Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Task-based RCU implementations.
   4 *
   5 * Copyright (C) 2020 Paul E. McKenney
   6 */
   7
   8#ifdef CONFIG_TASKS_RCU_GENERIC
   9
  10////////////////////////////////////////////////////////////////////////
  11//
  12// Generic data structures.
  13
  14struct rcu_tasks;
  15typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
  16typedef void (*pregp_func_t)(void);
  17typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
  18typedef void (*postscan_func_t)(struct list_head *hop);
  19typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
  20typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
  21
  22/**
  23 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
  24 * @cbs_head: Head of callback list.
  25 * @cbs_tail: Tail pointer for callback list.
  26 * @cbs_wq: Wait queue allowing new callback to get kthread's attention.
  27 * @cbs_lock: Lock protecting callback list.
  28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
  29 * @gp_func: This flavor's grace-period-wait function.
  30 * @gp_state: Grace period's most recent state transition (debugging).
  31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
  32 * @init_fract: Initial backoff sleep interval.
  33 * @gp_jiffies: Time of last @gp_state transition.
  34 * @gp_start: Most recent grace-period start in jiffies.
  35 * @n_gps: Number of grace periods completed since boot.
  36 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
  37 * @n_ipis_fails: Number of IPI-send failures.
  38 * @pregp_func: This flavor's pre-grace-period function (optional).
  39 * @pertask_func: This flavor's per-task scan function (optional).
  40 * @postscan_func: This flavor's post-task scan function (optional).
  41 * @holdouts_func: This flavor's holdout-list scan function (optional).
  42 * @postgp_func: This flavor's post-grace-period function (optional).
  43 * @call_func: This flavor's call_rcu()-equivalent function.
  44 * @name: This flavor's textual name.
  45 * @kname: This flavor's kthread name.
  46 */
  47struct rcu_tasks {
  48	struct rcu_head *cbs_head;
  49	struct rcu_head **cbs_tail;
  50	struct wait_queue_head cbs_wq;
  51	raw_spinlock_t cbs_lock;
  52	int gp_state;
  53	int gp_sleep;
  54	int init_fract;
  55	unsigned long gp_jiffies;
  56	unsigned long gp_start;
  57	unsigned long n_gps;
  58	unsigned long n_ipis;
  59	unsigned long n_ipis_fails;
  60	struct task_struct *kthread_ptr;
  61	rcu_tasks_gp_func_t gp_func;
  62	pregp_func_t pregp_func;
  63	pertask_func_t pertask_func;
  64	postscan_func_t postscan_func;
  65	holdouts_func_t holdouts_func;
  66	postgp_func_t postgp_func;
  67	call_rcu_func_t call_func;
  68	char *name;
  69	char *kname;
  70};
  71
  72#define DEFINE_RCU_TASKS(rt_name, gp, call, n)				\
  73static struct rcu_tasks rt_name =					\
  74{									\
  75	.cbs_tail = &rt_name.cbs_head,					\
  76	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),	\
  77	.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock),		\
  78	.gp_func = gp,							\
  79	.call_func = call,						\
  80	.name = n,							\
  81	.kname = #rt_name,						\
  82}
  83
  84/* Track exiting tasks in order to allow them to be waited for. */
  85DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
  86
  87/* Avoid IPIing CPUs early in the grace period. */
  88#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
  89static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
  90module_param(rcu_task_ipi_delay, int, 0644);
  91
  92/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
  93#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
  94static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
  95module_param(rcu_task_stall_timeout, int, 0644);
  96
  97/* RCU tasks grace-period state for debugging. */
  98#define RTGS_INIT		 0
  99#define RTGS_WAIT_WAIT_CBS	 1
 100#define RTGS_WAIT_GP		 2
 101#define RTGS_PRE_WAIT_GP	 3
 102#define RTGS_SCAN_TASKLIST	 4
 103#define RTGS_POST_SCAN_TASKLIST	 5
 104#define RTGS_WAIT_SCAN_HOLDOUTS	 6
 105#define RTGS_SCAN_HOLDOUTS	 7
 106#define RTGS_POST_GP		 8
 107#define RTGS_WAIT_READERS	 9
 108#define RTGS_INVOKE_CBS		10
 109#define RTGS_WAIT_CBS		11
 110#ifndef CONFIG_TINY_RCU
 111static const char * const rcu_tasks_gp_state_names[] = {
 112	"RTGS_INIT",
 113	"RTGS_WAIT_WAIT_CBS",
 114	"RTGS_WAIT_GP",
 115	"RTGS_PRE_WAIT_GP",
 116	"RTGS_SCAN_TASKLIST",
 117	"RTGS_POST_SCAN_TASKLIST",
 118	"RTGS_WAIT_SCAN_HOLDOUTS",
 119	"RTGS_SCAN_HOLDOUTS",
 120	"RTGS_POST_GP",
 121	"RTGS_WAIT_READERS",
 122	"RTGS_INVOKE_CBS",
 123	"RTGS_WAIT_CBS",
 124};
 125#endif /* #ifndef CONFIG_TINY_RCU */
 126
 127////////////////////////////////////////////////////////////////////////
 128//
 129// Generic code.
 130
 131/* Record grace-period phase and time. */
 132static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
 133{
 134	rtp->gp_state = newstate;
 135	rtp->gp_jiffies = jiffies;
 136}
 137
 138#ifndef CONFIG_TINY_RCU
 139/* Return state name. */
 140static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
 141{
 142	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
 143	int j = READ_ONCE(i); // Prevent the compiler from reading twice
 144
 145	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
 146		return "???";
 147	return rcu_tasks_gp_state_names[j];
 148}
 149#endif /* #ifndef CONFIG_TINY_RCU */
 150
 151// Enqueue a callback for the specified flavor of Tasks RCU.
