Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
   1/*
   2 * arch/arm/kernel/kprobes-test.c
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11/*
  12 * This file contains test code for ARM kprobes.
  13 *
  14 * The top level function run_all_tests() executes tests for all of the
  15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  16 * fall into two categories; run_api_tests() checks basic functionality of the
  17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  18 * instruction decoding and simulation.
  19 *
  20 * run_test_cases() first checks the kprobes decoding table for self consistency
  21 * (using table_test()) then executes a series of test cases for each of the CPU
  22 * instruction forms. coverage_start() and coverage_end() are used to verify
  23 * that these test cases cover all of the possible combinations of instructions
  24 * described by the kprobes decoding tables.
  25 *
  26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  27 * which use the macros defined in kprobes-test.h. The rest of this
  28 * documentation will describe the operation of the framework used by these
  29 * test cases.
  30 */
  31
  32/*
  33 * TESTING METHODOLOGY
  34 * -------------------
  35 *
  36 * The methodology used to test an ARM instruction 'test_insn' is to use
  37 * inline assembler like:
  38 *
  39 * test_before: nop
  40 * test_case:	test_insn
  41 * test_after:	nop
  42 *
  43 * When the test case is run a kprobe is placed of each nop. The
  44 * post-handler of the test_before probe is used to modify the saved CPU
  45 * register context to that which we require for the test case. The
  46 * pre-handler of the of the test_after probe saves a copy of the CPU
  47 * register context. In this way we can execute test_insn with a specific
  48 * register context and see the results afterwards.
  49 *
  50 * To actually test the kprobes instruction emulation we perform the above
  51 * step a second time but with an additional kprobe on the test_case
  52 * instruction itself. If the emulation is accurate then the results seen
  53 * by the test_after probe will be identical to the first run which didn't
  54 * have a probe on test_case.
  55 *
  56 * Each test case is run several times with a variety of variations in the
  57 * flags value of stored in CPSR, and for Thumb code, different ITState.
  58 *
  59 * For instructions which can modify PC, a second test_after probe is used
  60 * like this:
  61 *
  62 * test_before: nop
  63 * test_case:	test_insn
  64 * test_after:	nop
  65 *		b test_done
  66 * test_after2: nop
  67 * test_done:
  68 *
  69 * The test case is constructed such that test_insn branches to
  70 * test_after2, or, if testing a conditional instruction, it may just
  71 * continue to test_after. The probes inserted at both locations let us
  72 * determine which happened. A similar approach is used for testing
  73 * backwards branches...
  74 *
  75 *		b test_before
  76 *		b test_done  @ helps to cope with off by 1 branches
  77 * test_after2: nop
  78 *		b test_done
  79 * test_before: nop
  80 * test_case:	test_insn
  81 * test_after:	nop
  82 * test_done:
  83 *
  84 * The macros used to generate the assembler instructions describe above
  85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  87 * 99 represent: test_before, test_case, test_after2 and test_done.
  88 *
  89 * FRAMEWORK
  90 * ---------
  91 *
  92 * Each test case is wrapped between the pair of macros TESTCASE_START and
  93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  94 * these call out to the kprobes_test_case_start() and
  95 * kprobes_test_case_end() functions which drive the execution of the test
  96 * case. The specific arguments to use for each test case are stored as
  97 * inline data constructed using the various TEST_ARG_* macros. Putting
  98 * this all together, a simple test case may look like:
  99 *
 100 *	TESTCASE_START("Testing mov r0, r7")
 101 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 102 *	TEST_ARG_END("")
 103 *	TEST_INSTRUCTION("mov r0, r7")
 104 *	TESTCASE_END
 105 *
 106 * Note, in practice the single convenience macro TEST_R would be used for this
 107 * instead.
 108 *
 109 * The above would expand to assembler looking something like:
 110 *
 111 *	@ TESTCASE_START
 112 *	bl	__kprobes_test_case_start
 113 *	@ start of inline data...
 114 *	.ascii "mov r0, r7"	@ text title for test case
 115 *	.byte	0
 116 *	.align	2, 0
 117 *
 118 *	@ TEST_ARG_REG
 119 *	.byte	ARG_TYPE_REG
 120 *	.byte	7
 121 *	.short	0
 122 *	.word	0x1234567
 123 *
 124 *	@ TEST_ARG_END
 125 *	.byte	ARG_TYPE_END
 126 *	.byte	TEST_ISA	@ flags, including ISA being tested
 127 *	.short	50f-0f		@ offset of 'test_before'
 128 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
 129 *	.short	99f-0f		@ offset of 'test_done'
 130 *	@ start of test case code...
 131 *	0:
 132 *	.code	TEST_ISA	@ switch to ISA being tested
 133 *
 134 *	@ TEST_INSTRUCTION
 135 *	50:	nop		@ location for 'test_before' probe
 136 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
 137 *		nop		@ location for 'test_after' probe
 138 *
 139 *	// TESTCASE_END
 140 *	2:
 141 *	99:	bl __kprobes_test_case_end_##TEST_ISA
 142 *	.code	NONMAL_ISA
 143 *
 144 * When the above is execute the following happens...
 145 *
 146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 147 * for a stack buffer and calls the C function kprobes_test_case_start().
 148 * This C function will do some initial processing of the inline data and
 149 * setup some global state. It then inserts the test_before and test_after
 150 * kprobes and returns a value which causes the assembler wrapper to jump
 151 * to the start of the test case code, (local label '0').
 152 *
 153 * When the test case code executes, the test_before probe will be hit and
 154 * test_before_post_handler will call setup_test_context(). This fills the
 155 * stack buffer and CPU registers with a test pattern and then processes
 156 * the test case arguments. In our example there is one TEST_ARG_REG which
 157 * indicates that R7 should be loaded with the value 0x12345678.
 158 *
 159 * When the test_before probe ends, the test case continues and executes
 160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 161 * pre-handler for this (test_after_pre_handler) will save a copy of the
 162 * CPU register context. This should now have R0 holding the same value as
 163 * R7.
 164 *
 165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 166 * an assembler wrapper which switches back to the ISA used by the test
 167 * code and calls the C function kprobes_test_case_end().
