Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include "blk-cgroup.h"
  13#include "blk.h"
 
  14
  15/* Max dispatch from a group in 1 round */
  16static int throtl_grp_quantum = 8;
  17
  18/* Total max dispatch from all groups in one round */
  19static int throtl_quantum = 32;
  20
  21/* Throttling is performed over 100ms slice and after that slice is renewed */
  22static unsigned long throtl_slice = HZ/10;	/* 100 ms */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24static struct blkcg_policy blkcg_policy_throtl;
  25
  26/* A workqueue to queue throttle related work */
  27static struct workqueue_struct *kthrotld_workqueue;
  28
  29/*
  30 * To implement hierarchical throttling, throtl_grps form a tree and bios
  31 * are dispatched upwards level by level until they reach the top and get
  32 * issued.  When dispatching bios from the children and local group at each
  33 * level, if the bios are dispatched into a single bio_list, there's a risk
  34 * of a local or child group which can queue many bios at once filling up
  35 * the list starving others.
  36 *
  37 * To avoid such starvation, dispatched bios are queued separately
  38 * according to where they came from.  When they are again dispatched to
  39 * the parent, they're popped in round-robin order so that no single source
  40 * hogs the dispatch window.
  41 *
  42 * throtl_qnode is used to keep the queued bios separated by their sources.
  43 * Bios are queued to throtl_qnode which in turn is queued to
  44 * throtl_service_queue and then dispatched in round-robin order.
  45 *
  46 * It's also used to track the reference counts on blkg's.  A qnode always
  47 * belongs to a throtl_grp and gets queued on itself or the parent, so
  48 * incrementing the reference of the associated throtl_grp when a qnode is
  49 * queued and decrementing when dequeued is enough to keep the whole blkg
  50 * tree pinned while bios are in flight.
  51 */
  52struct throtl_qnode {
  53	struct list_head	node;		/* service_queue->queued[] */
  54	struct bio_list		bios;		/* queued bios */
  55	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  56};
  57
  58struct throtl_service_queue {
  59	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  60
  61	/*
  62	 * Bios queued directly to this service_queue or dispatched from
  63	 * children throtl_grp's.
  64	 */
  65	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  66	unsigned int		nr_queued[2];	/* number of queued bios */
  67
  68	/*
  69	 * RB tree of active children throtl_grp's, which are sorted by
  70	 * their ->disptime.
  71	 */
  72	struct rb_root		pending_tree;	/* RB tree of active tgs */
  73	struct rb_node		*first_pending;	/* first node in the tree */
  74	unsigned int		nr_pending;	/* # queued in the tree */
  75	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  76	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  77};
  78
  79enum tg_state_flags {
  80	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  81	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  82};
  83
  84#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
  85
  86/* Per-cpu group stats */
  87struct tg_stats_cpu {
  88	/* total bytes transferred */
  89	struct blkg_rwstat		service_bytes;
  90	/* total IOs serviced, post merge */
  91	struct blkg_rwstat		serviced;
  92};
  93
  94struct throtl_grp {
  95	/* must be the first member */
  96	struct blkg_policy_data pd;
  97
  98	/* active throtl group service_queue member */
  99	struct rb_node rb_node;
 100
 101	/* throtl_data this group belongs to */
 102	struct throtl_data *td;
 103
 104	/* this group's service queue */
 105	struct throtl_service_queue service_queue;
 106
 107	/*
 108	 * qnode_on_self is used when bios are directly queued to this
 109	 * throtl_grp so that local bios compete fairly with bios
 110	 * dispatched from children.  qnode_on_parent is used when bios are
 111	 * dispatched from this throtl_grp into its parent and will compete
 112	 * with the sibling qnode_on_parents and the parent's
 113	 * qnode_on_self.
 114	 */
 115	struct throtl_qnode qnode_on_self[2];
 116	struct throtl_qnode qnode_on_parent[2];
 117
 118	/*
 119	 * Dispatch time in jiffies. This is the estimated time when group
 120	 * will unthrottle and is ready to dispatch more bio. It is used as
 121	 * key to sort active groups in service tree.
 122	 */
 123	unsigned long disptime;
 124
 125	unsigned int flags;
 126
 127	/* are there any throtl rules between this group and td? */
 128	bool has_rules[2];
 129
 130	/* bytes per second rate limits */
 131	uint64_t bps[2];
 132
 133	/* IOPS limits */
 134	unsigned int iops[2];
 
 
 
 
 135
 136	/* Number of bytes disptached in current slice */
 137	uint64_t bytes_disp[2];
 138	/* Number of bio's dispatched in current slice */
 139	unsigned int io_disp[2];
 140
 
 
 
 
 
 
 
 
 
 141	/* When did we start a new slice */
 142	unsigned long slice_start[2];
 143	unsigned long slice_end[2];
 144
 145	/* Per cpu stats pointer */
 146	struct tg_stats_cpu __percpu *stats_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/* List of tgs waiting for per cpu stats memory to be allocated */
 149	struct list_head stats_alloc_node;
 
 150};
 151
 152struct throtl_data
 153{
 154	/* service tree for active throtl groups */
 155	struct throtl_service_queue service_queue;
 156
 157	struct request_queue *queue;
 158
 159	/* Total Number of queued bios on READ and WRITE lists */
 160	unsigned int nr_queued[2];
 161
 162	/*
 163	 * number of total undestroyed groups
 164	 */
 165	unsigned int nr_undestroyed_grps;
 166
 167	/* Work for dispatching throttled bios */
 168	struct work_struct dispatch_work;
 169};
 
 
 
 
 170
 171/* list and work item to allocate percpu group stats */
 172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
 173static LIST_HEAD(tg_stats_alloc_list);
 174
 175static void tg_stats_alloc_fn(struct work_struct *);
 176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
 
 
 
 
 
 
 177
 178static void throtl_pending_timer_fn(unsigned long arg);
 179
 180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 181{
 182	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 183}
 184
 185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 186{
 187	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 188}
 189
 190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 191{
 192	return pd_to_blkg(&tg->pd);
 193}
 194
 195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
 196{
 197	return blkg_to_tg(td->queue->root_blkg);
 198}
 199
 200/**
 201 * sq_to_tg - return the throl_grp the specified service queue belongs to
 202 * @sq: the throtl_service_queue of interest
 203 *
 204 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 205 * embedded in throtl_data, %NULL is returned.
 206 */
 207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 208{
 209	if (sq && sq->parent_sq)
 210		return container_of(sq, struct throtl_grp, service_queue);
 211	else
 212		return NULL;
 213}
 214
 215/**
 216 * sq_to_td - return throtl_data the specified service queue belongs to
 217 * @sq: the throtl_service_queue of interest
 218 *
 219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 220 * Determine the associated throtl_data accordingly and return it.
 221 */
 222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 223{
 224	struct throtl_grp *tg = sq_to_tg(sq);
 225
 226	if (tg)
 227		return tg->td;
 228	else
 229		return container_of(sq, struct throtl_data, service_queue);
 230}
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232/**
 233 * throtl_log - log debug message via blktrace
 234 * @sq: the service_queue being reported
 235 * @fmt: printf format string
 236 * @args: printf args
 237 *
 238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 239 * throtl_grp; otherwise, just "throtl".
 240 *
 241 * TODO: this should be made a function and name formatting should happen
 242 * after testing whether blktrace is enabled.
 243 */
 244#define throtl_log(sq, fmt, args...)	do {				\
 245	struct throtl_grp *__tg = sq_to_tg((sq));			\
 246	struct throtl_data *__td = sq_to_td((sq));			\
 247									\
 248	(void)__td;							\
 
 
 249	if ((__tg)) {							\
 250		char __pbuf[128];					\
 251									\
 252		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
 253		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
 254	} else {							\
 255		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 256	}								\
 257} while (0)
 258
 259static void tg_stats_init(struct tg_stats_cpu *tg_stats)
 260{
 261	blkg_rwstat_init(&tg_stats->service_bytes);
 262	blkg_rwstat_init(&tg_stats->serviced);
 263}
 264
 265/*
 266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
 267 * system_wq once there are some groups on the alloc_list waiting for
 268 * allocation.
 269 */
 270static void tg_stats_alloc_fn(struct work_struct *work)
 271{
 272	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
 273	struct delayed_work *dwork = to_delayed_work(work);
 274	bool empty = false;
 275
 276alloc_stats:
 277	if (!stats_cpu) {
 278		int cpu;
 279
 280		stats_cpu = alloc_percpu(struct tg_stats_cpu);
 281		if (!stats_cpu) {
 282			/* allocation failed, try again after some time */
 283			schedule_delayed_work(dwork, msecs_to_jiffies(10));
 284			return;
 285		}
 286		for_each_possible_cpu(cpu)
 287			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
 288	}
 289
 290	spin_lock_irq(&tg_stats_alloc_lock);
 291
 292	if (!list_empty(&tg_stats_alloc_list)) {
 293		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
 294							 struct throtl_grp,
 295							 stats_alloc_node);
 296		swap(tg->stats_cpu, stats_cpu);
 297		list_del_init(&tg->stats_alloc_node);
 298	}
 299
 300	empty = list_empty(&tg_stats_alloc_list);
 301	spin_unlock_irq(&tg_stats_alloc_lock);
 302	if (!empty)
 303		goto alloc_stats;
 304}
 305
 306static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 307{
 308	INIT_LIST_HEAD(&qn->node);
 309	bio_list_init(&qn->bios);
 310	qn->tg = tg;
 311}
 312
 313/**
 314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 315 * @bio: bio being added
 316 * @qn: qnode to add bio to
 317 * @queued: the service_queue->queued[] list @qn belongs to
 318 *
 319 * Add @bio to @qn and put @qn on @queued if it's not already on.
 320 * @qn->tg's reference count is bumped when @qn is activated.  See the
 321 * comment on top of throtl_qnode definition for details.
 322 */
 323static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 324				 struct list_head *queued)
 325{
 326	bio_list_add(&qn->bios, bio);
 327	if (list_empty(&qn->node)) {
 328		list_add_tail(&qn->node, queued);
 329		blkg_get(tg_to_blkg(qn->tg));
 330	}
 331}
 332
 333/**
 334 * throtl_peek_queued - peek the first bio on a qnode list
 335 * @queued: the qnode list to peek
 336 */
 337static struct bio *throtl_peek_queued(struct list_head *queued)
 338{
 339	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 340	struct bio *bio;
 341
 342	if (list_empty(queued))
 343		return NULL;
 344
 
 345	bio = bio_list_peek(&qn->bios);
 346	WARN_ON_ONCE(!bio);
 347	return bio;
 348}
 349
 350/**
 351 * throtl_pop_queued - pop the first bio form a qnode list
 352 * @queued: the qnode list to pop a bio from
 353 * @tg_to_put: optional out argument for throtl_grp to put
 354 *
 355 * Pop the first bio from the qnode list @queued.  After popping, the first
 356 * qnode is removed from @queued if empty or moved to the end of @queued so
 357 * that the popping order is round-robin.
 358 *
 359 * When the first qnode is removed, its associated throtl_grp should be put
 360 * too.  If @tg_to_put is NULL, this function automatically puts it;
 361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 362 * responsible for putting it.
 363 */
 364static struct bio *throtl_pop_queued(struct list_head *queued,
 365				     struct throtl_grp **tg_to_put)
 366{
 367	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 368	struct bio *bio;
 369
 370	if (list_empty(queued))
 371		return NULL;
 372
 
 373	bio = bio_list_pop(&qn->bios);
 374	WARN_ON_ONCE(!bio);
 375
 376	if (bio_list_empty(&qn->bios)) {
 377		list_del_init(&qn->node);
 378		if (tg_to_put)
 379			*tg_to_put = qn->tg;
 380		else
 381			blkg_put(tg_to_blkg(qn->tg));
 382	} else {
 383		list_move_tail(&qn->node, queued);
 384	}
 385
 386	return bio;
 387}
 388
 389/* init a service_queue, assumes the caller zeroed it */
 390static void throtl_service_queue_init(struct throtl_service_queue *sq,
 391				      struct throtl_service_queue *parent_sq)
 392{
 393	INIT_LIST_HEAD(&sq->queued[0]);
 394	INIT_LIST_HEAD(&sq->queued[1]);
 395	sq->pending_tree = RB_ROOT;
 396	sq->parent_sq = parent_sq;
 397	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
 398		    (unsigned long)sq);
 399}
 400
 401static void throtl_service_queue_exit(struct throtl_service_queue *sq)
 
 
 402{
 403	del_timer_sync(&sq->pending_timer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406static void throtl_pd_init(struct blkcg_gq *blkg)
 407{
 408	struct throtl_grp *tg = blkg_to_tg(blkg);
 
 409	struct throtl_data *td = blkg->q->td;
 410	struct throtl_service_queue *parent_sq;
 411	unsigned long flags;
 412	int rw;
 413
 414	/*
 415	 * If sane_hierarchy is enabled, we switch to properly hierarchical
 416	 * behavior where limits on a given throtl_grp are applied to the
 417	 * whole subtree rather than just the group itself.  e.g. If 16M
 418	 * read_bps limit is set on the root group, the whole system can't
 419	 * exceed 16M for the device.
 420	 *
 421	 * If sane_hierarchy is not enabled, the broken flat hierarchy
 422	 * behavior is retained where all throtl_grps are treated as if
 423	 * they're all separate root groups right below throtl_data.
 424	 * Limits of a group don't interact with limits of other groups
 425	 * regardless of the position of the group in the hierarchy.
 426	 */
 427	parent_sq = &td->service_queue;
 428
 429	if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
 430		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 431
 432	throtl_service_queue_init(&tg->service_queue, parent_sq);
 433
 434	for (rw = READ; rw <= WRITE; rw++) {
 435		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 436		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 437	}
 438
 439	RB_CLEAR_NODE(&tg->rb_node);
 440	tg->td = td;
 441
 442	tg->bps[READ] = -1;
 443	tg->bps[WRITE] = -1;
 444	tg->iops[READ] = -1;
 445	tg->iops[WRITE] = -1;
 446
 447	/*
 448	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
 449	 * but percpu allocator can't be called from IO path.  Queue tg on
 450	 * tg_stats_alloc_list and allocate from work item.
 451	 */
 452	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 453	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
 454	schedule_delayed_work(&tg_stats_alloc_work, 0);
 455	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 456}
 457
 458/*
 459 * Set has_rules[] if @tg or any of its parents have limits configured.
 460 * This doesn't require walking up to the top of the hierarchy as the
 461 * parent's has_rules[] is guaranteed to be correct.
 462 */
 463static void tg_update_has_rules(struct throtl_grp *tg)
 464{
 465	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 
 466	int rw;
 467
 468	for (rw = READ; rw <= WRITE; rw++)
 469		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 470				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
 
 
 471}
 472
 473static void throtl_pd_online(struct blkcg_gq *blkg)
 474{
 
 475	/*
 476	 * We don't want new groups to escape the limits of its ancestors.
 477	 * Update has_rules[] after a new group is brought online.
 478	 */
 479	tg_update_has_rules(blkg_to_tg(blkg));
 480}
 481
 482static void throtl_pd_exit(struct blkcg_gq *blkg)
 
 483{
 484	struct throtl_grp *tg = blkg_to_tg(blkg);
 485	unsigned long flags;
 
 486
 487	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 488	list_del_init(&tg->stats_alloc_node);
 489	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 490
 491	free_percpu(tg->stats_cpu);
 
 
 
 
 
 
 492
 493	throtl_service_queue_exit(&tg->service_queue);
 494}
 495
 496static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
 497{
 498	struct throtl_grp *tg = blkg_to_tg(blkg);
 499	int cpu;
 500
 501	if (tg->stats_cpu == NULL)
 502		return;
 503
 504	for_each_possible_cpu(cpu) {
 505		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
 506
 507		blkg_rwstat_reset(&sc->service_bytes);
 508		blkg_rwstat_reset(&sc->serviced);
 509	}
 510}
 
