Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 14#include <asm/proc-fns.h>
 15
 16#ifndef CONFIG_MMU
 17
 18#include <asm-generic/4level-fixup.h>
 19#include <asm/pgtable-nommu.h>
 20
 21#else
 22
 23#include <asm-generic/pgtable-nopud.h>
 24#include <asm/memory.h>
 25#include <asm/pgtable-hwdef.h>
 26
 27
 28#include <asm/tlbflush.h>
 29
 30#ifdef CONFIG_ARM_LPAE
 31#include <asm/pgtable-3level.h>
 32#else
 33#include <asm/pgtable-2level.h>
 34#endif
 35
 36/*
 37 * Just any arbitrary offset to the start of the vmalloc VM area: the
 38 * current 8MB value just means that there will be a 8MB "hole" after the
 39 * physical memory until the kernel virtual memory starts.  That means that
 40 * any out-of-bounds memory accesses will hopefully be caught.
 41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 42 * area for the same reason. ;)
 43 */
 44#define VMALLOC_OFFSET		(8*1024*1024)
 45#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 46#define VMALLOC_END		0xff000000UL
 47
 48#define LIBRARY_TEXT_START	0x0c000000
 49
 50#ifndef __ASSEMBLY__
 51extern void __pte_error(const char *file, int line, pte_t);
 52extern void __pmd_error(const char *file, int line, pmd_t);
 53extern void __pgd_error(const char *file, int line, pgd_t);
 54
 55#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 56#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 57#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 58
 59/*
 60 * This is the lowest virtual address we can permit any user space
 61 * mapping to be mapped at.  This is particularly important for
 62 * non-high vector CPUs.
 63 */
 64#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 65
 66/*
 67 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 68 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 69 * page shared between user and kernel).
 70 */
 71#ifdef CONFIG_ARM_LPAE
 72#define USER_PGTABLES_CEILING	TASK_SIZE
 73#endif
 74
 75/*
 76 * The pgprot_* and protection_map entries will be fixed up in runtime
 77 * to include the cachable and bufferable bits based on memory policy,
 78 * as well as any architecture dependent bits like global/ASID and SMP
 79 * shared mapping bits.
 80 */
 81#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 82
 83extern pgprot_t		pgprot_user;
 84extern pgprot_t		pgprot_kernel;
 85extern pgprot_t		pgprot_hyp_device;
 86extern pgprot_t		pgprot_s2;
 87extern pgprot_t		pgprot_s2_device;
 88
 89#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 90
 91#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 92#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 93#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 94#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 95#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 96#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 97#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 98#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 99#define PAGE_KERNEL_EXEC	pgprot_kernel
100#define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP)
101#define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
102#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
103#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDWR)
104
105#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
106#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
107#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
108#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
109#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
110#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112
113#define __pgprot_modify(prot,mask,bits)		\
114	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
115
116#define pgprot_noncached(prot) \
117	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
118
119#define pgprot_writecombine(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
121
122#define pgprot_stronglyordered(prot) \
123	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
124
 
 
 
