Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * PTP 1588 clock support
  3 *
  4 * Copyright (C) 2010 OMICRON electronics GmbH
  5 *
  6 *  This program is free software; you can redistribute it and/or modify
  7 *  it under the terms of the GNU General Public License as published by
  8 *  the Free Software Foundation; either version 2 of the License, or
  9 *  (at your option) any later version.
 10 *
 11 *  This program is distributed in the hope that it will be useful,
 12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 *  GNU General Public License for more details.
 15 *
 16 *  You should have received a copy of the GNU General Public License
 17 *  along with this program; if not, write to the Free Software
 18 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19 */
 20#include <linux/idr.h>
 21#include <linux/device.h>
 22#include <linux/err.h>
 23#include <linux/init.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/posix-clock.h>
 27#include <linux/pps_kernel.h>
 28#include <linux/slab.h>
 29#include <linux/syscalls.h>
 30#include <linux/uaccess.h>
 
 31
 32#include "ptp_private.h"
 33
 34#define PTP_MAX_ALARMS 4
 35#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 36#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 37#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 38
 
 
 39/* private globals */
 40
 41static dev_t ptp_devt;
 42static struct class *ptp_class;
 43
 44static DEFINE_IDA(ptp_clocks_map);
 45
 46/* time stamp event queue operations */
 47
 48static inline int queue_free(struct timestamp_event_queue *q)
 49{
 50	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 51}
 52
 53static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 54				       struct ptp_clock_event *src)
 55{
 56	struct ptp_extts_event *dst;
 57	unsigned long flags;
 58	s64 seconds;
 59	u32 remainder;
 60
 61	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 62
 63	spin_lock_irqsave(&queue->lock, flags);
 64
 65	dst = &queue->buf[queue->tail];
 66	dst->index = src->index;
 67	dst->t.sec = seconds;
 68	dst->t.nsec = remainder;
 69
 70	if (!queue_free(queue))
 71		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 72
 73	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 74
 75	spin_unlock_irqrestore(&queue->lock, flags);
 76}
 77
 78static s32 scaled_ppm_to_ppb(long ppm)
 79{
 80	/*
 81	 * The 'freq' field in the 'struct timex' is in parts per
 82	 * million, but with a 16 bit binary fractional field.
 83	 *
 84	 * We want to calculate
 85	 *
 86	 *    ppb = scaled_ppm * 1000 / 2^16
 87	 *
 88	 * which simplifies to
 89	 *
 90	 *    ppb = scaled_ppm * 125 / 2^13
 91	 */
 92	s64 ppb = 1 + ppm;
 93	ppb *= 125;
 94	ppb >>= 13;
 95	return (s32) ppb;
 96}
 97
 98/* posix clock implementation */
 99
100static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
101{
102	tp->tv_sec = 0;
103	tp->tv_nsec = 1;
104	return 0;
105}
106
107static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
108{
109	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
110	return ptp->info->settime(ptp->info, tp);
 
 
 
 
 
 
111}
112
113static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
114{
115	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
116	return ptp->info->gettime(ptp->info, tp);
 
 
 
 
 
 
117}
118
119static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
120{
121	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
122	struct ptp_clock_info *ops;
123	int err = -EOPNOTSUPP;
124
 
 
 
 
 
125	ops = ptp->info;
126
127	if (tx->modes & ADJ_SETOFFSET) {
128		struct timespec ts;
129		ktime_t kt;
130		s64 delta;
131
132		ts.tv_sec  = tx->time.tv_sec;
133		ts.tv_nsec = tx->time.tv_usec;
134
135		if (!(tx->modes & ADJ_NANO))
136			ts.tv_nsec *= 1000;
137
138		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
139			return -EINVAL;
140
141		kt = timespec_to_ktime(ts);
142		delta = ktime_to_ns(kt);
143		err = ops->adjtime(ops, delta);
144	} else if (tx->modes & ADJ_FREQUENCY) {
145		err = ops->adjfreq(ops, scaled_ppm_to_ppb(tx->freq));
 
 
 
 
 
