Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 23/*
 24 * frontswap_ops is set by frontswap_register_ops to contain the pointers
 25 * to the frontswap "backend" implementation functions.
 
 
 26 */
 27static struct frontswap_ops *frontswap_ops __read_mostly;
 28
 
 
 
 29/*
 30 * If enabled, frontswap_store will return failure even on success.  As
 31 * a result, the swap subsystem will always write the page to swap, in
 32 * effect converting frontswap into a writethrough cache.  In this mode,
 33 * there is no direct reduction in swap writes, but a frontswap backend
 34 * can unilaterally "reclaim" any pages in use with no data loss, thus
 35 * providing increases control over maximum memory usage due to frontswap.
 36 */
 37static bool frontswap_writethrough_enabled __read_mostly;
 38
 39/*
 40 * If enabled, the underlying tmem implementation is capable of doing
 41 * exclusive gets, so frontswap_load, on a successful tmem_get must
 42 * mark the page as no longer in frontswap AND mark it dirty.
 43 */
 44static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 45
 46#ifdef CONFIG_DEBUG_FS
 47/*
 48 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 49 * properly configured).  These are for information only so are not protected
 50 * against increment races.
 51 */
 52static u64 frontswap_loads;
 53static u64 frontswap_succ_stores;
 54static u64 frontswap_failed_stores;
 55static u64 frontswap_invalidates;
 56
 57static inline void inc_frontswap_loads(void) {
 58	frontswap_loads++;
 59}
 60static inline void inc_frontswap_succ_stores(void) {
 61	frontswap_succ_stores++;
 62}
 63static inline void inc_frontswap_failed_stores(void) {
 64	frontswap_failed_stores++;
 65}
 66static inline void inc_frontswap_invalidates(void) {
 67	frontswap_invalidates++;
 68}
 69#else
 70static inline void inc_frontswap_loads(void) { }
 71static inline void inc_frontswap_succ_stores(void) { }
 72static inline void inc_frontswap_failed_stores(void) { }
 73static inline void inc_frontswap_invalidates(void) { }
 74#endif
 75
 76/*
 77 * Due to the asynchronous nature of the backends loading potentially
 78 * _after_ the swap system has been activated, we have chokepoints
 79 * on all frontswap functions to not call the backend until the backend
 80 * has registered.
 81 *
 82 * Specifically when no backend is registered (nobody called
 83 * frontswap_register_ops) all calls to frontswap_init (which is done via
 84 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
 85 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
 86 * backend registers with frontswap at some later point the previous
 87 * calls to frontswap_init are executed (by iterating over the need_init
 88 * bitmap) to create tmem_pools and set the respective poolids. All of that is
 89 * guarded by us using atomic bit operations on the 'need_init' bitmap.
 90 *
 91 * This would not guards us against the user deciding to call swapoff right as
 92 * we are calling the backend to initialize (so swapon is in action).
 93 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 94 * OK. The other scenario where calls to frontswap_store (called via
 95 * swap_writepage) is racing with frontswap_invalidate_area (called via
 96 * swapoff) is again guarded by the swap subsystem.
 97 *
 98 * While no backend is registered all calls to frontswap_[store|load|
 99 * invalidate_area|invalidate_page] are ignored or fail.
100 *
101 * The time between the backend being registered and the swap file system
102 * calling the backend (via the frontswap_* functions) is indeterminate as
103 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104 * That is OK as we are comfortable missing some of these calls to the newly
105 * registered backend.
106 *
107 * Obviously the opposite (unloading the backend) must be done after all
108 * the frontswap_[store|load|invalidate_area|invalidate_page] start
109 * ignorning or failing the requests - at which point frontswap_ops
110 * would have to be made in some fashion atomic.
111 */
112static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
113
114/*
115 * Register operations for frontswap, returning previous thus allowing
116 * detection of multiple backends and possible nesting.
117 */
118struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119{
120	struct frontswap_ops *old = frontswap_ops;
121	int i;
 
