Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Pressure stall information for CPU, memory and IO
   3 *
   4 * Copyright (c) 2018 Facebook, Inc.
   5 * Author: Johannes Weiner <hannes@cmpxchg.org>
   6 *
   7 * Polling support by Suren Baghdasaryan <surenb@google.com>
   8 * Copyright (c) 2018 Google, Inc.
   9 *
  10 * When CPU, memory and IO are contended, tasks experience delays that
  11 * reduce throughput and introduce latencies into the workload. Memory
  12 * and IO contention, in addition, can cause a full loss of forward
  13 * progress in which the CPU goes idle.
  14 *
  15 * This code aggregates individual task delays into resource pressure
  16 * metrics that indicate problems with both workload health and
  17 * resource utilization.
  18 *
  19 *			Model
  20 *
  21 * The time in which a task can execute on a CPU is our baseline for
  22 * productivity. Pressure expresses the amount of time in which this
  23 * potential cannot be realized due to resource contention.
  24 *
  25 * This concept of productivity has two components: the workload and
  26 * the CPU. To measure the impact of pressure on both, we define two
  27 * contention states for a resource: SOME and FULL.
  28 *
  29 * In the SOME state of a given resource, one or more tasks are
  30 * delayed on that resource. This affects the workload's ability to
  31 * perform work, but the CPU may still be executing other tasks.
  32 *
  33 * In the FULL state of a given resource, all non-idle tasks are
  34 * delayed on that resource such that nobody is advancing and the CPU
  35 * goes idle. This leaves both workload and CPU unproductive.
  36 *
  37 * Naturally, the FULL state doesn't exist for the CPU resource at the
  38 * system level, but exist at the cgroup level, means all non-idle tasks
  39 * in a cgroup are delayed on the CPU resource which used by others outside
  40 * of the cgroup or throttled by the cgroup cpu.max configuration.
  41 *
  42 *	SOME = nr_delayed_tasks != 0
  43 *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
  44 *
  45 * The percentage of wallclock time spent in those compound stall
  46 * states gives pressure numbers between 0 and 100 for each resource,
  47 * where the SOME percentage indicates workload slowdowns and the FULL
  48 * percentage indicates reduced CPU utilization:
  49 *
  50 *	%SOME = time(SOME) / period
  51 *	%FULL = time(FULL) / period
  52 *
  53 *			Multiple CPUs
  54 *
  55 * The more tasks and available CPUs there are, the more work can be
  56 * performed concurrently. This means that the potential that can go
  57 * unrealized due to resource contention *also* scales with non-idle
  58 * tasks and CPUs.
  59 *
  60 * Consider a scenario where 257 number crunching tasks are trying to
  61 * run concurrently on 256 CPUs. If we simply aggregated the task
  62 * states, we would have to conclude a CPU SOME pressure number of
  63 * 100%, since *somebody* is waiting on a runqueue at all
  64 * times. However, that is clearly not the amount of contention the
  65 * workload is experiencing: only one out of 256 possible execution
  66 * threads will be contended at any given time, or about 0.4%.
  67 *
  68 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
  69 * given time *one* of the tasks is delayed due to a lack of memory.
  70 * Again, looking purely at the task state would yield a memory FULL
  71 * pressure number of 0%, since *somebody* is always making forward
  72 * progress. But again this wouldn't capture the amount of execution
  73 * potential lost, which is 1 out of 4 CPUs, or 25%.
  74 *
  75 * To calculate wasted potential (pressure) with multiple processors,
  76 * we have to base our calculation on the number of non-idle tasks in
  77 * conjunction with the number of available CPUs, which is the number
  78 * of potential execution threads. SOME becomes then the proportion of
  79 * delayed tasks to possible threads, and FULL is the share of possible
  80 * threads that are unproductive due to delays:
  81 *
  82 *	threads = min(nr_nonidle_tasks, nr_cpus)
  83 *	   SOME = min(nr_delayed_tasks / threads, 1)
  84 *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
  85 *
  86 * For the 257 number crunchers on 256 CPUs, this yields:
  87 *
  88 *	threads = min(257, 256)
  89 *	   SOME = min(1 / 256, 1)             = 0.4%
  90 *	   FULL = (256 - min(257, 256)) / 256 = 0%
  91 *
  92 * For the 1 out of 4 memory-delayed tasks, this yields:
  93 *
  94 *	threads = min(4, 4)
  95 *	   SOME = min(1 / 4, 1)               = 25%
  96 *	   FULL = (4 - min(3, 4)) / 4         = 25%
  97 *
  98 * [ Substitute nr_cpus with 1, and you can see that it's a natural
  99 *   extension of the single-CPU model. ]
 100 *
 101 *			Implementation
 102 *
 103 * To assess the precise time spent in each such state, we would have
 104 * to freeze the system on task changes and start/stop the state
 105 * clocks accordingly. Obviously that doesn't scale in practice.
 106 *
 107 * Because the scheduler aims to distribute the compute load evenly
 108 * among the available CPUs, we can track task state locally to each
 109 * CPU and, at much lower frequency, extrapolate the global state for
 110 * the cumulative stall times and the running averages.
 111 *
 112 * For each runqueue, we track:
 113 *
 114 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 115 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 116 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 117 *
 118 * and then periodically aggregate:
 119 *
 120 *	tNONIDLE = sum(tNONIDLE[i])
 121 *
 122 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 123 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 124 *
 125 *	   %SOME = tSOME / period
 126 *	   %FULL = tFULL / period
 127 *
 128 * This gives us an approximation of pressure that is practical
 129 * cost-wise, yet way more sensitive and accurate than periodic
 130 * sampling of the aggregate task states would be.