 511
 512static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
 513					   struct blkcg *blkcg)
 514{
 515	/*
 516	 * This is the common case when there are no blkcgs.  Avoid lookup
 517	 * in this case
 518	 */
 519	if (blkcg == &blkcg_root)
 520		return td_root_tg(td);
 521
 522	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
 523}
 
 
 524
 525static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
 526						  struct blkcg *blkcg)
 527{
 528	struct request_queue *q = td->queue;
 529	struct throtl_grp *tg = NULL;
 530
 531	/*
 532	 * This is the common case when there are no blkcgs.  Avoid lookup
 533	 * in this case
 534	 */
 535	if (blkcg == &blkcg_root) {
 536		tg = td_root_tg(td);
 537	} else {
 538		struct blkcg_gq *blkg;
 539
 540		blkg = blkg_lookup_create(blkcg, q);
 541
 542		/* if %NULL and @q is alive, fall back to root_tg */
 543		if (!IS_ERR(blkg))
 544			tg = blkg_to_tg(blkg);
 545		else if (!blk_queue_dying(q))
 546			tg = td_root_tg(td);
 547	}
 548
 549	return tg;
 
 
 
 550}
 551
 552static struct throtl_grp *
 553throtl_rb_first(struct throtl_service_queue *parent_sq)
 554{
 555	/* Service tree is empty */
 556	if (!parent_sq->nr_pending)
 557		return NULL;
 558
 559	if (!parent_sq->first_pending)
 560		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 561
 562	if (parent_sq->first_pending)
 563		return rb_entry_tg(parent_sq->first_pending);
 564
 565	return NULL;
 566}
 567
 568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 569{
 570	rb_erase(n, root);
 571	RB_CLEAR_NODE(n);
 
 572}
 573
 574static void throtl_rb_erase(struct rb_node *n,
 575			    struct throtl_service_queue *parent_sq)
 576{
 577	if (parent_sq->first_pending == n)
 578		parent_sq->first_pending = NULL;
 579	rb_erase_init(n, &parent_sq->pending_tree);
 580	--parent_sq->nr_pending;
 581}
 582
 583static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 584{
 585	struct throtl_grp *tg;
 586
 587	tg = throtl_rb_first(parent_sq);
 588	if (!tg)
 589		return;
 590
 591	parent_sq->first_pending_disptime = tg->disptime;
 592}
 593
 594static void tg_service_queue_add(struct throtl_grp *tg)
 595{
 596	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 597	struct rb_node **node = &parent_sq->pending_tree.rb_node;
 598	struct rb_node *parent = NULL;
 599	struct throtl_grp *__tg;
 600	unsigned long key = tg->disptime;
 601	int left = 1;
 602
 603	while (*node != NULL) {
 604		parent = *node;
 605		__tg = rb_entry_tg(parent);
 606
 607		if (time_before(key, __tg->disptime))
 608			node = &parent->rb_left;
 609		else {
 610			node = &parent->rb_right;
 611			left = 0;
 612		}
 613	}
 614
 615	if (left)
 616		parent_sq->first_pending = &tg->rb_node;
 617
 618	rb_link_node(&tg->rb_node, parent, node);
 619	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 620}
 621
 622static void __throtl_enqueue_tg(struct throtl_grp *tg)
 623{
 624	tg_service_queue_add(tg);
 625	tg->flags |= THROTL_TG_PENDING;
 626	tg->service_queue.parent_sq->nr_pending++;
 627}
 628
 629static void throtl_enqueue_tg(struct throtl_grp *tg)
 630{
 631	if (!(tg->flags & THROTL_TG_PENDING))
 632		__throtl_enqueue_tg(tg);
 633}
 634
 635static void __throtl_dequeue_tg(struct throtl_grp *tg)
 636{
 637	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 638	tg->flags &= ~THROTL_TG_PENDING;
 639}
 640
 641static void throtl_dequeue_tg(struct throtl_grp *tg)
 642{
 643	if (tg->flags & THROTL_TG_PENDING)
 644		__throtl_dequeue_tg(tg);
 
 
 645}
 646
 647/* Call with queue lock held */
 648static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 649					  unsigned long expires)
 650{
 
 
 
 
 
 
 
 
 
 
 
 651	mod_timer(&sq->pending_timer, expires);
 652	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 653		   expires - jiffies, jiffies);
 654}
 655
 656/**
 657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 658 * @sq: the service_queue to schedule dispatch for
 659 * @force: force scheduling
 660 *
 661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 662 * dispatch time of the first pending child.  Returns %true if either timer
 663 * is armed or there's no pending child left.  %false if the current
 664 * dispatch window is still open and the caller should continue
 665 * dispatching.
 666 *
 667 * If @force is %true, the dispatch timer is always scheduled and this
 668 * function is guaranteed to return %true.  This is to be used when the
 669 * caller can't dispatch itself and needs to invoke pending_timer
 670 * unconditionally.  Note that forced scheduling is likely to induce short
 671 * delay before dispatch starts even if @sq->first_pending_disptime is not
 672 * in the future and thus shouldn't be used in hot paths.
 673 */
 674static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 675					  bool force)
 676{
 677	/* any pending children left? */
 678	if (!sq->nr_pending)
 679		return true;
 680
 681	update_min_dispatch_time(sq);
 682
 683	/* is the next dispatch time in the future? */
 684	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 685		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 686		return true;
 687	}
 688
 689	/* tell the caller to continue dispatching */
 690	return false;
 691}
 692
 693static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 694		bool rw, unsigned long start)
 695{
 696	tg->bytes_disp[rw] = 0;
 697	tg->io_disp[rw] = 0;
 698
 
 
 699	/*
 700	 * Previous slice has expired. We must have trimmed it after last
 701	 * bio dispatch. That means since start of last slice, we never used
 702	 * that bandwidth. Do try to make use of that bandwidth while giving
 703	 * credit.
 704	 */
 705	if (time_after_eq(start, tg->slice_start[rw]))
 706		tg->slice_start[rw] = start;
 707
 708	tg->slice_end[rw] = jiffies + throtl_slice;
 709	throtl_log(&tg->service_queue,
 710		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 711		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 712		   tg->slice_end[rw], jiffies);
 713}
 714
 715static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 716{
 717	tg->bytes_disp[rw] = 0;
 718	tg->io_disp[rw] = 0;
 719	tg->slice_start[rw] = jiffies;
 720	tg->slice_end[rw] = jiffies + throtl_slice;
 
 
 
 721	throtl_log(&tg->service_queue,
 722		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 723		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 724		   tg->slice_end[rw], jiffies);
 725}
 726
 727static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 728					unsigned long jiffy_end)
 729{
 730	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 731}
 732
 733static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 734				       unsigned long jiffy_end)
 735{
 736	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 737	throtl_log(&tg->service_queue,
 738		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 739		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 740		   tg->slice_end[rw], jiffies);
 741}
 742
 743/* Determine if previously allocated or extended slice is complete or not */
 744static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 745{
 746	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 747		return 0;
 748
 749	return 1;
 750}
 751
 752/* Trim the used slices and adjust slice start accordingly */
 753static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 754{
 755	unsigned long nr_slices, time_elapsed, io_trim;
 756	u64 bytes_trim, tmp;
 757
 758	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 759
 760	/*
 761	 * If bps are unlimited (-1), then time slice don't get
 762	 * renewed. Don't try to trim the slice if slice is used. A new
 763	 * slice will start when appropriate.
 764	 */
 765	if (throtl_slice_used(tg, rw))
 766		return;
 767
 768	/*
 769	 * A bio has been dispatched. Also adjust slice_end. It might happen
 770	 * that initially cgroup limit was very low resulting in high
 771	 * slice_end, but later limit was bumped up and bio was dispached
 772	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 773	 * is bad because it does not allow new slice to start.
 774	 */
 775
 776	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
 777
 778	time_elapsed = jiffies - tg->slice_start[rw];
 779
 780	nr_slices = time_elapsed / throtl_slice;
 781
 782	if (!nr_slices)
 783		return;
 784	tmp = tg->bps[rw] * throtl_slice * nr_slices;
 785	do_div(tmp, HZ);
 786	bytes_trim = tmp;
 787
 788	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 
 789
 790	if (!bytes_trim && !io_trim)
 791		return;
 792
 793	if (tg->bytes_disp[rw] >= bytes_trim)
 794		tg->bytes_disp[rw] -= bytes_trim;
 795	else
 796		tg->bytes_disp[rw] = 0;
 797
 798	if (tg->io_disp[rw] >= io_trim)
 799		tg->io_disp[rw] -= io_trim;
 800	else
 801		tg->io_disp[rw] = 0;
 802
 803	tg->slice_start[rw] += nr_slices * throtl_slice;
 804
 805	throtl_log(&tg->service_queue,
 806		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 807		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 808		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 809}
 810
 811static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 812				  unsigned long *wait)
 813{
 814	bool rw = bio_data_dir(bio);
 815	unsigned int io_allowed;
 816	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 817	u64 tmp;
 818
 819	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 
 
 
 
 820
 821	/* Slice has just started. Consider one slice interval */
 822	if (!jiffy_elapsed)
 823		jiffy_elapsed_rnd = throtl_slice;
 824
 825	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 
 826
 827	/*
 828	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 829	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 830	 * will allow dispatch after 1 second and after that slice should
 831	 * have been trimmed.
 832	 */
 833
 834	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 835	do_div(tmp, HZ);
 836
 837	if (tmp > UINT_MAX)
 838		io_allowed = UINT_MAX;
 839	else
 840		io_allowed = tmp;
 841
 842	if (tg->io_disp[rw] + 1 <= io_allowed) {
 843		if (wait)
 844			*wait = 0;
 845		return 1;
 846	}
 847
 848	/* Calc approx time to dispatch */
 849	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 850
 851	if (jiffy_wait > jiffy_elapsed)
 852		jiffy_wait = jiffy_wait - jiffy_elapsed;
 853	else
 854		jiffy_wait = 1;
 855
 856	if (wait)
 857		*wait = jiffy_wait;
 858	return 0;
 859}
 860
 861static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 862				 unsigned long *wait)
 863{
 864	bool rw = bio_data_dir(bio);
 865	u64 bytes_allowed, extra_bytes, tmp;
 866	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 
 
 
 
 
 
 
 867
 868	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 869
 870	/* Slice has just started. Consider one slice interval */
 871	if (!jiffy_elapsed)
 872		jiffy_elapsed_rnd = throtl_slice;
 873
 874	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 875
 876	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 877	do_div(tmp, HZ);
 878	bytes_allowed = tmp;
 879
 880	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
 881		if (wait)
 882			*wait = 0;
 883		return 1;
 884	}
 885
 886	/* Calc approx time to dispatch */
 887	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
 888	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 889
 890	if (!jiffy_wait)
 891		jiffy_wait = 1;
 892
 893	/*
 894	 * This wait time is without taking into consideration the rounding
 895	 * up we did. Add that time also.
 896	 */
 897	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 898	if (wait)
 899		*wait = jiffy_wait;
 900	return 0;
 901}
 902
 903/*
 904 * Returns whether one can dispatch a bio or not. Also returns approx number
 905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 906 */
 907static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 908			    unsigned long *wait)
 909{
 910	bool rw = bio_data_dir(bio);
 911	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 
 
 912
 913	/*
 914 	 * Currently whole state machine of group depends on first bio
 915	 * queued in the group bio list. So one should not be calling
 916	 * this function with a different bio if there are other bios
 917	 * queued.
 918	 */
 919	BUG_ON(tg->service_queue.nr_queued[rw] &&
 920	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 921
 922	/* If tg->bps = -1, then BW is unlimited */
 923	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 924		if (wait)
 925			*wait = 0;
 926		return 1;
 927	}
 928
 929	/*
 930	 * If previous slice expired, start a new one otherwise renew/extend
 931	 * existing slice to make sure it is at least throtl_slice interval
 932	 * long since now.
 
 
 933	 */
 934	if (throtl_slice_used(tg, rw))
 935		throtl_start_new_slice(tg, rw);
 936	else {
 937		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 938			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
 
 
 939	}
 940
 941	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
 942	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
 
 
 
 943		if (wait)
 944			*wait = 0;
 945		return 1;
 946	}
 947
 948	max_wait = max(bps_wait, iops_wait);
 949
 950	if (wait)
 951		*wait = max_wait;
 952
 953	if (time_before(tg->slice_end[rw], jiffies + max_wait))
 954		throtl_extend_slice(tg, rw, jiffies + max_wait);
 955
 956	return 0;
 957}
 958
 959static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
 960					 int rw)
 961{
 962	struct throtl_grp *tg = blkg_to_tg(blkg);
 963	struct tg_stats_cpu *stats_cpu;
 964	unsigned long flags;
 965
 966	/* If per cpu stats are not allocated yet, don't do any accounting. */
 967	if (tg->stats_cpu == NULL)
 968		return;
 969
 970	/*
 971	 * Disabling interrupts to provide mutual exclusion between two
 972	 * writes on same cpu. It probably is not needed for 64bit. Not
 973	 * optimizing that case yet.
 974	 */
 975	local_irq_save(flags);
 976
 977	stats_cpu = this_cpu_ptr(tg->stats_cpu);
 978
 979	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
 980	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
 981
 982	local_irq_restore(flags);
 983}
 984
 985static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 986{
 987	bool rw = bio_data_dir(bio);
 
 988
 989	/* Charge the bio to the group */
 990	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
 991	tg->io_disp[rw]++;
 
 
 992
 993	/*
 994	 * REQ_THROTTLED is used to prevent the same bio to be throttled
 995	 * more than once as a throttled bio will go through blk-throtl the
 996	 * second time when it eventually gets issued.  Set it when a bio
 997	 * is being charged to a tg.
 998	 *
 999	 * Dispatch stats aren't recursive and each @bio should only be
1000	 * accounted by the @tg it was originally associated with.  Let's
1001	 * update the stats when setting REQ_THROTTLED for the first time
1002	 * which is guaranteed to be for the @bio's original tg.
1003	 */
1004	if (!(bio->bi_rw & REQ_THROTTLED)) {
1005		bio->bi_rw |= REQ_THROTTLED;
1006		throtl_update_dispatch_stats(tg_to_blkg(tg),
1007					     bio->bi_iter.bi_size, bio->bi_rw);
1008	}
1009}
1010
1011/**
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013 * @bio: bio to add
1014 * @qn: qnode to use
1015 * @tg: the target throtl_grp
1016 *
1017 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1019 */
1020static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021			      struct throtl_grp *tg)
1022{
1023	struct throtl_service_queue *sq = &tg->service_queue;
1024	bool rw = bio_data_dir(bio);
1025
1026	if (!qn)
1027		qn = &tg->qnode_on_self[rw];
1028
1029	/*
1030	 * If @tg doesn't currently have any bios queued in the same
1031	 * direction, queueing @bio can change when @tg should be
1032	 * dispatched.  Mark that @tg was empty.  This is automatically
1033	 * cleaered on the next tg_update_disptime().
1034	 */
1035	if (!sq->nr_queued[rw])
1036		tg->flags |= THROTL_TG_WAS_EMPTY;
1037
1038	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039
1040	sq->nr_queued[rw]++;
1041	throtl_enqueue_tg(tg);
1042}
1043
1044static void tg_update_disptime(struct throtl_grp *tg)
1045{
1046	struct throtl_service_queue *sq = &tg->service_queue;
1047	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048	struct bio *bio;
1049
1050	if ((bio = throtl_peek_queued(&sq->queued[READ])))
 
1051		tg_may_dispatch(tg, bio, &read_wait);
1052
1053	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
 
