Loading...
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_TDB,
46 REGSET_SYSTEM_CALL,
47 REGSET_GENERAL_EXTENDED,
48};
49
50void update_cr_regs(struct task_struct *task)
51{
52 struct pt_regs *regs = task_pt_regs(task);
53 struct thread_struct *thread = &task->thread;
54 struct per_regs old, new;
55
56#ifdef CONFIG_64BIT
57 /* Take care of the enable/disable of transactional execution. */
58 if (MACHINE_HAS_TE) {
59 unsigned long cr, cr_new;
60
61 __ctl_store(cr, 0, 0);
62 /* Set or clear transaction execution TXC bit 8. */
63 cr_new = cr | (1UL << 55);
64 if (task->thread.per_flags & PER_FLAG_NO_TE)
65 cr_new &= ~(1UL << 55);
66 if (cr_new != cr)
67 __ctl_load(cr_new, 0, 0);
68 /* Set or clear transaction execution TDC bits 62 and 63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73 cr_new |= 1UL;
74 else
75 cr_new |= 2UL;
76 }
77 if (cr_new != cr)
78 __ctl_load(cr_new, 2, 2);
79 }
80#endif
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89 new.control |= PER_EVENT_BRANCH;
90 else
91 new.control |= PER_EVENT_IFETCH;
92#ifdef CONFIG_64BIT
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95#endif
96 new.start = 0;
97 new.end = PSW_ADDR_INSN;
98 }
99
100 /* Take care of the PER enablement bit in the PSW. */
101 if (!(new.control & PER_EVENT_MASK)) {
102 regs->psw.mask &= ~PSW_MASK_PER;
103 return;
104 }
105 regs->psw.mask |= PSW_MASK_PER;
106 __ctl_store(old, 9, 11);
107 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108 __ctl_load(new, 9, 11);
109}
110
111void user_enable_single_step(struct task_struct *task)
112{
113 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115}
116
117void user_disable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_enable_block_step(struct task_struct *task)
124{
125 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127}
128
129/*
130 * Called by kernel/ptrace.c when detaching..
131 *
132 * Clear all debugging related fields.
133 */
134void ptrace_disable(struct task_struct *task)
135{
136 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139 clear_tsk_thread_flag(task, TIF_PER_TRAP);
140 task->thread.per_flags = 0;
141}
142
143#ifndef CONFIG_64BIT
144# define __ADDR_MASK 3
145#else
146# define __ADDR_MASK 7
147#endif
148
149static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151{
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 PSW_ADDR_INSN : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188}
189
190/*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200{
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220#ifdef CONFIG_64BIT
221 /*
222 * Very special case: old & broken 64 bit gdb reading
223 * from acrs[15]. Result is a 64 bit value. Read the
224 * 32 bit acrs[15] value and shift it by 32. Sick...
225 */
226 if (addr == (addr_t) &dummy->regs.acrs[15])
227 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228 else
229#endif
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246 /*
247 * floating point regs. are stored in the thread structure
248 */
249 offset = addr - (addr_t) &dummy->regs.fp_regs;
250 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252 tmp <<= BITS_PER_LONG - 32;
253
254 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255 /*
256 * Handle access to the per_info structure.
257 */
258 addr -= (addr_t) &dummy->regs.per_info;
259 tmp = __peek_user_per(child, addr);
260
261 } else
262 tmp = 0;
263
264 return tmp;
265}
266
267static int
268peek_user(struct task_struct *child, addr_t addr, addr_t data)
269{
270 addr_t tmp, mask;
271
272 /*
273 * Stupid gdb peeks/pokes the access registers in 64 bit with
274 * an alignment of 4. Programmers from hell...
275 */
276 mask = __ADDR_MASK;
277#ifdef CONFIG_64BIT
278 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280 mask = 3;
281#endif
282 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283 return -EIO;
284
285 tmp = __peek_user(child, addr);
286 return put_user(tmp, (addr_t __user *) data);
287}
288
289static inline void __poke_user_per(struct task_struct *child,
290 addr_t addr, addr_t data)
291{
292 struct per_struct_kernel *dummy = NULL;
293
294 /*
295 * There are only three fields in the per_info struct that the
296 * debugger user can write to.
297 * 1) cr9: the debugger wants to set a new PER event mask
298 * 2) starting_addr: the debugger wants to set a new starting
299 * address to use with the PER event mask.
300 * 3) ending_addr: the debugger wants to set a new ending
301 * address to use with the PER event mask.
302 * The user specified PER event mask and the start and end
303 * addresses are used only if single stepping is not in effect.
304 * Writes to any other field in per_info are ignored.
305 */
306 if (addr == (addr_t) &dummy->cr9)
307 /* PER event mask of the user specified per set. */
308 child->thread.per_user.control =
309 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310 else if (addr == (addr_t) &dummy->starting_addr)
311 /* Starting address of the user specified per set. */
312 child->thread.per_user.start = data;
313 else if (addr == (addr_t) &dummy->ending_addr)
314 /* Ending address of the user specified per set. */
315 child->thread.per_user.end = data;
316}
317
318/*
319 * Write a word to the user area of a process at location addr. This
320 * operation does have an additional problem compared to peek_user.
321 * Stores to the program status word and on the floating point
322 * control register needs to get checked for validity.
323 */
324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325{
326 struct user *dummy = NULL;
327 addr_t offset;
328
329 if (addr < (addr_t) &dummy->regs.acrs) {
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == (addr_t) &dummy->regs.psw.mask) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data & ~mask) != PSW_USER_BITS)
338 return -EINVAL;
339 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
340 return -EINVAL;
341 }
342 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
343
344 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
345 /*
346 * access registers are stored in the thread structure
347 */
348 offset = addr - (addr_t) &dummy->regs.acrs;
349#ifdef CONFIG_64BIT
350 /*
351 * Very special case: old & broken 64 bit gdb writing
352 * to acrs[15] with a 64 bit value. Ignore the lower
353 * half of the value and write the upper 32 bit to
354 * acrs[15]. Sick...
355 */
356 if (addr == (addr_t) &dummy->regs.acrs[15])
357 child->thread.acrs[15] = (unsigned int) (data >> 32);
358 else
359#endif
360 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
361
362 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
363 /*
364 * orig_gpr2 is stored on the kernel stack
365 */
366 task_pt_regs(child)->orig_gpr2 = data;
367
368 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
369 /*
370 * prevent writes of padding hole between
371 * orig_gpr2 and fp_regs on s390.
372 */
373 return 0;
374
375 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
376 /*
377 * floating point regs. are stored in the thread structure
378 */
379 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
380 if ((unsigned int) data != 0 ||
381 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
382 return -EINVAL;
383 offset = addr - (addr_t) &dummy->regs.fp_regs;
384 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
385
386 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
387 /*
388 * Handle access to the per_info structure.
389 */
390 addr -= (addr_t) &dummy->regs.per_info;
391 __poke_user_per(child, addr, data);
392
393 }
394
395 return 0;
396}
397
398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
399{
400 addr_t mask;
401
402 /*
403 * Stupid gdb peeks/pokes the access registers in 64 bit with
404 * an alignment of 4. Programmers from hell indeed...
405 */
406 mask = __ADDR_MASK;
407#ifdef CONFIG_64BIT
408 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
409 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
410 mask = 3;
411#endif
412 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
413 return -EIO;
414
415 return __poke_user(child, addr, data);
416}
417
418long arch_ptrace(struct task_struct *child, long request,
419 unsigned long addr, unsigned long data)
420{
421 ptrace_area parea;
422 int copied, ret;
423
424 switch (request) {
425 case PTRACE_PEEKUSR:
426 /* read the word at location addr in the USER area. */
427 return peek_user(child, addr, data);
428
429 case PTRACE_POKEUSR:
430 /* write the word at location addr in the USER area */
431 return poke_user(child, addr, data);
432
433 case PTRACE_PEEKUSR_AREA:
434 case PTRACE_POKEUSR_AREA:
435 if (copy_from_user(&parea, (void __force __user *) addr,
436 sizeof(parea)))
437 return -EFAULT;
438 addr = parea.kernel_addr;
439 data = parea.process_addr;
440 copied = 0;
441 while (copied < parea.len) {
442 if (request == PTRACE_PEEKUSR_AREA)
443 ret = peek_user(child, addr, data);
444 else {
445 addr_t utmp;
446 if (get_user(utmp,
447 (addr_t __force __user *) data))
448 return -EFAULT;
449 ret = poke_user(child, addr, utmp);
450 }
451 if (ret)
452 return ret;
453 addr += sizeof(unsigned long);
454 data += sizeof(unsigned long);
455 copied += sizeof(unsigned long);
456 }
457 return 0;
458 case PTRACE_GET_LAST_BREAK:
459 put_user(task_thread_info(child)->last_break,
460 (unsigned long __user *) data);
461 return 0;
462 case PTRACE_ENABLE_TE:
463 if (!MACHINE_HAS_TE)
464 return -EIO;
465 child->thread.per_flags &= ~PER_FLAG_NO_TE;
466 return 0;
467 case PTRACE_DISABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags |= PER_FLAG_NO_TE;
471 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
472 return 0;
473 case PTRACE_TE_ABORT_RAND:
474 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
475 return -EIO;
476 switch (data) {
477 case 0UL:
478 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
479 break;
480 case 1UL:
481 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
482 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
483 break;
484 case 2UL:
485 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
487 break;
488 default:
489 return -EINVAL;
490 }
491 return 0;
492 default:
493 /* Removing high order bit from addr (only for 31 bit). */
494 addr &= PSW_ADDR_INSN;
495 return ptrace_request(child, request, addr, data);
496 }
497}
498
499#ifdef CONFIG_COMPAT
500/*
501 * Now the fun part starts... a 31 bit program running in the
502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
504 * to handle, the difference to the 64 bit versions of the requests
505 * is that the access is done in multiples of 4 byte instead of
506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
509 * is a 31 bit program too, the content of struct user can be
510 * emulated. A 31 bit program peeking into the struct user of
511 * a 64 bit program is a no-no.
512 */
513
514/*
515 * Same as peek_user_per but for a 31 bit program.
