Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * drivers/base/core.c - core driver model code (device registration, etc)
   3 *
   4 * Copyright (c) 2002-3 Patrick Mochel
   5 * Copyright (c) 2002-3 Open Source Development Labs
   6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   7 * Copyright (c) 2006 Novell, Inc.
   8 *
   9 * This file is released under the GPLv2
  10 *
  11 */
  12
 
 
  13#include <linux/device.h>
  14#include <linux/err.h>
 
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/kdev_t.h>
  20#include <linux/notifier.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/genhd.h>
  24#include <linux/kallsyms.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
 
 
  28#include <linux/sysfs.h>
 
  29
  30#include "base.h"
  31#include "power/power.h"
  32
  33#ifdef CONFIG_SYSFS_DEPRECATED
  34#ifdef CONFIG_SYSFS_DEPRECATED_V2
  35long sysfs_deprecated = 1;
  36#else
  37long sysfs_deprecated = 0;
  38#endif
  39static int __init sysfs_deprecated_setup(char *arg)
  40{
  41	return kstrtol(arg, 10, &sysfs_deprecated);
  42}
  43early_param("sysfs.deprecated", sysfs_deprecated_setup);
  44#endif
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46int (*platform_notify)(struct device *dev) = NULL;
  47int (*platform_notify_remove)(struct device *dev) = NULL;
  48static struct kobject *dev_kobj;
  49struct kobject *sysfs_dev_char_kobj;
  50struct kobject *sysfs_dev_block_kobj;
  51
  52static DEFINE_MUTEX(device_hotplug_lock);
  53
  54void lock_device_hotplug(void)
  55{
  56	mutex_lock(&device_hotplug_lock);
  57}
  58
  59void unlock_device_hotplug(void)
  60{
  61	mutex_unlock(&device_hotplug_lock);
  62}
  63
  64int lock_device_hotplug_sysfs(void)
  65{
  66	if (mutex_trylock(&device_hotplug_lock))
  67		return 0;
  68
  69	/* Avoid busy looping (5 ms of sleep should do). */
  70	msleep(5);
  71	return restart_syscall();
  72}
  73
  74#ifdef CONFIG_BLOCK
  75static inline int device_is_not_partition(struct device *dev)
  76{
  77	return !(dev->type == &part_type);
  78}
  79#else
  80static inline int device_is_not_partition(struct device *dev)
  81{
  82	return 1;
  83}
  84#endif
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86/**
  87 * dev_driver_string - Return a device's driver name, if at all possible
  88 * @dev: struct device to get the name of
  89 *
  90 * Will return the device's driver's name if it is bound to a device.  If
  91 * the device is not bound to a driver, it will return the name of the bus
  92 * it is attached to.  If it is not attached to a bus either, an empty
  93 * string will be returned.
  94 */
  95const char *dev_driver_string(const struct device *dev)
  96{
  97	struct device_driver *drv;
  98
  99	/* dev->driver can change to NULL underneath us because of unbinding,
 100	 * so be careful about accessing it.  dev->bus and dev->class should
 101	 * never change once they are set, so they don't need special care.
 102	 */
 103	drv = ACCESS_ONCE(dev->driver);
 104	return drv ? drv->name :
 105			(dev->bus ? dev->bus->name :
 106			(dev->class ? dev->class->name : ""));
 107}
 108EXPORT_SYMBOL(dev_driver_string);
 109
 110#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 111
 112static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 113			     char *buf)
 114{
 115	struct device_attribute *dev_attr = to_dev_attr(attr);
 116	struct device *dev = kobj_to_dev(kobj);
 117	ssize_t ret = -EIO;
 118
 119	if (dev_attr->show)
 120		ret = dev_attr->show(dev, dev_attr, buf);
 121	if (ret >= (ssize_t)PAGE_SIZE) {
 122		print_symbol("dev_attr_show: %s returned bad count\n",
 123				(unsigned long)dev_attr->show);
 124	}
 125	return ret;
 126}
 127
 128static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 129			      const char *buf, size_t count)
 130{
 131	struct device_attribute *dev_attr = to_dev_attr(attr);
 132	struct device *dev = kobj_to_dev(kobj);
 133	ssize_t ret = -EIO;
 134
 135	if (dev_attr->store)
 136		ret = dev_attr->store(dev, dev_attr, buf, count);
 137	return ret;
 138}
 139
 140static const struct sysfs_ops dev_sysfs_ops = {
 141	.show	= dev_attr_show,
 142	.store	= dev_attr_store,
 143};
 144
 145#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 146
 147ssize_t device_store_ulong(struct device *dev,
 148			   struct device_attribute *attr,
 149			   const char *buf, size_t size)
 150{
 151	struct dev_ext_attribute *ea = to_ext_attr(attr);
 152	char *end;
 153	unsigned long new = simple_strtoul(buf, &end, 0);
 154	if (end == buf)
 155		return -EINVAL;
 
 
 156	*(unsigned long *)(ea->var) = new;
 157	/* Always return full write size even if we didn't consume all */
 158	return size;
 159}
 160EXPORT_SYMBOL_GPL(device_store_ulong);
 161
 162ssize_t device_show_ulong(struct device *dev,
 163			  struct device_attribute *attr,
 164			  char *buf)
 165{
 166	struct dev_ext_attribute *ea = to_ext_attr(attr);
 167	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
 168}
 169EXPORT_SYMBOL_GPL(device_show_ulong);
 170
 171ssize_t device_store_int(struct device *dev,
 172			 struct device_attribute *attr,
 173			 const char *buf, size_t size)
 174{
 175	struct dev_ext_attribute *ea = to_ext_attr(attr);
 176	char *end;
 177	long new = simple_strtol(buf, &end, 0);
 178	if (end == buf || new > INT_MAX || new < INT_MIN)
 
 
 
 
 
 179		return -EINVAL;
 180	*(int *)(ea->var) = new;
 181	/* Always return full write size even if we didn't consume all */
 182	return size;
 183}
 184EXPORT_SYMBOL_GPL(device_store_int);
 185
 186ssize_t device_show_int(struct device *dev,
 187			struct device_attribute *attr,
 188			char *buf)
 189{
 190	struct dev_ext_attribute *ea = to_ext_attr(attr);
 191
 192	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
 193}
 194EXPORT_SYMBOL_GPL(device_show_int);
 195
 196ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
 197			  const char *buf, size_t size)
 198{
 199	struct dev_ext_attribute *ea = to_ext_attr(attr);
 200
 201	if (strtobool(buf, ea->var) < 0)
 202		return -EINVAL;
 203
 204	return size;
 205}
 206EXPORT_SYMBOL_GPL(device_store_bool);
 207
 208ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
 209			 char *buf)
 210{
 211	struct dev_ext_attribute *ea = to_ext_attr(attr);
 212
 213	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
 214}
 215EXPORT_SYMBOL_GPL(device_show_bool);
 216
 217/**
 218 * device_release - free device structure.
 219 * @kobj: device's kobject.
 220 *
 221 * This is called once the reference count for the object
 222 * reaches 0. We forward the call to the device's release
 223 * method, which should handle actually freeing the structure.
 224 */
 225static void device_release(struct kobject *kobj)
 226{
 227	struct device *dev = kobj_to_dev(kobj);
 228	struct device_private *p = dev->p;
 229
 230	/*
 231	 * Some platform devices are driven without driver attached
 232	 * and managed resources may have been acquired.  Make sure
 233	 * all resources are released.
 234	 *
 235	 * Drivers still can add resources into device after device
 236	 * is deleted but alive, so release devres here to avoid
 237	 * possible memory leak.
 238	 */
 239	devres_release_all(dev);
 240
 
 
 241	if (dev->release)
 242		dev->release(dev);
 243	else if (dev->type && dev->type->release)
 244		dev->type->release(dev);
 245	else if (dev->class && dev->class->dev_release)
 246		dev->class->dev_release(dev);
 247	else
 248		WARN(1, KERN_ERR "Device '%s' does not have a release() "
 249			"function, it is broken and must be fixed.\n",
 250			dev_name(dev));
 251	kfree(p);
 252}
 253
 254static const void *device_namespace(struct kobject *kobj)
 255{
 256	struct device *dev = kobj_to_dev(kobj);
 257	const void *ns = NULL;
 258
 259	if (dev->class && dev->class->ns_type)
 260		ns = dev->class->namespace(dev);
 261
 262	return ns;
 263}
 264
 
 
 
 
 
 
 
 
 265static struct kobj_type device_ktype = {
 266	.release	= device_release,
 267	.sysfs_ops	= &dev_sysfs_ops,
 268	.namespace	= device_namespace,
 
 269};
 270
 271
 272static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
 273{
 274	struct kobj_type *ktype = get_ktype(kobj);
 275
 276	if (ktype == &device_ktype) {
 277		struct device *dev = kobj_to_dev(kobj);
 278		if (dev->bus)
 279			return 1;
 280		if (dev->class)
 281			return 1;
 282	}
 283	return 0;
 284}
 285
 286static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
 287{
 288	struct device *dev = kobj_to_dev(kobj);
 289
 290	if (dev->bus)
 291		return dev->bus->name;
 292	if (dev->class)
 293		return dev->class->name;
 294	return NULL;
 295}
 296
 297static int dev_uevent(struct kset *kset, struct kobject *kobj,
 298		      struct kobj_uevent_env *env)
 299{
 300	struct device *dev = kobj_to_dev(kobj);
 301	int retval = 0;
 302
 303	/* add device node properties if present */
 304	if (MAJOR(dev->devt)) {
 305		const char *tmp;
 306		const char *name;
 307		umode_t mode = 0;
 308		kuid_t uid = GLOBAL_ROOT_UID;
 309		kgid_t gid = GLOBAL_ROOT_GID;
 310
 311		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
 312		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
 313		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
 314		if (name) {
 315			add_uevent_var(env, "DEVNAME=%s", name);
 316			if (mode)
 317				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
 318			if (!uid_eq(uid, GLOBAL_ROOT_UID))
 319				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
 320			if (!gid_eq(gid, GLOBAL_ROOT_GID))
 321				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
 322			kfree(tmp);
 323		}
 324	}
 325
 326	if (dev->type && dev->type->name)
 327		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
 328
 329	if (dev->driver)
 330		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
 331
 332	/* Add common DT information about the device */
 333	of_device_uevent(dev, env);
 334
 335	/* have the bus specific function add its stuff */
 336	if (dev->bus && dev->bus->uevent) {
 337		retval = dev->bus->uevent(dev, env);
 338		if (retval)
 339			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
 340				 dev_name(dev), __func__, retval);
 341	}
 342
 343	/* have the class specific function add its stuff */
 344	if (dev->class && dev->class->dev_uevent) {
 345		retval = dev->class->dev_uevent(dev, env);
 346		if (retval)
 347			pr_debug("device: '%s': %s: class uevent() "
 348				 "returned %d\n", dev_name(dev),
 349				 __func__, retval);
 350	}
 351
 352	/* have the device type specific function add its stuff */
 353	if (dev->type && dev->type->uevent) {
 354		retval = dev->type->uevent(dev, env);
 355		if (retval)
 356			pr_debug("device: '%s': %s: dev_type uevent() "
 357				 "returned %d\n", dev_name(dev),
 358				 __func__, retval);
 359	}
 360
 361	return retval;
 362}
 363
 364static const struct kset_uevent_ops device_uevent_ops = {
 365	.filter =	dev_uevent_filter,
 366	.name =		dev_uevent_name,
 367	.uevent =	dev_uevent,
 368};
 369
 370static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
 371			   char *buf)
 372{
 373	struct kobject *top_kobj;
 374	struct kset *kset;
 375	struct kobj_uevent_env *env = NULL;
 376	int i;
 377	size_t count = 0;
 378	int retval;
 379
 380	/* search the kset, the device belongs to */
 381	top_kobj = &dev->kobj;
 382	while (!top_kobj->kset && top_kobj->parent)
 383		top_kobj = top_kobj->parent;
 384	if (!top_kobj->kset)
 385		goto out;
 386
 387	kset = top_kobj->kset;
 388	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
 389		goto out;
 390
 391	/* respect filter */
 392	if (kset->uevent_ops && kset->uevent_ops->filter)
 393		if (!kset->uevent_ops->filter(kset, &dev->kobj))
 394			goto out;
 395
 396	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
 397	if (!env)
 398		return -ENOMEM;
 399
 400	/* let the kset specific function add its keys */
 401	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 402	if (retval)
 403		goto out;
 404
 405	/* copy keys to file */
 406	for (i = 0; i < env->envp_idx; i++)
 407		count += sprintf(&buf[count], "%s\n", env->envp[i]);
 408out:
 409	kfree(env);
 410	return count;
 411}
 412
 413static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
 414			    const char *buf, size_t count)
 415{
 416	enum kobject_action action;
 
 
 
 
 
 
 
 417
 418	if (kobject_action_type(buf, count, &action) == 0)
 419		kobject_uevent(&dev->kobj, action);
 420	else
 421		dev_err(dev, "uevent: unknown action-string\n");
 422	return count;
 423}
 424static DEVICE_ATTR_RW(uevent);
 425
 426static ssize_t online_show(struct device *dev, struct device_attribute *attr,
 427			   char *buf)
 428{
 429	bool val;
 430
 431	device_lock(dev);
 432	val = !dev->offline;
 433	device_unlock(dev);
 434	return sprintf(buf, "%u\n", val);
 435}
 436
 437static ssize_t online_store(struct device *dev, struct device_attribute *attr,
 438			    const char *buf, size_t count)
 439{
 440	bool val;
 441	int ret;
 442
 443	ret = strtobool(buf, &val);
 444	if (ret < 0)
 445		return ret;
 446
 447	ret = lock_device_hotplug_sysfs();
 448	if (ret)
 449		return ret;
 450
 451	ret = val ? device_online(dev) : device_offline(dev);
 452	unlock_device_hotplug();
 453	return ret < 0 ? ret : count;
 454}
 455static DEVICE_ATTR_RW(online);
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457int device_add_groups(struct device *dev, const struct attribute_group **groups)
 458{
 459	return sysfs_create_groups(&dev->kobj, groups);
 460}
 
 461
 462void device_remove_groups(struct device *dev,
 463			  const struct attribute_group **groups)
 464{
 465	sysfs_remove_groups(&dev->kobj, groups);
 466}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468static int device_add_attrs(struct device *dev)
 469{
 470	struct class *class = dev->class;
 471	const struct device_type *type = dev->type;
 472	int error;
 473
 474	if (class) {
 475		error = device_add_groups(dev, class->dev_groups);
 476		if (error)
 477			return error;
 478	}
 479
 480	if (type) {
 481		error = device_add_groups(dev, type->groups);
 482		if (error)
 483			goto err_remove_class_groups;
 484	}
 485
 486	error = device_add_groups(dev, dev->groups);
 487	if (error)
 488		goto err_remove_type_groups;
 489
 490	if (device_supports_offline(dev) && !dev->offline_disabled) {
 491		error = device_create_file(dev, &dev_attr_online);
 492		if (error)
 493			goto err_remove_dev_groups;
 494	}
 495
 
 
 
 
 
 
 
 
 
 
 
 
 496	return 0;
 497
 
 
 
 
 498 err_remove_dev_groups:
 499	device_remove_groups(dev, dev->groups);
 500 err_remove_type_groups:
 501	if (type)
 502		device_remove_groups(dev, type->groups);
 503 err_remove_class_groups:
 504	if (class)
 505		device_remove_groups(dev, class->dev_groups);
 506
 507	return error;
 508}
 509
 510static void device_remove_attrs(struct device *dev)
 511{
 512	struct class *class = dev->class;
 513	const struct device_type *type = dev->type;
 514
 
 
 515	device_remove_file(dev, &dev_attr_online);
 516	device_remove_groups(dev, dev->groups);
 517
 518	if (type)
 519		device_remove_groups(dev, type->groups);
 520
 521	if (class)
 522		device_remove_groups(dev, class->dev_groups);
 523}
 524
 525static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
 526			char *buf)
 527{
 528	return print_dev_t(buf, dev->devt);
 529}
 530static DEVICE_ATTR_RO(dev);
 531
 532/* /sys/devices/ */
 533struct kset *devices_kset;
 534
 535/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536 * device_create_file - create sysfs attribute file for device.
 537 * @dev: device.
 538 * @attr: device attribute descriptor.
 539 */
 540int device_create_file(struct device *dev,
 541		       const struct device_attribute *attr)
 542{
 543	int error = 0;
 544
 545	if (dev) {
 546		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
 547			"Attribute %s: write permission without 'store'\n",
 548			attr->attr.name);
 549		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
 550			"Attribute %s: read permission without 'show'\n",
 551			attr->attr.name);
 552		error = sysfs_create_file(&dev->kobj, &attr->attr);
 553	}
 554
 555	return error;
 556}
 557EXPORT_SYMBOL_GPL(device_create_file);
 558
 559/**
 560 * device_remove_file - remove sysfs attribute file.
 561 * @dev: device.
 562 * @attr: device attribute descriptor.
 563 */
 564void device_remove_file(struct device *dev,
 565			const struct device_attribute *attr)
 566{
 567	if (dev)
 568		sysfs_remove_file(&dev->kobj, &attr->attr);
 569}
 570EXPORT_SYMBOL_GPL(device_remove_file);
 571
 572/**
 573 * device_remove_file_self - remove sysfs attribute file from its own method.
 574 * @dev: device.
 575 * @attr: device attribute descriptor.
 576 *
 577 * See kernfs_remove_self() for details.
 578 */
 579bool device_remove_file_self(struct device *dev,
 580			     const struct device_attribute *attr)
 581{
 582	if (dev)
 583		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
 584	else
 585		return false;
 586}
 587EXPORT_SYMBOL_GPL(device_remove_file_self);
 588
 589/**
 590 * device_create_bin_file - create sysfs binary attribute file for device.
 591 * @dev: device.
 592 * @attr: device binary attribute descriptor.
 593 */
 594int device_create_bin_file(struct device *dev,
 595			   const struct bin_attribute *attr)
 596{
 597	int error = -EINVAL;
 598	if (dev)
 599		error = sysfs_create_bin_file(&dev->kobj, attr);
 600	return error;
 601}
 602EXPORT_SYMBOL_GPL(device_create_bin_file);
 603
 604/**
 605 * device_remove_bin_file - remove sysfs binary attribute file
 606 * @dev: device.
 607 * @attr: device binary attribute descriptor.
 608 */
 609void device_remove_bin_file(struct device *dev,
 610			    const struct bin_attribute *attr)
 611{
 612	if (dev)
 613		sysfs_remove_bin_file(&dev->kobj, attr);
 614}
 615EXPORT_SYMBOL_GPL(device_remove_bin_file);
 616
 617static void klist_children_get(struct klist_node *n)
 618{
 619	struct device_private *p = to_device_private_parent(n);
 620	struct device *dev = p->device;
 621
 622	get_device(dev);
 623}
 624
 625static void klist_children_put(struct klist_node *n)
 626{
 627	struct device_private *p = to_device_private_parent(n);
 628	struct device *dev = p->device;
 629
 630	put_device(dev);
 631}
 632
 633/**
 634 * device_initialize - init device structure.
 635 * @dev: device.
 636 *
 637 * This prepares the device for use by other layers by initializing
 638 * its fields.
 639 * It is the first half of device_register(), if called by
 640 * that function, though it can also be called separately, so one
 641 * may use @dev's fields. In particular, get_device()/put_device()
 642 * may be used for reference counting of @dev after calling this
 643 * function.
 644 *
 645 * All fields in @dev must be initialized by the caller to 0, except
 646 * for those explicitly set to some other value.  The simplest
 647 * approach is to use kzalloc() to allocate the structure containing
 648 * @dev.
 649 *
 650 * NOTE: Use put_device() to give up your reference instead of freeing
 651 * @dev directly once you have called this function.
 652 */
 653void device_initialize(struct device *dev)
 654{
 655	dev->kobj.kset = devices_kset;
 656	kobject_init(&dev->kobj, &device_ktype);
 657	INIT_LIST_HEAD(&dev->dma_pools);
 658	mutex_init(&dev->mutex);
 
 
 
 659	lockdep_set_novalidate_class(&dev->mutex);
 660	spin_lock_init(&dev->devres_lock);
 661	INIT_LIST_HEAD(&dev->devres_head);
 662	device_pm_init(dev);
 663	set_dev_node(dev, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 664}
 665EXPORT_SYMBOL_GPL(device_initialize);
 666
 667struct kobject *virtual_device_parent(struct device *dev)
 668{
 669	static struct kobject *virtual_dir = NULL;
 670
 671	if (!virtual_dir)
 672		virtual_dir = kobject_create_and_add("virtual",
 673						     &devices_kset->kobj);
 674
 675	return virtual_dir;
 676}
 677
 678struct class_dir {
 679	struct kobject kobj;
 680	struct class *class;
 681};
 682
 683#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
 684
 685static void class_dir_release(struct kobject *kobj)
 686{
 687	struct class_dir *dir = to_class_dir(kobj);
 688	kfree(dir);
 689}
 690
 691static const
 692struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
 693{
 694	struct class_dir *dir = to_class_dir(kobj);
 695	return dir->class->ns_type;
 696}
 697
 698static struct kobj_type class_dir_ktype = {
 699	.release	= class_dir_release,
 700	.sysfs_ops	= &kobj_sysfs_ops,
 701	.child_ns_type	= class_dir_child_ns_type
 702};
 703
 704static struct kobject *
 705class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
 706{
 707	struct class_dir *dir;
 708	int retval;
 709
 710	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
 711	if (!dir)
 712		return NULL;
 713
 714	dir->class = class;
 715	kobject_init(&dir->kobj, &class_dir_ktype);
 716
 717	dir->kobj.kset = &class->p->glue_dirs;
 718
 719	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
 720	if (retval < 0) {
 721		kobject_put(&dir->kobj);
 722		return NULL;
 723	}
 724	return &dir->kobj;
 725}
 726
 
 727
 728static struct kobject *get_device_parent(struct device *dev,
 729					 struct device *parent)
 730{
 731	if (dev->class) {
 732		static DEFINE_MUTEX(gdp_mutex);
 733		struct kobject *kobj = NULL;
 734		struct kobject *parent_kobj;
 735		struct kobject *k;
 736
 737#ifdef CONFIG_BLOCK
 738		/* block disks show up in /sys/block */
 739		if (sysfs_deprecated && dev->class == &block_class) {
 740			if (parent && parent->class == &block_class)
 741				return &parent->kobj;
 742			return &block_class.p->subsys.kobj;
 743		}
 744#endif
 745
 746		/*
 747		 * If we have no parent, we live in "virtual".
 748		 * Class-devices with a non class-device as parent, live
 749		 * in a "glue" directory to prevent namespace collisions.
 750		 */
 751		if (parent == NULL)
 752			parent_kobj = virtual_device_parent(dev);
 753		else if (parent->class && !dev->class->ns_type)
 754			return &parent->kobj;
 755		else
 756			parent_kobj = &parent->kobj;
 757
 758		mutex_lock(&gdp_mutex);
 759
 760		/* find our class-directory at the parent and reference it */
 761		spin_lock(&dev->class->p->glue_dirs.list_lock);
 762		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
 763			if (k->parent == parent_kobj) {
 764				kobj = kobject_get(k);
 765				break;
 766			}
 767		spin_unlock(&dev->class->p->glue_dirs.list_lock);
 768		if (kobj) {
 769			mutex_unlock(&gdp_mutex);
 770			return kobj;
 771		}
 772
 773		/* or create a new class-directory at the parent device */
 774		k = class_dir_create_and_add(dev->class, parent_kobj);
 775		/* do not emit an uevent for this simple "glue" directory */
 776		mutex_unlock(&gdp_mutex);
 777		return k;
 778	}
 779
 780	/* subsystems can specify a default root directory for their devices */
 781	if (!parent && dev->bus && dev->bus->dev_root)
 782		return &dev->bus->dev_root->kobj;
 783
 784	if (parent)
 785		return &parent->kobj;
 786	return NULL;
 787}
 788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
 790{
 
 
 791	/* see if we live in a "glue" directory */
 792	if (!glue_dir || !dev->class ||
 793	    glue_dir->kset != &dev->class->p->glue_dirs)
 794		return;
 795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796	kobject_put(glue_dir);
 797}
 798
 799static void cleanup_device_parent(struct device *dev)
 800{
 801	cleanup_glue_dir(dev, dev->kobj.parent);
 802}
 803
 804static int device_add_class_symlinks(struct device *dev)
 805{
 
 806	int error;
 807
 
 
 
 
 
 
 