 152static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
 153				   struct rcu_tasks *rtp)
 154{
 155	unsigned long flags;
 156	bool needwake;
 157
 158	rhp->next = NULL;
 159	rhp->func = func;
 160	raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
 161	needwake = !rtp->cbs_head;
 162	WRITE_ONCE(*rtp->cbs_tail, rhp);
 163	rtp->cbs_tail = &rhp->next;
 164	raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
 165	/* We can't create the thread unless interrupts are enabled. */
 166	if (needwake && READ_ONCE(rtp->kthread_ptr))
 167		wake_up(&rtp->cbs_wq);
 168}
 169
 170// Wait for a grace period for the specified flavor of Tasks RCU.
 171static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
 172{
 173	/* Complain if the scheduler has not started.  */
 174	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 175			 "synchronize_rcu_tasks called too soon");
 176
 177	/* Wait for the grace period. */
 178	wait_rcu_gp(rtp->call_func);
 179}
 180
 181/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 182static int __noreturn rcu_tasks_kthread(void *arg)
 183{
 184	unsigned long flags;
 185	struct rcu_head *list;
 186	struct rcu_head *next;
 187	struct rcu_tasks *rtp = arg;
 188
 189	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 190	housekeeping_affine(current, HK_FLAG_RCU);
 191	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
 192
 193	/*
 194	 * Each pass through the following loop makes one check for
 195	 * newly arrived callbacks, and, if there are some, waits for
 196	 * one RCU-tasks grace period and then invokes the callbacks.
 197	 * This loop is terminated by the system going down.  ;-)
 198	 */
 199	for (;;) {
 200
 201		/* Pick up any new callbacks. */
 202		raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
 203		smp_mb__after_spinlock(); // Order updates vs. GP.
 204		list = rtp->cbs_head;
 205		rtp->cbs_head = NULL;
 206		rtp->cbs_tail = &rtp->cbs_head;
 207		raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
 208
 209		/* If there were none, wait a bit and start over. */
 210		if (!list) {
 211			wait_event_interruptible(rtp->cbs_wq,
 212						 READ_ONCE(rtp->cbs_head));
 213			if (!rtp->cbs_head) {
 214				WARN_ON(signal_pending(current));
 215				set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
 216				schedule_timeout_idle(HZ/10);
 217			}
 218			continue;
 219		}
 220
 221		// Wait for one grace period.
 222		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
 223		rtp->gp_start = jiffies;
 224		rtp->gp_func(rtp);
 225		rtp->n_gps++;
 226
 227		/* Invoke the callbacks. */
 228		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
 229		while (list) {
 230			next = list->next;
 231			local_bh_disable();
 232			list->func(list);
 233			local_bh_enable();
 234			list = next;
 235			cond_resched();
 236		}
 237		/* Paranoid sleep to keep this from entering a tight loop */
 238		schedule_timeout_idle(rtp->gp_sleep);
 239
 240		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
 241	}
 242}
 243
 244/* Spawn RCU-tasks grace-period kthread. */
 245static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
 246{
 247	struct task_struct *t;
 248
 249	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
 250	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
 251		return;
 252	smp_mb(); /* Ensure others see full kthread. */
 253}
 254
 255#ifndef CONFIG_TINY_RCU
 256
 257/*
 258 * Print any non-default Tasks RCU settings.
 259 */
 260static void __init rcu_tasks_bootup_oddness(void)
 261{
 262#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
 263	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 264		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 265#endif /* #ifdef CONFIG_TASKS_RCU */
 266#ifdef CONFIG_TASKS_RCU
 267	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
 268#endif /* #ifdef CONFIG_TASKS_RCU */
 269#ifdef CONFIG_TASKS_RUDE_RCU
 270	pr_info("\tRude variant of Tasks RCU enabled.\n");
 271#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
 272#ifdef CONFIG_TASKS_TRACE_RCU
 273	pr_info("\tTracing variant of Tasks RCU enabled.\n");
 274#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 275}
 276
 277#endif /* #ifndef CONFIG_TINY_RCU */
 278
 279#ifndef CONFIG_TINY_RCU
 280/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
 281static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
 282{
 283	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
 284		rtp->kname,
 285		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
 286		jiffies - data_race(rtp->gp_jiffies),
 287		data_race(rtp->n_gps),
 288		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
 289		".k"[!!data_race(rtp->kthread_ptr)],
 290		".C"[!!data_race(rtp->cbs_head)],
 291		s);
 292}
 293#endif // #ifndef CONFIG_TINY_RCU
 294
 295static void exit_tasks_rcu_finish_trace(struct task_struct *t);
 296
 297#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
 298
 299////////////////////////////////////////////////////////////////////////
 300//
 301// Shared code between task-list-scanning variants of Tasks RCU.
 302
 303/* Wait for one RCU-tasks grace period. */
 304static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
 305{
 306	struct task_struct *g, *t;
 307	unsigned long lastreport;
 308	LIST_HEAD(holdouts);
 309	int fract;
 310
 311	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
 312	rtp->pregp_func();
 313
 314	/*
 315	 * There were callbacks, so we need to wait for an RCU-tasks
 316	 * grace period.  Start off by scanning the task list for tasks
 317	 * that are not already voluntarily blocked.  Mark these tasks
 318	 * and make a list of them in holdouts.
 319	 */
 320	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
 321	rcu_read_lock();
 322	for_each_process_thread(g, t)
 323		rtp->pertask_func(t, &holdouts);
 324	rcu_read_unlock();
 325
 326	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
 327	rtp->postscan_func(&holdouts);
 328
 329	/*
 330	 * Each pass through the following loop scans the list of holdout
 331	 * tasks, removing any that are no longer holdouts.  When the list
 332	 * is empty, we are done.
 333	 */
 334	lastreport = jiffies;
 335
 336	// Start off with initial wait and slowly back off to 1 HZ wait.