516 */
517static inline __u32 __peek_user_per_compat(struct task_struct *child,
518 addr_t addr)
519{
520 struct compat_per_struct_kernel *dummy32 = NULL;
521
522 if (addr == (addr_t) &dummy32->cr9)
523 /* Control bits of the active per set. */
524 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
525 PER_EVENT_IFETCH : child->thread.per_user.control;
526 else if (addr == (addr_t) &dummy32->cr10)
527 /* Start address of the active per set. */
528 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 0 : child->thread.per_user.start;
530 else if (addr == (addr_t) &dummy32->cr11)
531 /* End address of the active per set. */
532 return test_thread_flag(TIF_SINGLE_STEP) ?
533 PSW32_ADDR_INSN : child->thread.per_user.end;
534 else if (addr == (addr_t) &dummy32->bits)
535 /* Single-step bit. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 0x80000000 : 0;
538 else if (addr == (addr_t) &dummy32->starting_addr)
539 /* Start address of the user specified per set. */
540 return (__u32) child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->ending_addr)
542 /* End address of the user specified per set. */
543 return (__u32) child->thread.per_user.end;
544 else if (addr == (addr_t) &dummy32->perc_atmid)
545 /* PER code, ATMID and AI of the last PER trap */
546 return (__u32) child->thread.per_event.cause << 16;
547 else if (addr == (addr_t) &dummy32->address)
548 /* Address of the last PER trap */
549 return (__u32) child->thread.per_event.address;
550 else if (addr == (addr_t) &dummy32->access_id)
551 /* Access id of the last PER trap */
552 return (__u32) child->thread.per_event.paid << 24;
553 return 0;
554}
555
556/*
557 * Same as peek_user but for a 31 bit program.
558 */
559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
560{
561 struct compat_user *dummy32 = NULL;
562 addr_t offset;
563 __u32 tmp;
564
565 if (addr < (addr_t) &dummy32->regs.acrs) {
566 struct pt_regs *regs = task_pt_regs(child);
567 /*
568 * psw and gprs are stored on the stack
569 */
570 if (addr == (addr_t) &dummy32->regs.psw.mask) {
571 /* Fake a 31 bit psw mask. */
572 tmp = (__u32)(regs->psw.mask >> 32);
573 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
574 tmp |= PSW32_USER_BITS;
575 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
576 /* Fake a 31 bit psw address. */
577 tmp = (__u32) regs->psw.addr |
578 (__u32)(regs->psw.mask & PSW_MASK_BA);
579 } else {
580 /* gpr 0-15 */
581 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
582 }
583 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
584 /*
585 * access registers are stored in the thread structure
586 */
587 offset = addr - (addr_t) &dummy32->regs.acrs;
588 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
589
590 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
591 /*
592 * orig_gpr2 is stored on the kernel stack
593 */
594 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
595
596 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
597 /*
598 * prevent reads of padding hole between
599 * orig_gpr2 and fp_regs on s390.
600 */
601 tmp = 0;
602
603 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
604 /*
605 * floating point regs. are stored in the thread structure
606 */
607 offset = addr - (addr_t) &dummy32->regs.fp_regs;
608 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
609
610 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
611 /*
612 * Handle access to the per_info structure.
613 */
614 addr -= (addr_t) &dummy32->regs.per_info;
615 tmp = __peek_user_per_compat(child, addr);
616
617 } else
618 tmp = 0;
619
620 return tmp;
621}
622
623static int peek_user_compat(struct task_struct *child,
624 addr_t addr, addr_t data)
625{
626 __u32 tmp;
627
628 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
629 return -EIO;
630
631 tmp = __peek_user_compat(child, addr);
632 return put_user(tmp, (__u32 __user *) data);
633}
634
635/*
636 * Same as poke_user_per but for a 31 bit program.
637 */
638static inline void __poke_user_per_compat(struct task_struct *child,
639 addr_t addr, __u32 data)
640{
641 struct compat_per_struct_kernel *dummy32 = NULL;
642
643 if (addr == (addr_t) &dummy32->cr9)
644 /* PER event mask of the user specified per set. */
645 child->thread.per_user.control =
646 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
647 else if (addr == (addr_t) &dummy32->starting_addr)
648 /* Starting address of the user specified per set. */
649 child->thread.per_user.start = data;
650 else if (addr == (addr_t) &dummy32->ending_addr)
651 /* Ending address of the user specified per set. */
652 child->thread.per_user.end = data;
653}
654
655/*
656 * Same as poke_user but for a 31 bit program.
657 */
658static int __poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 struct compat_user *dummy32 = NULL;
662 __u32 tmp = (__u32) data;
663 addr_t offset;
664
665 if (addr < (addr_t) &dummy32->regs.acrs) {
666 struct pt_regs *regs = task_pt_regs(child);
667 /*
668 * psw, gprs, acrs and orig_gpr2 are stored on the stack
669 */
670 if (addr == (addr_t) &dummy32->regs.psw.mask) {
671 __u32 mask = PSW32_MASK_USER;
672
673 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
674 /* Build a 64 bit psw mask from 31 bit mask. */
675 if ((tmp & ~mask) != PSW32_USER_BITS)
676 /* Invalid psw mask. */
677 return -EINVAL;
678 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
679 (regs->psw.mask & PSW_MASK_BA) |
680 (__u64)(tmp & mask) << 32;
681 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
682 /* Build a 64 bit psw address from 31 bit address. */
683 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
684 /* Transfer 31 bit amode bit to psw mask. */
685 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
686 (__u64)(tmp & PSW32_ADDR_AMODE);
687 } else {
688 /* gpr 0-15 */
689 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
690 }
691 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
692 /*
693 * access registers are stored in the thread structure
694 */
695 offset = addr - (addr_t) &dummy32->regs.acrs;
696 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
697
698 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
699 /*
700 * orig_gpr2 is stored on the kernel stack
701 */
702 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
703
704 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
705 /*
706 * prevent writess of padding hole between
707 * orig_gpr2 and fp_regs on s390.
708 */
709 return 0;
710
711 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
712 /*
713 * floating point regs. are stored in the thread structure
714 */
715 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
716 test_fp_ctl(tmp))
717 return -EINVAL;
718 offset = addr - (addr_t) &dummy32->regs.fp_regs;
719 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
720
721 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
722 /*
723 * Handle access to the per_info structure.
724 */
725 addr -= (addr_t) &dummy32->regs.per_info;
726 __poke_user_per_compat(child, addr, data);
727 }
728
729 return 0;
730}
731
732static int poke_user_compat(struct task_struct *child,
733 addr_t addr, addr_t data)
734{
735 if (!is_compat_task() || (addr & 3) ||
736 addr > sizeof(struct compat_user) - 3)
737 return -EIO;
738
739 return __poke_user_compat(child, addr, data);
740}
741
742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
743 compat_ulong_t caddr, compat_ulong_t cdata)
744{
745 unsigned long addr = caddr;
746 unsigned long data = cdata;
747 compat_ptrace_area parea;
748 int copied, ret;
749
750 switch (request) {
751 case PTRACE_PEEKUSR:
752 /* read the word at location addr in the USER area. */
753 return peek_user_compat(child, addr, data);
754
755 case PTRACE_POKEUSR:
756 /* write the word at location addr in the USER area */
757 return poke_user_compat(child, addr, data);
758
759 case PTRACE_PEEKUSR_AREA:
760 case PTRACE_POKEUSR_AREA:
761 if (copy_from_user(&parea, (void __force __user *) addr,
762 sizeof(parea)))
763 return -EFAULT;
764 addr = parea.kernel_addr;
765 data = parea.process_addr;
766 copied = 0;
767 while (copied < parea.len) {
768 if (request == PTRACE_PEEKUSR_AREA)
769 ret = peek_user_compat(child, addr, data);
770 else {
771 __u32 utmp;
772 if (get_user(utmp,
773 (__u32 __force __user *) data))
774 return -EFAULT;
775 ret = poke_user_compat(child, addr, utmp);
776 }
777 if (ret)
778 return ret;
779 addr += sizeof(unsigned int);
780 data += sizeof(unsigned int);
781 copied += sizeof(unsigned int);
782 }
783 return 0;
784 case PTRACE_GET_LAST_BREAK:
785 put_user(task_thread_info(child)->last_break,
786 (unsigned int __user *) data);
787 return 0;
788 }
789 return compat_ptrace_request(child, request, addr, data);
790}
791#endif
792
793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
794{
795 long ret = 0;
796
797 /* Do the secure computing check first. */
798 if (secure_computing(regs->gprs[2])) {
799 /* seccomp failures shouldn't expose any additional code. */
800 ret = -1;
801 goto out;
802 }
803
804 /*
805 * The sysc_tracesys code in entry.S stored the system
806 * call number to gprs[2].
807 */
808 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
809 (tracehook_report_syscall_entry(regs) ||
810 regs->gprs[2] >= NR_syscalls)) {
811 /*
812 * Tracing decided this syscall should not happen or the
813 * debugger stored an invalid system call number. Skip
814 * the system call and the system call restart handling.
815 */
816 clear_thread_flag(TIF_SYSCALL);
817 ret = -1;
818 }
819
820 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
821 trace_sys_enter(regs, regs->gprs[2]);
822
823 audit_syscall_entry(is_compat_task() ?
824 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
825 regs->gprs[2], regs->orig_gpr2,
826 regs->gprs[3], regs->gprs[4],
827 regs->gprs[5]);
828out:
829 return ret ?: regs->gprs[2];
830}
831
832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
833{
834 audit_syscall_exit(regs);
835
836 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
837 trace_sys_exit(regs, regs->gprs[2]);
838
839 if (test_thread_flag(TIF_SYSCALL_TRACE))
840 tracehook_report_syscall_exit(regs, 0);
841}
842
843/*
844 * user_regset definitions.