 808	if (!dev->class)
 809		return 0;
 810
 811	error = sysfs_create_link(&dev->kobj,
 812				  &dev->class->p->subsys.kobj,
 813				  "subsystem");
 814	if (error)
 815		goto out;
 816
 817	if (dev->parent && device_is_not_partition(dev)) {
 818		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
 819					  "device");
 820		if (error)
 821			goto out_subsys;
 822	}
 823
 824#ifdef CONFIG_BLOCK
 825	/* /sys/block has directories and does not need symlinks */
 826	if (sysfs_deprecated && dev->class == &block_class)
 827		return 0;
 828#endif
 829
 830	/* link in the class directory pointing to the device */
 831	error = sysfs_create_link(&dev->class->p->subsys.kobj,
 832				  &dev->kobj, dev_name(dev));
 833	if (error)
 834		goto out_device;
 835
 836	return 0;
 837
 838out_device:
 839	sysfs_remove_link(&dev->kobj, "device");
 840
 841out_subsys:
 842	sysfs_remove_link(&dev->kobj, "subsystem");
 843out:
 
 844	return error;
 845}
 846
 847static void device_remove_class_symlinks(struct device *dev)
 848{
 
 
 
 849	if (!dev->class)
 850		return;
 851
 852	if (dev->parent && device_is_not_partition(dev))
 853		sysfs_remove_link(&dev->kobj, "device");
 854	sysfs_remove_link(&dev->kobj, "subsystem");
 855#ifdef CONFIG_BLOCK
 856	if (sysfs_deprecated && dev->class == &block_class)
 857		return;
 858#endif
 859	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
 860}
 861
 862/**
 863 * dev_set_name - set a device name
 864 * @dev: device
 865 * @fmt: format string for the device's name
 866 */
 867int dev_set_name(struct device *dev, const char *fmt, ...)
 868{
 869	va_list vargs;
 870	int err;
 871
 872	va_start(vargs, fmt);
 873	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
 874	va_end(vargs);
 875	return err;
 876}
 877EXPORT_SYMBOL_GPL(dev_set_name);
 878
 879/**
 880 * device_to_dev_kobj - select a /sys/dev/ directory for the device
 881 * @dev: device
 882 *
 883 * By default we select char/ for new entries.  Setting class->dev_obj
 884 * to NULL prevents an entry from being created.  class->dev_kobj must
 885 * be set (or cleared) before any devices are registered to the class
 886 * otherwise device_create_sys_dev_entry() and
 887 * device_remove_sys_dev_entry() will disagree about the presence of
 888 * the link.
 889 */
 890static struct kobject *device_to_dev_kobj(struct device *dev)
 891{
 892	struct kobject *kobj;
 893
 894	if (dev->class)
 895		kobj = dev->class->dev_kobj;
 896	else
 897		kobj = sysfs_dev_char_kobj;
 898
 899	return kobj;
 900}
 901
 902static int device_create_sys_dev_entry(struct device *dev)
 903{
 904	struct kobject *kobj = device_to_dev_kobj(dev);
 905	int error = 0;
 906	char devt_str[15];
 907
 908	if (kobj) {
 909		format_dev_t(devt_str, dev->devt);
 910		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
 911	}
 912
 913	return error;
 914}
 915
 916static void device_remove_sys_dev_entry(struct device *dev)
 917{
 918	struct kobject *kobj = device_to_dev_kobj(dev);
 919	char devt_str[15];
 920
 921	if (kobj) {
 922		format_dev_t(devt_str, dev->devt);
 923		sysfs_remove_link(kobj, devt_str);
 924	}
 925}
 926
 927int device_private_init(struct device *dev)
 928{
 929	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
 930	if (!dev->p)
 931		return -ENOMEM;
 932	dev->p->device = dev;
 933	klist_init(&dev->p->klist_children, klist_children_get,
 934		   klist_children_put);
 935	INIT_LIST_HEAD(&dev->p->deferred_probe);
 936	return 0;
 937}
 938
 939/**
 940 * device_add - add device to device hierarchy.
 941 * @dev: device.
 942 *
 943 * This is part 2 of device_register(), though may be called
 944 * separately _iff_ device_initialize() has been called separately.
 945 *
 946 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
 947 * to the global and sibling lists for the device, then
 948 * adds it to the other relevant subsystems of the driver model.
 949 *
 950 * Do not call this routine or device_register() more than once for
 951 * any device structure.  The driver model core is not designed to work
 952 * with devices that get unregistered and then spring back to life.
 953 * (Among other things, it's very hard to guarantee that all references
 954 * to the previous incarnation of @dev have been dropped.)  Allocate
 955 * and register a fresh new struct device instead.
 956 *
 957 * NOTE: _Never_ directly free @dev after calling this function, even
 958 * if it returned an error! Always use put_device() to give up your
 959 * reference instead.
 
 
 
 
 
 960 */
 961int device_add(struct device *dev)
 962{
 963	struct device *parent = NULL;
 964	struct kobject *kobj;
 965	struct class_interface *class_intf;
 966	int error = -EINVAL;
 
 967
 968	dev = get_device(dev);
 969	if (!dev)
 970		goto done;
 971
 972	if (!dev->p) {
 973		error = device_private_init(dev);
 974		if (error)
 975			goto done;
 976	}
 977
 978	/*
 979	 * for statically allocated devices, which should all be converted
 980	 * some day, we need to initialize the name. We prevent reading back
 981	 * the name, and force the use of dev_name()
 982	 */
 983	if (dev->init_name) {
 984		dev_set_name(dev, "%s", dev->init_name);
 985		dev->init_name = NULL;
 986	}
 987
 988	/* subsystems can specify simple device enumeration */
 989	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
 990		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
 991
 992	if (!dev_name(dev)) {
 993		error = -EINVAL;
 994		goto name_error;
 995	}
 996
 997	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
 998
 999	parent = get_device(dev->parent);
1000	kobj = get_device_parent(dev, parent);
 
 
 
 
1001	if (kobj)
1002		dev->kobj.parent = kobj;
1003
1004	/* use parent numa_node */
1005	if (parent)
1006		set_dev_node(dev, dev_to_node(parent));
1007
1008	/* first, register with generic layer. */
1009	/* we require the name to be set before, and pass NULL */
1010	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1011	if (error)
 
1012		goto Error;
 
1013
1014	/* notify platform of device entry */
1015	if (platform_notify)
1016		platform_notify(dev);
 
1017
1018	error = device_create_file(dev, &dev_attr_uevent);
1019	if (error)
1020		goto attrError;
1021
1022	if (MAJOR(dev->devt)) {
1023		error = device_create_file(dev, &dev_attr_dev);
1024		if (error)
1025			goto ueventattrError;
1026
1027		error = device_create_sys_dev_entry(dev);
1028		if (error)
1029			goto devtattrError;
1030
1031		devtmpfs_create_node(dev);
1032	}
1033
1034	error = device_add_class_symlinks(dev);
1035	if (error)
1036		goto SymlinkError;
1037	error = device_add_attrs(dev);
1038	if (error)
1039		goto AttrsError;
1040	error = bus_add_device(dev);
1041	if (error)
1042		goto BusError;
1043	error = dpm_sysfs_add(dev);
1044	if (error)
1045		goto DPMError;
1046	device_pm_add(dev);
1047
 
 
 
 
 
 
 
 
 
 
 
 
1048	/* Notify clients of device addition.  This call must come
1049	 * after dpm_sysfs_add() and before kobject_uevent().
1050	 */
1051	if (dev->bus)
1052		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1053					     BUS_NOTIFY_ADD_DEVICE, dev);
1054
1055	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056	bus_probe_device(dev);
 
 
 
 
 
 
 
 
 
1057	if (parent)
1058		klist_add_tail(&dev->p->knode_parent,
1059			       &parent->p->klist_children);
1060
1061	if (dev->class) {
1062		mutex_lock(&dev->class->p->mutex);
1063		/* tie the class to the device */
1064		klist_add_tail(&dev->knode_class,
1065			       &dev->class->p->klist_devices);
1066
1067		/* notify any interfaces that the device is here */
1068		list_for_each_entry(class_intf,
1069				    &dev->class->p->interfaces, node)
1070			if (class_intf->add_dev)
1071				class_intf->add_dev(dev, class_intf);
1072		mutex_unlock(&dev->class->p->mutex);
1073	}
1074done:
1075	put_device(dev);
1076	return error;
 
 
 
 
 
 
1077 DPMError:
1078	bus_remove_device(dev);
1079 BusError:
1080	device_remove_attrs(dev);
1081 AttrsError:
1082	device_remove_class_symlinks(dev);
1083 SymlinkError:
1084	if (MAJOR(dev->devt))
1085		devtmpfs_delete_node(dev);
1086	if (MAJOR(dev->devt))
1087		device_remove_sys_dev_entry(dev);
1088 devtattrError:
1089	if (MAJOR(dev->devt))
1090		device_remove_file(dev, &dev_attr_dev);
1091 ueventattrError:
1092	device_remove_file(dev, &dev_attr_uevent);
1093 attrError:
 
 
1094	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
 
1095	kobject_del(&dev->kobj);
1096 Error:
1097	cleanup_device_parent(dev);
1098	if (parent)
1099		put_device(parent);
1100name_error:
1101	kfree(dev->p);
1102	dev->p = NULL;
1103	goto done;
1104}
1105EXPORT_SYMBOL_GPL(device_add);
1106
1107/**
1108 * device_register - register a device with the system.
1109 * @dev: pointer to the device structure
1110 *
1111 * This happens in two clean steps - initialize the device
1112 * and add it to the system. The two steps can be called
1113 * separately, but this is the easiest and most common.
1114 * I.e. you should only call the two helpers separately if
1115 * have a clearly defined need to use and refcount the device
1116 * before it is added to the hierarchy.
1117 *
1118 * For more information, see the kerneldoc for device_initialize()
1119 * and device_add().
1120 *
1121 * NOTE: _Never_ directly free @dev after calling this function, even
1122 * if it returned an error! Always use put_device() to give up the
1123 * reference initialized in this function instead.
1124 */
1125int device_register(struct device *dev)
1126{
1127	device_initialize(dev);
1128	return device_add(dev);
1129}
1130EXPORT_SYMBOL_GPL(device_register);
1131
1132/**
1133 * get_device - increment reference count for device.
1134 * @dev: device.
1135 *
1136 * This simply forwards the call to kobject_get(), though
1137 * we do take care to provide for the case that we get a NULL
1138 * pointer passed in.
1139 */
1140struct device *get_device(struct device *dev)
1141{
1142	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1143}
1144EXPORT_SYMBOL_GPL(get_device);
1145
1146/**
1147 * put_device - decrement reference count.
1148 * @dev: device in question.
1149 */
1150void put_device(struct device *dev)
1151{
1152	/* might_sleep(); */
1153	if (dev)
1154		kobject_put(&dev->kobj);
1155}
1156EXPORT_SYMBOL_GPL(put_device);
1157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158/**
1159 * device_del - delete device from system.
1160 * @dev: device.
1161 *
1162 * This is the first part of the device unregistration
1163 * sequence. This removes the device from the lists we control
1164 * from here, has it removed from the other driver model
1165 * subsystems it was added to in device_add(), and removes it
1166 * from the kobject hierarchy.
1167 *
1168 * NOTE: this should be called manually _iff_ device_add() was
1169 * also called manually.
1170 */
1171void device_del(struct device *dev)
1172{
1173	struct device *parent = dev->parent;
 
1174	struct class_interface *class_intf;
 
 
 
 
 
 
 
 
1175
1176	/* Notify clients of device removal.  This call must come
1177	 * before dpm_sysfs_remove().
1178	 */
 
1179	if (dev->bus)
1180		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1181					     BUS_NOTIFY_DEL_DEVICE, dev);
 
1182	dpm_sysfs_remove(dev);
1183	if (parent)
1184		klist_del(&dev->p->knode_parent);
1185	if (MAJOR(dev->devt)) {
1186		devtmpfs_delete_node(dev);
1187		device_remove_sys_dev_entry(dev);
1188		device_remove_file(dev, &dev_attr_dev);
1189	}
1190	if (dev->class) {
1191		device_remove_class_symlinks(dev);
1192
1193		mutex_lock(&dev->class->p->mutex);
1194		/* notify any interfaces that the device is now gone */
1195		list_for_each_entry(class_intf,
1196				    &dev->class->p->interfaces, node)
1197			if (class_intf->remove_dev)
1198				class_intf->remove_dev(dev, class_intf);
1199		/* remove the device from the class list */
1200		klist_del(&dev->knode_class);
1201		mutex_unlock(&dev->class->p->mutex);
1202	}
1203	device_remove_file(dev, &dev_attr_uevent);
1204	device_remove_attrs(dev);
1205	bus_remove_device(dev);
1206	device_pm_remove(dev);
1207	driver_deferred_probe_del(dev);
 
 
 
1208
1209	/* Notify the platform of the removal, in case they
1210	 * need to do anything...
1211	 */
1212	if (platform_notify_remove)
1213		platform_notify_remove(dev);
1214	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1215	cleanup_device_parent(dev);
1216	kobject_del(&dev->kobj);
 
 
1217	put_device(parent);
1218}
1219EXPORT_SYMBOL_GPL(device_del);
1220
1221/**
1222 * device_unregister - unregister device from system.
1223 * @dev: device going away.
1224 *
1225 * We do this in two parts, like we do device_register(). First,
1226 * we remove it from all the subsystems with device_del(), then
1227 * we decrement the reference count via put_device(). If that
1228 * is the final reference count, the device will be cleaned up
1229 * via device_release() above. Otherwise, the structure will
1230 * stick around until the final reference to the device is dropped.
1231 */
1232void device_unregister(struct device *dev)
1233{
1234	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1235	device_del(dev);
1236	put_device(dev);
1237}
1238EXPORT_SYMBOL_GPL(device_unregister);
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
1240static struct device *next_device(struct klist_iter *i)
1241{
1242	struct klist_node *n = klist_next(i);
1243	struct device *dev = NULL;
1244	struct device_private *p;
1245
1246	if (n) {
1247		p = to_device_private_parent(n);
1248		dev = p->device;
1249	}
1250	return dev;
1251}
1252
1253/**
1254 * device_get_devnode - path of device node file
1255 * @dev: device
1256 * @mode: returned file access mode
1257 * @uid: returned file owner
1258 * @gid: returned file group
1259 * @tmp: possibly allocated string
1260 *
1261 * Return the relative path of a possible device node.
1262 * Non-default names may need to allocate a memory to compose
1263 * a name. This memory is returned in tmp and needs to be
1264 * freed by the caller.
1265 */
1266const char *device_get_devnode(struct device *dev,
1267			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1268			       const char **tmp)
1269{
1270	char *s;
1271
1272	*tmp = NULL;
1273
1274	/* the device type may provide a specific name */
1275	if (dev->type && dev->type->devnode)
1276		*tmp = dev->type->devnode(dev, mode, uid, gid);
1277	if (*tmp)
1278		return *tmp;
1279
1280	/* the class may provide a specific name */
1281	if (dev->class && dev->class->devnode)
1282		*tmp = dev->class->devnode(dev, mode);
1283	if (*tmp)
1284		return *tmp;
1285
1286	/* return name without allocation, tmp == NULL */
1287	if (strchr(dev_name(dev), '!') == NULL)
1288		return dev_name(dev);
1289
1290	/* replace '!' in the name with '/' */
1291	*tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1292	if (!*tmp)
1293		return NULL;
1294	while ((s = strchr(*tmp, '!')))
1295		s[0] = '/';
1296	return *tmp;
1297}
1298
1299/**
1300 * device_for_each_child - device child iterator.
1301 * @parent: parent struct device.
1302 * @fn: function to be called for each device.
1303 * @data: data for the callback.
1304 *
1305 * Iterate over @parent's child devices, and call @fn for each,
1306 * passing it @data.
1307 *
1308 * We check the return of @fn each time. If it returns anything
1309 * other than 0, we break out and return that value.
1310 */
1311int device_for_each_child(struct device *parent, void *data,
1312			  int (*fn)(struct device *dev, void *data))
1313{
1314	struct klist_iter i;
1315	struct device *child;
1316	int error = 0;
1317
1318	if (!parent->p)
1319		return 0;
1320
1321	klist_iter_init(&parent->p->klist_children, &i);
1322	while ((child = next_device(&i)) && !error)
1323		error = fn(child, data);
1324	klist_iter_exit(&i);
1325	return error;
1326}
1327EXPORT_SYMBOL_GPL(device_for_each_child);
1328
1329/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330 * device_find_child - device iterator for locating a particular device.
1331 * @parent: parent struct device
1332 * @match: Callback function to check device
1333 * @data: Data to pass to match function
1334 *
1335 * This is similar to the device_for_each_child() function above, but it
1336 * returns a reference to a device that is 'found' for later use, as
1337 * determined by the @match callback.
1338 *
1339 * The callback should return 0 if the device doesn't match and non-zero
1340 * if it does.  If the callback returns non-zero and a reference to the
1341 * current device can be obtained, this function will return to the caller
1342 * and not iterate over any more devices.
1343 *
1344 * NOTE: you will need to drop the reference with put_device() after use.
1345 */
1346struct device *device_find_child(struct device *parent, void *data,
1347				 int (*match)(struct device *dev, void *data))
1348{
1349	struct klist_iter i;
1350	struct device *child;
1351
1352	if (!parent)
1353		return NULL;
1354
1355	klist_iter_init(&parent->p->klist_children, &i);
1356	while ((child = next_device(&i)))
1357		if (match(child, data) && get_device(child))
1358			break;
1359	klist_iter_exit(&i);
1360	return child;
1361}
1362EXPORT_SYMBOL_GPL(device_find_child);
1363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364int __init devices_init(void)
1365{
1366	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1367	if (!devices_kset)
1368		return -ENOMEM;
1369	dev_kobj = kobject_create_and_add("dev", NULL);
1370	if (!dev_kobj)
1371		goto dev_kobj_err;
1372	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1373	if (!sysfs_dev_block_kobj)
1374		goto block_kobj_err;
1375	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1376	if (!sysfs_dev_char_kobj)
1377		goto char_kobj_err;
1378
1379	return 0;
1380
1381 char_kobj_err:
1382	kobject_put(sysfs_dev_block_kobj);
1383 block_kobj_err:
1384	kobject_put(dev_kobj);
1385 dev_kobj_err:
1386	kset_unregister(devices_kset);
1387	return -ENOMEM;
1388}
1389
1390static int device_check_offline(struct device *dev, void *not_used)
1391{
1392	int ret;
1393
1394	ret = device_for_each_child(dev, NULL, device_check_offline);
1395	if (ret)
1396		return ret;
1397
1398	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1399}
1400
1401/**
1402 * device_offline - Prepare the device for hot-removal.
1403 * @dev: Device to be put offline.
1404 *
1405 * Execute the device bus type's .offline() callback, if present, to prepare
1406 * the device for a subsequent hot-removal.  If that succeeds, the device must
1407 * not be used until either it is removed or its bus type's .online() callback
1408 * is executed.
1409 *
1410 * Call under device_hotplug_lock.
1411 */
1412int device_offline(struct device *dev)
1413{
1414	int ret;
1415
1416	if (dev->offline_disabled)
1417		return -EPERM;
1418
1419	ret = device_for_each_child(dev, NULL, device_check_offline);
1420	if (ret)
1421		return ret;
1422
1423	device_lock(dev);
1424	if (device_supports_offline(dev)) {
1425		if (dev->offline) {
1426			ret = 1;
1427		} else {
1428			ret = dev->bus->offline(dev);
1429			if (!ret) {
1430				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1431				dev->offline = true;
1432			}
1433		}
1434	}
1435	device_unlock(dev);
1436
1437	return ret;
1438}
1439
1440/**
1441 * device_online - Put the device back online after successful device_offline().
1442 * @dev: Device to be put back online.
1443 *
1444 * If device_offline() has been successfully executed for @dev, but the device
1445 * has not been removed subsequently, execute its bus type's .online() callback
1446 * to indicate that the device can be used again.
1447 *
1448 * Call under device_hotplug_lock.
1449 */
1450int device_online(struct device *dev)
1451{
1452	int ret = 0;
1453
1454	device_lock(dev);
1455	if (device_supports_offline(dev)) {
1456		if (dev->offline) {
1457			ret = dev->bus->online(dev);
1458			if (!ret) {
1459				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1460				dev->offline = false;
1461			}
1462		} else {
1463			ret = 1;
1464		}
1465	}
1466	device_unlock(dev);
1467
1468	return ret;
1469}
1470
1471struct root_device {
1472	struct device dev;
1473	struct module *owner;
1474};
1475
1476static inline struct root_device *to_root_device(struct device *d)
1477{
1478	return container_of(d, struct root_device, dev);
1479}
1480
1481static void root_device_release(struct device *dev)
1482{
1483	kfree(to_root_device(dev));
1484}
1485
1486/**
1487 * __root_device_register - allocate and register a root device
1488 * @name: root device name
1489 * @owner: owner module of the root device, usually THIS_MODULE
1490 *
1491 * This function allocates a root device and registers it
1492 * using device_register(). In order to free the returned
1493 * device, use root_device_unregister().
1494 *
1495 * Root devices are dummy devices which allow other devices
1496 * to be grouped under /sys/devices. Use this function to
1497 * allocate a root device and then use it as the parent of
1498 * any device which should appear under /sys/devices/{name}
1499 *
1500 * The /sys/devices/{name} directory will also contain a
1501 * 'module' symlink which points to the @owner directory
1502 * in sysfs.
1503 *
1504 * Returns &struct device pointer on success, or ERR_PTR() on error.
1505 *
1506 * Note: You probably want to use root_device_register().
1507 */
1508struct device *__root_device_register(const char *name, struct module *owner)
1509{
1510	struct root_device *root;
1511	int err = -ENOMEM;
1512
1513	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1514	if (!root)
1515		return ERR_PTR(err);
1516
1517	err = dev_set_name(&root->dev, "%s", name);
1518	if (err) {
1519		kfree(root);
1520		return ERR_PTR(err);
1521	}
1522
1523	root->dev.release = root_device_release;
1524
1525	err = device_register(&root->dev);
1526	if (err) {
1527		put_device(&root->dev);
1528		return ERR_PTR(err);
1529	}
1530
1531#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
1532	if (owner) {
1533		struct module_kobject *mk = &owner->mkobj;
1534
1535		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1536		if (err) {
1537			device_unregister(&root->dev);
1538			return ERR_PTR(err);
1539		}
1540		root->owner = owner;
1541	}
1542#endif
1543
1544	return &root->dev;
1545}
1546EXPORT_SYMBOL_GPL(__root_device_register);
1547
1548/**
1549 * root_device_unregister - unregister and free a root device
1550 * @dev: device going away
1551 *
1552 * This function unregisters and cleans up a device that was created by
1553 * root_device_register().
1554 */
1555void root_device_unregister(struct device *dev)
1556{
1557	struct root_device *root = to_root_device(dev);
1558
1559	if (root->owner)
1560		sysfs_remove_link(&root->dev.kobj, "module");
1561
1562	device_unregister(dev);
1563}
1564EXPORT_SYMBOL_GPL(root_device_unregister);
1565
1566
1567static void device_create_release(struct device *dev)
1568{
1569	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1570	kfree(dev);
1571}
1572
1573static struct device *
1574device_create_groups_vargs(struct class *class, struct device *parent,
1575			   dev_t devt, void *drvdata,
1576			   const struct attribute_group **groups,
1577			   const char *fmt, va_list args)
1578{
1579	struct device *dev = NULL;
1580	int retval = -ENODEV;
1581
1582	if (class == NULL || IS_ERR(class))
1583		goto error;
1584
1585	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1586	if (!dev) {
1587		retval = -ENOMEM;
1588		goto error;
1589	}
1590
1591	device_initialize(dev);
1592	dev->devt = devt;
1593	dev->class = class;
1594	dev->parent = parent;
1595	dev->groups = groups;
1596	dev->release = device_create_release;
1597	dev_set_drvdata(dev, drvdata);
1598
1599	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1600	if (retval)
1601		goto error;
1602
1603	retval = device_add(dev);
1604	if (retval)
1605		goto error;
1606
1607	return dev;
1608
1609error:
1610	put_device(dev);
1611	return ERR_PTR(retval);
1612}
1613
1614/**
1615 * device_create_vargs - creates a device and registers it with sysfs
1616 * @class: pointer to the struct class that this device should be registered to
1617 * @parent: pointer to the parent struct device of this new device, if any
1618 * @devt: the dev_t for the char device to be added
1619 * @drvdata: the data to be added to the device for callbacks
1620 * @fmt: string for the device's name
1621 * @args: va_list for the device's name
1622 *
1623 * This function can be used by char device classes.  A struct device
1624 * will be created in sysfs, registered to the specified class.
1625 *
1626 * A "dev" file will be created, showing the dev_t for the device, if
1627 * the dev_t is not 0,0.
1628 * If a pointer to a parent struct device is passed in, the newly created
1629 * struct device will be a child of that device in sysfs.
1630 * The pointer to the struct device will be returned from the call.
1631 * Any further sysfs files that might be required can be created using this
1632 * pointer.
1633 *
1634 * Returns &struct device pointer on success, or ERR_PTR() on error.
1635 *
1636 * Note: the struct class passed to this function must have previously
1637 * been created with a call to class_create().
1638 */
1639struct device *device_create_vargs(struct class *class, struct device *parent,
1640				   dev_t devt, void *drvdata, const char *fmt,
1641				   va_list args)
1642{
1643	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1644					  fmt, args);
1645}
1646EXPORT_SYMBOL_GPL(device_create_vargs);
1647
1648/**
1649 * device_create - creates a device and registers it with sysfs
1650 * @class: pointer to the struct class that this device should be registered to
1651 * @parent: pointer to the parent struct device of this new device, if any
1652 * @devt: the dev_t for the char device to be added
1653 * @drvdata: the data to be added to the device for callbacks
1654 * @fmt: string for the device's name
1655 *
1656 * This function can be used by char device classes.  A struct device
1657 * will be created in sysfs, registered to the specified class.
1658 *
1659 * A "dev" file will be created, showing the dev_t for the device, if
1660 * the dev_t is not 0,0.
1661 * If a pointer to a parent struct device is passed in, the newly created
1662 * struct device will be a child of that device in sysfs.
1663 * The pointer to the struct device will be returned from the call.
1664 * Any further sysfs files that might be required can be created using this
1665 * pointer.
1666 *
1667 * Returns &struct device pointer on success, or ERR_PTR() on error.
1668 *
1669 * Note: the struct class passed to this function must have previously
1670 * been created with a call to class_create().
1671 */
1672struct device *device_create(struct class *class, struct device *parent,
1673			     dev_t devt, void *drvdata, const char *fmt, ...)
1674{
1675	va_list vargs;
1676	struct device *dev;
1677
1678	va_start(vargs, fmt);
1679	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
1680	va_end(vargs);
1681	return dev;
1682}
1683EXPORT_SYMBOL_GPL(device_create);
1684
1685/**
1686 * device_create_with_groups - creates a device and registers it with sysfs
1687 * @class: pointer to the struct class that this device should be registered to
1688 * @parent: pointer to the parent struct device of this new device, if any
1689 * @devt: the dev_t for the char device to be added
1690 * @drvdata: the data to be added to the device for callbacks
1691 * @groups: NULL-terminated list of attribute groups to be created
1692 * @fmt: string for the device's name
1693 *
1694 * This function can be used by char device classes.  A struct device
1695 * will be created in sysfs, registered to the specified class.
1696 * Additional attributes specified in the groups parameter will also
1697 * be created automatically.
1698 *
1699 * A "dev" file will be created, showing the dev_t for the device, if
1700 * the dev_t is not 0,0.
1701 * If a pointer to a parent struct device is passed in, the newly created
1702 * struct device will be a child of that device in sysfs.
1703 * The pointer to the struct device will be returned from the call.
1704 * Any further sysfs files that might be required can be created using this
1705 * pointer.
1706 *
1707 * Returns &struct device pointer on success, or ERR_PTR() on error.
1708 *
1709 * Note: the struct class passed to this function must have previously
1710 * been created with a call to class_create().
1711 */
1712struct device *device_create_with_groups(struct class *class,
1713					 struct device *parent, dev_t devt,
1714					 void *drvdata,
1715					 const struct attribute_group **groups,
1716					 const char *fmt, ...)
1717{
1718	va_list vargs;
1719	struct device *dev;
1720
1721	va_start(vargs, fmt);
1722	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1723					 fmt, vargs);
1724	va_end(vargs);
1725	return dev;
1726}
1727EXPORT_SYMBOL_GPL(device_create_with_groups);
1728
1729static int __match_devt(struct device *dev, const void *data)
1730{
1731	const dev_t *devt = data;
1732
1733	return dev->devt == *devt;
1734}
1735
1736/**
1737 * device_destroy - removes a device that was created with device_create()
1738 * @class: pointer to the struct class that this device was registered with
1739 * @devt: the dev_t of the device that was previously registered
1740 *
1741 * This call unregisters and cleans up a device that was created with a
1742 * call to device_create().
1743 */
1744void device_destroy(struct class *class, dev_t devt)
1745{
1746	struct device *dev;
1747
1748	dev = class_find_device(class, NULL, &devt, __match_devt);
1749	if (dev) {
1750		put_device(dev);
1751		device_unregister(dev);
1752	}
1753}
1754EXPORT_SYMBOL_GPL(device_destroy);
1755
1756/**
1757 * device_rename - renames a device
1758 * @dev: the pointer to the struct device to be renamed
1759 * @new_name: the new name of the device
1760 *
1761 * It is the responsibility of the caller to provide mutual
1762 * exclusion between two different calls of device_rename
1763 * on the same device to ensure that new_name is valid and
1764 * won't conflict with other devices.
1765 *
1766 * Note: Don't call this function.  Currently, the networking layer calls this
1767 * function, but that will change.  The following text from Kay Sievers offers
1768 * some insight:
1769 *
1770 * Renaming devices is racy at many levels, symlinks and other stuff are not
1771 * replaced atomically, and you get a "move" uevent, but it's not easy to
1772 * connect the event to the old and new device. Device nodes are not renamed at
1773 * all, there isn't even support for that in the kernel now.
1774 *
1775 * In the meantime, during renaming, your target name might be taken by another
1776 * driver, creating conflicts. Or the old name is taken directly after you
1777 * renamed it -- then you get events for the same DEVPATH, before you even see
1778 * the "move" event. It's just a mess, and nothing new should ever rely on
1779 * kernel device renaming. Besides that, it's not even implemented now for
1780 * other things than (driver-core wise very simple) network devices.
1781 *
1782 * We are currently about to change network renaming in udev to completely
1783 * disallow renaming of devices in the same namespace as the kernel uses,
1784 * because we can't solve the problems properly, that arise with swapping names
1785 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1786 * be allowed to some other name than eth[0-9]*, for the aforementioned
1787 * reasons.
1788 *
1789 * Make up a "real" name in the driver before you register anything, or add
1790 * some other attributes for userspace to find the device, or use udev to add
1791 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1792 * don't even want to get into that and try to implement the missing pieces in
1793 * the core. We really have other pieces to fix in the driver core mess. :)
1794 */
1795int device_rename(struct device *dev, const char *new_name)
1796{
1797	struct kobject *kobj = &dev->kobj;
1798	char *old_device_name = NULL;
1799	int error;
1800
1801	dev = get_device(dev);
1802	if (!dev)
1803		return -EINVAL;
1804
1805	dev_dbg(dev, "renaming to %s\n", new_name);
1806
1807	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1808	if (!old_device_name) {
1809		error = -ENOMEM;
1810		goto out;
1811	}
1812
1813	if (dev->class) {
1814		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1815					     kobj, old_device_name,
1816					     new_name, kobject_namespace(kobj));
1817		if (error)
1818			goto out;
1819	}
1820
1821	error = kobject_rename(kobj, new_name);
1822	if (error)
1823		goto out;
1824
1825out:
1826	put_device(dev);
1827
1828	kfree(old_device_name);
1829
1830	return error;
1831}
1832EXPORT_SYMBOL_GPL(device_rename);
1833
1834static int device_move_class_links(struct device *dev,
1835				   struct device *old_parent,
1836				   struct device *new_parent)
1837{
1838	int error = 0;
1839
1840	if (old_parent)
1841		sysfs_remove_link(&dev->kobj, "device");
1842	if (new_parent)
1843		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1844					  "device");
1845	return error;
1846}
1847
1848/**
1849 * device_move - moves a device to a new parent
1850 * @dev: the pointer to the struct device to be moved
1851 * @new_parent: the new parent of the device (can by NULL)
1852 * @dpm_order: how to reorder the dpm_list
1853 */
1854int device_move(struct device *dev, struct device *new_parent,
1855		enum dpm_order dpm_order)
1856{
1857	int error;
1858	struct device *old_parent;
1859	struct kobject *new_parent_kobj;
1860
1861	dev = get_device(dev);
1862	if (!dev)
1863		return -EINVAL;
1864
1865	device_pm_lock();
1866	new_parent = get_device(new_parent);
1867	new_parent_kobj = get_device_parent(dev, new_parent);
 