1054		tg_may_dispatch(tg, bio, &write_wait);
1055
1056	min_wait = min(read_wait, write_wait);
1057	disptime = jiffies + min_wait;
1058
1059	/* Update dispatch time */
1060	throtl_dequeue_tg(tg);
1061	tg->disptime = disptime;
1062	throtl_enqueue_tg(tg);
1063
1064	/* see throtl_add_bio_tg() */
1065	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066}
1067
1068static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069					struct throtl_grp *parent_tg, bool rw)
1070{
1071	if (throtl_slice_used(parent_tg, rw)) {
1072		throtl_start_new_slice_with_credit(parent_tg, rw,
1073				child_tg->slice_start[rw]);
1074	}
1075
1076}
1077
1078static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079{
1080	struct throtl_service_queue *sq = &tg->service_queue;
1081	struct throtl_service_queue *parent_sq = sq->parent_sq;
1082	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083	struct throtl_grp *tg_to_put = NULL;
1084	struct bio *bio;
1085
1086	/*
1087	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1088	 * from @tg may put its reference and @parent_sq might end up
1089	 * getting released prematurely.  Remember the tg to put and put it
1090	 * after @bio is transferred to @parent_sq.
1091	 */
1092	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093	sq->nr_queued[rw]--;
1094
1095	throtl_charge_bio(tg, bio);
1096
1097	/*
1098	 * If our parent is another tg, we just need to transfer @bio to
1099	 * the parent using throtl_add_bio_tg().  If our parent is
1100	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1101	 * bio_lists[] and decrease total number queued.  The caller is
1102	 * responsible for issuing these bios.
1103	 */
1104	if (parent_tg) {
1105		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106		start_parent_slice_with_credit(tg, parent_tg, rw);
1107	} else {
1108		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109				     &parent_sq->queued[rw]);
1110		BUG_ON(tg->td->nr_queued[rw] <= 0);
1111		tg->td->nr_queued[rw]--;
1112	}
1113
1114	throtl_trim_slice(tg, rw);
1115
1116	if (tg_to_put)
1117		blkg_put(tg_to_blkg(tg_to_put));
1118}
1119
1120static int throtl_dispatch_tg(struct throtl_grp *tg)
1121{
1122	struct throtl_service_queue *sq = &tg->service_queue;
1123	unsigned int nr_reads = 0, nr_writes = 0;
1124	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126	struct bio *bio;
1127
1128	/* Try to dispatch 75% READS and 25% WRITES */
1129
1130	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131	       tg_may_dispatch(tg, bio, NULL)) {
1132
1133		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134		nr_reads++;
1135
1136		if (nr_reads >= max_nr_reads)
1137			break;
1138	}
1139
1140	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141	       tg_may_dispatch(tg, bio, NULL)) {
1142
1143		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144		nr_writes++;
1145
1146		if (nr_writes >= max_nr_writes)
1147			break;
1148	}
1149
1150	return nr_reads + nr_writes;
1151}
1152
1153static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154{
1155	unsigned int nr_disp = 0;
1156
1157	while (1) {
1158		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159		struct throtl_service_queue *sq = &tg->service_queue;
1160
 
 
 
 
1161		if (!tg)
1162			break;
1163
1164		if (time_before(jiffies, tg->disptime))
1165			break;
1166
1167		throtl_dequeue_tg(tg);
1168
1169		nr_disp += throtl_dispatch_tg(tg);
1170
 
1171		if (sq->nr_queued[0] || sq->nr_queued[1])
1172			tg_update_disptime(tg);
1173
1174		if (nr_disp >= throtl_quantum)
1175			break;
1176	}
1177
1178	return nr_disp;
1179}
1180
 
 
1181/**
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1184 *
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched.  This function
1188 * dispatches bio's from the children throtl_grps to the parent
1189 * service_queue.
1190 *
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly.  If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
1195 */
1196static void throtl_pending_timer_fn(unsigned long arg)
1197{
1198	struct throtl_service_queue *sq = (void *)arg;
1199	struct throtl_grp *tg = sq_to_tg(sq);
1200	struct throtl_data *td = sq_to_td(sq);
1201	struct request_queue *q = td->queue;
1202	struct throtl_service_queue *parent_sq;
1203	bool dispatched;
1204	int ret;
1205
1206	spin_lock_irq(q->queue_lock);
 
 
 
1207again:
1208	parent_sq = sq->parent_sq;
1209	dispatched = false;
1210
1211	while (true) {
1212		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215
1216		ret = throtl_select_dispatch(sq);
1217		if (ret) {
1218			throtl_log(sq, "bios disp=%u", ret);
1219			dispatched = true;
1220		}
1221
1222		if (throtl_schedule_next_dispatch(sq, false))
1223			break;
1224
1225		/* this dispatch windows is still open, relax and repeat */
1226		spin_unlock_irq(q->queue_lock);
1227		cpu_relax();
1228		spin_lock_irq(q->queue_lock);
1229	}
1230
1231	if (!dispatched)
1232		goto out_unlock;
1233
1234	if (parent_sq) {
1235		/* @parent_sq is another throl_grp, propagate dispatch */
1236		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237			tg_update_disptime(tg);
1238			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239				/* window is already open, repeat dispatching */
1240				sq = parent_sq;
1241				tg = sq_to_tg(sq);
1242				goto again;
1243			}
1244		}
1245	} else {
1246		/* reached the top-level, queue issueing */
1247		queue_work(kthrotld_workqueue, &td->dispatch_work);
1248	}
1249out_unlock:
1250	spin_unlock_irq(q->queue_lock);
1251}
1252
1253/**
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1256 *
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1259 * function.
1260 */
1261void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262{
1263	struct throtl_data *td = container_of(work, struct throtl_data,
1264					      dispatch_work);
1265	struct throtl_service_queue *td_sq = &td->service_queue;
1266	struct request_queue *q = td->queue;
1267	struct bio_list bio_list_on_stack;
1268	struct bio *bio;
1269	struct blk_plug plug;
1270	int rw;
1271
1272	bio_list_init(&bio_list_on_stack);
1273
1274	spin_lock_irq(q->queue_lock);
1275	for (rw = READ; rw <= WRITE; rw++)
1276		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277			bio_list_add(&bio_list_on_stack, bio);
1278	spin_unlock_irq(q->queue_lock);
1279
1280	if (!bio_list_empty(&bio_list_on_stack)) {
1281		blk_start_plug(&plug);
1282		while((bio = bio_list_pop(&bio_list_on_stack)))
1283			generic_make_request(bio);
1284		blk_finish_plug(&plug);
1285	}
1286}
1287
1288static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289				struct blkg_policy_data *pd, int off)
1290{
1291	struct throtl_grp *tg = pd_to_tg(pd);
1292	struct blkg_rwstat rwstat = { }, tmp;
1293	int i, cpu;
1294
1295	for_each_possible_cpu(cpu) {
1296		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1297
1298		tmp = blkg_rwstat_read((void *)sc + off);
1299		for (i = 0; i < BLKG_RWSTAT_NR; i++)
1300			rwstat.cnt[i] += tmp.cnt[i];
1301	}
1302
1303	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1304}
1305
1306static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1307{
1308	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1309			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1310	return 0;
1311}
1312
1313static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1314			      int off)
1315{
1316	struct throtl_grp *tg = pd_to_tg(pd);
1317	u64 v = *(u64 *)((void *)tg + off);
1318
1319	if (v == -1)
1320		return 0;
1321	return __blkg_prfill_u64(sf, pd, v);
1322}
1323
1324static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1325			       int off)
1326{
1327	struct throtl_grp *tg = pd_to_tg(pd);
1328	unsigned int v = *(unsigned int *)((void *)tg + off);
1329
1330	if (v == -1)
1331		return 0;
1332	return __blkg_prfill_u64(sf, pd, v);
1333}
1334
1335static int tg_print_conf_u64(struct seq_file *sf, void *v)
1336{
1337	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1338			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1339	return 0;
1340}
1341
1342static int tg_print_conf_uint(struct seq_file *sf, void *v)
1343{
1344	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1345			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346	return 0;
1347}
1348
1349static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
1350		       const char *buf, bool is_u64)
1351{
1352	struct blkcg *blkcg = css_to_blkcg(css);
1353	struct blkg_conf_ctx ctx;
1354	struct throtl_grp *tg;
1355	struct throtl_service_queue *sq;
1356	struct blkcg_gq *blkg;
1357	struct cgroup_subsys_state *pos_css;
1358	int ret;
1359
1360	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1361	if (ret)
1362		return ret;
1363
1364	tg = blkg_to_tg(ctx.blkg);
1365	sq = &tg->service_queue;
1366
1367	if (!ctx.v)
1368		ctx.v = -1;
1369
1370	if (is_u64)
1371		*(u64 *)((void *)tg + cft->private) = ctx.v;
1372	else
1373		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1374
1375	throtl_log(&tg->service_queue,
1376		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1377		   tg->bps[READ], tg->bps[WRITE],
1378		   tg->iops[READ], tg->iops[WRITE]);
1379
1380	/*
1381	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1382	 * considered to have rules if either the tg itself or any of its
1383	 * ancestors has rules.  This identifies groups without any
1384	 * restrictions in the whole hierarchy and allows them to bypass
1385	 * blk-throttle.
1386	 */
1387	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1388		tg_update_has_rules(blkg_to_tg(blkg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390	/*
1391	 * We're already holding queue_lock and know @tg is valid.  Let's
1392	 * apply the new config directly.
1393	 *
1394	 * Restart the slices for both READ and WRITES. It might happen
1395	 * that a group's limit are dropped suddenly and we don't want to
1396	 * account recently dispatched IO with new low rate.
1397	 */
1398	throtl_start_new_slice(tg, 0);
1399	throtl_start_new_slice(tg, 1);
1400
1401	if (tg->flags & THROTL_TG_PENDING) {
1402		tg_update_disptime(tg);
1403		throtl_schedule_next_dispatch(sq->parent_sq, true);
1404	}
 
 
 
 
 
 
 
 
 
 
1405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	blkg_conf_finish(&ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407	return 0;
1408}
1409
1410static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1411			   char *buf)
1412{
1413	return tg_set_conf(css, cft, buf, true);
 
 
 
 
1414}
1415
1416static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1417			    char *buf)
1418{
1419	return tg_set_conf(css, cft, buf, false);
 
 
 
1420}
1421
1422static struct cftype throtl_files[] = {
1423	{
1424		.name = "throttle.read_bps_device",
1425		.private = offsetof(struct throtl_grp, bps[READ]),
1426		.seq_show = tg_print_conf_u64,
1427		.write_string = tg_set_conf_u64,
1428	},
1429	{
1430		.name = "throttle.write_bps_device",
1431		.private = offsetof(struct throtl_grp, bps[WRITE]),
1432		.seq_show = tg_print_conf_u64,
1433		.write_string = tg_set_conf_u64,
1434	},
1435	{
1436		.name = "throttle.read_iops_device",
1437		.private = offsetof(struct throtl_grp, iops[READ]),
1438		.seq_show = tg_print_conf_uint,
1439		.write_string = tg_set_conf_uint,
1440	},
1441	{
1442		.name = "throttle.write_iops_device",
1443		.private = offsetof(struct throtl_grp, iops[WRITE]),
1444		.seq_show = tg_print_conf_uint,
1445		.write_string = tg_set_conf_uint,
1446	},
1447	{
1448		.name = "throttle.io_service_bytes",
1449		.private = offsetof(struct tg_stats_cpu, service_bytes),
1450		.seq_show = tg_print_cpu_rwstat,
 
 
 
 
 
1451	},
1452	{
1453		.name = "throttle.io_serviced",
1454		.private = offsetof(struct tg_stats_cpu, serviced),
1455		.seq_show = tg_print_cpu_rwstat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456	},
1457	{ }	/* terminate */
1458};
1459
1460static void throtl_shutdown_wq(struct request_queue *q)
1461{
1462	struct throtl_data *td = q->td;
1463
1464	cancel_work_sync(&td->dispatch_work);
1465}
1466
1467static struct blkcg_policy blkcg_policy_throtl = {
1468	.pd_size		= sizeof(struct throtl_grp),
1469	.cftypes		= throtl_files,
1470
 
1471	.pd_init_fn		= throtl_pd_init,
1472	.pd_online_fn		= throtl_pd_online,
1473	.pd_exit_fn		= throtl_pd_exit,
1474	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1475};
1476
1477bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1478{
1479	struct throtl_data *td = q->td;
1480	struct throtl_qnode *qn = NULL;
1481	struct throtl_grp *tg;
1482	struct throtl_service_queue *sq;
1483	bool rw = bio_data_dir(bio);
1484	struct blkcg *blkcg;
1485	bool throttled = false;
1486
1487	/* see throtl_charge_bio() */
1488	if (bio->bi_rw & REQ_THROTTLED)
1489		goto out;
 
 
 
1490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491	/*
1492	 * A throtl_grp pointer retrieved under rcu can be used to access
1493	 * basic fields like stats and io rates. If a group has no rules,
1494	 * just update the dispatch stats in lockless manner and return.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	rcu_read_lock();
1497	blkcg = bio_blkcg(bio);
1498	tg = throtl_lookup_tg(td, blkcg);
1499	if (tg) {
1500		if (!tg->has_rules[rw]) {
1501			throtl_update_dispatch_stats(tg_to_blkg(tg),
1502					bio->bi_iter.bi_size, bio->bi_rw);
1503			goto out_unlock_rcu;
 
 
 
1504		}
1505	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506
1507	/*
1508	 * Either group has not been allocated yet or it is not an unlimited
1509	 * IO group
1510	 */
1511	spin_lock_irq(q->queue_lock);
1512	tg = throtl_lookup_create_tg(td, blkcg);
1513	if (unlikely(!tg))
1514		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516	sq = &tg->service_queue;
1517
 
1518	while (true) {
 
 
 
 
1519		/* throtl is FIFO - if bios are already queued, should queue */
1520		if (sq->nr_queued[rw])
1521			break;
1522
1523		/* if above limits, break to queue */
1524		if (!tg_may_dispatch(tg, bio, NULL))
 
 
 
 
 
1525			break;
 
1526
1527		/* within limits, let's charge and dispatch directly */
1528		throtl_charge_bio(tg, bio);
1529
1530		/*
1531		 * We need to trim slice even when bios are not being queued
1532		 * otherwise it might happen that a bio is not queued for
1533		 * a long time and slice keeps on extending and trim is not
1534		 * called for a long time. Now if limits are reduced suddenly
1535		 * we take into account all the IO dispatched so far at new
1536		 * low rate and * newly queued IO gets a really long dispatch
1537		 * time.
1538		 *
1539		 * So keep on trimming slice even if bio is not queued.
1540		 */
1541		throtl_trim_slice(tg, rw);
1542
1543		/*
1544		 * @bio passed through this layer without being throttled.
1545		 * Climb up the ladder.  If we''re already at the top, it
1546		 * can be executed directly.
1547		 */
1548		qn = &tg->qnode_on_parent[rw];
1549		sq = sq->parent_sq;
1550		tg = sq_to_tg(sq);
1551		if (!tg)
1552			goto out_unlock;
1553	}
1554
1555	/* out-of-limit, queue to @tg */
1556	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1557		   rw == READ ? 'R' : 'W',
1558		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1559		   tg->io_disp[rw], tg->iops[rw],
 
1560		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1561
1562	bio_associate_current(bio);
1563	tg->td->nr_queued[rw]++;
 
1564	throtl_add_bio_tg(bio, qn, tg);
1565	throttled = true;
1566
1567	/*
1568	 * Update @tg's dispatch time and force schedule dispatch if @tg
1569	 * was empty before @bio.  The forced scheduling isn't likely to
1570	 * cause undue delay as @bio is likely to be dispatched directly if
1571	 * its @tg's disptime is not in the future.
1572	 */
1573	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1574		tg_update_disptime(tg);
1575		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1576	}
1577
1578out_unlock:
1579	spin_unlock_irq(q->queue_lock);
1580out_unlock_rcu:
1581	rcu_read_unlock();
1582out:
1583	/*
1584	 * As multiple blk-throtls may stack in the same issue path, we
1585	 * don't want bios to leave with the flag set.  Clear the flag if
1586	 * being issued.
1587	 */
1588	if (!throttled)
1589		bio->bi_rw &= ~REQ_THROTTLED;
1590	return throttled;
1591}
1592
1593/*
1594 * Dispatch all bios from all children tg's queued on @parent_sq.  On
1595 * return, @parent_sq is guaranteed to not have any active children tg's
1596 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1597 */
1598static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1599{
1600	struct throtl_grp *tg;
 
 
 
