Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3 *                   Takashi Iwai <tiwai@suse.de>
  4 * 
  5 *  Generic memory allocators
  6 *
  7 *
  8 *   This program is free software; you can redistribute it and/or modify
  9 *   it under the terms of the GNU General Public License as published by
 10 *   the Free Software Foundation; either version 2 of the License, or
 11 *   (at your option) any later version.
 12 *
 13 *   This program is distributed in the hope that it will be useful,
 14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 *   GNU General Public License for more details.
 17 *
 18 *   You should have received a copy of the GNU General Public License
 19 *   along with this program; if not, write to the Free Software
 20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 21 *
 22 */
 23
 24#include <linux/slab.h>
 25#include <linux/mm.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/genalloc.h>
 
 
 
 
 28#include <sound/memalloc.h>
 
 29
 30/*
 31 *
 32 *  Generic memory allocators
 33 *
 34 */
 35
 36/**
 37 * snd_malloc_pages - allocate pages with the given size
 38 * @size: the size to allocate in bytes
 39 * @gfp_flags: the allocation conditions, GFP_XXX
 40 *
 41 * Allocates the physically contiguous pages with the given size.
 42 *
 43 * Return: The pointer of the buffer, or %NULL if no enough memory.
 44 */
 45void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
 46{
 47	int pg;
 48
 49	if (WARN_ON(!size))
 50		return NULL;
 51	if (WARN_ON(!gfp_flags))
 52		return NULL;
 53	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
 54	pg = get_order(size);
 55	return (void *) __get_free_pages(gfp_flags, pg);
 56}
 57
 58/**
 59 * snd_free_pages - release the pages
 60 * @ptr: the buffer pointer to release
 61 * @size: the allocated buffer size
 62 *
 63 * Releases the buffer allocated via snd_malloc_pages().
 64 */
 65void snd_free_pages(void *ptr, size_t size)
 66{
 67	int pg;
 68
 69	if (ptr == NULL)
 70		return;
 71	pg = get_order(size);
 72	free_pages((unsigned long) ptr, pg);
 73}
 74
 75/*
 76 *
 77 *  Bus-specific memory allocators
 78 *
 79 */
 80
 81#ifdef CONFIG_HAS_DMA
 82/* allocate the coherent DMA pages */
 83static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
 84{
 85	int pg;
 86	gfp_t gfp_flags;
 87
 88	if (WARN_ON(!dma))
 89		return NULL;
 90	pg = get_order(size);
 91	gfp_flags = GFP_KERNEL
 92		| __GFP_COMP	/* compound page lets parts be mapped */
 93		| __GFP_NORETRY /* don't trigger OOM-killer */
 94		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
 95	return dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
 96}
 97
 98/* free the coherent DMA pages */
 99static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
100			       dma_addr_t dma)
101{
102	int pg;
103
104	if (ptr == NULL)
105		return;
106	pg = get_order(size);
107	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
108}
109
110#ifdef CONFIG_GENERIC_ALLOCATOR
111/**
112 * snd_malloc_dev_iram - allocate memory from on-chip internal ram
113 * @dmab: buffer allocation record to store the allocated data
114 * @size: number of bytes to allocate from the iram
115 *
116 * This function requires iram phandle provided via of_node
117 */
118static void snd_malloc_dev_iram(struct snd_dma_buffer *dmab, size_t size)
119{
120	struct device *dev = dmab->dev.dev;
121	struct gen_pool *pool = NULL;
122
123	dmab->area = NULL;
124	dmab->addr = 0;
125
126	if (dev->of_node)
127		pool = of_get_named_gen_pool(dev->of_node, "iram", 0);
128
129	if (!pool)
130		return;
131
132	/* Assign the pool into private_data field */
133	dmab->private_data = pool;
134
135	dmab->area = gen_pool_dma_alloc(pool, size, &dmab->addr);
136}
137
138/**
139 * snd_free_dev_iram - free allocated specific memory from on-chip internal ram
140 * @dmab: buffer allocation record to store the allocated data
141 */
142static void snd_free_dev_iram(struct snd_dma_buffer *dmab)
143{
144	struct gen_pool *pool = dmab->private_data;
145
146	if (pool && dmab->area)
147		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
 