 
 
 
 
1868
1869	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1870		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1871	error = kobject_move(&dev->kobj, new_parent_kobj);
1872	if (error) {
1873		cleanup_glue_dir(dev, new_parent_kobj);
1874		put_device(new_parent);
1875		goto out;
1876	}
1877	old_parent = dev->parent;
1878	dev->parent = new_parent;
1879	if (old_parent)
1880		klist_remove(&dev->p->knode_parent);
1881	if (new_parent) {
1882		klist_add_tail(&dev->p->knode_parent,
1883			       &new_parent->p->klist_children);
1884		set_dev_node(dev, dev_to_node(new_parent));
1885	}
1886
1887	if (dev->class) {
1888		error = device_move_class_links(dev, old_parent, new_parent);
1889		if (error) {
1890			/* We ignore errors on cleanup since we're hosed anyway... */
1891			device_move_class_links(dev, new_parent, old_parent);
1892			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1893				if (new_parent)
1894					klist_remove(&dev->p->knode_parent);
1895				dev->parent = old_parent;
1896				if (old_parent) {
1897					klist_add_tail(&dev->p->knode_parent,
1898						       &old_parent->p->klist_children);
1899					set_dev_node(dev, dev_to_node(old_parent));
1900				}
1901			}
1902			cleanup_glue_dir(dev, new_parent_kobj);
1903			put_device(new_parent);
1904			goto out;
1905		}
1906	}
1907	switch (dpm_order) {
1908	case DPM_ORDER_NONE:
1909		break;
1910	case DPM_ORDER_DEV_AFTER_PARENT:
1911		device_pm_move_after(dev, new_parent);
 
1912		break;
1913	case DPM_ORDER_PARENT_BEFORE_DEV:
1914		device_pm_move_before(new_parent, dev);
 
1915		break;
1916	case DPM_ORDER_DEV_LAST:
1917		device_pm_move_last(dev);
 
1918		break;
1919	}
1920
1921	put_device(old_parent);
1922out:
1923	device_pm_unlock();
1924	put_device(dev);
1925	return error;
1926}
1927EXPORT_SYMBOL_GPL(device_move);
1928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929/**
1930 * device_shutdown - call ->shutdown() on each device to shutdown.
1931 */
1932void device_shutdown(void)
1933{
1934	struct device *dev, *parent;
1935
 
 
 
 
 
1936	spin_lock(&devices_kset->list_lock);
1937	/*
1938	 * Walk the devices list backward, shutting down each in turn.
1939	 * Beware that device unplug events may also start pulling
1940	 * devices offline, even as the system is shutting down.
1941	 */
1942	while (!list_empty(&devices_kset->list)) {
1943		dev = list_entry(devices_kset->list.prev, struct device,
1944				kobj.entry);
1945
1946		/*
1947		 * hold reference count of device's parent to
1948		 * prevent it from being freed because parent's
1949		 * lock is to be held
1950		 */
1951		parent = get_device(dev->parent);
1952		get_device(dev);
1953		/*
1954		 * Make sure the device is off the kset list, in the
1955		 * event that dev->*->shutdown() doesn't remove it.
1956		 */
1957		list_del_init(&dev->kobj.entry);
1958		spin_unlock(&devices_kset->list_lock);
1959
1960		/* hold lock to avoid race with probe/release */
1961		if (parent)
1962			device_lock(parent);
1963		device_lock(dev);
1964
1965		/* Don't allow any more runtime suspends */
1966		pm_runtime_get_noresume(dev);
1967		pm_runtime_barrier(dev);
1968
 
 
 
 
 
1969		if (dev->bus && dev->bus->shutdown) {
1970			if (initcall_debug)
1971				dev_info(dev, "shutdown\n");
1972			dev->bus->shutdown(dev);
1973		} else if (dev->driver && dev->driver->shutdown) {
1974			if (initcall_debug)
1975				dev_info(dev, "shutdown\n");
1976			dev->driver->shutdown(dev);
1977		}
1978
1979		device_unlock(dev);
1980		if (parent)
1981			device_unlock(parent);
1982
1983		put_device(dev);
1984		put_device(parent);
1985
1986		spin_lock(&devices_kset->list_lock);
1987	}
1988	spin_unlock(&devices_kset->list_lock);
1989}
1990
1991/*
1992 * Device logging functions
1993 */
1994
1995#ifdef CONFIG_PRINTK
1996static int
1997create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
1998{
1999	const char *subsys;
2000	size_t pos = 0;
 
2001
2002	if (dev->class)
2003		subsys = dev->class->name;
2004	else if (dev->bus)
2005		subsys = dev->bus->name;
2006	else
2007		return 0;
2008
2009	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2010
2011	/*
2012	 * Add device identifier DEVICE=:
2013	 *   b12:8         block dev_t
2014	 *   c127:3        char dev_t
2015	 *   n8            netdev ifindex
2016	 *   +sound:card0  subsystem:devname
2017	 */
2018	if (MAJOR(dev->devt)) {
2019		char c;
2020
2021		if (strcmp(subsys, "block") == 0)
2022			c = 'b';
2023		else
2024			c = 'c';
2025		pos++;
2026		pos += snprintf(hdr + pos, hdrlen - pos,
2027				"DEVICE=%c%u:%u",
2028				c, MAJOR(dev->devt), MINOR(dev->devt));
2029	} else if (strcmp(subsys, "net") == 0) {
2030		struct net_device *net = to_net_dev(dev);
2031
2032		pos++;
2033		pos += snprintf(hdr + pos, hdrlen - pos,
2034				"DEVICE=n%u", net->ifindex);
2035	} else {
2036		pos++;
2037		pos += snprintf(hdr + pos, hdrlen - pos,
2038				"DEVICE=+%s:%s", subsys, dev_name(dev));
2039	}
2040
2041	return pos;
2042}
2043
2044int dev_vprintk_emit(int level, const struct device *dev,
2045		     const char *fmt, va_list args)
2046{
2047	char hdr[128];
2048	size_t hdrlen;
2049
2050	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2051
2052	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2053}
2054EXPORT_SYMBOL(dev_vprintk_emit);
2055
2056int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2057{
2058	va_list args;
2059	int r;
2060
2061	va_start(args, fmt);
2062
2063	r = dev_vprintk_emit(level, dev, fmt, args);
2064
2065	va_end(args);
2066
2067	return r;
2068}
2069EXPORT_SYMBOL(dev_printk_emit);
2070
2071static int __dev_printk(const char *level, const struct device *dev,
2072			struct va_format *vaf)
2073{
2074	if (!dev)
2075		return printk("%s(NULL device *): %pV", level, vaf);
2076
2077	return dev_printk_emit(level[1] - '0', dev,
2078			       "%s %s: %pV",
2079			       dev_driver_string(dev), dev_name(dev), vaf);
2080}
2081
2082int dev_printk(const char *level, const struct device *dev,
2083	       const char *fmt, ...)
2084{
2085	struct va_format vaf;
2086	va_list args;
2087	int r;
2088
2089	va_start(args, fmt);
2090
2091	vaf.fmt = fmt;
2092	vaf.va = &args;
2093
2094	r = __dev_printk(level, dev, &vaf);
2095
2096	va_end(args);
2097
2098	return r;
2099}
2100EXPORT_SYMBOL(dev_printk);
2101
2102#define define_dev_printk_level(func, kern_level)		\
2103int func(const struct device *dev, const char *fmt, ...)	\
2104{								\
2105	struct va_format vaf;					\
2106	va_list args;						\
2107	int r;							\
2108								\
2109	va_start(args, fmt);					\
2110								\
2111	vaf.fmt = fmt;						\
2112	vaf.va = &args;						\
2113								\
2114	r = __dev_printk(kern_level, dev, &vaf);		\
2115								\
2116	va_end(args);						\
2117								\
2118	return r;						\
2119}								\
2120EXPORT_SYMBOL(func);
2121
2122define_dev_printk_level(dev_emerg, KERN_EMERG);
2123define_dev_printk_level(dev_alert, KERN_ALERT);
2124define_dev_printk_level(dev_crit, KERN_CRIT);
2125define_dev_printk_level(dev_err, KERN_ERR);
2126define_dev_printk_level(dev_warn, KERN_WARNING);
2127define_dev_printk_level(dev_notice, KERN_NOTICE);
2128define_dev_printk_level(_dev_info, KERN_INFO);
2129
2130#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
 
 
 