 131 */
 132
 133#include "../workqueue_internal.h"
 134#include <linux/sched/loadavg.h>
 135#include <linux/seq_file.h>
 136#include <linux/proc_fs.h>
 137#include <linux/seqlock.h>
 138#include <linux/uaccess.h>
 139#include <linux/cgroup.h>
 140#include <linux/module.h>
 141#include <linux/sched.h>
 142#include <linux/ctype.h>
 143#include <linux/file.h>
 144#include <linux/poll.h>
 145#include <linux/psi.h>
 146#include "sched.h"
 147
 148static int psi_bug __read_mostly;
 149
 150DEFINE_STATIC_KEY_FALSE(psi_disabled);
 151DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
 152
 153#ifdef CONFIG_PSI_DEFAULT_DISABLED
 154static bool psi_enable;
 155#else
 156static bool psi_enable = true;
 157#endif
 158static int __init setup_psi(char *str)
 159{
 160	return kstrtobool(str, &psi_enable) == 0;
 161}
 162__setup("psi=", setup_psi);
 163
 164/* Running averages - we need to be higher-res than loadavg */
 165#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
 166#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
 167#define EXP_60s		1981		/* 1/exp(2s/60s) */
 168#define EXP_300s	2034		/* 1/exp(2s/300s) */
 169
 170/* PSI trigger definitions */
 171#define WINDOW_MIN_US 500000	/* Min window size is 500ms */
 172#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
 173#define UPDATES_PER_WINDOW 10	/* 10 updates per window */
 174
 175/* Sampling frequency in nanoseconds */
 176static u64 psi_period __read_mostly;
 177
 178/* System-level pressure and stall tracking */
 179static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 180struct psi_group psi_system = {
 181	.pcpu = &system_group_pcpu,
 182};
 183
 184static void psi_avgs_work(struct work_struct *work);
 185
 186static void poll_timer_fn(struct timer_list *t);
 187
 188static void group_init(struct psi_group *group)
 189{
 190	int cpu;
 191
 192	for_each_possible_cpu(cpu)
 193		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 194	group->avg_last_update = sched_clock();
 195	group->avg_next_update = group->avg_last_update + psi_period;
 196	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 197	mutex_init(&group->avgs_lock);
 198	/* Init trigger-related members */
 199	mutex_init(&group->trigger_lock);
 200	INIT_LIST_HEAD(&group->triggers);
 201	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
 202	group->poll_states = 0;
 203	group->poll_min_period = U32_MAX;
 204	memset(group->polling_total, 0, sizeof(group->polling_total));
 205	group->polling_next_update = ULLONG_MAX;
 206	group->polling_until = 0;
 207	init_waitqueue_head(&group->poll_wait);
 208	timer_setup(&group->poll_timer, poll_timer_fn, 0);
 209	rcu_assign_pointer(group->poll_task, NULL);
 210}
 211
 212void __init psi_init(void)
 213{
 214	if (!psi_enable) {
 215		static_branch_enable(&psi_disabled);
 216		return;
 217	}
 218
 219	if (!cgroup_psi_enabled())
 220		static_branch_disable(&psi_cgroups_enabled);
 221
 222	psi_period = jiffies_to_nsecs(PSI_FREQ);
 223	group_init(&psi_system);
 224}
 225
 226static bool test_state(unsigned int *tasks, enum psi_states state)
 227{
 228	switch (state) {
 229	case PSI_IO_SOME:
 230		return unlikely(tasks[NR_IOWAIT]);
 231	case PSI_IO_FULL:
 232		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
 233	case PSI_MEM_SOME:
 234		return unlikely(tasks[NR_MEMSTALL]);
 235	case PSI_MEM_FULL:
 236		return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
 237	case PSI_CPU_SOME:
 238		return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
 239	case PSI_CPU_FULL:
 240		return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
 241	case PSI_NONIDLE:
 242		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
 243			tasks[NR_RUNNING];
 244	default:
 245		return false;
 246	}
 247}
 248
 249static void get_recent_times(struct psi_group *group, int cpu,
 250			     enum psi_aggregators aggregator, u32 *times,
 251			     u32 *pchanged_states)
 252{
 253	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 254	u64 now, state_start;
 255	enum psi_states s;
 256	unsigned int seq;
 257	u32 state_mask;
 258
 259	*pchanged_states = 0;
 260
 261	/* Snapshot a coherent view of the CPU state */
 262	do {
 263		seq = read_seqcount_begin(&groupc->seq);
 264		now = cpu_clock(cpu);
 265		memcpy(times, groupc->times, sizeof(groupc->times));
 266		state_mask = groupc->state_mask;
 267		state_start = groupc->state_start;
 268	} while (read_seqcount_retry(&groupc->seq, seq));
 269
 270	/* Calculate state time deltas against the previous snapshot */
 271	for (s = 0; s < NR_PSI_STATES; s++) {
 272		u32 delta;
 273		/*
 274		 * In addition to already concluded states, we also
 275		 * incorporate currently active states on the CPU,
 276		 * since states may last for many sampling periods.
 277		 *
 278		 * This way we keep our delta sampling buckets small
 279		 * (u32) and our reported pressure close to what's
 280		 * actually happening.
 281		 */
 282		if (state_mask & (1 << s))
 283			times[s] += now - state_start;
 284
 285		delta = times[s] - groupc->times_prev[aggregator][s];
 286		groupc->times_prev[aggregator][s] = times[s];
 287
 288		times[s] = delta;
 289		if (delta)
 290			*pchanged_states |= (1 << s);
 291	}
 292}
 293
 294static void calc_avgs(unsigned long avg[3], int missed_periods,
 295		      u64 time, u64 period)
 296{
 297	unsigned long pct;
 298
 299	/* Fill in zeroes for periods of no activity */
 300	if (missed_periods) {
 301		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 302		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 303		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 304	}
 305
 306	/* Sample the most recent active period */
 307	pct = div_u64(time * 100, period);
 308	pct *= FIXED_1;
 309	avg[0] = calc_load(avg[0], EXP_10s, pct);
 310	avg[1] = calc_load(avg[1], EXP_60s, pct);
 311	avg[2] = calc_load(avg[2], EXP_300s, pct);
 312}
 313
 314static void collect_percpu_times(struct psi_group *group,
 315				 enum psi_aggregators aggregator,
 316				 u32 *pchanged_states)
 317{
 318	u64 deltas[NR_PSI_STATES - 1] = { 0, };
 319	unsigned long nonidle_total = 0;
 320	u32 changed_states = 0;
 321	int cpu;
 322	int s;
 323
 324	/*
 325	 * Collect the per-cpu time buckets and average them into a
 326	 * single time sample that is normalized to wallclock time.