 337	fract = rtp->init_fract;
 338
 339	while (!list_empty(&holdouts)) {
 340		bool firstreport;
 341		bool needreport;
 342		int rtst;
 343
 344		/* Slowly back off waiting for holdouts */
 345		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
 346		schedule_timeout_idle(fract);
 347
 348		if (fract < HZ)
 349			fract++;
 350
 351		rtst = READ_ONCE(rcu_task_stall_timeout);
 352		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
 353		if (needreport)
 354			lastreport = jiffies;
 355		firstreport = true;
 356		WARN_ON(signal_pending(current));
 357		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
 358		rtp->holdouts_func(&holdouts, needreport, &firstreport);
 359	}
 360
 361	set_tasks_gp_state(rtp, RTGS_POST_GP);
 362	rtp->postgp_func(rtp);
 363}
 364
 365#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
 366
 367#ifdef CONFIG_TASKS_RCU
 368
 369////////////////////////////////////////////////////////////////////////
 370//
 371// Simple variant of RCU whose quiescent states are voluntary context
 372// switch, cond_resched_rcu_qs(), user-space execution, and idle.
 373// As such, grace periods can take one good long time.  There are no
 374// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 375// because this implementation is intended to get the system into a safe
 376// state for some of the manipulations involved in tracing and the like.
 377// Finally, this implementation does not support high call_rcu_tasks()
 378// rates from multiple CPUs.  If this is required, per-CPU callback lists
 379// will be needed.
 380//
 381// The implementation uses rcu_tasks_wait_gp(), which relies on function
 382// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
 383// function sets these function pointers up so that rcu_tasks_wait_gp()
 384// invokes these functions in this order:
 385//
 386// rcu_tasks_pregp_step():
 387//	Invokes synchronize_rcu() in order to wait for all in-flight
 388//	t->on_rq and t->nvcsw transitions to complete.	This works because
 389//	all such transitions are carried out with interrupts disabled.
 390// rcu_tasks_pertask(), invoked on every non-idle task:
 391//	For every runnable non-idle task other than the current one, use
 392//	get_task_struct() to pin down that task, snapshot that task's
 393//	number of voluntary context switches, and add that task to the
 394//	holdout list.
 395// rcu_tasks_postscan():
 396//	Invoke synchronize_srcu() to ensure that all tasks that were
 397//	in the process of exiting (and which thus might not know to
 398//	synchronize with this RCU Tasks grace period) have completed
 399//	exiting.
 400// check_all_holdout_tasks(), repeatedly until holdout list is empty:
 401//	Scans the holdout list, attempting to identify a quiescent state
 402//	for each task on the list.  If there is a quiescent state, the
 403//	corresponding task is removed from the holdout list.
 404// rcu_tasks_postgp():
 405//	Invokes synchronize_rcu() in order to ensure that all prior
 406//	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
 407//	to have happened before the end of this RCU Tasks grace period.
 408//	Again, this works because all such transitions are carried out
 409//	with interrupts disabled.
 410//
 411// For each exiting task, the exit_tasks_rcu_start() and
 412// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
 413// read-side critical sections waited for by rcu_tasks_postscan().
 414//
 415// Pre-grace-period update-side code is ordered before the grace via the
 416// ->cbs_lock and the smp_mb__after_spinlock().  Pre-grace-period read-side
 417// code is ordered before the grace period via synchronize_rcu() call
 418// in rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
 419// disabling.
 420
 421/* Pre-grace-period preparation. */
 422static void rcu_tasks_pregp_step(void)
 423{
 424	/*
 425	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
 426	 * to complete.  Invoking synchronize_rcu() suffices because all
 427	 * these transitions occur with interrupts disabled.  Without this
 428	 * synchronize_rcu(), a read-side critical section that started
 429	 * before the grace period might be incorrectly seen as having
 430	 * started after the grace period.
 431	 *
 432	 * This synchronize_rcu() also dispenses with the need for a
 433	 * memory barrier on the first store to t->rcu_tasks_holdout,
 434	 * as it forces the store to happen after the beginning of the
 435	 * grace period.
 436	 */
 437	synchronize_rcu();
 438}
 439
 440/* Per-task initial processing. */
 441static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
 442{
 443	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
 444		get_task_struct(t);
 445		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 446		WRITE_ONCE(t->rcu_tasks_holdout, true);
 447		list_add(&t->rcu_tasks_holdout_list, hop);
 448	}
 449}
 450
 451/* Processing between scanning taskslist and draining the holdout list. */
 452static void rcu_tasks_postscan(struct list_head *hop)
 453{
 454	/*
 455	 * Wait for tasks that are in the process of exiting.  This
 456	 * does only part of the job, ensuring that all tasks that were
 457	 * previously exiting reach the point where they have disabled
 458	 * preemption, allowing the later synchronize_rcu() to finish
 459	 * the job.
 460	 */
 461	synchronize_srcu(&tasks_rcu_exit_srcu);
 462}
 463
 464/* See if tasks are still holding out, complain if so. */
 465static void check_holdout_task(struct task_struct *t,
 466			       bool needreport, bool *firstreport)
 467{
 468	int cpu;
 469
 470	if (!READ_ONCE(t->rcu_tasks_holdout) ||
 471	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 472	    !READ_ONCE(t->on_rq) ||
 473	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 474	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 475		WRITE_ONCE(t->rcu_tasks_holdout, false);
 476		list_del_init(&t->rcu_tasks_holdout_list);
 477		put_task_struct(t);
 478		return;
 479	}
 480	rcu_request_urgent_qs_task(t);
 481	if (!needreport)
 482		return;
 483	if (*firstreport) {
 484		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 485		*firstreport = false;
 486	}
 487	cpu = task_cpu(t);
 488	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 489		 t, ".I"[is_idle_task(t)],
 490		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 491		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 492		 t->rcu_tasks_idle_cpu, cpu);
 493	sched_show_task(t);
 494}
 495
 496/* Scan the holdout lists for tasks no longer holding out. */
 497static void check_all_holdout_tasks(struct list_head *hop,
 498				    bool needreport, bool *firstreport)
 499{
 500	struct task_struct *t, *t1;
 501
 502	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
 503		check_holdout_task(t, needreport, firstreport);
 504		cond_resched();
 505	}
 506}
 507
 508/* Finish off the Tasks-RCU grace period. */
 509static void rcu_tasks_postgp(struct rcu_tasks *rtp)
 510{
 511	/*
 512	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
 513	 * memory barriers prior to them in the schedule() path, memory
 514	 * reordering on other CPUs could cause their RCU-tasks read-side
 515	 * critical sections to extend past the end of the grace period.