 
122
123	for (i = 0; i < MAX_SWAPFILES; i++) {
124		if (test_and_clear_bit(i, need_init)) {
125			struct swap_info_struct *sis = swap_info[i];
126			/* __frontswap_init _should_ have set it! */
127			if (!sis->frontswap_map)
128				return ERR_PTR(-EINVAL);
129			ops->init(i);
130		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
 
 
132	/*
133	 * We MUST have frontswap_ops set _after_ the frontswap_init's
134	 * have been called. Otherwise __frontswap_store might fail. Hence
135	 * the barrier to make sure compiler does not re-order us.
 
136	 */
137	barrier();
138	frontswap_ops = ops;
139	return old;
 
 
 
 
 
140}
141EXPORT_SYMBOL(frontswap_register_ops);
142
143/*
144 * Enable/disable frontswap writethrough (see above).
145 */
146void frontswap_writethrough(bool enable)
147{
148	frontswap_writethrough_enabled = enable;
149}
150EXPORT_SYMBOL(frontswap_writethrough);
151
152/*
153 * Enable/disable frontswap exclusive gets (see above).
154 */
155void frontswap_tmem_exclusive_gets(bool enable)
156{
157	frontswap_tmem_exclusive_gets_enabled = enable;
158}
159EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
160
161/*
162 * Called when a swap device is swapon'd.
163 */
164void __frontswap_init(unsigned type, unsigned long *map)
165{
166	struct swap_info_struct *sis = swap_info[type];
 
167
168	BUG_ON(sis == NULL);
169
170	/*
171	 * p->frontswap is a bitmap that we MUST have to figure out which page
172	 * has gone in frontswap. Without it there is no point of continuing.
173	 */
174	if (WARN_ON(!map))
175		return;
176	/*
177	 * Irregardless of whether the frontswap backend has been loaded
178	 * before this function or it will be later, we _MUST_ have the
179	 * p->frontswap set to something valid to work properly.
180	 */
181	frontswap_map_set(sis, map);
182	if (frontswap_ops)
183		frontswap_ops->init(type);
184	else {
185		BUG_ON(type > MAX_SWAPFILES);
186		set_bit(type, need_init);
187	}
188}
189EXPORT_SYMBOL(__frontswap_init);
190
191bool __frontswap_test(struct swap_info_struct *sis,
192				pgoff_t offset)
193{
194	bool ret = false;
195
196	if (frontswap_ops && sis->frontswap_map)
197		ret = test_bit(offset, sis->frontswap_map);
198	return ret;
199}
200EXPORT_SYMBOL(__frontswap_test);
201
 
 
 
 
 
 
 
202static inline void __frontswap_clear(struct swap_info_struct *sis,
203				pgoff_t offset)
204{
205	clear_bit(offset, sis->frontswap_map);
206	atomic_dec(&sis->frontswap_pages);
207}
208
209/*
210 * "Store" data from a page to frontswap and associate it with the page's
211 * swaptype and offset.  Page must be locked and in the swap cache.
212 * If frontswap already contains a page with matching swaptype and
213 * offset, the frontswap implementation may either overwrite the data and
214 * return success or invalidate the page from frontswap and return failure.
215 */
216int __frontswap_store(struct page *page)
217{
218	int ret = -1, dup = 0;
219	swp_entry_t entry = { .val = page_private(page), };
220	int type = swp_type(entry);
221	struct swap_info_struct *sis = swap_info[type];
222	pgoff_t offset = swp_offset(entry);
 
