Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
  1/*
  2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_sb.h"
 25#include "xfs_ag.h"
 26#include "xfs_mount.h"
 27#include "xfs_inode.h"
 28#include "xfs_error.h"
 29#include "xfs_cksum.h"
 30#include "xfs_icache.h"
 31#include "xfs_trans.h"
 32#include "xfs_ialloc.h"
 33#include "xfs_dinode.h"
 34
 35/*
 36 * Check that none of the inode's in the buffer have a next
 37 * unlinked field of 0.
 38 */
 39#if defined(DEBUG)
 40void
 41xfs_inobp_check(
 42	xfs_mount_t	*mp,
 43	xfs_buf_t	*bp)
 44{
 45	int		i;
 46	int		j;
 47	xfs_dinode_t	*dip;
 48
 49	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 50
 51	for (i = 0; i < j; i++) {
 52		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 53					i * mp->m_sb.sb_inodesize);
 54		if (!dip->di_next_unlinked)  {
 55			xfs_alert(mp,
 56	"Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
 57				i, (long long)bp->b_bn);
 58		}
 59	}
 60}
 61#endif
 62
 63/*
 64 * If we are doing readahead on an inode buffer, we might be in log recovery
 65 * reading an inode allocation buffer that hasn't yet been replayed, and hence
 66 * has not had the inode cores stamped into it. Hence for readahead, the buffer
 67 * may be potentially invalid.
 68 *
 69 * If the readahead buffer is invalid, we don't want to mark it with an error,
 70 * but we do want to clear the DONE status of the buffer so that a followup read
 71 * will re-read it from disk. This will ensure that we don't get an unnecessary
 72 * warnings during log recovery and we don't get unnecssary panics on debug
 73 * kernels.
 74 */
 75static void
 76xfs_inode_buf_verify(
 77	struct xfs_buf	*bp,
 78	bool		readahead)
 79{
 80	struct xfs_mount *mp = bp->b_target->bt_mount;
 81	int		i;
 82	int		ni;
 83
 84	/*
 85	 * Validate the magic number and version of every inode in the buffer
 86	 */
 87	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
 88	for (i = 0; i < ni; i++) {
 89		int		di_ok;
 90		xfs_dinode_t	*dip;
 91
 92		dip = (struct xfs_dinode *)xfs_buf_offset(bp,
 93					(i << mp->m_sb.sb_inodelog));
 94		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 95			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 96		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 97						XFS_ERRTAG_ITOBP_INOTOBP,
 98						XFS_RANDOM_ITOBP_INOTOBP))) {
 99			if (readahead) {
100				bp->b_flags &= ~XBF_DONE;
101				return;
102			}
103
104			xfs_buf_ioerror(bp, EFSCORRUPTED);
105			xfs_verifier_error(bp);
106#ifdef DEBUG
107			xfs_alert(mp,
108				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
109				(unsigned long long)bp->b_bn, i,
110				be16_to_cpu(dip->di_magic));
111#endif
112		}
113	}
114	xfs_inobp_check(mp, bp);
115}
116
117
118static void
119xfs_inode_buf_read_verify(
120	struct xfs_buf	*bp)
121{
122	xfs_inode_buf_verify(bp, false);
123}
124
125static void
126xfs_inode_buf_readahead_verify(
127	struct xfs_buf	*bp)
128{
129	xfs_inode_buf_verify(bp, true);
130}
131
132static void
133xfs_inode_buf_write_verify(
134	struct xfs_buf	*bp)
135{
136	xfs_inode_buf_verify(bp, false);
137}
138
139const struct xfs_buf_ops xfs_inode_buf_ops = {
140	.verify_read = xfs_inode_buf_read_verify,
141	.verify_write = xfs_inode_buf_write_verify,
142};
143
144const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
145	.verify_read = xfs_inode_buf_readahead_verify,
146	.verify_write = xfs_inode_buf_write_verify,
147};
148
149
150/*
151 * This routine is called to map an inode to the buffer containing the on-disk
152 * version of the inode.  It returns a pointer to the buffer containing the
153 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
154 * pointer to the on-disk inode within that buffer.
155 *
156 * If a non-zero error is returned, then the contents of bpp and dipp are
157 * undefined.