1601
1602	while ((tg = throtl_rb_first(parent_sq))) {
1603		struct throtl_service_queue *sq = &tg->service_queue;
1604		struct bio *bio;
1605
1606		throtl_dequeue_tg(tg);
1607
1608		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1609			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1610		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1611			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1612	}
1613}
1614
1615/**
1616 * blk_throtl_drain - drain throttled bios
1617 * @q: request_queue to drain throttled bios for
1618 *
1619 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1620 */
1621void blk_throtl_drain(struct request_queue *q)
1622	__releases(q->queue_lock) __acquires(q->queue_lock)
1623{
 
1624	struct throtl_data *td = q->td;
1625	struct blkcg_gq *blkg;
1626	struct cgroup_subsys_state *pos_css;
1627	struct bio *bio;
1628	int rw;
1629
1630	queue_lockdep_assert_held(q);
1631	rcu_read_lock();
 
1632
1633	/*
1634	 * Drain each tg while doing post-order walk on the blkg tree, so
1635	 * that all bios are propagated to td->service_queue.  It'd be
1636	 * better to walk service_queue tree directly but blkg walk is
1637	 * easier.
1638	 */
1639	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1640		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
 
 
 
 
 
 
 
 
1641
1642	/* finally, transfer bios from top-level tg's into the td */
1643	tg_drain_bios(&td->service_queue);
1644
1645	rcu_read_unlock();
1646	spin_unlock_irq(q->queue_lock);
 
 
1647
1648	/* all bios now should be in td->service_queue, issue them */
1649	for (rw = READ; rw <= WRITE; rw++)
1650		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1651						NULL)))
1652			generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653
1654	spin_lock_irq(q->queue_lock);
 
 
 
 
1655}
 
1656
1657int blk_throtl_init(struct request_queue *q)
1658{
1659	struct throtl_data *td;
1660	int ret;
1661
1662	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1663	if (!td)
1664		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
1665
1666	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1667	throtl_service_queue_init(&td->service_queue, NULL);
1668
1669	q->td = td;
1670	td->queue = q;
1671
 
 
 
 
 
1672	/* activate policy */
1673	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1674	if (ret)
 
 
1675		kfree(td);
 
1676	return ret;
1677}
1678
1679void blk_throtl_exit(struct request_queue *q)
1680{
1681	BUG_ON(!q->td);
 
1682	throtl_shutdown_wq(q);
1683	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
 
 
1684	kfree(q->td);
1685}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686
1687static int __init throtl_init(void)
1688{
1689	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1690	if (!kthrotld_workqueue)
1691		panic("Failed to create kthrotld\n");
1692
1693	return blkcg_policy_register(&blkcg_policy_throtl);
1694}
1695
1696module_init(throtl_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15#include "blk-cgroup-rwstat.h"
  16
  17/* Max dispatch from a group in 1 round */
  18#define THROTL_GRP_QUANTUM 8
  19
  20/* Total max dispatch from all groups in one round */
  21#define THROTL_QUANTUM 32
  22
  23/* Throttling is performed over a slice and after that slice is renewed */
  24#define DFL_THROTL_SLICE_HD (HZ / 10)
  25#define DFL_THROTL_SLICE_SSD (HZ / 50)
  26#define MAX_THROTL_SLICE (HZ)
  27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  28#define MIN_THROTL_BPS (320 * 1024)
  29#define MIN_THROTL_IOPS (10)
  30#define DFL_LATENCY_TARGET (-1L)
  31#define DFL_IDLE_THRESHOLD (0)
  32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  33#define LATENCY_FILTERED_SSD (0)
  34/*
  35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  36 * help determine if its IO is impacted by others, hence we ignore the IO
  37 */
  38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  39
  40static struct blkcg_policy blkcg_policy_throtl;
  41
  42/* A workqueue to queue throttle related work */
  43static struct workqueue_struct *kthrotld_workqueue;
  44
  45/*
  46 * To implement hierarchical throttling, throtl_grps form a tree and bios
  47 * are dispatched upwards level by level until they reach the top and get
  48 * issued.  When dispatching bios from the children and local group at each
  49 * level, if the bios are dispatched into a single bio_list, there's a risk
  50 * of a local or child group which can queue many bios at once filling up
  51 * the list starving others.
  52 *
  53 * To avoid such starvation, dispatched bios are queued separately
  54 * according to where they came from.  When they are again dispatched to
  55 * the parent, they're popped in round-robin order so that no single source
  56 * hogs the dispatch window.
  57 *
  58 * throtl_qnode is used to keep the queued bios separated by their sources.
  59 * Bios are queued to throtl_qnode which in turn is queued to
  60 * throtl_service_queue and then dispatched in round-robin order.
  61 *
  62 * It's also used to track the reference counts on blkg's.  A qnode always
  63 * belongs to a throtl_grp and gets queued on itself or the parent, so
  64 * incrementing the reference of the associated throtl_grp when a qnode is
  65 * queued and decrementing when dequeued is enough to keep the whole blkg
  66 * tree pinned while bios are in flight.
  67 */
  68struct throtl_qnode {
  69	struct list_head	node;		/* service_queue->queued[] */
  70	struct bio_list		bios;		/* queued bios */
  71	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  72};
  73
  74struct throtl_service_queue {
  75	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  76
  77	/*
  78	 * Bios queued directly to this service_queue or dispatched from
  79	 * children throtl_grp's.
  80	 */
  81	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  82	unsigned int		nr_queued[2];	/* number of queued bios */
  83
  84	/*
  85	 * RB tree of active children throtl_grp's, which are sorted by
  86	 * their ->disptime.
  87	 */
  88	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
 
  89	unsigned int		nr_pending;	/* # queued in the tree */
  90	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  91	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  92};
  93
  94enum tg_state_flags {
  95	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  96	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  97};
  98
  99#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
 100
 101enum {
 102	LIMIT_LOW,
 103	LIMIT_MAX,
 104	LIMIT_CNT,
 
 
 105};
 106
 107struct throtl_grp {
 108	/* must be the first member */
 109	struct blkg_policy_data pd;
 110
 111	/* active throtl group service_queue member */
 112	struct rb_node rb_node;
 113
 114	/* throtl_data this group belongs to */
 115	struct throtl_data *td;
 116
 117	/* this group's service queue */
 118	struct throtl_service_queue service_queue;
 119
 120	/*
 121	 * qnode_on_self is used when bios are directly queued to this
 122	 * throtl_grp so that local bios compete fairly with bios
 123	 * dispatched from children.  qnode_on_parent is used when bios are
 124	 * dispatched from this throtl_grp into its parent and will compete
 125	 * with the sibling qnode_on_parents and the parent's
 126	 * qnode_on_self.
 127	 */
 128	struct throtl_qnode qnode_on_self[2];
 129	struct throtl_qnode qnode_on_parent[2];
 130
 131	/*
 132	 * Dispatch time in jiffies. This is the estimated time when group
 133	 * will unthrottle and is ready to dispatch more bio. It is used as
 134	 * key to sort active groups in service tree.
 135	 */
 136	unsigned long disptime;
 137
 138	unsigned int flags;
 139
 140	/* are there any throtl rules between this group and td? */
 141	bool has_rules[2];
 142
 143	/* internally used bytes per second rate limits */
 144	uint64_t bps[2][LIMIT_CNT];
 145	/* user configured bps limits */
 146	uint64_t bps_conf[2][LIMIT_CNT];
 147
 148	/* internally used IOPS limits */
 149	unsigned int iops[2][LIMIT_CNT];
 150	/* user configured IOPS limits */
 151	unsigned int iops_conf[2][LIMIT_CNT];
 152
 153	/* Number of bytes dispatched in current slice */
 154	uint64_t bytes_disp[2];
 155	/* Number of bio's dispatched in current slice */
 156	unsigned int io_disp[2];
 157
 158	unsigned long last_low_overflow_time[2];
 159
 160	uint64_t last_bytes_disp[2];
 161	unsigned int last_io_disp[2];
 162
 163	unsigned long last_check_time;
 164
 165	unsigned long latency_target; /* us */
 166	unsigned long latency_target_conf; /* us */
 167	/* When did we start a new slice */
 168	unsigned long slice_start[2];
 169	unsigned long slice_end[2];
 170
 171	unsigned long last_finish_time; /* ns / 1024 */
 172	unsigned long checked_last_finish_time; /* ns / 1024 */
 173	unsigned long avg_idletime; /* ns / 1024 */
 174	unsigned long idletime_threshold; /* us */
 175	unsigned long idletime_threshold_conf; /* us */
 176
 177	unsigned int bio_cnt; /* total bios */
 178	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 179	unsigned long bio_cnt_reset_time;
 180
 181	atomic_t io_split_cnt[2];
 182	atomic_t last_io_split_cnt[2];
 183
 184	struct blkg_rwstat stat_bytes;
 185	struct blkg_rwstat stat_ios;
 186};
 187
 188/* We measure latency for request size from <= 4k to >= 1M */
 189#define LATENCY_BUCKET_SIZE 9
 190
 191struct latency_bucket {
 192	unsigned long total_latency; /* ns / 1024 */
 193	int samples;
 194};
 195
 196struct avg_latency_bucket {
 197	unsigned long latency; /* ns / 1024 */
 198	bool valid;
 199};
 200
 201struct throtl_data
 202{
 203	/* service tree for active throtl groups */
 204	struct throtl_service_queue service_queue;
 205
 206	struct request_queue *queue;
 207
 208	/* Total Number of queued bios on READ and WRITE lists */
 209	unsigned int nr_queued[2];
 210
 211	unsigned int throtl_slice;
 
 
 
 212
 213	/* Work for dispatching throttled bios */
 214	struct work_struct dispatch_work;
 215	unsigned int limit_index;
 216	bool limit_valid[LIMIT_CNT];
 217
 218	unsigned long low_upgrade_time;
 219	unsigned long low_downgrade_time;
 220
 221	unsigned int scale;
 
 
 222
 223	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 224	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 225	struct latency_bucket __percpu *latency_buckets[2];
 226	unsigned long last_calculate_time;
 227	unsigned long filtered_latency;
 228
 229	bool track_bio_latency;
 230};
 231
 232static void throtl_pending_timer_fn(struct timer_list *t);
 233
 234static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 235{
 236	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 237}
 238
 239static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 240{
 241	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 242}
 243
 244static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 245{
 246	return pd_to_blkg(&tg->pd);
 247}
 248
 
 
 
 
 
 249/**
 250 * sq_to_tg - return the throl_grp the specified service queue belongs to
 251 * @sq: the throtl_service_queue of interest
 252 *
 253 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 254 * embedded in throtl_data, %NULL is returned.
 255 */
 256static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 257{
 258	if (sq && sq->parent_sq)
 259		return container_of(sq, struct throtl_grp, service_queue);
 260	else
 261		return NULL;
 262}
 263
 264/**
 265 * sq_to_td - return throtl_data the specified service queue belongs to
 266 * @sq: the throtl_service_queue of interest
 267 *
 268 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 269 * Determine the associated throtl_data accordingly and return it.
 270 */
 271static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 272{
 273	struct throtl_grp *tg = sq_to_tg(sq);
 274
 275	if (tg)
 276		return tg->td;
 277	else
 278		return container_of(sq, struct throtl_data, service_queue);
 279}
 280
 281/*
 282 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 283 * make the IO dispatch more smooth.
 284 * Scale up: linearly scale up according to lapsed time since upgrade. For
 285 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 286 *           limit hits .max limit
 287 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 288 */
 289static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 290{
 291	/* arbitrary value to avoid too big scale */
 292	if (td->scale < 4096 && time_after_eq(jiffies,
 293	    td->low_upgrade_time + td->scale * td->throtl_slice))
 294		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 295
 296	return low + (low >> 1) * td->scale;
 297}
 298
 299static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 300{
 301	struct blkcg_gq *blkg = tg_to_blkg(tg);
 302	struct throtl_data *td;
 303	uint64_t ret;
 304
 305	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 306		return U64_MAX;
 307
 308	td = tg->td;
 309	ret = tg->bps[rw][td->limit_index];
 310	if (ret == 0 && td->limit_index == LIMIT_LOW) {
 311		/* intermediate node or iops isn't 0 */
 312		if (!list_empty(&blkg->blkcg->css.children) ||
 313		    tg->iops[rw][td->limit_index])
 314			return U64_MAX;
 315		else
 316			return MIN_THROTL_BPS;
 317	}
 318
 319	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 320	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 321		uint64_t adjusted;
 322
 323		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 324		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 325	}
 326	return ret;
 327}
 328
 329static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 330{
 331	struct blkcg_gq *blkg = tg_to_blkg(tg);
 332	struct throtl_data *td;
 333	unsigned int ret;
 334
 335	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 336		return UINT_MAX;
 337
 338	td = tg->td;
 339	ret = tg->iops[rw][td->limit_index];
 340	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 341		/* intermediate node or bps isn't 0 */
 342		if (!list_empty(&blkg->blkcg->css.children) ||
 343		    tg->bps[rw][td->limit_index])
 344			return UINT_MAX;
 345		else
 346			return MIN_THROTL_IOPS;
 347	}
 348
 349	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 350	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 351		uint64_t adjusted;
 352
 353		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 354		if (adjusted > UINT_MAX)
 355			adjusted = UINT_MAX;
 356		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 357	}
 358	return ret;
 359}
 360
 361#define request_bucket_index(sectors) \
 362	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 363
 364/**
 365 * throtl_log - log debug message via blktrace
 366 * @sq: the service_queue being reported
 367 * @fmt: printf format string
 368 * @args: printf args
 369 *
 370 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 371 * throtl_grp; otherwise, just "throtl".
 
 
 
 372 */
 373#define throtl_log(sq, fmt, args...)	do {				\
 374	struct throtl_grp *__tg = sq_to_tg((sq));			\
 375	struct throtl_data *__td = sq_to_td((sq));			\
 376									\
 377	(void)__td;							\
 378	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
 379		break;							\
 380	if ((__tg)) {							\
 381		blk_add_cgroup_trace_msg(__td->queue,			\
 382			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 
 
 383	} else {							\
 384		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 385	}								\
 386} while (0)
 387
 388static inline unsigned int throtl_bio_data_size(struct bio *bio)
 389{
 390	/* assume it's one sector */
 391	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 392		return 512;
 393	return bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 397{
 398	INIT_LIST_HEAD(&qn->node);
 399	bio_list_init(&qn->bios);
 400	qn->tg = tg;
 401}
 402
 403/**
 404 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 405 * @bio: bio being added
 406 * @qn: qnode to add bio to
 407 * @queued: the service_queue->queued[] list @qn belongs to
 408 *
 409 * Add @bio to @qn and put @qn on @queued if it's not already on.
 410 * @qn->tg's reference count is bumped when @qn is activated.  See the
 411 * comment on top of throtl_qnode definition for details.
 412 */
 413static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 414				 struct list_head *queued)
 415{
 416	bio_list_add(&qn->bios, bio);
 417	if (list_empty(&qn->node)) {
 418		list_add_tail(&qn->node, queued);
 419		blkg_get(tg_to_blkg(qn->tg));
 420	}
 421}
 422
 423/**
 424 * throtl_peek_queued - peek the first bio on a qnode list
 425 * @queued: the qnode list to peek
 426 */
 427static struct bio *throtl_peek_queued(struct list_head *queued)
 428{
 429	struct throtl_qnode *qn;
 430	struct bio *bio;
 431
 432	if (list_empty(queued))
 433		return NULL;
 434
 435	qn = list_first_entry(queued, struct throtl_qnode, node);
 436	bio = bio_list_peek(&qn->bios);
 437	WARN_ON_ONCE(!bio);
 438	return bio;
 439}
 440
 441/**
 442 * throtl_pop_queued - pop the first bio form a qnode list
 443 * @queued: the qnode list to pop a bio from
 444 * @tg_to_put: optional out argument for throtl_grp to put
 445 *
 446 * Pop the first bio from the qnode list @queued.  After popping, the first
 447 * qnode is removed from @queued if empty or moved to the end of @queued so
 448 * that the popping order is round-robin.
 449 *
 450 * When the first qnode is removed, its associated throtl_grp should be put
 451 * too.  If @tg_to_put is NULL, this function automatically puts it;
 452 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 453 * responsible for putting it.
 454 */
 455static struct bio *throtl_pop_queued(struct list_head *queued,
 456				     struct throtl_grp **tg_to_put)
 457{
 458	struct throtl_qnode *qn;
 459	struct bio *bio;
 460
 461	if (list_empty(queued))
 462		return NULL;
 463
 464	qn = list_first_entry(queued, struct throtl_qnode, node);
 465	bio = bio_list_pop(&qn->bios);
 466	WARN_ON_ONCE(!bio);
 467
 468	if (bio_list_empty(&qn->bios)) {
 469		list_del_init(&qn->node);
 470		if (tg_to_put)
 471			*tg_to_put = qn->tg;
 472		else
 473			blkg_put(tg_to_blkg(qn->tg));
 474	} else {
 475		list_move_tail(&qn->node, queued);
 476	}
 477
 478	return bio;
 479}
 480
 481/* init a service_queue, assumes the caller zeroed it */
 482static void throtl_service_queue_init(struct throtl_service_queue *sq)
 