223
224	/*
225	 * Return if no backend registed.
226	 * Don't need to inc frontswap_failed_stores here.
227	 */
228	if (!frontswap_ops)
229		return ret;
230
231	BUG_ON(!PageLocked(page));
232	BUG_ON(sis == NULL);
233	if (__frontswap_test(sis, offset))
234		dup = 1;
235	ret = frontswap_ops->store(type, offset, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236	if (ret == 0) {
237		set_bit(offset, sis->frontswap_map);
238		inc_frontswap_succ_stores();
239		if (!dup)
240			atomic_inc(&sis->frontswap_pages);
241	} else {
242		/*
243		  failed dup always results in automatic invalidate of
244		  the (older) page from frontswap
245		 */
246		inc_frontswap_failed_stores();
247		if (dup)
248			__frontswap_clear(sis, offset);
249	}
250	if (frontswap_writethrough_enabled)
251		/* report failure so swap also writes to swap device */
252		ret = -1;
253	return ret;
254}
255EXPORT_SYMBOL(__frontswap_store);
256
257/*
258 * "Get" data from frontswap associated with swaptype and offset that were
259 * specified when the data was put to frontswap and use it to fill the
260 * specified page with data. Page must be locked and in the swap cache.
261 */
262int __frontswap_load(struct page *page)
263{
264	int ret = -1;
265	swp_entry_t entry = { .val = page_private(page), };
266	int type = swp_type(entry);
267	struct swap_info_struct *sis = swap_info[type];
268	pgoff_t offset = swp_offset(entry);
 
 
 
 
269
270	BUG_ON(!PageLocked(page));
271	BUG_ON(sis == NULL);
272	/*
273	 * __frontswap_test() will check whether there is backend registered
274	 */
275	if (__frontswap_test(sis, offset))
276		ret = frontswap_ops->load(type, offset, page);
 
 
 
 
277	if (ret == 0) {
278		inc_frontswap_loads();
279		if (frontswap_tmem_exclusive_gets_enabled) {
280			SetPageDirty(page);
281			__frontswap_clear(sis, offset);
282		}
283	}
284	return ret;
285}
286EXPORT_SYMBOL(__frontswap_load);
287
288/*
289 * Invalidate any data from frontswap associated with the specified swaptype
290 * and offset so that a subsequent "get" will fail.
291 */
292void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
293{
294	struct swap_info_struct *sis = swap_info[type];
 
 
 
 
295
296	BUG_ON(sis == NULL);
297	/*
298	 * __frontswap_test() will check whether there is backend registered
299	 */
300	if (__frontswap_test(sis, offset)) {
301		frontswap_ops->invalidate_page(type, offset);
302		__frontswap_clear(sis, offset);
303		inc_frontswap_invalidates();
304	}
305}
306EXPORT_SYMBOL(__frontswap_invalidate_page);
307
308/*
309 * Invalidate all data from frontswap associated with all offsets for the
310 * specified swaptype.
311 */
312void __frontswap_invalidate_area(unsigned type)
313{
314	struct swap_info_struct *sis = swap_info[type];
 
315
316	if (frontswap_ops) {
317		BUG_ON(sis == NULL);
318		if (sis->frontswap_map == NULL)
319			return;
320		frontswap_ops->invalidate_area(type);
321		atomic_set(&sis->frontswap_pages, 0);
322		bitmap_zero(sis->frontswap_map, sis->max);
323	}
324	clear_bit(type, need_init);
 