 168 *
 169 * For each run through the test case, test_case_run_count is incremented
 170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 171 * register and stack buffer contents from the test case just run. It then
 172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 173 * value to cause the test case code to be re-run.
 174 *
 175 * For odd numbered runs, kprobes_test_case_end() compares the register and
 176 * stack buffer contents to those that were saved on the previous even
 177 * numbered run (the one without the kprobe on test_insn). These should be
 178 * the same if the kprobe instruction simulation routine is correct.
 179 *
 180 * The pair of test case runs is repeated with different combinations of
 181 * flag values in CPSR and, for Thumb, different ITState. This is
 182 * controlled by test_context_cpsr().
 183 *
 184 * BUILDING TEST CASES
 185 * -------------------
 186 *
 187 *
 188 * As an aid to building test cases, the stack buffer is initialised with
 189 * some special values:
 190 *
 191 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
 192 *		which load a value into SP.
 193 *
 194 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
 195 *		this holds the target address of the branch, 'test_after2'.
 196 *		This can be used to test instructions which load a PC value
 197 *		from memory.
 198 */
 199
 200#include <linux/kernel.h>
 201#include <linux/module.h>
 202#include <linux/slab.h>
 203#include <linux/kprobes.h>
 204#include <linux/errno.h>
 205#include <linux/stddef.h>
 206#include <linux/bug.h>
 207#include <asm/opcodes.h>
 208
 209#include "kprobes.h"
 210#include "probes-arm.h"
 211#include "probes-thumb.h"
 212#include "kprobes-test.h"
 213
 214
 215#define BENCHMARKING	1
 216
 217
 218/*
 219 * Test basic API
 220 */
 221
 222static bool test_regs_ok;
 223static int test_func_instance;
 224static int pre_handler_called;
 225static int post_handler_called;
 226static int jprobe_func_called;
 227static int kretprobe_handler_called;
 228
 229#define FUNC_ARG1 0x12345678
 230#define FUNC_ARG2 0xabcdef
 231
 232
 233#ifndef CONFIG_THUMB2_KERNEL
 234
 235long arm_func(long r0, long r1);
 236
 237static void __used __naked __arm_kprobes_test_func(void)
 238{
 239	__asm__ __volatile__ (
 240		".arm					\n\t"
 241		".type arm_func, %%function		\n\t"
 242		"arm_func:				\n\t"
 243		"adds	r0, r0, r1			\n\t"
 244		"bx	lr				\n\t"
 245		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
 246		: : : "r0", "r1", "cc"
 247	);
 248}
 249
 250#else /* CONFIG_THUMB2_KERNEL */
 251
 252long thumb16_func(long r0, long r1);
 253long thumb32even_func(long r0, long r1);
 254long thumb32odd_func(long r0, long r1);
 255
 256static void __used __naked __thumb_kprobes_test_funcs(void)
 257{
 258	__asm__ __volatile__ (
 259		".type thumb16_func, %%function		\n\t"
 260		"thumb16_func:				\n\t"
 261		"adds.n	r0, r0, r1			\n\t"
 262		"bx	lr				\n\t"
 263
 264		".align					\n\t"
 265		".type thumb32even_func, %%function	\n\t"
 266		"thumb32even_func:			\n\t"
 267		"adds.w	r0, r0, r1			\n\t"
 268		"bx	lr				\n\t"
 269
 270		".align					\n\t"
 271		"nop.n					\n\t"
 272		".type thumb32odd_func, %%function	\n\t"
 273		"thumb32odd_func:			\n\t"
 274		"adds.w	r0, r0, r1			\n\t"
 275		"bx	lr				\n\t"
 276
 277		: : : "r0", "r1", "cc"
 278	);
 279}
 280
 281#endif /* CONFIG_THUMB2_KERNEL */
 282
 283
 284static int call_test_func(long (*func)(long, long), bool check_test_regs)
 285{
 286	long ret;
 287
 288	++test_func_instance;
 289	test_regs_ok = false;
 290
 291	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 292	if (ret != FUNC_ARG1 + FUNC_ARG2) {
 293		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 294		return false;
 295	}
 296
 297	if (check_test_regs && !test_regs_ok) {
 298		pr_err("FAIL: test regs not OK\n");
 299		return false;
 300	}
 301
 302	return true;
 303}
 304
 305static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 306{
 307	pre_handler_called = test_func_instance;
 308	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 309		test_regs_ok = true;
 310	return 0;
 311}
 312
 313static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 314				unsigned long flags)
 315{
 316	post_handler_called = test_func_instance;
 317	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 318		test_regs_ok = false;
 319}
 320
 321static struct kprobe the_kprobe = {
 322	.addr		= 0,
 323	.pre_handler	= pre_handler,
 324	.post_handler	= post_handler
 325};
 326
 327static int test_kprobe(long (*func)(long, long))
 328{
 329	int ret;
 330
 331	the_kprobe.addr = (kprobe_opcode_t *)func;
 332	ret = register_kprobe(&the_kprobe);
 333	if (ret < 0) {
 334		pr_err("FAIL: register_kprobe failed with %d\n", ret);
 335		return ret;
 336	}
 337
 338	ret = call_test_func(func, true);
 339
 340	unregister_kprobe(&the_kprobe);
 341	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 342
 343	if (!ret)
 344		return -EINVAL;
 345	if (pre_handler_called != test_func_instance) {
 346		pr_err("FAIL: kprobe pre_handler not called\n");
 347		return -EINVAL;
 348	}
 349	if (post_handler_called != test_func_instance) {
 350		pr_err("FAIL: kprobe post_handler not called\n");
 351		return -EINVAL;
 352	}
 353	if (!call_test_func(func, false))
 354		return -EINVAL;
 355	if (pre_handler_called == test_func_instance ||
 356				post_handler_called == test_func_instance) {
 357		pr_err("FAIL: probe called after unregistering\n");
