
1227			ri_cb = *target->thread.ri_cb;
1228	}
1229
1230	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1231				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1232	if (rc) {
1233		kfree(data);
1234		return -EFAULT;
1235	}
1236
1237	if (!is_ri_cb_valid(&ri_cb)) {
1238		kfree(data);
1239		return -EINVAL;
1240	}
1241	/*
1242	 * Override access key in any case, since user space should
1243	 * not be able to set it, nor should it care about it.
1244	 */
1245	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1246	preempt_disable();
1247	if (!target->thread.ri_cb)
1248		target->thread.ri_cb = data;
1249	*target->thread.ri_cb = ri_cb;
1250	if (target == current)
1251		load_runtime_instr_cb(target->thread.ri_cb);
1252	preempt_enable();
1253
1254	return 0;
1255}
1256
1257static const struct user_regset s390_regsets[] = {
1258	{
1259		.core_note_type = NT_PRSTATUS,
1260		.n = sizeof(s390_regs) / sizeof(long),
1261		.size = sizeof(long),
1262		.align = sizeof(long),
1263		.regset_get = s390_regs_get,
1264		.set = s390_regs_set,
1265	},
1266	{
1267		.core_note_type = NT_PRFPREG,
1268		.n = sizeof(s390_fp_regs) / sizeof(long),
1269		.size = sizeof(long),
1270		.align = sizeof(long),
1271		.regset_get = s390_fpregs_get,
1272		.set = s390_fpregs_set,
1273	},
1274	{
1275		.core_note_type = NT_S390_SYSTEM_CALL,
1276		.n = 1,
1277		.size = sizeof(unsigned int),
1278		.align = sizeof(unsigned int),
1279		.regset_get = s390_system_call_get,
1280		.set = s390_system_call_set,
1281	},
1282	{
1283		.core_note_type = NT_S390_LAST_BREAK,
1284		.n = 1,
1285		.size = sizeof(long),
1286		.align = sizeof(long),
1287		.regset_get = s390_last_break_get,
1288		.set = s390_last_break_set,
1289	},
1290	{
1291		.core_note_type = NT_S390_TDB,
1292		.n = 1,
1293		.size = 256,
1294		.align = 1,
1295		.regset_get = s390_tdb_get,
1296		.set = s390_tdb_set,
1297	},
1298	{
1299		.core_note_type = NT_S390_VXRS_LOW,
1300		.n = __NUM_VXRS_LOW,
1301		.size = sizeof(__u64),
1302		.align = sizeof(__u64),
1303		.regset_get = s390_vxrs_low_get,
1304		.set = s390_vxrs_low_set,
1305	},
1306	{
1307		.core_note_type = NT_S390_VXRS_HIGH,
1308		.n = __NUM_VXRS_HIGH,
1309		.size = sizeof(__vector128),
1310		.align = sizeof(__vector128),
1311		.regset_get = s390_vxrs_high_get,
1312		.set = s390_vxrs_high_set,
1313	},
1314	{
1315		.core_note_type = NT_S390_GS_CB,
1316		.n = sizeof(struct gs_cb) / sizeof(__u64),
1317		.size = sizeof(__u64),
1318		.align = sizeof(__u64),
1319		.regset_get = s390_gs_cb_get,
1320		.set = s390_gs_cb_set,
1321	},
1322	{
1323		.core_note_type = NT_S390_GS_BC,
1324		.n = sizeof(struct gs_cb) / sizeof(__u64),
1325		.size = sizeof(__u64),
1326		.align = sizeof(__u64),
1327		.regset_get = s390_gs_bc_get,
1328		.set = s390_gs_bc_set,
1329	},
1330	{
1331		.core_note_type = NT_S390_RI_CB,
1332		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1333		.size = sizeof(__u64),
1334		.align = sizeof(__u64),
1335		.regset_get = s390_runtime_instr_get,
1336		.set = s390_runtime_instr_set,
1337	},
1338};
1339
1340static const struct user_regset_view user_s390_view = {
1341	.name = "s390x",
1342	.e_machine = EM_S390,
1343	.regsets = s390_regsets,
1344	.n = ARRAY_SIZE(s390_regsets)
1345};
1346
1347#ifdef CONFIG_COMPAT
1348static int s390_compat_regs_get(struct task_struct *target,
1349				const struct user_regset *regset,
1350				struct membuf to)
 
1351{
1352	unsigned n;
1353
1354	if (target == current)
1355		save_access_regs(target->thread.acrs);
1356
1357	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1358		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359	return 0;
1360}
1361