 
325}
326EXPORT_SYMBOL(__frontswap_invalidate_area);
327
328static unsigned long __frontswap_curr_pages(void)
329{
330	int type;
331	unsigned long totalpages = 0;
332	struct swap_info_struct *si = NULL;
333
334	assert_spin_locked(&swap_lock);
335	for (type = swap_list.head; type >= 0; type = si->next) {
336		si = swap_info[type];
337		totalpages += atomic_read(&si->frontswap_pages);
338	}
339	return totalpages;
340}
341
342static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
343					int *swapid)
344{
345	int ret = -EINVAL;
346	struct swap_info_struct *si = NULL;
347	int si_frontswap_pages;
348	unsigned long total_pages_to_unuse = total;
349	unsigned long pages = 0, pages_to_unuse = 0;
350	int type;
351
352	assert_spin_locked(&swap_lock);
353	for (type = swap_list.head; type >= 0; type = si->next) {
354		si = swap_info[type];
355		si_frontswap_pages = atomic_read(&si->frontswap_pages);
356		if (total_pages_to_unuse < si_frontswap_pages) {
357			pages = pages_to_unuse = total_pages_to_unuse;
358		} else {
359			pages = si_frontswap_pages;
360			pages_to_unuse = 0; /* unuse all */
361		}
362		/* ensure there is enough RAM to fetch pages from frontswap */
363		if (security_vm_enough_memory_mm(current->mm, pages)) {
364			ret = -ENOMEM;
365			continue;
366		}
367		vm_unacct_memory(pages);
368		*unused = pages_to_unuse;
369		*swapid = type;
370		ret = 0;
371		break;
372	}
373
374	return ret;
375}
376
377/*
378 * Used to check if it's necessory and feasible to unuse pages.
379 * Return 1 when nothing to do, 0 when need to shink pages,
380 * error code when there is an error.
381 */
382static int __frontswap_shrink(unsigned long target_pages,
383				unsigned long *pages_to_unuse,
384				int *type)
385{
386	unsigned long total_pages = 0, total_pages_to_unuse;
387
388	assert_spin_locked(&swap_lock);
389
390	total_pages = __frontswap_curr_pages();
391	if (total_pages <= target_pages) {
392		/* Nothing to do */
393		*pages_to_unuse = 0;
394		return 1;
395	}
396	total_pages_to_unuse = total_pages - target_pages;
397	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
398}
399
400/*
401 * Frontswap, like a true swap device, may unnecessarily retain pages
402 * under certain circumstances; "shrink" frontswap is essentially a
403 * "partial swapoff" and works by calling try_to_unuse to attempt to
404 * unuse enough frontswap pages to attempt to -- subject to memory
405 * constraints -- reduce the number of pages in frontswap to the
406 * number given in the parameter target_pages.
407 */
408void frontswap_shrink(unsigned long target_pages)
409{
410	unsigned long pages_to_unuse = 0;
411	int uninitialized_var(type), ret;
412
413	/*
414	 * we don't want to hold swap_lock while doing a very
415	 * lengthy try_to_unuse, but swap_list may change
416	 * so restart scan from swap_list.head each time
417	 */
418	spin_lock(&swap_lock);
419	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
420	spin_unlock(&swap_lock);
421	if (ret == 0)
422		try_to_unuse(type, true, pages_to_unuse);
423	return;
424}
425EXPORT_SYMBOL(frontswap_shrink);
426
427/*
428 * Count and return the number of frontswap pages across all
429 * swap devices.  This is exported so that backend drivers can
430 * determine current usage without reading debugfs.
431 */
432unsigned long frontswap_curr_pages(void)