 327	 *
 328	 * For averaging, each CPU is weighted by its non-idle time in
 329	 * the sampling period. This eliminates artifacts from uneven
 330	 * loading, or even entirely idle CPUs.
 331	 */
 332	for_each_possible_cpu(cpu) {
 333		u32 times[NR_PSI_STATES];
 334		u32 nonidle;
 335		u32 cpu_changed_states;
 336
 337		get_recent_times(group, cpu, aggregator, times,
 338				&cpu_changed_states);
 339		changed_states |= cpu_changed_states;
 340
 341		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 342		nonidle_total += nonidle;
 343
 344		for (s = 0; s < PSI_NONIDLE; s++)
 345			deltas[s] += (u64)times[s] * nonidle;
 346	}
 347
 348	/*
 349	 * Integrate the sample into the running statistics that are
 350	 * reported to userspace: the cumulative stall times and the
 351	 * decaying averages.
 352	 *
 353	 * Pressure percentages are sampled at PSI_FREQ. We might be
 354	 * called more often when the user polls more frequently than
 355	 * that; we might be called less often when there is no task
 356	 * activity, thus no data, and clock ticks are sporadic. The
 357	 * below handles both.
 358	 */
 359
 360	/* total= */
 361	for (s = 0; s < NR_PSI_STATES - 1; s++)
 362		group->total[aggregator][s] +=
 363				div_u64(deltas[s], max(nonidle_total, 1UL));
 364
 365	if (pchanged_states)
 366		*pchanged_states = changed_states;
 367}
 368
 369static u64 update_averages(struct psi_group *group, u64 now)
 370{
 371	unsigned long missed_periods = 0;
 372	u64 expires, period;
 373	u64 avg_next_update;
 374	int s;
 375
 376	/* avgX= */
 377	expires = group->avg_next_update;
 378	if (now - expires >= psi_period)
 379		missed_periods = div_u64(now - expires, psi_period);
 380
 381	/*
 382	 * The periodic clock tick can get delayed for various
 383	 * reasons, especially on loaded systems. To avoid clock
 384	 * drift, we schedule the clock in fixed psi_period intervals.
 385	 * But the deltas we sample out of the per-cpu buckets above
 386	 * are based on the actual time elapsing between clock ticks.
 387	 */
 388	avg_next_update = expires + ((1 + missed_periods) * psi_period);
 389	period = now - (group->avg_last_update + (missed_periods * psi_period));
 390	group->avg_last_update = now;
 391
 392	for (s = 0; s < NR_PSI_STATES - 1; s++) {
 393		u32 sample;
 394
 395		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 396		/*
 397		 * Due to the lockless sampling of the time buckets,
 398		 * recorded time deltas can slip into the next period,
 399		 * which under full pressure can result in samples in
 400		 * excess of the period length.
 401		 *
 402		 * We don't want to report non-sensical pressures in
 403		 * excess of 100%, nor do we want to drop such events
 404		 * on the floor. Instead we punt any overage into the
 405		 * future until pressure subsides. By doing this we
 406		 * don't underreport the occurring pressure curve, we
 407		 * just report it delayed by one period length.
 408		 *
 409		 * The error isn't cumulative. As soon as another
 410		 * delta slips from a period P to P+1, by definition
 411		 * it frees up its time T in P.
 412		 */
 413		if (sample > period)
 414			sample = period;
 415		group->avg_total[s] += sample;
 416		calc_avgs(group->avg[s], missed_periods, sample, period);
 417	}
 418
 419	return avg_next_update;
 420}
 421
 422static void psi_avgs_work(struct work_struct *work)
 423{
 424	struct delayed_work *dwork;
 425	struct psi_group *group;
 426	u32 changed_states;
 427	bool nonidle;
 428	u64 now;
 429
 430	dwork = to_delayed_work(work);
 431	group = container_of(dwork, struct psi_group, avgs_work);
 432
 433	mutex_lock(&group->avgs_lock);
 434
 435	now = sched_clock();
 436
 437	collect_percpu_times(group, PSI_AVGS, &changed_states);
 438	nonidle = changed_states & (1 << PSI_NONIDLE);
 439	/*
 440	 * If there is task activity, periodically fold the per-cpu
 441	 * times and feed samples into the running averages. If things
 442	 * are idle and there is no data to process, stop the clock.
 443	 * Once restarted, we'll catch up the running averages in one
 444	 * go - see calc_avgs() and missed_periods.
 445	 */
 446	if (now >= group->avg_next_update)
 447		group->avg_next_update = update_averages(group, now);
 448
 449	if (nonidle) {
 450		schedule_delayed_work(dwork, nsecs_to_jiffies(
 451				group->avg_next_update - now) + 1);
 452	}
 453
 454	mutex_unlock(&group->avgs_lock);
 455}
 456
 457/* Trigger tracking window manipulations */
 458static void window_reset(struct psi_window *win, u64 now, u64 value,
 459			 u64 prev_growth)
 460{
 461	win->start_time = now;
 462	win->start_value = value;
 463	win->prev_growth = prev_growth;
 464}
 465
 466/*
 467 * PSI growth tracking window update and growth calculation routine.
 468 *
 469 * This approximates a sliding tracking window by interpolating
 470 * partially elapsed windows using historical growth data from the
 471 * previous intervals. This minimizes memory requirements (by not storing
 472 * all the intermediate values in the previous window) and simplifies
 473 * the calculations. It works well because PSI signal changes only in
 474 * positive direction and over relatively small window sizes the growth
 475 * is close to linear.