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
 
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44	return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
  54static bool fw_devlink_drv_reg_done;
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  74{
  75	struct fwnode_link *link;
  76	int ret = 0;
  77
  78	mutex_lock(&fwnode_link_lock);
  79
  80	list_for_each_entry(link, &sup->consumers, s_hook)
  81		if (link->consumer == con)
  82			goto out;
  83
  84	link = kzalloc(sizeof(*link), GFP_KERNEL);
  85	if (!link) {
  86		ret = -ENOMEM;
  87		goto out;
  88	}
  89
  90	link->supplier = sup;
  91	INIT_LIST_HEAD(&link->s_hook);
  92	link->consumer = con;
  93	INIT_LIST_HEAD(&link->c_hook);
  94
  95	list_add(&link->s_hook, &sup->consumers);
  96	list_add(&link->c_hook, &con->suppliers);
  97out:
  98	mutex_unlock(&fwnode_link_lock);
  99
 100	return ret;
 101}
 102
 103/**
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111	struct fwnode_link *link, *tmp;
 112
 113	mutex_lock(&fwnode_link_lock);
 114	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115		list_del(&link->s_hook);
 116		list_del(&link->c_hook);
 117		kfree(link);
 118	}
 119	mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130	struct fwnode_link *link, *tmp;
 131
 132	mutex_lock(&fwnode_link_lock);
 133	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134		list_del(&link->s_hook);
 135		list_del(&link->c_hook);
 136		kfree(link);
 137	}
 138	mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149	fwnode_links_purge_suppliers(fwnode);
 150	fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155	struct fwnode_handle *child;
 156
 157	/* Don't purge consumer links of an added child */
 158	if (fwnode->dev)
 159		return;
 160
 161	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162	fwnode_links_purge_consumers(fwnode);
 163
 164	fwnode_for_each_available_child_node(fwnode, child)
 165		fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175	mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180	mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185	return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190	srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195	return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200	synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205	list_del_rcu(&link->s_node);
 206	list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213	down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218	up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223	down_read(&device_links_lock);
 224	return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229	up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235	return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245	list_del(&link->s_node);
 246	list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252	while (target->parent) {
 253		target = target->parent;
 254		if (dev == target)
 255			return true;
 256	}
 257	return false;
 258}
 259
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270	struct device_link *link;
 271	int ret;
 272
 273	/*
 274	 * The "ancestors" check is needed to catch the case when the target
 275	 * device has not been completely initialized yet and it is still
 276	 * missing from the list of children of its parent device.
 277	 */
 278	if (dev == target || device_is_ancestor(dev, target))
 279		return 1;
 280
 281	ret = device_for_each_child(dev, target, device_is_dependent);
 282	if (ret)
 283		return ret;
 284
 285	list_for_each_entry(link, &dev->links.consumers, s_node) {
 286		if ((link->flags & ~DL_FLAG_INFERRED) ==
 287		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288			continue;
 289
 290		if (link->consumer == target)
 291			return 1;
 292
 293		ret = device_is_dependent(link->consumer, target);
 294		if (ret)
 295			break;
 296	}
 297	return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301				    struct device *consumer,
 302				    struct device *supplier)
 303{
 304	switch (supplier->links.status) {
 305	case DL_DEV_PROBING:
 306		switch (consumer->links.status) {
 307		case DL_DEV_PROBING:
 308			/*
 309			 * A consumer driver can create a link to a supplier
 310			 * that has not completed its probing yet as long as it
 311			 * knows that the supplier is already functional (for
 312			 * example, it has just acquired some resources from the
 313			 * supplier).
 314			 */
 315			link->status = DL_STATE_CONSUMER_PROBE;
 316			break;
 317		default:
 318			link->status = DL_STATE_DORMANT;
 319			break;
 320		}
 321		break;
 322	case DL_DEV_DRIVER_BOUND:
 323		switch (consumer->links.status) {
 324		case DL_DEV_PROBING:
 325			link->status = DL_STATE_CONSUMER_PROBE;
 326			break;
 327		case DL_DEV_DRIVER_BOUND:
 328			link->status = DL_STATE_ACTIVE;
 329			break;
 330		default:
 331			link->status = DL_STATE_AVAILABLE;
 332			break;
 333		}
 334		break;
 335	case DL_DEV_UNBINDING:
 336		link->status = DL_STATE_SUPPLIER_UNBIND;
 337		break;
 338	default:
 339		link->status = DL_STATE_DORMANT;
 340		break;
 341	}
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346	struct device_link *link;
 347
 348	/*
 349	 * Devices that have not been registered yet will be put to the ends
 350	 * of the lists during the registration, so skip them here.
 351	 */
 352	if (device_is_registered(dev))
 353		devices_kset_move_last(dev);
 354
 355	if (device_pm_initialized(dev))
 356		device_pm_move_last(dev);
 357
 358	device_for_each_child(dev, NULL, device_reorder_to_tail);
 359	list_for_each_entry(link, &dev->links.consumers, s_node) {
 360		if ((link->flags & ~DL_FLAG_INFERRED) ==
 361		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362			continue;
 363		device_reorder_to_tail(link->consumer, NULL);
 364	}
 365
 366	return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380	int idx;
 381
 382	idx = device_links_read_lock();
 383	device_pm_lock();
 384	device_reorder_to_tail(dev, NULL);
 385	device_pm_unlock();
 386	device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392			   struct device_attribute *attr, char *buf)
 393{
 394	const char *output;
 395
 396	switch (to_devlink(dev)->status) {
 397	case DL_STATE_NONE:
 398		output = "not tracked";
 399		break;
 400	case DL_STATE_DORMANT:
 401		output = "dormant";
 402		break;
 403	case DL_STATE_AVAILABLE:
 404		output = "available";
 405		break;
 406	case DL_STATE_CONSUMER_PROBE:
 407		output = "consumer probing";
 408		break;
 409	case DL_STATE_ACTIVE:
 410		output = "active";
 411		break;
 412	case DL_STATE_SUPPLIER_UNBIND:
 413		output = "supplier unbinding";
 414		break;
 415	default:
 416		output = "unknown";
 417		break;
 418	}
 419
 420	return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425				   struct device_attribute *attr, char *buf)
 426{
 427	struct device_link *link = to_devlink(dev);
 428	const char *output;
 429
 430	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431		output = "supplier unbind";
 432	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433		output = "consumer unbind";
 434	else
 435		output = "never";
 436
 437	return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442			       struct device_attribute *attr, char *buf)
 443{
 444	struct device_link *link = to_devlink(dev);
 445
 446	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct device_link *link = to_devlink(dev);
 454
 455	return sysfs_emit(buf, "%d\n",
 456			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461	&dev_attr_status.attr,
 462	&dev_attr_auto_remove_on.attr,
 463	&dev_attr_runtime_pm.attr,
 464	&dev_attr_sync_state_only.attr,
 465	NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471	struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473	/* Ensure that all references to the link object have been dropped. */
 474	device_link_synchronize_removal();
 475
 476	while (refcount_dec_not_one(&link->rpm_active))
 477		pm_runtime_put(link->supplier);
 478
 479	put_device(link->consumer);
 480	put_device(link->supplier);
 481	kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	INIT_WORK(&link->rm_work, device_link_release_fn);
 489	/*
 490	 * It may take a while to complete this work because of the SRCU
 491	 * synchronization in device_link_release_fn() and if the consumer or
 492	 * supplier devices get deleted when it runs, so put it into the "long"
 493	 * workqueue.
 494	 */
 495	queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499	.name = "devlink",
 500	.owner = THIS_MODULE,
 501	.dev_groups = devlink_groups,
 502	.dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506				struct class_interface *class_intf)
 507{
 508	int ret;
 509	size_t len;
 510	struct device_link *link = to_devlink(dev);
 511	struct device *sup = link->supplier;
 512	struct device *con = link->consumer;
 513	char *buf;
 514
 515	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517	len += strlen(":");
 518	len += strlen("supplier:") + 1;
 519	buf = kzalloc(len, GFP_KERNEL);
 520	if (!buf)
 521		return -ENOMEM;
 522
 523	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524	if (ret)
 525		goto out;
 526
 527	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528	if (ret)
 529		goto err_con;
 530
 531	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533	if (ret)
 534		goto err_con_dev;
 535
 536	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538	if (ret)
 539		goto err_sup_dev;
 540
 541	goto out;
 542
 543err_sup_dev:
 544	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545	sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551	kfree(buf);
 552	return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556				   struct class_interface *class_intf)
 557{
 558	struct device_link *link = to_devlink(dev);
 559	size_t len;
 560	struct device *sup = link->supplier;
 561	struct device *con = link->consumer;
 562	char *buf;
 563
 564	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569	len += strlen(":");
 570	len += strlen("supplier:") + 1;
 571	buf = kzalloc(len, GFP_KERNEL);
 572	if (!buf) {
 573		WARN(1, "Unable to properly free device link symlinks!\n");
 574		return;
 575	}
 576
 577	if (device_is_registered(con)) {
 578		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 579		sysfs_remove_link(&con->kobj, buf);
 580	}
 581	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 582	sysfs_remove_link(&sup->kobj, buf);
 583	kfree(buf);
 584}
 585
 586static struct class_interface devlink_class_intf = {
 587	.class = &devlink_class,
 588	.add_dev = devlink_add_symlinks,
 589	.remove_dev = devlink_remove_symlinks,
 590};
 591
 592static int __init devlink_class_init(void)
 593{
 594	int ret;
 595
 596	ret = class_register(&devlink_class);
 597	if (ret)
 598		return ret;
 599
 600	ret = class_interface_register(&devlink_class_intf);
 601	if (ret)
 602		class_unregister(&devlink_class);
 603
 604	return ret;
 605}
 606postcore_initcall(devlink_class_init);
 607
 608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 609			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 610			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 611			       DL_FLAG_SYNC_STATE_ONLY | \
 612			       DL_FLAG_INFERRED)
 613
 614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 615			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 616
 617/**
 618 * device_link_add - Create a link between two devices.
 619 * @consumer: Consumer end of the link.
 620 * @supplier: Supplier end of the link.
 621 * @flags: Link flags.
 622 *
 623 * The caller is responsible for the proper synchronization of the link creation
 624 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 625 * runtime PM framework to take the link into account.  Second, if the
 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 627 * be forced into the active meta state and reference-counted upon the creation
 628 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 629 * ignored.
 630 *
 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 632 * expected to release the link returned by it directly with the help of either
 633 * device_link_del() or device_link_remove().
 634 *
 635 * If that flag is not set, however, the caller of this function is handing the
 636 * management of the link over to the driver core entirely and its return value
 637 * can only be used to check whether or not the link is present.  In that case,
 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 639 * flags can be used to indicate to the driver core when the link can be safely
 640 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 641 * that the link is not going to be used (by the given caller of this function)
 642 * after unbinding the consumer or supplier driver, respectively, from its
 643 * device, so the link can be deleted at that point.  If none of them is set,
 644 * the link will be maintained until one of the devices pointed to by it (either
 645 * the consumer or the supplier) is unregistered.
 646 *
 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 650 * be used to request the driver core to automatically probe for a consumer
 651 * driver after successfully binding a driver to the supplier device.
 652 *
 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 655 * the same time is invalid and will cause NULL to be returned upfront.
 656 * However, if a device link between the given @consumer and @supplier pair
 657 * exists already when this function is called for them, the existing link will
 658 * be returned regardless of its current type and status (the link's flags may
 659 * be modified then).  The caller of this function is then expected to treat
 660 * the link as though it has just been created, so (in particular) if
 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 662 * explicitly when not needed any more (as stated above).
 663 *
 664 * A side effect of the link creation is re-ordering of dpm_list and the
 665 * devices_kset list by moving the consumer device and all devices depending
 666 * on it to the ends of these lists (that does not happen to devices that have
 667 * not been registered when this function is called).
 668 *
 669 * The supplier device is required to be registered when this function is called
 670 * and NULL will be returned if that is not the case.  The consumer device need
 671 * not be registered, however.
 672 */
 673struct device_link *device_link_add(struct device *consumer,
 674				    struct device *supplier, u32 flags)
 675{
 676	struct device_link *link;
 677
 678	if (!consumer || !supplier || consumer == supplier ||
 679	    flags & ~DL_ADD_VALID_FLAGS ||
 680	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 681	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 682	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 683	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 684	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 685		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 686		return NULL;
 687
 688	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 689		if (pm_runtime_get_sync(supplier) < 0) {
 690			pm_runtime_put_noidle(supplier);
 691			return NULL;
 692		}
 693	}
 694
 695	if (!(flags & DL_FLAG_STATELESS))
 696		flags |= DL_FLAG_MANAGED;
 697
 698	device_links_write_lock();
 699	device_pm_lock();
 700
 701	/*
 702	 * If the supplier has not been fully registered yet or there is a
 703	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 704	 * the supplier already in the graph, return NULL. If the link is a
 705	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 706	 * because it only affects sync_state() callbacks.
 707	 */
 708	if (!device_pm_initialized(supplier)
 709	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 710		  device_is_dependent(consumer, supplier))) {
 711		link = NULL;
 712		goto out;
 713	}
 714
 715	/*
 716	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 717	 * So, only create it if the consumer hasn't probed yet.
 718	 */
 719	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 720	    consumer->links.status != DL_DEV_NO_DRIVER &&
 721	    consumer->links.status != DL_DEV_PROBING) {
 722		link = NULL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 728	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 729	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 730	 */
 731	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 732		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 733
 734	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 735		if (link->consumer != consumer)
 736			continue;
 737
 738		if (link->flags & DL_FLAG_INFERRED &&
 739		    !(flags & DL_FLAG_INFERRED))
 740			link->flags &= ~DL_FLAG_INFERRED;
 741
 742		if (flags & DL_FLAG_PM_RUNTIME) {
 743			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 744				pm_runtime_new_link(consumer);
 745				link->flags |= DL_FLAG_PM_RUNTIME;
 746			}
 747			if (flags & DL_FLAG_RPM_ACTIVE)
 748				refcount_inc(&link->rpm_active);
 749		}
 750
 751		if (flags & DL_FLAG_STATELESS) {
 752			kref_get(&link->kref);
 753			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 754			    !(link->flags & DL_FLAG_STATELESS)) {
 755				link->flags |= DL_FLAG_STATELESS;
 756				goto reorder;
 757			} else {
 758				link->flags |= DL_FLAG_STATELESS;
 759				goto out;
 760			}
 761		}
 762
 763		/*
 764		 * If the life time of the link following from the new flags is
 765		 * longer than indicated by the flags of the existing link,
 766		 * update the existing link to stay around longer.
 767		 */
 768		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 769			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 770				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 771				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 772			}
 773		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 774			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 775					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 776		}
 777		if (!(link->flags & DL_FLAG_MANAGED)) {
 778			kref_get(&link->kref);
 779			link->flags |= DL_FLAG_MANAGED;
 780			device_link_init_status(link, consumer, supplier);
 781		}
 782		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 783		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 784			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 785			goto reorder;
 786		}
 787
 788		goto out;
 789	}
 790
 791	link = kzalloc(sizeof(*link), GFP_KERNEL);
 792	if (!link)
 793		goto out;
 794
 795	refcount_set(&link->rpm_active, 1);
 796
 797	get_device(supplier);
 798	link->supplier = supplier;
 799	INIT_LIST_HEAD(&link->s_node);
 800	get_device(consumer);
 801	link->consumer = consumer;
 802	INIT_LIST_HEAD(&link->c_node);
 803	link->flags = flags;
 804	kref_init(&link->kref);
 805
 806	link->link_dev.class = &devlink_class;
 807	device_set_pm_not_required(&link->link_dev);
 808	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 809		     dev_bus_name(supplier), dev_name(supplier),
 810		     dev_bus_name(consumer), dev_name(consumer));
 811	if (device_register(&link->link_dev)) {
 812		put_device(consumer);
 813		put_device(supplier);
 814		kfree(link);
 815		link = NULL;
 816		goto out;
 817	}
 818
 819	if (flags & DL_FLAG_PM_RUNTIME) {
 820		if (flags & DL_FLAG_RPM_ACTIVE)
 821			refcount_inc(&link->rpm_active);
 822
 823		pm_runtime_new_link(consumer);
 824	}
 825
 826	/* Determine the initial link state. */
 827	if (flags & DL_FLAG_STATELESS)
 828		link->status = DL_STATE_NONE;
 829	else
 830		device_link_init_status(link, consumer, supplier);
 831
 832	/*
 833	 * Some callers expect the link creation during consumer driver probe to
 834	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 835	 */
 836	if (link->status == DL_STATE_CONSUMER_PROBE &&
 837	    flags & DL_FLAG_PM_RUNTIME)
 838		pm_runtime_resume(supplier);
 839
 840	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 841	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 842
 843	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 844		dev_dbg(consumer,
 845			"Linked as a sync state only consumer to %s\n",
 846			dev_name(supplier));
 847		goto out;
 848	}
 849
 850reorder:
 851	/*
 852	 * Move the consumer and all of the devices depending on it to the end
 853	 * of dpm_list and the devices_kset list.
 854	 *
 855	 * It is necessary to hold dpm_list locked throughout all that or else
 856	 * we may end up suspending with a wrong ordering of it.
 857	 */
 858	device_reorder_to_tail(consumer, NULL);
 859
 860	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 861
 862out:
 863	device_pm_unlock();
 864	device_links_write_unlock();
 865
 866	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 867		pm_runtime_put(supplier);
 868
 869	return link;
 870}
 871EXPORT_SYMBOL_GPL(device_link_add);
 872
 873static void __device_link_del(struct kref *kref)
 874{
 875	struct device_link *link = container_of(kref, struct device_link, kref);
 876
 877	dev_dbg(link->consumer, "Dropping the link to %s\n",
 878		dev_name(link->supplier));
 879
 880	pm_runtime_drop_link(link);
 881
 882	device_link_remove_from_lists(link);
 883	device_unregister(&link->link_dev);
 884}
 885
 886static void device_link_put_kref(struct device_link *link)
 887{
 888	if (link->flags & DL_FLAG_STATELESS)
 889		kref_put(&link->kref, __device_link_del);
 890	else if (!device_is_registered(link->consumer))
 891		__device_link_del(&link->kref);
 892	else
 893		WARN(1, "Unable to drop a managed device link reference\n");
 894}
 895
 896/**
 897 * device_link_del - Delete a stateless link between two devices.
 898 * @link: Device link to delete.
 899 *
 900 * The caller must ensure proper synchronization of this function with runtime
 901 * PM.  If the link was added multiple times, it needs to be deleted as often.
 902 * Care is required for hotplugged devices:  Their links are purged on removal
 903 * and calling device_link_del() is then no longer allowed.
 904 */
 905void device_link_del(struct device_link *link)
 906{
 907	device_links_write_lock();
 908	device_link_put_kref(link);
 909	device_links_write_unlock();
 910}
 911EXPORT_SYMBOL_GPL(device_link_del);
 912
 913/**
 914 * device_link_remove - Delete a stateless link between two devices.
 915 * @consumer: Consumer end of the link.
 916 * @supplier: Supplier end of the link.
 917 *
 918 * The caller must ensure proper synchronization of this function with runtime
 919 * PM.
 920 */
 921void device_link_remove(void *consumer, struct device *supplier)
 922{
 923	struct device_link *link;
 924
 925	if (WARN_ON(consumer == supplier))
 926		return;
 927
 928	device_links_write_lock();
 929
 930	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 931		if (link->consumer == consumer) {
 932			device_link_put_kref(link);
 933			break;
 934		}
 935	}
 936
 937	device_links_write_unlock();
 938}
 939EXPORT_SYMBOL_GPL(device_link_remove);
 940
 941static void device_links_missing_supplier(struct device *dev)
 942{
 943	struct device_link *link;
 944
 945	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 946		if (link->status != DL_STATE_CONSUMER_PROBE)
 947			continue;
 948
 949		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 950			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 951		} else {
 952			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 953			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 954		}
 955	}
 956}
 957
 958/**
 959 * device_links_check_suppliers - Check presence of supplier drivers.
 960 * @dev: Consumer device.
 961 *
 962 * Check links from this device to any suppliers.  Walk the list of the device's
 963 * links to suppliers and see if all of them are available.  If not, simply
 964 * return -EPROBE_DEFER.
 965 *
 966 * We need to guarantee that the supplier will not go away after the check has
 967 * been positive here.  It only can go away in __device_release_driver() and
 968 * that function  checks the device's links to consumers.  This means we need to
 969 * mark the link as "consumer probe in progress" to make the supplier removal
 970 * wait for us to complete (or bad things may happen).
 971 *
 972 * Links without the DL_FLAG_MANAGED flag set are ignored.
 973 */
 974int device_links_check_suppliers(struct device *dev)
 975{
 976	struct device_link *link;
 977	int ret = 0;
 978
 979	/*
 980	 * Device waiting for supplier to become available is not allowed to
 981	 * probe.
 982	 */
 983	mutex_lock(&fwnode_link_lock);
 984	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 985	    !fw_devlink_is_permissive()) {
 986		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 987			list_first_entry(&dev->fwnode->suppliers,
 988			struct fwnode_link,
 989			c_hook)->supplier);
 990		mutex_unlock(&fwnode_link_lock);
 991		return -EPROBE_DEFER;
 992	}
 993	mutex_unlock(&fwnode_link_lock);
 994
 995	device_links_write_lock();
 996
 997	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 998		if (!(link->flags & DL_FLAG_MANAGED))
 999			continue;
1000
1001		if (link->status != DL_STATE_AVAILABLE &&
1002		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1003			device_links_missing_supplier(dev);
1004			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005				dev_name(link->supplier));
1006			ret = -EPROBE_DEFER;
1007			break;
1008		}
1009		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010	}
1011	dev->links.status = DL_DEV_PROBING;
1012
1013	device_links_write_unlock();
1014	return ret;
1015}
1016
1017/**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs.  The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock().  This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035static void __device_links_queue_sync_state(struct device *dev,
1036					    struct list_head *list)
1037{
1038	struct device_link *link;
1039
1040	if (!dev_has_sync_state(dev))
1041		return;
1042	if (dev->state_synced)
1043		return;
1044
1045	list_for_each_entry(link, &dev->links.consumers, s_node) {
1046		if (!(link->flags & DL_FLAG_MANAGED))
1047			continue;
1048		if (link->status != DL_STATE_ACTIVE)
1049			return;
1050	}
1051
1052	/*
1053	 * Set the flag here to avoid adding the same device to a list more
1054	 * than once. This can happen if new consumers get added to the device
1055	 * and probed before the list is flushed.
1056	 */
1057	dev->state_synced = true;
1058
1059	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060		return;
1061
1062	get_device(dev);
1063	list_add_tail(&dev->links.defer_sync, list);
1064}
1065
1066/**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076static void device_links_flush_sync_list(struct list_head *list,
1077					 struct device *dont_lock_dev)
1078{
1079	struct device *dev, *tmp;
1080
1081	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082		list_del_init(&dev->links.defer_sync);
1083
1084		if (dev != dont_lock_dev)
1085			device_lock(dev);
1086
1087		if (dev->bus->sync_state)
1088			dev->bus->sync_state(dev);
1089		else if (dev->driver && dev->driver->sync_state)
1090			dev->driver->sync_state(dev);
1091
1092		if (dev != dont_lock_dev)
1093			device_unlock(dev);
1094
1095		put_device(dev);
1096	}
1097}
1098
1099void device_links_supplier_sync_state_pause(void)
1100{
1101	device_links_write_lock();
1102	defer_sync_state_count++;
1103	device_links_write_unlock();
1104}
1105
1106void device_links_supplier_sync_state_resume(void)
1107{
1108	struct device *dev, *tmp;
1109	LIST_HEAD(sync_list);
1110
1111	device_links_write_lock();
1112	if (!defer_sync_state_count) {
1113		WARN(true, "Unmatched sync_state pause/resume!");
1114		goto out;
1115	}
1116	defer_sync_state_count--;
1117	if (defer_sync_state_count)
1118		goto out;
1119
1120	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121		/*
1122		 * Delete from deferred_sync list before queuing it to
1123		 * sync_list because defer_sync is used for both lists.
1124		 */
1125		list_del_init(&dev->links.defer_sync);
1126		__device_links_queue_sync_state(dev, &sync_list);
1127	}
1128out:
1129	device_links_write_unlock();
1130
1131	device_links_flush_sync_list(&sync_list, NULL);
1132}
1133
1134static int sync_state_resume_initcall(void)
1135{
1136	device_links_supplier_sync_state_resume();
1137	return 0;
1138}
1139late_initcall(sync_state_resume_initcall);
1140
1141static void __device_links_supplier_defer_sync(struct device *sup)
1142{
1143	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145}
1146
1147static void device_link_drop_managed(struct device_link *link)
1148{
1149	link->flags &= ~DL_FLAG_MANAGED;
1150	WRITE_ONCE(link->status, DL_STATE_NONE);
1151	kref_put(&link->kref, __device_link_del);
1152}
1153
1154static ssize_t waiting_for_supplier_show(struct device *dev,
1155					 struct device_attribute *attr,
1156					 char *buf)
1157{
1158	bool val;
1159
1160	device_lock(dev);
1161	val = !list_empty(&dev->fwnode->suppliers);
1162	device_unlock(dev);
1163	return sysfs_emit(buf, "%u\n", val);
1164}
1165static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167/**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181void device_links_force_bind(struct device *dev)
1182{
1183	struct device_link *link, *ln;
1184
1185	device_links_write_lock();
1186
1187	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188		if (!(link->flags & DL_FLAG_MANAGED))
1189			continue;
1190
1191		if (link->status != DL_STATE_AVAILABLE) {
1192			device_link_drop_managed(link);
1193			continue;
1194		}
1195		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196	}
1197	dev->links.status = DL_DEV_PROBING;
1198
1199	device_links_write_unlock();
1200}
1201
1202/**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213void device_links_driver_bound(struct device *dev)
1214{
1215	struct device_link *link, *ln;
1216	LIST_HEAD(sync_list);
1217
1218	/*
1219	 * If a device binds successfully, it's expected to have created all
1220	 * the device links it needs to or make new device links as it needs
1221	 * them. So, fw_devlink no longer needs to create device links to any
1222	 * of the device's suppliers.
1223	 *
1224	 * Also, if a child firmware node of this bound device is not added as
1225	 * a device by now, assume it is never going to be added and make sure
1226	 * other devices don't defer probe indefinitely by waiting for such a
1227	 * child device.
1228	 */
1229	if (dev->fwnode && dev->fwnode->dev == dev) {
1230		struct fwnode_handle *child;
1231		fwnode_links_purge_suppliers(dev->fwnode);
1232		fwnode_for_each_available_child_node(dev->fwnode, child)
1233			fw_devlink_purge_absent_suppliers(child);
1234	}
1235	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237	device_links_write_lock();
1238
1239	list_for_each_entry(link, &dev->links.consumers, s_node) {
1240		if (!(link->flags & DL_FLAG_MANAGED))
1241			continue;
1242
1243		/*
1244		 * Links created during consumer probe may be in the "consumer
1245		 * probe" state to start with if the supplier is still probing
1246		 * when they are created and they may become "active" if the
1247		 * consumer probe returns first.  Skip them here.
1248		 */
1249		if (link->status == DL_STATE_CONSUMER_PROBE ||
1250		    link->status == DL_STATE_ACTIVE)
1251			continue;
1252
1253		WARN_ON(link->status != DL_STATE_DORMANT);
1254		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257			driver_deferred_probe_add(link->consumer);
1258	}
1259
1260	if (defer_sync_state_count)
1261		__device_links_supplier_defer_sync(dev);
1262	else
1263		__device_links_queue_sync_state(dev, &sync_list);
1264
1265	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266		struct device *supplier;
1267
1268		if (!(link->flags & DL_FLAG_MANAGED))
1269			continue;
1270
1271		supplier = link->supplier;
1272		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273			/*
1274			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276			 * save to drop the managed link completely.
1277			 */
1278			device_link_drop_managed(link);
1279		} else {
1280			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282		}
1283
1284		/*
1285		 * This needs to be done even for the deleted
1286		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287		 * device link that was preventing the supplier from getting a
1288		 * sync_state() call.
1289		 */
1290		if (defer_sync_state_count)
1291			__device_links_supplier_defer_sync(supplier);
1292		else
1293			__device_links_queue_sync_state(supplier, &sync_list);
1294	}
1295
1296	dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298	device_links_write_unlock();
1299
1300	device_links_flush_sync_list(&sync_list, dev);
1301}
1302
1303/**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315static void __device_links_no_driver(struct device *dev)
1316{
1317	struct device_link *link, *ln;
1318
1319	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320		if (!(link->flags & DL_FLAG_MANAGED))
1321			continue;
1322
1323		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324			device_link_drop_managed(link);
1325			continue;
1326		}
1327
1328		if (link->status != DL_STATE_CONSUMER_PROBE &&
1329		    link->status != DL_STATE_ACTIVE)
1330			continue;
1331
1332		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334		} else {
1335			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337		}
1338	}
1339
1340	dev->links.status = DL_DEV_NO_DRIVER;
1341}
1342
1343/**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353void device_links_no_driver(struct device *dev)
1354{
1355	struct device_link *link;
1356
1357	device_links_write_lock();
1358
1359	list_for_each_entry(link, &dev->links.consumers, s_node) {
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		/*
1364		 * The probe has failed, so if the status of the link is
1365		 * "consumer probe" or "active", it must have been added by
1366		 * a probing consumer while this device was still probing.
1367		 * Change its state to "dormant", as it represents a valid
1368		 * relationship, but it is not functionally meaningful.
1369		 */
1370		if (link->status == DL_STATE_CONSUMER_PROBE ||
1371		    link->status == DL_STATE_ACTIVE)
1372			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373	}
1374
1375	__device_links_no_driver(dev);
1376
1377	device_links_write_unlock();
1378}
1379
1380/**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_driver_cleanup(struct device *dev)
1391{
1392	struct device_link *link, *ln;
1393
1394	device_links_write_lock();
1395
1396	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397		if (!(link->flags & DL_FLAG_MANAGED))
1398			continue;
1399
1400		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403		/*
1404		 * autoremove the links between this @dev and its consumer
1405		 * devices that are not active, i.e. where the link state
1406		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407		 */
1408		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410			device_link_drop_managed(link);
1411
1412		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413	}
1414
1415	list_del_init(&dev->links.defer_sync);
1416	__device_links_no_driver(dev);
1417
1418	device_links_write_unlock();
1419}
1420
1421/**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present).  Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435bool device_links_busy(struct device *dev)
1436{
1437	struct device_link *link;
1438	bool ret = false;
1439
1440	device_links_write_lock();
1441
1442	list_for_each_entry(link, &dev->links.consumers, s_node) {
1443		if (!(link->flags & DL_FLAG_MANAGED))
1444			continue;
1445
1446		if (link->status == DL_STATE_CONSUMER_PROBE
1447		    || link->status == DL_STATE_ACTIVE) {
1448			ret = true;
1449			break;
1450		}
1451		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452	}
1453
1454	dev->links.status = DL_DEV_UNBINDING;
1455
1456	device_links_write_unlock();
1457	return ret;
1458}
1459
1460/**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state.  If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475void device_links_unbind_consumers(struct device *dev)
1476{
1477	struct device_link *link;
1478
1479 start:
1480	device_links_write_lock();
1481
1482	list_for_each_entry(link, &dev->links.consumers, s_node) {
1483		enum device_link_state status;
1484
1485		if (!(link->flags & DL_FLAG_MANAGED) ||
1486		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487			continue;
1488
1489		status = link->status;
1490		if (status == DL_STATE_CONSUMER_PROBE) {
1491			device_links_write_unlock();
1492
1493			wait_for_device_probe();
1494			goto start;
1495		}
1496		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497		if (status == DL_STATE_ACTIVE) {
1498			struct device *consumer = link->consumer;
1499
1500			get_device(consumer);
1501
1502			device_links_write_unlock();
1503
1504			device_release_driver_internal(consumer, NULL,
1505						       consumer->parent);
1506			put_device(consumer);
1507			goto start;
1508		}
1509	}
1510
1511	device_links_write_unlock();
1512}
1513
1514/**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518static void device_links_purge(struct device *dev)
1519{
1520	struct device_link *link, *ln;
1521
1522	if (dev->class == &devlink_class)
1523		return;
1524
1525	/*
1526	 * Delete all of the remaining links from this device to any other
1527	 * devices (either consumers or suppliers).
1528	 */
1529	device_links_write_lock();
1530
1531	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532		WARN_ON(link->status == DL_STATE_ACTIVE);
1533		__device_link_del(&link->kref);
1534	}
1535
1536	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537		WARN_ON(link->status != DL_STATE_DORMANT &&
1538			link->status != DL_STATE_NONE);
1539		__device_link_del(&link->kref);
1540	}
1541
1542	device_links_write_unlock();
1543}
1544
1545#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1546					 DL_FLAG_SYNC_STATE_ONLY)
1547#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1548					 DL_FLAG_AUTOPROBE_CONSUMER)
1549#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1550					 DL_FLAG_PM_RUNTIME)
1551
1552static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553static int __init fw_devlink_setup(char *arg)
1554{
1555	if (!arg)
1556		return -EINVAL;
1557
1558	if (strcmp(arg, "off") == 0) {
1559		fw_devlink_flags = 0;
1560	} else if (strcmp(arg, "permissive") == 0) {
1561		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562	} else if (strcmp(arg, "on") == 0) {
1563		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564	} else if (strcmp(arg, "rpm") == 0) {
1565		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566	}
1567	return 0;
1568}
1569early_param("fw_devlink", fw_devlink_setup);
1570
1571static bool fw_devlink_strict;
1572static int __init fw_devlink_strict_setup(char *arg)
1573{
1574	return strtobool(arg, &fw_devlink_strict);
1575}
1576early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578u32 fw_devlink_get_flags(void)
1579{
1580	return fw_devlink_flags;
1581}
1582
1583static bool fw_devlink_is_permissive(void)
1584{
1585	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586}
1587
1588bool fw_devlink_is_strict(void)
1589{
1590	return fw_devlink_strict && !fw_devlink_is_permissive();
1591}
1592
1593static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594{
1595	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596		return;
1597
1598	fwnode_call_int_op(fwnode, add_links);
1599	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600}
1601
1602static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603{
1604	struct fwnode_handle *child = NULL;
1605
1606	fw_devlink_parse_fwnode(fwnode);
1607
1608	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609		fw_devlink_parse_fwtree(child);
1610}
1611
1612static void fw_devlink_relax_link(struct device_link *link)
1613{
1614	if (!(link->flags & DL_FLAG_INFERRED))
1615		return;
1616
1617	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618		return;
1619
1620	pm_runtime_drop_link(link);
1621	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622	dev_dbg(link->consumer, "Relaxing link with %s\n",
1623		dev_name(link->supplier));
1624}
1625
1626static int fw_devlink_no_driver(struct device *dev, void *data)
1627{
1628	struct device_link *link = to_devlink(dev);
1629
1630	if (!link->supplier->can_match)
1631		fw_devlink_relax_link(link);
1632
1633	return 0;
1634}
1635
1636void fw_devlink_drivers_done(void)
1637{
1638	fw_devlink_drv_reg_done = true;
1639	device_links_write_lock();
1640	class_for_each_device(&devlink_class, NULL, NULL,
1641			      fw_devlink_no_driver);
1642	device_links_write_unlock();
1643}
1644
1645static void fw_devlink_unblock_consumers(struct device *dev)
1646{
1647	struct device_link *link;
1648
1649	if (!fw_devlink_flags || fw_devlink_is_permissive())
1650		return;
1651
1652	device_links_write_lock();
1653	list_for_each_entry(link, &dev->links.consumers, s_node)
1654		fw_devlink_relax_link(link);
1655	device_links_write_unlock();
1656}
1657
1658/**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc).  When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673{
1674	struct device_link *link;
1675	int ret;
1676
1677	if (con == sup)
1678		return 1;
1679
1680	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681	if (ret)
1682		return ret;
1683
1684	list_for_each_entry(link, &con->links.consumers, s_node) {
1685		if ((link->flags & ~DL_FLAG_INFERRED) ==
1686		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687			continue;
1688
1689		if (!fw_devlink_relax_cycle(link->consumer, sup))
1690			continue;
1691
1692		ret = 1;
1693
1694		fw_devlink_relax_link(link);
1695	}
1696	return ret;
1697}
1698
1699/**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 *  possible to do that in the future
1718 */
1719static int fw_devlink_create_devlink(struct device *con,
1720				     struct fwnode_handle *sup_handle, u32 flags)
1721{
1722	struct device *sup_dev;
1723	int ret = 0;
1724
1725	/*
1726	 * In some cases, a device P might also be a supplier to its child node
1727	 * C. However, this would defer the probe of C until the probe of P
1728	 * completes successfully. This is perfectly fine in the device driver
1729	 * model. device_add() doesn't guarantee probe completion of the device
1730	 * by the time it returns.
1731	 *
1732	 * However, there are a few drivers that assume C will finish probing
1733	 * as soon as it's added and before P finishes probing. So, we provide
1734	 * a flag to let fw_devlink know not to delay the probe of C until the
1735	 * probe of P completes successfully.
1736	 *
1737	 * When such a flag is set, we can't create device links where P is the
1738	 * supplier of C as that would delay the probe of C.
1739	 */
1740	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1741	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1742		return -EINVAL;
1743
1744	sup_dev = get_dev_from_fwnode(sup_handle);
1745	if (sup_dev) {
1746		/*
1747		 * If it's one of those drivers that don't actually bind to
1748		 * their device using driver core, then don't wait on this
1749		 * supplier device indefinitely.
1750		 */
1751		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1752		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1753			ret = -EINVAL;
1754			goto out;
1755		}
1756
1757		/*
1758		 * If this fails, it is due to cycles in device links.  Just
1759		 * give up on this link and treat it as invalid.
1760		 */
1761		if (!device_link_add(con, sup_dev, flags) &&
1762		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1763			dev_info(con, "Fixing up cyclic dependency with %s\n",
1764				 dev_name(sup_dev));
1765			device_links_write_lock();
1766			fw_devlink_relax_cycle(con, sup_dev);
1767			device_links_write_unlock();
1768			device_link_add(con, sup_dev,
1769					FW_DEVLINK_FLAGS_PERMISSIVE);
1770			ret = -EINVAL;
1771		}
1772
1773		goto out;
1774	}
1775
1776	/* Supplier that's already initialized without a struct device. */
1777	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1778		return -EINVAL;
1779
1780	/*
1781	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1782	 * cycles. So cycle detection isn't necessary and shouldn't be
1783	 * done.
1784	 */
1785	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1786		return -EAGAIN;
1787
1788	/*
1789	 * If we can't find the supplier device from its fwnode, it might be
1790	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1791	 * be broken by applying logic. Check for these types of cycles and
1792	 * break them so that devices in the cycle probe properly.
1793	 *
1794	 * If the supplier's parent is dependent on the consumer, then the
1795	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1796	 * can't tell which of the inferred dependencies are incorrect, don't
1797	 * enforce probe ordering between any of the devices in this cyclic
1798	 * dependency. Do this by relaxing all the fw_devlink device links in
1799	 * this cycle and by treating the fwnode link between the consumer and
1800	 * the supplier as an invalid dependency.
1801	 */
1802	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1803	if (sup_dev && device_is_dependent(con, sup_dev)) {
1804		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1805			 sup_handle, dev_name(sup_dev));
1806		device_links_write_lock();
1807		fw_devlink_relax_cycle(con, sup_dev);
1808		device_links_write_unlock();
1809		ret = -EINVAL;
1810	} else {
1811		/*
1812		 * Can't check for cycles or no cycles. So let's try
1813		 * again later.
1814		 */
1815		ret = -EAGAIN;
1816	}
1817
1818out:
1819	put_device(sup_dev);
1820	return ret;
1821}
1822
1823/**
1824 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1825 * @dev: Device that needs to be linked to its consumers
1826 *
1827 * This function looks at all the consumer fwnodes of @dev and creates device
1828 * links between the consumer device and @dev (supplier).
1829 *
1830 * If the consumer device has not been added yet, then this function creates a
1831 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1832 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1833 * sync_state() callback before the real consumer device gets to be added and
1834 * then probed.
1835 *
1836 * Once device links are created from the real consumer to @dev (supplier), the
1837 * fwnode links are deleted.
1838 */
1839static void __fw_devlink_link_to_consumers(struct device *dev)
1840{
1841	struct fwnode_handle *fwnode = dev->fwnode;
1842	struct fwnode_link *link, *tmp;
1843
1844	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1845		u32 dl_flags = fw_devlink_get_flags();
1846		struct device *con_dev;
1847		bool own_link = true;
1848		int ret;
1849
1850		con_dev = get_dev_from_fwnode(link->consumer);
1851		/*
1852		 * If consumer device is not available yet, make a "proxy"
1853		 * SYNC_STATE_ONLY link from the consumer's parent device to
1854		 * the supplier device. This is necessary to make sure the
1855		 * supplier doesn't get a sync_state() callback before the real
1856		 * consumer can create a device link to the supplier.
1857		 *
1858		 * This proxy link step is needed to handle the case where the
1859		 * consumer's parent device is added before the supplier.
1860		 */
1861		if (!con_dev) {
1862			con_dev = fwnode_get_next_parent_dev(link->consumer);
1863			/*
1864			 * However, if the consumer's parent device is also the
1865			 * parent of the supplier, don't create a
1866			 * consumer-supplier link from the parent to its child
1867			 * device. Such a dependency is impossible.
1868			 */
1869			if (con_dev &&
1870			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1871				put_device(con_dev);
1872				con_dev = NULL;
1873			} else {
1874				own_link = false;
1875				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1876			}
1877		}
1878
1879		if (!con_dev)
1880			continue;
1881
1882		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1883		put_device(con_dev);
1884		if (!own_link || ret == -EAGAIN)
1885			continue;
1886
1887		list_del(&link->s_hook);
1888		list_del(&link->c_hook);
1889		kfree(link);
1890	}
1891}
1892
1893/**
1894 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1895 * @dev: The consumer device that needs to be linked to its suppliers
1896 * @fwnode: Root of the fwnode tree that is used to create device links
1897 *
1898 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1899 * @fwnode and creates device links between @dev (consumer) and all the
1900 * supplier devices of the entire fwnode tree at @fwnode.
1901 *
1902 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1903 * and the real suppliers of @dev. Once these device links are created, the
1904 * fwnode links are deleted. When such device links are successfully created,
1905 * this function is called recursively on those supplier devices. This is
1906 * needed to detect and break some invalid cycles in fwnode links.  See
1907 * fw_devlink_create_devlink() for more details.
1908 *
1909 * In addition, it also looks at all the suppliers of the entire fwnode tree
1910 * because some of the child devices of @dev that have not been added yet
1911 * (because @dev hasn't probed) might already have their suppliers added to
1912 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1913 * @dev (consumer) and these suppliers to make sure they don't execute their
1914 * sync_state() callbacks before these child devices have a chance to create
1915 * their device links. The fwnode links that correspond to the child devices
1916 * aren't delete because they are needed later to create the device links
1917 * between the real consumer and supplier devices.
1918 */
1919static void __fw_devlink_link_to_suppliers(struct device *dev,
1920					   struct fwnode_handle *fwnode)
1921{
1922	bool own_link = (dev->fwnode == fwnode);
1923	struct fwnode_link *link, *tmp;
1924	struct fwnode_handle *child = NULL;
1925	u32 dl_flags;
1926
1927	if (own_link)
1928		dl_flags = fw_devlink_get_flags();
1929	else
1930		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1931
1932	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1933		int ret;
1934		struct device *sup_dev;
1935		struct fwnode_handle *sup = link->supplier;
1936
1937		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1938		if (!own_link || ret == -EAGAIN)
1939			continue;
1940
1941		list_del(&link->s_hook);
1942		list_del(&link->c_hook);
1943		kfree(link);
1944
1945		/* If no device link was created, nothing more to do. */
1946		if (ret)
1947			continue;
1948
1949		/*
1950		 * If a device link was successfully created to a supplier, we
1951		 * now need to try and link the supplier to all its suppliers.
1952		 *
1953		 * This is needed to detect and delete false dependencies in
1954		 * fwnode links that haven't been converted to a device link
1955		 * yet. See comments in fw_devlink_create_devlink() for more
1956		 * details on the false dependency.
1957		 *
1958		 * Without deleting these false dependencies, some devices will
1959		 * never probe because they'll keep waiting for their false
1960		 * dependency fwnode links to be converted to device links.
1961		 */
1962		sup_dev = get_dev_from_fwnode(sup);
1963		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1964		put_device(sup_dev);
1965	}
1966
1967	/*
1968	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1969	 * all the descendants. This proxy link step is needed to handle the
1970	 * case where the supplier is added before the consumer's parent device
1971	 * (@dev).
1972	 */
1973	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1974		__fw_devlink_link_to_suppliers(dev, child);
1975}
1976
1977static void fw_devlink_link_device(struct device *dev)
1978{
1979	struct fwnode_handle *fwnode = dev->fwnode;
1980
1981	if (!fw_devlink_flags)
1982		return;
1983
1984	fw_devlink_parse_fwtree(fwnode);
1985
1986	mutex_lock(&fwnode_link_lock);
1987	__fw_devlink_link_to_consumers(dev);
1988	__fw_devlink_link_to_suppliers(dev, fwnode);
1989	mutex_unlock(&fwnode_link_lock);
1990}
1991
1992/* Device links support end. */
1993
1994int (*platform_notify)(struct device *dev) = NULL;
1995int (*platform_notify_remove)(struct device *dev) = NULL;
1996static struct kobject *dev_kobj;
1997struct kobject *sysfs_dev_char_kobj;
1998struct kobject *sysfs_dev_block_kobj;
1999
2000static DEFINE_MUTEX(device_hotplug_lock);
2001
2002void lock_device_hotplug(void)
2003{
2004	mutex_lock(&device_hotplug_lock);
2005}
2006
2007void unlock_device_hotplug(void)
2008{
2009	mutex_unlock(&device_hotplug_lock);
2010}
2011
2012int lock_device_hotplug_sysfs(void)
2013{
2014	if (mutex_trylock(&device_hotplug_lock))
2015		return 0;
2016
2017	/* Avoid busy looping (5 ms of sleep should do). */
2018	msleep(5);
2019	return restart_syscall();
2020}
2021
2022#ifdef CONFIG_BLOCK
2023static inline int device_is_not_partition(struct device *dev)
2024{
2025	return !(dev->type == &part_type);
2026}
2027#else
2028static inline int device_is_not_partition(struct device *dev)
2029{
2030	return 1;
2031}
2032#endif
2033
2034static int
2035device_platform_notify(struct device *dev, enum kobject_action action)
2036{
2037	int ret;
2038
2039	ret = acpi_platform_notify(dev, action);
2040	if (ret)
2041		return ret;
2042
2043	ret = software_node_notify(dev, action);
2044	if (ret)
2045		return ret;
2046
2047	if (platform_notify && action == KOBJ_ADD)
2048		platform_notify(dev);
2049	else if (platform_notify_remove && action == KOBJ_REMOVE)
2050		platform_notify_remove(dev);
2051	return 0;
2052}
2053
2054/**
2055 * dev_driver_string - Return a device's driver name, if at all possible
2056 * @dev: struct device to get the name of
2057 *
2058 * Will return the device's driver's name if it is bound to a device.  If
2059 * the device is not bound to a driver, it will return the name of the bus
2060 * it is attached to.  If it is not attached to a bus either, an empty
2061 * string will be returned.
2062 */
2063const char *dev_driver_string(const struct device *dev)
2064{
2065	struct device_driver *drv;
2066
2067	/* dev->driver can change to NULL underneath us because of unbinding,
2068	 * so be careful about accessing it.  dev->bus and dev->class should
2069	 * never change once they are set, so they don't need special care.
2070	 */
2071	drv = READ_ONCE(dev->driver);
2072	return drv ? drv->name : dev_bus_name(dev);
 