 483{
 484	INIT_LIST_HEAD(&sq->queued[0]);
 485	INIT_LIST_HEAD(&sq->queued[1]);
 486	sq->pending_tree = RB_ROOT_CACHED;
 487	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 
 
 488}
 489
 490static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
 491						struct request_queue *q,
 492						struct blkcg *blkcg)
 493{
 494	struct throtl_grp *tg;
 495	int rw;
 496
 497	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
 498	if (!tg)
 499		return NULL;
 500
 501	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
 502		goto err_free_tg;
 503
 504	if (blkg_rwstat_init(&tg->stat_ios, gfp))
 505		goto err_exit_stat_bytes;
 506
 507	throtl_service_queue_init(&tg->service_queue);
 508
 509	for (rw = READ; rw <= WRITE; rw++) {
 510		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 511		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 512	}
 513
 514	RB_CLEAR_NODE(&tg->rb_node);
 515	tg->bps[READ][LIMIT_MAX] = U64_MAX;
 516	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 517	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 518	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 519	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 520	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 521	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 522	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 523	/* LIMIT_LOW will have default value 0 */
 524
 525	tg->latency_target = DFL_LATENCY_TARGET;
 526	tg->latency_target_conf = DFL_LATENCY_TARGET;
 527	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 528	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 529
 530	return &tg->pd;
 531
 532err_exit_stat_bytes:
 533	blkg_rwstat_exit(&tg->stat_bytes);
 534err_free_tg:
 535	kfree(tg);
 536	return NULL;
 537}
 538
 539static void throtl_pd_init(struct blkg_policy_data *pd)
 540{
 541	struct throtl_grp *tg = pd_to_tg(pd);
 542	struct blkcg_gq *blkg = tg_to_blkg(tg);
 543	struct throtl_data *td = blkg->q->td;
 544	struct throtl_service_queue *sq = &tg->service_queue;
 
 
 545
 546	/*
 547	 * If on the default hierarchy, we switch to properly hierarchical
 548	 * behavior where limits on a given throtl_grp are applied to the
 549	 * whole subtree rather than just the group itself.  e.g. If 16M
 550	 * read_bps limit is set on the root group, the whole system can't
 551	 * exceed 16M for the device.
 552	 *
 553	 * If not on the default hierarchy, the broken flat hierarchy
 554	 * behavior is retained where all throtl_grps are treated as if
 555	 * they're all separate root groups right below throtl_data.
 556	 * Limits of a group don't interact with limits of other groups
 557	 * regardless of the position of the group in the hierarchy.
 558	 */
 559	sq->parent_sq = &td->service_queue;
 560	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 561		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 
 
 
 
 
 
 
 
 
 
 562	tg->td = td;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563}
 564
 565/*
 566 * Set has_rules[] if @tg or any of its parents have limits configured.
 567 * This doesn't require walking up to the top of the hierarchy as the
 568 * parent's has_rules[] is guaranteed to be correct.
 569 */
 570static void tg_update_has_rules(struct throtl_grp *tg)
 571{
 572	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 573	struct throtl_data *td = tg->td;
 574	int rw;
 575
 576	for (rw = READ; rw <= WRITE; rw++)
 577		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 578			(td->limit_valid[td->limit_index] &&
 579			 (tg_bps_limit(tg, rw) != U64_MAX ||
 580			  tg_iops_limit(tg, rw) != UINT_MAX));
 581}
 582
 583static void throtl_pd_online(struct blkg_policy_data *pd)
 584{
 585	struct throtl_grp *tg = pd_to_tg(pd);
 586	/*
 587	 * We don't want new groups to escape the limits of its ancestors.
 588	 * Update has_rules[] after a new group is brought online.
 589	 */
 590	tg_update_has_rules(tg);
 591}
 592
 593#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 594static void blk_throtl_update_limit_valid(struct throtl_data *td)
 595{
 596	struct cgroup_subsys_state *pos_css;
 597	struct blkcg_gq *blkg;
 598	bool low_valid = false;
 599
 600	rcu_read_lock();
 601	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 602		struct throtl_grp *tg = blkg_to_tg(blkg);
 603
 604		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 605		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
 606			low_valid = true;
 607			break;
 608		}
 609	}
 610	rcu_read_unlock();
 611
 612	td->limit_valid[LIMIT_LOW] = low_valid;
 613}
 614#else
 615static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
 616{
 
 
 
 
 
 
 
 
 
 
 
 
 617}
 618#endif
 619
 620static void throtl_upgrade_state(struct throtl_data *td);
 621static void throtl_pd_offline(struct blkg_policy_data *pd)
 622{
 623	struct throtl_grp *tg = pd_to_tg(pd);
 
 
 
 
 
 624
 625	tg->bps[READ][LIMIT_LOW] = 0;
 626	tg->bps[WRITE][LIMIT_LOW] = 0;
 627	tg->iops[READ][LIMIT_LOW] = 0;
 628	tg->iops[WRITE][LIMIT_LOW] = 0;
 629
 630	blk_throtl_update_limit_valid(tg->td);
 
 
 
 
 631
 632	if (!tg->td->limit_valid[tg->td->limit_index])
 633		throtl_upgrade_state(tg->td);
 634}
 
 
 
 
 
 
 
 635
 636static void throtl_pd_free(struct blkg_policy_data *pd)
 637{
 638	struct throtl_grp *tg = pd_to_tg(pd);
 
 
 
 639
 640	del_timer_sync(&tg->service_queue.pending_timer);
 641	blkg_rwstat_exit(&tg->stat_bytes);
 642	blkg_rwstat_exit(&tg->stat_ios);
 643	kfree(tg);
 644}
 645
 646static struct throtl_grp *
 647throtl_rb_first(struct throtl_service_queue *parent_sq)
 648{
 649	struct rb_node *n;
 
 
 
 
 
 
 
 
 
 
 
 650
 651	n = rb_first_cached(&parent_sq->pending_tree);
 652	WARN_ON_ONCE(!n);
 653	if (!n)
 654		return NULL;
 655	return rb_entry_tg(n);
 656}
 657
 658static void throtl_rb_erase(struct rb_node *n,
 659			    struct throtl_service_queue *parent_sq)
 660{
 661	rb_erase_cached(n, &parent_sq->pending_tree);
 662	RB_CLEAR_NODE(n);
 
 663	--parent_sq->nr_pending;
 664}
 665
 666static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 667{
 668	struct throtl_grp *tg;
 669
 670	tg = throtl_rb_first(parent_sq);
 671	if (!tg)
 672		return;
 673
 674	parent_sq->first_pending_disptime = tg->disptime;
 675}
 676
 677static void tg_service_queue_add(struct throtl_grp *tg)
 678{
 679	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 680	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
 681	struct rb_node *parent = NULL;
 682	struct throtl_grp *__tg;
 683	unsigned long key = tg->disptime;
 684	bool leftmost = true;
 685
 686	while (*node != NULL) {
 687		parent = *node;
 688		__tg = rb_entry_tg(parent);
 689
 690		if (time_before(key, __tg->disptime))
 691			node = &parent->rb_left;
 692		else {
 693			node = &parent->rb_right;
 694			leftmost = false;
 695		}
 696	}
 697
 
 
 
 698	rb_link_node(&tg->rb_node, parent, node);
 699	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
 700			       leftmost);
 
 
 
 
 
 
 701}
 702
 703static void throtl_enqueue_tg(struct throtl_grp *tg)
 704{
 705	if (!(tg->flags & THROTL_TG_PENDING)) {
 706		tg_service_queue_add(tg);
 707		tg->flags |= THROTL_TG_PENDING;
 708		tg->service_queue.parent_sq->nr_pending++;
 709	}
 
 
 
 710}
 711
 712static void throtl_dequeue_tg(struct throtl_grp *tg)
 713{
 714	if (tg->flags & THROTL_TG_PENDING) {
 715		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 716		tg->flags &= ~THROTL_TG_PENDING;
 717	}
 718}
 719
 720/* Call with queue lock held */
 721static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 722					  unsigned long expires)
 723{
 724	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 725
 726	/*
 727	 * Since we are adjusting the throttle limit dynamically, the sleep
 728	 * time calculated according to previous limit might be invalid. It's
 729	 * possible the cgroup sleep time is very long and no other cgroups
 730	 * have IO running so notify the limit changes. Make sure the cgroup
 731	 * doesn't sleep too long to avoid the missed notification.
 732	 */
 733	if (time_after(expires, max_expire))
 734		expires = max_expire;
 735	mod_timer(&sq->pending_timer, expires);
 736	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 737		   expires - jiffies, jiffies);
 738}
 739
 740/**
 741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 742 * @sq: the service_queue to schedule dispatch for
 743 * @force: force scheduling
 744 *
 745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 746 * dispatch time of the first pending child.  Returns %true if either timer
 747 * is armed or there's no pending child left.  %false if the current
 748 * dispatch window is still open and the caller should continue
 749 * dispatching.
 750 *
 751 * If @force is %true, the dispatch timer is always scheduled and this
 752 * function is guaranteed to return %true.  This is to be used when the
 753 * caller can't dispatch itself and needs to invoke pending_timer
 754 * unconditionally.  Note that forced scheduling is likely to induce short
 755 * delay before dispatch starts even if @sq->first_pending_disptime is not
 756 * in the future and thus shouldn't be used in hot paths.
 757 */
 758static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 759					  bool force)
 760{
 761	/* any pending children left? */
 762	if (!sq->nr_pending)
 763		return true;
 764
 765	update_min_dispatch_time(sq);
 766
 767	/* is the next dispatch time in the future? */
 768	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 769		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 770		return true;
 771	}
 772
 773	/* tell the caller to continue dispatching */
 774	return false;
 775}
 776
 777static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 778		bool rw, unsigned long start)
 779{
 780	tg->bytes_disp[rw] = 0;
 781	tg->io_disp[rw] = 0;
 782
 783	atomic_set(&tg->io_split_cnt[rw], 0);
 784
 785	/*
 786	 * Previous slice has expired. We must have trimmed it after last
 787	 * bio dispatch. That means since start of last slice, we never used
 788	 * that bandwidth. Do try to make use of that bandwidth while giving
 789	 * credit.
 790	 */
 791	if (time_after_eq(start, tg->slice_start[rw]))
 792		tg->slice_start[rw] = start;
 793
 794	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 795	throtl_log(&tg->service_queue,
 796		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 797		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 798		   tg->slice_end[rw], jiffies);
 799}
 800
 801static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 802{
 803	tg->bytes_disp[rw] = 0;
 804	tg->io_disp[rw] = 0;
 805	tg->slice_start[rw] = jiffies;
 806	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 807
 808	atomic_set(&tg->io_split_cnt[rw], 0);
 809
 810	throtl_log(&tg->service_queue,
 811		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 812		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 813		   tg->slice_end[rw], jiffies);
 814}
 815
 816static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 817					unsigned long jiffy_end)
 818{
 819	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 820}
 821
 822static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 823				       unsigned long jiffy_end)
 824{
 825	throtl_set_slice_end(tg, rw, jiffy_end);
 826	throtl_log(&tg->service_queue,
 827		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 828		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 829		   tg->slice_end[rw], jiffies);
 830}
 831
 832/* Determine if previously allocated or extended slice is complete or not */
 833static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 834{
 835	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 836		return false;
 837
 838	return true;
 839}
 840
 841/* Trim the used slices and adjust slice start accordingly */
 842static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 843{
 844	unsigned long nr_slices, time_elapsed, io_trim;
 845	u64 bytes_trim, tmp;
 846
 847	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 848
 849	/*
 850	 * If bps are unlimited (-1), then time slice don't get
 851	 * renewed. Don't try to trim the slice if slice is used. A new
 852	 * slice will start when appropriate.
 853	 */
 854	if (throtl_slice_used(tg, rw))
 855		return;
 856
 857	/*
 858	 * A bio has been dispatched. Also adjust slice_end. It might happen
 859	 * that initially cgroup limit was very low resulting in high
 860	 * slice_end, but later limit was bumped up and bio was dispatched
 861	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 862	 * is bad because it does not allow new slice to start.
 863	 */
 864
 865	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 866
 867	time_elapsed = jiffies - tg->slice_start[rw];
 868
 869	nr_slices = time_elapsed / tg->td->throtl_slice;
 870
 871	if (!nr_slices)
 872		return;
 873	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 874	do_div(tmp, HZ);
 875	bytes_trim = tmp;
 876
 877	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 878		HZ;
 879
 880	if (!bytes_trim && !io_trim)
 881		return;
 882
 883	if (tg->bytes_disp[rw] >= bytes_trim)
 884		tg->bytes_disp[rw] -= bytes_trim;
 885	else
 886		tg->bytes_disp[rw] = 0;
 887
 888	if (tg->io_disp[rw] >= io_trim)
 889		tg->io_disp[rw] -= io_trim;
 890	else
 891		tg->io_disp[rw] = 0;
 892
 893	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 894
 895	throtl_log(&tg->service_queue,
 896		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 897		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 898		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 899}
 900
 901static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 902				  u32 iops_limit, unsigned long *wait)
 903{
 904	bool rw = bio_data_dir(bio);
 905	unsigned int io_allowed;
 906	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 907	u64 tmp;
 908
 909	if (iops_limit == UINT_MAX) {
 910		if (wait)
 911			*wait = 0;
 912		return true;
 913	}
 914
 915	jiffy_elapsed = jiffies - tg->slice_start[rw];
 
 
 916
 917	/* Round up to the next throttle slice, wait time must be nonzero */
 918	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
 919
 920	/*
 921	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 922	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 923	 * will allow dispatch after 1 second and after that slice should
 924	 * have been trimmed.
 925	 */
 926
 927	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
 928	do_div(tmp, HZ);
 929
 930	if (tmp > UINT_MAX)
 931		io_allowed = UINT_MAX;
 932	else
 933		io_allowed = tmp;
 934
 935	if (tg->io_disp[rw] + 1 <= io_allowed) {
 936		if (wait)
 937			*wait = 0;
 938		return true;
 939	}
 940
 941	/* Calc approx time to dispatch */
 942	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
 
 
 
 
 