 516	 * However, because these ->nvcsw updates are carried out with
 517	 * interrupts disabled, we can use synchronize_rcu() to force the
 518	 * needed ordering on all such CPUs.
 519	 *
 520	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
 521	 * accesses to be within the grace period, avoiding the need for
 522	 * memory barriers for ->rcu_tasks_holdout accesses.
 523	 *
 524	 * In addition, this synchronize_rcu() waits for exiting tasks
 525	 * to complete their final preempt_disable() region of execution,
 526	 * cleaning up after the synchronize_srcu() above.
 527	 */
 528	synchronize_rcu();
 529}
 530
 531void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
 532DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
 533
 534/**
 535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 536 * @rhp: structure to be used for queueing the RCU updates.
 537 * @func: actual callback function to be invoked after the grace period
 538 *
 539 * The callback function will be invoked some time after a full grace
 540 * period elapses, in other words after all currently executing RCU
 541 * read-side critical sections have completed. call_rcu_tasks() assumes
 542 * that the read-side critical sections end at a voluntary context
 543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 544 * or transition to usermode execution.  As such, there are no read-side
 545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 546 * this primitive is intended to determine that all tasks have passed
 547 * through a safe state, not so much for data-structure synchronization.
 548 *
 549 * See the description of call_rcu() for more detailed information on
 550 * memory ordering guarantees.
 551 */
 552void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 553{
 554	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
 555}
 556EXPORT_SYMBOL_GPL(call_rcu_tasks);
 557
 558/**
 559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 560 *
 561 * Control will return to the caller some time after a full rcu-tasks
 562 * grace period has elapsed, in other words after all currently
 563 * executing rcu-tasks read-side critical sections have elapsed.  These
 564 * read-side critical sections are delimited by calls to schedule(),
 565 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 567 *
 568 * This is a very specialized primitive, intended only for a few uses in
 569 * tracing and other situations requiring manipulation of function
 570 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 571 * is not (yet) intended for heavy use from multiple CPUs.
 572 *
 573 * See the description of synchronize_rcu() for more detailed information
 574 * on memory ordering guarantees.
 575 */
 576void synchronize_rcu_tasks(void)
 577{
 578	synchronize_rcu_tasks_generic(&rcu_tasks);
 579}
 580EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 581
 582/**
 583 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 584 *
 585 * Although the current implementation is guaranteed to wait, it is not
 586 * obligated to, for example, if there are no pending callbacks.
 587 */
 588void rcu_barrier_tasks(void)
 589{
 590	/* There is only one callback queue, so this is easy.  ;-) */
 591	synchronize_rcu_tasks();
 592}
 593EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 594
 595static int __init rcu_spawn_tasks_kthread(void)
 596{
 597	rcu_tasks.gp_sleep = HZ / 10;
 598	rcu_tasks.init_fract = HZ / 10;
 599	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
 600	rcu_tasks.pertask_func = rcu_tasks_pertask;
 601	rcu_tasks.postscan_func = rcu_tasks_postscan;
 602	rcu_tasks.holdouts_func = check_all_holdout_tasks;
 603	rcu_tasks.postgp_func = rcu_tasks_postgp;
 604	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
 605	return 0;
 606}
 607
 608#if !defined(CONFIG_TINY_RCU)
 609void show_rcu_tasks_classic_gp_kthread(void)
 610{
 611	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
 612}
 613EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
 614#endif // !defined(CONFIG_TINY_RCU)
 615
 616/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 617void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
 618{
 619	preempt_disable();
 620	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 621	preempt_enable();
 622}
 623
 624/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 625void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
 626{
 627	struct task_struct *t = current;
 628
 629	preempt_disable();
 630	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
 631	preempt_enable();
 632	exit_tasks_rcu_finish_trace(t);
 633}
 634
 635#else /* #ifdef CONFIG_TASKS_RCU */
 636void exit_tasks_rcu_start(void) { }
 637void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
 638#endif /* #else #ifdef CONFIG_TASKS_RCU */
 639
 640#ifdef CONFIG_TASKS_RUDE_RCU
 641
 642////////////////////////////////////////////////////////////////////////
 643//
 644// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
 645// passing an empty function to schedule_on_each_cpu().  This approach
 646// provides an asynchronous call_rcu_tasks_rude() API and batching
 647// of concurrent calls to the synchronous synchronize_rcu_rude() API.
 648// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
 649// and induces otherwise unnecessary context switches on all online CPUs,
 650// whether idle or not.
 651//
 652// Callback handling is provided by the rcu_tasks_kthread() function.
 653//
 654// Ordering is provided by the scheduler's context-switch code.
 655
 656// Empty function to allow workqueues to force a context switch.
 657static void rcu_tasks_be_rude(struct work_struct *work)
 658{
 659}
 660
 661// Wait for one rude RCU-tasks grace period.
 662static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
 663{
 664	rtp->n_ipis += cpumask_weight(cpu_online_mask);
 665	schedule_on_each_cpu(rcu_tasks_be_rude);
 666}
 667
 668void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
 669DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
 670		 "RCU Tasks Rude");
 671
 672/**
 673 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
 674 * @rhp: structure to be used for queueing the RCU updates.
 675 * @func: actual callback function to be invoked after the grace period
 676 *
 677 * The callback function will be invoked some time after a full grace
 678 * period elapses, in other words after all currently executing RCU
 679 * read-side critical sections have completed. call_rcu_tasks_rude()
 680 * assumes that the read-side critical sections end at context switch,
 681 * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
 682 * there are no read-side primitives analogous to rcu_read_lock() and
 683 * rcu_read_unlock() because this primitive is intended to determine
 684 * that all tasks have passed through a safe state, not so much for
 685 * data-structure synchronization.
 686 *
 687 * See the description of call_rcu() for more detailed information on
 688 * memory ordering guarantees.