 358		return -EINVAL;
 359	}
 360
 361	return 0;
 362}
 363
 364static void __kprobes jprobe_func(long r0, long r1)
 365{
 366	jprobe_func_called = test_func_instance;
 367	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
 368		test_regs_ok = true;
 369	jprobe_return();
 370}
 371
 372static struct jprobe the_jprobe = {
 373	.entry		= jprobe_func,
 374};
 375
 376static int test_jprobe(long (*func)(long, long))
 377{
 378	int ret;
 379
 380	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
 381	ret = register_jprobe(&the_jprobe);
 382	if (ret < 0) {
 383		pr_err("FAIL: register_jprobe failed with %d\n", ret);
 384		return ret;
 385	}
 386
 387	ret = call_test_func(func, true);
 388
 389	unregister_jprobe(&the_jprobe);
 390	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 391
 392	if (!ret)
 393		return -EINVAL;
 394	if (jprobe_func_called != test_func_instance) {
 395		pr_err("FAIL: jprobe handler function not called\n");
 396		return -EINVAL;
 397	}
 398	if (!call_test_func(func, false))
 399		return -EINVAL;
 400	if (jprobe_func_called == test_func_instance) {
 401		pr_err("FAIL: probe called after unregistering\n");
 402		return -EINVAL;
 403	}
 404
 405	return 0;
 406}
 407
 408static int __kprobes
 409kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 410{
 411	kretprobe_handler_called = test_func_instance;
 412	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 413		test_regs_ok = true;
 414	return 0;
 415}
 416
 417static struct kretprobe the_kretprobe = {
 418	.handler	= kretprobe_handler,
 419};
 420
 421static int test_kretprobe(long (*func)(long, long))
 422{
 423	int ret;
 424
 425	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 426	ret = register_kretprobe(&the_kretprobe);
 427	if (ret < 0) {
 428		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 429		return ret;
 430	}
 431
 432	ret = call_test_func(func, true);
 433
 434	unregister_kretprobe(&the_kretprobe);
 435	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 436
 437	if (!ret)
 438		return -EINVAL;
 439	if (kretprobe_handler_called != test_func_instance) {
 440		pr_err("FAIL: kretprobe handler not called\n");
 441		return -EINVAL;
 442	}
 443	if (!call_test_func(func, false))
 444		return -EINVAL;
 445	if (jprobe_func_called == test_func_instance) {
 446		pr_err("FAIL: kretprobe called after unregistering\n");
 447		return -EINVAL;
 448	}
 449
 450	return 0;
 451}
 452
 453static int run_api_tests(long (*func)(long, long))
 454{
 455	int ret;
 456
 457	pr_info("    kprobe\n");
 458	ret = test_kprobe(func);
 459	if (ret < 0)
 460		return ret;
 461
 462	pr_info("    jprobe\n");
 463	ret = test_jprobe(func);
 464	if (ret < 0)
 465		return ret;
 466
 467	pr_info("    kretprobe\n");
 468	ret = test_kretprobe(func);
 469	if (ret < 0)
 470		return ret;
 471
 472	return 0;
 473}
 474
 475
 476/*
 477 * Benchmarking
 478 */
 479
 480#if BENCHMARKING
 481
 482static void __naked benchmark_nop(void)
 483{
 484	__asm__ __volatile__ (
 485		"nop		\n\t"
 486		"bx	lr"
 487	);
 488}
 489
 490#ifdef CONFIG_THUMB2_KERNEL
 491#define wide ".w"
 492#else
 493#define wide
 494#endif
 495
 496static void __naked benchmark_pushpop1(void)
 497{
 498	__asm__ __volatile__ (
 499		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
 500		"ldmia"wide"	sp!, {r3-r11,pc}"
 501	);
 502}
 503
 504static void __naked benchmark_pushpop2(void)
 505{
 506	__asm__ __volatile__ (
 507		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
 508		"ldmia"wide"	sp!, {r0-r8,pc}"
 509	);
 510}
 511
 512static void __naked benchmark_pushpop3(void)
 513{
 514	__asm__ __volatile__ (
 515		"stmdb"wide"	sp!, {r4,lr}  \n\t"
 516		"ldmia"wide"	sp!, {r4,pc}"
 517	);
 518}
 519
 520static void __naked benchmark_pushpop4(void)
 521{
 522	__asm__ __volatile__ (
 523		"stmdb"wide"	sp!, {r0,lr}  \n\t"
 524		"ldmia"wide"	sp!, {r0,pc}"
 525	);
 526}
 527
 528
 529#ifdef CONFIG_THUMB2_KERNEL
 530
 531static void __naked benchmark_pushpop_thumb(void)
 532{
 533	__asm__ __volatile__ (
 534		"push.n	{r0-r7,lr}  \n\t"
 535		"pop.n	{r0-r7,pc}"
 536	);
 537}
 538
 539#endif
 540
 541static int __kprobes
 542benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 543{
 544	return 0;
 545}
 546
 547static int benchmark(void(*fn)(void))
 548{
 549	unsigned n, i, t, t0;
 550
 551	for (n = 1000; ; n *= 2) {
 552		t0 = sched_clock();
 553		for (i = n; i > 0; --i)
 554			fn();
 555		t = sched_clock() - t0;
 556		if (t >= 250000000)
 557			break; /* Stop once we took more than 0.25 seconds */
 558	}
 559	return t / n; /* Time for one iteration in nanoseconds */
 560};
 561
 562static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 563{
 564	struct kprobe k = {
 565		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
 566		.pre_handler	= benchmark_pre_handler,
 567	};
 568
 569	int ret = register_kprobe(&k);
 570	if (ret < 0) {
 571		pr_err("FAIL: register_kprobe failed with %d\n", ret);
 572		return ret;
 573	}
 574
 575	ret = benchmark(fn);
 576
 577	unregister_kprobe(&k);
 578	return ret;
 579};
 580
 581struct benchmarks {
 582	void		(*fn)(void);
 583	unsigned	offset;
 584	const char	*title;
 585};
 586
 587static int run_benchmarks(void)
 588{
 589	int ret;
 590	struct benchmarks list[] = {
 591		{&benchmark_nop, 0, "nop"},
 592		/*
 593		 * benchmark_pushpop{1,3} will have the optimised
 594		 * instruction emulation, whilst benchmark_pushpop{2,4} will
 595		 * be the equivalent unoptimised instructions.