 
2073}
2074EXPORT_SYMBOL(dev_driver_string);
2075
2076#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2077
2078static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2079			     char *buf)
2080{
2081	struct device_attribute *dev_attr = to_dev_attr(attr);
2082	struct device *dev = kobj_to_dev(kobj);
2083	ssize_t ret = -EIO;
2084
2085	if (dev_attr->show)
2086		ret = dev_attr->show(dev, dev_attr, buf);
2087	if (ret >= (ssize_t)PAGE_SIZE) {
2088		printk("dev_attr_show: %pS returned bad count\n",
2089				dev_attr->show);
2090	}
2091	return ret;
2092}
2093
2094static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2095			      const char *buf, size_t count)
2096{
2097	struct device_attribute *dev_attr = to_dev_attr(attr);
2098	struct device *dev = kobj_to_dev(kobj);
2099	ssize_t ret = -EIO;
2100
2101	if (dev_attr->store)
2102		ret = dev_attr->store(dev, dev_attr, buf, count);
2103	return ret;
2104}
2105
2106static const struct sysfs_ops dev_sysfs_ops = {
2107	.show	= dev_attr_show,
2108	.store	= dev_attr_store,
2109};
2110
2111#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2112
2113ssize_t device_store_ulong(struct device *dev,
2114			   struct device_attribute *attr,
2115			   const char *buf, size_t size)
2116{
2117	struct dev_ext_attribute *ea = to_ext_attr(attr);
2118	int ret;
2119	unsigned long new;
2120
2121	ret = kstrtoul(buf, 0, &new);
2122	if (ret)
2123		return ret;
2124	*(unsigned long *)(ea->var) = new;
2125	/* Always return full write size even if we didn't consume all */
2126	return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_ulong);
2129
2130ssize_t device_show_ulong(struct device *dev,
2131			  struct device_attribute *attr,
2132			  char *buf)
2133{
2134	struct dev_ext_attribute *ea = to_ext_attr(attr);
2135	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2136}
2137EXPORT_SYMBOL_GPL(device_show_ulong);
2138
2139ssize_t device_store_int(struct device *dev,
2140			 struct device_attribute *attr,
2141			 const char *buf, size_t size)
2142{
2143	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144	int ret;
2145	long new;
2146
2147	ret = kstrtol(buf, 0, &new);
2148	if (ret)
2149		return ret;
2150
2151	if (new > INT_MAX || new < INT_MIN)
2152		return -EINVAL;
2153	*(int *)(ea->var) = new;
2154	/* Always return full write size even if we didn't consume all */
2155	return size;
2156}
2157EXPORT_SYMBOL_GPL(device_store_int);
2158
2159ssize_t device_show_int(struct device *dev,
2160			struct device_attribute *attr,
2161			char *buf)
2162{
2163	struct dev_ext_attribute *ea = to_ext_attr(attr);
2164
2165	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2166}
2167EXPORT_SYMBOL_GPL(device_show_int);
2168
2169ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2170			  const char *buf, size_t size)
2171{
2172	struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174	if (strtobool(buf, ea->var) < 0)
2175		return -EINVAL;
2176
2177	return size;
2178}
2179EXPORT_SYMBOL_GPL(device_store_bool);
2180
2181ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2182			 char *buf)
2183{
2184	struct dev_ext_attribute *ea = to_ext_attr(attr);
2185
2186	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2187}
2188EXPORT_SYMBOL_GPL(device_show_bool);
2189
2190/**
2191 * device_release - free device structure.
2192 * @kobj: device's kobject.
2193 *
2194 * This is called once the reference count for the object
2195 * reaches 0. We forward the call to the device's release
2196 * method, which should handle actually freeing the structure.
2197 */
2198static void device_release(struct kobject *kobj)
2199{
2200	struct device *dev = kobj_to_dev(kobj);
2201	struct device_private *p = dev->p;
2202
2203	/*
2204	 * Some platform devices are driven without driver attached
2205	 * and managed resources may have been acquired.  Make sure
2206	 * all resources are released.
2207	 *
2208	 * Drivers still can add resources into device after device
2209	 * is deleted but alive, so release devres here to avoid
2210	 * possible memory leak.
2211	 */
2212	devres_release_all(dev);
2213
2214	kfree(dev->dma_range_map);
2215
2216	if (dev->release)
2217		dev->release(dev);
2218	else if (dev->type && dev->type->release)
2219		dev->type->release(dev);
2220	else if (dev->class && dev->class->dev_release)
2221		dev->class->dev_release(dev);
2222	else
2223		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
 
2224			dev_name(dev));
2225	kfree(p);
2226}
2227
2228static const void *device_namespace(struct kobject *kobj)
2229{
2230	struct device *dev = kobj_to_dev(kobj);
2231	const void *ns = NULL;
2232
2233	if (dev->class && dev->class->ns_type)
2234		ns = dev->class->namespace(dev);
2235
2236	return ns;
2237}
2238
2239static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2240{
2241	struct device *dev = kobj_to_dev(kobj);
2242
2243	if (dev->class && dev->class->get_ownership)
2244		dev->class->get_ownership(dev, uid, gid);
2245}
2246
2247static struct kobj_type device_ktype = {
2248	.release	= device_release,
2249	.sysfs_ops	= &dev_sysfs_ops,
2250	.namespace	= device_namespace,
2251	.get_ownership	= device_get_ownership,
2252};
2253
2254
2255static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2256{
2257	struct kobj_type *ktype = get_ktype(kobj);
2258
2259	if (ktype == &device_ktype) {
2260		struct device *dev = kobj_to_dev(kobj);
2261		if (dev->bus)
2262			return 1;
2263		if (dev->class)
2264			return 1;
2265	}
2266	return 0;
2267}
2268
2269static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2270{
2271	struct device *dev = kobj_to_dev(kobj);
2272
2273	if (dev->bus)
2274		return dev->bus->name;
2275	if (dev->class)
2276		return dev->class->name;
2277	return NULL;
2278}
2279
2280static int dev_uevent(struct kset *kset, struct kobject *kobj,
2281		      struct kobj_uevent_env *env)
2282{
2283	struct device *dev = kobj_to_dev(kobj);
2284	int retval = 0;
2285
2286	/* add device node properties if present */
2287	if (MAJOR(dev->devt)) {
2288		const char *tmp;
2289		const char *name;
2290		umode_t mode = 0;
2291		kuid_t uid = GLOBAL_ROOT_UID;
2292		kgid_t gid = GLOBAL_ROOT_GID;
2293
2294		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2295		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2296		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2297		if (name) {
2298			add_uevent_var(env, "DEVNAME=%s", name);
2299			if (mode)
2300				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2301			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2302				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2303			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2304				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2305			kfree(tmp);
2306		}
2307	}
2308
2309	if (dev->type && dev->type->name)
2310		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2311
2312	if (dev->driver)
2313		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2314
2315	/* Add common DT information about the device */
2316	of_device_uevent(dev, env);
2317
2318	/* have the bus specific function add its stuff */
2319	if (dev->bus && dev->bus->uevent) {
2320		retval = dev->bus->uevent(dev, env);
2321		if (retval)
2322			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2323				 dev_name(dev), __func__, retval);
2324	}
2325
2326	/* have the class specific function add its stuff */
2327	if (dev->class && dev->class->dev_uevent) {
2328		retval = dev->class->dev_uevent(dev, env);
2329		if (retval)
2330			pr_debug("device: '%s': %s: class uevent() "
2331				 "returned %d\n", dev_name(dev),
2332				 __func__, retval);
2333	}
2334
2335	/* have the device type specific function add its stuff */
2336	if (dev->type && dev->type->uevent) {
2337		retval = dev->type->uevent(dev, env);
2338		if (retval)
2339			pr_debug("device: '%s': %s: dev_type uevent() "
2340				 "returned %d\n", dev_name(dev),
2341				 __func__, retval);
2342	}
2343
2344	return retval;
2345}
2346
2347static const struct kset_uevent_ops device_uevent_ops = {
2348	.filter =	dev_uevent_filter,
2349	.name =		dev_uevent_name,
2350	.uevent =	dev_uevent,
2351};
2352
2353static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2354			   char *buf)
2355{
2356	struct kobject *top_kobj;
2357	struct kset *kset;
2358	struct kobj_uevent_env *env = NULL;
2359	int i;
2360	int len = 0;
2361	int retval;
2362
2363	/* search the kset, the device belongs to */
2364	top_kobj = &dev->kobj;
2365	while (!top_kobj->kset && top_kobj->parent)
2366		top_kobj = top_kobj->parent;
2367	if (!top_kobj->kset)
2368		goto out;
2369
2370	kset = top_kobj->kset;
2371	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2372		goto out;
2373
2374	/* respect filter */
2375	if (kset->uevent_ops && kset->uevent_ops->filter)
2376		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2377			goto out;
2378
2379	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2380	if (!env)
2381		return -ENOMEM;
2382
2383	/* let the kset specific function add its keys */
2384	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2385	if (retval)
2386		goto out;
2387
2388	/* copy keys to file */
2389	for (i = 0; i < env->envp_idx; i++)
2390		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2391out:
2392	kfree(env);
2393	return len;
2394}
2395
2396static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2397			    const char *buf, size_t count)
2398{
2399	int rc;
2400
2401	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2402
2403	if (rc) {
2404		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2405		return rc;
2406	}
2407
 
 
 