 476 */
 477static u64 window_update(struct psi_window *win, u64 now, u64 value)
 478{
 479	u64 elapsed;
 480	u64 growth;
 481
 482	elapsed = now - win->start_time;
 483	growth = value - win->start_value;
 484	/*
 485	 * After each tracking window passes win->start_value and
 486	 * win->start_time get reset and win->prev_growth stores
 487	 * the average per-window growth of the previous window.
 488	 * win->prev_growth is then used to interpolate additional
 489	 * growth from the previous window assuming it was linear.
 490	 */
 491	if (elapsed > win->size)
 492		window_reset(win, now, value, growth);
 493	else {
 494		u32 remaining;
 495
 496		remaining = win->size - elapsed;
 497		growth += div64_u64(win->prev_growth * remaining, win->size);
 498	}
 499
 500	return growth;
 501}
 502
 503static void init_triggers(struct psi_group *group, u64 now)
 504{
 505	struct psi_trigger *t;
 506
 507	list_for_each_entry(t, &group->triggers, node)
 508		window_reset(&t->win, now,
 509				group->total[PSI_POLL][t->state], 0);
 510	memcpy(group->polling_total, group->total[PSI_POLL],
 511		   sizeof(group->polling_total));
 512	group->polling_next_update = now + group->poll_min_period;
 513}
 514
 515static u64 update_triggers(struct psi_group *group, u64 now)
 516{
 517	struct psi_trigger *t;
 518	bool new_stall = false;
 519	u64 *total = group->total[PSI_POLL];
 520
 521	/*
 522	 * On subsequent updates, calculate growth deltas and let
 523	 * watchers know when their specified thresholds are exceeded.
 524	 */
 525	list_for_each_entry(t, &group->triggers, node) {
 526		u64 growth;
 527
 528		/* Check for stall activity */
 529		if (group->polling_total[t->state] == total[t->state])
 530			continue;
 531
 532		/*
 533		 * Multiple triggers might be looking at the same state,
 534		 * remember to update group->polling_total[] once we've
 535		 * been through all of them. Also remember to extend the
 536		 * polling time if we see new stall activity.
 537		 */
 538		new_stall = true;
 539
 540		/* Calculate growth since last update */
 541		growth = window_update(&t->win, now, total[t->state]);
 542		if (growth < t->threshold)
 543			continue;
 544
 545		/* Limit event signaling to once per window */
 546		if (now < t->last_event_time + t->win.size)
 547			continue;
 548
 549		/* Generate an event */
 550		if (cmpxchg(&t->event, 0, 1) == 0)
 551			wake_up_interruptible(&t->event_wait);
 552		t->last_event_time = now;
 553	}
 554
 555	if (new_stall)
 556		memcpy(group->polling_total, total,
 557				sizeof(group->polling_total));
 558
 559	return now + group->poll_min_period;
 560}
 561
 562/* Schedule polling if it's not already scheduled. */
 563static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
 564{
 565	struct task_struct *task;
 566
 567	/*
 568	 * Do not reschedule if already scheduled.
 569	 * Possible race with a timer scheduled after this check but before
 570	 * mod_timer below can be tolerated because group->polling_next_update
 571	 * will keep updates on schedule.
 572	 */
 573	if (timer_pending(&group->poll_timer))
 574		return;
 575
 576	rcu_read_lock();
 577
 578	task = rcu_dereference(group->poll_task);
 579	/*
 580	 * kworker might be NULL in case psi_trigger_destroy races with
 581	 * psi_task_change (hotpath) which can't use locks
 582	 */
 583	if (likely(task))
 584		mod_timer(&group->poll_timer, jiffies + delay);
 585
 586	rcu_read_unlock();
 587}
 588
 589static void psi_poll_work(struct psi_group *group)
 590{
 591	u32 changed_states;
 592	u64 now;
 593
 594	mutex_lock(&group->trigger_lock);
 595
 596	now = sched_clock();
 597
 598	collect_percpu_times(group, PSI_POLL, &changed_states);
 599
 600	if (changed_states & group->poll_states) {
 601		/* Initialize trigger windows when entering polling mode */
 602		if (now > group->polling_until)
 603			init_triggers(group, now);
 604
 605		/*
 606		 * Keep the monitor active for at least the duration of the
 607		 * minimum tracking window as long as monitor states are
 608		 * changing.
 609		 */
 610		group->polling_until = now +
 611			group->poll_min_period * UPDATES_PER_WINDOW;
 612	}
 613
 614	if (now > group->polling_until) {
 615		group->polling_next_update = ULLONG_MAX;
 616		goto out;
 617	}
 618
 619	if (now >= group->polling_next_update)
 620		group->polling_next_update = update_triggers(group, now);
 621
 622	psi_schedule_poll_work(group,
 623		nsecs_to_jiffies(group->polling_next_update - now) + 1);
 624
 625out:
 626	mutex_unlock(&group->trigger_lock);
 627}
 628
 629static int psi_poll_worker(void *data)
 630{
 631	struct psi_group *group = (struct psi_group *)data;
 632
 633	sched_set_fifo_low(current);
 634
 635	while (true) {
 636		wait_event_interruptible(group->poll_wait,
 637				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
 638				kthread_should_stop());
 639		if (kthread_should_stop())
 640			break;
 641
 642		psi_poll_work(group);
 643	}
 644	return 0;
 645}
 646
 647static void poll_timer_fn(struct timer_list *t)
 648{
 649	struct psi_group *group = from_timer(group, t, poll_timer);
 650
 651	atomic_set(&group->poll_wakeup, 1);
 652	wake_up_interruptible(&group->poll_wait);
 653}
 654
 655static void record_times(struct psi_group_cpu *groupc, u64 now)
 656{
 657	u32 delta;
 658
 659	delta = now - groupc->state_start;
 660	groupc->state_start = now;
 661
 662	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 663		groupc->times[PSI_IO_SOME] += delta;
 664		if (groupc->state_mask & (1 << PSI_IO_FULL))
 665			groupc->times[PSI_IO_FULL] += delta;
 666	}
 667
 668	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 669		groupc->times[PSI_MEM_SOME] += delta;
 670		if (groupc->state_mask & (1 << PSI_MEM_FULL))
 671			groupc->times[PSI_MEM_FULL] += delta;
 672	}
 673
 674	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
 675		groupc->times[PSI_CPU_SOME] += delta;
 676		if (groupc->state_mask & (1 << PSI_CPU_FULL))
 677			groupc->times[PSI_CPU_FULL] += delta;
 678	}
 679
 680	if (groupc->state_mask & (1 << PSI_NONIDLE))
 681		groupc->times[PSI_NONIDLE] += delta;
 682}
 683
 684static void psi_group_change(struct psi_group *group, int cpu,
 685			     unsigned int clear, unsigned int set, u64 now,
 686			     bool wake_clock)
 687{
 688	struct psi_group_cpu *groupc;
 689	u32 state_mask = 0;
 690	unsigned int t, m;
 691	enum psi_states s;
 692
 693	groupc = per_cpu_ptr(group->pcpu, cpu);
 694
 695	/*
 696	 * First we assess the aggregate resource states this CPU's
 697	 * tasks have been in since the last change, and account any
 698	 * SOME and FULL time these may have resulted in.