845 */
846
847static int s390_regs_get(struct task_struct *target,
848 const struct user_regset *regset,
849 unsigned int pos, unsigned int count,
850 void *kbuf, void __user *ubuf)
851{
852 if (target == current)
853 save_access_regs(target->thread.acrs);
854
855 if (kbuf) {
856 unsigned long *k = kbuf;
857 while (count > 0) {
858 *k++ = __peek_user(target, pos);
859 count -= sizeof(*k);
860 pos += sizeof(*k);
861 }
862 } else {
863 unsigned long __user *u = ubuf;
864 while (count > 0) {
865 if (__put_user(__peek_user(target, pos), u++))
866 return -EFAULT;
867 count -= sizeof(*u);
868 pos += sizeof(*u);
869 }
870 }
871 return 0;
872}
873
874static int s390_regs_set(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 const void *kbuf, const void __user *ubuf)
878{
879 int rc = 0;
880
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 const unsigned long *k = kbuf;
886 while (count > 0 && !rc) {
887 rc = __poke_user(target, pos, *k++);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 const unsigned long __user *u = ubuf;
893 while (count > 0 && !rc) {
894 unsigned long word;
895 rc = __get_user(word, u++);
896 if (rc)
897 break;
898 rc = __poke_user(target, pos, word);
899 count -= sizeof(*u);
900 pos += sizeof(*u);
901 }
902 }
903
904 if (rc == 0 && target == current)
905 restore_access_regs(target->thread.acrs);
906
907 return rc;
908}
909
910static int s390_fpregs_get(struct task_struct *target,
911 const struct user_regset *regset, unsigned int pos,
912 unsigned int count, void *kbuf, void __user *ubuf)
913{
914 if (target == current) {
915 save_fp_ctl(&target->thread.fp_regs.fpc);
916 save_fp_regs(target->thread.fp_regs.fprs);
917 }
918
919 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
920 &target->thread.fp_regs, 0, -1);
921}
922
923static int s390_fpregs_set(struct task_struct *target,
924 const struct user_regset *regset, unsigned int pos,
925 unsigned int count, const void *kbuf,
926 const void __user *ubuf)
927{
928 int rc = 0;
929
930 if (target == current) {
931 save_fp_ctl(&target->thread.fp_regs.fpc);
932 save_fp_regs(target->thread.fp_regs.fprs);
933 }
934
935 /* If setting FPC, must validate it first. */
936 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
937 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
938 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
939 0, offsetof(s390_fp_regs, fprs));
940 if (rc)
941 return rc;
942 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
943 return -EINVAL;
944 target->thread.fp_regs.fpc = ufpc[0];
945 }
946
947 if (rc == 0 && count > 0)
948 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 target->thread.fp_regs.fprs,
950 offsetof(s390_fp_regs, fprs), -1);
951
952 if (rc == 0 && target == current) {
953 restore_fp_ctl(&target->thread.fp_regs.fpc);
954 restore_fp_regs(target->thread.fp_regs.fprs);
955 }
956
957 return rc;
958}
959
960#ifdef CONFIG_64BIT
961
962static int s390_last_break_get(struct task_struct *target,
963 const struct user_regset *regset,
964 unsigned int pos, unsigned int count,
965 void *kbuf, void __user *ubuf)
966{
967 if (count > 0) {
968 if (kbuf) {
969 unsigned long *k = kbuf;
970 *k = task_thread_info(target)->last_break;
971 } else {
972 unsigned long __user *u = ubuf;
973 if (__put_user(task_thread_info(target)->last_break, u))
974 return -EFAULT;
975 }
976 }
977 return 0;
978}
979
980static int s390_last_break_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984{
985 return 0;
986}
987
988static int s390_tdb_get(struct task_struct *target,
989 const struct user_regset *regset,
990 unsigned int pos, unsigned int count,
991 void *kbuf, void __user *ubuf)
992{
993 struct pt_regs *regs = task_pt_regs(target);
994 unsigned char *data;
995
996 if (!(regs->int_code & 0x200))
997 return -ENODATA;
998 data = target->thread.trap_tdb;
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003 const struct user_regset *regset,
1004 unsigned int pos, unsigned int count,
1005 const void *kbuf, const void __user *ubuf)
1006{
1007 return 0;
1008}
1009
1010#endif
1011
1012static int s390_system_call_get(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 void *kbuf, void __user *ubuf)
1016{
1017 unsigned int *data = &task_thread_info(target)->system_call;
1018 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019 data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023 const struct user_regset *regset,
1024 unsigned int pos, unsigned int count,
1025 const void *kbuf, const void __user *ubuf)
1026{
1027 unsigned int *data = &task_thread_info(target)->system_call;
1028 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029 data, 0, sizeof(unsigned int));
1030}
1031
1032static const struct user_regset s390_regsets[] = {
1033 [REGSET_GENERAL] = {
1034 .core_note_type = NT_PRSTATUS,
1035 .n = sizeof(s390_regs) / sizeof(long),
1036 .size = sizeof(long),
1037 .align = sizeof(long),
1038 .get = s390_regs_get,
1039 .set = s390_regs_set,
1040 },
1041 [REGSET_FP] = {
1042 .core_note_type = NT_PRFPREG,
1043 .n = sizeof(s390_fp_regs) / sizeof(long),
1044 .size = sizeof(long),
1045 .align = sizeof(long),
1046 .get = s390_fpregs_get,
1047 .set = s390_fpregs_set,
1048 },
1049#ifdef CONFIG_64BIT
1050 [REGSET_LAST_BREAK] = {
1051 .core_note_type = NT_S390_LAST_BREAK,
1052 .n = 1,
1053 .size = sizeof(long),
1054 .align = sizeof(long),
1055 .get = s390_last_break_get,
1056 .set = s390_last_break_set,
1057 },
1058 [REGSET_TDB] = {
1059 .core_note_type = NT_S390_TDB,
1060 .n = 1,
1061 .size = 256,
1062 .align = 1,
1063 .get = s390_tdb_get,
1064 .set = s390_tdb_set,
1065 },
1066#endif
1067 [REGSET_SYSTEM_CALL] = {
1068 .core_note_type = NT_S390_SYSTEM_CALL,
1069 .n = 1,
1070 .size = sizeof(unsigned int),
1071 .align = sizeof(unsigned int),
1072 .get = s390_system_call_get,
1073 .set = s390_system_call_set,
1074 },
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078 .name = UTS_MACHINE,
1079 .e_machine = EM_S390,
1080 .regsets = s390_regsets,
1081 .n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1089{
1090 if (target == current)
1091 save_access_regs(target->thread.acrs);
1092
1093 if (kbuf) {
1094 compat_ulong_t *k = kbuf;
1095 while (count > 0) {
1096 *k++ = __peek_user_compat(target, pos);
1097 count -= sizeof(*k);
1098 pos += sizeof(*k);
1099 }
1100 } else {
1101 compat_ulong_t __user *u = ubuf;
1102 while (count > 0) {
1103 if (__put_user(__peek_user_compat(target, pos), u++))
1104 return -EFAULT;
1105 count -= sizeof(*u);
1106 pos += sizeof(*u);
1107 }
1108 }
1109 return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113 const struct user_regset *regset,
1114 unsigned int pos, unsigned int count,
1115 const void *kbuf, const void __user *ubuf)
1116{
1117 int rc = 0;
1118
1119 if (target == current)
1120 save_access_regs(target->thread.acrs);
1121
1122 if (kbuf) {
1123 const compat_ulong_t *k = kbuf;
1124 while (count > 0 && !rc) {
1125 rc = __poke_user_compat(target, pos, *k++);
1126 count -= sizeof(*k);
1127 pos += sizeof(*k);
1128 }
1129 } else {
1130 const compat_ulong_t __user *u = ubuf;
1131 while (count > 0 && !rc) {
1132 compat_ulong_t word;
1133 rc = __get_user(word, u++);
1134 if (rc)
1135 break;
1136 rc = __poke_user_compat(target, pos, word);
1137 count -= sizeof(*u);
1138 pos += sizeof(*u);
1139 }
1140 }
1141
1142 if (rc == 0 && target == current)
1143 restore_access_regs(target->thread.acrs);
1144
1145 return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 void *kbuf, void __user *ubuf)
1152{
1153 compat_ulong_t *gprs_high;
1154
1155 gprs_high = (compat_ulong_t *)
1156 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157 if (kbuf) {
1158 compat_ulong_t *k = kbuf;
1159 while (count > 0) {
1160 *k++ = *gprs_high;
1161 gprs_high += 2;
1162 count -= sizeof(*k);
1163 }
1164 } else {
1165 compat_ulong_t __user *u = ubuf;
1166 while (count > 0) {
1167 if (__put_user(*gprs_high, u++))
1168 return -EFAULT;
1169 gprs_high += 2;
1170 count -= sizeof(*u);
1171 }
1172 }
1173 return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177 const struct user_regset *regset,
1178 unsigned int pos, unsigned int count,
1179 const void *kbuf, const void __user *ubuf)
1180{
1181 compat_ulong_t *gprs_high;
1182 int rc = 0;
1183
1184 gprs_high = (compat_ulong_t *)
1185 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186 if (kbuf) {
1187 const compat_ulong_t *k = kbuf;
1188 while (count > 0) {
1189 *gprs_high = *k++;
1190 *gprs_high += 2;
1191 count -= sizeof(*k);
1192 }
1193 } else {
1194 const compat_ulong_t __user *u = ubuf;
1195 while (count > 0 && !rc) {
1196 unsigned long word;
1197 rc = __get_user(word, u++);
1198 if (rc)
1199 break;
1200 *gprs_high = word;
1201 *gprs_high += 2;
1202 count -= sizeof(*u);
1203 }
1204 }
1205
1206 return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 unsigned int pos, unsigned int count,
1212 void *kbuf, void __user *ubuf)
1213{
1214 compat_ulong_t last_break;
1215
1216 if (count > 0) {
1217 last_break = task_thread_info(target)->last_break;
1218 if (kbuf) {
1219 unsigned long *k = kbuf;
1220 *k = last_break;
1221 } else {
1222 unsigned long __user *u = ubuf;
1223 if (__put_user(last_break, u))
1224 return -EFAULT;
1225 }
1226 }
1227 return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231 const struct user_regset *regset,
1232 unsigned int pos, unsigned int count,
1233 const void *kbuf, const void __user *ubuf)
1234{
1235 return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239 [REGSET_GENERAL] = {
1240 .core_note_type = NT_PRSTATUS,
1241 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242 .size = sizeof(compat_long_t),
1243 .align = sizeof(compat_long_t),
1244 .get = s390_compat_regs_get,
1245 .set = s390_compat_regs_set,
1246 },
1247 [REGSET_FP] = {
1248 .core_note_type = NT_PRFPREG,
1249 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250 .size = sizeof(compat_long_t),
1251 .align = sizeof(compat_long_t),
1252 .get = s390_fpregs_get,
1253 .set = s390_fpregs_set,
1254 },