 
2408	return count;
2409}
2410static DEVICE_ATTR_RW(uevent);
2411
2412static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2413			   char *buf)
2414{
2415	bool val;
2416
2417	device_lock(dev);
2418	val = !dev->offline;
2419	device_unlock(dev);
2420	return sysfs_emit(buf, "%u\n", val);
2421}
2422
2423static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2424			    const char *buf, size_t count)
2425{
2426	bool val;
2427	int ret;
2428
2429	ret = strtobool(buf, &val);
2430	if (ret < 0)
2431		return ret;
2432
2433	ret = lock_device_hotplug_sysfs();
2434	if (ret)
2435		return ret;
2436
2437	ret = val ? device_online(dev) : device_offline(dev);
2438	unlock_device_hotplug();
2439	return ret < 0 ? ret : count;
2440}
2441static DEVICE_ATTR_RW(online);
2442
2443static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2444			      char *buf)
2445{
2446	const char *loc;
2447
2448	switch (dev->removable) {
2449	case DEVICE_REMOVABLE:
2450		loc = "removable";
2451		break;
2452	case DEVICE_FIXED:
2453		loc = "fixed";
2454		break;
2455	default:
2456		loc = "unknown";
2457	}
2458	return sysfs_emit(buf, "%s\n", loc);
2459}
2460static DEVICE_ATTR_RO(removable);
2461
2462int device_add_groups(struct device *dev, const struct attribute_group **groups)
2463{
2464	return sysfs_create_groups(&dev->kobj, groups);
2465}
2466EXPORT_SYMBOL_GPL(device_add_groups);
2467
2468void device_remove_groups(struct device *dev,
2469			  const struct attribute_group **groups)
2470{
2471	sysfs_remove_groups(&dev->kobj, groups);
2472}
2473EXPORT_SYMBOL_GPL(device_remove_groups);
2474
2475union device_attr_group_devres {
2476	const struct attribute_group *group;
2477	const struct attribute_group **groups;
2478};
2479
2480static int devm_attr_group_match(struct device *dev, void *res, void *data)
2481{
2482	return ((union device_attr_group_devres *)res)->group == data;
2483}
2484
2485static void devm_attr_group_remove(struct device *dev, void *res)
2486{
2487	union device_attr_group_devres *devres = res;
2488	const struct attribute_group *group = devres->group;
2489
2490	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2491	sysfs_remove_group(&dev->kobj, group);
2492}
2493
2494static void devm_attr_groups_remove(struct device *dev, void *res)
2495{
2496	union device_attr_group_devres *devres = res;
2497	const struct attribute_group **groups = devres->groups;
2498
2499	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2500	sysfs_remove_groups(&dev->kobj, groups);
2501}
2502
2503/**
2504 * devm_device_add_group - given a device, create a managed attribute group
2505 * @dev:	The device to create the group for
2506 * @grp:	The attribute group to create
2507 *
2508 * This function creates a group for the first time.  It will explicitly
2509 * warn and error if any of the attribute files being created already exist.
2510 *
2511 * Returns 0 on success or error code on failure.
2512 */
2513int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2514{
2515	union device_attr_group_devres *devres;
2516	int error;
2517
2518	devres = devres_alloc(devm_attr_group_remove,
2519			      sizeof(*devres), GFP_KERNEL);
2520	if (!devres)
2521		return -ENOMEM;
2522
2523	error = sysfs_create_group(&dev->kobj, grp);
2524	if (error) {
2525		devres_free(devres);
2526		return error;
2527	}
2528
2529	devres->group = grp;
2530	devres_add(dev, devres);
2531	return 0;
2532}
2533EXPORT_SYMBOL_GPL(devm_device_add_group);
2534
2535/**
2536 * devm_device_remove_group: remove a managed group from a device
2537 * @dev:	device to remove the group from
2538 * @grp:	group to remove
2539 *
2540 * This function removes a group of attributes from a device. The attributes
2541 * previously have to have been created for this group, otherwise it will fail.
2542 */
2543void devm_device_remove_group(struct device *dev,
2544			      const struct attribute_group *grp)
2545{
2546	WARN_ON(devres_release(dev, devm_attr_group_remove,
2547			       devm_attr_group_match,
2548			       /* cast away const */ (void *)grp));
2549}
2550EXPORT_SYMBOL_GPL(devm_device_remove_group);
2551
2552/**
2553 * devm_device_add_groups - create a bunch of managed attribute groups
2554 * @dev:	The device to create the group for
2555 * @groups:	The attribute groups to create, NULL terminated
2556 *
2557 * This function creates a bunch of managed attribute groups.  If an error
2558 * occurs when creating a group, all previously created groups will be
2559 * removed, unwinding everything back to the original state when this
2560 * function was called.  It will explicitly warn and error if any of the
2561 * attribute files being created already exist.
2562 *
2563 * Returns 0 on success or error code from sysfs_create_group on failure.
2564 */
2565int devm_device_add_groups(struct device *dev,
2566			   const struct attribute_group **groups)
2567{
2568	union device_attr_group_devres *devres;
2569	int error;
2570
2571	devres = devres_alloc(devm_attr_groups_remove,
2572			      sizeof(*devres), GFP_KERNEL);
2573	if (!devres)
2574		return -ENOMEM;
2575
2576	error = sysfs_create_groups(&dev->kobj, groups);
2577	if (error) {
2578		devres_free(devres);
2579		return error;
2580	}
2581
2582	devres->groups = groups;
2583	devres_add(dev, devres);
2584	return 0;
2585}
2586EXPORT_SYMBOL_GPL(devm_device_add_groups);
2587
2588/**
2589 * devm_device_remove_groups - remove a list of managed groups
2590 *
2591 * @dev:	The device for the groups to be removed from
2592 * @groups:	NULL terminated list of groups to be removed
2593 *
2594 * If groups is not NULL, remove the specified groups from the device.
2595 */
2596void devm_device_remove_groups(struct device *dev,
2597			       const struct attribute_group **groups)
2598{
2599	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2600			       devm_attr_group_match,
2601			       /* cast away const */ (void *)groups));
2602}
2603EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2604
2605static int device_add_attrs(struct device *dev)
2606{
2607	struct class *class = dev->class;
2608	const struct device_type *type = dev->type;
2609	int error;
2610
2611	if (class) {
2612		error = device_add_groups(dev, class->dev_groups);
2613		if (error)
2614			return error;
2615	}
2616
2617	if (type) {
2618		error = device_add_groups(dev, type->groups);
2619		if (error)
2620			goto err_remove_class_groups;
2621	}
2622
2623	error = device_add_groups(dev, dev->groups);
2624	if (error)
2625		goto err_remove_type_groups;
2626
2627	if (device_supports_offline(dev) && !dev->offline_disabled) {
2628		error = device_create_file(dev, &dev_attr_online);
2629		if (error)
2630			goto err_remove_dev_groups;
2631	}
2632
2633	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2634		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2635		if (error)
2636			goto err_remove_dev_online;
2637	}
2638
2639	if (dev_removable_is_valid(dev)) {
2640		error = device_create_file(dev, &dev_attr_removable);
2641		if (error)
2642			goto err_remove_dev_waiting_for_supplier;
2643	}
2644
2645	return 0;
2646
2647 err_remove_dev_waiting_for_supplier:
2648	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2649 err_remove_dev_online:
2650	device_remove_file(dev, &dev_attr_online);
2651 err_remove_dev_groups:
2652	device_remove_groups(dev, dev->groups);
2653 err_remove_type_groups:
2654	if (type)
2655		device_remove_groups(dev, type->groups);
2656 err_remove_class_groups:
2657	if (class)
2658		device_remove_groups(dev, class->dev_groups);
2659
2660	return error;
2661}
2662
2663static void device_remove_attrs(struct device *dev)
2664{
2665	struct class *class = dev->class;
2666	const struct device_type *type = dev->type;
2667
2668	device_remove_file(dev, &dev_attr_removable);
2669	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2670	device_remove_file(dev, &dev_attr_online);
2671	device_remove_groups(dev, dev->groups);
2672
2673	if (type)
2674		device_remove_groups(dev, type->groups);
2675
2676	if (class)
2677		device_remove_groups(dev, class->dev_groups);
2678}
2679
2680static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2681			char *buf)
2682{
2683	return print_dev_t(buf, dev->devt);
2684}
2685static DEVICE_ATTR_RO(dev);
2686
2687/* /sys/devices/ */
2688struct kset *devices_kset;
2689
2690/**
2691 * devices_kset_move_before - Move device in the devices_kset's list.
2692 * @deva: Device to move.
2693 * @devb: Device @deva should come before.
2694 */
2695static void devices_kset_move_before(struct device *deva, struct device *devb)
2696{
2697	if (!devices_kset)
2698		return;
2699	pr_debug("devices_kset: Moving %s before %s\n",
2700		 dev_name(deva), dev_name(devb));
2701	spin_lock(&devices_kset->list_lock);
2702	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2703	spin_unlock(&devices_kset->list_lock);
2704}
2705
2706/**
2707 * devices_kset_move_after - Move device in the devices_kset's list.
2708 * @deva: Device to move
2709 * @devb: Device @deva should come after.
2710 */
2711static void devices_kset_move_after(struct device *deva, struct device *devb)
2712{
2713	if (!devices_kset)
2714		return;
2715	pr_debug("devices_kset: Moving %s after %s\n",
2716		 dev_name(deva), dev_name(devb));
2717	spin_lock(&devices_kset->list_lock);
2718	list_move(&deva->kobj.entry, &devb->kobj.entry);
2719	spin_unlock(&devices_kset->list_lock);
2720}
2721
2722/**
2723 * devices_kset_move_last - move the device to the end of devices_kset's list.
2724 * @dev: device to move
2725 */
2726void devices_kset_move_last(struct device *dev)
2727{
2728	if (!devices_kset)
2729		return;
2730	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2731	spin_lock(&devices_kset->list_lock);
2732	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2733	spin_unlock(&devices_kset->list_lock);
2734}
2735
2736/**
2737 * device_create_file - create sysfs attribute file for device.
2738 * @dev: device.
2739 * @attr: device attribute descriptor.
2740 */
2741int device_create_file(struct device *dev,
2742		       const struct device_attribute *attr)
2743{
2744	int error = 0;
2745
2746	if (dev) {
2747		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2748			"Attribute %s: write permission without 'store'\n",
2749			attr->attr.name);
2750		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2751			"Attribute %s: read permission without 'show'\n",
2752			attr->attr.name);
2753		error = sysfs_create_file(&dev->kobj, &attr->attr);
2754	}
2755
2756	return error;
2757}
2758EXPORT_SYMBOL_GPL(device_create_file);
2759
2760/**
2761 * device_remove_file - remove sysfs attribute file.
2762 * @dev: device.
2763 * @attr: device attribute descriptor.
2764 */
2765void device_remove_file(struct device *dev,
2766			const struct device_attribute *attr)
2767{
2768	if (dev)
2769		sysfs_remove_file(&dev->kobj, &attr->attr);
2770}
2771EXPORT_SYMBOL_GPL(device_remove_file);
2772
2773/**
2774 * device_remove_file_self - remove sysfs attribute file from its own method.
2775 * @dev: device.
2776 * @attr: device attribute descriptor.
2777 *
2778 * See kernfs_remove_self() for details.
2779 */
2780bool device_remove_file_self(struct device *dev,
2781			     const struct device_attribute *attr)
2782{
2783	if (dev)
2784		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2785	else
2786		return false;
2787}
2788EXPORT_SYMBOL_GPL(device_remove_file_self);
2789
2790/**
2791 * device_create_bin_file - create sysfs binary attribute file for device.
2792 * @dev: device.
2793 * @attr: device binary attribute descriptor.
2794 */
2795int device_create_bin_file(struct device *dev,
2796			   const struct bin_attribute *attr)
2797{
2798	int error = -EINVAL;
2799	if (dev)
2800		error = sysfs_create_bin_file(&dev->kobj, attr);
2801	return error;
2802}
2803EXPORT_SYMBOL_GPL(device_create_bin_file);
2804
2805/**
2806 * device_remove_bin_file - remove sysfs binary attribute file
2807 * @dev: device.
2808 * @attr: device binary attribute descriptor.
2809 */
2810void device_remove_bin_file(struct device *dev,
2811			    const struct bin_attribute *attr)
2812{
2813	if (dev)
2814		sysfs_remove_bin_file(&dev->kobj, attr);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_bin_file);
2817
2818static void klist_children_get(struct klist_node *n)
2819{
2820	struct device_private *p = to_device_private_parent(n);
2821	struct device *dev = p->device;
2822
2823	get_device(dev);
2824}
2825
2826static void klist_children_put(struct klist_node *n)
2827{
2828	struct device_private *p = to_device_private_parent(n);
2829	struct device *dev = p->device;
2830
2831	put_device(dev);
2832}
2833
2834/**
2835 * device_initialize - init device structure.
2836 * @dev: device.
2837 *
2838 * This prepares the device for use by other layers by initializing
2839 * its fields.
2840 * It is the first half of device_register(), if called by
2841 * that function, though it can also be called separately, so one
2842 * may use @dev's fields. In particular, get_device()/put_device()
2843 * may be used for reference counting of @dev after calling this
2844 * function.
2845 *
2846 * All fields in @dev must be initialized by the caller to 0, except
2847 * for those explicitly set to some other value.  The simplest
2848 * approach is to use kzalloc() to allocate the structure containing
2849 * @dev.
2850 *
2851 * NOTE: Use put_device() to give up your reference instead of freeing
2852 * @dev directly once you have called this function.
2853 */
2854void device_initialize(struct device *dev)
2855{
2856	dev->kobj.kset = devices_kset;
2857	kobject_init(&dev->kobj, &device_ktype);
2858	INIT_LIST_HEAD(&dev->dma_pools);
2859	mutex_init(&dev->mutex);
2860#ifdef CONFIG_PROVE_LOCKING
2861	mutex_init(&dev->lockdep_mutex);
2862#endif
2863	lockdep_set_novalidate_class(&dev->mutex);
2864	spin_lock_init(&dev->devres_lock);
2865	INIT_LIST_HEAD(&dev->devres_head);
2866	device_pm_init(dev);
2867	set_dev_node(dev, -1);
2868#ifdef CONFIG_GENERIC_MSI_IRQ
2869	raw_spin_lock_init(&dev->msi_lock);
2870	INIT_LIST_HEAD(&dev->msi_list);
2871#endif
2872	INIT_LIST_HEAD(&dev->links.consumers);
2873	INIT_LIST_HEAD(&dev->links.suppliers);
2874	INIT_LIST_HEAD(&dev->links.defer_sync);
2875	dev->links.status = DL_DEV_NO_DRIVER;
2876#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879	dev->dma_coherent = dma_default_coherent;
2880#endif
2881}
2882EXPORT_SYMBOL_GPL(device_initialize);
2883
2884struct kobject *virtual_device_parent(struct device *dev)
2885{
2886	static struct kobject *virtual_dir = NULL;
2887
2888	if (!virtual_dir)
2889		virtual_dir = kobject_create_and_add("virtual",
2890						     &devices_kset->kobj);
2891
2892	return virtual_dir;
2893}
2894
2895struct class_dir {
2896	struct kobject kobj;
2897	struct class *class;
2898};
2899
2900#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2901
2902static void class_dir_release(struct kobject *kobj)
2903{
2904	struct class_dir *dir = to_class_dir(kobj);
2905	kfree(dir);
2906}
2907
2908static const
2909struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2910{
2911	struct class_dir *dir = to_class_dir(kobj);
2912	return dir->class->ns_type;
2913}
2914
2915static struct kobj_type class_dir_ktype = {
2916	.release	= class_dir_release,
2917	.sysfs_ops	= &kobj_sysfs_ops,
2918	.child_ns_type	= class_dir_child_ns_type
2919};
2920
2921static struct kobject *
2922class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2923{
2924	struct class_dir *dir;
2925	int retval;
2926
2927	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2928	if (!dir)
2929		return ERR_PTR(-ENOMEM);
2930
2931	dir->class = class;
2932	kobject_init(&dir->kobj, &class_dir_ktype);
2933
2934	dir->kobj.kset = &class->p->glue_dirs;
2935
2936	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2937	if (retval < 0) {
2938		kobject_put(&dir->kobj);
2939		return ERR_PTR(retval);
2940	}
2941	return &dir->kobj;
2942}
2943
2944static DEFINE_MUTEX(gdp_mutex);
2945
2946static struct kobject *get_device_parent(struct device *dev,
2947					 struct device *parent)
2948{
2949	if (dev->class) {
 
2950		struct kobject *kobj = NULL;
2951		struct kobject *parent_kobj;
2952		struct kobject *k;
2953
2954#ifdef CONFIG_BLOCK
2955		/* block disks show up in /sys/block */
2956		if (sysfs_deprecated && dev->class == &block_class) {
2957			if (parent && parent->class == &block_class)
2958				return &parent->kobj;
2959			return &block_class.p->subsys.kobj;
2960		}
2961#endif
2962
2963		/*
2964		 * If we have no parent, we live in "virtual".
2965		 * Class-devices with a non class-device as parent, live
2966		 * in a "glue" directory to prevent namespace collisions.
2967		 */
2968		if (parent == NULL)
2969			parent_kobj = virtual_device_parent(dev);
2970		else if (parent->class && !dev->class->ns_type)
2971			return &parent->kobj;
2972		else
2973			parent_kobj = &parent->kobj;
2974
2975		mutex_lock(&gdp_mutex);
2976
2977		/* find our class-directory at the parent and reference it */
2978		spin_lock(&dev->class->p->glue_dirs.list_lock);
2979		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2980			if (k->parent == parent_kobj) {
2981				kobj = kobject_get(k);
2982				break;
2983			}
2984		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2985		if (kobj) {
2986			mutex_unlock(&gdp_mutex);
2987			return kobj;
2988		}
2989
2990		/* or create a new class-directory at the parent device */
2991		k = class_dir_create_and_add(dev->class, parent_kobj);
2992		/* do not emit an uevent for this simple "glue" directory */
2993		mutex_unlock(&gdp_mutex);
2994		return k;
2995	}
2996
2997	/* subsystems can specify a default root directory for their devices */
2998	if (!parent && dev->bus && dev->bus->dev_root)
2999		return &dev->bus->dev_root->kobj;
3000
3001	if (parent)
3002		return &parent->kobj;
3003	return NULL;
3004}
3005
3006static inline bool live_in_glue_dir(struct kobject *kobj,
3007				    struct device *dev)
3008{
3009	if (!kobj || !dev->class ||
3010	    kobj->kset != &dev->class->p->glue_dirs)
3011		return false;
3012	return true;
3013}
3014
3015static inline struct kobject *get_glue_dir(struct device *dev)
3016{
3017	return dev->kobj.parent;
3018}
3019
3020/*
3021 * make sure cleaning up dir as the last step, we need to make
3022 * sure .release handler of kobject is run with holding the
3023 * global lock
3024 */
3025static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3026{
3027	unsigned int ref;
3028
3029	/* see if we live in a "glue" directory */
3030	if (!live_in_glue_dir(glue_dir, dev))
 
3031		return;
3032
3033	mutex_lock(&gdp_mutex);
3034	/**
3035	 * There is a race condition between removing glue directory
3036	 * and adding a new device under the glue directory.
3037	 *
3038	 * CPU1:                                         CPU2:
3039	 *
3040	 * device_add()
3041	 *   get_device_parent()
3042	 *     class_dir_create_and_add()
3043	 *       kobject_add_internal()
3044	 *         create_dir()    // create glue_dir
3045	 *
3046	 *                                               device_add()
3047	 *                                                 get_device_parent()
3048	 *                                                   kobject_get() // get glue_dir
3049	 *
3050	 * device_del()
3051	 *   cleanup_glue_dir()
3052	 *     kobject_del(glue_dir)
3053	 *
3054	 *                                               kobject_add()
3055	 *                                                 kobject_add_internal()
3056	 *                                                   create_dir() // in glue_dir
3057	 *                                                     sysfs_create_dir_ns()
3058	 *                                                       kernfs_create_dir_ns(sd)
3059	 *
3060	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3061	 *       sysfs_put()        // free glue_dir->sd
3062	 *
3063	 *                                                         // sd is freed
3064	 *                                                         kernfs_new_node(sd)
3065	 *                                                           kernfs_get(glue_dir)
3066	 *                                                           kernfs_add_one()
3067	 *                                                           kernfs_put()
3068	 *
3069	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3070	 * a new device under glue dir, the glue_dir kobject reference count
3071	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3072	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3073	 * and sysfs_put(). This result in glue_dir->sd is freed.
3074	 *
3075	 * Then the CPU2 will see a stale "empty" but still potentially used
3076	 * glue dir around in kernfs_new_node().
3077	 *
3078	 * In order to avoid this happening, we also should make sure that
3079	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3080	 * for glue_dir kobj is 1.
3081	 */
3082	ref = kref_read(&glue_dir->kref);
3083	if (!kobject_has_children(glue_dir) && !--ref)
3084		kobject_del(glue_dir);
3085	kobject_put(glue_dir);
3086	mutex_unlock(&gdp_mutex);
 
 
 
 
3087}
3088
3089static int device_add_class_symlinks(struct device *dev)
3090{
3091	struct device_node *of_node = dev_of_node(dev);
3092	int error;
3093
3094	if (of_node) {
3095		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3096		if (error)
3097			dev_warn(dev, "Error %d creating of_node link\n",error);
3098		/* An error here doesn't warrant bringing down the device */
3099	}
3100
3101	if (!dev->class)
3102		return 0;
3103
3104	error = sysfs_create_link(&dev->kobj,
3105				  &dev->class->p->subsys.kobj,
3106				  "subsystem");
3107	if (error)
3108		goto out_devnode;
3109
3110	if (dev->parent && device_is_not_partition(dev)) {
3111		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3112					  "device");
3113		if (error)
3114			goto out_subsys;
3115	}
3116
3117#ifdef CONFIG_BLOCK
3118	/* /sys/block has directories and does not need symlinks */
3119	if (sysfs_deprecated && dev->class == &block_class)
3120		return 0;
3121#endif
3122
3123	/* link in the class directory pointing to the device */
3124	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3125				  &dev->kobj, dev_name(dev));
3126	if (error)
3127		goto out_device;
3128
3129	return 0;
3130
3131out_device:
3132	sysfs_remove_link(&dev->kobj, "device");
3133
3134out_subsys:
3135	sysfs_remove_link(&dev->kobj, "subsystem");
3136out_devnode:
3137	sysfs_remove_link(&dev->kobj, "of_node");
3138	return error;
3139}
3140
3141static void device_remove_class_symlinks(struct device *dev)
3142{
3143	if (dev_of_node(dev))
3144		sysfs_remove_link(&dev->kobj, "of_node");
3145
3146	if (!dev->class)
3147		return;
3148
3149	if (dev->parent && device_is_not_partition(dev))
3150		sysfs_remove_link(&dev->kobj, "device");
3151	sysfs_remove_link(&dev->kobj, "subsystem");
3152#ifdef CONFIG_BLOCK
3153	if (sysfs_deprecated && dev->class == &block_class)
3154		return;
3155#endif
3156	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3157}
3158
3159/**
3160 * dev_set_name - set a device name
3161 * @dev: device
3162 * @fmt: format string for the device's name
3163 */
3164int dev_set_name(struct device *dev, const char *fmt, ...)
3165{
3166	va_list vargs;
3167	int err;
3168
3169	va_start(vargs, fmt);
3170	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3171	va_end(vargs);
3172	return err;
3173}
3174EXPORT_SYMBOL_GPL(dev_set_name);
3175
3176/**
3177 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3178 * @dev: device
3179 *
3180 * By default we select char/ for new entries.  Setting class->dev_obj
3181 * to NULL prevents an entry from being created.  class->dev_kobj must
3182 * be set (or cleared) before any devices are registered to the class
3183 * otherwise device_create_sys_dev_entry() and
3184 * device_remove_sys_dev_entry() will disagree about the presence of
3185 * the link.
3186 */
3187static struct kobject *device_to_dev_kobj(struct device *dev)
3188{
3189	struct kobject *kobj;
3190
3191	if (dev->class)
3192		kobj = dev->class->dev_kobj;
3193	else
3194		kobj = sysfs_dev_char_kobj;
3195
3196	return kobj;
3197}
3198
3199static int device_create_sys_dev_entry(struct device *dev)
3200{
3201	struct kobject *kobj = device_to_dev_kobj(dev);
3202	int error = 0;
3203	char devt_str[15];
3204
3205	if (kobj) {
3206		format_dev_t(devt_str, dev->devt);
3207		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3208	}
3209
3210	return error;
3211}
3212
3213static void device_remove_sys_dev_entry(struct device *dev)
3214{
3215	struct kobject *kobj = device_to_dev_kobj(dev);
3216	char devt_str[15];
3217
3218	if (kobj) {
3219		format_dev_t(devt_str, dev->devt);
3220		sysfs_remove_link(kobj, devt_str);
3221	}
3222}
3223
3224static int device_private_init(struct device *dev)
3225{
3226	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3227	if (!dev->p)
3228		return -ENOMEM;
3229	dev->p->device = dev;
3230	klist_init(&dev->p->klist_children, klist_children_get,
3231		   klist_children_put);
3232	INIT_LIST_HEAD(&dev->p->deferred_probe);
3233	return 0;
3234}
3235
3236/**
3237 * device_add - add device to device hierarchy.
3238 * @dev: device.
3239 *
3240 * This is part 2 of device_register(), though may be called
3241 * separately _iff_ device_initialize() has been called separately.
3242 *
3243 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3244 * to the global and sibling lists for the device, then
3245 * adds it to the other relevant subsystems of the driver model.
3246 *
3247 * Do not call this routine or device_register() more than once for
3248 * any device structure.  The driver model core is not designed to work
3249 * with devices that get unregistered and then spring back to life.
3250 * (Among other things, it's very hard to guarantee that all references
3251 * to the previous incarnation of @dev have been dropped.)  Allocate
3252 * and register a fresh new struct device instead.
3253 *
3254 * NOTE: _Never_ directly free @dev after calling this function, even
3255 * if it returned an error! Always use put_device() to give up your
3256 * reference instead.
3257 *
3258 * Rule of thumb is: if device_add() succeeds, you should call
3259 * device_del() when you want to get rid of it. If device_add() has
3260 * *not* succeeded, use *only* put_device() to drop the reference
3261 * count.
3262 */
3263int device_add(struct device *dev)
3264{
3265	struct device *parent;
3266	struct kobject *kobj;
3267	struct class_interface *class_intf;
3268	int error = -EINVAL;
3269	struct kobject *glue_dir = NULL;
3270
3271	dev = get_device(dev);
3272	if (!dev)
3273		goto done;
3274
3275	if (!dev->p) {
3276		error = device_private_init(dev);
3277		if (error)
3278			goto done;
3279	}
3280
3281	/*
3282	 * for statically allocated devices, which should all be converted
3283	 * some day, we need to initialize the name. We prevent reading back
3284	 * the name, and force the use of dev_name()
3285	 */
3286	if (dev->init_name) {
3287		dev_set_name(dev, "%s", dev->init_name);
3288		dev->init_name = NULL;
3289	}
3290
3291	/* subsystems can specify simple device enumeration */
3292	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3293		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3294
3295	if (!dev_name(dev)) {
3296		error = -EINVAL;
3297		goto name_error;
3298	}
3299
3300	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3301
3302	parent = get_device(dev->parent);
3303	kobj = get_device_parent(dev, parent);
3304	if (IS_ERR(kobj)) {
3305		error = PTR_ERR(kobj);
3306		goto parent_error;
3307	}
3308	if (kobj)
3309		dev->kobj.parent = kobj;
3310
3311	/* use parent numa_node */
3312	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3313		set_dev_node(dev, dev_to_node(parent));
3314
3315	/* first, register with generic layer. */
3316	/* we require the name to be set before, and pass NULL */
3317	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3318	if (error) {
3319		glue_dir = get_glue_dir(dev);
3320		goto Error;
3321	}
3322
3323	/* notify platform of device entry */
3324	error = device_platform_notify(dev, KOBJ_ADD);
3325	if (error)
3326		goto platform_error;
3327
3328	error = device_create_file(dev, &dev_attr_uevent);
3329	if (error)
3330		goto attrError;
3331
 