 596		 */
 597		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
 598		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
 599		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
 600		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
 601		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
 602		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
 603		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
 604		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
 605#ifdef CONFIG_THUMB2_KERNEL
 606		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
 607		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
 608#endif
 609		{0}
 610	};
 611
 612	struct benchmarks *b;
 613	for (b = list; b->fn; ++b) {
 614		ret = kprobe_benchmark(b->fn, b->offset);
 615		if (ret < 0)
 616			return ret;
 617		pr_info("    %dns for kprobe %s\n", ret, b->title);
 618	}
 619
 620	pr_info("\n");
 621	return 0;
 622}
 623
 624#endif /* BENCHMARKING */
 625
 626
 627/*
 628 * Decoding table self-consistency tests
 629 */
 630
 631static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 632	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
 633	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
 634	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
 635	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
 636	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
 637	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
 638};
 639
 640static int table_iter(const union decode_item *table,
 641			int (*fn)(const struct decode_header *, void *),
 642			void *args)
 643{
 644	const struct decode_header *h = (struct decode_header *)table;
 645	int result;
 646
 647	for (;;) {
 648		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 649
 650		if (type == DECODE_TYPE_END)
 651			return 0;
 652
 653		result = fn(h, args);
 654		if (result)
 655			return result;
 656
 657		h = (struct decode_header *)
 658			((uintptr_t)h + decode_struct_sizes[type]);
 659
 660	}
 661}
 662
 663static int table_test_fail(const struct decode_header *h, const char* message)
 664{
 665
 666	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 667					message, h->mask.bits, h->value.bits);
 668	return -EINVAL;
 669}
 670
 671struct table_test_args {
 672	const union decode_item *root_table;
 673	u32			parent_mask;
 674	u32			parent_value;
 675};
 676
 677static int table_test_fn(const struct decode_header *h, void *args)
 678{
 679	struct table_test_args *a = (struct table_test_args *)args;
 680	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 681
 682	if (h->value.bits & ~h->mask.bits)
 683		return table_test_fail(h, "Match value has bits not in mask");
 684
 685	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 686		return table_test_fail(h, "Mask has bits not in parent mask");
 687
 688	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 689		return table_test_fail(h, "Value is inconsistent with parent");
 690
 691	if (type == DECODE_TYPE_TABLE) {
 692		struct decode_table *d = (struct decode_table *)h;
 693		struct table_test_args args2 = *a;
 694		args2.parent_mask = h->mask.bits;
 695		args2.parent_value = h->value.bits;
 696		return table_iter(d->table.table, table_test_fn, &args2);
 697	}
 698
 699	return 0;
 700}
 701
 702static int table_test(const union decode_item *table)
 703{
 704	struct table_test_args args = {
 705		.root_table	= table,
 706		.parent_mask	= 0,
 707		.parent_value	= 0
 708	};
 709	return table_iter(args.root_table, table_test_fn, &args);
 710}
 711
 712
 713/*
 714 * Decoding table test coverage analysis
 715 *
 716 * coverage_start() builds a coverage_table which contains a list of
 717 * coverage_entry's to match each entry in the specified kprobes instruction
 718 * decoding table.
 719 *
 720 * When test cases are run, coverage_add() is called to process each case.
 721 * This looks up the corresponding entry in the coverage_table and sets it as
 722 * being matched, as well as clearing the regs flag appropriate for the test.
 723 *
 724 * After all test cases have been run, coverage_end() is called to check that
 725 * all entries in coverage_table have been matched and that all regs flags are
 726 * cleared. I.e. that all possible combinations of instructions described by
 727 * the kprobes decoding tables have had a test case executed for them.
 728 */
 729
 730bool coverage_fail;
 731
 732#define MAX_COVERAGE_ENTRIES 256
 733
 734struct coverage_entry {
 735	const struct decode_header	*header;
 736	unsigned			regs;
 737	unsigned			nesting;
 738	char				matched;
 739};
 740
 741struct coverage_table {
 742	struct coverage_entry	*base;
 743	unsigned		num_entries;
 744	unsigned		nesting;
 745};
 746
 747struct coverage_table coverage;
 748
 749#define COVERAGE_ANY_REG	(1<<0)
 750#define COVERAGE_SP		(1<<1)
 751#define COVERAGE_PC		(1<<2)
 752#define COVERAGE_PCWB		(1<<3)
 753
 754static const char coverage_register_lookup[16] = {
 755	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 756	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
 757	[REG_TYPE_SP]		= COVERAGE_SP,
 758	[REG_TYPE_PC]		= COVERAGE_PC,
 759	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
 760	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 761	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
 762	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 763	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
 764	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
 765};
 766
 767unsigned coverage_start_registers(const struct decode_header *h)
 768{
 769	unsigned regs = 0;
 770	int i;
 771	for (i = 0; i < 20; i += 4) {
 772		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 773		regs |= coverage_register_lookup[r] << i;
 774	}
 775	return regs;
 776}
 777
 778static int coverage_start_fn(const struct decode_header *h, void *args)
 779{
 780	struct coverage_table *coverage = (struct coverage_table *)args;
 781	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 782	struct coverage_entry *entry = coverage->base + coverage->num_entries;
 783
 784	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 785		pr_err("FAIL: Out of space for test coverage data");
 786		return -ENOMEM;
 787	}
 788
 789	++coverage->num_entries;
 790
 791	entry->header = h;
 792	entry->regs = coverage_start_registers(h);
 793	entry->nesting = coverage->nesting;
 794	entry->matched = false;
 795