1255 [REGSET_LAST_BREAK] = {
1256 .core_note_type = NT_S390_LAST_BREAK,
1257 .n = 1,
1258 .size = sizeof(long),
1259 .align = sizeof(long),
1260 .get = s390_compat_last_break_get,
1261 .set = s390_compat_last_break_set,
1262 },
1263 [REGSET_TDB] = {
1264 .core_note_type = NT_S390_TDB,
1265 .n = 1,
1266 .size = 256,
1267 .align = 1,
1268 .get = s390_tdb_get,
1269 .set = s390_tdb_set,
1270 },
1271 [REGSET_SYSTEM_CALL] = {
1272 .core_note_type = NT_S390_SYSTEM_CALL,
1273 .n = 1,
1274 .size = sizeof(compat_uint_t),
1275 .align = sizeof(compat_uint_t),
1276 .get = s390_system_call_get,
1277 .set = s390_system_call_set,
1278 },
1279 [REGSET_GENERAL_EXTENDED] = {
1280 .core_note_type = NT_S390_HIGH_GPRS,
1281 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282 .size = sizeof(compat_long_t),
1283 .align = sizeof(compat_long_t),
1284 .get = s390_compat_regs_high_get,
1285 .set = s390_compat_regs_high_set,
1286 },
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290 .name = "s390",
1291 .e_machine = EM_S390,
1292 .regsets = s390_compat_regsets,
1293 .n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300 if (test_tsk_thread_flag(task, TIF_31BIT))
1301 return &user_s390_compat_view;
1302#endif
1303 return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1308 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313 if (offset >= NUM_GPRS)
1314 return 0;
1315 return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320 unsigned long offset;
1321
1322 if (!name || *name != 'r')
1323 return -EINVAL;
1324 if (kstrtoul(name + 1, 10, &offset))
1325 return -EINVAL;
1326 if (offset >= NUM_GPRS)
1327 return -EINVAL;
1328 return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333 if (offset >= NUM_GPRS)
1334 return NULL;
1335 return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340 unsigned long ksp = kernel_stack_pointer(regs);
1341
1342 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356 unsigned long addr;
1357
1358 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359 if (!regs_within_kernel_stack(regs, addr))
1360 return 0;
1361 return *(unsigned long *)addr;
1362}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include "asm/ptrace.h"
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/sched/task_stack.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/audit.h>
21#include <linux/signal.h>
22#include <linux/elf.h>
23#include <linux/regset.h>
24#include <linux/tracehook.h>
25#include <linux/seccomp.h>
26#include <linux/compat.h>
27#include <trace/syscall.h>
28#include <asm/page.h>
29#include <linux/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include <asm/runtime_instr.h>
33#include <asm/facility.h>
34
35#include "entry.h"
36
37#ifdef CONFIG_COMPAT
38#include "compat_ptrace.h"
39#endif
40
41void update_cr_regs(struct task_struct *task)
42{
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46 union ctlreg0 cr0_old, cr0_new;
47 union ctlreg2 cr2_old, cr2_new;
48 int cr0_changed, cr2_changed;
49
50 __ctl_store(cr0_old.val, 0, 0);
51 __ctl_store(cr2_old.val, 2, 2);
52 cr0_new = cr0_old;
53 cr2_new = cr2_old;
54 /* Take care of the enable/disable of transactional execution. */
55 if (MACHINE_HAS_TE) {
56 /* Set or clear transaction execution TXC bit 8. */
57 cr0_new.tcx = 1;
58 if (task->thread.per_flags & PER_FLAG_NO_TE)
59 cr0_new.tcx = 0;
60 /* Set or clear transaction execution TDC bits 62 and 63. */
61 cr2_new.tdc = 0;
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
63 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
64 cr2_new.tdc = 1;
65 else
66 cr2_new.tdc = 2;
67 }
68 }
69 /* Take care of enable/disable of guarded storage. */
70 if (MACHINE_HAS_GS) {
71 cr2_new.gse = 0;
72 if (task->thread.gs_cb)
73 cr2_new.gse = 1;
74 }
75 /* Load control register 0/2 iff changed */
76 cr0_changed = cr0_new.val != cr0_old.val;
77 cr2_changed = cr2_new.val != cr2_old.val;
78 if (cr0_changed)
79 __ctl_load(cr0_new.val, 0, 0);
80 if (cr2_changed)
81 __ctl_load(cr2_new.val, 2, 2);
82 /* Copy user specified PER registers */
83 new.control = thread->per_user.control;
84 new.start = thread->per_user.start;
85 new.end = thread->per_user.end;
86
87 /* merge TIF_SINGLE_STEP into user specified PER registers. */
88 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91 new.control |= PER_EVENT_BRANCH;
92 else
93 new.control |= PER_EVENT_IFETCH;
94 new.control |= PER_CONTROL_SUSPENSION;
95 new.control |= PER_EVENT_TRANSACTION_END;
96 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97 new.control |= PER_EVENT_IFETCH;
98 new.start = 0;
99 new.end = -1UL;
100 }
101
102 /* Take care of the PER enablement bit in the PSW. */
103 if (!(new.control & PER_EVENT_MASK)) {
104 regs->psw.mask &= ~PSW_MASK_PER;
105 return;
106 }
107 regs->psw.mask |= PSW_MASK_PER;
108 __ctl_store(old, 9, 11);
109 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110 __ctl_load(new, 9, 11);
111}
112
113void user_enable_single_step(struct task_struct *task)
114{
115 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117}
118
119void user_disable_single_step(struct task_struct *task)
120{
121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123}
124
125void user_enable_block_step(struct task_struct *task)
126{
127 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129}
130
131/*
132 * Called by kernel/ptrace.c when detaching..
133 *
134 * Clear all debugging related fields.
135 */
136void ptrace_disable(struct task_struct *task)
137{
138 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141 clear_tsk_thread_flag(task, TIF_PER_TRAP);
142 task->thread.per_flags = 0;
143}
144
145#define __ADDR_MASK 7
146
147static inline unsigned long __peek_user_per(struct task_struct *child,
148 addr_t addr)
149{
150 struct per_struct_kernel *dummy = NULL;
151
152 if (addr == (addr_t) &dummy->cr9)
153 /* Control bits of the active per set. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 PER_EVENT_IFETCH : child->thread.per_user.control;
156 else if (addr == (addr_t) &dummy->cr10)
157 /* Start address of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 0 : child->thread.per_user.start;
160 else if (addr == (addr_t) &dummy->cr11)
161 /* End address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 -1UL : child->thread.per_user.end;
164 else if (addr == (addr_t) &dummy->bits)
165 /* Single-step bit. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 (1UL << (BITS_PER_LONG - 1)) : 0;
168 else if (addr == (addr_t) &dummy->starting_addr)
169 /* Start address of the user specified per set. */
170 return child->thread.per_user.start;
171 else if (addr == (addr_t) &dummy->ending_addr)
172 /* End address of the user specified per set. */
173 return child->thread.per_user.end;
174 else if (addr == (addr_t) &dummy->perc_atmid)
175 /* PER code, ATMID and AI of the last PER trap */
176 return (unsigned long)
177 child->thread.per_event.cause << (BITS_PER_LONG - 16);
178 else if (addr == (addr_t) &dummy->address)
179 /* Address of the last PER trap */
180 return child->thread.per_event.address;
181 else if (addr == (addr_t) &dummy->access_id)
182 /* Access id of the last PER trap */
183 return (unsigned long)
184 child->thread.per_event.paid << (BITS_PER_LONG - 8);
185 return 0;
186}
187
188/*
189 * Read the word at offset addr from the user area of a process. The
190 * trouble here is that the information is littered over different
191 * locations. The process registers are found on the kernel stack,
192 * the floating point stuff and the trace settings are stored in
193 * the task structure. In addition the different structures in
194 * struct user contain pad bytes that should be read as zeroes.
195 * Lovely...
196 */
197static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198{
199 struct user *dummy = NULL;
200 addr_t offset, tmp;
201
202 if (addr < (addr_t) &dummy->regs.acrs) {
203 /*
204 * psw and gprs are stored on the stack
205 */
206 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207 if (addr == (addr_t) &dummy->regs.psw.mask) {
208 /* Return a clean psw mask. */
209 tmp &= PSW_MASK_USER | PSW_MASK_RI;
210 tmp |= PSW_USER_BITS;
211 }
212
213 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214 /*
215 * access registers are stored in the thread structure
216 */
217 offset = addr - (addr_t) &dummy->regs.acrs;
218 /*
219 * Very special case: old & broken 64 bit gdb reading
220 * from acrs[15]. Result is a 64 bit value. Read the
221 * 32 bit acrs[15] value and shift it by 32. Sick...
222 */
223 if (addr == (addr_t) &dummy->regs.acrs[15])
224 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225 else
226 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229 /*
230 * orig_gpr2 is stored on the kernel stack
231 */
232 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235 /*
236 * prevent reads of padding hole between
237 * orig_gpr2 and fp_regs on s390.
238 */
239 tmp = 0;
240
241 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242 /*
243 * floating point control reg. is in the thread structure
244 */
245 tmp = child->thread.fpu.fpc;
246 tmp <<= BITS_PER_LONG - 32;
247
248 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249 /*
250 * floating point regs. are either in child->thread.fpu
251 * or the child->thread.fpu.vxrs array
252 */
253 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254 if (MACHINE_HAS_VX)
255 tmp = *(addr_t *)
256 ((addr_t) child->thread.fpu.vxrs + 2*offset);
257 else
258 tmp = *(addr_t *)
259 ((addr_t) child->thread.fpu.fprs + offset);
260
261 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262 /*
263 * Handle access to the per_info structure.
264 */
265 addr -= (addr_t) &dummy->regs.per_info;
266 tmp = __peek_user_per(child, addr);
267
268 } else
269 tmp = 0;
270
271 return tmp;
272}
273
274static int
275peek_user(struct task_struct *child, addr_t addr, addr_t data)
276{
277 addr_t tmp, mask;
278
279 /*
280 * Stupid gdb peeks/pokes the access registers in 64 bit with
281 * an alignment of 4. Programmers from hell...
