Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include "util/symbol.h"
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
35#include "util/event.h"
36#include "util/session.h"
37#include "util/svghelper.h"
38#include "util/tool.h"
39#include "util/data.h"
40
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
44struct per_pid;
45struct power_event;
46struct wake_event;
47
48struct timechart {
49 struct perf_tool tool;
50 struct per_pid *all_data;
51 struct power_event *power_events;
52 struct wake_event *wake_events;
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace,
62 topology;
63};
64
65struct per_pidcomm;
66struct cpu_sample;
67
68/*
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
76 */
77
78struct per_pid {
79 struct per_pid *next;
80
81 int pid;
82 int ppid;
83
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
88
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
91};
92
93
94struct per_pidcomm {
95 struct per_pidcomm *next;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100
101 int Y;
102 int display;
103
104 long state;
105 u64 state_since;
106
107 char *comm;
108
109 struct cpu_sample *samples;
110};
111
112struct sample_wrapper {
113 struct sample_wrapper *next;
114
115 u64 timestamp;
116 unsigned char data[0];
117};
118
119#define TYPE_NONE 0
120#define TYPE_RUNNING 1
121#define TYPE_WAITING 2
122#define TYPE_BLOCKED 3
123
124struct cpu_sample {
125 struct cpu_sample *next;
126
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
131 const char *backtrace;
132};
133
134#define CSTATE 1
135#define PSTATE 2
136
137struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
144};
145
146struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
151 const char *backtrace;
152};
153
154struct process_filter {
155 char *name;
156 int pid;
157 struct process_filter *next;
158};
159
160static struct process_filter *process_filter;
161
162
163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
164{
165 struct per_pid *cursor = tchart->all_data;
166
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
171 }
172 cursor = zalloc(sizeof(*cursor));
173 assert(cursor != NULL);
174 cursor->pid = pid;
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(tchart, pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = zalloc(sizeof(*c));
199 assert(c != NULL);
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
207{
208 struct per_pid *p, *pp;
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
213 pid_set_comm(tchart, pid, pp->current->comm);
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
223{
224 struct per_pid *p;
225 p = find_create_pid(tchart, pid);
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
231static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(tchart, pid);
240 c = p->current;
241 if (!c) {
242 c = zalloc(sizeof(*c));
243 assert(c != NULL);
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
249 sample = zalloc(sizeof(*sample));
250 assert(sample != NULL);
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 sample->backtrace = backtrace;
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
277static int process_comm_event(struct perf_tool *tool,
278 union perf_event *event,
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
281{
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool,
288 union perf_event *event,
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
291{
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
295}
296
297static int process_exit_event(struct perf_tool *tool,
298 union perf_event *event,
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
301{
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
304 return 0;
305}
306
307#ifdef SUPPORT_OLD_POWER_EVENTS
308static int use_old_power_events;
309#endif
310
311static void c_state_start(int cpu, u64 timestamp, int state)
312{
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
315}
316
317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
318{
319 struct power_event *pwr = zalloc(sizeof(*pwr));
320
321 if (!pwr)
322 return;
323
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
329 pwr->next = tchart->power_events;
330
331 tchart->power_events = pwr;
332}
333
334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
335{
336 struct power_event *pwr;
337
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
340
341 pwr = zalloc(sizeof(*pwr));
342 if (!pwr)
343 return;
344
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
350 pwr->next = tchart->power_events;
351
352 if (!pwr->start_time)
353 pwr->start_time = tchart->first_time;
354
355 tchart->power_events = pwr;
356
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
359
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
362
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
365
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
368}
369
370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
372{
373 struct per_pid *p;
374 struct wake_event *we = zalloc(sizeof(*we));
375
376 if (!we)
377 return;
378
379 we->time = timestamp;
380 we->waker = waker;
381 we->backtrace = backtrace;
382
383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
384 we->waker = -1;
385
386 we->wakee = wakee;
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
389 p = find_create_pid(tchart, we->wakee);
390
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
394 }
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
397 p->current->state_since, timestamp, NULL);
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
400 }
401}
402
403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
406{
407 struct per_pid *p = NULL, *prev_p;
408
409 prev_p = find_create_pid(tchart, prev_pid);
410
411 p = find_create_pid(tchart, next_pid);
412
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
415 prev_p->current->state_since, timestamp,
416 backtrace);
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
420 p->current->state_since, timestamp,
421 backtrace);
422
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
425 }
426
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
430 if (prev_state & 2)
431 prev_p->current->state = TYPE_BLOCKED;
432 if (prev_state == 0)
433 prev_p->current->state = TYPE_WAITING;
434 }
435}
436
437static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
440{
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
449
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
453 }
454
455 if (!chain)
456 goto exit;
457
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
462 }
463
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
466
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
471
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
486
487 /*
488 * It seems the callchain is corrupted.
489 * Discard all.
490 */
491 zfree(&p);
492 goto exit;
493 }
494 continue;
495 }
496
497 tal.filtered = 0;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
500
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
506 }
507
508exit:
509 fclose(f);
510
511 return p;
512}
513
514typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
516 struct perf_sample *sample,
517 const char *backtrace);
518
519static int process_sample_event(struct perf_tool *tool,
520 union perf_event *event,
521 struct perf_sample *sample,
522 struct perf_evsel *evsel,
523 struct machine *machine)
524{
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
526
527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
532 }
533
534 if (evsel->handler != NULL) {
535 tracepoint_handler f = evsel->handler;
536 return f(tchart, evsel, sample,
537 cat_backtrace(event, sample, machine));
538 }
539
540 return 0;
541}
542
543static int
544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545 struct perf_evsel *evsel,
546 struct perf_sample *sample,
547 const char *backtrace __maybe_unused)
548{
549 u32 state = perf_evsel__intval(evsel, sample, "state");
550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
551
552 if (state == (u32)PWR_EVENT_EXIT)
553 c_state_end(tchart, cpu_id, sample->time);
554 else
555 c_state_start(cpu_id, sample->time, state);
556 return 0;
557}
558
559static int
560process_sample_cpu_frequency(struct timechart *tchart,
561 struct perf_evsel *evsel,
562 struct perf_sample *sample,
563 const char *backtrace __maybe_unused)
564{
565 u32 state = perf_evsel__intval(evsel, sample, "state");
566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
567
568 p_state_change(tchart, cpu_id, sample->time, state);
569 return 0;
570}
571
572static int
573process_sample_sched_wakeup(struct timechart *tchart,
574 struct perf_evsel *evsel,
575 struct perf_sample *sample,
576 const char *backtrace)
577{
578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579 int waker = perf_evsel__intval(evsel, sample, "common_pid");
580 int wakee = perf_evsel__intval(evsel, sample, "pid");
581
582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
583 return 0;
584}
585
586static int
587process_sample_sched_switch(struct timechart *tchart,
588 struct perf_evsel *evsel,
589 struct perf_sample *sample,
590 const char *backtrace)
591{
592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
595
596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597 prev_state, backtrace);
598 return 0;
599}
600
601#ifdef SUPPORT_OLD_POWER_EVENTS
602static int
603process_sample_power_start(struct timechart *tchart __maybe_unused,
604 struct perf_evsel *evsel,
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
607{
608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609 u64 value = perf_evsel__intval(evsel, sample, "value");
610
611 c_state_start(cpu_id, sample->time, value);
612 return 0;
613}
614
615static int