433{
434	unsigned long totalpages = 0;
435
436	spin_lock(&swap_lock);
437	totalpages = __frontswap_curr_pages();
438	spin_unlock(&swap_lock);
439
440	return totalpages;
441}
442EXPORT_SYMBOL(frontswap_curr_pages);
443
444static int __init init_frontswap(void)
445{
446#ifdef CONFIG_DEBUG_FS
447	struct dentry *root = debugfs_create_dir("frontswap", NULL);
448	if (root == NULL)
449		return -ENXIO;
450	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
451	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
452	debugfs_create_u64("failed_stores", S_IRUGO, root,
453				&frontswap_failed_stores);
454	debugfs_create_u64("invalidates", S_IRUGO,
455				root, &frontswap_invalidates);
456#endif
457	return 0;
458}
459
460module_init(init_frontswap);
v4.6
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 23/*
 24 * frontswap_ops are added by frontswap_register_ops, and provide the
 25 * frontswap "backend" implementation functions.  Multiple implementations
 26 * may be registered, but implementations can never deregister.  This
 27 * is a simple singly-linked list of all registered implementations.
 28 */
 29static struct frontswap_ops *frontswap_ops __read_mostly;
 30
 31#define for_each_frontswap_ops(ops)		\
 32	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
 33
 34/*
 35 * If enabled, frontswap_store will return failure even on success.  As
 36 * a result, the swap subsystem will always write the page to swap, in
 37 * effect converting frontswap into a writethrough cache.  In this mode,
 38 * there is no direct reduction in swap writes, but a frontswap backend
 39 * can unilaterally "reclaim" any pages in use with no data loss, thus
 40 * providing increases control over maximum memory usage due to frontswap.
 41 */
 42static bool frontswap_writethrough_enabled __read_mostly;
 43
 44/*
 45 * If enabled, the underlying tmem implementation is capable of doing
 46 * exclusive gets, so frontswap_load, on a successful tmem_get must
 47 * mark the page as no longer in frontswap AND mark it dirty.
 48 */
 49static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 50
 51#ifdef CONFIG_DEBUG_FS
 52/*
 53 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 54 * properly configured).  These are for information only so are not protected
 55 * against increment races.
 56 */
 57static u64 frontswap_loads;
 58static u64 frontswap_succ_stores;
 59static u64 frontswap_failed_stores;
 60static u64 frontswap_invalidates;
 61
 62static inline void inc_frontswap_loads(void) {
 63	frontswap_loads++;
 64}
 65static inline void inc_frontswap_succ_stores(void) {
 66	frontswap_succ_stores++;
 67}
 68static inline void inc_frontswap_failed_stores(void) {
 69	frontswap_failed_stores++;
 70}
 71static inline void inc_frontswap_invalidates(void) {
 72	frontswap_invalidates++;
 73}
 74#else
 75static inline void inc_frontswap_loads(void) { }
 76static inline void inc_frontswap_succ_stores(void) { }
 77static inline void inc_frontswap_failed_stores(void) { }
 78static inline void inc_frontswap_invalidates(void) { }
 79#endif
 80
 81/*
 82 * Due to the asynchronous nature of the backends loading potentially
 83 * _after_ the swap system has been activated, we have chokepoints
 84 * on all frontswap functions to not call the backend until the backend
 85 * has registered.
 86 *
 