 
146		ptp->dialed_frequency = tx->freq;
 
 
 
 
 
 
 
 
 
147	} else if (tx->modes == 0) {
148		tx->freq = ptp->dialed_frequency;
149		err = 0;
150	}
151
152	return err;
153}
154
155static struct posix_clock_operations ptp_clock_ops = {
156	.owner		= THIS_MODULE,
157	.clock_adjtime	= ptp_clock_adjtime,
158	.clock_gettime	= ptp_clock_gettime,
159	.clock_getres	= ptp_clock_getres,
160	.clock_settime	= ptp_clock_settime,
161	.ioctl		= ptp_ioctl,
162	.open		= ptp_open,
163	.poll		= ptp_poll,
164	.read		= ptp_read,
165};
166
167static void delete_ptp_clock(struct posix_clock *pc)
168{
169	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
170
 
171	mutex_destroy(&ptp->tsevq_mux);
172	mutex_destroy(&ptp->pincfg_mux);
 
173	ida_simple_remove(&ptp_clocks_map, ptp->index);
174	kfree(ptp);
175}
176
 
 
 
 
 
 
 
 
 
 
 
 
 
177/* public interface */
178
179struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
180				     struct device *parent)
181{
182	struct ptp_clock *ptp;
183	int err = 0, index, major = MAJOR(ptp_devt);
 
184
185	if (info->n_alarm > PTP_MAX_ALARMS)
186		return ERR_PTR(-EINVAL);
187
188	/* Initialize a clock structure. */
189	err = -ENOMEM;
190	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
191	if (ptp == NULL)
192		goto no_memory;
193
194	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
195	if (index < 0) {
196		err = index;
197		goto no_slot;
198	}
199
200	ptp->clock.ops = ptp_clock_ops;
201	ptp->clock.release = delete_ptp_clock;
202	ptp->info = info;
203	ptp->devid = MKDEV(major, index);
204	ptp->index = index;
205	spin_lock_init(&ptp->tsevq.lock);
206	mutex_init(&ptp->tsevq_mux);
207	mutex_init(&ptp->pincfg_mux);
 
208	init_waitqueue_head(&ptp->tsev_wq);
209
210	/* Create a new device in our class. */
211	ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
212				 "ptp%d", ptp->index);
213	if (IS_ERR(ptp->dev))
214		goto no_device;
 
 
 
 
215
216	dev_set_drvdata(ptp->dev, ptp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
218	err = ptp_populate_sysfs(ptp);
219	if (err)
220		goto no_sysfs;
221
222	/* Register a new PPS source. */
223	if (info->pps) {
224		struct pps_source_info pps;
225		memset(&pps, 0, sizeof(pps));
226		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
227		pps.mode = PTP_PPS_MODE;
228		pps.owner = info->owner;
229		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
230		if (!ptp->pps_source) {
 
231			pr_err("failed to register pps source\n");
232			goto no_pps;
233		}
 
234	}
235
236	/* Create a posix clock. */
237	err = posix_clock_register(&ptp->clock, ptp->devid);
 
 
 
 
 
 
 
 
 
 
238	if (err) {
 
 
 
 
 
 
 
 
 
 
239		pr_err("failed to create posix clock\n");
240		goto no_clock;
241	}
242
243	return ptp;
244
245no_clock:
246	if (ptp->pps_source)
247		pps_unregister_source(ptp->pps_source);
248no_pps:
249	ptp_cleanup_sysfs(ptp);
250no_sysfs:
251	device_destroy(ptp_class, ptp->devid);
252no_device:
 
 
 
253	mutex_destroy(&ptp->tsevq_mux);
254	mutex_destroy(&ptp->pincfg_mux);
 
 
255no_slot:
256	kfree(ptp);
257no_memory:
258	return ERR_PTR(err);
259}
260EXPORT_SYMBOL(ptp_clock_register);
261
262int ptp_clock_unregister(struct ptp_clock *ptp)
263{
 
 
 
 
 
264	ptp->defunct = 1;
265	wake_up_interruptible(&ptp->tsev_wq);
266
 
 
 