616process_sample_power_end(struct timechart *tchart,
617 struct perf_evsel *evsel __maybe_unused,
618 struct perf_sample *sample,
619 const char *backtrace __maybe_unused)
620{
621 c_state_end(tchart, sample->cpu, sample->time);
622 return 0;
623}
624
625static int
626process_sample_power_frequency(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace __maybe_unused)
630{
631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632 u64 value = perf_evsel__intval(evsel, sample, "value");
633
634 p_state_change(tchart, cpu_id, sample->time, value);
635 return 0;
636}
637#endif /* SUPPORT_OLD_POWER_EVENTS */
638
639/*
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
642 */
643static void end_sample_processing(struct timechart *tchart)
644{
645 u64 cpu;
646 struct power_event *pwr;
647
648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
649 /* C state */
650#if 0
651 pwr = zalloc(sizeof(*pwr));
652 if (!pwr)
653 return;
654
655 pwr->state = cpus_cstate_state[cpu];
656 pwr->start_time = cpus_cstate_start_times[cpu];
657 pwr->end_time = tchart->last_time;
658 pwr->cpu = cpu;
659 pwr->type = CSTATE;
660 pwr->next = tchart->power_events;
661
662 tchart->power_events = pwr;
663#endif
664 /* P state */
665
666 pwr = zalloc(sizeof(*pwr));
667 if (!pwr)
668 return;
669
670 pwr->state = cpus_pstate_state[cpu];
671 pwr->start_time = cpus_pstate_start_times[cpu];
672 pwr->end_time = tchart->last_time;
673 pwr->cpu = cpu;
674 pwr->type = PSTATE;
675 pwr->next = tchart->power_events;
676
677 if (!pwr->start_time)
678 pwr->start_time = tchart->first_time;
679 if (!pwr->state)
680 pwr->state = tchart->min_freq;
681 tchart->power_events = pwr;
682 }
683}
684
685/*
686 * Sort the pid datastructure
687 */
688static void sort_pids(struct timechart *tchart)
689{
690 struct per_pid *new_list, *p, *cursor, *prev;
691 /* sort by ppid first, then by pid, lowest to highest */
692
693 new_list = NULL;
694
695 while (tchart->all_data) {
696 p = tchart->all_data;
697 tchart->all_data = p->next;
698 p->next = NULL;
699
700 if (new_list == NULL) {
701 new_list = p;
702 p->next = NULL;
703 continue;
704 }
705 prev = NULL;
706 cursor = new_list;
707 while (cursor) {
708 if (cursor->ppid > p->ppid ||
709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710 /* must insert before */
711 if (prev) {
712 p->next = prev->next;
713 prev->next = p;
714 cursor = NULL;
715 continue;
716 } else {
717 p->next = new_list;
718 new_list = p;
719 cursor = NULL;
720 continue;
721 }
722 }
723
724 prev = cursor;
725 cursor = cursor->next;
726 if (!cursor)
727 prev->next = p;
728 }
729 }
730 tchart->all_data = new_list;
731}
732
733
734static void draw_c_p_states(struct timechart *tchart)
735{
736 struct power_event *pwr;
737 pwr = tchart->power_events;
738
739 /*
740 * two pass drawing so that the P state bars are on top of the C state blocks
741 */
742 while (pwr) {
743 if (pwr->type == CSTATE)
744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745 pwr = pwr->next;
746 }
747
748 pwr = tchart->power_events;
749 while (pwr) {
750 if (pwr->type == PSTATE) {
751 if (!pwr->state)
752 pwr->state = tchart->min_freq;
753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
754 }
755 pwr = pwr->next;
756 }
757}
758
759static void draw_wakeups(struct timechart *tchart)
760{
761 struct wake_event *we;
762 struct per_pid *p;
763 struct per_pidcomm *c;
764
765 we = tchart->wake_events;
766 while (we) {
767 int from = 0, to = 0;
768 char *task_from = NULL, *task_to = NULL;
769
770 /* locate the column of the waker and wakee */
771 p = tchart->all_data;
772 while (p) {
773 if (p->pid == we->waker || p->pid == we->wakee) {
774 c = p->all;
775 while (c) {
776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
777 if (p->pid == we->waker && !from) {
778 from = c->Y;
779 task_from = strdup(c->comm);
780 }
781 if (p->pid == we->wakee && !to) {
782 to = c->Y;
783 task_to = strdup(c->comm);
784 }
785 }
786 c = c->next;
787 }
788 c = p->all;
789 while (c) {
790 if (p->pid == we->waker && !from) {
791 from = c->Y;
792 task_from = strdup(c->comm);
793 }
794 if (p->pid == we->wakee && !to) {
795 to = c->Y;
796 task_to = strdup(c->comm);
797 }
798 c = c->next;
799 }
800 }
801 p = p->next;
802 }
803
804 if (!task_from) {
805 task_from = malloc(40);
806 sprintf(task_from, "[%i]", we->waker);
807 }
808 if (!task_to) {
809 task_to = malloc(40);
810 sprintf(task_to, "[%i]", we->wakee);
811 }
812
813 if (we->waker == -1)
814 svg_interrupt(we->time, to, we->backtrace);
815 else if (from && to && abs(from - to) == 1)
816 svg_wakeline(we->time, from, to, we->backtrace);
817 else
818 svg_partial_wakeline(we->time, from, task_from, to,
819 task_to, we->backtrace);
820 we = we->next;
821
822 free(task_from);
823 free(task_to);
824 }
825}
826
827static void draw_cpu_usage(struct timechart *tchart)
828{
829 struct per_pid *p;
830 struct per_pidcomm *c;
831 struct cpu_sample *sample;
832 p = tchart->all_data;
833 while (p) {
834 c = p->all;
835 while (c) {
836 sample = c->samples;
837 while (sample) {
838 if (sample->type == TYPE_RUNNING) {
839 svg_process(sample->cpu,
840 sample->start_time,
841 sample->end_time,
842 p->pid,
843 c->comm,
844 sample->backtrace);
845 }
846
847 sample = sample->next;
848 }
849 c = c->next;
850 }
851 p = p->next;
852 }
853}
854
855static void draw_process_bars(struct timechart *tchart)
856{
857 struct per_pid *p;
858 struct per_pidcomm *c;
859 struct cpu_sample *sample;
860 int Y = 0;
861
862 Y = 2 * tchart->numcpus + 2;
863
864 p = tchart->all_data;
865 while (p) {
866 c = p->all;
867 while (c) {
868 if (!c->display) {
869 c->Y = 0;
870 c = c->next;
871 continue;
872 }
873
874 svg_box(Y, c->start_time, c->end_time, "process");
875 sample = c->samples;
876 while (sample) {
877 if (sample->type == TYPE_RUNNING)
878 svg_running(Y, sample->cpu,
879 sample->start_time,
880 sample->end_time,
881 sample->backtrace);
882 if (sample->type == TYPE_BLOCKED)
883 svg_blocked(Y, sample->cpu,
884 sample->start_time,
885 sample->end_time,
886 sample->backtrace);
887 if (sample->type == TYPE_WAITING)
888 svg_waiting(Y, sample->cpu,
889 sample->start_time,
890 sample->end_time,
891 sample->backtrace);
892 sample = sample->next;
893 }
894
895 if (c->comm) {
896 char comm[256];
897 if (c->total_time > 5000000000) /* 5 seconds */
898 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
899 else
900 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
901
902 svg_text(Y, c->start_time, comm);
903 }
904 c->Y = Y;
905 Y++;
906 c = c->next;
907 }
908 p = p->next;
909 }
910}
911
912static void add_process_filter(const char *string)
913{
914 int pid = strtoull(string, NULL, 10);
915 struct process_filter *filt = malloc(sizeof(*filt));
916
917 if (!filt)
918 return;
919
920 filt->name = strdup(string);
921 filt->pid = pid;
922 filt->next = process_filter;
923
924 process_filter = filt;
925}
926
927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
928{
929 struct process_filter *filt;
930 if (!process_filter)
931 return 1;
932
933 filt = process_filter;
934 while (filt) {
935 if (filt->pid && p->pid == filt->pid)
936 return 1;
937 if (strcmp(filt->name, c->comm) == 0)
938 return 1;
939 filt = filt->next;
940 }
941 return 0;
942}
943
944static int determine_display_tasks_filtered(struct timechart *tchart)
945{
946 struct per_pid *p;
947 struct per_pidcomm *c;
948 int count = 0;
949
950 p = tchart->all_data;
951 while (p) {
952 p->display = 0;
953 if (p->start_time == 1)
954 p->start_time = tchart->first_time;
955
956 /* no exit marker, task kept running to the end */
957 if (p->end_time == 0)
958 p->end_time = tchart->last_time;
959
960 c = p->all;
961
962 while (c) {
963 c->display = 0;
964
965 if (c->start_time == 1)
966 c->start_time = tchart->first_time;
967
968 if (passes_filter(p, c)) {
969 c->display = 1;
970 p->display = 1;
971 count++;
972 }
973
974 if (c->end_time == 0)
975 c->end_time = tchart->last_time;
976
977 c = c->next;
978 }
979 p = p->next;
980 }
981 return count;
982}
983
984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
985{
986 struct per_pid *p;
987 struct per_pidcomm *c;
988 int count = 0;
989
990 if (process_filter)
991 return determine_display_tasks_filtered(tchart);
992
993 p = tchart->all_data;
994 while (p) {
995 p->display = 0;
996 if (p->start_time == 1)
997 p->start_time = tchart->first_time;
998
999 /* no exit marker, task kept running to the end */
1000 if (p->end_time == 0)
1001 p->end_time = tchart->last_time;
1002 if (p->total_time >= threshold)
1003 p->display = 1;
1004
1005 c = p->all;
1006
1007 while (c) {
1008 c->display = 0;
1009
1010 if (c->start_time == 1)
1011 c->start_time = tchart->first_time;
1012
1013 if (c->total_time >= threshold) {
1014 c->display = 1;
1015 count++;
1016 }
1017
1018 if (c->end_time == 0)
1019 c->end_time = tchart->last_time;
1020
1021 c = c->next;
1022 }
1023 p = p->next;
1024 }
1025 return count;
1026}
1027
1028
1029
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034 u64 i;
1035 int count;
1036 int thresh = TIME_THRESH;
1037
1038 if (tchart->power_only)
1039 tchart->proc_num = 0;
1040
1041 /* We'd like to show at least proc_num tasks;
1042 * be less picky if we have fewer */
1043 do {
1044 count = determine_display_tasks(tchart, thresh);
1045 thresh /= 10;
1046 } while (!process_filter && thresh && count < tchart->proc_num);
1047
1048 if (!tchart->proc_num)
1049 count = 0;
1050
1051 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1052
1053 svg_time_grid();
1054 svg_legenda();
1055
1056 for (i = 0; i < tchart->numcpus; i++)
1057 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059 draw_cpu_usage(tchart);
1060 if (tchart->proc_num)
1061 draw_process_bars(tchart);
1062 if (!tchart->tasks_only)
1063 draw_c_p_states(tchart);
1064 if (tchart->proc_num)
1065 draw_wakeups(tchart);
1066
1067 svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071 struct perf_header *ph,
1072 int feat,
1073 int fd __maybe_unused,
1074 void *data)
1075{
1076 struct timechart *tchart = data;
1077
1078 switch (feat) {
1079 case HEADER_NRCPUS:
1080 tchart->numcpus = ph->env.nr_cpus_avail;
1081 break;
1082
1083 case HEADER_CPU_TOPOLOGY:
1084 if (!tchart->topology)
1085 break;
1086
1087 if (svg_build_topology_map(ph->env.sibling_cores,
1088 ph->env.nr_sibling_cores,
1089 ph->env.sibling_threads,
1090 ph->env.nr_sibling_threads))
1091 fprintf(stderr, "problem building topology\n");
1092 break;
1093
1094 default:
1095 break;
1096 }
1097
1098 return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103 const struct perf_evsel_str_handler power_tracepoints[] = {
1104 { "power:cpu_idle", process_sample_cpu_idle },
1105 { "power:cpu_frequency", process_sample_cpu_frequency },
1106 { "sched:sched_wakeup", process_sample_sched_wakeup },
1107 { "sched:sched_switch", process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109 { "power:power_start", process_sample_power_start },
1110 { "power:power_end", process_sample_power_end },
1111 { "power:power_frequency", process_sample_power_frequency },
1112#endif
1113 };
1114 struct perf_data_file file = {
1115 .path = input_name,
1116 .mode = PERF_DATA_MODE_READ,
1117 };
1118
1119 struct perf_session *session = perf_session__new(&file, false,
1120 &tchart->tool);
1121 int ret = -EINVAL;
1122
1123 if (session == NULL)
1124 return -ENOMEM;
1125
1126 (void)perf_header__process_sections(&session->header,
1127 perf_data_file__fd(session->file),
1128 tchart,
1129 process_header);
1130
1131 if (!perf_session__has_traces(session, "timechart record"))
1132 goto out_delete;
1133
1134 if (perf_session__set_tracepoints_handlers(session,
1135 power_tracepoints)) {
1136 pr_err("Initializing session tracepoint handlers failed\n");
1137 goto out_delete;
1138 }
1139
1140 ret = perf_session__process_events(session, &tchart->tool);
1141 if (ret)
1142 goto out_delete;
1143
1144 end_sample_processing(tchart);
1145
1146 sort_pids(tchart);
1147
1148 write_svg_file(tchart, output_name);
1149
1150 pr_info("Written %2.1f seconds of trace to %s.\n",
1151 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153 perf_session__delete(session);
1154 return ret;
1155}
1156
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159 unsigned int rec_argc, i, j;
1160 const char **rec_argv;
1161 const char **p;
1162 unsigned int record_elems;
1163
1164 const char * const common_args[] = {
1165 "record", "-a", "-R", "-c", "1",
1166 };
1167 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169 const char * const backtrace_args[] = {
1170 "-g",
1171 };
1172 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174 const char * const power_args[] = {
1175 "-e", "power:cpu_frequency",
1176 "-e", "power:cpu_idle",
1177 };
1178 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180 const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182 "-e", "power:power_start",
1183 "-e", "power:power_end",
1184 "-e", "power:power_frequency",
1185#endif
1186 };
1187 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189 const char * const tasks_args[] = {
1190 "-e", "sched:sched_wakeup",
1191 "-e", "sched:sched_switch",
1192 };
1193 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196 if (!is_valid_tracepoint("power:cpu_idle") &&
1197 is_valid_tracepoint("power:power_start")) {
1198 use_old_power_events = 1;
1199 power_args_nr = 0;
1200 } else {
1201 old_power_args_nr = 0;
1202 }
1203#endif
1204
1205 if (tchart->power_only)
1206 tasks_args_nr = 0;
1207
1208 if (tchart->tasks_only) {
1209 power_args_nr = 0;
1210 old_power_args_nr = 0;
1211 }
1212
1213 if (!tchart->with_backtrace)
1214 backtrace_args_no = 0;
1215
1216 record_elems = common_args_nr + tasks_args_nr +
1217 power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219 rec_argc = record_elems + argc;
1220 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222 if (rec_argv == NULL)
1223 return -ENOMEM;
1224
1225 p = rec_argv;
1226 for (i = 0; i < common_args_nr; i++)
1227 *p++ = strdup(common_args[i]);
1228
1229 for (i = 0; i < backtrace_args_no; i++)
1230 *p++ = strdup(backtrace_args[i]);
1231
1232 for (i = 0; i < tasks_args_nr; i++)
1233 *p++ = strdup(tasks_args[i]);
1234
1235 for (i = 0; i < power_args_nr; i++)
1236 *p++ = strdup(power_args[i]);
1237
1238 for (i = 0; i < old_power_args_nr; i++)
1239 *p++ = strdup(old_power_args[i]);
1240
1241 for (j = 0; j < (unsigned int)argc; j++)
1242 *p++ = argv[j];
1243
1244 return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249 int __maybe_unused unset)
1250{
1251 if (arg)
1252 add_process_filter(arg);
1253 return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258 int __maybe_unused unset)
1259{
1260 unsigned long duration = strtoul(arg, NULL, 0);
1261
1262 if (svg_highlight || svg_highlight_name)
1263 return -1;
1264
1265 if (duration)
1266 svg_highlight = duration;
1267 else
1268 svg_highlight_name = strdup(arg);
1269
1270 return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274 const char *prefix __maybe_unused)
1275{
1276 struct timechart tchart = {
1277 .tool = {
1278 .comm = process_comm_event,
1279 .fork = process_fork_event,
1280 .exit = process_exit_event,
1281 .sample = process_sample_event,
1282 .ordered_samples = true,
1283 },
1284 .proc_num = 15,
1285 };
1286 const char *output_name = "output.svg";
1287 const struct option timechart_options[] = {
1288 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292 "highlight tasks. Pass duration in ns or process name.",
1293 parse_highlight),
1294 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296 "output processes data only"),
1297 OPT_CALLBACK('p', "process", NULL, "process",
1298 "process selector. Pass a pid or process name.",
1299 parse_process),
1300 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301 "Look for files with symbols relative to this directory"),
1302 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303 "min. number of tasks to print"),
1304 OPT_BOOLEAN('t', "topology", &tchart.topology,
1305 "sort CPUs according to topology"),
1306 OPT_END()
1307 };
1308 const char * const timechart_usage[] = {
1309 "perf timechart [<options>] {record}",
1310 NULL
1311 };
1312
1313 const struct option record_options[] = {
1314 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316 "output processes data only"),
1317 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318 OPT_END()
1319 };
1320 const char * const record_usage[] = {
1321 "perf timechart record [<options>]",
1322 NULL
1323 };
1324 argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325 PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327 if (tchart.power_only && tchart.tasks_only) {
1328 pr_err("-P and -T options cannot be used at the same time.\n");
1329 return -1;
1330 }
1331
1332 symbol__init();
1333
1334 if (argc && !strncmp(argv[0], "rec", 3)) {
1335 argc = parse_options(argc, argv, record_options, record_usage,
1336 PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338 if (tchart.power_only && tchart.tasks_only) {
1339 pr_err("-P and -T options cannot be used at the same time.\n");
1340 return -1;
1341 }
1342
1343 return timechart__record(&tchart, argc, argv);
1344 } else if (argc)
1345 usage_with_options(timechart_usage, timechart_options);
1346
1347 setup_pager();
1348
1349 return __cmd_timechart(&tchart, output_name);
1350}
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include "util/symbol.h"
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include <subcmd/parse-options.h>
34#include "util/parse-events.h"
35#include "util/event.h"
36#include "util/session.h"
37#include "util/svghelper.h"
38#include "util/tool.h"
39#include "util/data.h"
40#include "util/debug.h"
41
42#define SUPPORT_OLD_POWER_EVENTS 1
43#define PWR_EVENT_EXIT -1
44
45struct per_pid;
46struct power_event;
47struct wake_event;
48
49struct timechart {
50 struct perf_tool tool;
51 struct per_pid *all_data;
52 struct power_event *power_events;
53 struct wake_event *wake_events;
54 int proc_num;
55 unsigned int numcpus;
56 u64 min_freq, /* Lowest CPU frequency seen */
57 max_freq, /* Highest CPU frequency seen */
58 turbo_frequency,
59 first_time, last_time;
60 bool power_only,
61 tasks_only,
62 with_backtrace,
63 topology;
64 bool force;
65 /* IO related settings */
66 bool io_only,
67 skip_eagain;
68 u64 io_events;
69 u64 min_time,
70 merge_dist;
71};
72
73struct per_pidcomm;
74struct cpu_sample;
75struct io_sample;
76
77/*
78 * Datastructure layout:
79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
80 * Each "pid" entry, has a list of "comm"s.
81 * this is because we want to track different programs different, while
82 * exec will reuse the original pid (by design).
83 * Each comm has a list of samples that will be used to draw
84 * final graph.
85 */
86
87struct per_pid {
88 struct per_pid *next;
89
90 int pid;
91 int ppid;
92
93 u64 start_time;
94 u64 end_time;
95 u64 total_time;
96 u64 total_bytes;
97 int display;
98
99 struct per_pidcomm *all;
100 struct per_pidcomm *current;
101};
102
103
104struct per_pidcomm {
105 struct per_pidcomm *next;
106
107 u64 start_time;
108 u64 end_time;
109 u64 total_time;
110 u64 max_bytes;
111 u64 total_bytes;
112
113 int Y;
114 int display;
115
116 long state;
117 u64 state_since;
118
119 char *comm;
120
121 struct cpu_sample *samples;
122 struct io_sample *io_samples;
123};
124
125struct sample_wrapper {
126 struct sample_wrapper *next;
127
128 u64 timestamp;
129 unsigned char data[0];
130};
131
132#define TYPE_NONE 0
133#define TYPE_RUNNING 1
134#define TYPE_WAITING 2
135#define TYPE_BLOCKED 3
136
137struct cpu_sample {
138 struct cpu_sample *next;
139
140 u64 start_time;
141 u64 end_time;
142 int type;
143 int cpu;
144 const char *backtrace;
145};
146
147enum {
148 IOTYPE_READ,
149 IOTYPE_WRITE,
150 IOTYPE_SYNC,
151 IOTYPE_TX,
152 IOTYPE_RX,
153 IOTYPE_POLL,
154};
155
156struct io_sample {
157 struct io_sample *next;
158
159 u64 start_time;
160 u64 end_time;
161 u64 bytes;
162 int type;
163 int fd;
164 int err;
165 int merges;
166};
167
168#define CSTATE 1
169#define PSTATE 2
170
171struct power_event {
172 struct power_event *next;
173 int type;
174 int state;
175 u64 start_time;
176 u64 end_time;
177 int cpu;
178};
179
180struct wake_event {
181 struct wake_event *next;
182 int waker;
183 int wakee;
184 u64 time;
185 const char *backtrace;
186};
187
188struct process_filter {
189 char *name;
190 int pid;
191 struct process_filter *next;
192};
193
194static struct process_filter *process_filter;
195
196
197static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198{
199 struct per_pid *cursor = tchart->all_data;
200
201 while (cursor) {
202 if (cursor->pid == pid)
203 return cursor;
204 cursor = cursor->next;
205 }
206 cursor = zalloc(sizeof(*cursor));
207 assert(cursor != NULL);
208 cursor->pid = pid;
209 cursor->next = tchart->all_data;
210 tchart->all_data = cursor;
211 return cursor;
212}
213
214static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215{
216 struct per_pid *p;
217 struct per_pidcomm *c;
218 p = find_create_pid(tchart, pid);
219 c = p->all;
220 while (c) {
221 if (c->comm && strcmp(c->comm, comm) == 0) {
222 p->current = c;
223 return;
224 }
225 if (!c->comm) {
226 c->comm = strdup(comm);
227 p->current = c;
228 return;
229 }
230 c = c->next;
231 }
232 c = zalloc(sizeof(*c));
233 assert(c != NULL);
234 c->comm = strdup(comm);
235 p->current = c;
236 c->next = p->all;
237 p->all = c;
238}
239
240static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241{
242 struct per_pid *p, *pp;
243 p = find_create_pid(tchart, pid);
244 pp = find_create_pid(tchart, ppid);
245 p->ppid = ppid;
246 if (pp->current && pp->current->comm && !p->current)
247 pid_set_comm(tchart, pid, pp->current->comm);
248
249 p->start_time = timestamp;
250 if (p->current && !p->current->start_time) {
251 p->current->start_time = timestamp;
252 p->current->state_since = timestamp;
253 }
254}
255
256static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257{
258 struct per_pid *p;
259 p = find_create_pid(tchart, pid);
260 p->end_time = timestamp;
261 if (p->current)
262 p->current->end_time = timestamp;
263}
264
265static void pid_put_sample(struct timechart *tchart, int pid, int type,
266 unsigned int cpu, u64 start, u64 end,
267 const char *backtrace)
268{
269 struct per_pid *p;
270 struct per_pidcomm *c;
271 struct cpu_sample *sample;
272
273 p = find_create_pid(tchart, pid);
274 c = p->current;
275 if (!c) {
276 c = zalloc(sizeof(*c));
277 assert(c != NULL);
278 p->current = c;
279 c->next = p->all;
280 p->all = c;
281 }
282
283 sample = zalloc(sizeof(*sample));
284 assert(sample != NULL);
285 sample->start_time = start;
286 sample->end_time = end;
287 sample->type = type;
288 sample->next = c->samples;
289 sample->cpu = cpu;
290 sample->backtrace = backtrace;
291 c->samples = sample;
292
293 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294 c->total_time += (end-start);
295 p->total_time += (end-start);
296 }
297
298 if (c->start_time == 0 || c->start_time > start)
299 c->start_time = start;
300 if (p->start_time == 0 || p->start_time > start)
301 p->start_time = start;
302}
303
304#define MAX_CPUS 4096
305
306static u64 cpus_cstate_start_times[MAX_CPUS];
307static int cpus_cstate_state[MAX_CPUS];
308static u64 cpus_pstate_start_times[MAX_CPUS];
309static u64 cpus_pstate_state[MAX_CPUS];
310
311static int process_comm_event(struct perf_tool *tool,
312 union perf_event *event,
313 struct perf_sample *sample __maybe_unused,
314 struct machine *machine __maybe_unused)
315{
316 struct timechart *tchart = container_of(tool, struct timechart, tool);
317 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318 return 0;
319}
320
321static int process_fork_event(struct perf_tool *tool,
322 union perf_event *event,
323 struct perf_sample *sample __maybe_unused,
324 struct machine *machine __maybe_unused)
325{
326 struct timechart *tchart = container_of(tool, struct timechart, tool);
327 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328 return 0;
329}
330
331static int process_exit_event(struct perf_tool *tool,
332 union perf_event *event,
333 struct perf_sample *sample __maybe_unused,
334 struct machine *machine __maybe_unused)
335{
336 struct timechart *tchart = container_of(tool, struct timechart, tool);
337 pid_exit(tchart, event->fork.pid, event->fork.time);
338 return 0;
339}
340
341#ifdef SUPPORT_OLD_POWER_EVENTS
342static int use_old_power_events;
343#endif
344
345static void c_state_start(int cpu, u64 timestamp, int state)
346{
347 cpus_cstate_start_times[cpu] = timestamp;
348 cpus_cstate_state[cpu] = state;
349}
350
351static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352{
353 struct power_event *pwr = zalloc(sizeof(*pwr));
354
355 if (!pwr)
356 return;
357
358 pwr->state = cpus_cstate_state[cpu];
359 pwr->start_time = cpus_cstate_start_times[cpu];
360 pwr->end_time = timestamp;
361 pwr->cpu = cpu;
362 pwr->type = CSTATE;
363 pwr->next = tchart->power_events;
364
365 tchart->power_events = pwr;
366}
367
368static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369{
370 struct power_event *pwr;
371
372 if (new_freq > 8000000) /* detect invalid data */
373 return;
374
375 pwr = zalloc(sizeof(*pwr));
376 if (!pwr)
377 return;
378
379 pwr->state = cpus_pstate_state[cpu];
380 pwr->start_time = cpus_pstate_start_times[cpu];
381 pwr->end_time = timestamp;
382 pwr->cpu = cpu;
383 pwr->type = PSTATE;
384 pwr->next = tchart->power_events;
385
386 if (!pwr->start_time)
387 pwr->start_time = tchart->first_time;
388
389 tchart->power_events = pwr;
390
391 cpus_pstate_state[cpu] = new_freq;
392 cpus_pstate_start_times[cpu] = timestamp;
393
394 if ((u64)new_freq > tchart->max_freq)
395 tchart->max_freq = new_freq;
396
397 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398 tchart->min_freq = new_freq;
399
400 if (new_freq == tchart->max_freq - 1000)
401 tchart->turbo_frequency = tchart->max_freq;
402}
403
404static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405 int waker, int wakee, u8 flags, const char *backtrace)
406{
407 struct per_pid *p;
408 struct wake_event *we = zalloc(sizeof(*we));
409
410 if (!we)
411 return;
412
413 we->time = timestamp;
414 we->waker = waker;
415 we->backtrace = backtrace;
416
417 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418 we->waker = -1;
419
420 we->wakee = wakee;
421 we->next = tchart->wake_events;
422 tchart->wake_events = we;
423 p = find_create_pid(tchart, we->wakee);
424
425 if (p && p->current && p->current->state == TYPE_NONE) {
426 p->current->state_since = timestamp;
427 p->current->state = TYPE_WAITING;
428 }
429 if (p && p->current && p->current->state == TYPE_BLOCKED) {
430 pid_put_sample(tchart, p->pid, p->current->state, cpu,
431 p->current->state_since, timestamp, NULL);
432 p->current->state_since = timestamp;
433 p->current->state = TYPE_WAITING;
434 }
435}
436
437static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438 int prev_pid, int next_pid, u64 prev_state,
439 const char *backtrace)
440{
441 struct per_pid *p = NULL, *prev_p;
442
443 prev_p = find_create_pid(tchart, prev_pid);
444
445 p = find_create_pid(tchart, next_pid);
446
447 if (prev_p->current && prev_p->current->state != TYPE_NONE)
448 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449 prev_p->current->state_since, timestamp,
450 backtrace);
451 if (p && p->current) {
452 if (p->current->state != TYPE_NONE)
453 pid_put_sample(tchart, next_pid, p->current->state, cpu,
454 p->current->state_since, timestamp,
455 backtrace);
456
457 p->current->state_since = timestamp;
458 p->current->state = TYPE_RUNNING;
459 }
460
461 if (prev_p->current) {
462 prev_p->current->state = TYPE_NONE;
463 prev_p->current->state_since = timestamp;
464 if (prev_state & 2)
465 prev_p->current->state = TYPE_BLOCKED;
466 if (prev_state == 0)
467 prev_p->current->state = TYPE_WAITING;
468 }
469}
470
471static const char *cat_backtrace(union perf_event *event,
472 struct perf_sample *sample,
473 struct machine *machine)
474{
475 struct addr_location al;
476 unsigned int i;
477 char *p = NULL;
478 size_t p_len;
479 u8 cpumode = PERF_RECORD_MISC_USER;
480 struct addr_location tal;
481 struct ip_callchain *chain = sample->callchain;
482 FILE *f = open_memstream(&p, &p_len);
483
484 if (!f) {
485 perror("open_memstream error");
486 return NULL;
487 }
488
489 if (!chain)
490 goto exit;
491
492 if (machine__resolve(machine, &al, sample) < 0) {
493 fprintf(stderr, "problem processing %d event, skipping it.\n",
494 event->header.type);
495 goto exit;
496 }
497
498 for (i = 0; i < chain->nr; i++) {
499 u64 ip;
500
501 if (callchain_param.order == ORDER_CALLEE)
502 ip = chain->ips[i];
503 else
504 ip = chain->ips[chain->nr - i - 1];
505
506 if (ip >= PERF_CONTEXT_MAX) {
507 switch (ip) {
508 case PERF_CONTEXT_HV:
509 cpumode = PERF_RECORD_MISC_HYPERVISOR;
510 break;
511 case PERF_CONTEXT_KERNEL:
512 cpumode = PERF_RECORD_MISC_KERNEL;
513 break;
514 case PERF_CONTEXT_USER:
515 cpumode = PERF_RECORD_MISC_USER;
516 break;
517 default:
518 pr_debug("invalid callchain context: "
519 "%"PRId64"\n", (s64) ip);
520
521 /*
522 * It seems the callchain is corrupted.
523 * Discard all.
524 */
525 zfree(&p);
526 goto exit_put;
527 }
528 continue;
529 }
530
531 tal.filtered = 0;
532 thread__find_addr_location(al.thread, cpumode,
533 MAP__FUNCTION, ip, &tal);
534
535 if (tal.sym)
536 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537 tal.sym->name);
538 else
539 fprintf(f, "..... %016" PRIx64 "\n", ip);
540 }
541exit_put:
542 addr_location__put(&al);
543exit:
544 fclose(f);
545
546 return p;
547}
548
549typedef int (*tracepoint_handler)(struct timechart *tchart,
550 struct perf_evsel *evsel,
551 struct perf_sample *sample,
552 const char *backtrace);
553
554static int process_sample_event(struct perf_tool *tool,
555 union perf_event *event,
556 struct perf_sample *sample,
557 struct perf_evsel *evsel,
558 struct machine *machine)
559{
560 struct timechart *tchart = container_of(tool, struct timechart, tool);
561
562 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
563 if (!tchart->first_time || tchart->first_time > sample->time)
564 tchart->first_time = sample->time;
565 if (tchart->last_time < sample->time)
566 tchart->last_time = sample->time;
567 }
568
569 if (evsel->handler != NULL) {
570 tracepoint_handler f = evsel->handler;
571 return f(tchart, evsel, sample,
572 cat_backtrace(event, sample, machine));
573 }
574
575 return 0;
576}
577
578static int
579process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
580 struct perf_evsel *evsel,
581 struct perf_sample *sample,
582 const char *backtrace __maybe_unused)
583{
584 u32 state = perf_evsel__intval(evsel, sample, "state");
585 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
586
587 if (state == (u32)PWR_EVENT_EXIT)
588 c_state_end(tchart, cpu_id, sample->time);
589 else
590 c_state_start(cpu_id, sample->time, state);
591 return 0;
592}
593
594static int
595process_sample_cpu_frequency(struct timechart *tchart,
596 struct perf_evsel *evsel,
597 struct perf_sample *sample,
598 const char *backtrace __maybe_unused)
599{
600 u32 state = perf_evsel__intval(evsel, sample, "state");
601 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
602
603 p_state_change(tchart, cpu_id, sample->time, state);
604 return 0;
605}
606
607static int
608process_sample_sched_wakeup(struct timechart *tchart,
609 struct perf_evsel *evsel,
610 struct perf_sample *sample,
611 const char *backtrace)
612{
613 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
614 int waker = perf_evsel__intval(evsel, sample, "common_pid");
615 int wakee = perf_evsel__intval(evsel, sample, "pid");
616
617 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
618 return 0;
619}
620
621static int
622process_sample_sched_switch(struct timechart *tchart,
623 struct perf_evsel *evsel,
624 struct perf_sample *sample,
625 const char *backtrace)
626{
627 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
628 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
629 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
630
631 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
632 prev_state, backtrace);
633 return 0;
634}
635
636#ifdef SUPPORT_OLD_POWER_EVENTS
637static int
638process_sample_power_start(struct timechart *tchart __maybe_unused,
639 struct perf_evsel *evsel,
640 struct perf_sample *sample,
641 const char *backtrace __maybe_unused)
642{
643 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
644 u64 value = perf_evsel__intval(evsel, sample, "value");
645
646 c_state_start(cpu_id, sample->time, value);
647 return 0;
648}
649
650static int
651process_sample_power_end(struct timechart *tchart,
652 struct perf_evsel *evsel __maybe_unused,
653 struct perf_sample *sample,
654 const char *backtrace __maybe_unused)
655{
656 c_state_end(tchart, sample->cpu, sample->time);
657 return 0;
658}
659
660static int
661process_sample_power_frequency(struct timechart *tchart,
662 struct perf_evsel *evsel,
663 struct perf_sample *sample,
664 const char *backtrace __maybe_unused)
665{
666 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
667 u64 value = perf_evsel__intval(evsel, sample, "value");
668
669 p_state_change(tchart, cpu_id, sample->time, value);
670 return 0;
671}
672#endif /* SUPPORT_OLD_POWER_EVENTS */
673
674/*
675 * After the last sample we need to wrap up the current C/P state
676 * and close out each CPU for these.
677 */
678static void end_sample_processing(struct timechart *tchart)
679{
680 u64 cpu;
681 struct power_event *pwr;
682
683 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
684 /* C state */
685#if 0
686 pwr = zalloc(sizeof(*pwr));
687 if (!pwr)
688 return;
689
690 pwr->state = cpus_cstate_state[cpu];
691 pwr->start_time = cpus_cstate_start_times[cpu];
692 pwr->end_time = tchart->last_time;
693 pwr->cpu = cpu;
694 pwr->type = CSTATE;
695 pwr->next = tchart->power_events;
696
697 tchart->power_events = pwr;
698#endif
699 /* P state */
700
701 pwr = zalloc(sizeof(*pwr));
702 if (!pwr)
703 return;
704
705 pwr->state = cpus_pstate_state[cpu];
706 pwr->start_time = cpus_pstate_start_times[cpu];
707 pwr->end_time = tchart->last_time;
708 pwr->cpu = cpu;
709 pwr->type = PSTATE;
710 pwr->next = tchart->power_events;
711
712 if (!pwr->start_time)
713 pwr->start_time = tchart->first_time;
714 if (!pwr->state)
715 pwr->state = tchart->min_freq;
716 tchart->power_events = pwr;
717 }
718}
719
720static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
721 u64 start, int fd)
722{
723 struct per_pid *p = find_create_pid(tchart, pid);
724 struct per_pidcomm *c = p->current;
725 struct io_sample *sample;
726 struct io_sample *prev;
727
728 if (!c) {
729 c = zalloc(sizeof(*c));
730 if (!c)
731 return -ENOMEM;
732 p->current = c;
733 c->next = p->all;
734 p->all = c;
735 }
736
737 prev = c->io_samples;
738
739 if (prev && prev->start_time && !prev->end_time) {
740 pr_warning("Skip invalid start event: "
741 "previous event already started!\n");
742
743 /* remove previous event that has been started,
744 * we are not sure we will ever get an end for it */
745 c->io_samples = prev->next;
746 free(prev);
747 return 0;
748 }
749
750 sample = zalloc(sizeof(*sample));
751 if (!sample)
752 return -ENOMEM;
753 sample->start_time = start;
754 sample->type = type;
755 sample->fd = fd;
756 sample->next = c->io_samples;
757 c->io_samples = sample;
758
759 if (c->start_time == 0 || c->start_time > start)
760 c->start_time = start;
761
762 return 0;
763}
764
765static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
766 u64 end, long ret)
767{
768 struct per_pid *p = find_create_pid(tchart, pid);
769 struct per_pidcomm *c = p->current;
770 struct io_sample *sample, *prev;
771
772 if (!c) {
773 pr_warning("Invalid pidcomm!\n");
774 return -1;
775 }
776
777 sample = c->io_samples;
778
779 if (!sample) /* skip partially captured events */
780 return 0;
781
782 if (sample->end_time) {
783 pr_warning("Skip invalid end event: "
784 "previous event already ended!\n");
785 return 0;
786 }
787
788 if (sample->type != type) {
789 pr_warning("Skip invalid end event: invalid event type!\n");
790 return 0;
791 }
792
793 sample->end_time = end;
794 prev = sample->next;
795
796 /* we want to be able to see small and fast transfers, so make them
797 * at least min_time long, but don't overlap them */
798 if (sample->end_time - sample->start_time < tchart->min_time)
799 sample->end_time = sample->start_time + tchart->min_time;
800 if (prev && sample->start_time < prev->end_time) {
801 if (prev->err) /* try to make errors more visible */
802 sample->start_time = prev->end_time;
803 else
804 prev->end_time = sample->start_time;
805 }
806
807 if (ret < 0) {
808 sample->err = ret;
809 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
810 type == IOTYPE_TX || type == IOTYPE_RX) {
811
812 if ((u64)ret > c->max_bytes)
813 c->max_bytes = ret;
814
815 c->total_bytes += ret;
816 p->total_bytes += ret;
817 sample->bytes = ret;
818 }
819
820 /* merge two requests to make svg smaller and render-friendly */
821 if (prev &&
822 prev->type == sample->type &&
823 prev->err == sample->err &&
824 prev->fd == sample->fd &&
825 prev->end_time + tchart->merge_dist >= sample->start_time) {
826
827 sample->bytes += prev->bytes;
828 sample->merges += prev->merges + 1;
829
830 sample->start_time = prev->start_time;
831 sample->next = prev->next;
832 free(prev);
833
834 if (!sample->err && sample->bytes > c->max_bytes)
835 c->max_bytes = sample->bytes;
836 }
837
838 tchart->io_events++;
839
840 return 0;
841}
842
843static int
844process_enter_read(struct timechart *tchart,
845 struct perf_evsel *evsel,
846 struct perf_sample *sample)
847{
848 long fd = perf_evsel__intval(evsel, sample, "fd");
849 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
850 sample->time, fd);
851}
852
853static int
854process_exit_read(struct timechart *tchart,
855 struct perf_evsel *evsel,
856 struct perf_sample *sample)
857{
858 long ret = perf_evsel__intval(evsel, sample, "ret");
859 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
860 sample->time, ret);
861}
862
863static int
864process_enter_write(struct timechart *tchart,
865 struct perf_evsel *evsel,
866 struct perf_sample *sample)
867{
868 long fd = perf_evsel__intval(evsel, sample, "fd");
869 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
870 sample->time, fd);
871}
872
873static int
874process_exit_write(struct timechart *tchart,
875 struct perf_evsel *evsel,
876 struct perf_sample *sample)
877{
878 long ret = perf_evsel__intval(evsel, sample, "ret");
879 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
880 sample->time, ret);
881}
882
883static int
884process_enter_sync(struct timechart *tchart,
885 struct perf_evsel *evsel,
886 struct perf_sample *sample)
887{
888 long fd = perf_evsel__intval(evsel, sample, "fd");
889 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
890 sample->time, fd);
891}
892
893static int
894process_exit_sync(struct timechart *tchart,
895 struct perf_evsel *evsel,
896 struct perf_sample *sample)
897{
898 long ret = perf_evsel__intval(evsel, sample, "ret");
899 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
900 sample->time, ret);
901}
902
903static int
904process_enter_tx(struct timechart *tchart,
905 struct perf_evsel *evsel,
906 struct perf_sample *sample)
907{
908 long fd = perf_evsel__intval(evsel, sample, "fd");
909 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
910 sample->time, fd);
911}
912
913static int
914process_exit_tx(struct timechart *tchart,
915 struct perf_evsel *evsel,
916 struct perf_sample *sample)
917{
918 long ret = perf_evsel__intval(evsel, sample, "ret");
919 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
920 sample->time, ret);
921}
922
923static int
924process_enter_rx(struct timechart *tchart,
925 struct perf_evsel *evsel,
926 struct perf_sample *sample)
927{
928 long fd = perf_evsel__intval(evsel, sample, "fd");
929 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
930 sample->time, fd);
931}
932
933static int
934process_exit_rx(struct timechart *tchart,
935 struct perf_evsel *evsel,
936 struct perf_sample *sample)
937{
938 long ret = perf_evsel__intval(evsel, sample, "ret");
939 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
940 sample->time, ret);
941}
942
943static int
944process_enter_poll(struct timechart *tchart,
945 struct perf_evsel *evsel,
946 struct perf_sample *sample)
947{
948 long fd = perf_evsel__intval(evsel, sample, "fd");
949 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
950 sample->time, fd);
951}
952
953static int
954process_exit_poll(struct timechart *tchart,
955 struct perf_evsel *evsel,
956 struct perf_sample *sample)
957{
958 long ret = perf_evsel__intval(evsel, sample, "ret");
959 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
960 sample->time, ret);
961}
962
963/*
964 * Sort the pid datastructure
965 */
966static void sort_pids(struct timechart *tchart)
967{
968 struct per_pid *new_list, *p, *cursor, *prev;
969 /* sort by ppid first, then by pid, lowest to highest */
970
971 new_list = NULL;
972
973 while (tchart->all_data) {
974 p = tchart->all_data;
975 tchart->all_data = p->next;
976 p->next = NULL;
977
978 if (new_list == NULL) {
979 new_list = p;
980 p->next = NULL;
981 continue;
982 }
983 prev = NULL;
984 cursor = new_list;
985 while (cursor) {
986 if (cursor->ppid > p->ppid ||
987 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
988 /* must insert before */
989 if (prev) {
990 p->next = prev->next;
991 prev->next = p;
992 cursor = NULL;
993 continue;
994 } else {
995 p->next = new_list;
996 new_list = p;
997 cursor = NULL;
998 continue;
999 }
1000 }
1001
1002 prev = cursor;
1003 cursor = cursor->next;
1004 if (!cursor)
1005 prev->next = p;
1006 }
1007 }
1008 tchart->all_data = new_list;
1009}
1010
1011
1012static void draw_c_p_states(struct timechart *tchart)
1013{
1014 struct power_event *pwr;
1015 pwr = tchart->power_events;
1016
1017 /*
1018 * two pass drawing so that the P state bars are on top of the C state blocks
1019 */
1020 while (pwr) {
1021 if (pwr->type == CSTATE)
1022 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023 pwr = pwr->next;
1024 }
1025
1026 pwr = tchart->power_events;
1027 while (pwr) {
1028 if (pwr->type == PSTATE) {
1029 if (!pwr->state)
1030 pwr->state = tchart->min_freq;
1031 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032 }
1033 pwr = pwr->next;
1034 }
1035}
1036
1037static void draw_wakeups(struct timechart *tchart)
1038{
1039 struct wake_event *we;
1040 struct per_pid *p;
1041 struct per_pidcomm *c;
1042
1043 we = tchart->wake_events;
1044 while (we) {
1045 int from = 0, to = 0;
1046 char *task_from = NULL, *task_to = NULL;
1047
1048 /* locate the column of the waker and wakee */
1049 p = tchart->all_data;
1050 while (p) {
1051 if (p->pid == we->waker || p->pid == we->wakee) {
1052 c = p->all;
1053 while (c) {
1054 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055 if (p->pid == we->waker && !from) {
1056 from = c->Y;
1057 task_from = strdup(c->comm);
1058 }
1059 if (p->pid == we->wakee && !to) {
1060 to = c->Y;
1061 task_to = strdup(c->comm);
1062 }
1063 }
1064 c = c->next;
1065 }
1066 c = p->all;
1067 while (c) {
1068 if (p->pid == we->waker && !from) {
1069 from = c->Y;
1070 task_from = strdup(c->comm);
1071 }
1072 if (p->pid == we->wakee && !to) {
1073 to = c->Y;
1074 task_to = strdup(c->comm);
1075 }
1076 c = c->next;
1077 }
1078 }
1079 p = p->next;
1080 }
1081
1082 if (!task_from) {
1083 task_from = malloc(40);
1084 sprintf(task_from, "[%i]", we->waker);
1085 }
1086 if (!task_to) {
1087 task_to = malloc(40);
1088 sprintf(task_to, "[%i]", we->wakee);
1089 }
1090
1091 if (we->waker == -1)
1092 svg_interrupt(we->time, to, we->backtrace);
1093 else if (from && to && abs(from - to) == 1)
1094 svg_wakeline(we->time, from, to, we->backtrace);
1095 else
1096 svg_partial_wakeline(we->time, from, task_from, to,
1097 task_to, we->backtrace);
1098 we = we->next;
1099
1100 free(task_from);
1101 free(task_to);
1102 }
1103}
1104
1105static void draw_cpu_usage(struct timechart *tchart)
1106{
1107 struct per_pid *p;
1108 struct per_pidcomm *c;
1109 struct cpu_sample *sample;
1110 p = tchart->all_data;
1111 while (p) {
1112 c = p->all;
1113 while (c) {
1114 sample = c->samples;
1115 while (sample) {
1116 if (sample->type == TYPE_RUNNING) {
1117 svg_process(sample->cpu,
1118 sample->start_time,
1119 sample->end_time,
1120 p->pid,
1121 c->comm,
1122 sample->backtrace);
1123 }
1124
1125 sample = sample->next;
1126 }
1127 c = c->next;
1128 }
1129 p = p->next;
1130 }
1131}
1132
1133static void draw_io_bars(struct timechart *tchart)
1134{
1135 const char *suf;
1136 double bytes;
1137 char comm[256];
1138 struct per_pid *p;
1139 struct per_pidcomm *c;
1140 struct io_sample *sample;
1141 int Y = 1;
1142
1143 p = tchart->all_data;
1144 while (p) {
1145 c = p->all;
1146 while (c) {
1147 if (!c->display) {
1148 c->Y = 0;
1149 c = c->next;
1150 continue;
1151 }
1152
1153 svg_box(Y, c->start_time, c->end_time, "process3");
1154 sample = c->io_samples;
1155 for (sample = c->io_samples; sample; sample = sample->next) {
1156 double h = (double)sample->bytes / c->max_bytes;
1157
1158 if (tchart->skip_eagain &&
1159 sample->err == -EAGAIN)
1160 continue;
1161
1162 if (sample->err)
1163 h = 1;
1164
1165 if (sample->type == IOTYPE_SYNC)
1166 svg_fbox(Y,
1167 sample->start_time,
1168 sample->end_time,
1169 1,
1170 sample->err ? "error" : "sync",
1171 sample->fd,
1172 sample->err,
1173 sample->merges);
1174 else if (sample->type == IOTYPE_POLL)
1175 svg_fbox(Y,
1176 sample->start_time,
1177 sample->end_time,
1178 1,
1179 sample->err ? "error" : "poll",
1180 sample->fd,
1181 sample->err,
1182 sample->merges);
1183 else if (sample->type == IOTYPE_READ)
1184 svg_ubox(Y,
1185 sample->start_time,
1186 sample->end_time,
1187 h,
1188 sample->err ? "error" : "disk",
1189 sample->fd,
1190 sample->err,
1191 sample->merges);
1192 else if (sample->type == IOTYPE_WRITE)
1193 svg_lbox(Y,
1194 sample->start_time,
1195 sample->end_time,
1196 h,
1197 sample->err ? "error" : "disk",
1198 sample->fd,
1199 sample->err,
1200 sample->merges);
1201 else if (sample->type == IOTYPE_RX)
1202 svg_ubox(Y,
1203 sample->start_time,
1204 sample->end_time,
1205 h,
1206 sample->err ? "error" : "net",
1207 sample->fd,
1208 sample->err,
1209 sample->merges);
1210 else if (sample->type == IOTYPE_TX)
1211 svg_lbox(Y,
1212 sample->start_time,
1213 sample->end_time,
1214 h,
1215 sample->err ? "error" : "net",
1216 sample->fd,
1217 sample->err,
1218 sample->merges);
1219 }
1220
1221 suf = "";
1222 bytes = c->total_bytes;
1223 if (bytes > 1024) {
1224 bytes = bytes / 1024;
1225 suf = "K";
1226 }
1227 if (bytes > 1024) {
1228 bytes = bytes / 1024;
1229 suf = "M";
1230 }
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "G";
1234 }
1235
1236
1237 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238 svg_text(Y, c->start_time, comm);
1239
1240 c->Y = Y;
1241 Y++;
1242 c = c->next;
1243 }
1244 p = p->next;
1245 }
1246}
1247
1248static void draw_process_bars(struct timechart *tchart)
1249{
1250 struct per_pid *p;
1251 struct per_pidcomm *c;
1252 struct cpu_sample *sample;
1253 int Y = 0;
1254
1255 Y = 2 * tchart->numcpus + 2;
1256
1257 p = tchart->all_data;
1258 while (p) {
1259 c = p->all;
1260 while (c) {
1261 if (!c->display) {
1262 c->Y = 0;
1263 c = c->next;
1264 continue;
1265 }
1266
1267 svg_box(Y, c->start_time, c->end_time, "process");
1268 sample = c->samples;
1269 while (sample) {
1270 if (sample->type == TYPE_RUNNING)
1271 svg_running(Y, sample->cpu,
1272 sample->start_time,
1273 sample->end_time,
1274 sample->backtrace);
1275 if (sample->type == TYPE_BLOCKED)
1276 svg_blocked(Y, sample->cpu,
1277 sample->start_time,
1278 sample->end_time,
1279 sample->backtrace);
1280 if (sample->type == TYPE_WAITING)
1281 svg_waiting(Y, sample->cpu,
1282 sample->start_time,
1283 sample->end_time,
1284 sample->backtrace);
1285 sample = sample->next;
1286 }
1287
1288 if (c->comm) {
1289 char comm[256];
1290 if (c->total_time > 5000000000) /* 5 seconds */
1291 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1292 else
1293 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1294
1295 svg_text(Y, c->start_time, comm);
1296 }
1297 c->Y = Y;
1298 Y++;
1299 c = c->next;
1300 }
1301 p = p->next;
1302 }
1303}
1304
1305static void add_process_filter(const char *string)
1306{
1307 int pid = strtoull(string, NULL, 10);
1308 struct process_filter *filt = malloc(sizeof(*filt));
1309
1310 if (!filt)
1311 return;
1312
1313 filt->name = strdup(string);
1314 filt->pid = pid;
1315 filt->next = process_filter;
1316
1317 process_filter = filt;
1318}
1319
1320static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321{
1322 struct process_filter *filt;
1323 if (!process_filter)
1324 return 1;
1325
1326 filt = process_filter;
1327 while (filt) {
1328 if (filt->pid && p->pid == filt->pid)
1329 return 1;
1330 if (strcmp(filt->name, c->comm) == 0)
1331 return 1;
1332 filt = filt->next;
1333 }
1334 return 0;
1335}
1336
1337static int determine_display_tasks_filtered(struct timechart *tchart)
1338{
1339 struct per_pid *p;
1340 struct per_pidcomm *c;
1341 int count = 0;
1342
1343 p = tchart->all_data;
1344 while (p) {
1345 p->display = 0;
1346 if (p->start_time == 1)
1347 p->start_time = tchart->first_time;
1348
1349 /* no exit marker, task kept running to the end */
1350 if (p->end_time == 0)
1351 p->end_time = tchart->last_time;
1352
1353 c = p->all;
1354
1355 while (c) {
1356 c->display = 0;
1357
1358 if (c->start_time == 1)
1359 c->start_time = tchart->first_time;
1360
1361 if (passes_filter(p, c)) {
1362 c->display = 1;
1363 p->display = 1;
1364 count++;
1365 }
1366
1367 if (c->end_time == 0)
1368 c->end_time = tchart->last_time;
1369
1370 c = c->next;
1371 }
1372 p = p->next;
1373 }
1374 return count;
1375}
1376
1377static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378{
1379 struct per_pid *p;
1380 struct per_pidcomm *c;
1381 int count = 0;
1382
1383 p = tchart->all_data;
1384 while (p) {
1385 p->display = 0;
1386 if (p->start_time == 1)
1387 p->start_time = tchart->first_time;
1388
1389 /* no exit marker, task kept running to the end */
1390 if (p->end_time == 0)
1391 p->end_time = tchart->last_time;
1392 if (p->total_time >= threshold)
1393 p->display = 1;
1394
1395 c = p->all;
1396
1397 while (c) {
1398 c->display = 0;
1399
1400 if (c->start_time == 1)
1401 c->start_time = tchart->first_time;
1402
1403 if (c->total_time >= threshold) {
1404 c->display = 1;
1405 count++;
1406 }
1407
1408 if (c->end_time == 0)
1409 c->end_time = tchart->last_time;
1410
1411 c = c->next;
1412 }
1413 p = p->next;
1414 }
1415 return count;
1416}
1417
1418static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419{
1420 struct per_pid *p;
1421 struct per_pidcomm *c;
1422 int count = 0;
1423
1424 p = timechart->all_data;
1425 while (p) {
1426 /* no exit marker, task kept running to the end */
1427 if (p->end_time == 0)
1428 p->end_time = timechart->last_time;
1429
1430 c = p->all;
1431
1432 while (c) {
1433 c->display = 0;
1434
1435 if (c->total_bytes >= threshold) {
1436 c->display = 1;
1437 count++;
1438 }
1439
1440 if (c->end_time == 0)
1441 c->end_time = timechart->last_time;
1442
1443 c = c->next;
1444 }
1445 p = p->next;
1446 }
1447 return count;
1448}
1449
1450#define BYTES_THRESH (1 * 1024 * 1024)
1451#define TIME_THRESH 10000000
1452
1453static void write_svg_file(struct timechart *tchart, const char *filename)
1454{
1455 u64 i;
1456 int count;
1457 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458
1459 if (tchart->power_only)
1460 tchart->proc_num = 0;
1461
1462 /* We'd like to show at least proc_num tasks;
1463 * be less picky if we have fewer */
1464 do {
1465 if (process_filter)
1466 count = determine_display_tasks_filtered(tchart);
1467 else if (tchart->io_events)
1468 count = determine_display_io_tasks(tchart, thresh);
1469 else
1470 count = determine_display_tasks(tchart, thresh);
1471 thresh /= 10;
1472 } while (!process_filter && thresh && count < tchart->proc_num);
1473
1474 if (!tchart->proc_num)
1475 count = 0;
1476
1477 if (tchart->io_events) {
1478 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479
1480 svg_time_grid(0.5);
1481 svg_io_legenda();
1482
1483 draw_io_bars(tchart);
1484 } else {
1485 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486
1487 svg_time_grid(0);
1488
1489 svg_legenda();
1490
1491 for (i = 0; i < tchart->numcpus; i++)
1492 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493
1494 draw_cpu_usage(tchart);
1495 if (tchart->proc_num)
1496 draw_process_bars(tchart);
1497 if (!tchart->tasks_only)
1498 draw_c_p_states(tchart);
1499 if (tchart->proc_num)
1500 draw_wakeups(tchart);
1501 }
1502
1503 svg_close();
1504}
1505
1506static int process_header(struct perf_file_section *section __maybe_unused,
1507 struct perf_header *ph,
1508 int feat,
1509 int fd __maybe_unused,
1510 void *data)
1511{
1512 struct timechart *tchart = data;
1513
1514 switch (feat) {
1515 case HEADER_NRCPUS:
1516 tchart->numcpus = ph->env.nr_cpus_avail;
1517 break;
1518
1519 case HEADER_CPU_TOPOLOGY:
1520 if (!tchart->topology)
1521 break;
1522
1523 if (svg_build_topology_map(ph->env.sibling_cores,
1524 ph->env.nr_sibling_cores,
1525 ph->env.sibling_threads,
1526 ph->env.nr_sibling_threads))
1527 fprintf(stderr, "problem building topology\n");
1528 break;
1529
1530 default:
1531 break;
1532 }
1533
1534 return 0;
1535}
1536
1537static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538{
1539 const struct perf_evsel_str_handler power_tracepoints[] = {
1540 { "power:cpu_idle", process_sample_cpu_idle },
1541 { "power:cpu_frequency", process_sample_cpu_frequency },
1542 { "sched:sched_wakeup", process_sample_sched_wakeup },
1543 { "sched:sched_switch", process_sample_sched_switch },
1544#ifdef SUPPORT_OLD_POWER_EVENTS
1545 { "power:power_start", process_sample_power_start },
1546 { "power:power_end", process_sample_power_end },
1547 { "power:power_frequency", process_sample_power_frequency },
1548#endif
1549
1550 { "syscalls:sys_enter_read", process_enter_read },
1551 { "syscalls:sys_enter_pread64", process_enter_read },
1552 { "syscalls:sys_enter_readv", process_enter_read },
1553 { "syscalls:sys_enter_preadv", process_enter_read },
1554 { "syscalls:sys_enter_write", process_enter_write },
1555 { "syscalls:sys_enter_pwrite64", process_enter_write },
1556 { "syscalls:sys_enter_writev", process_enter_write },
1557 { "syscalls:sys_enter_pwritev", process_enter_write },
1558 { "syscalls:sys_enter_sync", process_enter_sync },
1559 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560 { "syscalls:sys_enter_fsync", process_enter_sync },
1561 { "syscalls:sys_enter_msync", process_enter_sync },
1562 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1563 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1564 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1565 { "syscalls:sys_enter_sendto", process_enter_tx },
1566 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1567 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1568 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1569 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1570 { "syscalls:sys_enter_poll", process_enter_poll },
1571 { "syscalls:sys_enter_ppoll", process_enter_poll },
1572 { "syscalls:sys_enter_pselect6", process_enter_poll },
1573 { "syscalls:sys_enter_select", process_enter_poll },
1574
1575 { "syscalls:sys_exit_read", process_exit_read },
1576 { "syscalls:sys_exit_pread64", process_exit_read },
1577 { "syscalls:sys_exit_readv", process_exit_read },
1578 { "syscalls:sys_exit_preadv", process_exit_read },
1579 { "syscalls:sys_exit_write", process_exit_write },
1580 { "syscalls:sys_exit_pwrite64", process_exit_write },
1581 { "syscalls:sys_exit_writev", process_exit_write },
1582 { "syscalls:sys_exit_pwritev", process_exit_write },
1583 { "syscalls:sys_exit_sync", process_exit_sync },
1584 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1585 { "syscalls:sys_exit_fsync", process_exit_sync },
1586 { "syscalls:sys_exit_msync", process_exit_sync },
1587 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1588 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1589 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1590 { "syscalls:sys_exit_sendto", process_exit_tx },
1591 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1592 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1593 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1594 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1595 { "syscalls:sys_exit_poll", process_exit_poll },
1596 { "syscalls:sys_exit_ppoll", process_exit_poll },
1597 { "syscalls:sys_exit_pselect6", process_exit_poll },
1598 { "syscalls:sys_exit_select", process_exit_poll },
1599 };
1600 struct perf_data_file file = {
1601 .path = input_name,
1602 .mode = PERF_DATA_MODE_READ,
1603 .force = tchart->force,
1604 };
1605
1606 struct perf_session *session = perf_session__new(&file, false,
1607 &tchart->tool);
1608 int ret = -EINVAL;
1609
1610 if (session == NULL)
1611 return -1;
1612
1613 symbol__init(&session->header.env);
1614
1615 (void)perf_header__process_sections(&session->header,
1616 perf_data_file__fd(session->file),
1617 tchart,
1618 process_header);
1619
1620 if (!perf_session__has_traces(session, "timechart record"))
1621 goto out_delete;
1622
1623 if (perf_session__set_tracepoints_handlers(session,
1624 power_tracepoints)) {
1625 pr_err("Initializing session tracepoint handlers failed\n");
1626 goto out_delete;
1627 }
1628
1629 ret = perf_session__process_events(session);
1630 if (ret)
1631 goto out_delete;
1632
1633 end_sample_processing(tchart);
1634
1635 sort_pids(tchart);
1636
1637 write_svg_file(tchart, output_name);
1638
1639 pr_info("Written %2.1f seconds of trace to %s.\n",
1640 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1641out_delete:
1642 perf_session__delete(session);
1643 return ret;
1644}
1645
1646static int timechart__io_record(int argc, const char **argv)
1647{
1648 unsigned int rec_argc, i;
1649 const char **rec_argv;
1650 const char **p;
1651 char *filter = NULL;
1652
1653 const char * const common_args[] = {
1654 "record", "-a", "-R", "-c", "1",
1655 };
1656 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658 const char * const disk_events[] = {
1659 "syscalls:sys_enter_read",
1660 "syscalls:sys_enter_pread64",
1661 "syscalls:sys_enter_readv",
1662 "syscalls:sys_enter_preadv",
1663 "syscalls:sys_enter_write",
1664 "syscalls:sys_enter_pwrite64",
1665 "syscalls:sys_enter_writev",
1666 "syscalls:sys_enter_pwritev",
1667 "syscalls:sys_enter_sync",
1668 "syscalls:sys_enter_sync_file_range",
1669 "syscalls:sys_enter_fsync",
1670 "syscalls:sys_enter_msync",
1671
1672 "syscalls:sys_exit_read",
1673 "syscalls:sys_exit_pread64",
1674 "syscalls:sys_exit_readv",
1675 "syscalls:sys_exit_preadv",
1676 "syscalls:sys_exit_write",
1677 "syscalls:sys_exit_pwrite64",
1678 "syscalls:sys_exit_writev",
1679 "syscalls:sys_exit_pwritev",
1680 "syscalls:sys_exit_sync",
1681 "syscalls:sys_exit_sync_file_range",
1682 "syscalls:sys_exit_fsync",
1683 "syscalls:sys_exit_msync",
1684 };
1685 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687 const char * const net_events[] = {
1688 "syscalls:sys_enter_recvfrom",
1689 "syscalls:sys_enter_recvmmsg",
1690 "syscalls:sys_enter_recvmsg",
1691 "syscalls:sys_enter_sendto",
1692 "syscalls:sys_enter_sendmsg",
1693 "syscalls:sys_enter_sendmmsg",
1694
1695 "syscalls:sys_exit_recvfrom",
1696 "syscalls:sys_exit_recvmmsg",
1697 "syscalls:sys_exit_recvmsg",
1698 "syscalls:sys_exit_sendto",
1699 "syscalls:sys_exit_sendmsg",
1700 "syscalls:sys_exit_sendmmsg",
1701 };
1702 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704 const char * const poll_events[] = {
1705 "syscalls:sys_enter_epoll_pwait",
1706 "syscalls:sys_enter_epoll_wait",
1707 "syscalls:sys_enter_poll",
1708 "syscalls:sys_enter_ppoll",
1709 "syscalls:sys_enter_pselect6",
1710 "syscalls:sys_enter_select",
1711
1712 "syscalls:sys_exit_epoll_pwait",
1713 "syscalls:sys_exit_epoll_wait",
1714 "syscalls:sys_exit_poll",
1715 "syscalls:sys_exit_ppoll",
1716 "syscalls:sys_exit_pselect6",
1717 "syscalls:sys_exit_select",
1718 };
1719 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721 rec_argc = common_args_nr +
1722 disk_events_nr * 4 +
1723 net_events_nr * 4 +
1724 poll_events_nr * 4 +
1725 argc;
1726 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728 if (rec_argv == NULL)
1729 return -ENOMEM;
1730
1731 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1732 return -ENOMEM;
1733
1734 p = rec_argv;
1735 for (i = 0; i < common_args_nr; i++)
1736 *p++ = strdup(common_args[i]);
1737
1738 for (i = 0; i < disk_events_nr; i++) {
1739 if (!is_valid_tracepoint(disk_events[i])) {
1740 rec_argc -= 4;
1741 continue;
1742 }
1743
1744 *p++ = "-e";
1745 *p++ = strdup(disk_events[i]);
1746 *p++ = "--filter";
1747 *p++ = filter;
1748 }
1749 for (i = 0; i < net_events_nr; i++) {
1750 if (!is_valid_tracepoint(net_events[i])) {
1751 rec_argc -= 4;
1752 continue;
1753 }
1754
1755 *p++ = "-e";
1756 *p++ = strdup(net_events[i]);
1757 *p++ = "--filter";
1758 *p++ = filter;
1759 }
1760 for (i = 0; i < poll_events_nr; i++) {
1761 if (!is_valid_tracepoint(poll_events[i])) {
1762 rec_argc -= 4;
1763 continue;
1764 }
1765
1766 *p++ = "-e";
1767 *p++ = strdup(poll_events[i]);
1768 *p++ = "--filter";
1769 *p++ = filter;
1770 }
1771
1772 for (i = 0; i < (unsigned int)argc; i++)
1773 *p++ = argv[i];
1774
1775 return cmd_record(rec_argc, rec_argv, NULL);
1776}
1777
1778
1779static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1780{
1781 unsigned int rec_argc, i, j;
1782 const char **rec_argv;
1783 const char **p;
1784 unsigned int record_elems;
1785
1786 const char * const common_args[] = {
1787 "record", "-a", "-R", "-c", "1",
1788 };
1789 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1790
1791 const char * const backtrace_args[] = {
1792 "-g",
1793 };
1794 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1795
1796 const char * const power_args[] = {
1797 "-e", "power:cpu_frequency",
1798 "-e", "power:cpu_idle",
1799 };
1800 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1801
1802 const char * const old_power_args[] = {
1803#ifdef SUPPORT_OLD_POWER_EVENTS
1804 "-e", "power:power_start",
1805 "-e", "power:power_end",
1806 "-e", "power:power_frequency",
1807#endif
1808 };
1809 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1810
1811 const char * const tasks_args[] = {
1812 "-e", "sched:sched_wakeup",
1813 "-e", "sched:sched_switch",
1814 };
1815 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1816
1817#ifdef SUPPORT_OLD_POWER_EVENTS
1818 if (!is_valid_tracepoint("power:cpu_idle") &&
1819 is_valid_tracepoint("power:power_start")) {
1820 use_old_power_events = 1;
1821 power_args_nr = 0;
1822 } else {
1823 old_power_args_nr = 0;
1824 }
1825#endif
1826
1827 if (tchart->power_only)
1828 tasks_args_nr = 0;
1829
1830 if (tchart->tasks_only) {
1831 power_args_nr = 0;
1832 old_power_args_nr = 0;
1833 }
1834
1835 if (!tchart->with_backtrace)
1836 backtrace_args_no = 0;
1837
1838 record_elems = common_args_nr + tasks_args_nr +
1839 power_args_nr + old_power_args_nr + backtrace_args_no;
1840
1841 rec_argc = record_elems + argc;
1842 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1843
1844 if (rec_argv == NULL)
1845 return -ENOMEM;
1846
1847 p = rec_argv;
1848 for (i = 0; i < common_args_nr; i++)
1849 *p++ = strdup(common_args[i]);
1850
1851 for (i = 0; i < backtrace_args_no; i++)
1852 *p++ = strdup(backtrace_args[i]);
1853
1854 for (i = 0; i < tasks_args_nr; i++)
1855 *p++ = strdup(tasks_args[i]);
1856
1857 for (i = 0; i < power_args_nr; i++)
1858 *p++ = strdup(power_args[i]);
1859
1860 for (i = 0; i < old_power_args_nr; i++)
1861 *p++ = strdup(old_power_args[i]);
1862
1863 for (j = 0; j < (unsigned int)argc; j++)
1864 *p++ = argv[j];
1865
1866 return cmd_record(rec_argc, rec_argv, NULL);
1867}
1868
1869static int
1870parse_process(const struct option *opt __maybe_unused, const char *arg,
1871 int __maybe_unused unset)
1872{
1873 if (arg)
1874 add_process_filter(arg);
1875 return 0;
1876}
1877
1878static int
1879parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1880 int __maybe_unused unset)
1881{
1882 unsigned long duration = strtoul(arg, NULL, 0);
1883
1884 if (svg_highlight || svg_highlight_name)
1885 return -1;
1886
1887 if (duration)
1888 svg_highlight = duration;
1889 else
1890 svg_highlight_name = strdup(arg);
1891
1892 return 0;
1893}
1894
1895static int
1896parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1897{
1898 char unit = 'n';
1899 u64 *value = opt->value;
1900
1901 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1902 switch (unit) {
1903 case 'm':
1904 *value *= 1000000;
1905 break;
1906 case 'u':
1907 *value *= 1000;
1908 break;
1909 case 'n':
1910 break;
1911 default:
1912 return -1;
1913 }
1914 }
1915
1916 return 0;
1917}
1918
1919int cmd_timechart(int argc, const char **argv,
1920 const char *prefix __maybe_unused)
1921{
1922 struct timechart tchart = {
1923 .tool = {
1924 .comm = process_comm_event,
1925 .fork = process_fork_event,
1926 .exit = process_exit_event,
1927 .sample = process_sample_event,
1928 .ordered_events = true,
1929 },
1930 .proc_num = 15,
1931 .min_time = 1000000,
1932 .merge_dist = 1000,
1933 };
1934 const char *output_name = "output.svg";
1935 const struct option timechart_options[] = {
1936 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940 "highlight tasks. Pass duration in ns or process name.",
1941 parse_highlight),
1942 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1943 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1944 "output processes data only"),
1945 OPT_CALLBACK('p', "process", NULL, "process",
1946 "process selector. Pass a pid or process name.",
1947 parse_process),
1948 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1949 "Look for files with symbols relative to this directory"),
1950 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1951 "min. number of tasks to print"),
1952 OPT_BOOLEAN('t', "topology", &tchart.topology,
1953 "sort CPUs according to topology"),
1954 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1955 "skip EAGAIN errors"),
1956 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1957 "all IO faster than min-time will visually appear longer",
1958 parse_time),
1959 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1960 "merge events that are merge-dist us apart",
1961 parse_time),
1962 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1963 OPT_END()
1964 };
1965 const char * const timechart_subcommands[] = { "record", NULL };
1966 const char *timechart_usage[] = {
1967 "perf timechart [<options>] {record}",
1968 NULL
1969 };
1970
1971 const struct option timechart_record_options[] = {
1972 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1973 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1974 "output processes data only"),
1975 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976 "record only IO data"),
1977 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978 OPT_END()
1979 };
1980 const char * const timechart_record_usage[] = {
1981 "perf timechart record [<options>]",
1982 NULL
1983 };
1984 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987 if (tchart.power_only && tchart.tasks_only) {
1988 pr_err("-P and -T options cannot be used at the same time.\n");
1989 return -1;
1990 }
1991
1992 if (argc && !strncmp(argv[0], "rec", 3)) {
1993 argc = parse_options(argc, argv, timechart_record_options,
1994 timechart_record_usage,
1995 PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997 if (tchart.power_only && tchart.tasks_only) {
1998 pr_err("-P and -T options cannot be used at the same time.\n");
1999 return -1;
2000 }
2001
2002 if (tchart.io_only)
2003 return timechart__io_record(argc, argv);
2004 else
2005 return timechart__record(&tchart, argc, argv);
2006 } else if (argc)
2007 usage_with_options(timechart_usage, timechart_options);
2008
2009 setup_pager();
2010
2011 return __cmd_timechart(&tchart, output_name);
2012}