125#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
128#define __HAVE_PHYS_MEM_ACCESS_PROT
129struct file;
130extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
131				     unsigned long size, pgprot_t vma_prot);
132#else
133#define pgprot_dmacoherent(prot) \
134	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
135#endif
136
137#endif /* __ASSEMBLY__ */
138
139/*
140 * The table below defines the page protection levels that we insert into our
141 * Linux page table version.  These get translated into the best that the
142 * architecture can perform.  Note that on most ARM hardware:
143 *  1) We cannot do execute protection
144 *  2) If we could do execute protection, then read is implied
145 *  3) write implies read permissions
146 */
147#define __P000  __PAGE_NONE
148#define __P001  __PAGE_READONLY
149#define __P010  __PAGE_COPY
150#define __P011  __PAGE_COPY
151#define __P100  __PAGE_READONLY_EXEC
152#define __P101  __PAGE_READONLY_EXEC
153#define __P110  __PAGE_COPY_EXEC
154#define __P111  __PAGE_COPY_EXEC
155
156#define __S000  __PAGE_NONE
157#define __S001  __PAGE_READONLY
158#define __S010  __PAGE_SHARED
159#define __S011  __PAGE_SHARED
160#define __S100  __PAGE_READONLY_EXEC
161#define __S101  __PAGE_READONLY_EXEC
162#define __S110  __PAGE_SHARED_EXEC
163#define __S111  __PAGE_SHARED_EXEC
164
165#ifndef __ASSEMBLY__
166/*
167 * ZERO_PAGE is a global shared page that is always zero: used
168 * for zero-mapped memory areas etc..
169 */
170extern struct page *empty_zero_page;
171#define ZERO_PAGE(vaddr)	(empty_zero_page)
172
173
174extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
175
176/* to find an entry in a page-table-directory */
177#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
178
179#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
180
181/* to find an entry in a kernel page-table-directory */
182#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
183
184#define pmd_none(pmd)		(!pmd_val(pmd))
185#define pmd_present(pmd)	(pmd_val(pmd))
186
187static inline pte_t *pmd_page_vaddr(pmd_t pmd)
188{
189	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
190}
191
192#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
193
194#ifndef CONFIG_HIGHPTE
195#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
196#define __pte_unmap(pte)	do { } while (0)
197#else
198#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
199#define __pte_unmap(pte)	kunmap_atomic(pte)
200#endif
201
202#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
203
204#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
205
206#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
207#define pte_unmap(pte)			__pte_unmap(pte)
208
209#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
210#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
211
212#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
213#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
214
215#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
216
 
 
 
 
217#define pte_none(pte)		(!pte_val(pte))
218#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
219#define pte_valid(pte)		(pte_val(pte) & L_PTE_VALID)
220#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
221#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
222#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
223#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
224#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
225#define pte_special(pte)	(0)
226
227#define pte_valid_user(pte)	\
228	(pte_valid(pte) && (pte_val(pte) & L_PTE_USER) && pte_young(pte))
 
 
 
 
 
 
 
 
 
 
 
 
229
230#if __LINUX_ARM_ARCH__ < 6
231static inline void __sync_icache_dcache(pte_t pteval)
232{
233}
234#else
235extern void __sync_icache_dcache(pte_t pteval);
236#endif
237
238static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
239			      pte_t *ptep, pte_t pteval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240{
241	unsigned long ext = 0;
 
242
243	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
244		__sync_icache_dcache(pteval);
245		ext |= PTE_EXT_NG;
246	}
247
248	set_pte_ext(ptep, pteval, ext);
 
 
249}
250
251#define PTE_BIT_FUNC(fn,op) \
252static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
 
 
253
254PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
255PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
256PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
257PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
258PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
259PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
260PTE_BIT_FUNC(mkexec,   &= ~L_PTE_XN);
261PTE_BIT_FUNC(mknexec,   |= L_PTE_XN);
 
 
 
 
 
 
262
263static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 
 
 
264
265static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
266{
267	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
268		L_PTE_NONE | L_PTE_VALID;
269	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
270	return pte;
271}
272
273/*
274 * Encode and decode a swap entry.  Swap entries are stored in the Linux
275 * page tables as follows:
276 *
277 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
278 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
279 *   <--------------- offset ----------------------> < type -> 0 0 0
280 *
281 * This gives us up to 31 swap files and 64GB per swap file.  Note that
282 * the offset field is always non-zero.
283 */
284#define __SWP_TYPE_SHIFT	3
285#define __SWP_TYPE_BITS		5
286#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
287#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
288
289#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
290#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
291#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
292
293#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
294#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
295
296/*
297 * It is an error for the kernel to have more swap files than we can
298 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
299 * is increased beyond what we presently support.
300 */
301#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
302
303/*
304 * Encode and decode a file entry.  File entries are stored in the Linux
305 * page tables as follows:
306 *
307 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
308 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
309 *   <----------------------- offset ------------------------> 1 0 0
310 */
311#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
312#define pte_to_pgoff(x)		(pte_val(x) >> 3)
313#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
314
315#define PTE_FILE_MAX_BITS	29
316
317/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
318/* FIXME: this is not correct */
319#define kern_addr_valid(addr)	(1)
320
321#include <asm-generic/pgtable.h>
322
323/*
324 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
325 */
326#define HAVE_ARCH_UNMAPPED_AREA
327#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
328
329#define pgtable_cache_init() do { } while (0)
330
331#endif /* !__ASSEMBLY__ */
332
333#endif /* CONFIG_MMU */
334
335#endif /* _ASMARM_PGTABLE_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/pgtable.h
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
 