 
 
 
 
267	/* Release the clock's resources. */
268	if (ptp->pps_source)
269		pps_unregister_source(ptp->pps_source);
270	ptp_cleanup_sysfs(ptp);
271	device_destroy(ptp_class, ptp->devid);
272
273	posix_clock_unregister(&ptp->clock);
 
274	return 0;
275}
276EXPORT_SYMBOL(ptp_clock_unregister);
277
278void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
279{
280	struct pps_event_time evt;
281
282	switch (event->type) {
283
284	case PTP_CLOCK_ALARM:
285		break;
286
287	case PTP_CLOCK_EXTTS:
288		enqueue_external_timestamp(&ptp->tsevq, event);
289		wake_up_interruptible(&ptp->tsev_wq);
290		break;
291
292	case PTP_CLOCK_PPS:
293		pps_get_ts(&evt);
294		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
295		break;
296
297	case PTP_CLOCK_PPSUSR:
298		pps_event(ptp->pps_source, &event->pps_times,
299			  PTP_PPS_EVENT, NULL);
300		break;
301	}
302}
303EXPORT_SYMBOL(ptp_clock_event);
304
305int ptp_clock_index(struct ptp_clock *ptp)
306{
307	return ptp->index;
308}
309EXPORT_SYMBOL(ptp_clock_index);
310
311int ptp_find_pin(struct ptp_clock *ptp,
312		 enum ptp_pin_function func, unsigned int chan)
313{
314	struct ptp_pin_desc *pin = NULL;
315	int i;
316
317	mutex_lock(&ptp->pincfg_mux);
318	for (i = 0; i < ptp->info->n_pins; i++) {
319		if (ptp->info->pin_config[i].func == func &&
320		    ptp->info->pin_config[i].chan == chan) {
321			pin = &ptp->info->pin_config[i];
322			break;
323		}
324	}
325	mutex_unlock(&ptp->pincfg_mux);
326
327	return pin ? i : -1;
328}
329EXPORT_SYMBOL(ptp_find_pin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331/* module operations */
332
333static void __exit ptp_exit(void)
334{
335	class_destroy(ptp_class);
336	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
337	ida_destroy(&ptp_clocks_map);
338}
339
340static int __init ptp_init(void)
341{
342	int err;
343
344	ptp_class = class_create(THIS_MODULE, "ptp");
345	if (IS_ERR(ptp_class)) {
346		pr_err("ptp: failed to allocate class\n");
347		return PTR_ERR(ptp_class);
348	}
349
350	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
351	if (err < 0) {
352		pr_err("ptp: failed to allocate device region\n");
353		goto no_region;
354	}
355
356	ptp_class->dev_groups = ptp_groups;
357	pr_info("PTP clock support registered\n");
358	return 0;
359
360no_region:
361	class_destroy(ptp_class);
362	return err;
363}
364
365subsys_initcall(ptp_init);
366module_exit(ptp_exit);
367
368MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
369MODULE_DESCRIPTION("PTP clocks support");
370MODULE_LICENSE("GPL");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 27struct class *ptp_class;
 28
 29/* private globals */
 30
 31static dev_t ptp_devt;
 