 699	 *
 700	 * Then we update the task counts according to the state
 701	 * change requested through the @clear and @set bits.
 702	 */
 703	write_seqcount_begin(&groupc->seq);
 704
 705	record_times(groupc, now);
 706
 707	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 708		if (!(m & (1 << t)))
 709			continue;
 710		if (groupc->tasks[t]) {
 711			groupc->tasks[t]--;
 712		} else if (!psi_bug) {
 713			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
 714					cpu, t, groupc->tasks[0],
 715					groupc->tasks[1], groupc->tasks[2],
 716					groupc->tasks[3], clear, set);
 717			psi_bug = 1;
 718		}
 719	}
 720
 721	for (t = 0; set; set &= ~(1 << t), t++)
 722		if (set & (1 << t))
 723			groupc->tasks[t]++;
 724
 725	/* Calculate state mask representing active states */
 726	for (s = 0; s < NR_PSI_STATES; s++) {
 727		if (test_state(groupc->tasks, s))
 728			state_mask |= (1 << s);
 729	}
 730
 731	/*
 732	 * Since we care about lost potential, a memstall is FULL
 733	 * when there are no other working tasks, but also when
 734	 * the CPU is actively reclaiming and nothing productive
 735	 * could run even if it were runnable. So when the current
 736	 * task in a cgroup is in_memstall, the corresponding groupc
 737	 * on that cpu is in PSI_MEM_FULL state.
 738	 */
 739	if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
 740		state_mask |= (1 << PSI_MEM_FULL);
 741
 742	groupc->state_mask = state_mask;
 743
 744	write_seqcount_end(&groupc->seq);
 745
 746	if (state_mask & group->poll_states)
 747		psi_schedule_poll_work(group, 1);
 748
 749	if (wake_clock && !delayed_work_pending(&group->avgs_work))
 750		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 751}
 752
 753static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
 754{
 755	if (*iter == &psi_system)
 756		return NULL;
 757
 758#ifdef CONFIG_CGROUPS
 759	if (static_branch_likely(&psi_cgroups_enabled)) {
 760		struct cgroup *cgroup = NULL;
 761
 762		if (!*iter)
 763			cgroup = task->cgroups->dfl_cgrp;
 764		else
 765			cgroup = cgroup_parent(*iter);
 766
 767		if (cgroup && cgroup_parent(cgroup)) {
 768			*iter = cgroup;
 769			return cgroup_psi(cgroup);
 770		}
 771	}
 772#endif
 773	*iter = &psi_system;
 774	return &psi_system;
 775}
 776
 777static void psi_flags_change(struct task_struct *task, int clear, int set)
 778{
 779	if (((task->psi_flags & set) ||
 780	     (task->psi_flags & clear) != clear) &&
 781	    !psi_bug) {
 782		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 783				task->pid, task->comm, task_cpu(task),
 784				task->psi_flags, clear, set);
 785		psi_bug = 1;
 786	}
 787
 788	task->psi_flags &= ~clear;
 789	task->psi_flags |= set;
 790}
 791
 792void psi_task_change(struct task_struct *task, int clear, int set)
 793{
 794	int cpu = task_cpu(task);
 795	struct psi_group *group;
 796	bool wake_clock = true;
 797	void *iter = NULL;
 798	u64 now;
 799
 800	if (!task->pid)
 801		return;
 802
 803	psi_flags_change(task, clear, set);
 804
 805	now = cpu_clock(cpu);
 806	/*
 807	 * Periodic aggregation shuts off if there is a period of no
 808	 * task changes, so we wake it back up if necessary. However,
 809	 * don't do this if the task change is the aggregation worker
 810	 * itself going to sleep, or we'll ping-pong forever.
 811	 */
 812	if (unlikely((clear & TSK_RUNNING) &&
 813		     (task->flags & PF_WQ_WORKER) &&
 814		     wq_worker_last_func(task) == psi_avgs_work))
 815		wake_clock = false;
 816
 817	while ((group = iterate_groups(task, &iter)))
 818		psi_group_change(group, cpu, clear, set, now, wake_clock);
 819}
 820
 821void psi_task_switch(struct task_struct *prev, struct task_struct *next,
 822		     bool sleep)
 823{
 824	struct psi_group *group, *common = NULL;
 825	int cpu = task_cpu(prev);
 826	void *iter;
 827	u64 now = cpu_clock(cpu);
 828
 829	if (next->pid) {
 830		bool identical_state;
 831
 832		psi_flags_change(next, 0, TSK_ONCPU);
 833		/*
 834		 * When switching between tasks that have an identical
 835		 * runtime state, the cgroup that contains both tasks
 836		 * runtime state, the cgroup that contains both tasks
 837		 * we reach the first common ancestor. Iterate @next's
 838		 * ancestors only until we encounter @prev's ONCPU.