 796	if (type == DECODE_TYPE_TABLE) {
 797		struct decode_table *d = (struct decode_table *)h;
 798		int ret;
 799		++coverage->nesting;
 800		ret = table_iter(d->table.table, coverage_start_fn, coverage);
 801		--coverage->nesting;
 802		return ret;
 803	}
 804
 805	return 0;
 806}
 807
 808static int coverage_start(const union decode_item *table)
 809{
 810	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
 811				sizeof(struct coverage_entry), GFP_KERNEL);
 812	coverage.num_entries = 0;
 813	coverage.nesting = 0;
 814	return table_iter(table, coverage_start_fn, &coverage);
 815}
 816
 817static void
 818coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 819{
 820	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 821	int i;
 822	for (i = 0; i < 20; i += 4) {
 823		enum decode_reg_type reg_type = (regs >> i) & 0xf;
 824		int reg = (insn >> i) & 0xf;
 825		int flag;
 826
 827		if (!reg_type)
 828			continue;
 829
 830		if (reg == 13)
 831			flag = COVERAGE_SP;
 832		else if (reg == 15)
 833			flag = COVERAGE_PC;
 834		else
 835			flag = COVERAGE_ANY_REG;
 836		entry->regs &= ~(flag << i);
 837
 838		switch (reg_type) {
 839
 840		case REG_TYPE_NONE:
 841		case REG_TYPE_ANY:
 842		case REG_TYPE_SAMEAS16:
 843			break;
 844
 845		case REG_TYPE_SP:
 846			if (reg != 13)
 847				return;
 848			break;
 849
 850		case REG_TYPE_PC:
 851			if (reg != 15)
 852				return;
 853			break;
 854
 855		case REG_TYPE_NOSP:
 856			if (reg == 13)
 857				return;
 858			break;
 859
 860		case REG_TYPE_NOSPPC:
 861		case REG_TYPE_NOSPPCX:
 862			if (reg == 13 || reg == 15)
 863				return;
 864			break;
 865
 866		case REG_TYPE_NOPCWB:
 867			if (!is_writeback(insn))
 868				break;
 869			if (reg == 15) {
 870				entry->regs &= ~(COVERAGE_PCWB << i);
 871				return;
 872			}
 873			break;
 874
 875		case REG_TYPE_NOPC:
 876		case REG_TYPE_NOPCX:
 877			if (reg == 15)
 878				return;
 879			break;
 880		}
 881
 882	}
 883}
 884
 885static void coverage_add(kprobe_opcode_t insn)
 886{
 887	struct coverage_entry *entry = coverage.base;
 888	struct coverage_entry *end = coverage.base + coverage.num_entries;
 889	bool matched = false;
 890	unsigned nesting = 0;
 891
 892	for (; entry < end; ++entry) {
 893		const struct decode_header *h = entry->header;
 894		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 895
 896		if (entry->nesting > nesting)
 897			continue; /* Skip sub-table we didn't match */
 898
 899		if (entry->nesting < nesting)
 900			break; /* End of sub-table we were scanning */
 901
 902		if (!matched) {
 903			if ((insn & h->mask.bits) != h->value.bits)
 904				continue;
 905			entry->matched = true;
 906		}
 907
 908		switch (type) {
 909
 910		case DECODE_TYPE_TABLE:
 911			++nesting;
 912			break;
 913
 914		case DECODE_TYPE_CUSTOM:
 915		case DECODE_TYPE_SIMULATE:
 916		case DECODE_TYPE_EMULATE:
 917			coverage_add_registers(entry, insn);
 918			return;
 919
 920		case DECODE_TYPE_OR:
 921			matched = true;
 922			break;
 923
 924		case DECODE_TYPE_REJECT:
 925		default:
 926			return;
 927		}
 928
 929	}
 930}
 931
 932static void coverage_end(void)
 933{
 934	struct coverage_entry *entry = coverage.base;
 935	struct coverage_entry *end = coverage.base + coverage.num_entries;
 936
 937	for (; entry < end; ++entry) {
 938		u32 mask = entry->header->mask.bits;
 939		u32 value = entry->header->value.bits;
 940
 941		if (entry->regs) {
 942			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 943				mask, value, entry->regs);
 944			coverage_fail = true;
 945		}
 946		if (!entry->matched) {
 947			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 948				mask, value);
 949			coverage_fail = true;
 950		}
 951	}
 952
 953	kfree(coverage.base);
 954}
 955
 956
 957/*
 958 * Framework for instruction set test cases
 959 */
 960
 961void __naked __kprobes_test_case_start(void)
 962{
 963	__asm__ __volatile__ (
 964		"stmdb	sp!, {r4-r11}				\n\t"
 965		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 966		"bic	r0, lr, #1  @ r0 = inline title string	\n\t"
 967		"mov	r1, sp					\n\t"
 968		"bl	kprobes_test_case_start			\n\t"
 969		"bx	r0					\n\t"
 970	);
 971}
 972
 973#ifndef CONFIG_THUMB2_KERNEL
 974
 975void __naked __kprobes_test_case_end_32(void)
 976{
 977	__asm__ __volatile__ (
 978		"mov	r4, lr					\n\t"
 979		"bl	kprobes_test_case_end			\n\t"
 980		"cmp	r0, #0					\n\t"
 981		"movne	pc, r0					\n\t"
 982		"mov	r0, r4					\n\t"
 983		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 984		"ldmia	sp!, {r4-r11}				\n\t"
 985		"mov	pc, r0					\n\t"
 986	);
 987}
 988
 989#else /* CONFIG_THUMB2_KERNEL */
 990
 991void __naked __kprobes_test_case_end_16(void)
 992{
 993	__asm__ __volatile__ (
 994		"mov	r4, lr					\n\t"
 995		"bl	kprobes_test_case_end			\n\t"
 996		"cmp	r0, #0					\n\t"
 997		"bxne	r0					\n\t"
 998		"mov	r0, r4					\n\t"
 999		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1000		"ldmia	sp!, {r4-r11}				\n\t"
1001		"bx	r0					\n\t"
1002	);
1003}
1004
1005void __naked __kprobes_test_case_end_32(void)
1006{
1007	__asm__ __volatile__ (
1008		".arm						\n\t"
1009		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
1010		"ldr	pc, 1f					\n\t"
1011		"1:						\n\t"
1012		".word	__kprobes_test_case_end_16		\n\t"
1013	);
1014}
1015
1016#endif
1017
1018
1019int kprobe_test_flags;
1020int kprobe_test_cc_position;
1021
1022static int test_try_count;
1023static int test_pass_count;
1024static int test_fail_count;
1025
1026static struct pt_regs initial_regs;
1027static struct pt_regs expected_regs;
1028static struct pt_regs result_regs;
1029
1030static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1031
1032static const char *current_title;
1033static struct test_arg *current_args;
1034static u32 *current_stack;
1035static uintptr_t current_branch_target;
1036
1037static uintptr_t current_code_start;
1038static kprobe_opcode_t current_instruction;
1039
1040
1041#define TEST_CASE_PASSED -1
1042#define TEST_CASE_FAILED -2
1043
1044static int test_case_run_count;
1045static bool test_case_is_thumb;
1046static int test_instance;
1047
1048/*
1049 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1050 * can change randomly as the kernel doesn't take care to preserve or initialise
1051 * this across context switches. Also, with Security Extentions, the flag may
1052 * not be under control of the kernel; for this reason we ignore the state of
1053 * the FIQ disable flag CPSR.F as well.