 32
 33static DEFINE_IDA(ptp_clocks_map);
 34
 35/* time stamp event queue operations */
 36
 37static inline int queue_free(struct timestamp_event_queue *q)
 38{
 39	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 40}
 41
 42static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 43				       struct ptp_clock_event *src)
 44{
 45	struct ptp_extts_event *dst;
 46	unsigned long flags;
 47	s64 seconds;
 48	u32 remainder;
 49
 50	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 51
 52	spin_lock_irqsave(&queue->lock, flags);
 53
 54	dst = &queue->buf[queue->tail];
 55	dst->index = src->index;
 56	dst->t.sec = seconds;
 57	dst->t.nsec = remainder;
 58
 59	if (!queue_free(queue))
 60		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 61
 62	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 63
 64	spin_unlock_irqrestore(&queue->lock, flags);
 65}
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/* posix clock implementation */
 68
 69static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 70{
 71	tp->tv_sec = 0;
 72	tp->tv_nsec = 1;
 73	return 0;
 74}
 75
 76static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 77{
 78	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 79
 80	if (ptp_vclock_in_use(ptp)) {
 81		pr_err("ptp: virtual clock in use\n");
 82		return -EBUSY;
 83	}
 84
 85	return  ptp->info->settime64(ptp->info, tp);
 86}
 87
 88static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
 89{
 90	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 91	int err;
 92
 93	if (ptp->info->gettimex64)
 94		err = ptp->info->gettimex64(ptp->info, tp, NULL);
 95	else
 96		err = ptp->info->gettime64(ptp->info, tp);
 97	return err;
 98}
 99
100static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101{
102	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103	struct ptp_clock_info *ops;
104	int err = -EOPNOTSUPP;
105
106	if (ptp_vclock_in_use(ptp)) {
107		pr_err("ptp: virtual clock in use\n");
108		return -EBUSY;
109	}
110
111	ops = ptp->info;
112
113	if (tx->modes & ADJ_SETOFFSET) {
114		struct timespec64 ts;
115		ktime_t kt;
116		s64 delta;
117
118		ts.tv_sec  = tx->time.tv_sec;
119		ts.tv_nsec = tx->time.tv_usec;
120
121		if (!(tx->modes & ADJ_NANO))
122			ts.tv_nsec *= 1000;
123
124		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125			return -EINVAL;
126
127		kt = timespec64_to_ktime(ts);
128		delta = ktime_to_ns(kt);
129		err = ops->adjtime(ops, delta);
130	} else if (tx->modes & ADJ_FREQUENCY) {
131		long ppb = scaled_ppm_to_ppb(tx->freq);
132		if (ppb > ops->max_adj || ppb < -ops->max_adj)
133			return -ERANGE;
134		if (ops->adjfine)
135			err = ops->adjfine(ops, tx->freq);
136		else
137			err = ops->adjfreq(ops, ppb);
138		ptp->dialed_frequency = tx->freq;
139	} else if (tx->modes & ADJ_OFFSET) {
140		if (ops->adjphase) {
141			s32 offset = tx->offset;
142
143			if (!(tx->modes & ADJ_NANO))
144				offset *= NSEC_PER_USEC;
145
146			err = ops->adjphase(ops, offset);
147		}
148	} else if (tx->modes == 0) {
149		tx->freq = ptp->dialed_frequency;
150		err = 0;
151	}
152
153	return err;
154}
155
156static struct posix_clock_operations ptp_clock_ops = {
157	.owner		= THIS_MODULE,
158	.clock_adjtime	= ptp_clock_adjtime,
159	.clock_gettime	= ptp_clock_gettime,
160	.clock_getres	= ptp_clock_getres,
161	.clock_settime	= ptp_clock_settime,
162	.ioctl		= ptp_ioctl,
163	.open		= ptp_open,
164	.poll		= ptp_poll,
165	.read		= ptp_read,
166};
167
168static void ptp_clock_release(struct device *dev)
169{
170	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
171
172	ptp_cleanup_pin_groups(ptp);
173	mutex_destroy(&ptp->tsevq_mux);
174	mutex_destroy(&ptp->pincfg_mux);
175	mutex_destroy(&ptp->n_vclocks_mux);
176	ida_simple_remove(&ptp_clocks_map, ptp->index);
177	kfree(ptp);
178}
179
180static void ptp_aux_kworker(struct kthread_work *work)
181{
182	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
183					     aux_work.work);
184	struct ptp_clock_info *info = ptp->info;
185	long delay;
186
187	delay = info->do_aux_work(info);
188
189	if (delay >= 0)
190		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
191}
192
193/* public interface */
194
195struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
196				     struct device *parent)
197{
198	struct ptp_clock *ptp;
199	int err = 0, index, major = MAJOR(ptp_devt);
200	size_t size;
201
202	if (info->n_alarm > PTP_MAX_ALARMS)
203		return ERR_PTR(-EINVAL);
204
205	/* Initialize a clock structure. */
206	err = -ENOMEM;
207	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
208	if (ptp == NULL)
209		goto no_memory;
210
211	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
212	if (index < 0) {
213		err = index;
214		goto no_slot;
215	}
216
217	ptp->clock.ops = ptp_clock_ops;
 