282 */
283 mask = __ADDR_MASK;
284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286 mask = 3;
287 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288 return -EIO;
289
290 tmp = __peek_user(child, addr);
291 return put_user(tmp, (addr_t __user *) data);
292}
293
294static inline void __poke_user_per(struct task_struct *child,
295 addr_t addr, addr_t data)
296{
297 struct per_struct_kernel *dummy = NULL;
298
299 /*
300 * There are only three fields in the per_info struct that the
301 * debugger user can write to.
302 * 1) cr9: the debugger wants to set a new PER event mask
303 * 2) starting_addr: the debugger wants to set a new starting
304 * address to use with the PER event mask.
305 * 3) ending_addr: the debugger wants to set a new ending
306 * address to use with the PER event mask.
307 * The user specified PER event mask and the start and end
308 * addresses are used only if single stepping is not in effect.
309 * Writes to any other field in per_info are ignored.
310 */
311 if (addr == (addr_t) &dummy->cr9)
312 /* PER event mask of the user specified per set. */
313 child->thread.per_user.control =
314 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315 else if (addr == (addr_t) &dummy->starting_addr)
316 /* Starting address of the user specified per set. */
317 child->thread.per_user.start = data;
318 else if (addr == (addr_t) &dummy->ending_addr)
319 /* Ending address of the user specified per set. */
320 child->thread.per_user.end = data;
321}
322
323/*
324 * Write a word to the user area of a process at location addr. This
325 * operation does have an additional problem compared to peek_user.
326 * Stores to the program status word and on the floating point
327 * control register needs to get checked for validity.
328 */
329static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330{
331 struct user *dummy = NULL;
332 addr_t offset;
333
334
335 if (addr < (addr_t) &dummy->regs.acrs) {
336 struct pt_regs *regs = task_pt_regs(child);
337 /*
338 * psw and gprs are stored on the stack
339 */
340 if (addr == (addr_t) &dummy->regs.psw.mask) {
341 unsigned long mask = PSW_MASK_USER;
342
343 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
344 if ((data ^ PSW_USER_BITS) & ~mask)
345 /* Invalid psw mask. */
346 return -EINVAL;
347 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
348 /* Invalid address-space-control bits */
349 return -EINVAL;
350 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
351 /* Invalid addressing mode bits */
352 return -EINVAL;
353 }
354
355 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
356 addr == offsetof(struct user, regs.gprs[2])) {
357 struct pt_regs *regs = task_pt_regs(child);
358
359 regs->int_code = 0x20000 | (data & 0xffff);
360 }
361 *(addr_t *)((addr_t) ®s->psw + addr) = data;
362 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
363 /*
364 * access registers are stored in the thread structure
365 */
366 offset = addr - (addr_t) &dummy->regs.acrs;
367 /*
368 * Very special case: old & broken 64 bit gdb writing
369 * to acrs[15] with a 64 bit value. Ignore the lower
370 * half of the value and write the upper 32 bit to
371 * acrs[15]. Sick...
372 */
373 if (addr == (addr_t) &dummy->regs.acrs[15])
374 child->thread.acrs[15] = (unsigned int) (data >> 32);
375 else
376 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
377
378 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
379 /*
380 * orig_gpr2 is stored on the kernel stack
381 */
382 task_pt_regs(child)->orig_gpr2 = data;
383
384 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
385 /*
386 * prevent writes of padding hole between
387 * orig_gpr2 and fp_regs on s390.
388 */
389 return 0;
390
391 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
392 /*
393 * floating point control reg. is in the thread structure
394 */
395 if ((unsigned int) data != 0 ||
396 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
397 return -EINVAL;
398 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
399
400 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
401 /*
402 * floating point regs. are either in child->thread.fpu
403 * or the child->thread.fpu.vxrs array
404 */
405 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
406 if (MACHINE_HAS_VX)
407 *(addr_t *)((addr_t)
408 child->thread.fpu.vxrs + 2*offset) = data;
409 else
410 *(addr_t *)((addr_t)
411 child->thread.fpu.fprs + offset) = data;
412
413 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
414 /*
415 * Handle access to the per_info structure.
416 */
417 addr -= (addr_t) &dummy->regs.per_info;
418 __poke_user_per(child, addr, data);
419
420 }
421
422 return 0;
423}
424
425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
426{
427 addr_t mask;
428
429 /*
430 * Stupid gdb peeks/pokes the access registers in 64 bit with
431 * an alignment of 4. Programmers from hell indeed...
432 */
433 mask = __ADDR_MASK;
434 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
435 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
436 mask = 3;
437 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
438 return -EIO;
439
440 return __poke_user(child, addr, data);
441}
442
443long arch_ptrace(struct task_struct *child, long request,
444 unsigned long addr, unsigned long data)
445{
446 ptrace_area parea;
447 int copied, ret;
448
449 switch (request) {
450 case PTRACE_PEEKUSR:
451 /* read the word at location addr in the USER area. */
452 return peek_user(child, addr, data);
453
454 case PTRACE_POKEUSR:
455 /* write the word at location addr in the USER area */
456 return poke_user(child, addr, data);
457
458 case PTRACE_PEEKUSR_AREA:
459 case PTRACE_POKEUSR_AREA:
460 if (copy_from_user(&parea, (void __force __user *) addr,
461 sizeof(parea)))
462 return -EFAULT;
463 addr = parea.kernel_addr;
464 data = parea.process_addr;
465 copied = 0;
466 while (copied < parea.len) {
467 if (request == PTRACE_PEEKUSR_AREA)
468 ret = peek_user(child, addr, data);
469 else {
470 addr_t utmp;
471 if (get_user(utmp,
472 (addr_t __force __user *) data))
473 return -EFAULT;
474 ret = poke_user(child, addr, utmp);
475 }
476 if (ret)
477 return ret;
478 addr += sizeof(unsigned long);
479 data += sizeof(unsigned long);
480 copied += sizeof(unsigned long);
481 }
482 return 0;
483 case PTRACE_GET_LAST_BREAK:
484 put_user(child->thread.last_break,
485 (unsigned long __user *) data);
486 return 0;
487 case PTRACE_ENABLE_TE:
488 if (!MACHINE_HAS_TE)
489 return -EIO;
490 child->thread.per_flags &= ~PER_FLAG_NO_TE;
491 return 0;
492 case PTRACE_DISABLE_TE:
493 if (!MACHINE_HAS_TE)
494 return -EIO;
495 child->thread.per_flags |= PER_FLAG_NO_TE;
496 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497 return 0;
498 case PTRACE_TE_ABORT_RAND:
499 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
500 return -EIO;
501 switch (data) {
502 case 0UL:
503 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
504 break;
505 case 1UL:
506 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
508 break;
509 case 2UL:
510 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
511 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
512 break;
513 default:
514 return -EINVAL;
515 }
516 return 0;
517 default:
518 return ptrace_request(child, request, addr, data);
519 }
520}
521
522#ifdef CONFIG_COMPAT
523/*
524 * Now the fun part starts... a 31 bit program running in the
525 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
526 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
527 * to handle, the difference to the 64 bit versions of the requests
528 * is that the access is done in multiples of 4 byte instead of
529 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
530 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
531 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
532 * is a 31 bit program too, the content of struct user can be
533 * emulated. A 31 bit program peeking into the struct user of
534 * a 64 bit program is a no-no.
535 */
536
537/*
538 * Same as peek_user_per but for a 31 bit program.
539 */
540static inline __u32 __peek_user_per_compat(struct task_struct *child,
541 addr_t addr)
542{
543 struct compat_per_struct_kernel *dummy32 = NULL;
544
545 if (addr == (addr_t) &dummy32->cr9)
546 /* Control bits of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 PER_EVENT_IFETCH : child->thread.per_user.control;
549 else if (addr == (addr_t) &dummy32->cr10)
550 /* Start address of the active per set. */
551 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
552 0 : child->thread.per_user.start;
553 else if (addr == (addr_t) &dummy32->cr11)
554 /* End address of the active per set. */
555 return test_thread_flag(TIF_SINGLE_STEP) ?
556 PSW32_ADDR_INSN : child->thread.per_user.end;
557 else if (addr == (addr_t) &dummy32->bits)
558 /* Single-step bit. */
559 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
560 0x80000000 : 0;
561 else if (addr == (addr_t) &dummy32->starting_addr)
562 /* Start address of the user specified per set. */
563 return (__u32) child->thread.per_user.start;
564 else if (addr == (addr_t) &dummy32->ending_addr)
565 /* End address of the user specified per set. */
566 return (__u32) child->thread.per_user.end;
567 else if (addr == (addr_t) &dummy32->perc_atmid)
568 /* PER code, ATMID and AI of the last PER trap */
569 return (__u32) child->thread.per_event.cause << 16;
570 else if (addr == (addr_t) &dummy32->address)
571 /* Address of the last PER trap */
572 return (__u32) child->thread.per_event.address;
573 else if (addr == (addr_t) &dummy32->access_id)
574 /* Access id of the last PER trap */
575 return (__u32) child->thread.per_event.paid << 24;
576 return 0;
577}
578
579/*
580 * Same as peek_user but for a 31 bit program.
581 */
582static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
583{
584 struct compat_user *dummy32 = NULL;
585 addr_t offset;
586 __u32 tmp;
587
588 if (addr < (addr_t) &dummy32->regs.acrs) {
589 struct pt_regs *regs = task_pt_regs(child);
590 /*
591 * psw and gprs are stored on the stack
592 */
593 if (addr == (addr_t) &dummy32->regs.psw.mask) {
594 /* Fake a 31 bit psw mask. */
595 tmp = (__u32)(regs->psw.mask >> 32);
596 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
597 tmp |= PSW32_USER_BITS;
598 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
599 /* Fake a 31 bit psw address. */
600 tmp = (__u32) regs->psw.addr |
601 (__u32)(regs->psw.mask & PSW_MASK_BA);
602 } else {
603 /* gpr 0-15 */
604 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
605 }
606 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
607 /*
608 * access registers are stored in the thread structure
609 */
610 offset = addr - (addr_t) &dummy32->regs.acrs;
611 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
612
613 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
614 /*
615 * orig_gpr2 is stored on the kernel stack
616 */
617 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
618
619 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
620 /*
621 * prevent reads of padding hole between
622 * orig_gpr2 and fp_regs on s390.