148}
149#endif /* CONFIG_GENERIC_ALLOCATOR */
150#endif /* CONFIG_HAS_DMA */
151
152/*
153 *
154 *  ALSA generic memory management
155 *
156 */
157
158
159/**
160 * snd_dma_alloc_pages - allocate the buffer area according to the given type
161 * @type: the DMA buffer type
162 * @device: the device pointer
163 * @size: the buffer size to allocate
164 * @dmab: buffer allocation record to store the allocated data
165 *
166 * Calls the memory-allocator function for the corresponding
167 * buffer type.
168 *
169 * Return: Zero if the buffer with the given size is allocated successfully,
170 * otherwise a negative value on error.
171 */
172int snd_dma_alloc_pages(int type, struct device *device, size_t size,
173			struct snd_dma_buffer *dmab)
174{
 
 
175	if (WARN_ON(!size))
176		return -ENXIO;
177	if (WARN_ON(!dmab))
178		return -ENXIO;
179
 
180	dmab->dev.type = type;
181	dmab->dev.dev = device;
182	dmab->bytes = 0;
183	switch (type) {
184	case SNDRV_DMA_TYPE_CONTINUOUS:
185		dmab->area = snd_malloc_pages(size,
186					(__force gfp_t)(unsigned long)device);
187		dmab->addr = 0;
188		break;
189#ifdef CONFIG_HAS_DMA
190#ifdef CONFIG_GENERIC_ALLOCATOR
191	case SNDRV_DMA_TYPE_DEV_IRAM:
192		snd_malloc_dev_iram(dmab, size);
193		if (dmab->area)
194			break;
195		/* Internal memory might have limited size and no enough space,
196		 * so if we fail to malloc, try to fetch memory traditionally.
197		 */
198		dmab->dev.type = SNDRV_DMA_TYPE_DEV;
199#endif /* CONFIG_GENERIC_ALLOCATOR */
200	case SNDRV_DMA_TYPE_DEV:
201		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
202		break;
203#endif
204#ifdef CONFIG_SND_DMA_SGBUF
205	case SNDRV_DMA_TYPE_DEV_SG:
206		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
207		break;
208#endif
209	default:
210		pr_err("snd-malloc: invalid device type %d\n", type);
211		dmab->area = NULL;
212		dmab->addr = 0;
213		return -ENXIO;
214	}
215	if (! dmab->area)
216		return -ENOMEM;
217	dmab->bytes = size;
218	return 0;
219}
 
220
221/**
222 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
223 * @type: the DMA buffer type
224 * @device: the device pointer
225 * @size: the buffer size to allocate
226 * @dmab: buffer allocation record to store the allocated data
227 *
228 * Calls the memory-allocator function for the corresponding
229 * buffer type.  When no space is left, this function reduces the size and
230 * tries to allocate again.  The size actually allocated is stored in
231 * res_size argument.
232 *
233 * Return: Zero if the buffer with the given size is allocated successfully,
234 * otherwise a negative value on error.
235 */
236int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
237				 struct snd_dma_buffer *dmab)
238{
239	int err;
240
241	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
242		size_t aligned_size;
243		if (err != -ENOMEM)
244			return err;
245		if (size <= PAGE_SIZE)
246			return -ENOMEM;
247		aligned_size = PAGE_SIZE << get_order(size);
248		if (size != aligned_size)
249			size = aligned_size;
250		else
251			size >>= 1;
252	}
253	if (! dmab->area)
254		return -ENOMEM;
255	return 0;
256}
257
258
259/**
260 * snd_dma_free_pages - release the allocated buffer
261 * @dmab: the buffer allocation record to release
262 *
263 * Releases the allocated buffer via snd_dma_alloc_pages().
264 */
265void snd_dma_free_pages(struct snd_dma_buffer *dmab)
266{
267	switch (dmab->dev.type) {
268	case SNDRV_DMA_TYPE_CONTINUOUS:
269		snd_free_pages(dmab->area, dmab->bytes);
270		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271#ifdef CONFIG_HAS_DMA
 