 689 */
 690void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
 691{
 692	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
 693}
 694EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
 695
 696/**
 697 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
 698 *
 699 * Control will return to the caller some time after a rude rcu-tasks
 700 * grace period has elapsed, in other words after all currently
 701 * executing rcu-tasks read-side critical sections have elapsed.  These
 702 * read-side critical sections are delimited by calls to schedule(),
 703 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
 704 * anyway) cond_resched().
 705 *
 706 * This is a very specialized primitive, intended only for a few uses in
 707 * tracing and other situations requiring manipulation of function preambles
 708 * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
 709 * (yet) intended for heavy use from multiple CPUs.
 710 *
 711 * See the description of synchronize_rcu() for more detailed information
 712 * on memory ordering guarantees.
 713 */
 714void synchronize_rcu_tasks_rude(void)
 715{
 716	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
 717}
 718EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
 719
 720/**
 721 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
 722 *
 723 * Although the current implementation is guaranteed to wait, it is not
 724 * obligated to, for example, if there are no pending callbacks.
 725 */
 726void rcu_barrier_tasks_rude(void)
 727{
 728	/* There is only one callback queue, so this is easy.  ;-) */
 729	synchronize_rcu_tasks_rude();
 730}
 731EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
 732
 733static int __init rcu_spawn_tasks_rude_kthread(void)
 734{
 735	rcu_tasks_rude.gp_sleep = HZ / 10;
 736	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
 737	return 0;
 738}
 739
 740#if !defined(CONFIG_TINY_RCU)
 741void show_rcu_tasks_rude_gp_kthread(void)
 742{
 743	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
 744}
 745EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
 746#endif // !defined(CONFIG_TINY_RCU)
 747#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
 748
 749////////////////////////////////////////////////////////////////////////
 750//
 751// Tracing variant of Tasks RCU.  This variant is designed to be used
 752// to protect tracing hooks, including those of BPF.  This variant
 753// therefore:
 754//
 755// 1.	Has explicit read-side markers to allow finite grace periods
 756//	in the face of in-kernel loops for PREEMPT=n builds.
 757//
 758// 2.	Protects code in the idle loop, exception entry/exit, and
 759//	CPU-hotplug code paths, similar to the capabilities of SRCU.
 760//
 761// 3.	Avoids expensive read-side instruction, having overhead similar
 762//	to that of Preemptible RCU.
 763//
 764// There are of course downsides.  The grace-period code can send IPIs to
 765// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
 766// It is necessary to scan the full tasklist, much as for Tasks RCU.  There
 767// is a single callback queue guarded by a single lock, again, much as for
 768// Tasks RCU.  If needed, these downsides can be at least partially remedied.
 769//
 770// Perhaps most important, this variant of RCU does not affect the vanilla
 771// flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
 772// readers can operate from idle, offline, and exception entry/exit in no
 773// way allows rcu_preempt and rcu_sched readers to also do so.
 774//
 775// The implementation uses rcu_tasks_wait_gp(), which relies on function
 776// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
 777// function sets these function pointers up so that rcu_tasks_wait_gp()
 778// invokes these functions in this order:
 779//
 780// rcu_tasks_trace_pregp_step():
 781//	Initialize the count of readers and block CPU-hotplug operations.
 782// rcu_tasks_trace_pertask(), invoked on every non-idle task:
 783//	Initialize per-task state and attempt to identify an immediate
 784//	quiescent state for that task, or, failing that, attempt to
 785//	set that task's .need_qs flag so that task's next outermost
 786//	rcu_read_unlock_trace() will report the quiescent state (in which
 787//	case the count of readers is incremented).  If both attempts fail,
 788//	the task is added to a "holdout" list.
 789// rcu_tasks_trace_postscan():
 790//	Initialize state and attempt to identify an immediate quiescent
 791//	state as above (but only for idle tasks), unblock CPU-hotplug
 792//	operations, and wait for an RCU grace period to avoid races with
 793//	tasks that are in the process of exiting.
 794// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
 795//	Scans the holdout list, attempting to identify a quiescent state
 796//	for each task on the list.  If there is a quiescent state, the
 797//	corresponding task is removed from the holdout list.
 798// rcu_tasks_trace_postgp():
 799//	Wait for the count of readers do drop to zero, reporting any stalls.
 800//	Also execute full memory barriers to maintain ordering with code
 801//	executing after the grace period.
 802//
 803// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
 804//
 805// Pre-grace-period update-side code is ordered before the grace
 806// period via the ->cbs_lock and barriers in rcu_tasks_kthread().
 807// Pre-grace-period read-side code is ordered before the grace period by
 808// atomic_dec_and_test() of the count of readers (for IPIed readers) and by
 809// scheduler context-switch ordering (for locked-down non-running readers).
 810
 811// The lockdep state must be outside of #ifdef to be useful.
 812#ifdef CONFIG_DEBUG_LOCK_ALLOC
 813static struct lock_class_key rcu_lock_trace_key;
 814struct lockdep_map rcu_trace_lock_map =
 815	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
 816EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
 817#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 818
 819#ifdef CONFIG_TASKS_TRACE_RCU
 820
 821static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
 822static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
 823
 824// Record outstanding IPIs to each CPU.  No point in sending two...
 825static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
 826
 827// The number of detections of task quiescent state relying on
 828// heavyweight readers executing explicit memory barriers.
 829static unsigned long n_heavy_reader_attempts;
 830static unsigned long n_heavy_reader_updates;
 831static unsigned long n_heavy_reader_ofl_updates;
 832
 833void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
 834DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
 835		 "RCU Tasks Trace");
 836
 837/*
 838 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
 839 * while the scheduler locks are held.
 840 */
 841static void rcu_read_unlock_iw(struct irq_work *iwp)
 842{
 843	wake_up(&trc_wait);
 844}
 845static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
 846
 847/* If we are the last reader, wake up the grace-period kthread. */
 848void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
 849{
 850	int nq = t->trc_reader_special.b.need_qs;
 851
 852	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
 853	    t->trc_reader_special.b.need_mb)
 854		smp_mb(); // Pairs with update-side barriers.
