Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
  7 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_PGTABLE_64_H
 10#define _ASM_PGTABLE_64_H
 11
 12#include <linux/compiler.h>
 13#include <linux/linkage.h>
 14
 15#include <asm/addrspace.h>
 16#include <asm/page.h>
 17#include <asm/cachectl.h>
 18#include <asm/fixmap.h>
 19
 20#ifdef CONFIG_PAGE_SIZE_64KB
 21#include <asm-generic/pgtable-nopmd.h>
 22#else
 23#include <asm-generic/pgtable-nopud.h>
 
 
 24#endif
 25
 26/*
 27 * Each address space has 2 4K pages as its page directory, giving 1024
 28 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
 29 * single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page
 30 * tables. Each page table is also a single 4K page, giving 512 (==
 31 * PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to
 32 * invalid_pmd_table, each pmd entry is initialized to point to
 33 * invalid_pte_table, each pte is initialized to 0. When memory is low,
 34 * and a pmd table or a page table allocation fails, empty_bad_pmd_table
 35 * and empty_bad_page_table is returned back to higher layer code, so
 36 * that the failure is recognized later on. Linux does not seem to
 37 * handle these failures very well though. The empty_bad_page_table has
 38 * invalid pte entries in it, to force page faults.
 39 *
 40 * Kernel mappings: kernel mappings are held in the swapper_pg_table.
 41 * The layout is identical to userspace except it's indexed with the
 42 * fault address - VMALLOC_START.
 43 */
 44
 45
 46/* PGDIR_SHIFT determines what a third-level page table entry can map */
 47#ifdef __PAGETABLE_PMD_FOLDED
 48#define PGDIR_SHIFT	(PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3)
 49#else
 50
 51/* PMD_SHIFT determines the size of the area a second-level page table can map */
 52#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT + PTE_ORDER - 3))
 53#define PMD_SIZE	(1UL << PMD_SHIFT)
 54#define PMD_MASK	(~(PMD_SIZE-1))
 55
 
 
 
 
 56
 57#define PGDIR_SHIFT	(PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3))
 
 
 
 
 58#endif
 
 59#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 60#define PGDIR_MASK	(~(PGDIR_SIZE-1))
 61
 62/*
 63 * For 4kB page size we use a 3 level page tree and an 8kB pud, which
 64 * permits us mapping 40 bits of virtual address space.
 65 *
 66 * We used to implement 41 bits by having an order 1 pmd level but that seemed
 67 * rather pointless.
 68 *
 69 * For 8kB page size we use a 3 level page tree which permits a total of
 70 * 8TB of address space.  Alternatively a 33-bit / 8GB organization using
 71 * two levels would be easy to implement.
 72 *
 73 * For 16kB page size we use a 2 level page tree which permits a total of
 74 * 36 bits of virtual address space.  We could add a third level but it seems
 75 * like at the moment there's no need for this.
 76 *
 77 * For 64kB page size we use a 2 level page table tree for a total of 42 bits
 78 * of virtual address space.
 79 */
 80#ifdef CONFIG_PAGE_SIZE_4KB
 81#define PGD_ORDER		1
 82#define PUD_ORDER		aieeee_attempt_to_allocate_pud
 
 
 
 
 
 83#define PMD_ORDER		0
 84#define PTE_ORDER		0
 85#endif
 86#ifdef CONFIG_PAGE_SIZE_8KB
 87#define PGD_ORDER		0
 88#define PUD_ORDER		aieeee_attempt_to_allocate_pud
 89#define PMD_ORDER		0
 90#define PTE_ORDER		0
 91#endif
 92#ifdef CONFIG_PAGE_SIZE_16KB
 93#define PGD_ORDER		0
 
 
 
 
 94#define PUD_ORDER		aieeee_attempt_to_allocate_pud
 95#define PMD_ORDER		0
 96#define PTE_ORDER		0
 97#endif
 98#ifdef CONFIG_PAGE_SIZE_32KB
 99#define PGD_ORDER		0
100#define PUD_ORDER		aieeee_attempt_to_allocate_pud
101#define PMD_ORDER		0
102#define PTE_ORDER		0
103#endif
104#ifdef CONFIG_PAGE_SIZE_64KB
105#define PGD_ORDER		0
106#define PUD_ORDER		aieeee_attempt_to_allocate_pud
 