 
 
 
  6 */
  7#ifndef _ASMARM_PGTABLE_H
  8#define _ASMARM_PGTABLE_H
  9
 10#include <linux/const.h>
 11#include <asm/proc-fns.h>
 12
 13#ifndef CONFIG_MMU
 14
 15#include <asm-generic/pgtable-nopud.h>
 16#include <asm/pgtable-nommu.h>
 17
 18#else
 19
 20#include <asm-generic/pgtable-nopud.h>
 21#include <asm/memory.h>
 22#include <asm/pgtable-hwdef.h>
 23
 24
 25#include <asm/tlbflush.h>
 26
 27#ifdef CONFIG_ARM_LPAE
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33/*
 34 * Just any arbitrary offset to the start of the vmalloc VM area: the
 35 * current 8MB value just means that there will be a 8MB "hole" after the
 36 * physical memory until the kernel virtual memory starts.  That means that
 37 * any out-of-bounds memory accesses will hopefully be caught.
 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 39 * area for the same reason. ;)
 40 */
 41#define VMALLOC_OFFSET		(8*1024*1024)
 42#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 43#define VMALLOC_END		0xff800000UL
 44
 45#define LIBRARY_TEXT_START	0x0c000000
 46
 47#ifndef __ASSEMBLY__
 48extern void __pte_error(const char *file, int line, pte_t);
 49extern void __pmd_error(const char *file, int line, pmd_t);
 50extern void __pgd_error(const char *file, int line, pgd_t);
 51
 52#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 53#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 54#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 55
 56/*
 57 * This is the lowest virtual address we can permit any user space
 58 * mapping to be mapped at.  This is particularly important for
 59 * non-high vector CPUs.
 60 */
 61#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 62
 63/*
 64 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 65 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 66 * page shared between user and kernel).
 67 */
 68#ifdef CONFIG_ARM_LPAE
 69#define USER_PGTABLES_CEILING	TASK_SIZE
 70#endif
 71
 72/*
 73 * The pgprot_* and protection_map entries will be fixed up in runtime
 74 * to include the cachable and bufferable bits based on memory policy,
 75 * as well as any architecture dependent bits like global/ASID and SMP
 76 * shared mapping bits.
 77 */
 78#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 79
 80extern pgprot_t		pgprot_user;
 81extern pgprot_t		pgprot_kernel;
 
 
 
 82
 83#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 84
 85#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 86#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 87#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 88#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 89#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 90#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 91#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 92#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 93#define PAGE_KERNEL_EXEC	pgprot_kernel
 
 
 
 
 94
 95#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
 96#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 97#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 98#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 99#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
100#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
101#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
102
103#define __pgprot_modify(prot,mask,bits)		\
104	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
105
106#define pgprot_noncached(prot) \
107	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
108
109#define pgprot_writecombine(prot) \
110	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
111
112#define pgprot_stronglyordered(prot) \
113	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
114
115#define pgprot_device(prot) \
116	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
117
118#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
119#define pgprot_dmacoherent(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
121#define __HAVE_PHYS_MEM_ACCESS_PROT
122struct file;
123extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
124				     unsigned long size, pgprot_t vma_prot);
125#else
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
128#endif
129
130#endif /* __ASSEMBLY__ */
131
132/*
133 * The table below defines the page protection levels that we insert into our
134 * Linux page table version.  These get translated into the best that the
135 * architecture can perform.  Note that on most ARM hardware:
136 *  1) We cannot do execute protection
137 *  2) If we could do execute protection, then read is implied
138 *  3) write implies read permissions
139 */
140#define __P000  __PAGE_NONE
141#define __P001  __PAGE_READONLY
142#define __P010  __PAGE_COPY
143#define __P011  __PAGE_COPY
144#define __P100  __PAGE_READONLY_EXEC
145#define __P101  __PAGE_READONLY_EXEC
146#define __P110  __PAGE_COPY_EXEC
147#define __P111  __PAGE_COPY_EXEC
148
149#define __S000  __PAGE_NONE
150#define __S001  __PAGE_READONLY
151#define __S010  __PAGE_SHARED
152#define __S011  __PAGE_SHARED
153#define __S100  __PAGE_READONLY_EXEC
154#define __S101  __PAGE_READONLY_EXEC
155#define __S110  __PAGE_SHARED_EXEC
156#define __S111  __PAGE_SHARED_EXEC
157
158#ifndef __ASSEMBLY__
159/*
160 * ZERO_PAGE is a global shared page that is always zero: used
161 * for zero-mapped memory areas etc..
162 */
163extern struct page *empty_zero_page;
164#define ZERO_PAGE(vaddr)	(empty_zero_page)
165
166
167extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
168
169#define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
170#define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
 