 855	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
 856	if (nq)
 857		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
 858	WRITE_ONCE(t->trc_reader_nesting, nesting);
 859	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
 860		irq_work_queue(&rcu_tasks_trace_iw);
 861}
 862EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
 863
 864/* Add a task to the holdout list, if it is not already on the list. */
 865static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
 866{
 867	if (list_empty(&t->trc_holdout_list)) {
 868		get_task_struct(t);
 869		list_add(&t->trc_holdout_list, bhp);
 870	}
 871}
 872
 873/* Remove a task from the holdout list, if it is in fact present. */
 874static void trc_del_holdout(struct task_struct *t)
 875{
 876	if (!list_empty(&t->trc_holdout_list)) {
 877		list_del_init(&t->trc_holdout_list);
 878		put_task_struct(t);
 879	}
 880}
 881
 882/* IPI handler to check task state. */
 883static void trc_read_check_handler(void *t_in)
 884{
 885	struct task_struct *t = current;
 886	struct task_struct *texp = t_in;
 887
 888	// If the task is no longer running on this CPU, leave.
 889	if (unlikely(texp != t)) {
 890		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
 891			wake_up(&trc_wait);
 892		goto reset_ipi; // Already on holdout list, so will check later.
 893	}
 894
 895	// If the task is not in a read-side critical section, and
 896	// if this is the last reader, awaken the grace-period kthread.
 897	if (likely(!t->trc_reader_nesting)) {
 898		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
 899			wake_up(&trc_wait);
 900		// Mark as checked after decrement to avoid false
 901		// positives on the above WARN_ON_ONCE().
 902		WRITE_ONCE(t->trc_reader_checked, true);
 903		goto reset_ipi;
 904	}
 905	// If we are racing with an rcu_read_unlock_trace(), try again later.
 906	if (unlikely(t->trc_reader_nesting < 0)) {
 907		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
 908			wake_up(&trc_wait);
 909		goto reset_ipi;
 910	}
 911	WRITE_ONCE(t->trc_reader_checked, true);
 912
 913	// Get here if the task is in a read-side critical section.  Set
 914	// its state so that it will awaken the grace-period kthread upon
 915	// exit from that critical section.
 916	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
 917	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
 918
 919reset_ipi:
 920	// Allow future IPIs to be sent on CPU and for task.
 921	// Also order this IPI handler against any later manipulations of
 922	// the intended task.
 923	smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
 924	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
 925}
 926
 927/* Callback function for scheduler to check locked-down task.  */
 928static bool trc_inspect_reader(struct task_struct *t, void *arg)
 929{
 930	int cpu = task_cpu(t);
 931	bool in_qs = false;
 932	bool ofl = cpu_is_offline(cpu);
 933
 934	if (task_curr(t)) {
 935		WARN_ON_ONCE(ofl && !is_idle_task(t));
 936
 937		// If no chance of heavyweight readers, do it the hard way.
 938		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 939			return false;
 940
 941		// If heavyweight readers are enabled on the remote task,
 942		// we can inspect its state despite its currently running.
 943		// However, we cannot safely change its state.
 944		n_heavy_reader_attempts++;
 945		if (!ofl && // Check for "running" idle tasks on offline CPUs.
 946		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
 947			return false; // No quiescent state, do it the hard way.
 948		n_heavy_reader_updates++;
 949		if (ofl)
 950			n_heavy_reader_ofl_updates++;
 951		in_qs = true;
 952	} else {
 953		in_qs = likely(!t->trc_reader_nesting);
 954	}
 955
 956	// Mark as checked so that the grace-period kthread will
 957	// remove it from the holdout list.
 958	t->trc_reader_checked = true;
 959
 960	if (in_qs)
 961		return true;  // Already in quiescent state, done!!!
 962
 963	// The task is in a read-side critical section, so set up its
 964	// state so that it will awaken the grace-period kthread upon exit
 965	// from that critical section.
 966	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
 967	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
 968	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
 969	return true;
 970}
 971
 972/* Attempt to extract the state for the specified task. */
 973static void trc_wait_for_one_reader(struct task_struct *t,
 974				    struct list_head *bhp)
 975{
 976	int cpu;
 977
 978	// If a previous IPI is still in flight, let it complete.
 979	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
 980		return;
 981
 982	// The current task had better be in a quiescent state.
 983	if (t == current) {
 984		t->trc_reader_checked = true;
 985		WARN_ON_ONCE(t->trc_reader_nesting);
 986		return;
 987	}
 988
 989	// Attempt to nail down the task for inspection.
 990	get_task_struct(t);
 991	if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
 992		put_task_struct(t);
 993		return;
 994	}
 995	put_task_struct(t);
 996
 997	// If currently running, send an IPI, either way, add to list.
 998	trc_add_holdout(t, bhp);
 999	if (task_curr(t) &&
1000	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1001		// The task is currently running, so try IPIing it.
1002		cpu = task_cpu(t);
1003
1004		// If there is already an IPI outstanding, let it happen.
1005		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1006			return;
1007
1008		atomic_inc(&trc_n_readers_need_end);
1009		per_cpu(trc_ipi_to_cpu, cpu) = true;
1010		t->trc_ipi_to_cpu = cpu;
1011		rcu_tasks_trace.n_ipis++;
1012		if (smp_call_function_single(cpu,
1013					     trc_read_check_handler, t, 0)) {
1014			// Just in case there is some other reason for
1015			// failure than the target CPU being offline.
1016			rcu_tasks_trace.n_ipis_fails++;
1017			per_cpu(trc_ipi_to_cpu, cpu) = false;
1018			t->trc_ipi_to_cpu = cpu;
1019			if (atomic_dec_and_test(&trc_n_readers_need_end)) {
1020				WARN_ON_ONCE(1);
1021				wake_up(&trc_wait);
1022			}
1023		}
1024	}
1025}
1026
1027/* Initialize for a new RCU-tasks-trace grace period. */
1028static void rcu_tasks_trace_pregp_step(void)
1029{
1030	int cpu;
1031
1032	// Allow for fast-acting IPIs.