 943
 944	if (wait)
 945		*wait = jiffy_wait;
 946	return false;
 947}
 948
 949static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 950				 u64 bps_limit, unsigned long *wait)
 951{
 952	bool rw = bio_data_dir(bio);
 953	u64 bytes_allowed, extra_bytes, tmp;
 954	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 955	unsigned int bio_size = throtl_bio_data_size(bio);
 956
 957	if (bps_limit == U64_MAX) {
 958		if (wait)
 959			*wait = 0;
 960		return true;
 961	}
 962
 963	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 964
 965	/* Slice has just started. Consider one slice interval */
 966	if (!jiffy_elapsed)
 967		jiffy_elapsed_rnd = tg->td->throtl_slice;
 968
 969	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 970
 971	tmp = bps_limit * jiffy_elapsed_rnd;
 972	do_div(tmp, HZ);
 973	bytes_allowed = tmp;
 974
 975	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 976		if (wait)
 977			*wait = 0;
 978		return true;
 979	}
 980
 981	/* Calc approx time to dispatch */
 982	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 983	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
 984
 985	if (!jiffy_wait)
 986		jiffy_wait = 1;
 987
 988	/*
 989	 * This wait time is without taking into consideration the rounding
 990	 * up we did. Add that time also.
 991	 */
 992	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 993	if (wait)
 994		*wait = jiffy_wait;
 995	return false;
 996}
 997
 998/*
 999 * Returns whether one can dispatch a bio or not. Also returns approx number
1000 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
1001 */
1002static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
1003			    unsigned long *wait)
1004{
1005	bool rw = bio_data_dir(bio);
1006	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1007	u64 bps_limit = tg_bps_limit(tg, rw);
1008	u32 iops_limit = tg_iops_limit(tg, rw);
1009
1010	/*
1011 	 * Currently whole state machine of group depends on first bio
1012	 * queued in the group bio list. So one should not be calling
1013	 * this function with a different bio if there are other bios
1014	 * queued.
1015	 */
1016	BUG_ON(tg->service_queue.nr_queued[rw] &&
1017	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1018
1019	/* If tg->bps = -1, then BW is unlimited */
1020	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1021		if (wait)
1022			*wait = 0;
1023		return true;
1024	}
1025
1026	/*
1027	 * If previous slice expired, start a new one otherwise renew/extend
1028	 * existing slice to make sure it is at least throtl_slice interval
1029	 * long since now. New slice is started only for empty throttle group.
1030	 * If there is queued bio, that means there should be an active
1031	 * slice and it should be extended instead.
1032	 */
1033	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1034		throtl_start_new_slice(tg, rw);
1035	else {
1036		if (time_before(tg->slice_end[rw],
1037		    jiffies + tg->td->throtl_slice))
1038			throtl_extend_slice(tg, rw,
1039				jiffies + tg->td->throtl_slice);
1040	}
1041
1042	if (iops_limit != UINT_MAX)
1043		tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1044
1045	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1046	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1047		if (wait)
1048			*wait = 0;
1049		return true;
1050	}
1051
1052	max_wait = max(bps_wait, iops_wait);
1053
1054	if (wait)
1055		*wait = max_wait;
1056
1057	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1058		throtl_extend_slice(tg, rw, jiffies + max_wait);
1059
1060	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061}
1062
1063static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1064{
1065	bool rw = bio_data_dir(bio);
1066	unsigned int bio_size = throtl_bio_data_size(bio);
1067
1068	/* Charge the bio to the group */
1069	tg->bytes_disp[rw] += bio_size;
1070	tg->io_disp[rw]++;
1071	tg->last_bytes_disp[rw] += bio_size;
1072	tg->last_io_disp[rw]++;
1073
1074	/*
1075	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1076	 * more than once as a throttled bio will go through blk-throtl the
1077	 * second time when it eventually gets issued.  Set it when a bio
1078	 * is being charged to a tg.
1079	 */
1080	if (!bio_flagged(bio, BIO_THROTTLED))
1081		bio_set_flag(bio, BIO_THROTTLED);
 
 
 
 
 
 
 
 
1082}
1083
1084/**
1085 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1086 * @bio: bio to add
1087 * @qn: qnode to use
1088 * @tg: the target throtl_grp
1089 *
1090 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1091 * tg->qnode_on_self[] is used.
1092 */
1093static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1094			      struct throtl_grp *tg)
1095{
1096	struct throtl_service_queue *sq = &tg->service_queue;
1097	bool rw = bio_data_dir(bio);
1098
1099	if (!qn)
1100		qn = &tg->qnode_on_self[rw];
1101
1102	/*
1103	 * If @tg doesn't currently have any bios queued in the same
1104	 * direction, queueing @bio can change when @tg should be
1105	 * dispatched.  Mark that @tg was empty.  This is automatically
1106	 * cleared on the next tg_update_disptime().
1107	 */
1108	if (!sq->nr_queued[rw])
1109		tg->flags |= THROTL_TG_WAS_EMPTY;
1110
1111	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1112
1113	sq->nr_queued[rw]++;
1114	throtl_enqueue_tg(tg);
1115}
1116
1117static void tg_update_disptime(struct throtl_grp *tg)
1118{
1119	struct throtl_service_queue *sq = &tg->service_queue;
1120	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1121	struct bio *bio;
1122
1123	bio = throtl_peek_queued(&sq->queued[READ]);
1124	if (bio)
1125		tg_may_dispatch(tg, bio, &read_wait);
1126
1127	bio = throtl_peek_queued(&sq->queued[WRITE]);
1128	if (bio)
1129		tg_may_dispatch(tg, bio, &write_wait);
1130
1131	min_wait = min(read_wait, write_wait);
1132	disptime = jiffies + min_wait;
1133
1134	/* Update dispatch time */
1135	throtl_dequeue_tg(tg);
1136	tg->disptime = disptime;
1137	throtl_enqueue_tg(tg);
1138
1139	/* see throtl_add_bio_tg() */
1140	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1141}
1142
1143static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1144					struct throtl_grp *parent_tg, bool rw)
1145{
1146	if (throtl_slice_used(parent_tg, rw)) {
1147		throtl_start_new_slice_with_credit(parent_tg, rw,
1148				child_tg->slice_start[rw]);
1149	}
1150
1151}
1152
1153static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1154{
1155	struct throtl_service_queue *sq = &tg->service_queue;
1156	struct throtl_service_queue *parent_sq = sq->parent_sq;
1157	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1158	struct throtl_grp *tg_to_put = NULL;
1159	struct bio *bio;
1160
1161	/*
1162	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1163	 * from @tg may put its reference and @parent_sq might end up
1164	 * getting released prematurely.  Remember the tg to put and put it
1165	 * after @bio is transferred to @parent_sq.
1166	 */
1167	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1168	sq->nr_queued[rw]--;
1169
1170	throtl_charge_bio(tg, bio);
1171
1172	/*
1173	 * If our parent is another tg, we just need to transfer @bio to
1174	 * the parent using throtl_add_bio_tg().  If our parent is
1175	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1176	 * bio_lists[] and decrease total number queued.  The caller is
1177	 * responsible for issuing these bios.
1178	 */
1179	if (parent_tg) {
1180		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1181		start_parent_slice_with_credit(tg, parent_tg, rw);
1182	} else {
1183		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1184				     &parent_sq->queued[rw]);
1185		BUG_ON(tg->td->nr_queued[rw] <= 0);
1186		tg->td->nr_queued[rw]--;
1187	}
1188
1189	throtl_trim_slice(tg, rw);
1190
1191	if (tg_to_put)
1192		blkg_put(tg_to_blkg(tg_to_put));
1193}
1194
1195static int throtl_dispatch_tg(struct throtl_grp *tg)
1196{
1197	struct throtl_service_queue *sq = &tg->service_queue;
1198	unsigned int nr_reads = 0, nr_writes = 0;
1199	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1200	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1201	struct bio *bio;
1202
1203	/* Try to dispatch 75% READS and 25% WRITES */
1204
1205	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1206	       tg_may_dispatch(tg, bio, NULL)) {
1207
1208		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1209		nr_reads++;
1210
1211		if (nr_reads >= max_nr_reads)
1212			break;
1213	}
1214
1215	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1216	       tg_may_dispatch(tg, bio, NULL)) {
1217
1218		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1219		nr_writes++;
1220
1221		if (nr_writes >= max_nr_writes)
1222			break;
1223	}
1224
1225	return nr_reads + nr_writes;
1226}
1227
1228static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1229{
1230	unsigned int nr_disp = 0;
1231
1232	while (1) {
1233		struct throtl_grp *tg;
1234		struct throtl_service_queue *sq;
1235
1236		if (!parent_sq->nr_pending)
1237			break;
1238
1239		tg = throtl_rb_first(parent_sq);
1240		if (!tg)
1241			break;
1242
1243		if (time_before(jiffies, tg->disptime))
1244			break;
1245
1246		throtl_dequeue_tg(tg);
1247
1248		nr_disp += throtl_dispatch_tg(tg);
1249
1250		sq = &tg->service_queue;
1251		if (sq->nr_queued[0] || sq->nr_queued[1])
1252			tg_update_disptime(tg);
1253
1254		if (nr_disp >= THROTL_QUANTUM)
1255			break;
1256	}
1257
1258	return nr_disp;
1259}
1260
1261static bool throtl_can_upgrade(struct throtl_data *td,
1262	struct throtl_grp *this_tg);
1263/**
1264 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1265 * @t: the pending_timer member of the throtl_service_queue being serviced
1266 *
1267 * This timer is armed when a child throtl_grp with active bio's become
1268 * pending and queued on the service_queue's pending_tree and expires when
1269 * the first child throtl_grp should be dispatched.  This function
1270 * dispatches bio's from the children throtl_grps to the parent
1271 * service_queue.
1272 *
1273 * If the parent's parent is another throtl_grp, dispatching is propagated
1274 * by either arming its pending_timer or repeating dispatch directly.  If
1275 * the top-level service_tree is reached, throtl_data->dispatch_work is
1276 * kicked so that the ready bio's are issued.
1277 */
1278static void throtl_pending_timer_fn(struct timer_list *t)
1279{
1280	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1281	struct throtl_grp *tg = sq_to_tg(sq);
1282	struct throtl_data *td = sq_to_td(sq);
1283	struct request_queue *q = td->queue;
1284	struct throtl_service_queue *parent_sq;
1285	bool dispatched;
1286	int ret;
1287
1288	spin_lock_irq(&q->queue_lock);
1289	if (throtl_can_upgrade(td, NULL))
1290		throtl_upgrade_state(td);
1291
1292again:
1293	parent_sq = sq->parent_sq;
1294	dispatched = false;
1295
1296	while (true) {
1297		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1298			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1299			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1300
1301		ret = throtl_select_dispatch(sq);
1302		if (ret) {
1303			throtl_log(sq, "bios disp=%u", ret);
1304			dispatched = true;
1305		}
1306
1307		if (throtl_schedule_next_dispatch(sq, false))
1308			break;
1309
1310		/* this dispatch windows is still open, relax and repeat */
1311		spin_unlock_irq(&q->queue_lock);
1312		cpu_relax();
1313		spin_lock_irq(&q->queue_lock);
1314	}
1315
1316	if (!dispatched)
1317		goto out_unlock;
1318
1319	if (parent_sq) {
1320		/* @parent_sq is another throl_grp, propagate dispatch */
1321		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1322			tg_update_disptime(tg);
1323			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1324				/* window is already open, repeat dispatching */
1325				sq = parent_sq;
1326				tg = sq_to_tg(sq);
1327				goto again;
1328			}
1329		}
1330	} else {
1331		/* reached the top-level, queue issuing */
1332		queue_work(kthrotld_workqueue, &td->dispatch_work);
1333	}
1334out_unlock:
1335	spin_unlock_irq(&q->queue_lock);
1336}
1337
1338/**
1339 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1340 * @work: work item being executed
1341 *
1342 * This function is queued for execution when bios reach the bio_lists[]
1343 * of throtl_data->service_queue.  Those bios are ready and issued by this
1344 * function.
1345 */
1346static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1347{
1348	struct throtl_data *td = container_of(work, struct throtl_data,
1349					      dispatch_work);
1350	struct throtl_service_queue *td_sq = &td->service_queue;
1351	struct request_queue *q = td->queue;
1352	struct bio_list bio_list_on_stack;
1353	struct bio *bio;
1354	struct blk_plug plug;
1355	int rw;
1356
1357	bio_list_init(&bio_list_on_stack);
1358
1359	spin_lock_irq(&q->queue_lock);
1360	for (rw = READ; rw <= WRITE; rw++)
1361		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1362			bio_list_add(&bio_list_on_stack, bio);
1363	spin_unlock_irq(&q->queue_lock);
1364
1365	if (!bio_list_empty(&bio_list_on_stack)) {
1366		blk_start_plug(&plug);
1367		while ((bio = bio_list_pop(&bio_list_on_stack)))
1368			submit_bio_noacct(bio);
1369		blk_finish_plug(&plug);
1370	}
1371}
1372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1374			      int off)
1375{
1376	struct throtl_grp *tg = pd_to_tg(pd);
1377	u64 v = *(u64 *)((void *)tg + off);
1378
1379	if (v == U64_MAX)
1380		return 0;
1381	return __blkg_prfill_u64(sf, pd, v);
1382}
1383
1384static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1385			       int off)
1386{
1387	struct throtl_grp *tg = pd_to_tg(pd);
1388	unsigned int v = *(unsigned int *)((void *)tg + off);
1389
1390	if (v == UINT_MAX)
1391		return 0;
1392	return __blkg_prfill_u64(sf, pd, v);
1393}
1394
1395static int tg_print_conf_u64(struct seq_file *sf, void *v)
1396{
1397	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1398			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1399	return 0;
1400}
1401
1402static int tg_print_conf_uint(struct seq_file *sf, void *v)
1403{
1404	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1405			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1406	return 0;
1407}
1408
1409static void tg_conf_updated(struct throtl_grp *tg, bool global)
 
1410{
1411	struct throtl_service_queue *sq = &tg->service_queue;
 
 
 
 
1412	struct cgroup_subsys_state *pos_css;
1413	struct blkcg_gq *blkg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
1415	throtl_log(&tg->service_queue,
1416		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1417		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1418		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1419
1420	/*
1421	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1422	 * considered to have rules if either the tg itself or any of its
1423	 * ancestors has rules.  This identifies groups without any
1424	 * restrictions in the whole hierarchy and allows them to bypass
1425	 * blk-throttle.
1426	 */
1427	blkg_for_each_descendant_pre(blkg, pos_css,
1428			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1429		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1430		struct throtl_grp *parent_tg;
1431
1432		tg_update_has_rules(this_tg);
1433		/* ignore root/second level */
1434		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1435		    !blkg->parent->parent)
1436			continue;
1437		parent_tg = blkg_to_tg(blkg->parent);
1438		/*
1439		 * make sure all children has lower idle time threshold and
1440		 * higher latency target
1441		 */
1442		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1443				parent_tg->idletime_threshold);
1444		this_tg->latency_target = max(this_tg->latency_target,
1445				parent_tg->latency_target);
1446	}
1447
1448	/*
1449	 * We're already holding queue_lock and know @tg is valid.  Let's
1450	 * apply the new config directly.
1451	 *
1452	 * Restart the slices for both READ and WRITES. It might happen
1453	 * that a group's limit are dropped suddenly and we don't want to
1454	 * account recently dispatched IO with new low rate.
1455	 */
1456	throtl_start_new_slice(tg, READ);
1457	throtl_start_new_slice(tg, WRITE);
1458
1459	if (tg->flags & THROTL_TG_PENDING) {
1460		tg_update_disptime(tg);
1461		throtl_schedule_next_dispatch(sq->parent_sq, true);
1462	}
1463}
1464
1465static ssize_t tg_set_conf(struct kernfs_open_file *of,
1466			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1467{
1468	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1469	struct blkg_conf_ctx ctx;
1470	struct throtl_grp *tg;
1471	int ret;
1472	u64 v;
1473
1474	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1475	if (ret)
1476		return ret;
1477
1478	ret = -EINVAL;
1479	if (sscanf(ctx.body, "%llu", &v) != 1)
1480		goto out_finish;
1481	if (!v)
1482		v = U64_MAX;
1483
1484	tg = blkg_to_tg(ctx.blkg);
1485
1486	if (is_u64)
1487		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1488	else
1489		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1490
1491	tg_conf_updated(tg, false);
1492	ret = 0;
1493out_finish:
1494	blkg_conf_finish(&ctx);
1495	return ret ?: nbytes;
1496}
1497
1498static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1499			       char *buf, size_t nbytes, loff_t off)
1500{
1501	return tg_set_conf(of, buf, nbytes, off, true);
1502}
1503
1504static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1505				char *buf, size_t nbytes, loff_t off)
1506{
1507	return tg_set_conf(of, buf, nbytes, off, false);
1508}
1509
1510static int tg_print_rwstat(struct seq_file *sf, void *v)
1511{
1512	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1513			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1514			  seq_cft(sf)->private, true);
1515	return 0;
1516}
1517
1518static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1519				      struct blkg_policy_data *pd, int off)
1520{
1521	struct blkg_rwstat_sample sum;
1522
1523	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1524				  &sum);
1525	return __blkg_prfill_rwstat(sf, pd, &sum);
1526}
1527
1528static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
 