 839		 */
 840		identical_state = prev->psi_flags == next->psi_flags;
 841		iter = NULL;
 842		while ((group = iterate_groups(next, &iter))) {
 843			if (identical_state &&
 844			    per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
 845				common = group;
 846				break;
 847			}
 848
 849			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
 850		}
 851	}
 852
 853	if (prev->pid) {
 854		int clear = TSK_ONCPU, set = 0;
 855
 856		/*
 857		 * When we're going to sleep, psi_dequeue() lets us handle
 858		 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
 859		 * with TSK_ONCPU and save walking common ancestors twice.
 860		 */
 861		if (sleep) {
 862			clear |= TSK_RUNNING;
 863			if (prev->in_iowait)
 864				set |= TSK_IOWAIT;
 865		}
 866
 867		psi_flags_change(prev, clear, set);
 868
 869		iter = NULL;
 870		while ((group = iterate_groups(prev, &iter)) && group != common)
 871			psi_group_change(group, cpu, clear, set, now, true);
 872
 873		/*
 874		 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
 875		 * with dequeuing too, finish that for the rest of the hierarchy.
 876		 */
 877		if (sleep) {
 878			clear &= ~TSK_ONCPU;
 879			for (; group; group = iterate_groups(prev, &iter))
 880				psi_group_change(group, cpu, clear, set, now, true);
 881		}
 882	}
 883}
 884
 885/**
 886 * psi_memstall_enter - mark the beginning of a memory stall section
 887 * @flags: flags to handle nested sections
 888 *
 889 * Marks the calling task as being stalled due to a lack of memory,
 890 * such as waiting for a refault or performing reclaim.
 891 */
 892void psi_memstall_enter(unsigned long *flags)
 893{
 894	struct rq_flags rf;
 895	struct rq *rq;
 896
 897	if (static_branch_likely(&psi_disabled))
 898		return;
 899
 900	*flags = current->in_memstall;
 901	if (*flags)
 902		return;
 903	/*
 904	 * in_memstall setting & accounting needs to be atomic wrt
 905	 * changes to the task's scheduling state, otherwise we can
 906	 * race with CPU migration.
 907	 */
 908	rq = this_rq_lock_irq(&rf);
 909
 910	current->in_memstall = 1;
 911	psi_task_change(current, 0, TSK_MEMSTALL);
 912
 913	rq_unlock_irq(rq, &rf);
 914}
 915
 916/**
 917 * psi_memstall_leave - mark the end of an memory stall section
 918 * @flags: flags to handle nested memdelay sections
 919 *
 920 * Marks the calling task as no longer stalled due to lack of memory.
 921 */
 922void psi_memstall_leave(unsigned long *flags)
 923{
 924	struct rq_flags rf;
 925	struct rq *rq;
 926
 927	if (static_branch_likely(&psi_disabled))
 928		return;
 929
 930	if (*flags)
 931		return;
 932	/*
 933	 * in_memstall clearing & accounting needs to be atomic wrt
 934	 * changes to the task's scheduling state, otherwise we could
 935	 * race with CPU migration.
 936	 */
 937	rq = this_rq_lock_irq(&rf);
 938
 939	current->in_memstall = 0;
 940	psi_task_change(current, TSK_MEMSTALL, 0);
 941
 942	rq_unlock_irq(rq, &rf);
 943}
 944
 945#ifdef CONFIG_CGROUPS
 946int psi_cgroup_alloc(struct cgroup *cgroup)
 947{
 948	if (static_branch_likely(&psi_disabled))
 949		return 0;
 950
 951	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
 952	if (!cgroup->psi.pcpu)
 953		return -ENOMEM;
 954	group_init(&cgroup->psi);
 955	return 0;
 956}
 957
 958void psi_cgroup_free(struct cgroup *cgroup)
 959{
 960	if (static_branch_likely(&psi_disabled))
 961		return;
 962
 963	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
 964	free_percpu(cgroup->psi.pcpu);
 965	/* All triggers must be removed by now */
 966	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
 967}
 968
 969/**
 970 * cgroup_move_task - move task to a different cgroup
 971 * @task: the task
 972 * @to: the target css_set
 973 *
 974 * Move task to a new cgroup and safely migrate its associated stall
 975 * state between the different groups.
 976 *
 977 * This function acquires the task's rq lock to lock out concurrent
 978 * changes to the task's scheduling state and - in case the task is
 979 * running - concurrent changes to its stall state.
 980 */
 981void cgroup_move_task(struct task_struct *task, struct css_set *to)
 982{
 983	unsigned int task_flags;
 984	struct rq_flags rf;
 985	struct rq *rq;
 986
 987	if (static_branch_likely(&psi_disabled)) {
 988		/*
 989		 * Lame to do this here, but the scheduler cannot be locked
 990		 * from the outside, so we move cgroups from inside sched/.
 991		 */
 992		rcu_assign_pointer(task->cgroups, to);
 993		return;
 994	}
 995
 996	rq = task_rq_lock(task, &rf);
 997
 998	/*
 999	 * We may race with schedule() dropping the rq lock between
1000	 * deactivating prev and switching to next. Because the psi
1001	 * updates from the deactivation are deferred to the switch
1002	 * callback to save cgroup tree updates, the task's scheduling
1003	 * state here is not coherent with its psi state:
1004	 *
1005	 * schedule()                   cgroup_move_task()
1006	 *   rq_lock()
1007	 *   deactivate_task()
1008	 *     p->on_rq = 0
1009	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1010	 *   pick_next_task()
1011	 *     rq_unlock()
1012	 *                                rq_lock()
1013	 *                                psi_task_change() // old cgroup
1014	 *                                task->cgroups = to
1015	 *                                psi_task_change() // new cgroup
1016	 *                                rq_unlock()
1017	 *     rq_lock()
1018	 *   psi_sched_switch() // does deferred updates in new cgroup
1019	 *
1020	 * Don't rely on the scheduling state. Use psi_flags instead.