 
 
107#define PMD_ORDER		aieeee_attempt_to_allocate_pmd
 
108#define PTE_ORDER		0
109#endif
110
111#define PTRS_PER_PGD	((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
 
 
 
112#ifndef __PAGETABLE_PMD_FOLDED
113#define PTRS_PER_PMD	((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
114#endif
115#define PTRS_PER_PTE	((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
116
117#if PGDIR_SIZE >= TASK_SIZE64
118#define USER_PTRS_PER_PGD	(1)
119#else
120#define USER_PTRS_PER_PGD	(TASK_SIZE64 / PGDIR_SIZE)
121#endif
122#define FIRST_USER_ADDRESS	0UL
123
124/*
125 * TLB refill handlers also map the vmalloc area into xuseg.  Avoid
126 * the first couple of pages so NULL pointer dereferences will still
127 * reliably trap.
128 */
129#define VMALLOC_START		(MAP_BASE + (2 * PAGE_SIZE))
130#define VMALLOC_END	\
131	(MAP_BASE + \
132	 min(PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, \
133	     (1UL << cpu_vmbits)) - (1UL << 32))
134
135#if defined(CONFIG_MODULES) && defined(KBUILD_64BIT_SYM32) && \
136	VMALLOC_START != CKSSEG
137/* Load modules into 32bit-compatible segment. */
138#define MODULE_START	CKSSEG
139#define MODULE_END	(FIXADDR_START-2*PAGE_SIZE)
140#endif
141
142#define pte_ERROR(e) \
143	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
144#ifndef __PAGETABLE_PMD_FOLDED
145#define pmd_ERROR(e) \
146	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
147#endif
 
 
 
 
148#define pgd_ERROR(e) \
149	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
150
151extern pte_t invalid_pte_table[PTRS_PER_PTE];
152extern pte_t empty_bad_page_table[PTRS_PER_PTE];
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
155#ifndef __PAGETABLE_PMD_FOLDED
156/*
157 * For 3-level pagetables we defines these ourselves, for 2-level the
158 * definitions are supplied by <asm-generic/pgtable-nopmd.h>.
159 */
160typedef struct { unsigned long pmd; } pmd_t;
161#define pmd_val(x)	((x).pmd)
162#define __pmd(x)	((pmd_t) { (x) } )
163
164
165extern pmd_t invalid_pmd_table[PTRS_PER_PMD];
166#endif
167
168/*
169 * Empty pgd/pmd entries point to the invalid_pte_table.
170 */
171static inline int pmd_none(pmd_t pmd)
172{
173	return pmd_val(pmd) == (unsigned long) invalid_pte_table;
174}
175
176static inline int pmd_bad(pmd_t pmd)
177{
178#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
179	/* pmd_huge(pmd) but inline */
180	if (unlikely(pmd_val(pmd) & _PAGE_HUGE))
181		return 0;
182#endif
183
184	if (unlikely(pmd_val(pmd) & ~PAGE_MASK))
185		return 1;
186
187	return 0;
188}
189
190static inline int pmd_present(pmd_t pmd)
191{
 
 
 
 
 