218	ptp->info = info;
219	ptp->devid = MKDEV(major, index);
220	ptp->index = index;
221	spin_lock_init(&ptp->tsevq.lock);
222	mutex_init(&ptp->tsevq_mux);
223	mutex_init(&ptp->pincfg_mux);
224	mutex_init(&ptp->n_vclocks_mux);
225	init_waitqueue_head(&ptp->tsev_wq);
226
227	if (ptp->info->do_aux_work) {
228		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
229		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
230		if (IS_ERR(ptp->kworker)) {
231			err = PTR_ERR(ptp->kworker);
232			pr_err("failed to create ptp aux_worker %d\n", err);
233			goto kworker_err;
234		}
235	}
236
237	/* PTP virtual clock is being registered under physical clock */
238	if (parent && parent->class && parent->class->name &&
239	    strcmp(parent->class->name, "ptp") == 0)
240		ptp->is_virtual_clock = true;
241
242	if (!ptp->is_virtual_clock) {
243		ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
244
245		size = sizeof(int) * ptp->max_vclocks;
246		ptp->vclock_index = kzalloc(size, GFP_KERNEL);
247		if (!ptp->vclock_index) {
248			err = -ENOMEM;
249			goto no_mem_for_vclocks;
250		}
251	}
252
253	err = ptp_populate_pin_groups(ptp);
254	if (err)
255		goto no_pin_groups;
256
257	/* Register a new PPS source. */
258	if (info->pps) {
259		struct pps_source_info pps;
260		memset(&pps, 0, sizeof(pps));
261		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
262		pps.mode = PTP_PPS_MODE;
263		pps.owner = info->owner;
264		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
265		if (IS_ERR(ptp->pps_source)) {
266			err = PTR_ERR(ptp->pps_source);
267			pr_err("failed to register pps source\n");
268			goto no_pps;
269		}
270		ptp->pps_source->lookup_cookie = ptp;
271	}
272
273	/* Initialize a new device of our class in our clock structure. */
274	device_initialize(&ptp->dev);
275	ptp->dev.devt = ptp->devid;
276	ptp->dev.class = ptp_class;
277	ptp->dev.parent = parent;
278	ptp->dev.groups = ptp->pin_attr_groups;
279	ptp->dev.release = ptp_clock_release;
280	dev_set_drvdata(&ptp->dev, ptp);
281	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
282
283	/* Create a posix clock and link it to the device. */
284	err = posix_clock_register(&ptp->clock, &ptp->dev);
285	if (err) {
286	        if (ptp->pps_source)
287	                pps_unregister_source(ptp->pps_source);
288
289		kfree(ptp->vclock_index);
290
291		if (ptp->kworker)
292	                kthread_destroy_worker(ptp->kworker);
293
294		put_device(&ptp->dev);
295
296		pr_err("failed to create posix clock\n");
297		return ERR_PTR(err);
298	}
299
300	return ptp;
301
 
 
 
302no_pps:
303	ptp_cleanup_pin_groups(ptp);
304no_pin_groups:
305	kfree(ptp->vclock_index);
306no_mem_for_vclocks:
307	if (ptp->kworker)
308		kthread_destroy_worker(ptp->kworker);
309kworker_err:
310	mutex_destroy(&ptp->tsevq_mux);
311	mutex_destroy(&ptp->pincfg_mux);
312	mutex_destroy(&ptp->n_vclocks_mux);
313	ida_simple_remove(&ptp_clocks_map, index);
314no_slot:
315	kfree(ptp);
316no_memory:
317	return ERR_PTR(err);
318}
319EXPORT_SYMBOL(ptp_clock_register);
320
321int ptp_clock_unregister(struct ptp_clock *ptp)
322{
323	if (ptp_vclock_in_use(ptp)) {
324		pr_err("ptp: virtual clock in use\n");
325		return -EBUSY;
326	}
327
328	ptp->defunct = 1;
329	wake_up_interruptible(&ptp->tsev_wq);
330
331	kfree(ptp->vclock_index);
332
333	if (ptp->kworker) {
334		kthread_cancel_delayed_work_sync(&ptp->aux_work);
335		kthread_destroy_worker(ptp->kworker);
336	}
337
338	/* Release the clock's resources. */
339	if (ptp->pps_source)
340		pps_unregister_source(ptp->pps_source);
 