 
 
 
 
171
172#define pmd_none(pmd)		(!pmd_val(pmd))
 
173
174static inline pte_t *pmd_page_vaddr(pmd_t pmd)
175{
176	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
177}
178
179#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
182#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
183
184#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
185#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
186
187#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
188
189#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
190						: !!(pte_val(pte) & (val)))
191#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
192
193#define pte_none(pte)		(!pte_val(pte))
194#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
195#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
196#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
197#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
198#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
199#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
200#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
 
201
202#define pte_valid_user(pte)	\
203	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
204
205static inline bool pte_access_permitted(pte_t pte, bool write)
206{
207	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
208	pteval_t needed = mask;
209
210	if (write)
211		mask |= L_PTE_RDONLY;
212
213	return (pte_val(pte) & mask) == needed;
214}
215#define pte_access_permitted pte_access_permitted
216
217#if __LINUX_ARM_ARCH__ < 6
218static inline void __sync_icache_dcache(pte_t pteval)
219{
220}
221#else
222extern void __sync_icache_dcache(pte_t pteval);
223#endif
224
225void set_pte_at(struct mm_struct *mm, unsigned long addr,
226		      pte_t *ptep, pte_t pteval);
227
228static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
229{
230	pte_val(pte) &= ~pgprot_val(prot);
231	return pte;
232}
233
234static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
235{
236	pte_val(pte) |= pgprot_val(prot);
237	return pte;
238}
239
240static inline pte_t pte_wrprotect(pte_t pte)
241{
242	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
243}
244
245static inline pte_t pte_mkwrite(pte_t pte)
246{
247	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
248}
249
250static inline pte_t pte_mkclean(pte_t pte)
251{
252	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
253}
254
255static inline pte_t pte_mkdirty(pte_t pte)
256{
257	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
258}
259
260static inline pte_t pte_mkold(pte_t pte)
261{
262	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
263}
264
265static inline pte_t pte_mkyoung(pte_t pte)
266{
267	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
268}
269
270static inline pte_t pte_mkexec(pte_t pte)
271{
272	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
273}
274
275static inline pte_t pte_mknexec(pte_t pte)
276{
277	return set_pte_bit(pte, __pgprot(L_PTE_XN));
278}
279
280static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
281{
282	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
283		L_PTE_NONE | L_PTE_VALID;
284	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
285	return pte;
286}
287
288/*
289 * Encode and decode a swap entry.  Swap entries are stored in the Linux
290 * page tables as follows:
291 *
292 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
293 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
294 *   <--------------- offset ------------------------> < type -> 0 0
295 *
296 * This gives us up to 31 swap files and 128GB per swap file.  Note that
297 * the offset field is always non-zero.
298 */
299#define __SWP_TYPE_SHIFT	2
300#define __SWP_TYPE_BITS		5
301#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
302#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
303
304#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
305#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
306#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
307
308#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
309#define __swp_entry_to_pte(swp)	__pte((swp).val | PTE_TYPE_FAULT)
310
311/*
312 * It is an error for the kernel to have more swap files than we can
313 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
314 * is increased beyond what we presently support.
315 */
316#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
319/* FIXME: this is not correct */
320#define kern_addr_valid(addr)	(1)
321
 
 
322/*
323 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
324 */
325#define HAVE_ARCH_UNMAPPED_AREA
326#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 
 
327
328#endif /* !__ASSEMBLY__ */
329
330#endif /* CONFIG_MMU */
331
332#endif /* _ASMARM_PGTABLE_H */