158 */
159int
160xfs_imap_to_bp(
161	struct xfs_mount	*mp,
162	struct xfs_trans	*tp,
163	struct xfs_imap		*imap,
164	struct xfs_dinode       **dipp,
165	struct xfs_buf		**bpp,
166	uint			buf_flags,
167	uint			iget_flags)
168{
169	struct xfs_buf		*bp;
170	int			error;
171
172	buf_flags |= XBF_UNMAPPED;
173	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
174				   (int)imap->im_len, buf_flags, &bp,
175				   &xfs_inode_buf_ops);
176	if (error) {
177		if (error == EAGAIN) {
178			ASSERT(buf_flags & XBF_TRYLOCK);
179			return error;
180		}
181
182		if (error == EFSCORRUPTED &&
183		    (iget_flags & XFS_IGET_UNTRUSTED))
184			return XFS_ERROR(EINVAL);
185
186		xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
187			__func__, error);
188		return error;
189	}
190
191	*bpp = bp;
192	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
193	return 0;
194}
195
196void
197xfs_dinode_from_disk(
198	xfs_icdinode_t		*to,
199	xfs_dinode_t		*from)
200{
201	to->di_magic = be16_to_cpu(from->di_magic);
202	to->di_mode = be16_to_cpu(from->di_mode);
203	to->di_version = from ->di_version;
204	to->di_format = from->di_format;
205	to->di_onlink = be16_to_cpu(from->di_onlink);
206	to->di_uid = be32_to_cpu(from->di_uid);
207	to->di_gid = be32_to_cpu(from->di_gid);
208	to->di_nlink = be32_to_cpu(from->di_nlink);
209	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
210	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
211	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
212	to->di_flushiter = be16_to_cpu(from->di_flushiter);
213	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
214	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
215	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
216	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
217	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
218	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
219	to->di_size = be64_to_cpu(from->di_size);
220	to->di_nblocks = be64_to_cpu(from->di_nblocks);
221	to->di_extsize = be32_to_cpu(from->di_extsize);
222	to->di_nextents = be32_to_cpu(from->di_nextents);
223	to->di_anextents = be16_to_cpu(from->di_anextents);
224	to->di_forkoff = from->di_forkoff;
225	to->di_aformat	= from->di_aformat;
226	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
227	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
228	to->di_flags	= be16_to_cpu(from->di_flags);
229	to->di_gen	= be32_to_cpu(from->di_gen);
230
231	if (to->di_version == 3) {
232		to->di_changecount = be64_to_cpu(from->di_changecount);
233		to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
234		to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
235		to->di_flags2 = be64_to_cpu(from->di_flags2);
236		to->di_ino = be64_to_cpu(from->di_ino);
237		to->di_lsn = be64_to_cpu(from->di_lsn);
238		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
239		uuid_copy(&to->di_uuid, &from->di_uuid);
240	}
241}
242
243void
244xfs_dinode_to_disk(
245	xfs_dinode_t		*to,
246	xfs_icdinode_t		*from)
247{
248	to->di_magic = cpu_to_be16(from->di_magic);
249	to->di_mode = cpu_to_be16(from->di_mode);
250	to->di_version = from ->di_version;
251	to->di_format = from->di_format;
252	to->di_onlink = cpu_to_be16(from->di_onlink);
253	to->di_uid = cpu_to_be32(from->di_uid);
254	to->di_gid = cpu_to_be32(from->di_gid);
255	to->di_nlink = cpu_to_be32(from->di_nlink);
256	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
257	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
258	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
259	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
260	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
261	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
262	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
263	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
264	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
265	to->di_size = cpu_to_be64(from->di_size);
266	to->di_nblocks = cpu_to_be64(from->di_nblocks);
267	to->di_extsize = cpu_to_be32(from->di_extsize);
268	to->di_nextents = cpu_to_be32(from->di_nextents);
269	to->di_anextents = cpu_to_be16(from->di_anextents);
270	to->di_forkoff = from->di_forkoff;
271	to->di_aformat = from->di_aformat;
272	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
273	to->di_dmstate = cpu_to_be16(from->di_dmstate);
274	to->di_flags = cpu_to_be16(from->di_flags);
275	to->di_gen = cpu_to_be32(from->di_gen);
276
277	if (from->di_version == 3) {
278		to->di_changecount = cpu_to_be64(from->di_changecount);
279		to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
280		to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
281		to->di_flags2 = cpu_to_be64(from->di_flags2);
282		to->di_ino = cpu_to_be64(from->di_ino);
283		to->di_lsn = cpu_to_be64(from->di_lsn);
284		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
285		uuid_copy(&to->di_uuid, &from->di_uuid);
286		to->di_flushiter = 0;
287	} else {
288		to->di_flushiter = cpu_to_be16(from->di_flushiter);
289	}
290}
291
292static bool
293xfs_dinode_verify(
294	struct xfs_mount	*mp,
295	struct xfs_inode	*ip,
296	struct xfs_dinode	*dip)
297{
298	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
299		return false;
300
301	/* only version 3 or greater inodes are extensively verified here */
302	if (dip->di_version < 3)
303		return true;
304
305	if (!xfs_sb_version_hascrc(&mp->m_sb))
306		return false;
307	if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
308			      XFS_DINODE_CRC_OFF))
309		return false;
310	if (be64_to_cpu(dip->di_ino) != ip->i_ino)
311		return false;
312	if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
313		return false;
314	return true;
315}
316
317void
318xfs_dinode_calc_crc(
319	struct xfs_mount	*mp,
320	struct xfs_dinode	*dip)
321{
322	__uint32_t		crc;
323
324	if (dip->di_version < 3)
325		return;
326
327	ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
328	crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
329			      XFS_DINODE_CRC_OFF);
330	dip->di_crc = xfs_end_cksum(crc);
331}
332
333/*
334 * Read the disk inode attributes into the in-core inode structure.