1033	atomic_set(&trc_n_readers_need_end, 1);
1034
1035	// There shouldn't be any old IPIs, but...
1036	for_each_possible_cpu(cpu)
1037		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1038
1039	// Disable CPU hotplug across the tasklist scan.
1040	// This also waits for all readers in CPU-hotplug code paths.
1041	cpus_read_lock();
1042}
1043
1044/* Do first-round processing for the specified task. */
1045static void rcu_tasks_trace_pertask(struct task_struct *t,
1046				    struct list_head *hop)
1047{
1048	// During early boot when there is only the one boot CPU, there
1049	// is no idle task for the other CPUs. Just return.
1050	if (unlikely(t == NULL))
1051		return;
1052
1053	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1054	WRITE_ONCE(t->trc_reader_checked, false);
1055	t->trc_ipi_to_cpu = -1;
1056	trc_wait_for_one_reader(t, hop);
1057}
1058
1059/*
1060 * Do intermediate processing between task and holdout scans and
1061 * pick up the idle tasks.
1062 */
1063static void rcu_tasks_trace_postscan(struct list_head *hop)
1064{
1065	int cpu;
1066
1067	for_each_possible_cpu(cpu)
1068		rcu_tasks_trace_pertask(idle_task(cpu), hop);
1069
1070	// Re-enable CPU hotplug now that the tasklist scan has completed.
1071	cpus_read_unlock();
1072
1073	// Wait for late-stage exiting tasks to finish exiting.
1074	// These might have passed the call to exit_tasks_rcu_finish().
1075	synchronize_rcu();
1076	// Any tasks that exit after this point will set ->trc_reader_checked.
1077}
1078
1079/* Show the state of a task stalling the current RCU tasks trace GP. */
1080static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1081{
1082	int cpu;
1083
1084	if (*firstreport) {
1085		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1086		*firstreport = false;
1087	}
1088	// FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1089	cpu = task_cpu(t);
1090	pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1091		 t->pid,
1092		 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1093		 ".i"[is_idle_task(t)],
1094		 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1095		 t->trc_reader_nesting,
1096		 " N"[!!t->trc_reader_special.b.need_qs],
1097		 cpu);
1098	sched_show_task(t);
1099}
1100
1101/* List stalled IPIs for RCU tasks trace. */
1102static void show_stalled_ipi_trace(void)
1103{
1104	int cpu;
1105
1106	for_each_possible_cpu(cpu)
1107		if (per_cpu(trc_ipi_to_cpu, cpu))
1108			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1109}
1110
1111/* Do one scan of the holdout list. */
1112static void check_all_holdout_tasks_trace(struct list_head *hop,
1113					  bool needreport, bool *firstreport)
1114{
1115	struct task_struct *g, *t;
1116
1117	// Disable CPU hotplug across the holdout list scan.
1118	cpus_read_lock();
1119
1120	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1121		// If safe and needed, try to check the current task.
1122		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1123		    !READ_ONCE(t->trc_reader_checked))
1124			trc_wait_for_one_reader(t, hop);
1125
1126		// If check succeeded, remove this task from the list.
1127		if (READ_ONCE(t->trc_reader_checked))
1128			trc_del_holdout(t);
1129		else if (needreport)
1130			show_stalled_task_trace(t, firstreport);
1131	}
1132
1133	// Re-enable CPU hotplug now that the holdout list scan has completed.
1134	cpus_read_unlock();
1135
1136	if (needreport) {
1137		if (firstreport)
1138			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1139		show_stalled_ipi_trace();
1140	}
1141}
1142
1143/* Wait for grace period to complete and provide ordering. */
1144static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1145{
1146	bool firstreport;
1147	struct task_struct *g, *t;
1148	LIST_HEAD(holdouts);
1149	long ret;
1150
1151	// Remove the safety count.
1152	smp_mb__before_atomic();  // Order vs. earlier atomics
1153	atomic_dec(&trc_n_readers_need_end);
1154	smp_mb__after_atomic();  // Order vs. later atomics
1155
1156	// Wait for readers.
1157	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1158	for (;;) {
1159		ret = wait_event_idle_exclusive_timeout(
1160				trc_wait,
1161				atomic_read(&trc_n_readers_need_end) == 0,
1162				READ_ONCE(rcu_task_stall_timeout));
1163		if (ret)
1164			break;  // Count reached zero.
1165		// Stall warning time, so make a list of the offenders.
1166		rcu_read_lock();
1167		for_each_process_thread(g, t)
1168			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1169				trc_add_holdout(t, &holdouts);
1170		rcu_read_unlock();
1171		firstreport = true;
1172		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1173			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1174				show_stalled_task_trace(t, &firstreport);
1175			trc_del_holdout(t); // Release task_struct reference.
1176		}
1177		if (firstreport)
1178			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1179		show_stalled_ipi_trace();
1180		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1181	}
1182	smp_mb(); // Caller's code must be ordered after wakeup.
1183		  // Pairs with pretty much every ordering primitive.
1184}
1185
1186/* Report any needed quiescent state for this exiting task. */
1187static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1188{
1189	WRITE_ONCE(t->trc_reader_checked, true);
1190	WARN_ON_ONCE(t->trc_reader_nesting);
1191	WRITE_ONCE(t->trc_reader_nesting, 0);
1192	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1193		rcu_read_unlock_trace_special(t, 0);
1194}
1195
1196/**
1197 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1198 * @rhp: structure to be used for queueing the RCU updates.
1199 * @func: actual callback function to be invoked after the grace period
1200 *
1201 * The callback function will be invoked some time after a full grace
1202 * period elapses, in other words after all currently executing RCU
1203 * read-side critical sections have completed. call_rcu_tasks_trace()
1204 * assumes that the read-side critical sections end at context switch,
1205 * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
1206 * there are no read-side primitives analogous to rcu_read_lock() and
1207 * rcu_read_unlock() because this primitive is intended to determine
1208 * that all tasks have passed through a safe state, not so much for
1209 * data-structure synchronization.