1054 */
1055#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1056
1057static unsigned long test_check_cc(int cc, unsigned long cpsr)
1058{
1059	int ret = arm_check_condition(cc << 28, cpsr);
1060
1061	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1062}
1063
1064static int is_last_scenario;
1065static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1066static int memory_needs_checking;
1067
1068static unsigned long test_context_cpsr(int scenario)
1069{
1070	unsigned long cpsr;
1071
1072	probe_should_run = 1;
1073
1074	/* Default case is that we cycle through 16 combinations of flags */
1075	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1076	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1077	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1078
1079	if (!test_case_is_thumb) {
1080		/* Testing ARM code */
1081		int cc = current_instruction >> 28;
1082
1083		probe_should_run = test_check_cc(cc, cpsr) != 0;
1084		if (scenario == 15)
1085			is_last_scenario = true;
1086
1087	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1088		/* Testing Thumb code without setting ITSTATE */
1089		if (kprobe_test_cc_position) {
1090			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1091			probe_should_run = test_check_cc(cc, cpsr) != 0;
1092		}
1093
1094		if (scenario == 15)
1095			is_last_scenario = true;
1096
1097	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1098		/* Testing Thumb code with all combinations of ITSTATE */
1099		unsigned x = (scenario >> 4);
1100		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1101		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1102
1103		if (mask > 0x1f) {
1104			/* Finish by testing state from instruction 'itt al' */
1105			cond_base = 7;
1106			mask = 0x4;
1107			if ((scenario & 0xf) == 0xf)
1108				is_last_scenario = true;
1109		}
1110
1111		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1112		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1113		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1114		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1115		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1116		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1117
1118		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1119
1120	} else {
1121		/* Testing Thumb code with several combinations of ITSTATE */
1122		switch (scenario) {
1123		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1124			cpsr = 0x00000800;
1125			probe_should_run = 0;
1126			break;
1127		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1128			cpsr = 0xf0007800;
1129			probe_should_run = 0;
1130			break;
1131		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1132			cpsr = 0x00009800;
1133			break;
1134		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1135			cpsr = 0xf0002800;
1136			is_last_scenario = true;
1137			break;
1138		}
1139	}
1140
1141	return cpsr;
1142}
1143
1144static void setup_test_context(struct pt_regs *regs)
1145{
1146	int scenario = test_case_run_count>>1;
1147	unsigned long val;
1148	struct test_arg *args;
1149	int i;
1150
1151	is_last_scenario = false;
1152	memory_needs_checking = false;
1153
1154	/* Initialise test memory on stack */
1155	val = (scenario & 1) ? VALM : ~VALM;
1156	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1157		current_stack[i] = val + (i << 8);
1158	/* Put target of branch on stack for tests which load PC from memory */
1159	if (current_branch_target)
1160		current_stack[15] = current_branch_target;
1161	/* Put a value for SP on stack for tests which load SP from memory */
1162	current_stack[13] = (u32)current_stack + 120;
1163
1164	/* Initialise register values to their default state */
1165	val = (scenario & 2) ? VALR : ~VALR;
1166	for (i = 0; i < 13; ++i)
1167		regs->uregs[i] = val ^ (i << 8);
1168	regs->ARM_lr = val ^ (14 << 8);
1169	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1170	regs->ARM_cpsr |= test_context_cpsr(scenario);
1171
1172	/* Perform testcase specific register setup  */
1173	args = current_args;
1174	for (; args[0].type != ARG_TYPE_END; ++args)
1175		switch (args[0].type) {
1176		case ARG_TYPE_REG: {
1177			struct test_arg_regptr *arg =
1178				(struct test_arg_regptr *)args;
1179			regs->uregs[arg->reg] = arg->val;
1180			break;
1181		}
1182		case ARG_TYPE_PTR: {
1183			struct test_arg_regptr *arg =
1184				(struct test_arg_regptr *)args;
1185			regs->uregs[arg->reg] =
1186				(unsigned long)current_stack + arg->val;
1187			memory_needs_checking = true;
1188			break;
1189		}
1190		case ARG_TYPE_MEM: {
1191			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1192			current_stack[arg->index] = arg->val;
1193			break;
1194		}
1195		default:
1196			break;
1197		}
1198}
1199
1200struct test_probe {
1201	struct kprobe	kprobe;
1202	bool		registered;
1203	int		hit;
1204};
1205
1206static void unregister_test_probe(struct test_probe *probe)
1207{
1208	if (probe->registered) {
1209		unregister_kprobe(&probe->kprobe);
1210		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1211	}
1212	probe->registered = false;
1213}
1214
1215static int register_test_probe(struct test_probe *probe)
1216{
1217	int ret;
1218
1219	if (probe->registered)
1220		BUG();
1221
1222	ret = register_kprobe(&probe->kprobe);
1223	if (ret >= 0) {
1224		probe->registered = true;
1225		probe->hit = -1;
1226	}
1227	return ret;
1228}
1229
1230static int __kprobes
1231test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1232{
1233	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1234	return 0;
1235}
1236
1237static void __kprobes
1238test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1239							unsigned long flags)
1240{
1241	setup_test_context(regs);
1242	initial_regs = *regs;
1243	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1244}
1245
1246static int __kprobes
1247test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1248{
1249	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1250	return 0;
1251}
1252
1253static int __kprobes
1254test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1255{
1256	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1257		return 0; /* Already run for this test instance */
1258
1259	result_regs = *regs;
1260	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1261
1262	/* Undo any changes done to SP by the test case */
1263	regs->ARM_sp = (unsigned long)current_stack;
1264
1265	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1266	return 0;
1267}
1268
1269static struct test_probe test_before_probe = {
1270	.kprobe.pre_handler	= test_before_pre_handler,
1271	.kprobe.post_handler	= test_before_post_handler,
1272};
1273
1274static struct test_probe test_case_probe = {
1275	.kprobe.pre_handler	= test_case_pre_handler,
1276};
1277
1278static struct test_probe test_after_probe = {
1279	.kprobe.pre_handler	= test_after_pre_handler,
1280};
1281
1282static struct test_probe test_after2_probe = {
1283	.kprobe.pre_handler	= test_after_pre_handler,
1284};
1285
1286static void test_case_cleanup(void)
1287{
1288	unregister_test_probe(&test_before_probe);
1289	unregister_test_probe(&test_case_probe);