1021	 */
1022	task_flags = task->psi_flags;
1023
1024	if (task_flags)
1025		psi_task_change(task, task_flags, 0);
1026
1027	/* See comment above */
1028	rcu_assign_pointer(task->cgroups, to);
1029
1030	if (task_flags)
1031		psi_task_change(task, 0, task_flags);
1032
1033	task_rq_unlock(rq, task, &rf);
1034}
1035#endif /* CONFIG_CGROUPS */
1036
1037int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1038{
1039	int full;
1040	u64 now;
1041
1042	if (static_branch_likely(&psi_disabled))
1043		return -EOPNOTSUPP;
1044
1045	/* Update averages before reporting them */
1046	mutex_lock(&group->avgs_lock);
1047	now = sched_clock();
1048	collect_percpu_times(group, PSI_AVGS, NULL);
1049	if (now >= group->avg_next_update)
1050		group->avg_next_update = update_averages(group, now);
1051	mutex_unlock(&group->avgs_lock);
1052
1053	for (full = 0; full < 2; full++) {
1054		unsigned long avg[3];
1055		u64 total;
1056		int w;
1057
1058		for (w = 0; w < 3; w++)
1059			avg[w] = group->avg[res * 2 + full][w];
1060		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1061				NSEC_PER_USEC);
1062
1063		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1064			   full ? "full" : "some",
1065			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1066			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1067			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1068			   total);
1069	}
1070
1071	return 0;
1072}
1073
1074static int psi_io_show(struct seq_file *m, void *v)
1075{
1076	return psi_show(m, &psi_system, PSI_IO);
1077}
1078
1079static int psi_memory_show(struct seq_file *m, void *v)
1080{
1081	return psi_show(m, &psi_system, PSI_MEM);
1082}
1083
1084static int psi_cpu_show(struct seq_file *m, void *v)
1085{
1086	return psi_show(m, &psi_system, PSI_CPU);
1087}
1088
1089static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1090{
1091	if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1092		return -EPERM;
1093
1094	return single_open(file, psi_show, NULL);
1095}
1096
1097static int psi_io_open(struct inode *inode, struct file *file)
1098{
1099	return psi_open(file, psi_io_show);
1100}
1101
1102static int psi_memory_open(struct inode *inode, struct file *file)
1103{
1104	return psi_open(file, psi_memory_show);
1105}
1106
1107static int psi_cpu_open(struct inode *inode, struct file *file)
1108{
1109	return psi_open(file, psi_cpu_show);
1110}
1111
1112struct psi_trigger *psi_trigger_create(struct psi_group *group,
1113			char *buf, size_t nbytes, enum psi_res res)
1114{
1115	struct psi_trigger *t;
1116	enum psi_states state;
1117	u32 threshold_us;
1118	u32 window_us;
1119
1120	if (static_branch_likely(&psi_disabled))
1121		return ERR_PTR(-EOPNOTSUPP);
1122
1123	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1124		state = PSI_IO_SOME + res * 2;
1125	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1126		state = PSI_IO_FULL + res * 2;
1127	else
1128		return ERR_PTR(-EINVAL);
1129
1130	if (state >= PSI_NONIDLE)
1131		return ERR_PTR(-EINVAL);
1132
1133	if (window_us < WINDOW_MIN_US ||
1134		window_us > WINDOW_MAX_US)
1135		return ERR_PTR(-EINVAL);
1136
1137	/* Check threshold */
1138	if (threshold_us == 0 || threshold_us > window_us)
1139		return ERR_PTR(-EINVAL);
1140
1141	t = kmalloc(sizeof(*t), GFP_KERNEL);
1142	if (!t)
1143		return ERR_PTR(-ENOMEM);
1144
1145	t->group = group;
1146	t->state = state;
1147	t->threshold = threshold_us * NSEC_PER_USEC;
1148	t->win.size = window_us * NSEC_PER_USEC;
1149	window_reset(&t->win, 0, 0, 0);
1150
1151	t->event = 0;
1152	t->last_event_time = 0;
1153	init_waitqueue_head(&t->event_wait);
1154	kref_init(&t->refcount);
1155
1156	mutex_lock(&group->trigger_lock);
1157
1158	if (!rcu_access_pointer(group->poll_task)) {
1159		struct task_struct *task;
1160
1161		task = kthread_create(psi_poll_worker, group, "psimon");
1162		if (IS_ERR(task)) {
1163			kfree(t);
1164			mutex_unlock(&group->trigger_lock);
1165			return ERR_CAST(task);
1166		}
1167		atomic_set(&group->poll_wakeup, 0);
1168		wake_up_process(task);
1169		rcu_assign_pointer(group->poll_task, task);
1170	}
1171
1172	list_add(&t->node, &group->triggers);
1173	group->poll_min_period = min(group->poll_min_period,
1174		div_u64(t->win.size, UPDATES_PER_WINDOW));
1175	group->nr_triggers[t->state]++;
1176	group->poll_states |= (1 << t->state);
1177
1178	mutex_unlock(&group->trigger_lock);
1179
1180	return t;
1181}
1182
1183static void psi_trigger_destroy(struct kref *ref)
1184{
1185	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1186	struct psi_group *group = t->group;
1187	struct task_struct *task_to_destroy = NULL;
1188
1189	if (static_branch_likely(&psi_disabled))
1190		return;
1191
1192	/*
1193	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1194	 * from under a polling process.