 
 
 
 
 
 
 
 
 87 * This would not guards us against the user deciding to call swapoff right as
 88 * we are calling the backend to initialize (so swapon is in action).
 89 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 90 * OK. The other scenario where calls to frontswap_store (called via
 91 * swap_writepage) is racing with frontswap_invalidate_area (called via
 92 * swapoff) is again guarded by the swap subsystem.
 93 *
 94 * While no backend is registered all calls to frontswap_[store|load|
 95 * invalidate_area|invalidate_page] are ignored or fail.
 96 *
 97 * The time between the backend being registered and the swap file system
 98 * calling the backend (via the frontswap_* functions) is indeterminate as
 99 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
100 * That is OK as we are comfortable missing some of these calls to the newly
101 * registered backend.
102 *
103 * Obviously the opposite (unloading the backend) must be done after all
104 * the frontswap_[store|load|invalidate_area|invalidate_page] start
105 * ignoring or failing the requests.  However, there is currently no way
106 * to unload a backend once it is registered.
107 */
 
108
109/*
110 * Register operations for frontswap
 
111 */
112void frontswap_register_ops(struct frontswap_ops *ops)
113{
114	DECLARE_BITMAP(a, MAX_SWAPFILES);
115	DECLARE_BITMAP(b, MAX_SWAPFILES);
116	struct swap_info_struct *si;
117	unsigned int i;
118
119	bitmap_zero(a, MAX_SWAPFILES);
120	bitmap_zero(b, MAX_SWAPFILES);
121
122	spin_lock(&swap_lock);
123	plist_for_each_entry(si, &swap_active_head, list) {
124		if (!WARN_ON(!si->frontswap_map))
125			set_bit(si->type, a);
126	}
127	spin_unlock(&swap_lock);
128
129	/* the new ops needs to know the currently active swap devices */
130	for_each_set_bit(i, a, MAX_SWAPFILES)
131		ops->init(i);
132
133	/*
134	 * Setting frontswap_ops must happen after the ops->init() calls
135	 * above; cmpxchg implies smp_mb() which will ensure the init is
136	 * complete at this point.
137	 */
138	do {
139		ops->next = frontswap_ops;
140	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
141
142	spin_lock(&swap_lock);
143	plist_for_each_entry(si, &swap_active_head, list) {
144		if (si->frontswap_map)
145			set_bit(si->type, b);
146	}
147	spin_unlock(&swap_lock);
148
149	/*
150	 * On the very unlikely chance that a swap device was added or
151	 * removed between setting the "a" list bits and the ops init
152	 * calls, we re-check and do init or invalidate for any changed
153	 * bits.
154	 */
155	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
156		for (i = 0; i < MAX_SWAPFILES; i++) {
157			if (!test_bit(i, a) && test_bit(i, b))
158				ops->init(i);
159			else if (test_bit(i, a) && !test_bit(i, b))
160				ops->invalidate_area(i);
161		}
162	}
163}
164EXPORT_SYMBOL(frontswap_register_ops);
165
166/*
167 * Enable/disable frontswap writethrough (see above).
168 */
169void frontswap_writethrough(bool enable)
170{
171	frontswap_writethrough_enabled = enable;
172}
173EXPORT_SYMBOL(frontswap_writethrough);
174
175/*
176 * Enable/disable frontswap exclusive gets (see above).
177 */
178void frontswap_tmem_exclusive_gets(bool enable)
179{
180	frontswap_tmem_exclusive_gets_enabled = enable;
181}
182EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
183
184/*
185 * Called when a swap device is swapon'd.
186 */
187void __frontswap_init(unsigned type, unsigned long *map)
188{
189	struct swap_info_struct *sis = swap_info[type];
190	struct frontswap_ops *ops;
191
192	BUG_ON(sis == NULL);
193
194	/*
195	 * p->frontswap is a bitmap that we MUST have to figure out which page
196	 * has gone in frontswap. Without it there is no point of continuing.
197	 */
198	if (WARN_ON(!map))
199		return;
200	/*
201	 * Irregardless of whether the frontswap backend has been loaded
202	 * before this function or it will be later, we _MUST_ have the
203	 * p->frontswap set to something valid to work properly.
204	 */
205	frontswap_map_set(sis, map);
206
207	for_each_frontswap_ops(ops)
208		ops->init(type);
 
 
 
209}
210EXPORT_SYMBOL(__frontswap_init);
211
212bool __frontswap_test(struct swap_info_struct *sis,
213				pgoff_t offset)
214{
215	if (sis->frontswap_map)
216		return test_bit(offset, sis->frontswap_map);
217	return false;
 