1290	unregister_test_probe(&test_after_probe);
1291	unregister_test_probe(&test_after2_probe);
1292}
1293
1294static void print_registers(struct pt_regs *regs)
1295{
1296	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1297		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1298	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1299		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1300	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1301		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1302	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1303		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1304	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1305}
1306
1307static void print_memory(u32 *mem, size_t size)
1308{
1309	int i;
1310	for (i = 0; i < size / sizeof(u32); i += 4)
1311		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1312						mem[i+2], mem[i+3]);
1313}
1314
1315static size_t expected_memory_size(u32 *sp)
1316{
1317	size_t size = sizeof(expected_memory);
1318	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1319	if (offset > 0)
1320		size -= offset;
1321	return size;
1322}
1323
1324static void test_case_failed(const char *message)
1325{
1326	test_case_cleanup();
1327
1328	pr_err("FAIL: %s\n", message);
1329	pr_err("FAIL: Test %s\n", current_title);
1330	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1331}
1332
1333static unsigned long next_instruction(unsigned long pc)
1334{
1335#ifdef CONFIG_THUMB2_KERNEL
1336	if ((pc & 1) &&
1337	    !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1338		return pc + 2;
1339	else
1340#endif
1341	return pc + 4;
1342}
1343
1344static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1345{
1346	struct test_arg *args;
1347	struct test_arg_end *end_arg;
1348	unsigned long test_code;
1349
1350	args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1351
1352	current_title = title;
1353	current_args = args;
1354	current_stack = stack;
1355
1356	++test_try_count;
1357
1358	while (args->type != ARG_TYPE_END)
1359		++args;
1360	end_arg = (struct test_arg_end *)args;
1361
1362	test_code = (unsigned long)(args + 1); /* Code starts after args */
1363
1364	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1365	if (test_case_is_thumb)
1366		test_code |= 1;
1367
1368	current_code_start = test_code;
1369
1370	current_branch_target = 0;
1371	if (end_arg->branch_offset != end_arg->end_offset)
1372		current_branch_target = test_code + end_arg->branch_offset;
1373
1374	test_code += end_arg->code_offset;
1375	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1376
1377	test_code = next_instruction(test_code);
1378	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1379
1380	if (test_case_is_thumb) {
1381		u16 *p = (u16 *)(test_code & ~1);
1382		current_instruction = __mem_to_opcode_thumb16(p[0]);
1383		if (is_wide_instruction(current_instruction)) {
1384			u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1385			current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1386		}
1387	} else {
1388		current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1389	}
1390
1391	if (current_title[0] == '.')
1392		verbose("%s\n", current_title);
1393	else
1394		verbose("%s\t@ %0*x\n", current_title,
1395					test_case_is_thumb ? 4 : 8,
1396					current_instruction);
1397
1398	test_code = next_instruction(test_code);
1399	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1400
1401	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1402		if (!test_case_is_thumb ||
1403			is_wide_instruction(current_instruction)) {
1404				test_case_failed("expected 16-bit instruction");
1405				goto fail;
1406		}
1407	} else {
1408		if (test_case_is_thumb &&
1409			!is_wide_instruction(current_instruction)) {
1410				test_case_failed("expected 32-bit instruction");
1411				goto fail;
1412		}
1413	}
1414
1415	coverage_add(current_instruction);
1416
1417	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1418		if (register_test_probe(&test_case_probe) < 0)
1419			goto pass;
1420		test_case_failed("registered probe for unsupported instruction");
1421		goto fail;
1422	}
1423
1424	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1425		if (register_test_probe(&test_case_probe) >= 0)
1426			goto pass;
1427		test_case_failed("couldn't register probe for supported instruction");
1428		goto fail;
1429	}
1430
1431	if (register_test_probe(&test_before_probe) < 0) {
1432		test_case_failed("register test_before_probe failed");
1433		goto fail;
1434	}
1435	if (register_test_probe(&test_after_probe) < 0) {
1436		test_case_failed("register test_after_probe failed");
1437		goto fail;
1438	}
1439	if (current_branch_target) {
1440		test_after2_probe.kprobe.addr =
1441				(kprobe_opcode_t *)current_branch_target;
1442		if (register_test_probe(&test_after2_probe) < 0) {
1443			test_case_failed("register test_after2_probe failed");
1444			goto fail;
1445		}
1446	}
1447
1448	/* Start first run of test case */
1449	test_case_run_count = 0;
1450	++test_instance;
1451	return current_code_start;
1452pass:
1453	test_case_run_count = TEST_CASE_PASSED;
1454	return (uintptr_t)test_after_probe.kprobe.addr;
1455fail:
1456	test_case_run_count = TEST_CASE_FAILED;
1457	return (uintptr_t)test_after_probe.kprobe.addr;
1458}
1459
1460static bool check_test_results(void)
1461{
1462	size_t mem_size = 0;
1463	u32 *mem = 0;
1464
1465	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1466		test_case_failed("registers differ");
1467		goto fail;
1468	}
1469
1470	if (memory_needs_checking) {
1471		mem = (u32 *)result_regs.ARM_sp;
1472		mem_size = expected_memory_size(mem);
1473		if (memcmp(expected_memory, mem, mem_size)) {
1474			test_case_failed("test memory differs");
1475			goto fail;
1476		}
1477	}
1478
1479	return true;
1480
1481fail:
1482	pr_err("initial_regs:\n");
1483	print_registers(&initial_regs);
1484	pr_err("expected_regs:\n");
1485	print_registers(&expected_regs);
1486	pr_err("result_regs:\n");
1487	print_registers(&result_regs);
1488
1489	if (mem) {
1490		pr_err("current_stack=%p\n", current_stack);
1491		pr_err("expected_memory:\n");
1492		print_memory(expected_memory, mem_size);
1493		pr_err("result_memory:\n");
1494		print_memory(mem, mem_size);
1495	}
1496
1497	return false;
1498}
1499
1500static uintptr_t __used kprobes_test_case_end(void)
1501{
1502	if (test_case_run_count < 0) {
1503		if (test_case_run_count == TEST_CASE_PASSED)
1504			/* kprobes_test_case_start did all the needed testing */
1505			goto pass;
1506		else
1507			/* kprobes_test_case_start failed */
1508			goto fail;
1509	}
1510
1511	if (test_before_probe.hit != test_instance) {
1512		test_case_failed("test_before_handler not run");
1513		goto fail;
1514	}
1515
1516	if (test_after_probe.hit != test_instance &&
1517				test_after2_probe.hit != test_instance) {
1518		test_case_failed("test_after_handler not run");
1519		goto fail;
1520	}
1521
1522	/*
1523	 * Even numbered test runs ran without a probe on the test case so
1524	 * we can gather reference results. The subsequent odd numbered run
1525	 * will have the probe inserted.