1362static int s390_compat_regs_set(struct task_struct *target,
1363				const struct user_regset *regset,
1364				unsigned int pos, unsigned int count,
1365				const void *kbuf, const void __user *ubuf)
1366{
1367	int rc = 0;
1368
1369	if (target == current)
1370		save_access_regs(target->thread.acrs);
1371
1372	if (kbuf) {
1373		const compat_ulong_t *k = kbuf;
1374		while (count > 0 && !rc) {
1375			rc = __poke_user_compat(target, pos, *k++);
1376			count -= sizeof(*k);
1377			pos += sizeof(*k);
1378		}
1379	} else {
1380		const compat_ulong_t  __user *u = ubuf;
1381		while (count > 0 && !rc) {
1382			compat_ulong_t word;
1383			rc = __get_user(word, u++);
1384			if (rc)
1385				break;
1386			rc = __poke_user_compat(target, pos, word);
1387			count -= sizeof(*u);
1388			pos += sizeof(*u);
1389		}
1390	}
1391
1392	if (rc == 0 && target == current)
1393		restore_access_regs(target->thread.acrs);
1394
1395	return rc;
1396}
1397
1398static int s390_compat_regs_high_get(struct task_struct *target,
1399				     const struct user_regset *regset,
1400				     struct membuf to)
 
1401{
1402	compat_ulong_t *gprs_high;
1403	int i;
1404
1405	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1406	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1407		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408	return 0;
1409}
1410
1411static int s390_compat_regs_high_set(struct task_struct *target,
1412				     const struct user_regset *regset,
1413				     unsigned int pos, unsigned int count,
1414				     const void *kbuf, const void __user *ubuf)
1415{
1416	compat_ulong_t *gprs_high;
1417	int rc = 0;
1418
1419	gprs_high = (compat_ulong_t *)
1420		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1421	if (kbuf) {
1422		const compat_ulong_t *k = kbuf;
1423		while (count > 0) {
1424			*gprs_high = *k++;
1425			*gprs_high += 2;
1426			count -= sizeof(*k);
1427		}
1428	} else {
1429		const compat_ulong_t  __user *u = ubuf;
1430		while (count > 0 && !rc) {
1431			unsigned long word;
1432			rc = __get_user(word, u++);
1433			if (rc)
1434				break;
1435			*gprs_high = word;
1436			*gprs_high += 2;
1437			count -= sizeof(*u);
1438		}
1439	}
1440
1441	return rc;
1442}
1443
1444static int s390_compat_last_break_get(struct task_struct *target,
1445				      const struct user_regset *regset,
1446				      struct membuf to)
 
1447{
1448	compat_ulong_t last_break = target->thread.last_break;
1449
1450	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static int s390_compat_last_break_set(struct task_struct *target,
1454				      const struct user_regset *regset,
1455				      unsigned int pos, unsigned int count,
1456				      const void *kbuf, const void __user *ubuf)
1457{
1458	return 0;
1459}
1460
1461static const struct user_regset s390_compat_regsets[] = {
1462	{
1463		.core_note_type = NT_PRSTATUS,
1464		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1465		.size = sizeof(compat_long_t),
1466		.align = sizeof(compat_long_t),
1467		.regset_get = s390_compat_regs_get,
1468		.set = s390_compat_regs_set,
1469	},
1470	{
1471		.core_note_type = NT_PRFPREG,
1472		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1473		.size = sizeof(compat_long_t),
1474		.align = sizeof(compat_long_t),
1475		.regset_get = s390_fpregs_get,
1476		.set = s390_fpregs_set,
1477	},
1478	{
1479		.core_note_type = NT_S390_SYSTEM_CALL,
1480		.n = 1,
1481		.size = sizeof(compat_uint_t),
1482		.align = sizeof(compat_uint_t),
1483		.regset_get = s390_system_call_get,
1484		.set = s390_system_call_set,
1485	},
1486	{
1487		.core_note_type = NT_S390_LAST_BREAK,
1488		.n = 1,
1489		.size = sizeof(long),
1490		.align = sizeof(long),
1491		.regset_get = s390_compat_last_break_get,