623 */
624 tmp = 0;
625
626 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
627 /*
628 * floating point control reg. is in the thread structure
629 */
630 tmp = child->thread.fpu.fpc;
631
632 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
633 /*
634 * floating point regs. are either in child->thread.fpu
635 * or the child->thread.fpu.vxrs array
636 */
637 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
638 if (MACHINE_HAS_VX)
639 tmp = *(__u32 *)
640 ((addr_t) child->thread.fpu.vxrs + 2*offset);
641 else
642 tmp = *(__u32 *)
643 ((addr_t) child->thread.fpu.fprs + offset);
644
645 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 /*
647 * Handle access to the per_info structure.
648 */
649 addr -= (addr_t) &dummy32->regs.per_info;
650 tmp = __peek_user_per_compat(child, addr);
651
652 } else
653 tmp = 0;
654
655 return tmp;
656}
657
658static int peek_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 __u32 tmp;
662
663 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
664 return -EIO;
665
666 tmp = __peek_user_compat(child, addr);
667 return put_user(tmp, (__u32 __user *) data);
668}
669
670/*
671 * Same as poke_user_per but for a 31 bit program.
672 */
673static inline void __poke_user_per_compat(struct task_struct *child,
674 addr_t addr, __u32 data)
675{
676 struct compat_per_struct_kernel *dummy32 = NULL;
677
678 if (addr == (addr_t) &dummy32->cr9)
679 /* PER event mask of the user specified per set. */
680 child->thread.per_user.control =
681 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
682 else if (addr == (addr_t) &dummy32->starting_addr)
683 /* Starting address of the user specified per set. */
684 child->thread.per_user.start = data;
685 else if (addr == (addr_t) &dummy32->ending_addr)
686 /* Ending address of the user specified per set. */
687 child->thread.per_user.end = data;
688}
689
690/*
691 * Same as poke_user but for a 31 bit program.
692 */
693static int __poke_user_compat(struct task_struct *child,
694 addr_t addr, addr_t data)
695{
696 struct compat_user *dummy32 = NULL;
697 __u32 tmp = (__u32) data;
698 addr_t offset;
699
700 if (addr < (addr_t) &dummy32->regs.acrs) {
701 struct pt_regs *regs = task_pt_regs(child);
702 /*
703 * psw, gprs, acrs and orig_gpr2 are stored on the stack
704 */
705 if (addr == (addr_t) &dummy32->regs.psw.mask) {
706 __u32 mask = PSW32_MASK_USER;
707
708 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
709 /* Build a 64 bit psw mask from 31 bit mask. */
710 if ((tmp ^ PSW32_USER_BITS) & ~mask)
711 /* Invalid psw mask. */
712 return -EINVAL;
713 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
714 /* Invalid address-space-control bits */
715 return -EINVAL;
716 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
717 (regs->psw.mask & PSW_MASK_BA) |
718 (__u64)(tmp & mask) << 32;
719 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
720 /* Build a 64 bit psw address from 31 bit address. */
721 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
722 /* Transfer 31 bit amode bit to psw mask. */
723 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
724 (__u64)(tmp & PSW32_ADDR_AMODE);
725 } else {
726 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
727 addr == offsetof(struct compat_user, regs.gprs[2])) {
728 struct pt_regs *regs = task_pt_regs(child);
729
730 regs->int_code = 0x20000 | (data & 0xffff);
731 }
732 /* gpr 0-15 */
733 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
734 }
735 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
736 /*
737 * access registers are stored in the thread structure
738 */
739 offset = addr - (addr_t) &dummy32->regs.acrs;
740 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
741
742 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
743 /*
744 * orig_gpr2 is stored on the kernel stack
745 */
746 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
747
748 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
749 /*
750 * prevent writess of padding hole between
751 * orig_gpr2 and fp_regs on s390.
752 */
753 return 0;
754
755 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
756 /*
757 * floating point control reg. is in the thread structure
758 */
759 if (test_fp_ctl(tmp))
760 return -EINVAL;
761 child->thread.fpu.fpc = data;
762
763 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
764 /*
765 * floating point regs. are either in child->thread.fpu
766 * or the child->thread.fpu.vxrs array
767 */
768 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
769 if (MACHINE_HAS_VX)
770 *(__u32 *)((addr_t)
771 child->thread.fpu.vxrs + 2*offset) = tmp;
772 else
773 *(__u32 *)((addr_t)
774 child->thread.fpu.fprs + offset) = tmp;
775
776 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
777 /*
778 * Handle access to the per_info structure.
779 */
780 addr -= (addr_t) &dummy32->regs.per_info;
781 __poke_user_per_compat(child, addr, data);
782 }
783
784 return 0;
785}
786
787static int poke_user_compat(struct task_struct *child,
788 addr_t addr, addr_t data)
789{
790 if (!is_compat_task() || (addr & 3) ||
791 addr > sizeof(struct compat_user) - 3)
792 return -EIO;
793
794 return __poke_user_compat(child, addr, data);
795}
796
797long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
798 compat_ulong_t caddr, compat_ulong_t cdata)
799{
800 unsigned long addr = caddr;
801 unsigned long data = cdata;
802 compat_ptrace_area parea;
803 int copied, ret;
804
805 switch (request) {
806 case PTRACE_PEEKUSR:
807 /* read the word at location addr in the USER area. */
808 return peek_user_compat(child, addr, data);
809
810 case PTRACE_POKEUSR:
811 /* write the word at location addr in the USER area */
812 return poke_user_compat(child, addr, data);
813
814 case PTRACE_PEEKUSR_AREA:
815 case PTRACE_POKEUSR_AREA:
816 if (copy_from_user(&parea, (void __force __user *) addr,
817 sizeof(parea)))
818 return -EFAULT;
819 addr = parea.kernel_addr;
820 data = parea.process_addr;
821 copied = 0;
822 while (copied < parea.len) {
823 if (request == PTRACE_PEEKUSR_AREA)
824 ret = peek_user_compat(child, addr, data);
825 else {
826 __u32 utmp;
827 if (get_user(utmp,
828 (__u32 __force __user *) data))
829 return -EFAULT;
830 ret = poke_user_compat(child, addr, utmp);
831 }
832 if (ret)
833 return ret;
834 addr += sizeof(unsigned int);
835 data += sizeof(unsigned int);
836 copied += sizeof(unsigned int);
837 }
838 return 0;
839 case PTRACE_GET_LAST_BREAK:
840 put_user(child->thread.last_break,
841 (unsigned int __user *) data);
842 return 0;
843 }
844 return compat_ptrace_request(child, request, addr, data);
845}
846#endif
847
848/*
849 * user_regset definitions.
850 */
851
852static int s390_regs_get(struct task_struct *target,
853 const struct user_regset *regset,
854 struct membuf to)
855{
856 unsigned pos;
857 if (target == current)
858 save_access_regs(target->thread.acrs);
859
860 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
861 membuf_store(&to, __peek_user(target, pos));
862 return 0;
863}
864
865static int s390_regs_set(struct task_struct *target,
866 const struct user_regset *regset,
867 unsigned int pos, unsigned int count,
868 const void *kbuf, const void __user *ubuf)
869{
870 int rc = 0;
871
872 if (target == current)
873 save_access_regs(target->thread.acrs);
874
875 if (kbuf) {
876 const unsigned long *k = kbuf;
877 while (count > 0 && !rc) {
878 rc = __poke_user(target, pos, *k++);
879 count -= sizeof(*k);
880 pos += sizeof(*k);
881 }
882 } else {
883 const unsigned long __user *u = ubuf;
884 while (count > 0 && !rc) {
885 unsigned long word;
886 rc = __get_user(word, u++);
887 if (rc)
888 break;
889 rc = __poke_user(target, pos, word);
890 count -= sizeof(*u);
891 pos += sizeof(*u);
892 }
893 }
894
895 if (rc == 0 && target == current)
896 restore_access_regs(target->thread.acrs);
897
898 return rc;
899}
900
901static int s390_fpregs_get(struct task_struct *target,
902 const struct user_regset *regset,
903 struct membuf to)
904{
905 _s390_fp_regs fp_regs;
906
907 if (target == current)
908 save_fpu_regs();
909
910 fp_regs.fpc = target->thread.fpu.fpc;
911 fpregs_store(&fp_regs, &target->thread.fpu);
912
913 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
914}
915
916static int s390_fpregs_set(struct task_struct *target,
917 const struct user_regset *regset, unsigned int pos,
918 unsigned int count, const void *kbuf,
919 const void __user *ubuf)
920{
921 int rc = 0;
922 freg_t fprs[__NUM_FPRS];
923
924 if (target == current)
925 save_fpu_regs();
926
927 if (MACHINE_HAS_VX)
928 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
929 else