192	return pmd_val(pmd) != (unsigned long) invalid_pte_table;
193}
194
195static inline void pmd_clear(pmd_t *pmdp)
196{
197	pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
198}
199#ifndef __PAGETABLE_PMD_FOLDED
200
201/*
202 * Empty pud entries point to the invalid_pmd_table.
203 */
204static inline int pud_none(pud_t pud)
205{
206	return pud_val(pud) == (unsigned long) invalid_pmd_table;
207}
208
209static inline int pud_bad(pud_t pud)
210{
211	return pud_val(pud) & ~PAGE_MASK;
212}
213
214static inline int pud_present(pud_t pud)
215{
216	return pud_val(pud) != (unsigned long) invalid_pmd_table;
217}
218
219static inline void pud_clear(pud_t *pudp)
220{
221	pud_val(*pudp) = ((unsigned long) invalid_pmd_table);
222}
223#endif
224
225#define pte_page(x)		pfn_to_page(pte_pfn(x))
226
227#ifdef CONFIG_CPU_VR41XX
228#define pte_pfn(x)		((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
229#define pfn_pte(pfn, prot)	__pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
230#else
231#define pte_pfn(x)		((unsigned long)((x).pte >> _PFN_SHIFT))
232#define pfn_pte(pfn, prot)	__pte(((pfn) << _PFN_SHIFT) | pgprot_val(prot))
233#define pfn_pmd(pfn, prot)	__pmd(((pfn) << _PFN_SHIFT) | pgprot_val(prot))
234#endif
235
236#define __pgd_offset(address)	pgd_index(address)
237#define __pud_offset(address)	(((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
238#define __pmd_offset(address)	pmd_index(address)
239
240/* to find an entry in a kernel page-table-directory */
241#define pgd_offset_k(address) pgd_offset(&init_mm, address)
242
243#define pgd_index(address)	(((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
244#define pmd_index(address)	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
245
246/* to find an entry in a page-table-directory */
247#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
248
249#ifndef __PAGETABLE_PMD_FOLDED
250static inline unsigned long pud_page_vaddr(pud_t pud)
251{
252	return pud_val(pud);
253}
254#define pud_phys(pud)		virt_to_phys((void *)pud_val(pud))
255#define pud_page(pud)		(pfn_to_page(pud_phys(pud) >> PAGE_SHIFT))
256
257/* Find an entry in the second-level page table.. */
258static inline pmd_t *pmd_offset(pud_t * pud, unsigned long address)
259{
260	return (pmd_t *) pud_page_vaddr(*pud) + pmd_index(address);
261}
262#endif
263
264/* Find an entry in the third-level page table.. */
265#define __pte_offset(address)						\
266	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
267#define pte_offset(dir, address)					\
268	((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address))
269#define pte_offset_kernel(dir, address)					\
270	((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address))
271#define pte_offset_map(dir, address)					\
272	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
273#define pte_unmap(pte) ((void)(pte))
274
275/*
276 * Initialize a new pgd / pmd table with invalid pointers.
277 */
278extern void pgd_init(unsigned long page);
 
279extern void pmd_init(unsigned long page, unsigned long pagetable);
280
281/*
282 * Non-present pages:  high 24 bits are offset, next 8 bits type,
283 * low 32 bits zero.
284 */
285static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
286{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
287
288#define __swp_type(x)		(((x).val >> 32) & 0xff)
289#define __swp_offset(x)		((x).val >> 40)
290#define __swp_entry(type, offset) ((swp_entry_t) { pte_val(mk_swap_pte((type), (offset))) })
291#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
292#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
293
294/*
295 * Bits 0, 4, 6, and 7 are taken. Let's leave bits 1, 2, 3, and 5 alone to
296 * make things easier, and only use the upper 56 bits for the page offset...
297 */
298#define PTE_FILE_MAX_BITS	56
299
300#define pte_to_pgoff(_pte)	((_pte).pte >> 8)
301#define pgoff_to_pte(off)	((pte_t) { ((off) << 8) | _PAGE_FILE })
302
303#endif /* _ASM_PGTABLE_64_H */
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
  7 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_PGTABLE_64_H
 10#define _ASM_PGTABLE_64_H
 11
 12#include <linux/compiler.h>
 13#include <linux/linkage.h>
 14
 15#include <asm/addrspace.h>
 16#include <asm/page.h>
 17#include <asm/cachectl.h>
 18#include <asm/fixmap.h>
 19
 20#if CONFIG_PGTABLE_LEVELS == 2
 21#include <asm-generic/pgtable-nopmd.h>
 22#elif CONFIG_PGTABLE_LEVELS == 3
 23#include <asm-generic/pgtable-nopud.h>
 24#else
 25#include <asm-generic/pgtable-nop4d.h>
 26#endif
 27
 28/*
 29 * Each address space has 2 4K pages as its page directory, giving 1024
 30 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
 31 * single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page
 32 * tables. Each page table is also a single 4K page, giving 512 (==
 33 * PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to
 34 * invalid_pmd_table, each pmd entry is initialized to point to
 35 * invalid_pte_table, each pte is initialized to 0.
 