1195	 */
1196	wake_up_interruptible(&t->event_wait);
1197
1198	mutex_lock(&group->trigger_lock);
1199
1200	if (!list_empty(&t->node)) {
1201		struct psi_trigger *tmp;
1202		u64 period = ULLONG_MAX;
1203
1204		list_del(&t->node);
1205		group->nr_triggers[t->state]--;
1206		if (!group->nr_triggers[t->state])
1207			group->poll_states &= ~(1 << t->state);
1208		/* reset min update period for the remaining triggers */
1209		list_for_each_entry(tmp, &group->triggers, node)
1210			period = min(period, div_u64(tmp->win.size,
1211					UPDATES_PER_WINDOW));
1212		group->poll_min_period = period;
1213		/* Destroy poll_task when the last trigger is destroyed */
1214		if (group->poll_states == 0) {
1215			group->polling_until = 0;
1216			task_to_destroy = rcu_dereference_protected(
1217					group->poll_task,
1218					lockdep_is_held(&group->trigger_lock));
1219			rcu_assign_pointer(group->poll_task, NULL);
1220			del_timer(&group->poll_timer);
1221		}
1222	}
1223
1224	mutex_unlock(&group->trigger_lock);
1225
1226	/*
1227	 * Wait for both *trigger_ptr from psi_trigger_replace and
1228	 * poll_task RCUs to complete their read-side critical sections
1229	 * before destroying the trigger and optionally the poll_task
1230	 */
1231	synchronize_rcu();
1232	/*
1233	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1234	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1235	 */
1236	if (task_to_destroy) {
1237		/*
1238		 * After the RCU grace period has expired, the worker
1239		 * can no longer be found through group->poll_task.
1240		 */
1241		kthread_stop(task_to_destroy);
1242	}
1243	kfree(t);
1244}
1245
1246void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1247{
1248	struct psi_trigger *old = *trigger_ptr;
1249
1250	if (static_branch_likely(&psi_disabled))
1251		return;
1252
1253	rcu_assign_pointer(*trigger_ptr, new);
1254	if (old)
1255		kref_put(&old->refcount, psi_trigger_destroy);
1256}
1257
1258__poll_t psi_trigger_poll(void **trigger_ptr,
1259				struct file *file, poll_table *wait)
1260{
1261	__poll_t ret = DEFAULT_POLLMASK;
1262	struct psi_trigger *t;
1263
1264	if (static_branch_likely(&psi_disabled))
1265		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1266
1267	rcu_read_lock();
1268
1269	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1270	if (!t) {
1271		rcu_read_unlock();
1272		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1273	}
1274	kref_get(&t->refcount);
1275
1276	rcu_read_unlock();
1277
1278	poll_wait(file, &t->event_wait, wait);
1279
1280	if (cmpxchg(&t->event, 1, 0) == 1)
1281		ret |= EPOLLPRI;
1282
1283	kref_put(&t->refcount, psi_trigger_destroy);
1284
1285	return ret;
1286}
1287
1288static ssize_t psi_write(struct file *file, const char __user *user_buf,
1289			 size_t nbytes, enum psi_res res)
1290{
1291	char buf[32];
1292	size_t buf_size;
1293	struct seq_file *seq;
1294	struct psi_trigger *new;
1295
1296	if (static_branch_likely(&psi_disabled))
1297		return -EOPNOTSUPP;
1298
1299	if (!nbytes)
1300		return -EINVAL;
1301
1302	buf_size = min(nbytes, sizeof(buf));
1303	if (copy_from_user(buf, user_buf, buf_size))
1304		return -EFAULT;
1305
1306	buf[buf_size - 1] = '\0';
1307
1308	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1309	if (IS_ERR(new))
1310		return PTR_ERR(new);
1311
1312	seq = file->private_data;
1313	/* Take seq->lock to protect seq->private from concurrent writes */
1314	mutex_lock(&seq->lock);
1315	psi_trigger_replace(&seq->private, new);
1316	mutex_unlock(&seq->lock);
1317
1318	return nbytes;
1319}
1320
1321static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1322			    size_t nbytes, loff_t *ppos)
1323{
1324	return psi_write(file, user_buf, nbytes, PSI_IO);
1325}
1326
1327static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1328				size_t nbytes, loff_t *ppos)
1329{
1330	return psi_write(file, user_buf, nbytes, PSI_MEM);
1331}
1332
1333static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1334			     size_t nbytes, loff_t *ppos)
1335{
1336	return psi_write(file, user_buf, nbytes, PSI_CPU);
1337}
1338
1339static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1340{
1341	struct seq_file *seq = file->private_data;
1342
1343	return psi_trigger_poll(&seq->private, file, wait);
1344}
1345
1346static int psi_fop_release(struct inode *inode, struct file *file)
1347{
1348	struct seq_file *seq = file->private_data;
1349
1350	psi_trigger_replace(&seq->private, NULL);
1351	return single_release(inode, file);
1352}
1353
1354static const struct proc_ops psi_io_proc_ops = {
1355	.proc_open	= psi_io_open,
1356	.proc_read	= seq_read,
1357	.proc_lseek	= seq_lseek,
1358	.proc_write	= psi_io_write,
1359	.proc_poll	= psi_fop_poll,
1360	.proc_release	= psi_fop_release,
1361};
1362
1363static const struct proc_ops psi_memory_proc_ops = {
1364	.proc_open	= psi_memory_open,
1365	.proc_read	= seq_read,
1366	.proc_lseek	= seq_lseek,
1367	.proc_write	= psi_memory_write,
1368	.proc_poll	= psi_fop_poll,
1369	.proc_release	= psi_fop_release,
1370};
1371
1372static const struct proc_ops psi_cpu_proc_ops = {
1373	.proc_open	= psi_cpu_open,
1374	.proc_read	= seq_read,
1375	.proc_lseek	= seq_lseek,
1376	.proc_write	= psi_cpu_write,
1377	.proc_poll	= psi_fop_poll,
1378	.proc_release	= psi_fop_release,
1379};
1380
1381static int __init psi_proc_init(void)
1382{
1383	if (psi_enable) {
1384		proc_mkdir("pressure", NULL);
1385		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1386		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1387		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1388	}
1389	return 0;
1390}
1391module_init(psi_proc_init);