 
 
 
 
 
 
 
 
 
 
 
3332	error = device_add_class_symlinks(dev);
3333	if (error)
3334		goto SymlinkError;
3335	error = device_add_attrs(dev);
3336	if (error)
3337		goto AttrsError;
3338	error = bus_add_device(dev);
3339	if (error)
3340		goto BusError;
3341	error = dpm_sysfs_add(dev);
3342	if (error)
3343		goto DPMError;
3344	device_pm_add(dev);
3345
3346	if (MAJOR(dev->devt)) {
3347		error = device_create_file(dev, &dev_attr_dev);
3348		if (error)
3349			goto DevAttrError;
3350
3351		error = device_create_sys_dev_entry(dev);
3352		if (error)
3353			goto SysEntryError;
3354
3355		devtmpfs_create_node(dev);
3356	}
3357
3358	/* Notify clients of device addition.  This call must come
3359	 * after dpm_sysfs_add() and before kobject_uevent().
3360	 */
3361	if (dev->bus)
3362		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3363					     BUS_NOTIFY_ADD_DEVICE, dev);
3364
3365	kobject_uevent(&dev->kobj, KOBJ_ADD);
3366
3367	/*
3368	 * Check if any of the other devices (consumers) have been waiting for
3369	 * this device (supplier) to be added so that they can create a device
3370	 * link to it.
3371	 *
3372	 * This needs to happen after device_pm_add() because device_link_add()
3373	 * requires the supplier be registered before it's called.
3374	 *
3375	 * But this also needs to happen before bus_probe_device() to make sure
3376	 * waiting consumers can link to it before the driver is bound to the
3377	 * device and the driver sync_state callback is called for this device.
3378	 */
3379	if (dev->fwnode && !dev->fwnode->dev) {
3380		dev->fwnode->dev = dev;
3381		fw_devlink_link_device(dev);
3382	}
3383
3384	bus_probe_device(dev);
3385
3386	/*
3387	 * If all driver registration is done and a newly added device doesn't
3388	 * match with any driver, don't block its consumers from probing in
3389	 * case the consumer device is able to operate without this supplier.
3390	 */
3391	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3392		fw_devlink_unblock_consumers(dev);
3393
3394	if (parent)
3395		klist_add_tail(&dev->p->knode_parent,
3396			       &parent->p->klist_children);
3397
3398	if (dev->class) {
3399		mutex_lock(&dev->class->p->mutex);
3400		/* tie the class to the device */
3401		klist_add_tail(&dev->p->knode_class,
3402			       &dev->class->p->klist_devices);
3403
3404		/* notify any interfaces that the device is here */
3405		list_for_each_entry(class_intf,
3406				    &dev->class->p->interfaces, node)
3407			if (class_intf->add_dev)
3408				class_intf->add_dev(dev, class_intf);
3409		mutex_unlock(&dev->class->p->mutex);
3410	}
3411done:
3412	put_device(dev);
3413	return error;
3414 SysEntryError:
3415	if (MAJOR(dev->devt))
3416		device_remove_file(dev, &dev_attr_dev);
3417 DevAttrError:
3418	device_pm_remove(dev);
3419	dpm_sysfs_remove(dev);
3420 DPMError:
3421	bus_remove_device(dev);
3422 BusError:
3423	device_remove_attrs(dev);
3424 AttrsError:
3425	device_remove_class_symlinks(dev);
3426 SymlinkError:
 
 
 
 
 
 
 
 
3427	device_remove_file(dev, &dev_attr_uevent);
3428 attrError:
3429	device_platform_notify(dev, KOBJ_REMOVE);
3430platform_error:
3431	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432	glue_dir = get_glue_dir(dev);
3433	kobject_del(&dev->kobj);
3434 Error:
3435	cleanup_glue_dir(dev, glue_dir);
3436parent_error:
3437	put_device(parent);
3438name_error:
3439	kfree(dev->p);
3440	dev->p = NULL;
3441	goto done;
3442}
3443EXPORT_SYMBOL_GPL(device_add);
3444
3445/**
3446 * device_register - register a device with the system.
3447 * @dev: pointer to the device structure
3448 *
3449 * This happens in two clean steps - initialize the device
3450 * and add it to the system. The two steps can be called
3451 * separately, but this is the easiest and most common.
3452 * I.e. you should only call the two helpers separately if
3453 * have a clearly defined need to use and refcount the device
3454 * before it is added to the hierarchy.
3455 *
3456 * For more information, see the kerneldoc for device_initialize()
3457 * and device_add().
3458 *
3459 * NOTE: _Never_ directly free @dev after calling this function, even
3460 * if it returned an error! Always use put_device() to give up the
3461 * reference initialized in this function instead.
3462 */
3463int device_register(struct device *dev)
3464{
3465	device_initialize(dev);
3466	return device_add(dev);
3467}
3468EXPORT_SYMBOL_GPL(device_register);
3469
3470/**
3471 * get_device - increment reference count for device.
3472 * @dev: device.
3473 *
3474 * This simply forwards the call to kobject_get(), though
3475 * we do take care to provide for the case that we get a NULL
3476 * pointer passed in.
3477 */
3478struct device *get_device(struct device *dev)
3479{
3480	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3481}
3482EXPORT_SYMBOL_GPL(get_device);
3483
3484/**
3485 * put_device - decrement reference count.
3486 * @dev: device in question.
3487 */
3488void put_device(struct device *dev)
3489{
3490	/* might_sleep(); */
3491	if (dev)
3492		kobject_put(&dev->kobj);
3493}
3494EXPORT_SYMBOL_GPL(put_device);
3495
3496bool kill_device(struct device *dev)
3497{
3498	/*
3499	 * Require the device lock and set the "dead" flag to guarantee that
3500	 * the update behavior is consistent with the other bitfields near
3501	 * it and that we cannot have an asynchronous probe routine trying
3502	 * to run while we are tearing out the bus/class/sysfs from
3503	 * underneath the device.
3504	 */
3505	device_lock_assert(dev);
3506
3507	if (dev->p->dead)
3508		return false;
3509	dev->p->dead = true;
3510	return true;
3511}
3512EXPORT_SYMBOL_GPL(kill_device);
3513
3514/**
3515 * device_del - delete device from system.
3516 * @dev: device.
3517 *
3518 * This is the first part of the device unregistration
3519 * sequence. This removes the device from the lists we control
3520 * from here, has it removed from the other driver model
3521 * subsystems it was added to in device_add(), and removes it
3522 * from the kobject hierarchy.
3523 *
3524 * NOTE: this should be called manually _iff_ device_add() was
3525 * also called manually.
3526 */
3527void device_del(struct device *dev)
3528{
3529	struct device *parent = dev->parent;
3530	struct kobject *glue_dir = NULL;
3531	struct class_interface *class_intf;
3532	unsigned int noio_flag;
3533
3534	device_lock(dev);
3535	kill_device(dev);
3536	device_unlock(dev);
3537
3538	if (dev->fwnode && dev->fwnode->dev == dev)
3539		dev->fwnode->dev = NULL;
3540
3541	/* Notify clients of device removal.  This call must come
3542	 * before dpm_sysfs_remove().
3543	 */
3544	noio_flag = memalloc_noio_save();
3545	if (dev->bus)
3546		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3547					     BUS_NOTIFY_DEL_DEVICE, dev);
3548
3549	dpm_sysfs_remove(dev);
3550	if (parent)
3551		klist_del(&dev->p->knode_parent);
3552	if (MAJOR(dev->devt)) {
3553		devtmpfs_delete_node(dev);
3554		device_remove_sys_dev_entry(dev);
3555		device_remove_file(dev, &dev_attr_dev);
3556	}
3557	if (dev->class) {
3558		device_remove_class_symlinks(dev);
3559
3560		mutex_lock(&dev->class->p->mutex);
3561		/* notify any interfaces that the device is now gone */
3562		list_for_each_entry(class_intf,
3563				    &dev->class->p->interfaces, node)
3564			if (class_intf->remove_dev)
3565				class_intf->remove_dev(dev, class_intf);
3566		/* remove the device from the class list */
3567		klist_del(&dev->p->knode_class);
3568		mutex_unlock(&dev->class->p->mutex);
3569	}
3570	device_remove_file(dev, &dev_attr_uevent);
3571	device_remove_attrs(dev);
3572	bus_remove_device(dev);
3573	device_pm_remove(dev);
3574	driver_deferred_probe_del(dev);
3575	device_platform_notify(dev, KOBJ_REMOVE);
3576	device_remove_properties(dev);
3577	device_links_purge(dev);
3578
3579	if (dev->bus)
3580		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3581					     BUS_NOTIFY_REMOVED_DEVICE, dev);
 
 
3582	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3583	glue_dir = get_glue_dir(dev);
3584	kobject_del(&dev->kobj);
3585	cleanup_glue_dir(dev, glue_dir);
3586	memalloc_noio_restore(noio_flag);
3587	put_device(parent);
3588}
3589EXPORT_SYMBOL_GPL(device_del);
3590
3591/**
3592 * device_unregister - unregister device from system.
3593 * @dev: device going away.
3594 *
3595 * We do this in two parts, like we do device_register(). First,
3596 * we remove it from all the subsystems with device_del(), then
3597 * we decrement the reference count via put_device(). If that
3598 * is the final reference count, the device will be cleaned up
3599 * via device_release() above. Otherwise, the structure will
3600 * stick around until the final reference to the device is dropped.
3601 */
3602void device_unregister(struct device *dev)
3603{
3604	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605	device_del(dev);
3606	put_device(dev);
3607}
3608EXPORT_SYMBOL_GPL(device_unregister);
3609
3610static struct device *prev_device(struct klist_iter *i)
3611{
3612	struct klist_node *n = klist_prev(i);
3613	struct device *dev = NULL;
3614	struct device_private *p;
3615
3616	if (n) {
3617		p = to_device_private_parent(n);
3618		dev = p->device;
3619	}
3620	return dev;
3621}
3622
3623static struct device *next_device(struct klist_iter *i)
3624{
3625	struct klist_node *n = klist_next(i);
3626	struct device *dev = NULL;
3627	struct device_private *p;
3628
3629	if (n) {
3630		p = to_device_private_parent(n);
3631		dev = p->device;
3632	}
3633	return dev;
3634}
3635
3636/**
3637 * device_get_devnode - path of device node file
3638 * @dev: device
3639 * @mode: returned file access mode
3640 * @uid: returned file owner
3641 * @gid: returned file group
3642 * @tmp: possibly allocated string
3643 *
3644 * Return the relative path of a possible device node.
3645 * Non-default names may need to allocate a memory to compose
3646 * a name. This memory is returned in tmp and needs to be
3647 * freed by the caller.
3648 */
3649const char *device_get_devnode(struct device *dev,
3650			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3651			       const char **tmp)
3652{
3653	char *s;
3654
3655	*tmp = NULL;
3656
3657	/* the device type may provide a specific name */
3658	if (dev->type && dev->type->devnode)
3659		*tmp = dev->type->devnode(dev, mode, uid, gid);
3660	if (*tmp)
3661		return *tmp;
3662
3663	/* the class may provide a specific name */
3664	if (dev->class && dev->class->devnode)
3665		*tmp = dev->class->devnode(dev, mode);
3666	if (*tmp)
3667		return *tmp;
3668
3669	/* return name without allocation, tmp == NULL */
3670	if (strchr(dev_name(dev), '!') == NULL)
3671		return dev_name(dev);
3672
3673	/* replace '!' in the name with '/' */
3674	s = kstrdup(dev_name(dev), GFP_KERNEL);
3675	if (!s)
3676		return NULL;
3677	strreplace(s, '!', '/');
3678	return *tmp = s;
 
3679}
3680
3681/**
3682 * device_for_each_child - device child iterator.
3683 * @parent: parent struct device.
3684 * @fn: function to be called for each device.
3685 * @data: data for the callback.
3686 *
3687 * Iterate over @parent's child devices, and call @fn for each,
3688 * passing it @data.
3689 *
3690 * We check the return of @fn each time. If it returns anything
3691 * other than 0, we break out and return that value.
3692 */
3693int device_for_each_child(struct device *parent, void *data,
3694			  int (*fn)(struct device *dev, void *data))
3695{
3696	struct klist_iter i;
3697	struct device *child;
3698	int error = 0;
3699
3700	if (!parent->p)
3701		return 0;
3702
3703	klist_iter_init(&parent->p->klist_children, &i);
3704	while (!error && (child = next_device(&i)))
3705		error = fn(child, data);
3706	klist_iter_exit(&i);
3707	return error;
3708}
3709EXPORT_SYMBOL_GPL(device_for_each_child);
3710
3711/**
3712 * device_for_each_child_reverse - device child iterator in reversed order.
3713 * @parent: parent struct device.
3714 * @fn: function to be called for each device.
3715 * @data: data for the callback.
3716 *
3717 * Iterate over @parent's child devices, and call @fn for each,
3718 * passing it @data.
3719 *
3720 * We check the return of @fn each time. If it returns anything
3721 * other than 0, we break out and return that value.
3722 */
3723int device_for_each_child_reverse(struct device *parent, void *data,
3724				  int (*fn)(struct device *dev, void *data))
3725{
3726	struct klist_iter i;
3727	struct device *child;
3728	int error = 0;
3729
3730	if (!parent->p)
3731		return 0;
3732
3733	klist_iter_init(&parent->p->klist_children, &i);
3734	while ((child = prev_device(&i)) && !error)
3735		error = fn(child, data);
3736	klist_iter_exit(&i);
3737	return error;
3738}
3739EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3740
3741/**
3742 * device_find_child - device iterator for locating a particular device.
3743 * @parent: parent struct device
3744 * @match: Callback function to check device
3745 * @data: Data to pass to match function
3746 *
3747 * This is similar to the device_for_each_child() function above, but it
3748 * returns a reference to a device that is 'found' for later use, as
3749 * determined by the @match callback.
3750 *
3751 * The callback should return 0 if the device doesn't match and non-zero
3752 * if it does.  If the callback returns non-zero and a reference to the
3753 * current device can be obtained, this function will return to the caller
3754 * and not iterate over any more devices.
3755 *
3756 * NOTE: you will need to drop the reference with put_device() after use.
3757 */
3758struct device *device_find_child(struct device *parent, void *data,
3759				 int (*match)(struct device *dev, void *data))
3760{
3761	struct klist_iter i;
3762	struct device *child;
3763
3764	if (!parent)
3765		return NULL;
3766
3767	klist_iter_init(&parent->p->klist_children, &i);
3768	while ((child = next_device(&i)))
3769		if (match(child, data) && get_device(child))
3770			break;
3771	klist_iter_exit(&i);
3772	return child;
3773}
3774EXPORT_SYMBOL_GPL(device_find_child);
3775
3776/**
3777 * device_find_child_by_name - device iterator for locating a child device.
3778 * @parent: parent struct device
3779 * @name: name of the child device
3780 *
3781 * This is similar to the device_find_child() function above, but it
3782 * returns a reference to a device that has the name @name.
3783 *
3784 * NOTE: you will need to drop the reference with put_device() after use.
3785 */
3786struct device *device_find_child_by_name(struct device *parent,
3787					 const char *name)
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791
3792	if (!parent)
3793		return NULL;
3794
3795	klist_iter_init(&parent->p->klist_children, &i);
3796	while ((child = next_device(&i)))
3797		if (sysfs_streq(dev_name(child), name) && get_device(child))
3798			break;
3799	klist_iter_exit(&i);
3800	return child;
3801}
3802EXPORT_SYMBOL_GPL(device_find_child_by_name);
3803
3804int __init devices_init(void)
3805{
3806	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3807	if (!devices_kset)
3808		return -ENOMEM;
3809	dev_kobj = kobject_create_and_add("dev", NULL);
3810	if (!dev_kobj)
3811		goto dev_kobj_err;
3812	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3813	if (!sysfs_dev_block_kobj)
3814		goto block_kobj_err;
3815	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3816	if (!sysfs_dev_char_kobj)
3817		goto char_kobj_err;
3818
3819	return 0;
3820
3821 char_kobj_err:
3822	kobject_put(sysfs_dev_block_kobj);
3823 block_kobj_err:
3824	kobject_put(dev_kobj);
3825 dev_kobj_err:
3826	kset_unregister(devices_kset);
3827	return -ENOMEM;
3828}
3829
3830static int device_check_offline(struct device *dev, void *not_used)
3831{
3832	int ret;
3833
3834	ret = device_for_each_child(dev, NULL, device_check_offline);
3835	if (ret)
3836		return ret;
3837
3838	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3839}
3840
3841/**
3842 * device_offline - Prepare the device for hot-removal.
3843 * @dev: Device to be put offline.
3844 *
3845 * Execute the device bus type's .offline() callback, if present, to prepare
3846 * the device for a subsequent hot-removal.  If that succeeds, the device must
3847 * not be used until either it is removed or its bus type's .online() callback
3848 * is executed.
3849 *
3850 * Call under device_hotplug_lock.
3851 */
3852int device_offline(struct device *dev)
3853{
3854	int ret;
3855
3856	if (dev->offline_disabled)
3857		return -EPERM;
3858
3859	ret = device_for_each_child(dev, NULL, device_check_offline);
3860	if (ret)
3861		return ret;
3862
3863	device_lock(dev);
3864	if (device_supports_offline(dev)) {
3865		if (dev->offline) {
3866			ret = 1;
3867		} else {
3868			ret = dev->bus->offline(dev);
3869			if (!ret) {
3870				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3871				dev->offline = true;
3872			}
3873		}
3874	}
3875	device_unlock(dev);
3876
3877	return ret;
3878}
3879
3880/**
3881 * device_online - Put the device back online after successful device_offline().
3882 * @dev: Device to be put back online.
3883 *
3884 * If device_offline() has been successfully executed for @dev, but the device
3885 * has not been removed subsequently, execute its bus type's .online() callback
3886 * to indicate that the device can be used again.
3887 *
3888 * Call under device_hotplug_lock.
3889 */
3890int device_online(struct device *dev)
3891{
3892	int ret = 0;
3893
3894	device_lock(dev);
3895	if (device_supports_offline(dev)) {
3896		if (dev->offline) {
3897			ret = dev->bus->online(dev);
3898			if (!ret) {
3899				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3900				dev->offline = false;
3901			}
3902		} else {
3903			ret = 1;
3904		}
3905	}
3906	device_unlock(dev);
3907
3908	return ret;
3909}
3910
3911struct root_device {
3912	struct device dev;
3913	struct module *owner;
3914};
3915
3916static inline struct root_device *to_root_device(struct device *d)
3917{
3918	return container_of(d, struct root_device, dev);
3919}
3920
3921static void root_device_release(struct device *dev)
3922{
3923	kfree(to_root_device(dev));
3924}
3925
3926/**
3927 * __root_device_register - allocate and register a root device
3928 * @name: root device name
3929 * @owner: owner module of the root device, usually THIS_MODULE
3930 *
3931 * This function allocates a root device and registers it
3932 * using device_register(). In order to free the returned
3933 * device, use root_device_unregister().
3934 *
3935 * Root devices are dummy devices which allow other devices
3936 * to be grouped under /sys/devices. Use this function to
3937 * allocate a root device and then use it as the parent of
3938 * any device which should appear under /sys/devices/{name}
3939 *
3940 * The /sys/devices/{name} directory will also contain a
3941 * 'module' symlink which points to the @owner directory
3942 * in sysfs.
3943 *
3944 * Returns &struct device pointer on success, or ERR_PTR() on error.
3945 *
3946 * Note: You probably want to use root_device_register().
3947 */
3948struct device *__root_device_register(const char *name, struct module *owner)
3949{
3950	struct root_device *root;
3951	int err = -ENOMEM;
3952
3953	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3954	if (!root)
3955		return ERR_PTR(err);
3956
3957	err = dev_set_name(&root->dev, "%s", name);
3958	if (err) {
3959		kfree(root);
3960		return ERR_PTR(err);
3961	}
3962
3963	root->dev.release = root_device_release;
3964
3965	err = device_register(&root->dev);
3966	if (err) {
3967		put_device(&root->dev);
3968		return ERR_PTR(err);
3969	}
3970
3971#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3972	if (owner) {
3973		struct module_kobject *mk = &owner->mkobj;
3974
3975		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3976		if (err) {
3977			device_unregister(&root->dev);
3978			return ERR_PTR(err);
3979		}
3980		root->owner = owner;
3981	}
3982#endif
3983
3984	return &root->dev;
3985}
3986EXPORT_SYMBOL_GPL(__root_device_register);
3987
3988/**
3989 * root_device_unregister - unregister and free a root device
3990 * @dev: device going away
3991 *
3992 * This function unregisters and cleans up a device that was created by
3993 * root_device_register().
3994 */
3995void root_device_unregister(struct device *dev)
3996{
3997	struct root_device *root = to_root_device(dev);
3998
3999	if (root->owner)
4000		sysfs_remove_link(&root->dev.kobj, "module");
4001
4002	device_unregister(dev);
4003}
4004EXPORT_SYMBOL_GPL(root_device_unregister);
4005
4006
4007static void device_create_release(struct device *dev)
4008{
4009	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4010	kfree(dev);
4011}
4012
4013static __printf(6, 0) struct device *
4014device_create_groups_vargs(struct class *class, struct device *parent,
4015			   dev_t devt, void *drvdata,
4016			   const struct attribute_group **groups,
4017			   const char *fmt, va_list args)
4018{
4019	struct device *dev = NULL;
4020	int retval = -ENODEV;
4021
4022	if (class == NULL || IS_ERR(class))
4023		goto error;
4024
4025	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4026	if (!dev) {
4027		retval = -ENOMEM;
4028		goto error;
4029	}
4030
4031	device_initialize(dev);
4032	dev->devt = devt;
4033	dev->class = class;
4034	dev->parent = parent;
4035	dev->groups = groups;
4036	dev->release = device_create_release;
4037	dev_set_drvdata(dev, drvdata);
4038
4039	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4040	if (retval)
4041		goto error;
4042
4043	retval = device_add(dev);
4044	if (retval)
4045		goto error;
4046
4047	return dev;
4048
4049error:
4050	put_device(dev);
4051	return ERR_PTR(retval);
4052}
4053
4054/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055 * device_create - creates a device and registers it with sysfs
4056 * @class: pointer to the struct class that this device should be registered to
4057 * @parent: pointer to the parent struct device of this new device, if any
4058 * @devt: the dev_t for the char device to be added
4059 * @drvdata: the data to be added to the device for callbacks
4060 * @fmt: string for the device's name
4061 *
4062 * This function can be used by char device classes.  A struct device
4063 * will be created in sysfs, registered to the specified class.
4064 *
4065 * A "dev" file will be created, showing the dev_t for the device, if
4066 * the dev_t is not 0,0.
4067 * If a pointer to a parent struct device is passed in, the newly created
4068 * struct device will be a child of that device in sysfs.
4069 * The pointer to the struct device will be returned from the call.
4070 * Any further sysfs files that might be required can be created using this
4071 * pointer.
4072 *
4073 * Returns &struct device pointer on success, or ERR_PTR() on error.
4074 *
4075 * Note: the struct class passed to this function must have previously
4076 * been created with a call to class_create().
4077 */
4078struct device *device_create(struct class *class, struct device *parent,
4079			     dev_t devt, void *drvdata, const char *fmt, ...)
4080{
4081	va_list vargs;
4082	struct device *dev;
4083
4084	va_start(vargs, fmt);
4085	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4086					  fmt, vargs);
4087	va_end(vargs);
4088	return dev;
4089}
4090EXPORT_SYMBOL_GPL(device_create);
4091
4092/**
4093 * device_create_with_groups - creates a device and registers it with sysfs
4094 * @class: pointer to the struct class that this device should be registered to
4095 * @parent: pointer to the parent struct device of this new device, if any
4096 * @devt: the dev_t for the char device to be added
4097 * @drvdata: the data to be added to the device for callbacks
4098 * @groups: NULL-terminated list of attribute groups to be created
4099 * @fmt: string for the device's name
4100 *
4101 * This function can be used by char device classes.  A struct device
4102 * will be created in sysfs, registered to the specified class.
4103 * Additional attributes specified in the groups parameter will also
4104 * be created automatically.
4105 *
4106 * A "dev" file will be created, showing the dev_t for the device, if
4107 * the dev_t is not 0,0.
4108 * If a pointer to a parent struct device is passed in, the newly created
4109 * struct device will be a child of that device in sysfs.
4110 * The pointer to the struct device will be returned from the call.
4111 * Any further sysfs files that might be required can be created using this
4112 * pointer.
4113 *
4114 * Returns &struct device pointer on success, or ERR_PTR() on error.
4115 *
4116 * Note: the struct class passed to this function must have previously
4117 * been created with a call to class_create().
4118 */
4119struct device *device_create_with_groups(struct class *class,
4120					 struct device *parent, dev_t devt,
4121					 void *drvdata,
4122					 const struct attribute_group **groups,
4123					 const char *fmt, ...)
4124{
4125	va_list vargs;
4126	struct device *dev;
4127
4128	va_start(vargs, fmt);
4129	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4130					 fmt, vargs);
4131	va_end(vargs);
4132	return dev;
4133}
4134EXPORT_SYMBOL_GPL(device_create_with_groups);
4135
 