 
 
 
 
 36 *
 37 * Kernel mappings: kernel mappings are held in the swapper_pg_table.
 38 * The layout is identical to userspace except it's indexed with the
 39 * fault address - VMALLOC_START.
 40 */
 41
 42
 43/* PGDIR_SHIFT determines what a third-level page table entry can map */
 44#ifdef __PAGETABLE_PMD_FOLDED
 45#define PGDIR_SHIFT	(PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3)
 46#else
 47
 48/* PMD_SHIFT determines the size of the area a second-level page table can map */
 49#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT + PTE_ORDER - 3))
 50#define PMD_SIZE	(1UL << PMD_SHIFT)
 51#define PMD_MASK	(~(PMD_SIZE-1))
 52
 53# ifdef __PAGETABLE_PUD_FOLDED
 54# define PGDIR_SHIFT	(PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3))
 55# endif
 56#endif
 57
 58#ifndef __PAGETABLE_PUD_FOLDED
 59#define PUD_SHIFT	(PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3))
 60#define PUD_SIZE	(1UL << PUD_SHIFT)
 61#define PUD_MASK	(~(PUD_SIZE-1))
 62#define PGDIR_SHIFT	(PUD_SHIFT + (PAGE_SHIFT + PUD_ORDER - 3))
 63#endif
 64
 65#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 66#define PGDIR_MASK	(~(PGDIR_SIZE-1))
 67
 68/*
 69 * For 4kB page size we use a 3 level page tree and an 8kB pud, which
 70 * permits us mapping 40 bits of virtual address space.
 71 *
 72 * We used to implement 41 bits by having an order 1 pmd level but that seemed
 73 * rather pointless.
 74 *
 75 * For 8kB page size we use a 3 level page tree which permits a total of
 76 * 8TB of address space.  Alternatively a 33-bit / 8GB organization using
 77 * two levels would be easy to implement.
 78 *
 79 * For 16kB page size we use a 2 level page tree which permits a total of
 80 * 36 bits of virtual address space.  We could add a third level but it seems
 81 * like at the moment there's no need for this.
 82 *
 83 * For 64kB page size we use a 2 level page table tree for a total of 42 bits
 84 * of virtual address space.
 85 */
 86#ifdef CONFIG_PAGE_SIZE_4KB
 87# ifdef CONFIG_MIPS_VA_BITS_48
 88#  define PGD_ORDER		0
 89#  define PUD_ORDER		0
 90# else
 91#  define PGD_ORDER		1
 92#  define PUD_ORDER		aieeee_attempt_to_allocate_pud
 93# endif
 94#define PMD_ORDER		0
 95#define PTE_ORDER		0
 96#endif
 97#ifdef CONFIG_PAGE_SIZE_8KB
 98#define PGD_ORDER		0
 99#define PUD_ORDER		aieeee_attempt_to_allocate_pud
100#define PMD_ORDER		0
101#define PTE_ORDER		0
102#endif
103#ifdef CONFIG_PAGE_SIZE_16KB
104#ifdef CONFIG_MIPS_VA_BITS_48
105#define PGD_ORDER               1
106#else
107#define PGD_ORDER               0
108#endif
109#define PUD_ORDER		aieeee_attempt_to_allocate_pud
110#define PMD_ORDER		0
111#define PTE_ORDER		0
112#endif
113#ifdef CONFIG_PAGE_SIZE_32KB
114#define PGD_ORDER		0
115#define PUD_ORDER		aieeee_attempt_to_allocate_pud
116#define PMD_ORDER		0
117#define PTE_ORDER		0
118#endif
119#ifdef CONFIG_PAGE_SIZE_64KB
120#define PGD_ORDER		0
121#define PUD_ORDER		aieeee_attempt_to_allocate_pud
122#ifdef CONFIG_MIPS_VA_BITS_48
123#define PMD_ORDER		0
124#else
125#define PMD_ORDER		aieeee_attempt_to_allocate_pmd
126#endif
127#define PTE_ORDER		0
128#endif
129
130#define PTRS_PER_PGD	((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
131#ifndef __PAGETABLE_PUD_FOLDED
132#define PTRS_PER_PUD	((PAGE_SIZE << PUD_ORDER) / sizeof(pud_t))
133#endif
134#ifndef __PAGETABLE_PMD_FOLDED
135#define PTRS_PER_PMD	((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
136#endif
137#define PTRS_PER_PTE	((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
138
139#define USER_PTRS_PER_PGD       ((TASK_SIZE64 / PGDIR_SIZE)?(TASK_SIZE64 / PGDIR_SIZE):1)
 