1529{
1530	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1531			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1532			  seq_cft(sf)->private, true);
1533	return 0;
1534}
1535
1536static struct cftype throtl_legacy_files[] = {
1537	{
1538		.name = "throttle.read_bps_device",
1539		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1540		.seq_show = tg_print_conf_u64,
1541		.write = tg_set_conf_u64,
1542	},
1543	{
1544		.name = "throttle.write_bps_device",
1545		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1546		.seq_show = tg_print_conf_u64,
1547		.write = tg_set_conf_u64,
1548	},
1549	{
1550		.name = "throttle.read_iops_device",
1551		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1552		.seq_show = tg_print_conf_uint,
1553		.write = tg_set_conf_uint,
1554	},
1555	{
1556		.name = "throttle.write_iops_device",
1557		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1558		.seq_show = tg_print_conf_uint,
1559		.write = tg_set_conf_uint,
1560	},
1561	{
1562		.name = "throttle.io_service_bytes",
1563		.private = offsetof(struct throtl_grp, stat_bytes),
1564		.seq_show = tg_print_rwstat,
1565	},
1566	{
1567		.name = "throttle.io_service_bytes_recursive",
1568		.private = offsetof(struct throtl_grp, stat_bytes),
1569		.seq_show = tg_print_rwstat_recursive,
1570	},
1571	{
1572		.name = "throttle.io_serviced",
1573		.private = offsetof(struct throtl_grp, stat_ios),
1574		.seq_show = tg_print_rwstat,
1575	},
1576	{
1577		.name = "throttle.io_serviced_recursive",
1578		.private = offsetof(struct throtl_grp, stat_ios),
1579		.seq_show = tg_print_rwstat_recursive,
1580	},
1581	{ }	/* terminate */
1582};
1583
1584static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1585			 int off)
1586{
1587	struct throtl_grp *tg = pd_to_tg(pd);
1588	const char *dname = blkg_dev_name(pd->blkg);
1589	char bufs[4][21] = { "max", "max", "max", "max" };
1590	u64 bps_dft;
1591	unsigned int iops_dft;
1592	char idle_time[26] = "";
1593	char latency_time[26] = "";
1594
1595	if (!dname)
1596		return 0;
1597
1598	if (off == LIMIT_LOW) {
1599		bps_dft = 0;
1600		iops_dft = 0;
1601	} else {
1602		bps_dft = U64_MAX;
1603		iops_dft = UINT_MAX;
1604	}
1605
1606	if (tg->bps_conf[READ][off] == bps_dft &&
1607	    tg->bps_conf[WRITE][off] == bps_dft &&
1608	    tg->iops_conf[READ][off] == iops_dft &&
1609	    tg->iops_conf[WRITE][off] == iops_dft &&
1610	    (off != LIMIT_LOW ||
1611	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1612	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1613		return 0;
1614
1615	if (tg->bps_conf[READ][off] != U64_MAX)
1616		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1617			tg->bps_conf[READ][off]);
1618	if (tg->bps_conf[WRITE][off] != U64_MAX)
1619		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1620			tg->bps_conf[WRITE][off]);
1621	if (tg->iops_conf[READ][off] != UINT_MAX)
1622		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1623			tg->iops_conf[READ][off]);
1624	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1625		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1626			tg->iops_conf[WRITE][off]);
1627	if (off == LIMIT_LOW) {
1628		if (tg->idletime_threshold_conf == ULONG_MAX)
1629			strcpy(idle_time, " idle=max");
1630		else
1631			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1632				tg->idletime_threshold_conf);
1633
1634		if (tg->latency_target_conf == ULONG_MAX)
1635			strcpy(latency_time, " latency=max");
1636		else
1637			snprintf(latency_time, sizeof(latency_time),
1638				" latency=%lu", tg->latency_target_conf);
1639	}
1640
1641	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1642		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1643		   latency_time);
1644	return 0;
1645}
1646
1647static int tg_print_limit(struct seq_file *sf, void *v)
1648{
1649	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1650			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1651	return 0;
1652}
1653
1654static ssize_t tg_set_limit(struct kernfs_open_file *of,
1655			  char *buf, size_t nbytes, loff_t off)
1656{
1657	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1658	struct blkg_conf_ctx ctx;
1659	struct throtl_grp *tg;
1660	u64 v[4];
1661	unsigned long idle_time;
1662	unsigned long latency_time;
1663	int ret;
1664	int index = of_cft(of)->private;
1665
1666	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1667	if (ret)
1668		return ret;
1669
1670	tg = blkg_to_tg(ctx.blkg);
1671
1672	v[0] = tg->bps_conf[READ][index];
1673	v[1] = tg->bps_conf[WRITE][index];
1674	v[2] = tg->iops_conf[READ][index];
1675	v[3] = tg->iops_conf[WRITE][index];
1676
1677	idle_time = tg->idletime_threshold_conf;
1678	latency_time = tg->latency_target_conf;
1679	while (true) {
1680		char tok[27];	/* wiops=18446744073709551616 */
1681		char *p;
1682		u64 val = U64_MAX;
1683		int len;
1684
1685		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1686			break;
1687		if (tok[0] == '\0')
1688			break;
1689		ctx.body += len;
1690
1691		ret = -EINVAL;
1692		p = tok;
1693		strsep(&p, "=");
1694		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1695			goto out_finish;
1696
1697		ret = -ERANGE;
1698		if (!val)
1699			goto out_finish;
1700
1701		ret = -EINVAL;
1702		if (!strcmp(tok, "rbps") && val > 1)
1703			v[0] = val;
1704		else if (!strcmp(tok, "wbps") && val > 1)
1705			v[1] = val;
1706		else if (!strcmp(tok, "riops") && val > 1)
1707			v[2] = min_t(u64, val, UINT_MAX);
1708		else if (!strcmp(tok, "wiops") && val > 1)
1709			v[3] = min_t(u64, val, UINT_MAX);
1710		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1711			idle_time = val;
1712		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1713			latency_time = val;
1714		else
1715			goto out_finish;
1716	}
1717
1718	tg->bps_conf[READ][index] = v[0];
1719	tg->bps_conf[WRITE][index] = v[1];
1720	tg->iops_conf[READ][index] = v[2];
1721	tg->iops_conf[WRITE][index] = v[3];
1722
1723	if (index == LIMIT_MAX) {
1724		tg->bps[READ][index] = v[0];
1725		tg->bps[WRITE][index] = v[1];
1726		tg->iops[READ][index] = v[2];
1727		tg->iops[WRITE][index] = v[3];
1728	}
1729	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1730		tg->bps_conf[READ][LIMIT_MAX]);
1731	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1732		tg->bps_conf[WRITE][LIMIT_MAX]);
1733	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1734		tg->iops_conf[READ][LIMIT_MAX]);
1735	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1736		tg->iops_conf[WRITE][LIMIT_MAX]);
1737	tg->idletime_threshold_conf = idle_time;
1738	tg->latency_target_conf = latency_time;
1739
1740	/* force user to configure all settings for low limit  */
1741	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1742	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1743	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1744	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1745		tg->bps[READ][LIMIT_LOW] = 0;
1746		tg->bps[WRITE][LIMIT_LOW] = 0;
1747		tg->iops[READ][LIMIT_LOW] = 0;
1748		tg->iops[WRITE][LIMIT_LOW] = 0;
1749		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1750		tg->latency_target = DFL_LATENCY_TARGET;
1751	} else if (index == LIMIT_LOW) {
1752		tg->idletime_threshold = tg->idletime_threshold_conf;
1753		tg->latency_target = tg->latency_target_conf;
1754	}
1755
1756	blk_throtl_update_limit_valid(tg->td);
1757	if (tg->td->limit_valid[LIMIT_LOW]) {
1758		if (index == LIMIT_LOW)
1759			tg->td->limit_index = LIMIT_LOW;
1760	} else
1761		tg->td->limit_index = LIMIT_MAX;
1762	tg_conf_updated(tg, index == LIMIT_LOW &&
1763		tg->td->limit_valid[LIMIT_LOW]);
1764	ret = 0;
1765out_finish:
1766	blkg_conf_finish(&ctx);
1767	return ret ?: nbytes;
1768}
1769
1770static struct cftype throtl_files[] = {
1771#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1772	{
1773		.name = "low",
1774		.flags = CFTYPE_NOT_ON_ROOT,
1775		.seq_show = tg_print_limit,
1776		.write = tg_set_limit,
1777		.private = LIMIT_LOW,
1778	},
1779#endif
1780	{
1781		.name = "max",
1782		.flags = CFTYPE_NOT_ON_ROOT,
1783		.seq_show = tg_print_limit,
1784		.write = tg_set_limit,
1785		.private = LIMIT_MAX,
1786	},
1787	{ }	/* terminate */
1788};
1789
1790static void throtl_shutdown_wq(struct request_queue *q)
1791{
1792	struct throtl_data *td = q->td;
1793
1794	cancel_work_sync(&td->dispatch_work);
1795}
1796
1797static struct blkcg_policy blkcg_policy_throtl = {
1798	.dfl_cftypes		= throtl_files,
1799	.legacy_cftypes		= throtl_legacy_files,
1800
1801	.pd_alloc_fn		= throtl_pd_alloc,
1802	.pd_init_fn		= throtl_pd_init,
1803	.pd_online_fn		= throtl_pd_online,
1804	.pd_offline_fn		= throtl_pd_offline,
1805	.pd_free_fn		= throtl_pd_free,
1806};
1807
1808static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1809{
1810	unsigned long rtime = jiffies, wtime = jiffies;
 
 
 
 
 