 
 
 
 
 
 
4136/**
4137 * device_destroy - removes a device that was created with device_create()
4138 * @class: pointer to the struct class that this device was registered with
4139 * @devt: the dev_t of the device that was previously registered
4140 *
4141 * This call unregisters and cleans up a device that was created with a
4142 * call to device_create().
4143 */
4144void device_destroy(struct class *class, dev_t devt)
4145{
4146	struct device *dev;
4147
4148	dev = class_find_device_by_devt(class, devt);
4149	if (dev) {
4150		put_device(dev);
4151		device_unregister(dev);
4152	}
4153}
4154EXPORT_SYMBOL_GPL(device_destroy);
4155
4156/**
4157 * device_rename - renames a device
4158 * @dev: the pointer to the struct device to be renamed
4159 * @new_name: the new name of the device
4160 *
4161 * It is the responsibility of the caller to provide mutual
4162 * exclusion between two different calls of device_rename
4163 * on the same device to ensure that new_name is valid and
4164 * won't conflict with other devices.
4165 *
4166 * Note: Don't call this function.  Currently, the networking layer calls this
4167 * function, but that will change.  The following text from Kay Sievers offers
4168 * some insight:
4169 *
4170 * Renaming devices is racy at many levels, symlinks and other stuff are not
4171 * replaced atomically, and you get a "move" uevent, but it's not easy to
4172 * connect the event to the old and new device. Device nodes are not renamed at
4173 * all, there isn't even support for that in the kernel now.
4174 *
4175 * In the meantime, during renaming, your target name might be taken by another
4176 * driver, creating conflicts. Or the old name is taken directly after you
4177 * renamed it -- then you get events for the same DEVPATH, before you even see
4178 * the "move" event. It's just a mess, and nothing new should ever rely on
4179 * kernel device renaming. Besides that, it's not even implemented now for
4180 * other things than (driver-core wise very simple) network devices.
4181 *
4182 * We are currently about to change network renaming in udev to completely
4183 * disallow renaming of devices in the same namespace as the kernel uses,
4184 * because we can't solve the problems properly, that arise with swapping names
4185 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4186 * be allowed to some other name than eth[0-9]*, for the aforementioned
4187 * reasons.
4188 *
4189 * Make up a "real" name in the driver before you register anything, or add
4190 * some other attributes for userspace to find the device, or use udev to add
4191 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4192 * don't even want to get into that and try to implement the missing pieces in
4193 * the core. We really have other pieces to fix in the driver core mess. :)
4194 */
4195int device_rename(struct device *dev, const char *new_name)
4196{
4197	struct kobject *kobj = &dev->kobj;
4198	char *old_device_name = NULL;
4199	int error;
4200
4201	dev = get_device(dev);
4202	if (!dev)
4203		return -EINVAL;
4204
4205	dev_dbg(dev, "renaming to %s\n", new_name);
4206
4207	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4208	if (!old_device_name) {
4209		error = -ENOMEM;
4210		goto out;
4211	}
4212
4213	if (dev->class) {
4214		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4215					     kobj, old_device_name,
4216					     new_name, kobject_namespace(kobj));
4217		if (error)
4218			goto out;
4219	}
4220
4221	error = kobject_rename(kobj, new_name);
4222	if (error)
4223		goto out;
4224
4225out:
4226	put_device(dev);
4227
4228	kfree(old_device_name);
4229
4230	return error;
4231}
4232EXPORT_SYMBOL_GPL(device_rename);
4233
4234static int device_move_class_links(struct device *dev,
4235				   struct device *old_parent,
4236				   struct device *new_parent)
4237{
4238	int error = 0;
4239
4240	if (old_parent)
4241		sysfs_remove_link(&dev->kobj, "device");
4242	if (new_parent)
4243		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4244					  "device");
4245	return error;
4246}
4247
4248/**
4249 * device_move - moves a device to a new parent
4250 * @dev: the pointer to the struct device to be moved
4251 * @new_parent: the new parent of the device (can be NULL)
4252 * @dpm_order: how to reorder the dpm_list
4253 */
4254int device_move(struct device *dev, struct device *new_parent,
4255		enum dpm_order dpm_order)
4256{
4257	int error;
4258	struct device *old_parent;
4259	struct kobject *new_parent_kobj;
4260
4261	dev = get_device(dev);
4262	if (!dev)
4263		return -EINVAL;
4264
4265	device_pm_lock();
4266	new_parent = get_device(new_parent);
4267	new_parent_kobj = get_device_parent(dev, new_parent);
4268	if (IS_ERR(new_parent_kobj)) {
4269		error = PTR_ERR(new_parent_kobj);
4270		put_device(new_parent);
4271		goto out;
4272	}
4273
4274	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4275		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4276	error = kobject_move(&dev->kobj, new_parent_kobj);
4277	if (error) {
4278		cleanup_glue_dir(dev, new_parent_kobj);
4279		put_device(new_parent);
4280		goto out;
4281	}
4282	old_parent = dev->parent;
4283	dev->parent = new_parent;
4284	if (old_parent)
4285		klist_remove(&dev->p->knode_parent);
4286	if (new_parent) {
4287		klist_add_tail(&dev->p->knode_parent,
4288			       &new_parent->p->klist_children);
4289		set_dev_node(dev, dev_to_node(new_parent));
4290	}
4291
4292	if (dev->class) {
4293		error = device_move_class_links(dev, old_parent, new_parent);
4294		if (error) {
4295			/* We ignore errors on cleanup since we're hosed anyway... */
4296			device_move_class_links(dev, new_parent, old_parent);
4297			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4298				if (new_parent)
4299					klist_remove(&dev->p->knode_parent);
4300				dev->parent = old_parent;
4301				if (old_parent) {
4302					klist_add_tail(&dev->p->knode_parent,
4303						       &old_parent->p->klist_children);
4304					set_dev_node(dev, dev_to_node(old_parent));
4305				}
4306			}
4307			cleanup_glue_dir(dev, new_parent_kobj);
4308			put_device(new_parent);
4309			goto out;
4310		}
4311	}
4312	switch (dpm_order) {
4313	case DPM_ORDER_NONE:
4314		break;
4315	case DPM_ORDER_DEV_AFTER_PARENT:
4316		device_pm_move_after(dev, new_parent);
4317		devices_kset_move_after(dev, new_parent);
4318		break;
4319	case DPM_ORDER_PARENT_BEFORE_DEV:
4320		device_pm_move_before(new_parent, dev);
4321		devices_kset_move_before(new_parent, dev);
4322		break;
4323	case DPM_ORDER_DEV_LAST:
4324		device_pm_move_last(dev);
4325		devices_kset_move_last(dev);
4326		break;
4327	}
4328
4329	put_device(old_parent);
4330out:
4331	device_pm_unlock();
4332	put_device(dev);
4333	return error;
4334}
4335EXPORT_SYMBOL_GPL(device_move);
4336
4337static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4338				     kgid_t kgid)
4339{
4340	struct kobject *kobj = &dev->kobj;
4341	struct class *class = dev->class;
4342	const struct device_type *type = dev->type;
4343	int error;
4344
4345	if (class) {
4346		/*
4347		 * Change the device groups of the device class for @dev to
4348		 * @kuid/@kgid.
4349		 */
4350		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4351						  kgid);
4352		if (error)
4353			return error;
4354	}
4355
4356	if (type) {
4357		/*
4358		 * Change the device groups of the device type for @dev to
4359		 * @kuid/@kgid.
4360		 */
4361		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4362						  kgid);
4363		if (error)
4364			return error;
4365	}
4366
4367	/* Change the device groups of @dev to @kuid/@kgid. */
4368	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4369	if (error)
4370		return error;
4371
4372	if (device_supports_offline(dev) && !dev->offline_disabled) {
4373		/* Change online device attributes of @dev to @kuid/@kgid. */
4374		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4375						kuid, kgid);
4376		if (error)
4377			return error;
4378	}
4379
4380	return 0;
4381}
4382
4383/**
4384 * device_change_owner - change the owner of an existing device.
4385 * @dev: device.
4386 * @kuid: new owner's kuid
4387 * @kgid: new owner's kgid
4388 *
4389 * This changes the owner of @dev and its corresponding sysfs entries to
4390 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4391 * core.
4392 *
4393 * Returns 0 on success or error code on failure.
4394 */
4395int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4396{
4397	int error;
4398	struct kobject *kobj = &dev->kobj;
4399
4400	dev = get_device(dev);
4401	if (!dev)
4402		return -EINVAL;
4403
4404	/*
4405	 * Change the kobject and the default attributes and groups of the
4406	 * ktype associated with it to @kuid/@kgid.
4407	 */
4408	error = sysfs_change_owner(kobj, kuid, kgid);
4409	if (error)
4410		goto out;
4411
4412	/*
4413	 * Change the uevent file for @dev to the new owner. The uevent file
4414	 * was created in a separate step when @dev got added and we mirror
4415	 * that step here.
4416	 */
4417	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4418					kgid);
4419	if (error)
4420		goto out;
4421
4422	/*
4423	 * Change the device groups, the device groups associated with the
4424	 * device class, and the groups associated with the device type of @dev
4425	 * to @kuid/@kgid.
4426	 */
4427	error = device_attrs_change_owner(dev, kuid, kgid);
4428	if (error)
4429		goto out;
4430
4431	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4432	if (error)
4433		goto out;
4434
4435#ifdef CONFIG_BLOCK
4436	if (sysfs_deprecated && dev->class == &block_class)
4437		goto out;
4438#endif
4439
4440	/*
4441	 * Change the owner of the symlink located in the class directory of
4442	 * the device class associated with @dev which points to the actual
4443	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4444	 * symlink shows the same permissions as its target.
4445	 */
4446	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4447					dev_name(dev), kuid, kgid);
4448	if (error)
4449		goto out;
4450
4451out:
4452	put_device(dev);
4453	return error;
4454}
4455EXPORT_SYMBOL_GPL(device_change_owner);
4456
4457/**
4458 * device_shutdown - call ->shutdown() on each device to shutdown.
4459 */
4460void device_shutdown(void)
4461{
4462	struct device *dev, *parent;
4463
4464	wait_for_device_probe();
4465	device_block_probing();
4466
4467	cpufreq_suspend();
4468
4469	spin_lock(&devices_kset->list_lock);
4470	/*
4471	 * Walk the devices list backward, shutting down each in turn.
4472	 * Beware that device unplug events may also start pulling
4473	 * devices offline, even as the system is shutting down.
4474	 */
4475	while (!list_empty(&devices_kset->list)) {
4476		dev = list_entry(devices_kset->list.prev, struct device,
4477				kobj.entry);
4478
4479		/*
4480		 * hold reference count of device's parent to
4481		 * prevent it from being freed because parent's
4482		 * lock is to be held
4483		 */
4484		parent = get_device(dev->parent);
4485		get_device(dev);
4486		/*
4487		 * Make sure the device is off the kset list, in the
4488		 * event that dev->*->shutdown() doesn't remove it.
4489		 */
4490		list_del_init(&dev->kobj.entry);
4491		spin_unlock(&devices_kset->list_lock);
4492
4493		/* hold lock to avoid race with probe/release */
4494		if (parent)
4495			device_lock(parent);
4496		device_lock(dev);
4497
4498		/* Don't allow any more runtime suspends */
4499		pm_runtime_get_noresume(dev);
4500		pm_runtime_barrier(dev);
4501
4502		if (dev->class && dev->class->shutdown_pre) {
4503			if (initcall_debug)
4504				dev_info(dev, "shutdown_pre\n");
4505			dev->class->shutdown_pre(dev);
4506		}
4507		if (dev->bus && dev->bus->shutdown) {
4508			if (initcall_debug)
4509				dev_info(dev, "shutdown\n");
4510			dev->bus->shutdown(dev);
4511		} else if (dev->driver && dev->driver->shutdown) {
4512			if (initcall_debug)
4513				dev_info(dev, "shutdown\n");
4514			dev->driver->shutdown(dev);
4515		}
4516
4517		device_unlock(dev);
4518		if (parent)
4519			device_unlock(parent);
4520
4521		put_device(dev);
4522		put_device(parent);
4523
4524		spin_lock(&devices_kset->list_lock);
4525	}
4526	spin_unlock(&devices_kset->list_lock);
4527}
4528
4529/*
4530 * Device logging functions
4531 */
4532
4533#ifdef CONFIG_PRINTK
4534static void
4535set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4536{
4537	const char *subsys;
4538
4539	memset(dev_info, 0, sizeof(*dev_info));
4540
4541	if (dev->class)
4542		subsys = dev->class->name;
4543	else if (dev->bus)
4544		subsys = dev->bus->name;
4545	else
4546		return;
4547
4548	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4549
4550	/*
4551	 * Add device identifier DEVICE=:
4552	 *   b12:8         block dev_t
4553	 *   c127:3        char dev_t
4554	 *   n8            netdev ifindex
4555	 *   +sound:card0  subsystem:devname
4556	 */
4557	if (MAJOR(dev->devt)) {
4558		char c;
4559
4560		if (strcmp(subsys, "block") == 0)
4561			c = 'b';
4562		else
4563			c = 'c';
4564
4565		snprintf(dev_info->device, sizeof(dev_info->device),
4566			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
 
4567	} else if (strcmp(subsys, "net") == 0) {
4568		struct net_device *net = to_net_dev(dev);
4569
4570		snprintf(dev_info->device, sizeof(dev_info->device),
4571			 "n%u", net->ifindex);
 
4572	} else {
4573		snprintf(dev_info->device, sizeof(dev_info->device),
4574			 "+%s:%s", subsys, dev_name(dev));
 
4575	}
 
 
4576}
4577
4578int dev_vprintk_emit(int level, const struct device *dev,
4579		     const char *fmt, va_list args)
4580{
4581	struct dev_printk_info dev_info;
 
4582
4583	set_dev_info(dev, &dev_info);
4584
4585	return vprintk_emit(0, level, &dev_info, fmt, args);
4586}
4587EXPORT_SYMBOL(dev_vprintk_emit);
4588
4589int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4590{
4591	va_list args;
4592	int r;
4593
4594	va_start(args, fmt);
4595
4596	r = dev_vprintk_emit(level, dev, fmt, args);
4597
4598	va_end(args);
4599
4600	return r;
4601}
4602EXPORT_SYMBOL(dev_printk_emit);
4603
4604static void __dev_printk(const char *level, const struct device *dev,
4605			struct va_format *vaf)
4606{
4607	if (dev)
4608		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4609				dev_driver_string(dev), dev_name(dev), vaf);
4610	else
4611		printk("%s(NULL device *): %pV", level, vaf);
 
4612}
4613
4614void dev_printk(const char *level, const struct device *dev,
4615		const char *fmt, ...)
4616{
4617	struct va_format vaf;
4618	va_list args;
 
4619
4620	va_start(args, fmt);
4621
4622	vaf.fmt = fmt;
4623	vaf.va = &args;
4624
4625	__dev_printk(level, dev, &vaf);
4626
4627	va_end(args);
 
 
4628}
4629EXPORT_SYMBOL(dev_printk);
4630
4631#define define_dev_printk_level(func, kern_level)		\
4632void func(const struct device *dev, const char *fmt, ...)	\
4633{								\
4634	struct va_format vaf;					\
4635	va_list args;						\
 
4636								\
4637	va_start(args, fmt);					\
4638								\
4639	vaf.fmt = fmt;						\
4640	vaf.va = &args;						\
4641								\
4642	__dev_printk(kern_level, dev, &vaf);			\
4643								\
4644	va_end(args);						\
 
 
4645}								\
4646EXPORT_SYMBOL(func);
4647
4648define_dev_printk_level(_dev_emerg, KERN_EMERG);
4649define_dev_printk_level(_dev_alert, KERN_ALERT);
4650define_dev_printk_level(_dev_crit, KERN_CRIT);
4651define_dev_printk_level(_dev_err, KERN_ERR);
4652define_dev_printk_level(_dev_warn, KERN_WARNING);
4653define_dev_printk_level(_dev_notice, KERN_NOTICE);
4654define_dev_printk_level(_dev_info, KERN_INFO);
4655
4656#endif
4657
4658/**
4659 * dev_err_probe - probe error check and log helper
4660 * @dev: the pointer to the struct device
4661 * @err: error value to test
4662 * @fmt: printf-style format string
4663 * @...: arguments as specified in the format string
4664 *
4665 * This helper implements common pattern present in probe functions for error
4666 * checking: print debug or error message depending if the error value is
4667 * -EPROBE_DEFER and propagate error upwards.
4668 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4669 * checked later by reading devices_deferred debugfs attribute.
4670 * It replaces code sequence::
4671 *
4672 * 	if (err != -EPROBE_DEFER)
4673 * 		dev_err(dev, ...);
4674 * 	else
4675 * 		dev_dbg(dev, ...);
4676 * 	return err;
4677 *
4678 * with::
4679 *
4680 * 	return dev_err_probe(dev, err, ...);
4681 *
4682 * Returns @err.
4683 *
4684 */
4685int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4686{
4687	struct va_format vaf;
4688	va_list args;
4689
4690	va_start(args, fmt);
4691	vaf.fmt = fmt;
4692	vaf.va = &args;
4693
4694	if (err != -EPROBE_DEFER) {
4695		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4696	} else {
4697		device_set_deferred_probe_reason(dev, &vaf);
4698		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4699	}
4700
4701	va_end(args);
4702
4703	return err;
4704}
4705EXPORT_SYMBOL_GPL(dev_err_probe);
4706
4707static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4708{
4709	return fwnode && !IS_ERR(fwnode->secondary);
4710}
4711
4712/**
4713 * set_primary_fwnode - Change the primary firmware node of a given device.
4714 * @dev: Device to handle.
4715 * @fwnode: New primary firmware node of the device.
4716 *
4717 * Set the device's firmware node pointer to @fwnode, but if a secondary
4718 * firmware node of the device is present, preserve it.
4719 *
4720 * Valid fwnode cases are:
4721 *  - primary --> secondary --> -ENODEV
4722 *  - primary --> NULL
4723 *  - secondary --> -ENODEV
4724 *  - NULL
4725 */
4726void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4727{
4728	struct device *parent = dev->parent;
4729	struct fwnode_handle *fn = dev->fwnode;
4730
4731	if (fwnode) {
4732		if (fwnode_is_primary(fn))
4733			fn = fn->secondary;
4734
4735		if (fn) {
4736			WARN_ON(fwnode->secondary);
4737			fwnode->secondary = fn;
4738		}
4739		dev->fwnode = fwnode;
4740	} else {
4741		if (fwnode_is_primary(fn)) {
4742			dev->fwnode = fn->secondary;
4743			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4744			if (!(parent && fn == parent->fwnode))
4745				fn->secondary = NULL;
4746		} else {
4747			dev->fwnode = NULL;
4748		}
4749	}
4750}
4751EXPORT_SYMBOL_GPL(set_primary_fwnode);
4752
4753/**
4754 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4755 * @dev: Device to handle.
4756 * @fwnode: New secondary firmware node of the device.
4757 *
4758 * If a primary firmware node of the device is present, set its secondary
4759 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4760 * @fwnode.
4761 */
4762void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4763{
4764	if (fwnode)
4765		fwnode->secondary = ERR_PTR(-ENODEV);
4766
4767	if (fwnode_is_primary(dev->fwnode))
4768		dev->fwnode->secondary = fwnode;
4769	else
4770		dev->fwnode = fwnode;
4771}
4772EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4773
4774/**
4775 * device_set_of_node_from_dev - reuse device-tree node of another device
4776 * @dev: device whose device-tree node is being set
4777 * @dev2: device whose device-tree node is being reused
4778 *
4779 * Takes another reference to the new device-tree node after first dropping
4780 * any reference held to the old node.
4781 */
4782void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4783{
4784	of_node_put(dev->of_node);
4785	dev->of_node = of_node_get(dev2->of_node);
4786	dev->of_node_reused = true;
4787}
4788EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4789
4790void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4791{
4792	dev->fwnode = fwnode;
4793	dev->of_node = to_of_node(fwnode);
4794}
4795EXPORT_SYMBOL_GPL(device_set_node);
4796
4797int device_match_name(struct device *dev, const void *name)
4798{
4799	return sysfs_streq(dev_name(dev), name);
4800}
4801EXPORT_SYMBOL_GPL(device_match_name);
4802
4803int device_match_of_node(struct device *dev, const void *np)
4804{
4805	return dev->of_node == np;
4806}
4807EXPORT_SYMBOL_GPL(device_match_of_node);
4808
4809int device_match_fwnode(struct device *dev, const void *fwnode)
4810{
4811	return dev_fwnode(dev) == fwnode;
4812}
4813EXPORT_SYMBOL_GPL(device_match_fwnode);
4814
4815int device_match_devt(struct device *dev, const void *pdevt)
4816{
4817	return dev->devt == *(dev_t *)pdevt;
4818}
4819EXPORT_SYMBOL_GPL(device_match_devt);
4820
4821int device_match_acpi_dev(struct device *dev, const void *adev)
4822{
4823	return ACPI_COMPANION(dev) == adev;
4824}
4825EXPORT_SYMBOL(device_match_acpi_dev);
4826
4827int device_match_any(struct device *dev, const void *unused)
4828{
4829	return 1;
4830}
4831EXPORT_SYMBOL_GPL(device_match_any);