 
218}
219EXPORT_SYMBOL(__frontswap_test);
220
221static inline void __frontswap_set(struct swap_info_struct *sis,
222				   pgoff_t offset)
223{
224	set_bit(offset, sis->frontswap_map);
225	atomic_inc(&sis->frontswap_pages);
226}
227
228static inline void __frontswap_clear(struct swap_info_struct *sis,
229				     pgoff_t offset)
230{
231	clear_bit(offset, sis->frontswap_map);
232	atomic_dec(&sis->frontswap_pages);
233}
234
235/*
236 * "Store" data from a page to frontswap and associate it with the page's
237 * swaptype and offset.  Page must be locked and in the swap cache.
238 * If frontswap already contains a page with matching swaptype and
239 * offset, the frontswap implementation may either overwrite the data and
240 * return success or invalidate the page from frontswap and return failure.
241 */
242int __frontswap_store(struct page *page)
243{
244	int ret = -1;
245	swp_entry_t entry = { .val = page_private(page), };
246	int type = swp_type(entry);
247	struct swap_info_struct *sis = swap_info[type];
248	pgoff_t offset = swp_offset(entry);
249	struct frontswap_ops *ops;
250
251	/*
252	 * Return if no backend registed.
253	 * Don't need to inc frontswap_failed_stores here.
254	 */
255	if (!frontswap_ops)
256		return -1;
257
258	BUG_ON(!PageLocked(page));
259	BUG_ON(sis == NULL);
260
261	/*
262	 * If a dup, we must remove the old page first; we can't leave the
263	 * old page no matter if the store of the new page succeeds or fails,
264	 * and we can't rely on the new page replacing the old page as we may
265	 * not store to the same implementation that contains the old page.
266	 */
267	if (__frontswap_test(sis, offset)) {
268		__frontswap_clear(sis, offset);
269		for_each_frontswap_ops(ops)
270			ops->invalidate_page(type, offset);
271	}
272
273	/* Try to store in each implementation, until one succeeds. */
274	for_each_frontswap_ops(ops) {
275		ret = ops->store(type, offset, page);
276		if (!ret) /* successful store */
277			break;
278	}
279	if (ret == 0) {
280		__frontswap_set(sis, offset);
281		inc_frontswap_succ_stores();
 
 
282	} else {
 
 
 
 
283		inc_frontswap_failed_stores();
 
 
284	}
285	if (frontswap_writethrough_enabled)
286		/* report failure so swap also writes to swap device */
287		ret = -1;
288	return ret;
289}
290EXPORT_SYMBOL(__frontswap_store);
291
292/*
293 * "Get" data from frontswap associated with swaptype and offset that were
294 * specified when the data was put to frontswap and use it to fill the
295 * specified page with data. Page must be locked and in the swap cache.
296 */
297int __frontswap_load(struct page *page)
298{
299	int ret = -1;
300	swp_entry_t entry = { .val = page_private(page), };
301	int type = swp_type(entry);
302	struct swap_info_struct *sis = swap_info[type];
303	pgoff_t offset = swp_offset(entry);
304	struct frontswap_ops *ops;
305
306	if (!frontswap_ops)
307		return -1;
308
309	BUG_ON(!PageLocked(page));
310	BUG_ON(sis == NULL);
311	if (!__frontswap_test(sis, offset))
312		return -1;
313
314	/* Try loading from each implementation, until one succeeds. */
315	for_each_frontswap_ops(ops) {
316		ret = ops->load(type, offset, page);
317		if (!ret) /* successful load */
318			break;
319	}
320	if (ret == 0) {
321		inc_frontswap_loads();
322		if (frontswap_tmem_exclusive_gets_enabled) {
323			SetPageDirty(page);
324			__frontswap_clear(sis, offset);
325		}
326	}
327	return ret;
328}
329EXPORT_SYMBOL(__frontswap_load);
330
331/*
332 * Invalidate any data from frontswap associated with the specified swaptype
333 * and offset so that a subsequent "get" will fail.
334 */
335void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
336{
337	struct swap_info_struct *sis = swap_info[type];
338	struct frontswap_ops *ops;
339
340	if (!frontswap_ops)
341		return;
342
343	BUG_ON(sis == NULL);
344	if (!__frontswap_test(sis, offset))
345		return;
346
347	for_each_frontswap_ops(ops)
348		ops->invalidate_page(type, offset);
349	__frontswap_clear(sis, offset);
350	inc_frontswap_invalidates();
 
351}
352EXPORT_SYMBOL(__frontswap_invalidate_page);
353
354/*
355 * Invalidate all data from frontswap associated with all offsets for the
356 * specified swaptype.
357 */
358void __frontswap_invalidate_area(unsigned type)
359{
360	struct swap_info_struct *sis = swap_info[type];
361	struct frontswap_ops *ops;
362
363	if (!frontswap_ops)
364		return;
365
366	BUG_ON(sis == NULL);
367	if (sis->frontswap_map == NULL)
368		return;
369
370	for_each_frontswap_ops(ops)
371		ops->invalidate_area(type);
372	atomic_set(&sis->frontswap_pages, 0);
373	bitmap_zero(sis->frontswap_map, sis->max);
374}
375EXPORT_SYMBOL(__frontswap_invalidate_area);
376
377static unsigned long __frontswap_curr_pages(void)
378{
 