 
 
272#ifdef CONFIG_GENERIC_ALLOCATOR
273	case SNDRV_DMA_TYPE_DEV_IRAM:
274		snd_free_dev_iram(dmab);
275		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276#endif /* CONFIG_GENERIC_ALLOCATOR */
277	case SNDRV_DMA_TYPE_DEV:
278		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
279		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280#endif
281#ifdef CONFIG_SND_DMA_SGBUF
282	case SNDRV_DMA_TYPE_DEV_SG:
283		snd_free_sgbuf_pages(dmab);
284		break;
 
 
 
 
 
285#endif
286	default:
287		pr_err("snd-malloc: invalid device type %d\n", dmab->dev.type);
288	}
 
 
 
 
 
289}
290
 
 
 
 
 
 
 
291/*
292 * exports
293 */
294EXPORT_SYMBOL(snd_dma_alloc_pages);
295EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
296EXPORT_SYMBOL(snd_dma_free_pages);
 
 
 
 
 
 
 
 
 
 
 
 
297
298EXPORT_SYMBOL(snd_malloc_pages);
299EXPORT_SYMBOL(snd_free_pages);
 
 
 
 
 
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4 *                   Takashi Iwai <tiwai@suse.de>
  5 * 
  6 *  Generic memory allocators
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 11#include <linux/dma-mapping.h>
 12#include <linux/genalloc.h>
 13#include <linux/vmalloc.h>
 14#ifdef CONFIG_X86
 15#include <asm/set_memory.h>
 16#endif
 17#include <sound/memalloc.h>
 18#include "memalloc_local.h"
 19
 20static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21
 22/* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */
 23static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab,
 24					  gfp_t default_gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25{
 26	if (!dmab->dev.dev)
 27		return default_gfp;
 28	else
 29		return (__force gfp_t)(unsigned long)dmab->dev.dev;
 
 
 
 
 
 
 
 
 
 
 
 
 30}
 31
 32static int __snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
 
 
 
 
 33{
 34	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
 35
 36	if (WARN_ON_ONCE(!ops || !ops->alloc))
 37		return -EINVAL;
 38	return ops->alloc(dmab, size);
 39}
 
 
 
 
 
 
 
 
 
 40
 41/**
 42 * snd_dma_alloc_pages - allocate the buffer area according to the given type
 43 * @type: the DMA buffer type
 44 * @device: the device pointer
 45 * @size: the buffer size to allocate
 46 * @dmab: buffer allocation record to store the allocated data
 47 *
 48 * Calls the memory-allocator function for the corresponding
 49 * buffer type.
 50 *
 51 * Return: Zero if the buffer with the given size is allocated successfully,
 52 * otherwise a negative value on error.
 53 */
 54int snd_dma_alloc_pages(int type, struct device *device, size_t size,
 55			struct snd_dma_buffer *dmab)
 56{
 57	int err;
 58
 59	if (WARN_ON(!size))
 60		return -ENXIO;
 61	if (WARN_ON(!dmab))
 62		return -ENXIO;
 63
 64	size = PAGE_ALIGN(size);
 65	dmab->dev.type = type;
 66	dmab->dev.dev = device;
 67	dmab->bytes = 0;
 68	dmab->area = NULL;
 69	dmab->addr = 0;
 70	dmab->private_data = NULL;
 71	err = __snd_dma_alloc_pages(dmab, size);
 72	if (err < 0)
 73		return err;
 74	if (!dmab->area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75		return -ENOMEM;
 76	dmab->bytes = size;
 77	return 0;
 78}
 79EXPORT_SYMBOL(snd_dma_alloc_pages);
 80
 81/**
 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 83 * @type: the DMA buffer type
 84 * @device: the device pointer
 85 * @size: the buffer size to allocate
 86 * @dmab: buffer allocation record to store the allocated data
 87 *
 88 * Calls the memory-allocator function for the corresponding
 89 * buffer type.  When no space is left, this function reduces the size and
 90 * tries to allocate again.  The size actually allocated is stored in
 91 * res_size argument.
 92 *
 93 * Return: Zero if the buffer with the given size is allocated successfully,
 94 * otherwise a negative value on error.
 95 */
 96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
 97				 struct snd_dma_buffer *dmab)
 98{
 99	int err;
100
101	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
 