 
 
 
 
140
141/*
142 * TLB refill handlers also map the vmalloc area into xuseg.  Avoid
143 * the first couple of pages so NULL pointer dereferences will still
144 * reliably trap.
145 */
146#define VMALLOC_START		(MAP_BASE + (2 * PAGE_SIZE))
147#define VMALLOC_END	\
148	(MAP_BASE + \
149	 min(PTRS_PER_PGD * PTRS_PER_PUD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, \
150	     (1UL << cpu_vmbits)) - (1UL << 32))
151
152#if defined(CONFIG_MODULES) && defined(KBUILD_64BIT_SYM32) && \
153	VMALLOC_START != CKSSEG
154/* Load modules into 32bit-compatible segment. */
155#define MODULE_START	CKSSEG
156#define MODULE_END	(FIXADDR_START-2*PAGE_SIZE)
157#endif
158
159#define pte_ERROR(e) \
160	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
161#ifndef __PAGETABLE_PMD_FOLDED
162#define pmd_ERROR(e) \
163	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
164#endif
165#ifndef __PAGETABLE_PUD_FOLDED
166#define pud_ERROR(e) \
167	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
168#endif
169#define pgd_ERROR(e) \
170	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
171
172extern pte_t invalid_pte_table[PTRS_PER_PTE];
 