1526	*/
1527	if ((test_case_run_count & 1) == 0) {
1528		/* Save results from run without probe */
1529		u32 *mem = (u32 *)result_regs.ARM_sp;
1530		expected_regs = result_regs;
1531		memcpy(expected_memory, mem, expected_memory_size(mem));
1532
1533		/* Insert probe onto test case instruction */
1534		if (register_test_probe(&test_case_probe) < 0) {
1535			test_case_failed("register test_case_probe failed");
1536			goto fail;
1537		}
1538	} else {
1539		/* Check probe ran as expected */
1540		if (probe_should_run == 1) {
1541			if (test_case_probe.hit != test_instance) {
1542				test_case_failed("test_case_handler not run");
1543				goto fail;
1544			}
1545		} else if (probe_should_run == 0) {
1546			if (test_case_probe.hit == test_instance) {
1547				test_case_failed("test_case_handler ran");
1548				goto fail;
1549			}
1550		}
1551
1552		/* Remove probe for any subsequent reference run */
1553		unregister_test_probe(&test_case_probe);
1554
1555		if (!check_test_results())
1556			goto fail;
1557
1558		if (is_last_scenario)
1559			goto pass;
1560	}
1561
1562	/* Do next test run */
1563	++test_case_run_count;
1564	++test_instance;
1565	return current_code_start;
1566fail:
1567	++test_fail_count;
1568	goto end;
1569pass:
1570	++test_pass_count;
1571end:
1572	test_case_cleanup();
1573	return 0;
1574}
1575
1576
1577/*
1578 * Top level test functions
1579 */
1580
1581static int run_test_cases(void (*tests)(void), const union decode_item *table)
1582{
1583	int ret;
1584
1585	pr_info("    Check decoding tables\n");
1586	ret = table_test(table);
1587	if (ret)
1588		return ret;
1589
1590	pr_info("    Run test cases\n");
1591	ret = coverage_start(table);
1592	if (ret)
1593		return ret;
1594
1595	tests();
1596
1597	coverage_end();
1598	return 0;
1599}
1600
1601
1602static int __init run_all_tests(void)
1603{
1604	int ret = 0;
1605
1606	pr_info("Beginning kprobe tests...\n");
1607
1608#ifndef CONFIG_THUMB2_KERNEL
1609
1610	pr_info("Probe ARM code\n");
1611	ret = run_api_tests(arm_func);
1612	if (ret)
1613		goto out;
1614
1615	pr_info("ARM instruction simulation\n");
1616	ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1617	if (ret)
1618		goto out;
1619
1620#else /* CONFIG_THUMB2_KERNEL */
1621
1622	pr_info("Probe 16-bit Thumb code\n");
1623	ret = run_api_tests(thumb16_func);
1624	if (ret)
1625		goto out;
1626
1627	pr_info("Probe 32-bit Thumb code, even halfword\n");
1628	ret = run_api_tests(thumb32even_func);
1629	if (ret)
1630		goto out;
1631
1632	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1633	ret = run_api_tests(thumb32odd_func);
1634	if (ret)
1635		goto out;
1636
1637	pr_info("16-bit Thumb instruction simulation\n");
1638	ret = run_test_cases(kprobe_thumb16_test_cases,
1639				probes_decode_thumb16_table);
1640	if (ret)
1641		goto out;
1642
1643	pr_info("32-bit Thumb instruction simulation\n");
1644	ret = run_test_cases(kprobe_thumb32_test_cases,
1645				probes_decode_thumb32_table);
1646	if (ret)
1647		goto out;
1648#endif
1649
1650	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1651		test_try_count, test_pass_count, test_fail_count);
1652	if (test_fail_count) {
1653		ret = -EINVAL;
1654		goto out;
1655	}
1656
1657#if BENCHMARKING
1658	pr_info("Benchmarks\n");
1659	ret = run_benchmarks();
1660	if (ret)
1661		goto out;
1662#endif
1663
1664#if __LINUX_ARM_ARCH__ >= 7
1665	/* We are able to run all test cases so coverage should be complete */
1666	if (coverage_fail) {
1667		pr_err("FAIL: Test coverage checks failed\n");
1668		ret = -EINVAL;
1669		goto out;
1670	}
1671#endif
1672
1673out:
1674	if (ret == 0)
1675		pr_info("Finished kprobe tests OK\n");
1676	else
1677		pr_err("kprobe tests failed\n");
1678
1679	return ret;
1680}
1681
1682
1683/*
1684 * Module setup
1685 */
1686
1687#ifdef MODULE
1688
1689static void __exit kprobe_test_exit(void)
1690{
1691}
1692
1693module_init(run_all_tests)
1694module_exit(kprobe_test_exit)
1695MODULE_LICENSE("GPL");
1696
1697#else /* !MODULE */
1698
1699late_initcall(run_all_tests);
1700
1701#endif