102		if (err != -ENOMEM)
103			return err;
104		if (size <= PAGE_SIZE)
105			return -ENOMEM;
106		size >>= 1;
107		size = PAGE_SIZE << get_order(size);
 
 
 
108	}
109	if (! dmab->area)
110		return -ENOMEM;
111	return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125	if (ops && ops->free)
126		ops->free(dmab);
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/**
131 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
132 * @dmab: buffer allocation information
133 * @area: VM area information
134 */
135int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
136			struct vm_area_struct *area)
137{
138	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
139
140	if (ops && ops->mmap)
141		return ops->mmap(dmab, area);
142	else
143		return -ENOENT;
144}
145EXPORT_SYMBOL(snd_dma_buffer_mmap);
146
147/**
148 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
149 * @dmab: buffer allocation information
150 * @offset: offset in the ring buffer
151 */
152dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
153{
154	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
155
156	if (ops && ops->get_addr)
157		return ops->get_addr(dmab, offset);
158	else
159		return dmab->addr + offset;
160}
161EXPORT_SYMBOL(snd_sgbuf_get_addr);
162
163/**
164 * snd_sgbuf_get_page - return the physical page at the corresponding offset
165 * @dmab: buffer allocation information
166 * @offset: offset in the ring buffer
167 */
168struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
169{
170	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
171
172	if (ops && ops->get_page)
173		return ops->get_page(dmab, offset);
174	else
175		return virt_to_page(dmab->area + offset);
176}
177EXPORT_SYMBOL(snd_sgbuf_get_page);
178
179/**
180 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
181 *	on sg-buffer
182 * @dmab: buffer allocation information
183 * @ofs: offset in the ring buffer
184 * @size: the requested size
185 */
186unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
187				      unsigned int ofs, unsigned int size)
188{
189	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
190
191	if (ops && ops->get_chunk_size)
192		return ops->get_chunk_size(dmab, ofs, size);
193	else
194		return size;
195}
196EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
197
198/*
199 * Continuous pages allocator
200 */
201static int snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
202{
203	gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL);
204
205	dmab->area = alloc_pages_exact(size, gfp);
206	return 0;
207}
208
209static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
210{
211	free_pages_exact(dmab->area, dmab->bytes);
212}
213
214static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
215				   struct vm_area_struct *area)
216{
217	return remap_pfn_range(area, area->vm_start,
218			       page_to_pfn(virt_to_page(dmab->area)),
219			       area->vm_end - area->vm_start,
220			       area->vm_page_prot);
221}
222
223static const struct snd_malloc_ops snd_dma_continuous_ops = {
224	.alloc = snd_dma_continuous_alloc,
225	.free = snd_dma_continuous_free,
226	.mmap = snd_dma_continuous_mmap,
227};
228
229/*
230 * VMALLOC allocator
231 */
232static int snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
233{
234	gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM);
235
236	dmab->area = __vmalloc(size, gfp);
237	return 0;
238}
239
240static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
241{
242	vfree(dmab->area);
243}
244
245static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
246				struct vm_area_struct *area)
247{
248	return remap_vmalloc_range(area, dmab->area, 0);
249}
250
251static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
252					   size_t offset)
253{
254	return page_to_phys(vmalloc_to_page(dmab->area + offset)) +
255		offset % PAGE_SIZE;
256}
257
258static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
259					     size_t offset)
260{
261	return vmalloc_to_page(dmab->area + offset);
262}
263
264static unsigned int
265snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
266			       unsigned int ofs, unsigned int size)
267{
268	ofs %= PAGE_SIZE;
269	size += ofs;
270	if (size > PAGE_SIZE)