173
174#ifndef __PAGETABLE_PUD_FOLDED
175/*
176 * For 4-level pagetables we defines these ourselves, for 3-level the
177 * definitions are below, for 2-level the
178 * definitions are supplied by <asm-generic/pgtable-nopmd.h>.
179 */
180typedef struct { unsigned long pud; } pud_t;
181#define pud_val(x)	((x).pud)
182#define __pud(x)	((pud_t) { (x) })
183
184extern pud_t invalid_pud_table[PTRS_PER_PUD];
185
186/*
187 * Empty pgd entries point to the invalid_pud_table.
188 */
189static inline int p4d_none(p4d_t p4d)
190{
191	return p4d_val(p4d) == (unsigned long)invalid_pud_table;
192}
193
194static inline int p4d_bad(p4d_t p4d)
195{
196	if (unlikely(p4d_val(p4d) & ~PAGE_MASK))
197		return 1;
198
199	return 0;
200}
201
202static inline int p4d_present(p4d_t p4d)
203{
204	return p4d_val(p4d) != (unsigned long)invalid_pud_table;
205}
206
207static inline void p4d_clear(p4d_t *p4dp)
208{
209	p4d_val(*p4dp) = (unsigned long)invalid_pud_table;
210}
211
212static inline pud_t *p4d_pgtable(p4d_t p4d)
213{
214	return (pud_t *)p4d_val(p4d);
215}
216
217#define p4d_phys(p4d)		virt_to_phys((void *)p4d_val(p4d))
218#define p4d_page(p4d)		(pfn_to_page(p4d_phys(p4d) >> PAGE_SHIFT))
219
220#define p4d_index(address)	(((address) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
221
222static inline void set_p4d(p4d_t *p4d, p4d_t p4dval)
223{
224	*p4d = p4dval;
225}
226
227#endif
228
229#ifndef __PAGETABLE_PMD_FOLDED
230/*
231 * For 3-level pagetables we defines these ourselves, for 2-level the
232 * definitions are supplied by <asm-generic/pgtable-nopmd.h>.
233 */
234typedef struct { unsigned long pmd; } pmd_t;
235#define pmd_val(x)	((x).pmd)
236#define __pmd(x)	((pmd_t) { (x) } )
237
238
239extern pmd_t invalid_pmd_table[PTRS_PER_PMD];
240#endif
241
242/*
243 * Empty pgd/pmd entries point to the invalid_pte_table.
244 */
245static inline int pmd_none(pmd_t pmd)
246{
247	return pmd_val(pmd) == (unsigned long) invalid_pte_table;
248}
249
250static inline int pmd_bad(pmd_t pmd)
251{
252#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
253	/* pmd_huge(pmd) but inline */
254	if (unlikely(pmd_val(pmd) & _PAGE_HUGE))
255		return 0;
256#endif
257
258	if (unlikely(pmd_val(pmd) & ~PAGE_MASK))
259		return 1;
260
261	return 0;
262}
263
264static inline int pmd_present(pmd_t pmd)
265{
266#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
267	if (unlikely(pmd_val(pmd) & _PAGE_HUGE))
268		return pmd_val(pmd) & _PAGE_PRESENT;
269#endif
270
271	return pmd_val(pmd) != (unsigned long) invalid_pte_table;
272}
273
274static inline void pmd_clear(pmd_t *pmdp)
275{
276	pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
277}
278#ifndef __PAGETABLE_PMD_FOLDED
279
280/*
281 * Empty pud entries point to the invalid_pmd_table.
282 */
283static inline int pud_none(pud_t pud)
284{
285	return pud_val(pud) == (unsigned long) invalid_pmd_table;
286}
287
288static inline int pud_bad(pud_t pud)
289{
290	return pud_val(pud) & ~PAGE_MASK;
291}
292
293static inline int pud_present(pud_t pud)
294{
295	return pud_val(pud) != (unsigned long) invalid_pmd_table;
296}
297
298static inline void pud_clear(pud_t *pudp)
299{
300	pud_val(*pudp) = ((unsigned long) invalid_pmd_table);
301}
302#endif
303
304#define pte_page(x)		pfn_to_page(pte_pfn(x))
305
306#ifdef CONFIG_CPU_VR41XX
307#define pte_pfn(x)		((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
308#define pfn_pte(pfn, prot)	__pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
309#else
310#define pte_pfn(x)		((unsigned long)((x).pte >> _PFN_SHIFT))
311#define pfn_pte(pfn, prot)	__pte(((pfn) << _PFN_SHIFT) | pgprot_val(prot))
312#define pfn_pmd(pfn, prot)	__pmd(((pfn) << _PFN_SHIFT) | pgprot_val(prot))
313#endif
314
 
 
 
 
 
 
 
 
 
 
 
 
 
315#ifndef __PAGETABLE_PMD_FOLDED
316static inline pmd_t *pud_pgtable(pud_t pud)
317{
318	return (pmd_t *)pud_val(pud);
319}
320#define pud_phys(pud)		virt_to_phys((void *)pud_val(pud))
321#define pud_page(pud)		(pfn_to_page(pud_phys(pud) >> PAGE_SHIFT))
322
 
 
 
 
 
323#endif
324
 
 
 
 
 
 
 
 
 
 
 
325/*
326 * Initialize a new pgd / pmd table with invalid pointers.
327 */
328extern void pgd_init(unsigned long page);
329extern void pud_init(unsigned long page, unsigned long pagetable);
330extern void pmd_init(unsigned long page, unsigned long pagetable);
331
332/*
333 * Non-present pages:  high 40 bits are offset, next 8 bits type,
334 * low 16 bits zero.
335 */
336static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
337{ pte_t pte; pte_val(pte) = (type << 16) | (offset << 24); return pte; }
338
339#define __swp_type(x)		(((x).val >> 16) & 0xff)
340#define __swp_offset(x)		((x).val >> 24)
341#define __swp_entry(type, offset) ((swp_entry_t) { pte_val(mk_swap_pte((type), (offset))) })
342#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
343#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
 
 
 
 
 
 
 
 
 
344
345#endif /* _ASM_PGTABLE_64_H */