 
1811
1812	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1813		rtime = tg->last_low_overflow_time[READ];
1814	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1815		wtime = tg->last_low_overflow_time[WRITE];
1816	return min(rtime, wtime);
1817}
1818
1819/* tg should not be an intermediate node */
1820static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1821{
1822	struct throtl_service_queue *parent_sq;
1823	struct throtl_grp *parent = tg;
1824	unsigned long ret = __tg_last_low_overflow_time(tg);
1825
1826	while (true) {
1827		parent_sq = parent->service_queue.parent_sq;
1828		parent = sq_to_tg(parent_sq);
1829		if (!parent)
1830			break;
1831
1832		/*
1833		 * The parent doesn't have low limit, it always reaches low
1834		 * limit. Its overflow time is useless for children
1835		 */
1836		if (!parent->bps[READ][LIMIT_LOW] &&
1837		    !parent->iops[READ][LIMIT_LOW] &&
1838		    !parent->bps[WRITE][LIMIT_LOW] &&
1839		    !parent->iops[WRITE][LIMIT_LOW])
1840			continue;
1841		if (time_after(__tg_last_low_overflow_time(parent), ret))
1842			ret = __tg_last_low_overflow_time(parent);
1843	}
1844	return ret;
1845}
1846
1847static bool throtl_tg_is_idle(struct throtl_grp *tg)
1848{
1849	/*
1850	 * cgroup is idle if:
1851	 * - single idle is too long, longer than a fixed value (in case user
1852	 *   configure a too big threshold) or 4 times of idletime threshold
1853	 * - average think time is more than threshold
1854	 * - IO latency is largely below threshold
1855	 */
1856	unsigned long time;
1857	bool ret;
1858
1859	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1860	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1861	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1862	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1863	      tg->avg_idletime > tg->idletime_threshold ||
1864	      (tg->latency_target && tg->bio_cnt &&
1865		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1866	throtl_log(&tg->service_queue,
1867		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1868		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1869		tg->bio_cnt, ret, tg->td->scale);
1870	return ret;
1871}
1872
1873static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1874{
1875	struct throtl_service_queue *sq = &tg->service_queue;
1876	bool read_limit, write_limit;
1877
1878	/*
1879	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1880	 * reaches), it's ok to upgrade to next limit
1881	 */
1882	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1883	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1884	if (!read_limit && !write_limit)
1885		return true;
1886	if (read_limit && sq->nr_queued[READ] &&
1887	    (!write_limit || sq->nr_queued[WRITE]))
1888		return true;
1889	if (write_limit && sq->nr_queued[WRITE] &&
1890	    (!read_limit || sq->nr_queued[READ]))
1891		return true;
1892
1893	if (time_after_eq(jiffies,
1894		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1895	    throtl_tg_is_idle(tg))
1896		return true;
1897	return false;
1898}
1899
1900static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1901{
1902	while (true) {
1903		if (throtl_tg_can_upgrade(tg))
1904			return true;
1905		tg = sq_to_tg(tg->service_queue.parent_sq);
1906		if (!tg || !tg_to_blkg(tg)->parent)
1907			return false;
1908	}
1909	return false;
1910}
1911
1912static bool throtl_can_upgrade(struct throtl_data *td,
1913	struct throtl_grp *this_tg)
1914{
1915	struct cgroup_subsys_state *pos_css;
1916	struct blkcg_gq *blkg;
1917
1918	if (td->limit_index != LIMIT_LOW)
1919		return false;
1920
1921	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1922		return false;
1923
1924	rcu_read_lock();
1925	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1926		struct throtl_grp *tg = blkg_to_tg(blkg);
1927
1928		if (tg == this_tg)
1929			continue;
1930		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1931			continue;
1932		if (!throtl_hierarchy_can_upgrade(tg)) {
1933			rcu_read_unlock();
1934			return false;
1935		}
1936	}
1937	rcu_read_unlock();
1938	return true;
1939}
1940
1941static void throtl_upgrade_check(struct throtl_grp *tg)
1942{
1943	unsigned long now = jiffies;
1944
1945	if (tg->td->limit_index != LIMIT_LOW)
1946		return;
1947
1948	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1949		return;
1950
1951	tg->last_check_time = now;
1952
1953	if (!time_after_eq(now,
1954	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1955		return;
1956
1957	if (throtl_can_upgrade(tg->td, NULL))
1958		throtl_upgrade_state(tg->td);
1959}
1960
1961static void throtl_upgrade_state(struct throtl_data *td)
1962{
1963	struct cgroup_subsys_state *pos_css;
1964	struct blkcg_gq *blkg;
1965
1966	throtl_log(&td->service_queue, "upgrade to max");
1967	td->limit_index = LIMIT_MAX;
1968	td->low_upgrade_time = jiffies;
1969	td->scale = 0;
1970	rcu_read_lock();
1971	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1972		struct throtl_grp *tg = blkg_to_tg(blkg);
1973		struct throtl_service_queue *sq = &tg->service_queue;
1974
1975		tg->disptime = jiffies - 1;
1976		throtl_select_dispatch(sq);
1977		throtl_schedule_next_dispatch(sq, true);
1978	}
1979	rcu_read_unlock();
1980	throtl_select_dispatch(&td->service_queue);
1981	throtl_schedule_next_dispatch(&td->service_queue, true);
1982	queue_work(kthrotld_workqueue, &td->dispatch_work);
1983}
1984
1985static void throtl_downgrade_state(struct throtl_data *td)
1986{
1987	td->scale /= 2;
1988
1989	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1990	if (td->scale) {
1991		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1992		return;
1993	}
1994
1995	td->limit_index = LIMIT_LOW;
1996	td->low_downgrade_time = jiffies;
1997}
1998
1999static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2000{
2001	struct throtl_data *td = tg->td;
2002	unsigned long now = jiffies;
2003
2004	/*
2005	 * If cgroup is below low limit, consider downgrade and throttle other
2006	 * cgroups
2007	 */
2008	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2009	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2010					td->throtl_slice) &&
2011	    (!throtl_tg_is_idle(tg) ||
2012	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2013		return true;
2014	return false;
2015}
2016
2017static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2018{
2019	while (true) {
2020		if (!throtl_tg_can_downgrade(tg))
2021			return false;
2022		tg = sq_to_tg(tg->service_queue.parent_sq);
2023		if (!tg || !tg_to_blkg(tg)->parent)
2024			break;
2025	}
2026	return true;
2027}
2028
2029static void throtl_downgrade_check(struct throtl_grp *tg)
2030{
2031	uint64_t bps;
2032	unsigned int iops;
2033	unsigned long elapsed_time;
2034	unsigned long now = jiffies;
2035
2036	if (tg->td->limit_index != LIMIT_MAX ||
2037	    !tg->td->limit_valid[LIMIT_LOW])
2038		return;
2039	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2040		return;
2041	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2042		return;
2043
2044	elapsed_time = now - tg->last_check_time;
2045	tg->last_check_time = now;
2046
2047	if (time_before(now, tg_last_low_overflow_time(tg) +
2048			tg->td->throtl_slice))
2049		return;
2050
2051	if (tg->bps[READ][LIMIT_LOW]) {
2052		bps = tg->last_bytes_disp[READ] * HZ;
2053		do_div(bps, elapsed_time);
2054		if (bps >= tg->bps[READ][LIMIT_LOW])
2055			tg->last_low_overflow_time[READ] = now;
2056	}
2057
2058	if (tg->bps[WRITE][LIMIT_LOW]) {
2059		bps = tg->last_bytes_disp[WRITE] * HZ;
2060		do_div(bps, elapsed_time);
2061		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2062			tg->last_low_overflow_time[WRITE] = now;
2063	}
2064
2065	if (tg->iops[READ][LIMIT_LOW]) {
2066		tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2067		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2068		if (iops >= tg->iops[READ][LIMIT_LOW])
2069			tg->last_low_overflow_time[READ] = now;
2070	}
2071
2072	if (tg->iops[WRITE][LIMIT_LOW]) {
2073		tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2074		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2075		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2076			tg->last_low_overflow_time[WRITE] = now;
2077	}
2078
2079	/*
2080	 * If cgroup is below low limit, consider downgrade and throttle other
2081	 * cgroups
2082	 */
2083	if (throtl_hierarchy_can_downgrade(tg))
2084		throtl_downgrade_state(tg->td);
2085
2086	tg->last_bytes_disp[READ] = 0;
2087	tg->last_bytes_disp[WRITE] = 0;
2088	tg->last_io_disp[READ] = 0;
2089	tg->last_io_disp[WRITE] = 0;
2090}
2091
2092static void blk_throtl_update_idletime(struct throtl_grp *tg)
2093{
2094	unsigned long now;
2095	unsigned long last_finish_time = tg->last_finish_time;
2096
2097	if (last_finish_time == 0)
2098		return;
2099
2100	now = ktime_get_ns() >> 10;
2101	if (now <= last_finish_time ||
2102	    last_finish_time == tg->checked_last_finish_time)
2103		return;
2104
2105	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2106	tg->checked_last_finish_time = last_finish_time;
2107}
2108
2109#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2110static void throtl_update_latency_buckets(struct throtl_data *td)
2111{
2112	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2113	int i, cpu, rw;
2114	unsigned long last_latency[2] = { 0 };
2115	unsigned long latency[2];
2116
2117	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2118		return;
2119	if (time_before(jiffies, td->last_calculate_time + HZ))
2120		return;
2121	td->last_calculate_time = jiffies;
2122
2123	memset(avg_latency, 0, sizeof(avg_latency));
2124	for (rw = READ; rw <= WRITE; rw++) {
2125		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2126			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2127
2128			for_each_possible_cpu(cpu) {
2129				struct latency_bucket *bucket;
2130
2131				/* this isn't race free, but ok in practice */
2132				bucket = per_cpu_ptr(td->latency_buckets[rw],
2133					cpu);
2134				tmp->total_latency += bucket[i].total_latency;
2135				tmp->samples += bucket[i].samples;
2136				bucket[i].total_latency = 0;
2137				bucket[i].samples = 0;
2138			}
2139
2140			if (tmp->samples >= 32) {
2141				int samples = tmp->samples;
2142
2143				latency[rw] = tmp->total_latency;
2144
2145				tmp->total_latency = 0;
2146				tmp->samples = 0;
2147				latency[rw] /= samples;
2148				if (latency[rw] == 0)
2149					continue;
2150				avg_latency[rw][i].latency = latency[rw];
2151			}
2152		}
2153	}
2154
2155	for (rw = READ; rw <= WRITE; rw++) {
2156		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2157			if (!avg_latency[rw][i].latency) {
2158				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2159					td->avg_buckets[rw][i].latency =
2160						last_latency[rw];
2161				continue;
2162			}
2163
2164			if (!td->avg_buckets[rw][i].valid)
2165				latency[rw] = avg_latency[rw][i].latency;
2166			else
2167				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2168					avg_latency[rw][i].latency) >> 3;
2169
2170			td->avg_buckets[rw][i].latency = max(latency[rw],
2171				last_latency[rw]);
2172			td->avg_buckets[rw][i].valid = true;
2173			last_latency[rw] = td->avg_buckets[rw][i].latency;
2174		}
2175	}
2176
2177	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2178		throtl_log(&td->service_queue,
2179			"Latency bucket %d: read latency=%ld, read valid=%d, "
2180			"write latency=%ld, write valid=%d", i,
2181			td->avg_buckets[READ][i].latency,
2182			td->avg_buckets[READ][i].valid,
2183			td->avg_buckets[WRITE][i].latency,
2184			td->avg_buckets[WRITE][i].valid);
2185}
2186#else
2187static inline void throtl_update_latency_buckets(struct throtl_data *td)
2188{
2189}
2190#endif
2191
2192void blk_throtl_charge_bio_split(struct bio *bio)
2193{
2194	struct blkcg_gq *blkg = bio->bi_blkg;
2195	struct throtl_grp *parent = blkg_to_tg(blkg);
2196	struct throtl_service_queue *parent_sq;
2197	bool rw = bio_data_dir(bio);
2198
2199	do {
2200		if (!parent->has_rules[rw])
2201			break;
2202
2203		atomic_inc(&parent->io_split_cnt[rw]);
2204		atomic_inc(&parent->last_io_split_cnt[rw]);
2205
2206		parent_sq = parent->service_queue.parent_sq;
2207		parent = sq_to_tg(parent_sq);
2208	} while (parent);
2209}
2210
2211bool blk_throtl_bio(struct bio *bio)
2212{
2213	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2214	struct blkcg_gq *blkg = bio->bi_blkg;
2215	struct throtl_qnode *qn = NULL;
2216	struct throtl_grp *tg = blkg_to_tg(blkg);
2217	struct throtl_service_queue *sq;
2218	bool rw = bio_data_dir(bio);
2219	bool throttled = false;
2220	struct throtl_data *td = tg->td;
2221
2222	rcu_read_lock();
2223
2224	/* see throtl_charge_bio() */
2225	if (bio_flagged(bio, BIO_THROTTLED))
2226		goto out;
2227
2228	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2229		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2230				bio->bi_iter.bi_size);
2231		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2232	}
2233
2234	if (!tg->has_rules[rw])
2235		goto out;
2236
2237	spin_lock_irq(&q->queue_lock);
2238
2239	throtl_update_latency_buckets(td);
2240
2241	blk_throtl_update_idletime(tg);
2242
2243	sq = &tg->service_queue;
2244
2245again:
2246	while (true) {
2247		if (tg->last_low_overflow_time[rw] == 0)
2248			tg->last_low_overflow_time[rw] = jiffies;
2249		throtl_downgrade_check(tg);
2250		throtl_upgrade_check(tg);
2251		/* throtl is FIFO - if bios are already queued, should queue */
2252		if (sq->nr_queued[rw])
2253			break;
2254
2255		/* if above limits, break to queue */
2256		if (!tg_may_dispatch(tg, bio, NULL)) {
2257			tg->last_low_overflow_time[rw] = jiffies;
2258			if (throtl_can_upgrade(td, tg)) {
2259				throtl_upgrade_state(td);
2260				goto again;
2261			}
2262			break;
2263		}
2264
2265		/* within limits, let's charge and dispatch directly */
2266		throtl_charge_bio(tg, bio);
2267
2268		/*
2269		 * We need to trim slice even when bios are not being queued
2270		 * otherwise it might happen that a bio is not queued for
2271		 * a long time and slice keeps on extending and trim is not
2272		 * called for a long time. Now if limits are reduced suddenly
2273		 * we take into account all the IO dispatched so far at new
2274		 * low rate and * newly queued IO gets a really long dispatch
2275		 * time.
2276		 *
2277		 * So keep on trimming slice even if bio is not queued.
2278		 */
2279		throtl_trim_slice(tg, rw);
2280
2281		/*
2282		 * @bio passed through this layer without being throttled.
2283		 * Climb up the ladder.  If we're already at the top, it
2284		 * can be executed directly.
2285		 */
2286		qn = &tg->qnode_on_parent[rw];
2287		sq = sq->parent_sq;
2288		tg = sq_to_tg(sq);
2289		if (!tg)
2290			goto out_unlock;
2291	}
2292
2293	/* out-of-limit, queue to @tg */
2294	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2295		   rw == READ ? 'R' : 'W',
2296		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2297		   tg_bps_limit(tg, rw),
2298		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2299		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2300
2301	tg->last_low_overflow_time[rw] = jiffies;
2302
2303	td->nr_queued[rw]++;
2304	throtl_add_bio_tg(bio, qn, tg);
2305	throttled = true;
2306
2307	/*
2308	 * Update @tg's dispatch time and force schedule dispatch if @tg
2309	 * was empty before @bio.  The forced scheduling isn't likely to
2310	 * cause undue delay as @bio is likely to be dispatched directly if
2311	 * its @tg's disptime is not in the future.
2312	 */
2313	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2314		tg_update_disptime(tg);
2315		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2316	}
2317
2318out_unlock:
2319	spin_unlock_irq(&q->queue_lock);
 
 
2320out:
2321	bio_set_flag(bio, BIO_THROTTLED);
2322
2323#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2324	if (throttled || !td->track_bio_latency)
2325		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2326#endif
2327	rcu_read_unlock();
2328	return throttled;
2329}
2330
2331#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2332static void throtl_track_latency(struct throtl_data *td, sector_t size,
2333	int op, unsigned long time)
2334{
2335	struct latency_bucket *latency;
2336	int index;
2337
2338	if (!td || td->limit_index != LIMIT_LOW ||
2339	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2340	    !blk_queue_nonrot(td->queue))
2341		return;
2342
2343	index = request_bucket_index(size);
 
 
2344
2345	latency = get_cpu_ptr(td->latency_buckets[op]);
2346	latency[index].total_latency += time;
2347	latency[index].samples++;
2348	put_cpu_ptr(td->latency_buckets[op]);
 
 
 
2349}
2350
2351void blk_throtl_stat_add(struct request *rq, u64 time_ns)
 
 
 
 
 
 
 
2352{
2353	struct request_queue *q = rq->q;
2354	struct throtl_data *td = q->td;
 
 
 
 
2355
2356	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2357			     time_ns >> 10);
2358}
2359
2360void blk_throtl_bio_endio(struct bio *bio)
2361{
2362	struct blkcg_gq *blkg;
2363	struct throtl_grp *tg;
2364	u64 finish_time_ns;
2365	unsigned long finish_time;
2366	unsigned long start_time;
2367	unsigned long lat;
2368	int rw = bio_data_dir(bio);
2369
2370	blkg = bio->bi_blkg;
2371	if (!blkg)
2372		return;
2373	tg = blkg_to_tg(blkg);
2374	if (!tg->td->limit_valid[LIMIT_LOW])
2375		return;
2376
2377	finish_time_ns = ktime_get_ns();
2378	tg->last_finish_time = finish_time_ns >> 10;
2379
2380	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2381	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2382	if (!start_time || finish_time <= start_time)
2383		return;
2384
2385	lat = finish_time - start_time;
2386	/* this is only for bio based driver */
2387	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2388		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2389				     bio_op(bio), lat);
2390
2391	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2392		int bucket;
2393		unsigned int threshold;
2394
2395		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2396		threshold = tg->td->avg_buckets[rw][bucket].latency +
2397			tg->latency_target;
2398		if (lat > threshold)
2399			tg->bad_bio_cnt++;
2400		/*
2401		 * Not race free, could get wrong count, which means cgroups
2402		 * will be throttled
2403		 */
2404		tg->bio_cnt++;
2405	}
2406
2407	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2408		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2409		tg->bio_cnt /= 2;
2410		tg->bad_bio_cnt /= 2;
2411	}
2412}
2413#endif
2414
2415int blk_throtl_init(struct request_queue *q)
2416{
2417	struct throtl_data *td;
2418	int ret;
2419
2420	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2421	if (!td)
2422		return -ENOMEM;
2423	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2424		LATENCY_BUCKET_SIZE, __alignof__(u64));
2425	if (!td->latency_buckets[READ]) {
2426		kfree(td);
2427		return -ENOMEM;
2428	}
2429	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2430		LATENCY_BUCKET_SIZE, __alignof__(u64));
2431	if (!td->latency_buckets[WRITE]) {
2432		free_percpu(td->latency_buckets[READ]);
2433		kfree(td);
2434		return -ENOMEM;
2435	}
2436
2437	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2438	throtl_service_queue_init(&td->service_queue);
2439
2440	q->td = td;
2441	td->queue = q;
2442
2443	td->limit_valid[LIMIT_MAX] = true;
2444	td->limit_index = LIMIT_MAX;
2445	td->low_upgrade_time = jiffies;
2446	td->low_downgrade_time = jiffies;
2447
2448	/* activate policy */
2449	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2450	if (ret) {
2451		free_percpu(td->latency_buckets[READ]);
2452		free_percpu(td->latency_buckets[WRITE]);
2453		kfree(td);
2454	}
2455	return ret;
2456}
2457
2458void blk_throtl_exit(struct request_queue *q)
2459{
2460	BUG_ON(!q->td);
2461	del_timer_sync(&q->td->service_queue.pending_timer);
2462	throtl_shutdown_wq(q);
2463	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2464	free_percpu(q->td->latency_buckets[READ]);
2465	free_percpu(q->td->latency_buckets[WRITE]);
2466	kfree(q->td);
2467}
2468
2469void blk_throtl_register_queue(struct request_queue *q)
2470{
2471	struct throtl_data *td;
2472	int i;
2473
2474	td = q->td;
2475	BUG_ON(!td);
2476
2477	if (blk_queue_nonrot(q)) {
2478		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2479		td->filtered_latency = LATENCY_FILTERED_SSD;
2480	} else {
2481		td->throtl_slice = DFL_THROTL_SLICE_HD;
2482		td->filtered_latency = LATENCY_FILTERED_HD;
2483		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2484			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2485			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2486		}
2487	}
2488#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2489	/* if no low limit, use previous default */
2490	td->throtl_slice = DFL_THROTL_SLICE_HD;
2491#endif
2492
2493	td->track_bio_latency = !queue_is_mq(q);
2494	if (!td->track_bio_latency)
2495		blk_stat_enable_accounting(q);
2496}
2497
2498#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2499ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2500{
2501	if (!q->td)
2502		return -EINVAL;
2503	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2504}
2505
2506ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2507	const char *page, size_t count)
2508{
2509	unsigned long v;
2510	unsigned long t;
2511
2512	if (!q->td)
2513		return -EINVAL;
2514	if (kstrtoul(page, 10, &v))
2515		return -EINVAL;
2516	t = msecs_to_jiffies(v);
2517	if (t == 0 || t > MAX_THROTL_SLICE)
2518		return -EINVAL;
2519	q->td->throtl_slice = t;
2520	return count;
2521}
2522#endif
2523
2524static int __init throtl_init(void)
2525{
2526	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2527	if (!kthrotld_workqueue)
2528		panic("Failed to create kthrotld\n");
2529
2530	return blkcg_policy_register(&blkcg_policy_throtl);
2531}
2532
2533module_init(throtl_init);