271		size = PAGE_SIZE;
272	return size - ofs;
273}
274
275static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
276	.alloc = snd_dma_vmalloc_alloc,
277	.free = snd_dma_vmalloc_free,
278	.mmap = snd_dma_vmalloc_mmap,
279	.get_addr = snd_dma_vmalloc_get_addr,
280	.get_page = snd_dma_vmalloc_get_page,
281	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
282};
283
284#ifdef CONFIG_HAS_DMA
285/*
286 * IRAM allocator
287 */
288#ifdef CONFIG_GENERIC_ALLOCATOR
289static int snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
290{
291	struct device *dev = dmab->dev.dev;
292	struct gen_pool *pool;
293
294	if (dev->of_node) {
295		pool = of_gen_pool_get(dev->of_node, "iram", 0);
296		/* Assign the pool into private_data field */
297		dmab->private_data = pool;
298
299		dmab->area = gen_pool_dma_alloc_align(pool, size, &dmab->addr,
300						      PAGE_SIZE);
301		if (dmab->area)
302			return 0;
303	}
304
305	/* Internal memory might have limited size and no enough space,
306	 * so if we fail to malloc, try to fetch memory traditionally.
307	 */
308	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
309	return __snd_dma_alloc_pages(dmab, size);
310}
311
312static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
313{
314	struct gen_pool *pool = dmab->private_data;
315
316	if (pool && dmab->area)
317		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
318}
319
320static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
321			     struct vm_area_struct *area)
322{
323	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
324	return remap_pfn_range(area, area->vm_start,
325			       dmab->addr >> PAGE_SHIFT,
326			       area->vm_end - area->vm_start,
327			       area->vm_page_prot);
328}
329
330static const struct snd_malloc_ops snd_dma_iram_ops = {
331	.alloc = snd_dma_iram_alloc,
332	.free = snd_dma_iram_free,
333	.mmap = snd_dma_iram_mmap,
334};
335#endif /* CONFIG_GENERIC_ALLOCATOR */
336
337/*
338 * Coherent device pages allocator
339 */
340static int snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
341{
342	gfp_t gfp_flags;
343
344	gfp_flags = GFP_KERNEL
345		| __GFP_COMP	/* compound page lets parts be mapped */
346		| __GFP_NORETRY /* don't trigger OOM-killer */
347		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
348	dmab->area = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr,
349					gfp_flags);
350#ifdef CONFIG_X86
351	if (dmab->area && dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
352		set_memory_wc((unsigned long)dmab->area,
353			      PAGE_ALIGN(size) >> PAGE_SHIFT);
354#endif
355	return 0;
356}
357
358static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
359{
360#ifdef CONFIG_X86
361	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
362		set_memory_wb((unsigned long)dmab->area,
363			      PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
364#endif
365	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
366}
367
368static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
369			    struct vm_area_struct *area)
370{
371	return dma_mmap_coherent(dmab->dev.dev, area,
372				 dmab->area, dmab->addr, dmab->bytes);
373}
374
375static const struct snd_malloc_ops snd_dma_dev_ops = {
376	.alloc = snd_dma_dev_alloc,
377	.free = snd_dma_dev_free,
378	.mmap = snd_dma_dev_mmap,
379};
380#endif /* CONFIG_HAS_DMA */
381
382/*
383 * Entry points
384 */
385static const struct snd_malloc_ops *dma_ops[] = {
386	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
387	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
388#ifdef CONFIG_HAS_DMA
389	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
390	[SNDRV_DMA_TYPE_DEV_UC] = &snd_dma_dev_ops,
391#ifdef CONFIG_GENERIC_ALLOCATOR
392	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
393#endif /* CONFIG_GENERIC_ALLOCATOR */
394#endif /* CONFIG_HAS_DMA */
395#ifdef CONFIG_SND_DMA_SGBUF
396	[SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
397	[SNDRV_DMA_TYPE_DEV_UC_SG] = &snd_dma_sg_ops,
398#endif
399};
400
401static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
402{
403	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
404			 dmab->dev.type >= ARRAY_SIZE(dma_ops)))
405		return NULL;
406	return dma_ops[dmab->dev.type];
407}