1492		.set = s390_compat_last_break_set,
1493	},
1494	{
1495		.core_note_type = NT_S390_TDB,
1496		.n = 1,
1497		.size = 256,
1498		.align = 1,
1499		.regset_get = s390_tdb_get,
1500		.set = s390_tdb_set,
1501	},
1502	{
1503		.core_note_type = NT_S390_VXRS_LOW,
1504		.n = __NUM_VXRS_LOW,
1505		.size = sizeof(__u64),
1506		.align = sizeof(__u64),
1507		.regset_get = s390_vxrs_low_get,
1508		.set = s390_vxrs_low_set,
1509	},
1510	{
1511		.core_note_type = NT_S390_VXRS_HIGH,
1512		.n = __NUM_VXRS_HIGH,
1513		.size = sizeof(__vector128),
1514		.align = sizeof(__vector128),
1515		.regset_get = s390_vxrs_high_get,
1516		.set = s390_vxrs_high_set,
1517	},
1518	{
1519		.core_note_type = NT_S390_HIGH_GPRS,
1520		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1521		.size = sizeof(compat_long_t),
1522		.align = sizeof(compat_long_t),
1523		.regset_get = s390_compat_regs_high_get,
1524		.set = s390_compat_regs_high_set,
1525	},
1526	{
1527		.core_note_type = NT_S390_GS_CB,
1528		.n = sizeof(struct gs_cb) / sizeof(__u64),
1529		.size = sizeof(__u64),
1530		.align = sizeof(__u64),
1531		.regset_get = s390_gs_cb_get,
1532		.set = s390_gs_cb_set,
1533	},
1534	{
1535		.core_note_type = NT_S390_GS_BC,
1536		.n = sizeof(struct gs_cb) / sizeof(__u64),
1537		.size = sizeof(__u64),
1538		.align = sizeof(__u64),
1539		.regset_get = s390_gs_bc_get,
1540		.set = s390_gs_bc_set,
1541	},
1542	{
1543		.core_note_type = NT_S390_RI_CB,
1544		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1545		.size = sizeof(__u64),
1546		.align = sizeof(__u64),
1547		.regset_get = s390_runtime_instr_get,
1548		.set = s390_runtime_instr_set,
1549	},
1550};
1551
1552static const struct user_regset_view user_s390_compat_view = {
1553	.name = "s390",
1554	.e_machine = EM_S390,
1555	.regsets = s390_compat_regsets,
1556	.n = ARRAY_SIZE(s390_compat_regsets)
1557};
1558#endif
1559
1560const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1561{
1562#ifdef CONFIG_COMPAT
1563	if (test_tsk_thread_flag(task, TIF_31BIT))
1564		return &user_s390_compat_view;
1565#endif
1566	return &user_s390_view;
1567}
1568
1569static const char *gpr_names[NUM_GPRS] = {
1570	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1571	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1572};
1573
1574unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1575{
1576	if (offset >= NUM_GPRS)
1577		return 0;
1578	return regs->gprs[offset];
1579}
1580
1581int regs_query_register_offset(const char *name)
1582{
1583	unsigned long offset;
1584
1585	if (!name || *name != 'r')
1586		return -EINVAL;
1587	if (kstrtoul(name + 1, 10, &offset))
1588		return -EINVAL;
1589	if (offset >= NUM_GPRS)
1590		return -EINVAL;
1591	return offset;
1592}
1593
1594const char *regs_query_register_name(unsigned int offset)
1595{
1596	if (offset >= NUM_GPRS)
1597		return NULL;
1598	return gpr_names[offset];
1599}
1600
1601static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1602{
1603	unsigned long ksp = kernel_stack_pointer(regs);
1604
1605	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1606}
1607
1608/**
1609 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1610 * @regs:pt_regs which contains kernel stack pointer.
1611 * @n:stack entry number.
1612 *
1613 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1614 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1615 * this returns 0.
1616 */
1617unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1618{
1619	unsigned long addr;
1620
1621	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1622	if (!regs_within_kernel_stack(regs, addr))
1623		return 0;
1624	return *(unsigned long *)addr;
1625}