335 *
336 * For version 5 superblocks, if we are initialising a new inode and we are not
337 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
338 * inode core with a random generation number. If we are keeping inodes around,
339 * we need to read the inode cluster to get the existing generation number off
340 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
341 * format) then log recovery is dependent on the di_flushiter field being
342 * initialised from the current on-disk value and hence we must also read the
343 * inode off disk.
344 */
345int
346xfs_iread(
347	xfs_mount_t	*mp,
348	xfs_trans_t	*tp,
349	xfs_inode_t	*ip,
350	uint		iget_flags)
351{
352	xfs_buf_t	*bp;
353	xfs_dinode_t	*dip;
354	int		error;
355
356	/*
357	 * Fill in the location information in the in-core inode.
358	 */
359	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
360	if (error)
361		return error;
362
363	/* shortcut IO on inode allocation if possible */
364	if ((iget_flags & XFS_IGET_CREATE) &&
365	    xfs_sb_version_hascrc(&mp->m_sb) &&
366	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
367		/* initialise the on-disk inode core */
368		memset(&ip->i_d, 0, sizeof(ip->i_d));
369		ip->i_d.di_magic = XFS_DINODE_MAGIC;
370		ip->i_d.di_gen = prandom_u32();
371		if (xfs_sb_version_hascrc(&mp->m_sb)) {
372			ip->i_d.di_version = 3;
373			ip->i_d.di_ino = ip->i_ino;
374			uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
375		} else
376			ip->i_d.di_version = 2;
377		return 0;
378	}
379
380	/*
381	 * Get pointers to the on-disk inode and the buffer containing it.
382	 */
383	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
384	if (error)
385		return error;
386
387	/* even unallocated inodes are verified */
388	if (!xfs_dinode_verify(mp, ip, dip)) {
389		xfs_alert(mp, "%s: validation failed for inode %lld failed",
390				__func__, ip->i_ino);
391
392		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
393		error = XFS_ERROR(EFSCORRUPTED);
394		goto out_brelse;
395	}
396
397	/*
398	 * If the on-disk inode is already linked to a directory
399	 * entry, copy all of the inode into the in-core inode.
400	 * xfs_iformat_fork() handles copying in the inode format
401	 * specific information.
402	 * Otherwise, just get the truly permanent information.
403	 */
404	if (dip->di_mode) {
405		xfs_dinode_from_disk(&ip->i_d, dip);
406		error = xfs_iformat_fork(ip, dip);
407		if (error)  {
408#ifdef DEBUG
409			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
410				__func__, error);
411#endif /* DEBUG */
412			goto out_brelse;
413		}
414	} else {
415		/*
416		 * Partial initialisation of the in-core inode. Just the bits
417		 * that xfs_ialloc won't overwrite or relies on being correct.
418		 */
419		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
420		ip->i_d.di_version = dip->di_version;
421		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
422		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
423
424		if (dip->di_version == 3) {
425			ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
426			uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
427		}
428
429		/*
430		 * Make sure to pull in the mode here as well in
431		 * case the inode is released without being used.
432		 * This ensures that xfs_inactive() will see that
433		 * the inode is already free and not try to mess
434		 * with the uninitialized part of it.
435		 */
436		ip->i_d.di_mode = 0;
437	}
438
439	/*
440	 * The inode format changed when we moved the link count and
441	 * made it 32 bits long.  If this is an old format inode,
442	 * convert it in memory to look like a new one.  If it gets
443	 * flushed to disk we will convert back before flushing or
444	 * logging it.  We zero out the new projid field and the old link
445	 * count field.  We'll handle clearing the pad field (the remains
446	 * of the old uuid field) when we actually convert the inode to
447	 * the new format. We don't change the version number so that we
448	 * can distinguish this from a real new format inode.
449	 */
450	if (ip->i_d.di_version == 1) {
451		ip->i_d.di_nlink = ip->i_d.di_onlink;
452		ip->i_d.di_onlink = 0;
453		xfs_set_projid(ip, 0);
454	}
455
456	ip->i_delayed_blks = 0;
457
458	/*
459	 * Mark the buffer containing the inode as something to keep
460	 * around for a while.  This helps to keep recently accessed
461	 * meta-data in-core longer.
462	 */
463	xfs_buf_set_ref(bp, XFS_INO_REF);
464
465	/*
466	 * Use xfs_trans_brelse() to release the buffer containing the on-disk
467	 * inode, because it was acquired with xfs_trans_read_buf() in
468	 * xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
469	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
470	 * will only release the buffer if it is not dirty within the
471	 * transaction.  It will be OK to release the buffer in this case,
472	 * because inodes on disk are never destroyed and we will be locking the
473	 * new in-core inode before putting it in the cache where other
474	 * processes can find it.  Thus we don't have to worry about the inode
475	 * being changed just because we released the buffer.
476	 */
477 out_brelse:
478	xfs_trans_brelse(tp, bp);
479	return error;
480}