930 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
931
932 /* If setting FPC, must validate it first. */
933 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
934 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
935 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
936 0, offsetof(s390_fp_regs, fprs));
937 if (rc)
938 return rc;
939 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
940 return -EINVAL;
941 target->thread.fpu.fpc = ufpc[0];
942 }
943
944 if (rc == 0 && count > 0)
945 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946 fprs, offsetof(s390_fp_regs, fprs), -1);
947 if (rc)
948 return rc;
949
950 if (MACHINE_HAS_VX)
951 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
952 else
953 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
954
955 return rc;
956}
957
958static int s390_last_break_get(struct task_struct *target,
959 const struct user_regset *regset,
960 struct membuf to)
961{
962 return membuf_store(&to, target->thread.last_break);
963}
964
965static int s390_last_break_set(struct task_struct *target,
966 const struct user_regset *regset,
967 unsigned int pos, unsigned int count,
968 const void *kbuf, const void __user *ubuf)
969{
970 return 0;
971}
972
973static int s390_tdb_get(struct task_struct *target,
974 const struct user_regset *regset,
975 struct membuf to)
976{
977 struct pt_regs *regs = task_pt_regs(target);
978 size_t size;
979
980 if (!(regs->int_code & 0x200))
981 return -ENODATA;
982 size = sizeof(target->thread.trap_tdb.data);
983 return membuf_write(&to, target->thread.trap_tdb.data, size);
984}
985
986static int s390_tdb_set(struct task_struct *target,
987 const struct user_regset *regset,
988 unsigned int pos, unsigned int count,
989 const void *kbuf, const void __user *ubuf)
990{
991 return 0;
992}
993
994static int s390_vxrs_low_get(struct task_struct *target,
995 const struct user_regset *regset,
996 struct membuf to)
997{
998 __u64 vxrs[__NUM_VXRS_LOW];
999 int i;
1000
1001 if (!MACHINE_HAS_VX)
1002 return -ENODEV;
1003 if (target == current)
1004 save_fpu_regs();
1005 for (i = 0; i < __NUM_VXRS_LOW; i++)
1006 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1007 return membuf_write(&to, vxrs, sizeof(vxrs));
1008}
1009
1010static int s390_vxrs_low_set(struct task_struct *target,
1011 const struct user_regset *regset,
1012 unsigned int pos, unsigned int count,
1013 const void *kbuf, const void __user *ubuf)
1014{
1015 __u64 vxrs[__NUM_VXRS_LOW];
1016 int i, rc;
1017
1018 if (!MACHINE_HAS_VX)
1019 return -ENODEV;
1020 if (target == current)
1021 save_fpu_regs();
1022
1023 for (i = 0; i < __NUM_VXRS_LOW; i++)
1024 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1025
1026 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1027 if (rc == 0)
1028 for (i = 0; i < __NUM_VXRS_LOW; i++)
1029 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1030
1031 return rc;
1032}
1033
1034static int s390_vxrs_high_get(struct task_struct *target,
1035 const struct user_regset *regset,
1036 struct membuf to)
1037{
1038 if (!MACHINE_HAS_VX)
1039 return -ENODEV;
1040 if (target == current)
1041 save_fpu_regs();
1042 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1043 __NUM_VXRS_HIGH * sizeof(__vector128));
1044}
1045
1046static int s390_vxrs_high_set(struct task_struct *target,
1047 const struct user_regset *regset,
1048 unsigned int pos, unsigned int count,
1049 const void *kbuf, const void __user *ubuf)
1050{
1051 int rc;
1052
1053 if (!MACHINE_HAS_VX)
1054 return -ENODEV;
1055 if (target == current)
1056 save_fpu_regs();
1057
1058 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1059 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1060 return rc;
1061}
1062
1063static int s390_system_call_get(struct task_struct *target,
1064 const struct user_regset *regset,
1065 struct membuf to)
1066{
1067 return membuf_store(&to, target->thread.system_call);
1068}
1069
1070static int s390_system_call_set(struct task_struct *target,
1071 const struct user_regset *regset,
1072 unsigned int pos, unsigned int count,
1073 const void *kbuf, const void __user *ubuf)
1074{
1075 unsigned int *data = &target->thread.system_call;
1076 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1077 data, 0, sizeof(unsigned int));
1078}
1079
1080static int s390_gs_cb_get(struct task_struct *target,
1081 const struct user_regset *regset,
1082 struct membuf to)
1083{
1084 struct gs_cb *data = target->thread.gs_cb;
1085
1086 if (!MACHINE_HAS_GS)
1087 return -ENODEV;
1088 if (!data)
1089 return -ENODATA;
1090 if (target == current)
1091 save_gs_cb(data);
1092 return membuf_write(&to, data, sizeof(struct gs_cb));
1093}
1094
1095static int s390_gs_cb_set(struct task_struct *target,
1096 const struct user_regset *regset,
1097 unsigned int pos, unsigned int count,
1098 const void *kbuf, const void __user *ubuf)
1099{
1100 struct gs_cb gs_cb = { }, *data = NULL;
1101 int rc;
1102
1103 if (!MACHINE_HAS_GS)
1104 return -ENODEV;
1105 if (!target->thread.gs_cb) {
1106 data = kzalloc(sizeof(*data), GFP_KERNEL);
1107 if (!data)
1108 return -ENOMEM;
1109 }
1110 if (!target->thread.gs_cb)
1111 gs_cb.gsd = 25;
1112 else if (target == current)
1113 save_gs_cb(&gs_cb);
1114 else
1115 gs_cb = *target->thread.gs_cb;
1116 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1117 &gs_cb, 0, sizeof(gs_cb));
1118 if (rc) {
1119 kfree(data);
1120 return -EFAULT;
1121 }
1122 preempt_disable();
1123 if (!target->thread.gs_cb)
1124 target->thread.gs_cb = data;
1125 *target->thread.gs_cb = gs_cb;
1126 if (target == current) {
1127 __ctl_set_bit(2, 4);
1128 restore_gs_cb(target->thread.gs_cb);
1129 }
1130 preempt_enable();
1131 return rc;
1132}
1133
1134static int s390_gs_bc_get(struct task_struct *target,
1135 const struct user_regset *regset,
1136 struct membuf to)
1137{
1138 struct gs_cb *data = target->thread.gs_bc_cb;
1139
1140 if (!MACHINE_HAS_GS)
1141 return -ENODEV;
1142 if (!data)
1143 return -ENODATA;
1144 return membuf_write(&to, data, sizeof(struct gs_cb));
1145}
1146
1147static int s390_gs_bc_set(struct task_struct *target,
1148 const struct user_regset *regset,
1149 unsigned int pos, unsigned int count,
1150 const void *kbuf, const void __user *ubuf)
1151{
1152 struct gs_cb *data = target->thread.gs_bc_cb;
1153
1154 if (!MACHINE_HAS_GS)
1155 return -ENODEV;
1156 if (!data) {
1157 data = kzalloc(sizeof(*data), GFP_KERNEL);
1158 if (!data)
1159 return -ENOMEM;
1160 target->thread.gs_bc_cb = data;
1161 }
1162 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1163 data, 0, sizeof(struct gs_cb));
1164}
1165
1166static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1167{
1168 return (cb->rca & 0x1f) == 0 &&
1169 (cb->roa & 0xfff) == 0 &&
1170 (cb->rla & 0xfff) == 0xfff &&
1171 cb->s == 1 &&
1172 cb->k == 1 &&
1173 cb->h == 0 &&
1174 cb->reserved1 == 0 &&
1175 cb->ps == 1 &&
1176 cb->qs == 0 &&
1177 cb->pc == 1 &&
1178 cb->qc == 0 &&
1179 cb->reserved2 == 0 &&
1180 cb->reserved3 == 0 &&
1181 cb->reserved4 == 0 &&
1182 cb->reserved5 == 0 &&
1183 cb->reserved6 == 0 &&
1184 cb->reserved7 == 0 &&
1185 cb->reserved8 == 0 &&
1186 cb->rla >= cb->roa &&
1187 cb->rca >= cb->roa &&
1188 cb->rca <= cb->rla+1 &&
1189 cb->m < 3;
1190}
1191
1192static int s390_runtime_instr_get(struct task_struct *target,
1193 const struct user_regset *regset,
1194 struct membuf to)
1195{
1196 struct runtime_instr_cb *data = target->thread.ri_cb;
1197
1198 if (!test_facility(64))
1199 return -ENODEV;
1200 if (!data)
1201 return -ENODATA;
1202
1203 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1204}
1205
1206static int s390_runtime_instr_set(struct task_struct *target,
1207 const struct user_regset *regset,
1208 unsigned int pos, unsigned int count,
1209 const void *kbuf, const void __user *ubuf)
1210{
1211 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1212 int rc;
1213
1214 if (!test_facility(64))
1215 return -ENODEV;
1216
1217 if (!target->thread.ri_cb) {
1218 data = kzalloc(sizeof(*data), GFP_KERNEL);
1219 if (!data)
1220 return -ENOMEM;
1221 }
1222
1223 if (target->thread.ri_cb) {
1224 if (target == current)
1225 store_runtime_instr_cb(&ri_cb);
1226 else
1227 ri_cb = *target->thread.ri_cb;
1228 }
1229
1230 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1231 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1232 if (rc) {
1233 kfree(data);
1234 return -EFAULT;
1235 }
1236
1237 if (!is_ri_cb_valid(&ri_cb)) {
1238 kfree(data);
1239 return -EINVAL;
1240 }
1241 /*
1242 * Override access key in any case, since user space should
1243 * not be able to set it, nor should it care about it.