1210 *
1211 * See the description of call_rcu() for more detailed information on
1212 * memory ordering guarantees.
1213 */
1214void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1215{
1216	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1217}
1218EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1219
1220/**
1221 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1222 *
1223 * Control will return to the caller some time after a trace rcu-tasks
1224 * grace period has elapsed, in other words after all currently executing
1225 * rcu-tasks read-side critical sections have elapsed.  These read-side
1226 * critical sections are delimited by calls to rcu_read_lock_trace()
1227 * and rcu_read_unlock_trace().
1228 *
1229 * This is a very specialized primitive, intended only for a few uses in
1230 * tracing and other situations requiring manipulation of function preambles
1231 * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1232 * (yet) intended for heavy use from multiple CPUs.
1233 *
1234 * See the description of synchronize_rcu() for more detailed information
1235 * on memory ordering guarantees.
1236 */
1237void synchronize_rcu_tasks_trace(void)
1238{
1239	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1240	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1241}
1242EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1243
1244/**
1245 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1246 *
1247 * Although the current implementation is guaranteed to wait, it is not
1248 * obligated to, for example, if there are no pending callbacks.
1249 */
1250void rcu_barrier_tasks_trace(void)
1251{
1252	/* There is only one callback queue, so this is easy.  ;-) */
1253	synchronize_rcu_tasks_trace();
1254}
1255EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1256
1257static int __init rcu_spawn_tasks_trace_kthread(void)
1258{
1259	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1260		rcu_tasks_trace.gp_sleep = HZ / 10;
1261		rcu_tasks_trace.init_fract = HZ / 10;
1262	} else {
1263		rcu_tasks_trace.gp_sleep = HZ / 200;
1264		if (rcu_tasks_trace.gp_sleep <= 0)
1265			rcu_tasks_trace.gp_sleep = 1;
1266		rcu_tasks_trace.init_fract = HZ / 200;
1267		if (rcu_tasks_trace.init_fract <= 0)
1268			rcu_tasks_trace.init_fract = 1;
1269	}
1270	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1271	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1272	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1273	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1274	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1275	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1276	return 0;
1277}
1278
1279#if !defined(CONFIG_TINY_RCU)
1280void show_rcu_tasks_trace_gp_kthread(void)
1281{
1282	char buf[64];
1283
1284	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1285		data_race(n_heavy_reader_ofl_updates),
1286		data_race(n_heavy_reader_updates),
1287		data_race(n_heavy_reader_attempts));
1288	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1289}
1290EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1291#endif // !defined(CONFIG_TINY_RCU)
1292
1293#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1294static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1295#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1296
1297#ifndef CONFIG_TINY_RCU
1298void show_rcu_tasks_gp_kthreads(void)
1299{
1300	show_rcu_tasks_classic_gp_kthread();
1301	show_rcu_tasks_rude_gp_kthread();
1302	show_rcu_tasks_trace_gp_kthread();
1303}
1304#endif /* #ifndef CONFIG_TINY_RCU */
1305
1306#ifdef CONFIG_PROVE_RCU
1307struct rcu_tasks_test_desc {
1308	struct rcu_head rh;
1309	const char *name;
1310	bool notrun;
1311};
1312
1313static struct rcu_tasks_test_desc tests[] = {
1314	{
1315		.name = "call_rcu_tasks()",
1316		/* If not defined, the test is skipped. */
1317		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1318	},
1319	{
1320		.name = "call_rcu_tasks_rude()",
1321		/* If not defined, the test is skipped. */
1322		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1323	},
1324	{
1325		.name = "call_rcu_tasks_trace()",
1326		/* If not defined, the test is skipped. */
1327		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1328	}
1329};
1330
1331static void test_rcu_tasks_callback(struct rcu_head *rhp)
1332{
1333	struct rcu_tasks_test_desc *rttd =
1334		container_of(rhp, struct rcu_tasks_test_desc, rh);
1335
1336	pr_info("Callback from %s invoked.\n", rttd->name);
1337
1338	rttd->notrun = true;
1339}
1340
1341static void rcu_tasks_initiate_self_tests(void)
1342{
1343	pr_info("Running RCU-tasks wait API self tests\n");
1344#ifdef CONFIG_TASKS_RCU
1345	synchronize_rcu_tasks();
1346	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1347#endif
1348
1349#ifdef CONFIG_TASKS_RUDE_RCU
1350	synchronize_rcu_tasks_rude();
1351	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1352#endif
1353
1354#ifdef CONFIG_TASKS_TRACE_RCU
1355	synchronize_rcu_tasks_trace();
1356	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1357#endif
1358}
1359
1360static int rcu_tasks_verify_self_tests(void)
1361{
1362	int ret = 0;
1363	int i;
1364
1365	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1366		if (!tests[i].notrun) {		// still hanging.
1367			pr_err("%s has been failed.\n", tests[i].name);
1368			ret = -1;
1369		}
1370	}
1371
1372	if (ret)
1373		WARN_ON(1);
1374
1375	return ret;
1376}
1377late_initcall(rcu_tasks_verify_self_tests);
1378#else /* #ifdef CONFIG_PROVE_RCU */
1379static void rcu_tasks_initiate_self_tests(void) { }
1380#endif /* #else #ifdef CONFIG_PROVE_RCU */
1381
1382void __init rcu_init_tasks_generic(void)
1383{
1384#ifdef CONFIG_TASKS_RCU
1385	rcu_spawn_tasks_kthread();
1386#endif
1387
1388#ifdef CONFIG_TASKS_RUDE_RCU
1389	rcu_spawn_tasks_rude_kthread();
1390#endif
1391
1392#ifdef CONFIG_TASKS_TRACE_RCU
1393	rcu_spawn_tasks_trace_kthread();
1394#endif
1395
1396	// Run the self-tests.
1397	rcu_tasks_initiate_self_tests();
1398}
1399
1400#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1401static inline void rcu_tasks_bootup_oddness(void) {}
1402#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */