Loading...
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/export.h>
73#include <linux/kthread.h>
74#include <linux/rbtree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103#include <linux/memory_hotplug.h>
104
105/*
106 * Kmemleak configuration and common defines.
107 */
108#define MAX_TRACE 16 /* stack trace length */
109#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110#define SECS_FIRST_SCAN 60 /* delay before the first scan */
111#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113
114#define BYTES_PER_POINTER sizeof(void *)
115
116/* GFP bitmask for kmemleak internal allocations */
117#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 __GFP_NOWARN)
120
121/* scanning area inside a memory block */
122struct kmemleak_scan_area {
123 struct hlist_node node;
124 unsigned long start;
125 size_t size;
126};
127
128#define KMEMLEAK_GREY 0
129#define KMEMLEAK_BLACK -1
130
131/*
132 * Structure holding the metadata for each allocated memory block.
133 * Modifications to such objects should be made while holding the
134 * object->lock. Insertions or deletions from object_list, gray_list or
135 * rb_node are already protected by the corresponding locks or mutex (see
136 * the notes on locking above). These objects are reference-counted
137 * (use_count) and freed using the RCU mechanism.
138 */
139struct kmemleak_object {
140 spinlock_t lock;
141 unsigned long flags; /* object status flags */
142 struct list_head object_list;
143 struct list_head gray_list;
144 struct rb_node rb_node;
145 struct rcu_head rcu; /* object_list lockless traversal */
146 /* object usage count; object freed when use_count == 0 */
147 atomic_t use_count;
148 unsigned long pointer;
149 size_t size;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
171
172/* number of bytes to print per line; must be 16 or 32 */
173#define HEX_ROW_SIZE 16
174/* number of bytes to print at a time (1, 2, 4, 8) */
175#define HEX_GROUP_SIZE 1
176/* include ASCII after the hex output */
177#define HEX_ASCII 1
178/* max number of lines to be printed */
179#define HEX_MAX_LINES 2
180
181/* the list of all allocated objects */
182static LIST_HEAD(object_list);
183/* the list of gray-colored objects (see color_gray comment below) */
184static LIST_HEAD(gray_list);
185/* search tree for object boundaries */
186static struct rb_root object_tree_root = RB_ROOT;
187/* rw_lock protecting the access to object_list and object_tree_root */
188static DEFINE_RWLOCK(kmemleak_lock);
189
190/* allocation caches for kmemleak internal data */
191static struct kmem_cache *object_cache;
192static struct kmem_cache *scan_area_cache;
193
194/* set if tracing memory operations is enabled */
195static int kmemleak_enabled;
196/* set in the late_initcall if there were no errors */
197static int kmemleak_initialized;
198/* enables or disables early logging of the memory operations */
199static int kmemleak_early_log = 1;
200/* set if a kmemleak warning was issued */
201static int kmemleak_warning;
202/* set if a fatal kmemleak error has occurred */
203static int kmemleak_error;
204
205/* minimum and maximum address that may be valid pointers */
206static unsigned long min_addr = ULONG_MAX;
207static unsigned long max_addr;
208
209static struct task_struct *scan_thread;
210/* used to avoid reporting of recently allocated objects */
211static unsigned long jiffies_min_age;
212static unsigned long jiffies_last_scan;
213/* delay between automatic memory scannings */
214static signed long jiffies_scan_wait;
215/* enables or disables the task stacks scanning */
216static int kmemleak_stack_scan = 1;
217/* protects the memory scanning, parameters and debug/kmemleak file access */
218static DEFINE_MUTEX(scan_mutex);
219/* setting kmemleak=on, will set this var, skipping the disable */
220static int kmemleak_skip_disable;
221/* If there are leaks that can be reported */
222static bool kmemleak_found_leaks;
223
224/*
225 * Early object allocation/freeing logging. Kmemleak is initialized after the
226 * kernel allocator. However, both the kernel allocator and kmemleak may
227 * allocate memory blocks which need to be tracked. Kmemleak defines an
228 * arbitrary buffer to hold the allocation/freeing information before it is
229 * fully initialized.
230 */
231
232/* kmemleak operation type for early logging */
233enum {
234 KMEMLEAK_ALLOC,
235 KMEMLEAK_ALLOC_PERCPU,
236 KMEMLEAK_FREE,
237 KMEMLEAK_FREE_PART,
238 KMEMLEAK_FREE_PERCPU,
239 KMEMLEAK_NOT_LEAK,
240 KMEMLEAK_IGNORE,
241 KMEMLEAK_SCAN_AREA,
242 KMEMLEAK_NO_SCAN
243};
244
245/*
246 * Structure holding the information passed to kmemleak callbacks during the
247 * early logging.
248 */
249struct early_log {
250 int op_type; /* kmemleak operation type */
251 const void *ptr; /* allocated/freed memory block */
252 size_t size; /* memory block size */
253 int min_count; /* minimum reference count */
254 unsigned long trace[MAX_TRACE]; /* stack trace */
255 unsigned int trace_len; /* stack trace length */
256};
257
258/* early logging buffer and current position */
259static struct early_log
260 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
261static int crt_early_log __initdata;
262
263static void kmemleak_disable(void);
264
265/*
266 * Print a warning and dump the stack trace.
267 */
268#define kmemleak_warn(x...) do { \
269 pr_warning(x); \
270 dump_stack(); \
271 kmemleak_warning = 1; \
272} while (0)
273
274/*
275 * Macro invoked when a serious kmemleak condition occurred and cannot be
276 * recovered from. Kmemleak will be disabled and further allocation/freeing
277 * tracing no longer available.
278 */
279#define kmemleak_stop(x...) do { \
280 kmemleak_warn(x); \
281 kmemleak_disable(); \
282} while (0)
283
284/*
285 * Printing of the objects hex dump to the seq file. The number of lines to be
286 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
287 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
288 * with the object->lock held.
289 */
290static void hex_dump_object(struct seq_file *seq,
291 struct kmemleak_object *object)
292{
293 const u8 *ptr = (const u8 *)object->pointer;
294 int i, len, remaining;
295 unsigned char linebuf[HEX_ROW_SIZE * 5];
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 remaining = len =
299 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
300
301 seq_printf(seq, " hex dump (first %d bytes):\n", len);
302 for (i = 0; i < len; i += HEX_ROW_SIZE) {
303 int linelen = min(remaining, HEX_ROW_SIZE);
304
305 remaining -= HEX_ROW_SIZE;
306 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
307 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
308 HEX_ASCII);
309 seq_printf(seq, " %s\n", linebuf);
310 }
311}
312
313/*
314 * Object colors, encoded with count and min_count:
315 * - white - orphan object, not enough references to it (count < min_count)
316 * - gray - not orphan, not marked as false positive (min_count == 0) or
317 * sufficient references to it (count >= min_count)
318 * - black - ignore, it doesn't contain references (e.g. text section)
319 * (min_count == -1). No function defined for this color.
320 * Newly created objects don't have any color assigned (object->count == -1)
321 * before the next memory scan when they become white.
322 */
323static bool color_white(const struct kmemleak_object *object)
324{
325 return object->count != KMEMLEAK_BLACK &&
326 object->count < object->min_count;
327}
328
329static bool color_gray(const struct kmemleak_object *object)
330{
331 return object->min_count != KMEMLEAK_BLACK &&
332 object->count >= object->min_count;
333}
334
335/*
336 * Objects are considered unreferenced only if their color is white, they have
337 * not be deleted and have a minimum age to avoid false positives caused by
338 * pointers temporarily stored in CPU registers.
339 */
340static bool unreferenced_object(struct kmemleak_object *object)
341{
342 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
343 time_before_eq(object->jiffies + jiffies_min_age,
344 jiffies_last_scan);
345}
346
347/*
348 * Printing of the unreferenced objects information to the seq file. The
349 * print_unreferenced function must be called with the object->lock held.
350 */
351static void print_unreferenced(struct seq_file *seq,
352 struct kmemleak_object *object)
353{
354 int i;
355 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
356
357 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
358 object->pointer, object->size);
359 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
360 object->comm, object->pid, object->jiffies,
361 msecs_age / 1000, msecs_age % 1000);
362 hex_dump_object(seq, object);
363 seq_printf(seq, " backtrace:\n");
364
365 for (i = 0; i < object->trace_len; i++) {
366 void *ptr = (void *)object->trace[i];
367 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
368 }
369}
370
371/*
372 * Print the kmemleak_object information. This function is used mainly for
373 * debugging special cases when kmemleak operations. It must be called with
374 * the object->lock held.
375 */
376static void dump_object_info(struct kmemleak_object *object)
377{
378 struct stack_trace trace;
379
380 trace.nr_entries = object->trace_len;
381 trace.entries = object->trace;
382
383 pr_notice("Object 0x%08lx (size %zu):\n",
384 object->pointer, object->size);
385 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
386 object->comm, object->pid, object->jiffies);
387 pr_notice(" min_count = %d\n", object->min_count);
388 pr_notice(" count = %d\n", object->count);
389 pr_notice(" flags = 0x%lx\n", object->flags);
390 pr_notice(" checksum = %d\n", object->checksum);
391 pr_notice(" backtrace:\n");
392 print_stack_trace(&trace, 4);
393}
394
395/*
396 * Look-up a memory block metadata (kmemleak_object) in the object search
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
401static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
402{
403 struct rb_node *rb = object_tree_root.rb_node;
404
405 while (rb) {
406 struct kmemleak_object *object =
407 rb_entry(rb, struct kmemleak_object, rb_node);
408 if (ptr < object->pointer)
409 rb = object->rb_node.rb_left;
410 else if (object->pointer + object->size <= ptr)
411 rb = object->rb_node.rb_right;
412 else if (object->pointer == ptr || alias)
413 return object;
414 else {
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
417 dump_object_info(object);
418 break;
419 }
420 }
421 return NULL;
422}
423
424/*
425 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
426 * that once an object's use_count reached 0, the RCU freeing was already
427 * registered and the object should no longer be used. This function must be
428 * called under the protection of rcu_read_lock().
429 */
430static int get_object(struct kmemleak_object *object)
431{
432 return atomic_inc_not_zero(&object->use_count);
433}
434
435/*
436 * RCU callback to free a kmemleak_object.
437 */
438static void free_object_rcu(struct rcu_head *rcu)
439{
440 struct hlist_node *tmp;
441 struct kmemleak_scan_area *area;
442 struct kmemleak_object *object =
443 container_of(rcu, struct kmemleak_object, rcu);
444
445 /*
446 * Once use_count is 0 (guaranteed by put_object), there is no other
447 * code accessing this object, hence no need for locking.
448 */
449 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
450 hlist_del(&area->node);
451 kmem_cache_free(scan_area_cache, area);
452 }
453 kmem_cache_free(object_cache, object);
454}
455
456/*
457 * Decrement the object use_count. Once the count is 0, free the object using
458 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
459 * delete_object() path, the delayed RCU freeing ensures that there is no
460 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
461 * is also possible.
462 */
463static void put_object(struct kmemleak_object *object)
464{
465 if (!atomic_dec_and_test(&object->use_count))
466 return;
467
468 /* should only get here after delete_object was called */
469 WARN_ON(object->flags & OBJECT_ALLOCATED);
470
471 call_rcu(&object->rcu, free_object_rcu);
472}
473
474/*
475 * Look up an object in the object search tree and increase its use_count.
476 */
477static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
478{
479 unsigned long flags;
480 struct kmemleak_object *object = NULL;
481
482 rcu_read_lock();
483 read_lock_irqsave(&kmemleak_lock, flags);
484 if (ptr >= min_addr && ptr < max_addr)
485 object = lookup_object(ptr, alias);
486 read_unlock_irqrestore(&kmemleak_lock, flags);
487
488 /* check whether the object is still available */
489 if (object && !get_object(object))
490 object = NULL;
491 rcu_read_unlock();
492
493 return object;
494}
495
496/*
497 * Save stack trace to the given array of MAX_TRACE size.
498 */
499static int __save_stack_trace(unsigned long *trace)
500{
501 struct stack_trace stack_trace;
502
503 stack_trace.max_entries = MAX_TRACE;
504 stack_trace.nr_entries = 0;
505 stack_trace.entries = trace;
506 stack_trace.skip = 2;
507 save_stack_trace(&stack_trace);
508
509 return stack_trace.nr_entries;
510}
511
512/*
513 * Create the metadata (struct kmemleak_object) corresponding to an allocated
514 * memory block and add it to the object_list and object_tree_root.
515 */
516static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
517 int min_count, gfp_t gfp)
518{
519 unsigned long flags;
520 struct kmemleak_object *object, *parent;
521 struct rb_node **link, *rb_parent;
522
523 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
524 if (!object) {
525 pr_warning("Cannot allocate a kmemleak_object structure\n");
526 kmemleak_disable();
527 return NULL;
528 }
529
530 INIT_LIST_HEAD(&object->object_list);
531 INIT_LIST_HEAD(&object->gray_list);
532 INIT_HLIST_HEAD(&object->area_list);
533 spin_lock_init(&object->lock);
534 atomic_set(&object->use_count, 1);
535 object->flags = OBJECT_ALLOCATED;
536 object->pointer = ptr;
537 object->size = size;
538 object->min_count = min_count;
539 object->count = 0; /* white color initially */
540 object->jiffies = jiffies;
541 object->checksum = 0;
542
543 /* task information */
544 if (in_irq()) {
545 object->pid = 0;
546 strncpy(object->comm, "hardirq", sizeof(object->comm));
547 } else if (in_softirq()) {
548 object->pid = 0;
549 strncpy(object->comm, "softirq", sizeof(object->comm));
550 } else {
551 object->pid = current->pid;
552 /*
553 * There is a small chance of a race with set_task_comm(),
554 * however using get_task_comm() here may cause locking
555 * dependency issues with current->alloc_lock. In the worst
556 * case, the command line is not correct.
557 */
558 strncpy(object->comm, current->comm, sizeof(object->comm));
559 }
560
561 /* kernel backtrace */
562 object->trace_len = __save_stack_trace(object->trace);
563
564 write_lock_irqsave(&kmemleak_lock, flags);
565
566 min_addr = min(min_addr, ptr);
567 max_addr = max(max_addr, ptr + size);
568 link = &object_tree_root.rb_node;
569 rb_parent = NULL;
570 while (*link) {
571 rb_parent = *link;
572 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
573 if (ptr + size <= parent->pointer)
574 link = &parent->rb_node.rb_left;
575 else if (parent->pointer + parent->size <= ptr)
576 link = &parent->rb_node.rb_right;
577 else {
578 kmemleak_stop("Cannot insert 0x%lx into the object "
579 "search tree (overlaps existing)\n",
580 ptr);
581 kmem_cache_free(object_cache, object);
582 object = parent;
583 spin_lock(&object->lock);
584 dump_object_info(object);
585 spin_unlock(&object->lock);
586 goto out;
587 }
588 }
589 rb_link_node(&object->rb_node, rb_parent, link);
590 rb_insert_color(&object->rb_node, &object_tree_root);
591
592 list_add_tail_rcu(&object->object_list, &object_list);
593out:
594 write_unlock_irqrestore(&kmemleak_lock, flags);
595 return object;
596}
597
598/*
599 * Remove the metadata (struct kmemleak_object) for a memory block from the
600 * object_list and object_tree_root and decrement its use_count.
601 */
602static void __delete_object(struct kmemleak_object *object)
603{
604 unsigned long flags;
605
606 write_lock_irqsave(&kmemleak_lock, flags);
607 rb_erase(&object->rb_node, &object_tree_root);
608 list_del_rcu(&object->object_list);
609 write_unlock_irqrestore(&kmemleak_lock, flags);
610
611 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
612 WARN_ON(atomic_read(&object->use_count) < 2);
613
614 /*
615 * Locking here also ensures that the corresponding memory block
616 * cannot be freed when it is being scanned.
617 */
618 spin_lock_irqsave(&object->lock, flags);
619 object->flags &= ~OBJECT_ALLOCATED;
620 spin_unlock_irqrestore(&object->lock, flags);
621 put_object(object);
622}
623
624/*
625 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626 * delete it.
627 */
628static void delete_object_full(unsigned long ptr)
629{
630 struct kmemleak_object *object;
631
632 object = find_and_get_object(ptr, 0);
633 if (!object) {
634#ifdef DEBUG
635 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
636 ptr);
637#endif
638 return;
639 }
640 __delete_object(object);
641 put_object(object);
642}
643
644/*
645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646 * delete it. If the memory block is partially freed, the function may create
647 * additional metadata for the remaining parts of the block.
648 */
649static void delete_object_part(unsigned long ptr, size_t size)
650{
651 struct kmemleak_object *object;
652 unsigned long start, end;
653
654 object = find_and_get_object(ptr, 1);
655 if (!object) {
656#ifdef DEBUG
657 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
658 "(size %zu)\n", ptr, size);
659#endif
660 return;
661 }
662 __delete_object(object);
663
664 /*
665 * Create one or two objects that may result from the memory block
666 * split. Note that partial freeing is only done by free_bootmem() and
667 * this happens before kmemleak_init() is called. The path below is
668 * only executed during early log recording in kmemleak_init(), so
669 * GFP_KERNEL is enough.
670 */
671 start = object->pointer;
672 end = object->pointer + object->size;
673 if (ptr > start)
674 create_object(start, ptr - start, object->min_count,
675 GFP_KERNEL);
676 if (ptr + size < end)
677 create_object(ptr + size, end - ptr - size, object->min_count,
678 GFP_KERNEL);
679
680 put_object(object);
681}
682
683static void __paint_it(struct kmemleak_object *object, int color)
684{
685 object->min_count = color;
686 if (color == KMEMLEAK_BLACK)
687 object->flags |= OBJECT_NO_SCAN;
688}
689
690static void paint_it(struct kmemleak_object *object, int color)
691{
692 unsigned long flags;
693
694 spin_lock_irqsave(&object->lock, flags);
695 __paint_it(object, color);
696 spin_unlock_irqrestore(&object->lock, flags);
697}
698
699static void paint_ptr(unsigned long ptr, int color)
700{
701 struct kmemleak_object *object;
702
703 object = find_and_get_object(ptr, 0);
704 if (!object) {
705 kmemleak_warn("Trying to color unknown object "
706 "at 0x%08lx as %s\n", ptr,
707 (color == KMEMLEAK_GREY) ? "Grey" :
708 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
709 return;
710 }
711 paint_it(object, color);
712 put_object(object);
713}
714
715/*
716 * Mark an object permanently as gray-colored so that it can no longer be
717 * reported as a leak. This is used in general to mark a false positive.
718 */
719static void make_gray_object(unsigned long ptr)
720{
721 paint_ptr(ptr, KMEMLEAK_GREY);
722}
723
724/*
725 * Mark the object as black-colored so that it is ignored from scans and
726 * reporting.
727 */
728static void make_black_object(unsigned long ptr)
729{
730 paint_ptr(ptr, KMEMLEAK_BLACK);
731}
732
733/*
734 * Add a scanning area to the object. If at least one such area is added,
735 * kmemleak will only scan these ranges rather than the whole memory block.
736 */
737static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
738{
739 unsigned long flags;
740 struct kmemleak_object *object;
741 struct kmemleak_scan_area *area;
742
743 object = find_and_get_object(ptr, 1);
744 if (!object) {
745 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
746 ptr);
747 return;
748 }
749
750 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
751 if (!area) {
752 pr_warning("Cannot allocate a scan area\n");
753 goto out;
754 }
755
756 spin_lock_irqsave(&object->lock, flags);
757 if (size == SIZE_MAX) {
758 size = object->pointer + object->size - ptr;
759 } else if (ptr + size > object->pointer + object->size) {
760 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
761 dump_object_info(object);
762 kmem_cache_free(scan_area_cache, area);
763 goto out_unlock;
764 }
765
766 INIT_HLIST_NODE(&area->node);
767 area->start = ptr;
768 area->size = size;
769
770 hlist_add_head(&area->node, &object->area_list);
771out_unlock:
772 spin_unlock_irqrestore(&object->lock, flags);
773out:
774 put_object(object);
775}
776
777/*
778 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
779 * pointer. Such object will not be scanned by kmemleak but references to it
780 * are searched.
781 */
782static void object_no_scan(unsigned long ptr)
783{
784 unsigned long flags;
785 struct kmemleak_object *object;
786
787 object = find_and_get_object(ptr, 0);
788 if (!object) {
789 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
790 return;
791 }
792
793 spin_lock_irqsave(&object->lock, flags);
794 object->flags |= OBJECT_NO_SCAN;
795 spin_unlock_irqrestore(&object->lock, flags);
796 put_object(object);
797}
798
799/*
800 * Log an early kmemleak_* call to the early_log buffer. These calls will be
801 * processed later once kmemleak is fully initialized.
802 */
803static void __init log_early(int op_type, const void *ptr, size_t size,
804 int min_count)
805{
806 unsigned long flags;
807 struct early_log *log;
808
809 if (kmemleak_error) {
810 /* kmemleak stopped recording, just count the requests */
811 crt_early_log++;
812 return;
813 }
814
815 if (crt_early_log >= ARRAY_SIZE(early_log)) {
816 kmemleak_disable();
817 return;
818 }
819
820 /*
821 * There is no need for locking since the kernel is still in UP mode
822 * at this stage. Disabling the IRQs is enough.
823 */
824 local_irq_save(flags);
825 log = &early_log[crt_early_log];
826 log->op_type = op_type;
827 log->ptr = ptr;
828 log->size = size;
829 log->min_count = min_count;
830 log->trace_len = __save_stack_trace(log->trace);
831 crt_early_log++;
832 local_irq_restore(flags);
833}
834
835/*
836 * Log an early allocated block and populate the stack trace.
837 */
838static void early_alloc(struct early_log *log)
839{
840 struct kmemleak_object *object;
841 unsigned long flags;
842 int i;
843
844 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
845 return;
846
847 /*
848 * RCU locking needed to ensure object is not freed via put_object().
849 */
850 rcu_read_lock();
851 object = create_object((unsigned long)log->ptr, log->size,
852 log->min_count, GFP_ATOMIC);
853 if (!object)
854 goto out;
855 spin_lock_irqsave(&object->lock, flags);
856 for (i = 0; i < log->trace_len; i++)
857 object->trace[i] = log->trace[i];
858 object->trace_len = log->trace_len;
859 spin_unlock_irqrestore(&object->lock, flags);
860out:
861 rcu_read_unlock();
862}
863
864/*
865 * Log an early allocated block and populate the stack trace.
866 */
867static void early_alloc_percpu(struct early_log *log)
868{
869 unsigned int cpu;
870 const void __percpu *ptr = log->ptr;
871
872 for_each_possible_cpu(cpu) {
873 log->ptr = per_cpu_ptr(ptr, cpu);
874 early_alloc(log);
875 }
876}
877
878/**
879 * kmemleak_alloc - register a newly allocated object
880 * @ptr: pointer to beginning of the object
881 * @size: size of the object
882 * @min_count: minimum number of references to this object. If during memory
883 * scanning a number of references less than @min_count is found,
884 * the object is reported as a memory leak. If @min_count is 0,
885 * the object is never reported as a leak. If @min_count is -1,
886 * the object is ignored (not scanned and not reported as a leak)
887 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
888 *
889 * This function is called from the kernel allocators when a new object
890 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
891 */
892void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 gfp_t gfp)
894{
895 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896
897 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 create_object((unsigned long)ptr, size, min_count, gfp);
899 else if (kmemleak_early_log)
900 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
901}
902EXPORT_SYMBOL_GPL(kmemleak_alloc);
903
904/**
905 * kmemleak_alloc_percpu - register a newly allocated __percpu object
906 * @ptr: __percpu pointer to beginning of the object
907 * @size: size of the object
908 *
909 * This function is called from the kernel percpu allocator when a new object
910 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
911 * allocation.
912 */
913void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
914{
915 unsigned int cpu;
916
917 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918
919 /*
920 * Percpu allocations are only scanned and not reported as leaks
921 * (min_count is set to 0).
922 */
923 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924 for_each_possible_cpu(cpu)
925 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926 size, 0, GFP_KERNEL);
927 else if (kmemleak_early_log)
928 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
929}
930EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
931
932/**
933 * kmemleak_free - unregister a previously registered object
934 * @ptr: pointer to beginning of the object
935 *
936 * This function is called from the kernel allocators when an object (memory
937 * block) is freed (kmem_cache_free, kfree, vfree etc.).
938 */
939void __ref kmemleak_free(const void *ptr)
940{
941 pr_debug("%s(0x%p)\n", __func__, ptr);
942
943 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 delete_object_full((unsigned long)ptr);
945 else if (kmemleak_early_log)
946 log_early(KMEMLEAK_FREE, ptr, 0, 0);
947}
948EXPORT_SYMBOL_GPL(kmemleak_free);
949
950/**
951 * kmemleak_free_part - partially unregister a previously registered object
952 * @ptr: pointer to the beginning or inside the object. This also
953 * represents the start of the range to be freed
954 * @size: size to be unregistered
955 *
956 * This function is called when only a part of a memory block is freed
957 * (usually from the bootmem allocator).
958 */
959void __ref kmemleak_free_part(const void *ptr, size_t size)
960{
961 pr_debug("%s(0x%p)\n", __func__, ptr);
962
963 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
964 delete_object_part((unsigned long)ptr, size);
965 else if (kmemleak_early_log)
966 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
967}
968EXPORT_SYMBOL_GPL(kmemleak_free_part);
969
970/**
971 * kmemleak_free_percpu - unregister a previously registered __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 *
974 * This function is called from the kernel percpu allocator when an object
975 * (memory block) is freed (free_percpu).
976 */
977void __ref kmemleak_free_percpu(const void __percpu *ptr)
978{
979 unsigned int cpu;
980
981 pr_debug("%s(0x%p)\n", __func__, ptr);
982
983 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 for_each_possible_cpu(cpu)
985 delete_object_full((unsigned long)per_cpu_ptr(ptr,
986 cpu));
987 else if (kmemleak_early_log)
988 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
989}
990EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
991
992/**
993 * kmemleak_not_leak - mark an allocated object as false positive
994 * @ptr: pointer to beginning of the object
995 *
996 * Calling this function on an object will cause the memory block to no longer
997 * be reported as leak and always be scanned.
998 */
999void __ref kmemleak_not_leak(const void *ptr)
1000{
1001 pr_debug("%s(0x%p)\n", __func__, ptr);
1002
1003 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1004 make_gray_object((unsigned long)ptr);
1005 else if (kmemleak_early_log)
1006 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1007}
1008EXPORT_SYMBOL(kmemleak_not_leak);
1009
1010/**
1011 * kmemleak_ignore - ignore an allocated object
1012 * @ptr: pointer to beginning of the object
1013 *
1014 * Calling this function on an object will cause the memory block to be
1015 * ignored (not scanned and not reported as a leak). This is usually done when
1016 * it is known that the corresponding block is not a leak and does not contain
1017 * any references to other allocated memory blocks.
1018 */
1019void __ref kmemleak_ignore(const void *ptr)
1020{
1021 pr_debug("%s(0x%p)\n", __func__, ptr);
1022
1023 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1024 make_black_object((unsigned long)ptr);
1025 else if (kmemleak_early_log)
1026 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1027}
1028EXPORT_SYMBOL(kmemleak_ignore);
1029
1030/**
1031 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1032 * @ptr: pointer to beginning or inside the object. This also
1033 * represents the start of the scan area
1034 * @size: size of the scan area
1035 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1036 *
1037 * This function is used when it is known that only certain parts of an object
1038 * contain references to other objects. Kmemleak will only scan these areas
1039 * reducing the number false negatives.
1040 */
1041void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1042{
1043 pr_debug("%s(0x%p)\n", __func__, ptr);
1044
1045 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1046 add_scan_area((unsigned long)ptr, size, gfp);
1047 else if (kmemleak_early_log)
1048 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1049}
1050EXPORT_SYMBOL(kmemleak_scan_area);
1051
1052/**
1053 * kmemleak_no_scan - do not scan an allocated object
1054 * @ptr: pointer to beginning of the object
1055 *
1056 * This function notifies kmemleak not to scan the given memory block. Useful
1057 * in situations where it is known that the given object does not contain any
1058 * references to other objects. Kmemleak will not scan such objects reducing
1059 * the number of false negatives.
1060 */
1061void __ref kmemleak_no_scan(const void *ptr)
1062{
1063 pr_debug("%s(0x%p)\n", __func__, ptr);
1064
1065 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1066 object_no_scan((unsigned long)ptr);
1067 else if (kmemleak_early_log)
1068 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1069}
1070EXPORT_SYMBOL(kmemleak_no_scan);
1071
1072/*
1073 * Update an object's checksum and return true if it was modified.
1074 */
1075static bool update_checksum(struct kmemleak_object *object)
1076{
1077 u32 old_csum = object->checksum;
1078
1079 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1080 return false;
1081
1082 object->checksum = crc32(0, (void *)object->pointer, object->size);
1083 return object->checksum != old_csum;
1084}
1085
1086/*
1087 * Memory scanning is a long process and it needs to be interruptable. This
1088 * function checks whether such interrupt condition occurred.
1089 */
1090static int scan_should_stop(void)
1091{
1092 if (!kmemleak_enabled)
1093 return 1;
1094
1095 /*
1096 * This function may be called from either process or kthread context,
1097 * hence the need to check for both stop conditions.
1098 */
1099 if (current->mm)
1100 return signal_pending(current);
1101 else
1102 return kthread_should_stop();
1103
1104 return 0;
1105}
1106
1107/*
1108 * Scan a memory block (exclusive range) for valid pointers and add those
1109 * found to the gray list.
1110 */
1111static void scan_block(void *_start, void *_end,
1112 struct kmemleak_object *scanned, int allow_resched)
1113{
1114 unsigned long *ptr;
1115 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1116 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1117
1118 for (ptr = start; ptr < end; ptr++) {
1119 struct kmemleak_object *object;
1120 unsigned long flags;
1121 unsigned long pointer;
1122
1123 if (allow_resched)
1124 cond_resched();
1125 if (scan_should_stop())
1126 break;
1127
1128 /* don't scan uninitialized memory */
1129 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1130 BYTES_PER_POINTER))
1131 continue;
1132
1133 pointer = *ptr;
1134
1135 object = find_and_get_object(pointer, 1);
1136 if (!object)
1137 continue;
1138 if (object == scanned) {
1139 /* self referenced, ignore */
1140 put_object(object);
1141 continue;
1142 }
1143
1144 /*
1145 * Avoid the lockdep recursive warning on object->lock being
1146 * previously acquired in scan_object(). These locks are
1147 * enclosed by scan_mutex.
1148 */
1149 spin_lock_irqsave_nested(&object->lock, flags,
1150 SINGLE_DEPTH_NESTING);
1151 if (!color_white(object)) {
1152 /* non-orphan, ignored or new */
1153 spin_unlock_irqrestore(&object->lock, flags);
1154 put_object(object);
1155 continue;
1156 }
1157
1158 /*
1159 * Increase the object's reference count (number of pointers
1160 * to the memory block). If this count reaches the required
1161 * minimum, the object's color will become gray and it will be
1162 * added to the gray_list.
1163 */
1164 object->count++;
1165 if (color_gray(object)) {
1166 list_add_tail(&object->gray_list, &gray_list);
1167 spin_unlock_irqrestore(&object->lock, flags);
1168 continue;
1169 }
1170
1171 spin_unlock_irqrestore(&object->lock, flags);
1172 put_object(object);
1173 }
1174}
1175
1176/*
1177 * Scan a memory block corresponding to a kmemleak_object. A condition is
1178 * that object->use_count >= 1.
1179 */
1180static void scan_object(struct kmemleak_object *object)
1181{
1182 struct kmemleak_scan_area *area;
1183 unsigned long flags;
1184
1185 /*
1186 * Once the object->lock is acquired, the corresponding memory block
1187 * cannot be freed (the same lock is acquired in delete_object).
1188 */
1189 spin_lock_irqsave(&object->lock, flags);
1190 if (object->flags & OBJECT_NO_SCAN)
1191 goto out;
1192 if (!(object->flags & OBJECT_ALLOCATED))
1193 /* already freed object */
1194 goto out;
1195 if (hlist_empty(&object->area_list)) {
1196 void *start = (void *)object->pointer;
1197 void *end = (void *)(object->pointer + object->size);
1198
1199 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1200 !(object->flags & OBJECT_NO_SCAN)) {
1201 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1202 object, 0);
1203 start += MAX_SCAN_SIZE;
1204
1205 spin_unlock_irqrestore(&object->lock, flags);
1206 cond_resched();
1207 spin_lock_irqsave(&object->lock, flags);
1208 }
1209 } else
1210 hlist_for_each_entry(area, &object->area_list, node)
1211 scan_block((void *)area->start,
1212 (void *)(area->start + area->size),
1213 object, 0);
1214out:
1215 spin_unlock_irqrestore(&object->lock, flags);
1216}
1217
1218/*
1219 * Scan the objects already referenced (gray objects). More objects will be
1220 * referenced and, if there are no memory leaks, all the objects are scanned.
1221 */
1222static void scan_gray_list(void)
1223{
1224 struct kmemleak_object *object, *tmp;
1225
1226 /*
1227 * The list traversal is safe for both tail additions and removals
1228 * from inside the loop. The kmemleak objects cannot be freed from
1229 * outside the loop because their use_count was incremented.
1230 */
1231 object = list_entry(gray_list.next, typeof(*object), gray_list);
1232 while (&object->gray_list != &gray_list) {
1233 cond_resched();
1234
1235 /* may add new objects to the list */
1236 if (!scan_should_stop())
1237 scan_object(object);
1238
1239 tmp = list_entry(object->gray_list.next, typeof(*object),
1240 gray_list);
1241
1242 /* remove the object from the list and release it */
1243 list_del(&object->gray_list);
1244 put_object(object);
1245
1246 object = tmp;
1247 }
1248 WARN_ON(!list_empty(&gray_list));
1249}
1250
1251/*
1252 * Scan data sections and all the referenced memory blocks allocated via the
1253 * kernel's standard allocators. This function must be called with the
1254 * scan_mutex held.
1255 */
1256static void kmemleak_scan(void)
1257{
1258 unsigned long flags;
1259 struct kmemleak_object *object;
1260 int i;
1261 int new_leaks = 0;
1262
1263 jiffies_last_scan = jiffies;
1264
1265 /* prepare the kmemleak_object's */
1266 rcu_read_lock();
1267 list_for_each_entry_rcu(object, &object_list, object_list) {
1268 spin_lock_irqsave(&object->lock, flags);
1269#ifdef DEBUG
1270 /*
1271 * With a few exceptions there should be a maximum of
1272 * 1 reference to any object at this point.
1273 */
1274 if (atomic_read(&object->use_count) > 1) {
1275 pr_debug("object->use_count = %d\n",
1276 atomic_read(&object->use_count));
1277 dump_object_info(object);
1278 }
1279#endif
1280 /* reset the reference count (whiten the object) */
1281 object->count = 0;
1282 if (color_gray(object) && get_object(object))
1283 list_add_tail(&object->gray_list, &gray_list);
1284
1285 spin_unlock_irqrestore(&object->lock, flags);
1286 }
1287 rcu_read_unlock();
1288
1289 /* data/bss scanning */
1290 scan_block(_sdata, _edata, NULL, 1);
1291 scan_block(__bss_start, __bss_stop, NULL, 1);
1292
1293#ifdef CONFIG_SMP
1294 /* per-cpu sections scanning */
1295 for_each_possible_cpu(i)
1296 scan_block(__per_cpu_start + per_cpu_offset(i),
1297 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1298#endif
1299
1300 /*
1301 * Struct page scanning for each node.
1302 */
1303 lock_memory_hotplug();
1304 for_each_online_node(i) {
1305 unsigned long start_pfn = node_start_pfn(i);
1306 unsigned long end_pfn = node_end_pfn(i);
1307 unsigned long pfn;
1308
1309 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1310 struct page *page;
1311
1312 if (!pfn_valid(pfn))
1313 continue;
1314 page = pfn_to_page(pfn);
1315 /* only scan if page is in use */
1316 if (page_count(page) == 0)
1317 continue;
1318 scan_block(page, page + 1, NULL, 1);
1319 }
1320 }
1321 unlock_memory_hotplug();
1322
1323 /*
1324 * Scanning the task stacks (may introduce false negatives).
1325 */
1326 if (kmemleak_stack_scan) {
1327 struct task_struct *p, *g;
1328
1329 read_lock(&tasklist_lock);
1330 do_each_thread(g, p) {
1331 scan_block(task_stack_page(p), task_stack_page(p) +
1332 THREAD_SIZE, NULL, 0);
1333 } while_each_thread(g, p);
1334 read_unlock(&tasklist_lock);
1335 }
1336
1337 /*
1338 * Scan the objects already referenced from the sections scanned
1339 * above.
1340 */
1341 scan_gray_list();
1342
1343 /*
1344 * Check for new or unreferenced objects modified since the previous
1345 * scan and color them gray until the next scan.
1346 */
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(object, &object_list, object_list) {
1349 spin_lock_irqsave(&object->lock, flags);
1350 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1351 && update_checksum(object) && get_object(object)) {
1352 /* color it gray temporarily */
1353 object->count = object->min_count;
1354 list_add_tail(&object->gray_list, &gray_list);
1355 }
1356 spin_unlock_irqrestore(&object->lock, flags);
1357 }
1358 rcu_read_unlock();
1359
1360 /*
1361 * Re-scan the gray list for modified unreferenced objects.
1362 */
1363 scan_gray_list();
1364
1365 /*
1366 * If scanning was stopped do not report any new unreferenced objects.
1367 */
1368 if (scan_should_stop())
1369 return;
1370
1371 /*
1372 * Scanning result reporting.
1373 */
1374 rcu_read_lock();
1375 list_for_each_entry_rcu(object, &object_list, object_list) {
1376 spin_lock_irqsave(&object->lock, flags);
1377 if (unreferenced_object(object) &&
1378 !(object->flags & OBJECT_REPORTED)) {
1379 object->flags |= OBJECT_REPORTED;
1380 new_leaks++;
1381 }
1382 spin_unlock_irqrestore(&object->lock, flags);
1383 }
1384 rcu_read_unlock();
1385
1386 if (new_leaks) {
1387 kmemleak_found_leaks = true;
1388
1389 pr_info("%d new suspected memory leaks (see "
1390 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1391 }
1392
1393}
1394
1395/*
1396 * Thread function performing automatic memory scanning. Unreferenced objects
1397 * at the end of a memory scan are reported but only the first time.
1398 */
1399static int kmemleak_scan_thread(void *arg)
1400{
1401 static int first_run = 1;
1402
1403 pr_info("Automatic memory scanning thread started\n");
1404 set_user_nice(current, 10);
1405
1406 /*
1407 * Wait before the first scan to allow the system to fully initialize.
1408 */
1409 if (first_run) {
1410 first_run = 0;
1411 ssleep(SECS_FIRST_SCAN);
1412 }
1413
1414 while (!kthread_should_stop()) {
1415 signed long timeout = jiffies_scan_wait;
1416
1417 mutex_lock(&scan_mutex);
1418 kmemleak_scan();
1419 mutex_unlock(&scan_mutex);
1420
1421 /* wait before the next scan */
1422 while (timeout && !kthread_should_stop())
1423 timeout = schedule_timeout_interruptible(timeout);
1424 }
1425
1426 pr_info("Automatic memory scanning thread ended\n");
1427
1428 return 0;
1429}
1430
1431/*
1432 * Start the automatic memory scanning thread. This function must be called
1433 * with the scan_mutex held.
1434 */
1435static void start_scan_thread(void)
1436{
1437 if (scan_thread)
1438 return;
1439 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1440 if (IS_ERR(scan_thread)) {
1441 pr_warning("Failed to create the scan thread\n");
1442 scan_thread = NULL;
1443 }
1444}
1445
1446/*
1447 * Stop the automatic memory scanning thread. This function must be called
1448 * with the scan_mutex held.
1449 */
1450static void stop_scan_thread(void)
1451{
1452 if (scan_thread) {
1453 kthread_stop(scan_thread);
1454 scan_thread = NULL;
1455 }
1456}
1457
1458/*
1459 * Iterate over the object_list and return the first valid object at or after
1460 * the required position with its use_count incremented. The function triggers
1461 * a memory scanning when the pos argument points to the first position.
1462 */
1463static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1464{
1465 struct kmemleak_object *object;
1466 loff_t n = *pos;
1467 int err;
1468
1469 err = mutex_lock_interruptible(&scan_mutex);
1470 if (err < 0)
1471 return ERR_PTR(err);
1472
1473 rcu_read_lock();
1474 list_for_each_entry_rcu(object, &object_list, object_list) {
1475 if (n-- > 0)
1476 continue;
1477 if (get_object(object))
1478 goto out;
1479 }
1480 object = NULL;
1481out:
1482 return object;
1483}
1484
1485/*
1486 * Return the next object in the object_list. The function decrements the
1487 * use_count of the previous object and increases that of the next one.
1488 */
1489static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1490{
1491 struct kmemleak_object *prev_obj = v;
1492 struct kmemleak_object *next_obj = NULL;
1493 struct kmemleak_object *obj = prev_obj;
1494
1495 ++(*pos);
1496
1497 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1498 if (get_object(obj)) {
1499 next_obj = obj;
1500 break;
1501 }
1502 }
1503
1504 put_object(prev_obj);
1505 return next_obj;
1506}
1507
1508/*
1509 * Decrement the use_count of the last object required, if any.
1510 */
1511static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1512{
1513 if (!IS_ERR(v)) {
1514 /*
1515 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1516 * waiting was interrupted, so only release it if !IS_ERR.
1517 */
1518 rcu_read_unlock();
1519 mutex_unlock(&scan_mutex);
1520 if (v)
1521 put_object(v);
1522 }
1523}
1524
1525/*
1526 * Print the information for an unreferenced object to the seq file.
1527 */
1528static int kmemleak_seq_show(struct seq_file *seq, void *v)
1529{
1530 struct kmemleak_object *object = v;
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&object->lock, flags);
1534 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1535 print_unreferenced(seq, object);
1536 spin_unlock_irqrestore(&object->lock, flags);
1537 return 0;
1538}
1539
1540static const struct seq_operations kmemleak_seq_ops = {
1541 .start = kmemleak_seq_start,
1542 .next = kmemleak_seq_next,
1543 .stop = kmemleak_seq_stop,
1544 .show = kmemleak_seq_show,
1545};
1546
1547static int kmemleak_open(struct inode *inode, struct file *file)
1548{
1549 return seq_open(file, &kmemleak_seq_ops);
1550}
1551
1552static int dump_str_object_info(const char *str)
1553{
1554 unsigned long flags;
1555 struct kmemleak_object *object;
1556 unsigned long addr;
1557
1558 if (kstrtoul(str, 0, &addr))
1559 return -EINVAL;
1560 object = find_and_get_object(addr, 0);
1561 if (!object) {
1562 pr_info("Unknown object at 0x%08lx\n", addr);
1563 return -EINVAL;
1564 }
1565
1566 spin_lock_irqsave(&object->lock, flags);
1567 dump_object_info(object);
1568 spin_unlock_irqrestore(&object->lock, flags);
1569
1570 put_object(object);
1571 return 0;
1572}
1573
1574/*
1575 * We use grey instead of black to ensure we can do future scans on the same
1576 * objects. If we did not do future scans these black objects could
1577 * potentially contain references to newly allocated objects in the future and
1578 * we'd end up with false positives.
1579 */
1580static void kmemleak_clear(void)
1581{
1582 struct kmemleak_object *object;
1583 unsigned long flags;
1584
1585 rcu_read_lock();
1586 list_for_each_entry_rcu(object, &object_list, object_list) {
1587 spin_lock_irqsave(&object->lock, flags);
1588 if ((object->flags & OBJECT_REPORTED) &&
1589 unreferenced_object(object))
1590 __paint_it(object, KMEMLEAK_GREY);
1591 spin_unlock_irqrestore(&object->lock, flags);
1592 }
1593 rcu_read_unlock();
1594
1595 kmemleak_found_leaks = false;
1596}
1597
1598static void __kmemleak_do_cleanup(void);
1599
1600/*
1601 * File write operation to configure kmemleak at run-time. The following
1602 * commands can be written to the /sys/kernel/debug/kmemleak file:
1603 * off - disable kmemleak (irreversible)
1604 * stack=on - enable the task stacks scanning
1605 * stack=off - disable the tasks stacks scanning
1606 * scan=on - start the automatic memory scanning thread
1607 * scan=off - stop the automatic memory scanning thread
1608 * scan=... - set the automatic memory scanning period in seconds (0 to
1609 * disable it)
1610 * scan - trigger a memory scan
1611 * clear - mark all current reported unreferenced kmemleak objects as
1612 * grey to ignore printing them, or free all kmemleak objects
1613 * if kmemleak has been disabled.
1614 * dump=... - dump information about the object found at the given address
1615 */
1616static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1617 size_t size, loff_t *ppos)
1618{
1619 char buf[64];
1620 int buf_size;
1621 int ret;
1622
1623 buf_size = min(size, (sizeof(buf) - 1));
1624 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1625 return -EFAULT;
1626 buf[buf_size] = 0;
1627
1628 ret = mutex_lock_interruptible(&scan_mutex);
1629 if (ret < 0)
1630 return ret;
1631
1632 if (strncmp(buf, "clear", 5) == 0) {
1633 if (kmemleak_enabled)
1634 kmemleak_clear();
1635 else
1636 __kmemleak_do_cleanup();
1637 goto out;
1638 }
1639
1640 if (!kmemleak_enabled) {
1641 ret = -EBUSY;
1642 goto out;
1643 }
1644
1645 if (strncmp(buf, "off", 3) == 0)
1646 kmemleak_disable();
1647 else if (strncmp(buf, "stack=on", 8) == 0)
1648 kmemleak_stack_scan = 1;
1649 else if (strncmp(buf, "stack=off", 9) == 0)
1650 kmemleak_stack_scan = 0;
1651 else if (strncmp(buf, "scan=on", 7) == 0)
1652 start_scan_thread();
1653 else if (strncmp(buf, "scan=off", 8) == 0)
1654 stop_scan_thread();
1655 else if (strncmp(buf, "scan=", 5) == 0) {
1656 unsigned long secs;
1657
1658 ret = kstrtoul(buf + 5, 0, &secs);
1659 if (ret < 0)
1660 goto out;
1661 stop_scan_thread();
1662 if (secs) {
1663 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1664 start_scan_thread();
1665 }
1666 } else if (strncmp(buf, "scan", 4) == 0)
1667 kmemleak_scan();
1668 else if (strncmp(buf, "dump=", 5) == 0)
1669 ret = dump_str_object_info(buf + 5);
1670 else
1671 ret = -EINVAL;
1672
1673out:
1674 mutex_unlock(&scan_mutex);
1675 if (ret < 0)
1676 return ret;
1677
1678 /* ignore the rest of the buffer, only one command at a time */
1679 *ppos += size;
1680 return size;
1681}
1682
1683static const struct file_operations kmemleak_fops = {
1684 .owner = THIS_MODULE,
1685 .open = kmemleak_open,
1686 .read = seq_read,
1687 .write = kmemleak_write,
1688 .llseek = seq_lseek,
1689 .release = seq_release,
1690};
1691
1692static void __kmemleak_do_cleanup(void)
1693{
1694 struct kmemleak_object *object;
1695
1696 rcu_read_lock();
1697 list_for_each_entry_rcu(object, &object_list, object_list)
1698 delete_object_full(object->pointer);
1699 rcu_read_unlock();
1700}
1701
1702/*
1703 * Stop the memory scanning thread and free the kmemleak internal objects if
1704 * no previous scan thread (otherwise, kmemleak may still have some useful
1705 * information on memory leaks).
1706 */
1707static void kmemleak_do_cleanup(struct work_struct *work)
1708{
1709 mutex_lock(&scan_mutex);
1710 stop_scan_thread();
1711
1712 if (!kmemleak_found_leaks)
1713 __kmemleak_do_cleanup();
1714 else
1715 pr_info("Kmemleak disabled without freeing internal data. "
1716 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1717 mutex_unlock(&scan_mutex);
1718}
1719
1720static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1721
1722/*
1723 * Disable kmemleak. No memory allocation/freeing will be traced once this
1724 * function is called. Disabling kmemleak is an irreversible operation.
1725 */
1726static void kmemleak_disable(void)
1727{
1728 /* atomically check whether it was already invoked */
1729 if (cmpxchg(&kmemleak_error, 0, 1))
1730 return;
1731
1732 /* stop any memory operation tracing */
1733 kmemleak_enabled = 0;
1734
1735 /* check whether it is too early for a kernel thread */
1736 if (kmemleak_initialized)
1737 schedule_work(&cleanup_work);
1738
1739 pr_info("Kernel memory leak detector disabled\n");
1740}
1741
1742/*
1743 * Allow boot-time kmemleak disabling (enabled by default).
1744 */
1745static int kmemleak_boot_config(char *str)
1746{
1747 if (!str)
1748 return -EINVAL;
1749 if (strcmp(str, "off") == 0)
1750 kmemleak_disable();
1751 else if (strcmp(str, "on") == 0)
1752 kmemleak_skip_disable = 1;
1753 else
1754 return -EINVAL;
1755 return 0;
1756}
1757early_param("kmemleak", kmemleak_boot_config);
1758
1759static void __init print_log_trace(struct early_log *log)
1760{
1761 struct stack_trace trace;
1762
1763 trace.nr_entries = log->trace_len;
1764 trace.entries = log->trace;
1765
1766 pr_notice("Early log backtrace:\n");
1767 print_stack_trace(&trace, 2);
1768}
1769
1770/*
1771 * Kmemleak initialization.
1772 */
1773void __init kmemleak_init(void)
1774{
1775 int i;
1776 unsigned long flags;
1777
1778#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1779 if (!kmemleak_skip_disable) {
1780 kmemleak_early_log = 0;
1781 kmemleak_disable();
1782 return;
1783 }
1784#endif
1785
1786 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1787 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1788
1789 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1790 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1791
1792 if (crt_early_log >= ARRAY_SIZE(early_log))
1793 pr_warning("Early log buffer exceeded (%d), please increase "
1794 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1795
1796 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1797 local_irq_save(flags);
1798 kmemleak_early_log = 0;
1799 if (kmemleak_error) {
1800 local_irq_restore(flags);
1801 return;
1802 } else
1803 kmemleak_enabled = 1;
1804 local_irq_restore(flags);
1805
1806 /*
1807 * This is the point where tracking allocations is safe. Automatic
1808 * scanning is started during the late initcall. Add the early logged
1809 * callbacks to the kmemleak infrastructure.
1810 */
1811 for (i = 0; i < crt_early_log; i++) {
1812 struct early_log *log = &early_log[i];
1813
1814 switch (log->op_type) {
1815 case KMEMLEAK_ALLOC:
1816 early_alloc(log);
1817 break;
1818 case KMEMLEAK_ALLOC_PERCPU:
1819 early_alloc_percpu(log);
1820 break;
1821 case KMEMLEAK_FREE:
1822 kmemleak_free(log->ptr);
1823 break;
1824 case KMEMLEAK_FREE_PART:
1825 kmemleak_free_part(log->ptr, log->size);
1826 break;
1827 case KMEMLEAK_FREE_PERCPU:
1828 kmemleak_free_percpu(log->ptr);
1829 break;
1830 case KMEMLEAK_NOT_LEAK:
1831 kmemleak_not_leak(log->ptr);
1832 break;
1833 case KMEMLEAK_IGNORE:
1834 kmemleak_ignore(log->ptr);
1835 break;
1836 case KMEMLEAK_SCAN_AREA:
1837 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1838 break;
1839 case KMEMLEAK_NO_SCAN:
1840 kmemleak_no_scan(log->ptr);
1841 break;
1842 default:
1843 kmemleak_warn("Unknown early log operation: %d\n",
1844 log->op_type);
1845 }
1846
1847 if (kmemleak_warning) {
1848 print_log_trace(log);
1849 kmemleak_warning = 0;
1850 }
1851 }
1852}
1853
1854/*
1855 * Late initialization function.
1856 */
1857static int __init kmemleak_late_init(void)
1858{
1859 struct dentry *dentry;
1860
1861 kmemleak_initialized = 1;
1862
1863 if (kmemleak_error) {
1864 /*
1865 * Some error occurred and kmemleak was disabled. There is a
1866 * small chance that kmemleak_disable() was called immediately
1867 * after setting kmemleak_initialized and we may end up with
1868 * two clean-up threads but serialized by scan_mutex.
1869 */
1870 schedule_work(&cleanup_work);
1871 return -ENOMEM;
1872 }
1873
1874 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1875 &kmemleak_fops);
1876 if (!dentry)
1877 pr_warning("Failed to create the debugfs kmemleak file\n");
1878 mutex_lock(&scan_mutex);
1879 start_scan_thread();
1880 mutex_unlock(&scan_mutex);
1881
1882 pr_info("Kernel memory leak detector initialized\n");
1883
1884 return 0;
1885}
1886late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched.h>
77#include <linux/jiffies.h>
78#include <linux/delay.h>
79#include <linux/export.h>
80#include <linux/kthread.h>
81#include <linux/rbtree.h>
82#include <linux/fs.h>
83#include <linux/debugfs.h>
84#include <linux/seq_file.h>
85#include <linux/cpumask.h>
86#include <linux/spinlock.h>
87#include <linux/mutex.h>
88#include <linux/rcupdate.h>
89#include <linux/stacktrace.h>
90#include <linux/cache.h>
91#include <linux/percpu.h>
92#include <linux/hardirq.h>
93#include <linux/mmzone.h>
94#include <linux/slab.h>
95#include <linux/thread_info.h>
96#include <linux/err.h>
97#include <linux/uaccess.h>
98#include <linux/string.h>
99#include <linux/nodemask.h>
100#include <linux/mm.h>
101#include <linux/workqueue.h>
102#include <linux/crc32.h>
103
104#include <asm/sections.h>
105#include <asm/processor.h>
106#include <linux/atomic.h>
107
108#include <linux/kasan.h>
109#include <linux/kmemcheck.h>
110#include <linux/kmemleak.h>
111#include <linux/memory_hotplug.h>
112
113/*
114 * Kmemleak configuration and common defines.
115 */
116#define MAX_TRACE 16 /* stack trace length */
117#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
118#define SECS_FIRST_SCAN 60 /* delay before the first scan */
119#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
120#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
121
122#define BYTES_PER_POINTER sizeof(void *)
123
124/* GFP bitmask for kmemleak internal allocations */
125#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
126 __GFP_NORETRY | __GFP_NOMEMALLOC | \
127 __GFP_NOWARN)
128
129/* scanning area inside a memory block */
130struct kmemleak_scan_area {
131 struct hlist_node node;
132 unsigned long start;
133 size_t size;
134};
135
136#define KMEMLEAK_GREY 0
137#define KMEMLEAK_BLACK -1
138
139/*
140 * Structure holding the metadata for each allocated memory block.
141 * Modifications to such objects should be made while holding the
142 * object->lock. Insertions or deletions from object_list, gray_list or
143 * rb_node are already protected by the corresponding locks or mutex (see
144 * the notes on locking above). These objects are reference-counted
145 * (use_count) and freed using the RCU mechanism.
146 */
147struct kmemleak_object {
148 spinlock_t lock;
149 unsigned long flags; /* object status flags */
150 struct list_head object_list;
151 struct list_head gray_list;
152 struct rb_node rb_node;
153 struct rcu_head rcu; /* object_list lockless traversal */
154 /* object usage count; object freed when use_count == 0 */
155 atomic_t use_count;
156 unsigned long pointer;
157 size_t size;
158 /* minimum number of a pointers found before it is considered leak */
159 int min_count;
160 /* the total number of pointers found pointing to this object */
161 int count;
162 /* checksum for detecting modified objects */
163 u32 checksum;
164 /* memory ranges to be scanned inside an object (empty for all) */
165 struct hlist_head area_list;
166 unsigned long trace[MAX_TRACE];
167 unsigned int trace_len;
168 unsigned long jiffies; /* creation timestamp */
169 pid_t pid; /* pid of the current task */
170 char comm[TASK_COMM_LEN]; /* executable name */
171};
172
173/* flag representing the memory block allocation status */
174#define OBJECT_ALLOCATED (1 << 0)
175/* flag set after the first reporting of an unreference object */
176#define OBJECT_REPORTED (1 << 1)
177/* flag set to not scan the object */
178#define OBJECT_NO_SCAN (1 << 2)
179
180/* number of bytes to print per line; must be 16 or 32 */
181#define HEX_ROW_SIZE 16
182/* number of bytes to print at a time (1, 2, 4, 8) */
183#define HEX_GROUP_SIZE 1
184/* include ASCII after the hex output */
185#define HEX_ASCII 1
186/* max number of lines to be printed */
187#define HEX_MAX_LINES 2
188
189/* the list of all allocated objects */
190static LIST_HEAD(object_list);
191/* the list of gray-colored objects (see color_gray comment below) */
192static LIST_HEAD(gray_list);
193/* search tree for object boundaries */
194static struct rb_root object_tree_root = RB_ROOT;
195/* rw_lock protecting the access to object_list and object_tree_root */
196static DEFINE_RWLOCK(kmemleak_lock);
197
198/* allocation caches for kmemleak internal data */
199static struct kmem_cache *object_cache;
200static struct kmem_cache *scan_area_cache;
201
202/* set if tracing memory operations is enabled */
203static int kmemleak_enabled;
204/* same as above but only for the kmemleak_free() callback */
205static int kmemleak_free_enabled;
206/* set in the late_initcall if there were no errors */
207static int kmemleak_initialized;
208/* enables or disables early logging of the memory operations */
209static int kmemleak_early_log = 1;
210/* set if a kmemleak warning was issued */
211static int kmemleak_warning;
212/* set if a fatal kmemleak error has occurred */
213static int kmemleak_error;
214
215/* minimum and maximum address that may be valid pointers */
216static unsigned long min_addr = ULONG_MAX;
217static unsigned long max_addr;
218
219static struct task_struct *scan_thread;
220/* used to avoid reporting of recently allocated objects */
221static unsigned long jiffies_min_age;
222static unsigned long jiffies_last_scan;
223/* delay between automatic memory scannings */
224static signed long jiffies_scan_wait;
225/* enables or disables the task stacks scanning */
226static int kmemleak_stack_scan = 1;
227/* protects the memory scanning, parameters and debug/kmemleak file access */
228static DEFINE_MUTEX(scan_mutex);
229/* setting kmemleak=on, will set this var, skipping the disable */
230static int kmemleak_skip_disable;
231/* If there are leaks that can be reported */
232static bool kmemleak_found_leaks;
233
234/*
235 * Early object allocation/freeing logging. Kmemleak is initialized after the
236 * kernel allocator. However, both the kernel allocator and kmemleak may
237 * allocate memory blocks which need to be tracked. Kmemleak defines an
238 * arbitrary buffer to hold the allocation/freeing information before it is
239 * fully initialized.
240 */
241
242/* kmemleak operation type for early logging */
243enum {
244 KMEMLEAK_ALLOC,
245 KMEMLEAK_ALLOC_PERCPU,
246 KMEMLEAK_FREE,
247 KMEMLEAK_FREE_PART,
248 KMEMLEAK_FREE_PERCPU,
249 KMEMLEAK_NOT_LEAK,
250 KMEMLEAK_IGNORE,
251 KMEMLEAK_SCAN_AREA,
252 KMEMLEAK_NO_SCAN
253};
254
255/*
256 * Structure holding the information passed to kmemleak callbacks during the
257 * early logging.
258 */
259struct early_log {
260 int op_type; /* kmemleak operation type */
261 const void *ptr; /* allocated/freed memory block */
262 size_t size; /* memory block size */
263 int min_count; /* minimum reference count */
264 unsigned long trace[MAX_TRACE]; /* stack trace */
265 unsigned int trace_len; /* stack trace length */
266};
267
268/* early logging buffer and current position */
269static struct early_log
270 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271static int crt_early_log __initdata;
272
273static void kmemleak_disable(void);
274
275/*
276 * Print a warning and dump the stack trace.
277 */
278#define kmemleak_warn(x...) do { \
279 pr_warn(x); \
280 dump_stack(); \
281 kmemleak_warning = 1; \
282} while (0)
283
284/*
285 * Macro invoked when a serious kmemleak condition occurred and cannot be
286 * recovered from. Kmemleak will be disabled and further allocation/freeing
287 * tracing no longer available.
288 */
289#define kmemleak_stop(x...) do { \
290 kmemleak_warn(x); \
291 kmemleak_disable(); \
292} while (0)
293
294/*
295 * Printing of the objects hex dump to the seq file. The number of lines to be
296 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
297 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
298 * with the object->lock held.
299 */
300static void hex_dump_object(struct seq_file *seq,
301 struct kmemleak_object *object)
302{
303 const u8 *ptr = (const u8 *)object->pointer;
304 size_t len;
305
306 /* limit the number of lines to HEX_MAX_LINES */
307 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308
309 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
310 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
311 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
312}
313
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
324static bool color_white(const struct kmemleak_object *object)
325{
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
328}
329
330static bool color_gray(const struct kmemleak_object *object)
331{
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
334}
335
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
341static bool unreferenced_object(struct kmemleak_object *object)
342{
343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
346}
347
348/*
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
351 */
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
356 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
357
358 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
359 object->pointer, object->size);
360 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 object->comm, object->pid, object->jiffies,
362 msecs_age / 1000, msecs_age % 1000);
363 hex_dump_object(seq, object);
364 seq_printf(seq, " backtrace:\n");
365
366 for (i = 0; i < object->trace_len; i++) {
367 void *ptr = (void *)object->trace[i];
368 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
369 }
370}
371
372/*
373 * Print the kmemleak_object information. This function is used mainly for
374 * debugging special cases when kmemleak operations. It must be called with
375 * the object->lock held.
376 */
377static void dump_object_info(struct kmemleak_object *object)
378{
379 struct stack_trace trace;
380
381 trace.nr_entries = object->trace_len;
382 trace.entries = object->trace;
383
384 pr_notice("Object 0x%08lx (size %zu):\n",
385 object->pointer, object->size);
386 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
387 object->comm, object->pid, object->jiffies);
388 pr_notice(" min_count = %d\n", object->min_count);
389 pr_notice(" count = %d\n", object->count);
390 pr_notice(" flags = 0x%lx\n", object->flags);
391 pr_notice(" checksum = %u\n", object->checksum);
392 pr_notice(" backtrace:\n");
393 print_stack_trace(&trace, 4);
394}
395
396/*
397 * Look-up a memory block metadata (kmemleak_object) in the object search
398 * tree based on a pointer value. If alias is 0, only values pointing to the
399 * beginning of the memory block are allowed. The kmemleak_lock must be held
400 * when calling this function.
401 */
402static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
403{
404 struct rb_node *rb = object_tree_root.rb_node;
405
406 while (rb) {
407 struct kmemleak_object *object =
408 rb_entry(rb, struct kmemleak_object, rb_node);
409 if (ptr < object->pointer)
410 rb = object->rb_node.rb_left;
411 else if (object->pointer + object->size <= ptr)
412 rb = object->rb_node.rb_right;
413 else if (object->pointer == ptr || alias)
414 return object;
415 else {
416 kmemleak_warn("Found object by alias at 0x%08lx\n",
417 ptr);
418 dump_object_info(object);
419 break;
420 }
421 }
422 return NULL;
423}
424
425/*
426 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427 * that once an object's use_count reached 0, the RCU freeing was already
428 * registered and the object should no longer be used. This function must be
429 * called under the protection of rcu_read_lock().
430 */
431static int get_object(struct kmemleak_object *object)
432{
433 return atomic_inc_not_zero(&object->use_count);
434}
435
436/*
437 * RCU callback to free a kmemleak_object.
438 */
439static void free_object_rcu(struct rcu_head *rcu)
440{
441 struct hlist_node *tmp;
442 struct kmemleak_scan_area *area;
443 struct kmemleak_object *object =
444 container_of(rcu, struct kmemleak_object, rcu);
445
446 /*
447 * Once use_count is 0 (guaranteed by put_object), there is no other
448 * code accessing this object, hence no need for locking.
449 */
450 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
451 hlist_del(&area->node);
452 kmem_cache_free(scan_area_cache, area);
453 }
454 kmem_cache_free(object_cache, object);
455}
456
457/*
458 * Decrement the object use_count. Once the count is 0, free the object using
459 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460 * delete_object() path, the delayed RCU freeing ensures that there is no
461 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
462 * is also possible.
463 */
464static void put_object(struct kmemleak_object *object)
465{
466 if (!atomic_dec_and_test(&object->use_count))
467 return;
468
469 /* should only get here after delete_object was called */
470 WARN_ON(object->flags & OBJECT_ALLOCATED);
471
472 call_rcu(&object->rcu, free_object_rcu);
473}
474
475/*
476 * Look up an object in the object search tree and increase its use_count.
477 */
478static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
479{
480 unsigned long flags;
481 struct kmemleak_object *object;
482
483 rcu_read_lock();
484 read_lock_irqsave(&kmemleak_lock, flags);
485 object = lookup_object(ptr, alias);
486 read_unlock_irqrestore(&kmemleak_lock, flags);
487
488 /* check whether the object is still available */
489 if (object && !get_object(object))
490 object = NULL;
491 rcu_read_unlock();
492
493 return object;
494}
495
496/*
497 * Look up an object in the object search tree and remove it from both
498 * object_tree_root and object_list. The returned object's use_count should be
499 * at least 1, as initially set by create_object().
500 */
501static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
502{
503 unsigned long flags;
504 struct kmemleak_object *object;
505
506 write_lock_irqsave(&kmemleak_lock, flags);
507 object = lookup_object(ptr, alias);
508 if (object) {
509 rb_erase(&object->rb_node, &object_tree_root);
510 list_del_rcu(&object->object_list);
511 }
512 write_unlock_irqrestore(&kmemleak_lock, flags);
513
514 return object;
515}
516
517/*
518 * Save stack trace to the given array of MAX_TRACE size.
519 */
520static int __save_stack_trace(unsigned long *trace)
521{
522 struct stack_trace stack_trace;
523
524 stack_trace.max_entries = MAX_TRACE;
525 stack_trace.nr_entries = 0;
526 stack_trace.entries = trace;
527 stack_trace.skip = 2;
528 save_stack_trace(&stack_trace);
529
530 return stack_trace.nr_entries;
531}
532
533/*
534 * Create the metadata (struct kmemleak_object) corresponding to an allocated
535 * memory block and add it to the object_list and object_tree_root.
536 */
537static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
538 int min_count, gfp_t gfp)
539{
540 unsigned long flags;
541 struct kmemleak_object *object, *parent;
542 struct rb_node **link, *rb_parent;
543
544 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
545 if (!object) {
546 pr_warn("Cannot allocate a kmemleak_object structure\n");
547 kmemleak_disable();
548 return NULL;
549 }
550
551 INIT_LIST_HEAD(&object->object_list);
552 INIT_LIST_HEAD(&object->gray_list);
553 INIT_HLIST_HEAD(&object->area_list);
554 spin_lock_init(&object->lock);
555 atomic_set(&object->use_count, 1);
556 object->flags = OBJECT_ALLOCATED;
557 object->pointer = ptr;
558 object->size = size;
559 object->min_count = min_count;
560 object->count = 0; /* white color initially */
561 object->jiffies = jiffies;
562 object->checksum = 0;
563
564 /* task information */
565 if (in_irq()) {
566 object->pid = 0;
567 strncpy(object->comm, "hardirq", sizeof(object->comm));
568 } else if (in_softirq()) {
569 object->pid = 0;
570 strncpy(object->comm, "softirq", sizeof(object->comm));
571 } else {
572 object->pid = current->pid;
573 /*
574 * There is a small chance of a race with set_task_comm(),
575 * however using get_task_comm() here may cause locking
576 * dependency issues with current->alloc_lock. In the worst
577 * case, the command line is not correct.
578 */
579 strncpy(object->comm, current->comm, sizeof(object->comm));
580 }
581
582 /* kernel backtrace */
583 object->trace_len = __save_stack_trace(object->trace);
584
585 write_lock_irqsave(&kmemleak_lock, flags);
586
587 min_addr = min(min_addr, ptr);
588 max_addr = max(max_addr, ptr + size);
589 link = &object_tree_root.rb_node;
590 rb_parent = NULL;
591 while (*link) {
592 rb_parent = *link;
593 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
594 if (ptr + size <= parent->pointer)
595 link = &parent->rb_node.rb_left;
596 else if (parent->pointer + parent->size <= ptr)
597 link = &parent->rb_node.rb_right;
598 else {
599 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
600 ptr);
601 /*
602 * No need for parent->lock here since "parent" cannot
603 * be freed while the kmemleak_lock is held.
604 */
605 dump_object_info(parent);
606 kmem_cache_free(object_cache, object);
607 object = NULL;
608 goto out;
609 }
610 }
611 rb_link_node(&object->rb_node, rb_parent, link);
612 rb_insert_color(&object->rb_node, &object_tree_root);
613
614 list_add_tail_rcu(&object->object_list, &object_list);
615out:
616 write_unlock_irqrestore(&kmemleak_lock, flags);
617 return object;
618}
619
620/*
621 * Mark the object as not allocated and schedule RCU freeing via put_object().
622 */
623static void __delete_object(struct kmemleak_object *object)
624{
625 unsigned long flags;
626
627 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
628 WARN_ON(atomic_read(&object->use_count) < 1);
629
630 /*
631 * Locking here also ensures that the corresponding memory block
632 * cannot be freed when it is being scanned.
633 */
634 spin_lock_irqsave(&object->lock, flags);
635 object->flags &= ~OBJECT_ALLOCATED;
636 spin_unlock_irqrestore(&object->lock, flags);
637 put_object(object);
638}
639
640/*
641 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
642 * delete it.
643 */
644static void delete_object_full(unsigned long ptr)
645{
646 struct kmemleak_object *object;
647
648 object = find_and_remove_object(ptr, 0);
649 if (!object) {
650#ifdef DEBUG
651 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
652 ptr);
653#endif
654 return;
655 }
656 __delete_object(object);
657}
658
659/*
660 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
661 * delete it. If the memory block is partially freed, the function may create
662 * additional metadata for the remaining parts of the block.
663 */
664static void delete_object_part(unsigned long ptr, size_t size)
665{
666 struct kmemleak_object *object;
667 unsigned long start, end;
668
669 object = find_and_remove_object(ptr, 1);
670 if (!object) {
671#ifdef DEBUG
672 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
673 ptr, size);
674#endif
675 return;
676 }
677
678 /*
679 * Create one or two objects that may result from the memory block
680 * split. Note that partial freeing is only done by free_bootmem() and
681 * this happens before kmemleak_init() is called. The path below is
682 * only executed during early log recording in kmemleak_init(), so
683 * GFP_KERNEL is enough.
684 */
685 start = object->pointer;
686 end = object->pointer + object->size;
687 if (ptr > start)
688 create_object(start, ptr - start, object->min_count,
689 GFP_KERNEL);
690 if (ptr + size < end)
691 create_object(ptr + size, end - ptr - size, object->min_count,
692 GFP_KERNEL);
693
694 __delete_object(object);
695}
696
697static void __paint_it(struct kmemleak_object *object, int color)
698{
699 object->min_count = color;
700 if (color == KMEMLEAK_BLACK)
701 object->flags |= OBJECT_NO_SCAN;
702}
703
704static void paint_it(struct kmemleak_object *object, int color)
705{
706 unsigned long flags;
707
708 spin_lock_irqsave(&object->lock, flags);
709 __paint_it(object, color);
710 spin_unlock_irqrestore(&object->lock, flags);
711}
712
713static void paint_ptr(unsigned long ptr, int color)
714{
715 struct kmemleak_object *object;
716
717 object = find_and_get_object(ptr, 0);
718 if (!object) {
719 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
720 ptr,
721 (color == KMEMLEAK_GREY) ? "Grey" :
722 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
723 return;
724 }
725 paint_it(object, color);
726 put_object(object);
727}
728
729/*
730 * Mark an object permanently as gray-colored so that it can no longer be
731 * reported as a leak. This is used in general to mark a false positive.
732 */
733static void make_gray_object(unsigned long ptr)
734{
735 paint_ptr(ptr, KMEMLEAK_GREY);
736}
737
738/*
739 * Mark the object as black-colored so that it is ignored from scans and
740 * reporting.
741 */
742static void make_black_object(unsigned long ptr)
743{
744 paint_ptr(ptr, KMEMLEAK_BLACK);
745}
746
747/*
748 * Add a scanning area to the object. If at least one such area is added,
749 * kmemleak will only scan these ranges rather than the whole memory block.
750 */
751static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
752{
753 unsigned long flags;
754 struct kmemleak_object *object;
755 struct kmemleak_scan_area *area;
756
757 object = find_and_get_object(ptr, 1);
758 if (!object) {
759 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
760 ptr);
761 return;
762 }
763
764 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
765 if (!area) {
766 pr_warn("Cannot allocate a scan area\n");
767 goto out;
768 }
769
770 spin_lock_irqsave(&object->lock, flags);
771 if (size == SIZE_MAX) {
772 size = object->pointer + object->size - ptr;
773 } else if (ptr + size > object->pointer + object->size) {
774 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
775 dump_object_info(object);
776 kmem_cache_free(scan_area_cache, area);
777 goto out_unlock;
778 }
779
780 INIT_HLIST_NODE(&area->node);
781 area->start = ptr;
782 area->size = size;
783
784 hlist_add_head(&area->node, &object->area_list);
785out_unlock:
786 spin_unlock_irqrestore(&object->lock, flags);
787out:
788 put_object(object);
789}
790
791/*
792 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
793 * pointer. Such object will not be scanned by kmemleak but references to it
794 * are searched.
795 */
796static void object_no_scan(unsigned long ptr)
797{
798 unsigned long flags;
799 struct kmemleak_object *object;
800
801 object = find_and_get_object(ptr, 0);
802 if (!object) {
803 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
804 return;
805 }
806
807 spin_lock_irqsave(&object->lock, flags);
808 object->flags |= OBJECT_NO_SCAN;
809 spin_unlock_irqrestore(&object->lock, flags);
810 put_object(object);
811}
812
813/*
814 * Log an early kmemleak_* call to the early_log buffer. These calls will be
815 * processed later once kmemleak is fully initialized.
816 */
817static void __init log_early(int op_type, const void *ptr, size_t size,
818 int min_count)
819{
820 unsigned long flags;
821 struct early_log *log;
822
823 if (kmemleak_error) {
824 /* kmemleak stopped recording, just count the requests */
825 crt_early_log++;
826 return;
827 }
828
829 if (crt_early_log >= ARRAY_SIZE(early_log)) {
830 crt_early_log++;
831 kmemleak_disable();
832 return;
833 }
834
835 /*
836 * There is no need for locking since the kernel is still in UP mode
837 * at this stage. Disabling the IRQs is enough.
838 */
839 local_irq_save(flags);
840 log = &early_log[crt_early_log];
841 log->op_type = op_type;
842 log->ptr = ptr;
843 log->size = size;
844 log->min_count = min_count;
845 log->trace_len = __save_stack_trace(log->trace);
846 crt_early_log++;
847 local_irq_restore(flags);
848}
849
850/*
851 * Log an early allocated block and populate the stack trace.
852 */
853static void early_alloc(struct early_log *log)
854{
855 struct kmemleak_object *object;
856 unsigned long flags;
857 int i;
858
859 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
860 return;
861
862 /*
863 * RCU locking needed to ensure object is not freed via put_object().
864 */
865 rcu_read_lock();
866 object = create_object((unsigned long)log->ptr, log->size,
867 log->min_count, GFP_ATOMIC);
868 if (!object)
869 goto out;
870 spin_lock_irqsave(&object->lock, flags);
871 for (i = 0; i < log->trace_len; i++)
872 object->trace[i] = log->trace[i];
873 object->trace_len = log->trace_len;
874 spin_unlock_irqrestore(&object->lock, flags);
875out:
876 rcu_read_unlock();
877}
878
879/*
880 * Log an early allocated block and populate the stack trace.
881 */
882static void early_alloc_percpu(struct early_log *log)
883{
884 unsigned int cpu;
885 const void __percpu *ptr = log->ptr;
886
887 for_each_possible_cpu(cpu) {
888 log->ptr = per_cpu_ptr(ptr, cpu);
889 early_alloc(log);
890 }
891}
892
893/**
894 * kmemleak_alloc - register a newly allocated object
895 * @ptr: pointer to beginning of the object
896 * @size: size of the object
897 * @min_count: minimum number of references to this object. If during memory
898 * scanning a number of references less than @min_count is found,
899 * the object is reported as a memory leak. If @min_count is 0,
900 * the object is never reported as a leak. If @min_count is -1,
901 * the object is ignored (not scanned and not reported as a leak)
902 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
903 *
904 * This function is called from the kernel allocators when a new object
905 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
906 */
907void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
908 gfp_t gfp)
909{
910 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
911
912 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
913 create_object((unsigned long)ptr, size, min_count, gfp);
914 else if (kmemleak_early_log)
915 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
916}
917EXPORT_SYMBOL_GPL(kmemleak_alloc);
918
919/**
920 * kmemleak_alloc_percpu - register a newly allocated __percpu object
921 * @ptr: __percpu pointer to beginning of the object
922 * @size: size of the object
923 * @gfp: flags used for kmemleak internal memory allocations
924 *
925 * This function is called from the kernel percpu allocator when a new object
926 * (memory block) is allocated (alloc_percpu).
927 */
928void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
929 gfp_t gfp)
930{
931 unsigned int cpu;
932
933 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
934
935 /*
936 * Percpu allocations are only scanned and not reported as leaks
937 * (min_count is set to 0).
938 */
939 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
940 for_each_possible_cpu(cpu)
941 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
942 size, 0, gfp);
943 else if (kmemleak_early_log)
944 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
945}
946EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
947
948/**
949 * kmemleak_free - unregister a previously registered object
950 * @ptr: pointer to beginning of the object
951 *
952 * This function is called from the kernel allocators when an object (memory
953 * block) is freed (kmem_cache_free, kfree, vfree etc.).
954 */
955void __ref kmemleak_free(const void *ptr)
956{
957 pr_debug("%s(0x%p)\n", __func__, ptr);
958
959 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
960 delete_object_full((unsigned long)ptr);
961 else if (kmemleak_early_log)
962 log_early(KMEMLEAK_FREE, ptr, 0, 0);
963}
964EXPORT_SYMBOL_GPL(kmemleak_free);
965
966/**
967 * kmemleak_free_part - partially unregister a previously registered object
968 * @ptr: pointer to the beginning or inside the object. This also
969 * represents the start of the range to be freed
970 * @size: size to be unregistered
971 *
972 * This function is called when only a part of a memory block is freed
973 * (usually from the bootmem allocator).
974 */
975void __ref kmemleak_free_part(const void *ptr, size_t size)
976{
977 pr_debug("%s(0x%p)\n", __func__, ptr);
978
979 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
980 delete_object_part((unsigned long)ptr, size);
981 else if (kmemleak_early_log)
982 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
983}
984EXPORT_SYMBOL_GPL(kmemleak_free_part);
985
986/**
987 * kmemleak_free_percpu - unregister a previously registered __percpu object
988 * @ptr: __percpu pointer to beginning of the object
989 *
990 * This function is called from the kernel percpu allocator when an object
991 * (memory block) is freed (free_percpu).
992 */
993void __ref kmemleak_free_percpu(const void __percpu *ptr)
994{
995 unsigned int cpu;
996
997 pr_debug("%s(0x%p)\n", __func__, ptr);
998
999 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1000 for_each_possible_cpu(cpu)
1001 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1002 cpu));
1003 else if (kmemleak_early_log)
1004 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1005}
1006EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007
1008/**
1009 * kmemleak_update_trace - update object allocation stack trace
1010 * @ptr: pointer to beginning of the object
1011 *
1012 * Override the object allocation stack trace for cases where the actual
1013 * allocation place is not always useful.
1014 */
1015void __ref kmemleak_update_trace(const void *ptr)
1016{
1017 struct kmemleak_object *object;
1018 unsigned long flags;
1019
1020 pr_debug("%s(0x%p)\n", __func__, ptr);
1021
1022 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023 return;
1024
1025 object = find_and_get_object((unsigned long)ptr, 1);
1026 if (!object) {
1027#ifdef DEBUG
1028 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 ptr);
1030#endif
1031 return;
1032 }
1033
1034 spin_lock_irqsave(&object->lock, flags);
1035 object->trace_len = __save_stack_trace(object->trace);
1036 spin_unlock_irqrestore(&object->lock, flags);
1037
1038 put_object(object);
1039}
1040EXPORT_SYMBOL(kmemleak_update_trace);
1041
1042/**
1043 * kmemleak_not_leak - mark an allocated object as false positive
1044 * @ptr: pointer to beginning of the object
1045 *
1046 * Calling this function on an object will cause the memory block to no longer
1047 * be reported as leak and always be scanned.
1048 */
1049void __ref kmemleak_not_leak(const void *ptr)
1050{
1051 pr_debug("%s(0x%p)\n", __func__, ptr);
1052
1053 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054 make_gray_object((unsigned long)ptr);
1055 else if (kmemleak_early_log)
1056 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1057}
1058EXPORT_SYMBOL(kmemleak_not_leak);
1059
1060/**
1061 * kmemleak_ignore - ignore an allocated object
1062 * @ptr: pointer to beginning of the object
1063 *
1064 * Calling this function on an object will cause the memory block to be
1065 * ignored (not scanned and not reported as a leak). This is usually done when
1066 * it is known that the corresponding block is not a leak and does not contain
1067 * any references to other allocated memory blocks.
1068 */
1069void __ref kmemleak_ignore(const void *ptr)
1070{
1071 pr_debug("%s(0x%p)\n", __func__, ptr);
1072
1073 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1074 make_black_object((unsigned long)ptr);
1075 else if (kmemleak_early_log)
1076 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1077}
1078EXPORT_SYMBOL(kmemleak_ignore);
1079
1080/**
1081 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1082 * @ptr: pointer to beginning or inside the object. This also
1083 * represents the start of the scan area
1084 * @size: size of the scan area
1085 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1086 *
1087 * This function is used when it is known that only certain parts of an object
1088 * contain references to other objects. Kmemleak will only scan these areas
1089 * reducing the number false negatives.
1090 */
1091void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1092{
1093 pr_debug("%s(0x%p)\n", __func__, ptr);
1094
1095 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1096 add_scan_area((unsigned long)ptr, size, gfp);
1097 else if (kmemleak_early_log)
1098 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1099}
1100EXPORT_SYMBOL(kmemleak_scan_area);
1101
1102/**
1103 * kmemleak_no_scan - do not scan an allocated object
1104 * @ptr: pointer to beginning of the object
1105 *
1106 * This function notifies kmemleak not to scan the given memory block. Useful
1107 * in situations where it is known that the given object does not contain any
1108 * references to other objects. Kmemleak will not scan such objects reducing
1109 * the number of false negatives.
1110 */
1111void __ref kmemleak_no_scan(const void *ptr)
1112{
1113 pr_debug("%s(0x%p)\n", __func__, ptr);
1114
1115 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1116 object_no_scan((unsigned long)ptr);
1117 else if (kmemleak_early_log)
1118 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1119}
1120EXPORT_SYMBOL(kmemleak_no_scan);
1121
1122/*
1123 * Update an object's checksum and return true if it was modified.
1124 */
1125static bool update_checksum(struct kmemleak_object *object)
1126{
1127 u32 old_csum = object->checksum;
1128
1129 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1130 return false;
1131
1132 kasan_disable_current();
1133 object->checksum = crc32(0, (void *)object->pointer, object->size);
1134 kasan_enable_current();
1135
1136 return object->checksum != old_csum;
1137}
1138
1139/*
1140 * Memory scanning is a long process and it needs to be interruptable. This
1141 * function checks whether such interrupt condition occurred.
1142 */
1143static int scan_should_stop(void)
1144{
1145 if (!kmemleak_enabled)
1146 return 1;
1147
1148 /*
1149 * This function may be called from either process or kthread context,
1150 * hence the need to check for both stop conditions.
1151 */
1152 if (current->mm)
1153 return signal_pending(current);
1154 else
1155 return kthread_should_stop();
1156
1157 return 0;
1158}
1159
1160/*
1161 * Scan a memory block (exclusive range) for valid pointers and add those
1162 * found to the gray list.
1163 */
1164static void scan_block(void *_start, void *_end,
1165 struct kmemleak_object *scanned)
1166{
1167 unsigned long *ptr;
1168 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1169 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1170 unsigned long flags;
1171
1172 read_lock_irqsave(&kmemleak_lock, flags);
1173 for (ptr = start; ptr < end; ptr++) {
1174 struct kmemleak_object *object;
1175 unsigned long pointer;
1176
1177 if (scan_should_stop())
1178 break;
1179
1180 /* don't scan uninitialized memory */
1181 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1182 BYTES_PER_POINTER))
1183 continue;
1184
1185 kasan_disable_current();
1186 pointer = *ptr;
1187 kasan_enable_current();
1188
1189 if (pointer < min_addr || pointer >= max_addr)
1190 continue;
1191
1192 /*
1193 * No need for get_object() here since we hold kmemleak_lock.
1194 * object->use_count cannot be dropped to 0 while the object
1195 * is still present in object_tree_root and object_list
1196 * (with updates protected by kmemleak_lock).
1197 */
1198 object = lookup_object(pointer, 1);
1199 if (!object)
1200 continue;
1201 if (object == scanned)
1202 /* self referenced, ignore */
1203 continue;
1204
1205 /*
1206 * Avoid the lockdep recursive warning on object->lock being
1207 * previously acquired in scan_object(). These locks are
1208 * enclosed by scan_mutex.
1209 */
1210 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1211 if (!color_white(object)) {
1212 /* non-orphan, ignored or new */
1213 spin_unlock(&object->lock);
1214 continue;
1215 }
1216
1217 /*
1218 * Increase the object's reference count (number of pointers
1219 * to the memory block). If this count reaches the required
1220 * minimum, the object's color will become gray and it will be
1221 * added to the gray_list.
1222 */
1223 object->count++;
1224 if (color_gray(object)) {
1225 /* put_object() called when removing from gray_list */
1226 WARN_ON(!get_object(object));
1227 list_add_tail(&object->gray_list, &gray_list);
1228 }
1229 spin_unlock(&object->lock);
1230 }
1231 read_unlock_irqrestore(&kmemleak_lock, flags);
1232}
1233
1234/*
1235 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1236 */
1237static void scan_large_block(void *start, void *end)
1238{
1239 void *next;
1240
1241 while (start < end) {
1242 next = min(start + MAX_SCAN_SIZE, end);
1243 scan_block(start, next, NULL);
1244 start = next;
1245 cond_resched();
1246 }
1247}
1248
1249/*
1250 * Scan a memory block corresponding to a kmemleak_object. A condition is
1251 * that object->use_count >= 1.
1252 */
1253static void scan_object(struct kmemleak_object *object)
1254{
1255 struct kmemleak_scan_area *area;
1256 unsigned long flags;
1257
1258 /*
1259 * Once the object->lock is acquired, the corresponding memory block
1260 * cannot be freed (the same lock is acquired in delete_object).
1261 */
1262 spin_lock_irqsave(&object->lock, flags);
1263 if (object->flags & OBJECT_NO_SCAN)
1264 goto out;
1265 if (!(object->flags & OBJECT_ALLOCATED))
1266 /* already freed object */
1267 goto out;
1268 if (hlist_empty(&object->area_list)) {
1269 void *start = (void *)object->pointer;
1270 void *end = (void *)(object->pointer + object->size);
1271 void *next;
1272
1273 do {
1274 next = min(start + MAX_SCAN_SIZE, end);
1275 scan_block(start, next, object);
1276
1277 start = next;
1278 if (start >= end)
1279 break;
1280
1281 spin_unlock_irqrestore(&object->lock, flags);
1282 cond_resched();
1283 spin_lock_irqsave(&object->lock, flags);
1284 } while (object->flags & OBJECT_ALLOCATED);
1285 } else
1286 hlist_for_each_entry(area, &object->area_list, node)
1287 scan_block((void *)area->start,
1288 (void *)(area->start + area->size),
1289 object);
1290out:
1291 spin_unlock_irqrestore(&object->lock, flags);
1292}
1293
1294/*
1295 * Scan the objects already referenced (gray objects). More objects will be
1296 * referenced and, if there are no memory leaks, all the objects are scanned.
1297 */
1298static void scan_gray_list(void)
1299{
1300 struct kmemleak_object *object, *tmp;
1301
1302 /*
1303 * The list traversal is safe for both tail additions and removals
1304 * from inside the loop. The kmemleak objects cannot be freed from
1305 * outside the loop because their use_count was incremented.
1306 */
1307 object = list_entry(gray_list.next, typeof(*object), gray_list);
1308 while (&object->gray_list != &gray_list) {
1309 cond_resched();
1310
1311 /* may add new objects to the list */
1312 if (!scan_should_stop())
1313 scan_object(object);
1314
1315 tmp = list_entry(object->gray_list.next, typeof(*object),
1316 gray_list);
1317
1318 /* remove the object from the list and release it */
1319 list_del(&object->gray_list);
1320 put_object(object);
1321
1322 object = tmp;
1323 }
1324 WARN_ON(!list_empty(&gray_list));
1325}
1326
1327/*
1328 * Scan data sections and all the referenced memory blocks allocated via the
1329 * kernel's standard allocators. This function must be called with the
1330 * scan_mutex held.
1331 */
1332static void kmemleak_scan(void)
1333{
1334 unsigned long flags;
1335 struct kmemleak_object *object;
1336 int i;
1337 int new_leaks = 0;
1338
1339 jiffies_last_scan = jiffies;
1340
1341 /* prepare the kmemleak_object's */
1342 rcu_read_lock();
1343 list_for_each_entry_rcu(object, &object_list, object_list) {
1344 spin_lock_irqsave(&object->lock, flags);
1345#ifdef DEBUG
1346 /*
1347 * With a few exceptions there should be a maximum of
1348 * 1 reference to any object at this point.
1349 */
1350 if (atomic_read(&object->use_count) > 1) {
1351 pr_debug("object->use_count = %d\n",
1352 atomic_read(&object->use_count));
1353 dump_object_info(object);
1354 }
1355#endif
1356 /* reset the reference count (whiten the object) */
1357 object->count = 0;
1358 if (color_gray(object) && get_object(object))
1359 list_add_tail(&object->gray_list, &gray_list);
1360
1361 spin_unlock_irqrestore(&object->lock, flags);
1362 }
1363 rcu_read_unlock();
1364
1365 /* data/bss scanning */
1366 scan_large_block(_sdata, _edata);
1367 scan_large_block(__bss_start, __bss_stop);
1368
1369#ifdef CONFIG_SMP
1370 /* per-cpu sections scanning */
1371 for_each_possible_cpu(i)
1372 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1373 __per_cpu_end + per_cpu_offset(i));
1374#endif
1375
1376 /*
1377 * Struct page scanning for each node.
1378 */
1379 get_online_mems();
1380 for_each_online_node(i) {
1381 unsigned long start_pfn = node_start_pfn(i);
1382 unsigned long end_pfn = node_end_pfn(i);
1383 unsigned long pfn;
1384
1385 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1386 struct page *page;
1387
1388 if (!pfn_valid(pfn))
1389 continue;
1390 page = pfn_to_page(pfn);
1391 /* only scan if page is in use */
1392 if (page_count(page) == 0)
1393 continue;
1394 scan_block(page, page + 1, NULL);
1395 }
1396 }
1397 put_online_mems();
1398
1399 /*
1400 * Scanning the task stacks (may introduce false negatives).
1401 */
1402 if (kmemleak_stack_scan) {
1403 struct task_struct *p, *g;
1404
1405 read_lock(&tasklist_lock);
1406 do_each_thread(g, p) {
1407 scan_block(task_stack_page(p), task_stack_page(p) +
1408 THREAD_SIZE, NULL);
1409 } while_each_thread(g, p);
1410 read_unlock(&tasklist_lock);
1411 }
1412
1413 /*
1414 * Scan the objects already referenced from the sections scanned
1415 * above.
1416 */
1417 scan_gray_list();
1418
1419 /*
1420 * Check for new or unreferenced objects modified since the previous
1421 * scan and color them gray until the next scan.
1422 */
1423 rcu_read_lock();
1424 list_for_each_entry_rcu(object, &object_list, object_list) {
1425 spin_lock_irqsave(&object->lock, flags);
1426 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1427 && update_checksum(object) && get_object(object)) {
1428 /* color it gray temporarily */
1429 object->count = object->min_count;
1430 list_add_tail(&object->gray_list, &gray_list);
1431 }
1432 spin_unlock_irqrestore(&object->lock, flags);
1433 }
1434 rcu_read_unlock();
1435
1436 /*
1437 * Re-scan the gray list for modified unreferenced objects.
1438 */
1439 scan_gray_list();
1440
1441 /*
1442 * If scanning was stopped do not report any new unreferenced objects.
1443 */
1444 if (scan_should_stop())
1445 return;
1446
1447 /*
1448 * Scanning result reporting.
1449 */
1450 rcu_read_lock();
1451 list_for_each_entry_rcu(object, &object_list, object_list) {
1452 spin_lock_irqsave(&object->lock, flags);
1453 if (unreferenced_object(object) &&
1454 !(object->flags & OBJECT_REPORTED)) {
1455 object->flags |= OBJECT_REPORTED;
1456 new_leaks++;
1457 }
1458 spin_unlock_irqrestore(&object->lock, flags);
1459 }
1460 rcu_read_unlock();
1461
1462 if (new_leaks) {
1463 kmemleak_found_leaks = true;
1464
1465 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1466 new_leaks);
1467 }
1468
1469}
1470
1471/*
1472 * Thread function performing automatic memory scanning. Unreferenced objects
1473 * at the end of a memory scan are reported but only the first time.
1474 */
1475static int kmemleak_scan_thread(void *arg)
1476{
1477 static int first_run = 1;
1478
1479 pr_info("Automatic memory scanning thread started\n");
1480 set_user_nice(current, 10);
1481
1482 /*
1483 * Wait before the first scan to allow the system to fully initialize.
1484 */
1485 if (first_run) {
1486 first_run = 0;
1487 ssleep(SECS_FIRST_SCAN);
1488 }
1489
1490 while (!kthread_should_stop()) {
1491 signed long timeout = jiffies_scan_wait;
1492
1493 mutex_lock(&scan_mutex);
1494 kmemleak_scan();
1495 mutex_unlock(&scan_mutex);
1496
1497 /* wait before the next scan */
1498 while (timeout && !kthread_should_stop())
1499 timeout = schedule_timeout_interruptible(timeout);
1500 }
1501
1502 pr_info("Automatic memory scanning thread ended\n");
1503
1504 return 0;
1505}
1506
1507/*
1508 * Start the automatic memory scanning thread. This function must be called
1509 * with the scan_mutex held.
1510 */
1511static void start_scan_thread(void)
1512{
1513 if (scan_thread)
1514 return;
1515 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1516 if (IS_ERR(scan_thread)) {
1517 pr_warn("Failed to create the scan thread\n");
1518 scan_thread = NULL;
1519 }
1520}
1521
1522/*
1523 * Stop the automatic memory scanning thread. This function must be called
1524 * with the scan_mutex held.
1525 */
1526static void stop_scan_thread(void)
1527{
1528 if (scan_thread) {
1529 kthread_stop(scan_thread);
1530 scan_thread = NULL;
1531 }
1532}
1533
1534/*
1535 * Iterate over the object_list and return the first valid object at or after
1536 * the required position with its use_count incremented. The function triggers
1537 * a memory scanning when the pos argument points to the first position.
1538 */
1539static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1540{
1541 struct kmemleak_object *object;
1542 loff_t n = *pos;
1543 int err;
1544
1545 err = mutex_lock_interruptible(&scan_mutex);
1546 if (err < 0)
1547 return ERR_PTR(err);
1548
1549 rcu_read_lock();
1550 list_for_each_entry_rcu(object, &object_list, object_list) {
1551 if (n-- > 0)
1552 continue;
1553 if (get_object(object))
1554 goto out;
1555 }
1556 object = NULL;
1557out:
1558 return object;
1559}
1560
1561/*
1562 * Return the next object in the object_list. The function decrements the
1563 * use_count of the previous object and increases that of the next one.
1564 */
1565static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1566{
1567 struct kmemleak_object *prev_obj = v;
1568 struct kmemleak_object *next_obj = NULL;
1569 struct kmemleak_object *obj = prev_obj;
1570
1571 ++(*pos);
1572
1573 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1574 if (get_object(obj)) {
1575 next_obj = obj;
1576 break;
1577 }
1578 }
1579
1580 put_object(prev_obj);
1581 return next_obj;
1582}
1583
1584/*
1585 * Decrement the use_count of the last object required, if any.
1586 */
1587static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1588{
1589 if (!IS_ERR(v)) {
1590 /*
1591 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1592 * waiting was interrupted, so only release it if !IS_ERR.
1593 */
1594 rcu_read_unlock();
1595 mutex_unlock(&scan_mutex);
1596 if (v)
1597 put_object(v);
1598 }
1599}
1600
1601/*
1602 * Print the information for an unreferenced object to the seq file.
1603 */
1604static int kmemleak_seq_show(struct seq_file *seq, void *v)
1605{
1606 struct kmemleak_object *object = v;
1607 unsigned long flags;
1608
1609 spin_lock_irqsave(&object->lock, flags);
1610 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1611 print_unreferenced(seq, object);
1612 spin_unlock_irqrestore(&object->lock, flags);
1613 return 0;
1614}
1615
1616static const struct seq_operations kmemleak_seq_ops = {
1617 .start = kmemleak_seq_start,
1618 .next = kmemleak_seq_next,
1619 .stop = kmemleak_seq_stop,
1620 .show = kmemleak_seq_show,
1621};
1622
1623static int kmemleak_open(struct inode *inode, struct file *file)
1624{
1625 return seq_open(file, &kmemleak_seq_ops);
1626}
1627
1628static int dump_str_object_info(const char *str)
1629{
1630 unsigned long flags;
1631 struct kmemleak_object *object;
1632 unsigned long addr;
1633
1634 if (kstrtoul(str, 0, &addr))
1635 return -EINVAL;
1636 object = find_and_get_object(addr, 0);
1637 if (!object) {
1638 pr_info("Unknown object at 0x%08lx\n", addr);
1639 return -EINVAL;
1640 }
1641
1642 spin_lock_irqsave(&object->lock, flags);
1643 dump_object_info(object);
1644 spin_unlock_irqrestore(&object->lock, flags);
1645
1646 put_object(object);
1647 return 0;
1648}
1649
1650/*
1651 * We use grey instead of black to ensure we can do future scans on the same
1652 * objects. If we did not do future scans these black objects could
1653 * potentially contain references to newly allocated objects in the future and
1654 * we'd end up with false positives.
1655 */
1656static void kmemleak_clear(void)
1657{
1658 struct kmemleak_object *object;
1659 unsigned long flags;
1660
1661 rcu_read_lock();
1662 list_for_each_entry_rcu(object, &object_list, object_list) {
1663 spin_lock_irqsave(&object->lock, flags);
1664 if ((object->flags & OBJECT_REPORTED) &&
1665 unreferenced_object(object))
1666 __paint_it(object, KMEMLEAK_GREY);
1667 spin_unlock_irqrestore(&object->lock, flags);
1668 }
1669 rcu_read_unlock();
1670
1671 kmemleak_found_leaks = false;
1672}
1673
1674static void __kmemleak_do_cleanup(void);
1675
1676/*
1677 * File write operation to configure kmemleak at run-time. The following
1678 * commands can be written to the /sys/kernel/debug/kmemleak file:
1679 * off - disable kmemleak (irreversible)
1680 * stack=on - enable the task stacks scanning
1681 * stack=off - disable the tasks stacks scanning
1682 * scan=on - start the automatic memory scanning thread
1683 * scan=off - stop the automatic memory scanning thread
1684 * scan=... - set the automatic memory scanning period in seconds (0 to
1685 * disable it)
1686 * scan - trigger a memory scan
1687 * clear - mark all current reported unreferenced kmemleak objects as
1688 * grey to ignore printing them, or free all kmemleak objects
1689 * if kmemleak has been disabled.
1690 * dump=... - dump information about the object found at the given address
1691 */
1692static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1693 size_t size, loff_t *ppos)
1694{
1695 char buf[64];
1696 int buf_size;
1697 int ret;
1698
1699 buf_size = min(size, (sizeof(buf) - 1));
1700 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1701 return -EFAULT;
1702 buf[buf_size] = 0;
1703
1704 ret = mutex_lock_interruptible(&scan_mutex);
1705 if (ret < 0)
1706 return ret;
1707
1708 if (strncmp(buf, "clear", 5) == 0) {
1709 if (kmemleak_enabled)
1710 kmemleak_clear();
1711 else
1712 __kmemleak_do_cleanup();
1713 goto out;
1714 }
1715
1716 if (!kmemleak_enabled) {
1717 ret = -EBUSY;
1718 goto out;
1719 }
1720
1721 if (strncmp(buf, "off", 3) == 0)
1722 kmemleak_disable();
1723 else if (strncmp(buf, "stack=on", 8) == 0)
1724 kmemleak_stack_scan = 1;
1725 else if (strncmp(buf, "stack=off", 9) == 0)
1726 kmemleak_stack_scan = 0;
1727 else if (strncmp(buf, "scan=on", 7) == 0)
1728 start_scan_thread();
1729 else if (strncmp(buf, "scan=off", 8) == 0)
1730 stop_scan_thread();
1731 else if (strncmp(buf, "scan=", 5) == 0) {
1732 unsigned long secs;
1733
1734 ret = kstrtoul(buf + 5, 0, &secs);
1735 if (ret < 0)
1736 goto out;
1737 stop_scan_thread();
1738 if (secs) {
1739 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1740 start_scan_thread();
1741 }
1742 } else if (strncmp(buf, "scan", 4) == 0)
1743 kmemleak_scan();
1744 else if (strncmp(buf, "dump=", 5) == 0)
1745 ret = dump_str_object_info(buf + 5);
1746 else
1747 ret = -EINVAL;
1748
1749out:
1750 mutex_unlock(&scan_mutex);
1751 if (ret < 0)
1752 return ret;
1753
1754 /* ignore the rest of the buffer, only one command at a time */
1755 *ppos += size;
1756 return size;
1757}
1758
1759static const struct file_operations kmemleak_fops = {
1760 .owner = THIS_MODULE,
1761 .open = kmemleak_open,
1762 .read = seq_read,
1763 .write = kmemleak_write,
1764 .llseek = seq_lseek,
1765 .release = seq_release,
1766};
1767
1768static void __kmemleak_do_cleanup(void)
1769{
1770 struct kmemleak_object *object;
1771
1772 rcu_read_lock();
1773 list_for_each_entry_rcu(object, &object_list, object_list)
1774 delete_object_full(object->pointer);
1775 rcu_read_unlock();
1776}
1777
1778/*
1779 * Stop the memory scanning thread and free the kmemleak internal objects if
1780 * no previous scan thread (otherwise, kmemleak may still have some useful
1781 * information on memory leaks).
1782 */
1783static void kmemleak_do_cleanup(struct work_struct *work)
1784{
1785 stop_scan_thread();
1786
1787 /*
1788 * Once the scan thread has stopped, it is safe to no longer track
1789 * object freeing. Ordering of the scan thread stopping and the memory
1790 * accesses below is guaranteed by the kthread_stop() function.
1791 */
1792 kmemleak_free_enabled = 0;
1793
1794 if (!kmemleak_found_leaks)
1795 __kmemleak_do_cleanup();
1796 else
1797 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1798}
1799
1800static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1801
1802/*
1803 * Disable kmemleak. No memory allocation/freeing will be traced once this
1804 * function is called. Disabling kmemleak is an irreversible operation.
1805 */
1806static void kmemleak_disable(void)
1807{
1808 /* atomically check whether it was already invoked */
1809 if (cmpxchg(&kmemleak_error, 0, 1))
1810 return;
1811
1812 /* stop any memory operation tracing */
1813 kmemleak_enabled = 0;
1814
1815 /* check whether it is too early for a kernel thread */
1816 if (kmemleak_initialized)
1817 schedule_work(&cleanup_work);
1818 else
1819 kmemleak_free_enabled = 0;
1820
1821 pr_info("Kernel memory leak detector disabled\n");
1822}
1823
1824/*
1825 * Allow boot-time kmemleak disabling (enabled by default).
1826 */
1827static int kmemleak_boot_config(char *str)
1828{
1829 if (!str)
1830 return -EINVAL;
1831 if (strcmp(str, "off") == 0)
1832 kmemleak_disable();
1833 else if (strcmp(str, "on") == 0)
1834 kmemleak_skip_disable = 1;
1835 else
1836 return -EINVAL;
1837 return 0;
1838}
1839early_param("kmemleak", kmemleak_boot_config);
1840
1841static void __init print_log_trace(struct early_log *log)
1842{
1843 struct stack_trace trace;
1844
1845 trace.nr_entries = log->trace_len;
1846 trace.entries = log->trace;
1847
1848 pr_notice("Early log backtrace:\n");
1849 print_stack_trace(&trace, 2);
1850}
1851
1852/*
1853 * Kmemleak initialization.
1854 */
1855void __init kmemleak_init(void)
1856{
1857 int i;
1858 unsigned long flags;
1859
1860#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1861 if (!kmemleak_skip_disable) {
1862 kmemleak_early_log = 0;
1863 kmemleak_disable();
1864 return;
1865 }
1866#endif
1867
1868 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1869 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1870
1871 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1872 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1873
1874 if (crt_early_log > ARRAY_SIZE(early_log))
1875 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1876 crt_early_log);
1877
1878 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1879 local_irq_save(flags);
1880 kmemleak_early_log = 0;
1881 if (kmemleak_error) {
1882 local_irq_restore(flags);
1883 return;
1884 } else {
1885 kmemleak_enabled = 1;
1886 kmemleak_free_enabled = 1;
1887 }
1888 local_irq_restore(flags);
1889
1890 /*
1891 * This is the point where tracking allocations is safe. Automatic
1892 * scanning is started during the late initcall. Add the early logged
1893 * callbacks to the kmemleak infrastructure.
1894 */
1895 for (i = 0; i < crt_early_log; i++) {
1896 struct early_log *log = &early_log[i];
1897
1898 switch (log->op_type) {
1899 case KMEMLEAK_ALLOC:
1900 early_alloc(log);
1901 break;
1902 case KMEMLEAK_ALLOC_PERCPU:
1903 early_alloc_percpu(log);
1904 break;
1905 case KMEMLEAK_FREE:
1906 kmemleak_free(log->ptr);
1907 break;
1908 case KMEMLEAK_FREE_PART:
1909 kmemleak_free_part(log->ptr, log->size);
1910 break;
1911 case KMEMLEAK_FREE_PERCPU:
1912 kmemleak_free_percpu(log->ptr);
1913 break;
1914 case KMEMLEAK_NOT_LEAK:
1915 kmemleak_not_leak(log->ptr);
1916 break;
1917 case KMEMLEAK_IGNORE:
1918 kmemleak_ignore(log->ptr);
1919 break;
1920 case KMEMLEAK_SCAN_AREA:
1921 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1922 break;
1923 case KMEMLEAK_NO_SCAN:
1924 kmemleak_no_scan(log->ptr);
1925 break;
1926 default:
1927 kmemleak_warn("Unknown early log operation: %d\n",
1928 log->op_type);
1929 }
1930
1931 if (kmemleak_warning) {
1932 print_log_trace(log);
1933 kmemleak_warning = 0;
1934 }
1935 }
1936}
1937
1938/*
1939 * Late initialization function.
1940 */
1941static int __init kmemleak_late_init(void)
1942{
1943 struct dentry *dentry;
1944
1945 kmemleak_initialized = 1;
1946
1947 if (kmemleak_error) {
1948 /*
1949 * Some error occurred and kmemleak was disabled. There is a
1950 * small chance that kmemleak_disable() was called immediately
1951 * after setting kmemleak_initialized and we may end up with
1952 * two clean-up threads but serialized by scan_mutex.
1953 */
1954 schedule_work(&cleanup_work);
1955 return -ENOMEM;
1956 }
1957
1958 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1959 &kmemleak_fops);
1960 if (!dentry)
1961 pr_warn("Failed to create the debugfs kmemleak file\n");
1962 mutex_lock(&scan_mutex);
1963 start_scan_thread();
1964 mutex_unlock(&scan_mutex);
1965
1966 pr_info("Kernel memory leak detector initialized\n");
1967
1968 return 0;
1969}
1970late_initcall(kmemleak_late_init);