1244 */
1245 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1246 preempt_disable();
1247 if (!target->thread.ri_cb)
1248 target->thread.ri_cb = data;
1249 *target->thread.ri_cb = ri_cb;
1250 if (target == current)
1251 load_runtime_instr_cb(target->thread.ri_cb);
1252 preempt_enable();
1253
1254 return 0;
1255}
1256
1257static const struct user_regset s390_regsets[] = {
1258 {
1259 .core_note_type = NT_PRSTATUS,
1260 .n = sizeof(s390_regs) / sizeof(long),
1261 .size = sizeof(long),
1262 .align = sizeof(long),
1263 .regset_get = s390_regs_get,
1264 .set = s390_regs_set,
1265 },
1266 {
1267 .core_note_type = NT_PRFPREG,
1268 .n = sizeof(s390_fp_regs) / sizeof(long),
1269 .size = sizeof(long),
1270 .align = sizeof(long),
1271 .regset_get = s390_fpregs_get,
1272 .set = s390_fpregs_set,
1273 },
1274 {
1275 .core_note_type = NT_S390_SYSTEM_CALL,
1276 .n = 1,
1277 .size = sizeof(unsigned int),
1278 .align = sizeof(unsigned int),
1279 .regset_get = s390_system_call_get,
1280 .set = s390_system_call_set,
1281 },
1282 {
1283 .core_note_type = NT_S390_LAST_BREAK,
1284 .n = 1,
1285 .size = sizeof(long),
1286 .align = sizeof(long),
1287 .regset_get = s390_last_break_get,
1288 .set = s390_last_break_set,
1289 },
1290 {
1291 .core_note_type = NT_S390_TDB,
1292 .n = 1,
1293 .size = 256,
1294 .align = 1,
1295 .regset_get = s390_tdb_get,
1296 .set = s390_tdb_set,
1297 },
1298 {
1299 .core_note_type = NT_S390_VXRS_LOW,
1300 .n = __NUM_VXRS_LOW,
1301 .size = sizeof(__u64),
1302 .align = sizeof(__u64),
1303 .regset_get = s390_vxrs_low_get,
1304 .set = s390_vxrs_low_set,
1305 },
1306 {
1307 .core_note_type = NT_S390_VXRS_HIGH,
1308 .n = __NUM_VXRS_HIGH,
1309 .size = sizeof(__vector128),
1310 .align = sizeof(__vector128),
1311 .regset_get = s390_vxrs_high_get,
1312 .set = s390_vxrs_high_set,
1313 },
1314 {
1315 .core_note_type = NT_S390_GS_CB,
1316 .n = sizeof(struct gs_cb) / sizeof(__u64),
1317 .size = sizeof(__u64),
1318 .align = sizeof(__u64),
1319 .regset_get = s390_gs_cb_get,
1320 .set = s390_gs_cb_set,
1321 },
1322 {
1323 .core_note_type = NT_S390_GS_BC,
1324 .n = sizeof(struct gs_cb) / sizeof(__u64),
1325 .size = sizeof(__u64),
1326 .align = sizeof(__u64),
1327 .regset_get = s390_gs_bc_get,
1328 .set = s390_gs_bc_set,
1329 },
1330 {
1331 .core_note_type = NT_S390_RI_CB,
1332 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1333 .size = sizeof(__u64),
1334 .align = sizeof(__u64),
1335 .regset_get = s390_runtime_instr_get,
1336 .set = s390_runtime_instr_set,
1337 },
1338};
1339
1340static const struct user_regset_view user_s390_view = {
1341 .name = "s390x",
1342 .e_machine = EM_S390,
1343 .regsets = s390_regsets,
1344 .n = ARRAY_SIZE(s390_regsets)
1345};
1346
1347#ifdef CONFIG_COMPAT
1348static int s390_compat_regs_get(struct task_struct *target,
1349 const struct user_regset *regset,
1350 struct membuf to)
1351{
1352 unsigned n;
1353
1354 if (target == current)
1355 save_access_regs(target->thread.acrs);
1356
1357 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1358 membuf_store(&to, __peek_user_compat(target, n));
1359 return 0;
1360}
1361
1362static int s390_compat_regs_set(struct task_struct *target,
1363 const struct user_regset *regset,
1364 unsigned int pos, unsigned int count,
1365 const void *kbuf, const void __user *ubuf)
1366{
1367 int rc = 0;
1368
1369 if (target == current)
1370 save_access_regs(target->thread.acrs);
1371
1372 if (kbuf) {
1373 const compat_ulong_t *k = kbuf;
1374 while (count > 0 && !rc) {
1375 rc = __poke_user_compat(target, pos, *k++);
1376 count -= sizeof(*k);
1377 pos += sizeof(*k);
1378 }
1379 } else {
1380 const compat_ulong_t __user *u = ubuf;
1381 while (count > 0 && !rc) {
1382 compat_ulong_t word;
1383 rc = __get_user(word, u++);
1384 if (rc)
1385 break;
1386 rc = __poke_user_compat(target, pos, word);
1387 count -= sizeof(*u);
1388 pos += sizeof(*u);
1389 }
1390 }
1391
1392 if (rc == 0 && target == current)
1393 restore_access_regs(target->thread.acrs);
1394
1395 return rc;
1396}
1397
1398static int s390_compat_regs_high_get(struct task_struct *target,
1399 const struct user_regset *regset,
1400 struct membuf to)
1401{
1402 compat_ulong_t *gprs_high;
1403 int i;
1404
1405 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1406 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1407 membuf_store(&to, *gprs_high);
1408 return 0;
1409}
1410
1411static int s390_compat_regs_high_set(struct task_struct *target,
1412 const struct user_regset *regset,
1413 unsigned int pos, unsigned int count,
1414 const void *kbuf, const void __user *ubuf)
1415{
1416 compat_ulong_t *gprs_high;
1417 int rc = 0;
1418
1419 gprs_high = (compat_ulong_t *)
1420 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1421 if (kbuf) {
1422 const compat_ulong_t *k = kbuf;
1423 while (count > 0) {
1424 *gprs_high = *k++;
1425 *gprs_high += 2;
1426 count -= sizeof(*k);
1427 }
1428 } else {
1429 const compat_ulong_t __user *u = ubuf;
1430 while (count > 0 && !rc) {
1431 unsigned long word;
1432 rc = __get_user(word, u++);
1433 if (rc)
1434 break;
1435 *gprs_high = word;
1436 *gprs_high += 2;
1437 count -= sizeof(*u);
1438 }
1439 }
1440
1441 return rc;
1442}
1443
1444static int s390_compat_last_break_get(struct task_struct *target,
1445 const struct user_regset *regset,
1446 struct membuf to)
1447{
1448 compat_ulong_t last_break = target->thread.last_break;
1449
1450 return membuf_store(&to, (unsigned long)last_break);
1451}
1452
1453static int s390_compat_last_break_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457{
1458 return 0;
1459}
1460
1461static const struct user_regset s390_compat_regsets[] = {
1462 {
1463 .core_note_type = NT_PRSTATUS,
1464 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1465 .size = sizeof(compat_long_t),
1466 .align = sizeof(compat_long_t),
1467 .regset_get = s390_compat_regs_get,
1468 .set = s390_compat_regs_set,
1469 },
1470 {
1471 .core_note_type = NT_PRFPREG,
1472 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1473 .size = sizeof(compat_long_t),
1474 .align = sizeof(compat_long_t),
1475 .regset_get = s390_fpregs_get,
1476 .set = s390_fpregs_set,
1477 },
1478 {
1479 .core_note_type = NT_S390_SYSTEM_CALL,
1480 .n = 1,
1481 .size = sizeof(compat_uint_t),
1482 .align = sizeof(compat_uint_t),
1483 .regset_get = s390_system_call_get,
1484 .set = s390_system_call_set,
1485 },
1486 {
1487 .core_note_type = NT_S390_LAST_BREAK,
1488 .n = 1,
1489 .size = sizeof(long),
1490 .align = sizeof(long),
1491 .regset_get = s390_compat_last_break_get,
1492 .set = s390_compat_last_break_set,
1493 },
1494 {
1495 .core_note_type = NT_S390_TDB,
1496 .n = 1,
1497 .size = 256,
1498 .align = 1,
1499 .regset_get = s390_tdb_get,
1500 .set = s390_tdb_set,
1501 },
1502 {
1503 .core_note_type = NT_S390_VXRS_LOW,
1504 .n = __NUM_VXRS_LOW,
1505 .size = sizeof(__u64),
1506 .align = sizeof(__u64),
1507 .regset_get = s390_vxrs_low_get,
1508 .set = s390_vxrs_low_set,
1509 },
1510 {
1511 .core_note_type = NT_S390_VXRS_HIGH,
1512 .n = __NUM_VXRS_HIGH,
1513 .size = sizeof(__vector128),
1514 .align = sizeof(__vector128),
1515 .regset_get = s390_vxrs_high_get,
1516 .set = s390_vxrs_high_set,
1517 },
1518 {
1519 .core_note_type = NT_S390_HIGH_GPRS,
1520 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1521 .size = sizeof(compat_long_t),
1522 .align = sizeof(compat_long_t),
1523 .regset_get = s390_compat_regs_high_get,
1524 .set = s390_compat_regs_high_set,
1525 },
1526 {
1527 .core_note_type = NT_S390_GS_CB,
1528 .n = sizeof(struct gs_cb) / sizeof(__u64),
1529 .size = sizeof(__u64),
1530 .align = sizeof(__u64),
1531 .regset_get = s390_gs_cb_get,
1532 .set = s390_gs_cb_set,
1533 },
1534 {
1535 .core_note_type = NT_S390_GS_BC,
1536 .n = sizeof(struct gs_cb) / sizeof(__u64),
1537 .size = sizeof(__u64),
1538 .align = sizeof(__u64),
1539 .regset_get = s390_gs_bc_get,
1540 .set = s390_gs_bc_set,
1541 },
1542 {
1543 .core_note_type = NT_S390_RI_CB,
1544 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1545 .size = sizeof(__u64),
1546 .align = sizeof(__u64),
1547 .regset_get = s390_runtime_instr_get,
1548 .set = s390_runtime_instr_set,
1549 },
1550};
1551
1552static const struct user_regset_view user_s390_compat_view = {
1553 .name = "s390",
1554 .e_machine = EM_S390,
1555 .regsets = s390_compat_regsets,
1556 .n = ARRAY_SIZE(s390_compat_regsets)
1557};
1558#endif
1559
1560const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1561{
1562#ifdef CONFIG_COMPAT
1563 if (test_tsk_thread_flag(task, TIF_31BIT))
1564 return &user_s390_compat_view;
1565#endif
1566 return &user_s390_view;
1567}
1568
1569static const char *gpr_names[NUM_GPRS] = {
1570 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1571 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1572};
1573
1574unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1575{
1576 if (offset >= NUM_GPRS)
1577 return 0;
1578 return regs->gprs[offset];
1579}
1580
1581int regs_query_register_offset(const char *name)
1582{
1583 unsigned long offset;
1584
1585 if (!name || *name != 'r')
1586 return -EINVAL;
1587 if (kstrtoul(name + 1, 10, &offset))
1588 return -EINVAL;
1589 if (offset >= NUM_GPRS)
1590 return -EINVAL;
1591 return offset;
1592}
1593
1594const char *regs_query_register_name(unsigned int offset)
1595{
1596 if (offset >= NUM_GPRS)
1597 return NULL;
1598 return gpr_names[offset];
1599}
1600
1601static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1602{
1603 unsigned long ksp = kernel_stack_pointer(regs);
1604
1605 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1606}
1607
1608/**
1609 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1610 * @regs:pt_regs which contains kernel stack pointer.
1611 * @n:stack entry number.
1612 *
1613 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1614 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1615 * this returns 0.
1616 */
1617unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1618{
1619 unsigned long addr;
1620
1621 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1622 if (!regs_within_kernel_stack(regs, addr))
1623 return 0;
1624 return *(unsigned long *)addr;
1625}