 
341
342	posix_clock_unregister(&ptp->clock);
343
344	return 0;
345}
346EXPORT_SYMBOL(ptp_clock_unregister);
347
348void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
349{
350	struct pps_event_time evt;
351
352	switch (event->type) {
353
354	case PTP_CLOCK_ALARM:
355		break;
356
357	case PTP_CLOCK_EXTTS:
358		enqueue_external_timestamp(&ptp->tsevq, event);
359		wake_up_interruptible(&ptp->tsev_wq);
360		break;
361
362	case PTP_CLOCK_PPS:
363		pps_get_ts(&evt);
364		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
365		break;
366
367	case PTP_CLOCK_PPSUSR:
368		pps_event(ptp->pps_source, &event->pps_times,
369			  PTP_PPS_EVENT, NULL);
370		break;
371	}
372}
373EXPORT_SYMBOL(ptp_clock_event);
374
375int ptp_clock_index(struct ptp_clock *ptp)
376{
377	return ptp->index;
378}
379EXPORT_SYMBOL(ptp_clock_index);
380
381int ptp_find_pin(struct ptp_clock *ptp,
382		 enum ptp_pin_function func, unsigned int chan)
383{
384	struct ptp_pin_desc *pin = NULL;
385	int i;
386
 
387	for (i = 0; i < ptp->info->n_pins; i++) {
388		if (ptp->info->pin_config[i].func == func &&
389		    ptp->info->pin_config[i].chan == chan) {
390			pin = &ptp->info->pin_config[i];
391			break;
392		}
393	}
 
394
395	return pin ? i : -1;
396}
397EXPORT_SYMBOL(ptp_find_pin);
398
399int ptp_find_pin_unlocked(struct ptp_clock *ptp,
400			  enum ptp_pin_function func, unsigned int chan)
401{
402	int result;
403
404	mutex_lock(&ptp->pincfg_mux);
405
406	result = ptp_find_pin(ptp, func, chan);
407
408	mutex_unlock(&ptp->pincfg_mux);
409
410	return result;
411}
412EXPORT_SYMBOL(ptp_find_pin_unlocked);
413
414int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
415{
416	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
417}
418EXPORT_SYMBOL(ptp_schedule_worker);
419
420void ptp_cancel_worker_sync(struct ptp_clock *ptp)
421{
422	kthread_cancel_delayed_work_sync(&ptp->aux_work);
423}
424EXPORT_SYMBOL(ptp_cancel_worker_sync);
425
426/* module operations */
427
428static void __exit ptp_exit(void)
429{
430	class_destroy(ptp_class);
431	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
432	ida_destroy(&ptp_clocks_map);
433}
434
435static int __init ptp_init(void)
436{
437	int err;
438
439	ptp_class = class_create(THIS_MODULE, "ptp");
440	if (IS_ERR(ptp_class)) {
441		pr_err("ptp: failed to allocate class\n");
442		return PTR_ERR(ptp_class);
443	}
444
445	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
446	if (err < 0) {
447		pr_err("ptp: failed to allocate device region\n");
448		goto no_region;
449	}
450
451	ptp_class->dev_groups = ptp_groups;
452	pr_info("PTP clock support registered\n");
453	return 0;
454
455no_region:
456	class_destroy(ptp_class);
457	return err;
458}
459
460subsys_initcall(ptp_init);
461module_exit(ptp_exit);
462
463MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
464MODULE_DESCRIPTION("PTP clocks support");
465MODULE_LICENSE("GPL");