379	unsigned long totalpages = 0;
380	struct swap_info_struct *si = NULL;
381
382	assert_spin_locked(&swap_lock);
383	plist_for_each_entry(si, &swap_active_head, list)
 
384		totalpages += atomic_read(&si->frontswap_pages);
 
385	return totalpages;
386}
387
388static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
389					int *swapid)
390{
391	int ret = -EINVAL;
392	struct swap_info_struct *si = NULL;
393	int si_frontswap_pages;
394	unsigned long total_pages_to_unuse = total;
395	unsigned long pages = 0, pages_to_unuse = 0;
 
396
397	assert_spin_locked(&swap_lock);
398	plist_for_each_entry(si, &swap_active_head, list) {
 
399		si_frontswap_pages = atomic_read(&si->frontswap_pages);
400		if (total_pages_to_unuse < si_frontswap_pages) {
401			pages = pages_to_unuse = total_pages_to_unuse;
402		} else {
403			pages = si_frontswap_pages;
404			pages_to_unuse = 0; /* unuse all */
405		}
406		/* ensure there is enough RAM to fetch pages from frontswap */
407		if (security_vm_enough_memory_mm(current->mm, pages)) {
408			ret = -ENOMEM;
409			continue;
410		}
411		vm_unacct_memory(pages);
412		*unused = pages_to_unuse;
413		*swapid = si->type;
414		ret = 0;
415		break;
416	}
417
418	return ret;
419}
420
421/*
422 * Used to check if it's necessory and feasible to unuse pages.
423 * Return 1 when nothing to do, 0 when need to shink pages,
424 * error code when there is an error.
425 */
426static int __frontswap_shrink(unsigned long target_pages,
427				unsigned long *pages_to_unuse,
428				int *type)
429{
430	unsigned long total_pages = 0, total_pages_to_unuse;
431
432	assert_spin_locked(&swap_lock);
433
434	total_pages = __frontswap_curr_pages();
435	if (total_pages <= target_pages) {
436		/* Nothing to do */
437		*pages_to_unuse = 0;
438		return 1;
439	}
440	total_pages_to_unuse = total_pages - target_pages;
441	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
442}
443
444/*
445 * Frontswap, like a true swap device, may unnecessarily retain pages
446 * under certain circumstances; "shrink" frontswap is essentially a
447 * "partial swapoff" and works by calling try_to_unuse to attempt to
448 * unuse enough frontswap pages to attempt to -- subject to memory
449 * constraints -- reduce the number of pages in frontswap to the
450 * number given in the parameter target_pages.
451 */
452void frontswap_shrink(unsigned long target_pages)
453{
454	unsigned long pages_to_unuse = 0;
455	int uninitialized_var(type), ret;
456
457	/*
458	 * we don't want to hold swap_lock while doing a very
459	 * lengthy try_to_unuse, but swap_list may change
460	 * so restart scan from swap_active_head each time
461	 */
462	spin_lock(&swap_lock);
463	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
464	spin_unlock(&swap_lock);
465	if (ret == 0)
466		try_to_unuse(type, true, pages_to_unuse);
467	return;
468}
469EXPORT_SYMBOL(frontswap_shrink);
470
471/*
472 * Count and return the number of frontswap pages across all
473 * swap devices.  This is exported so that backend drivers can
474 * determine current usage without reading debugfs.
475 */
476unsigned long frontswap_curr_pages(void)
477{
478	unsigned long totalpages = 0;
479
480	spin_lock(&swap_lock);
481	totalpages = __frontswap_curr_pages();
482	spin_unlock(&swap_lock);
483
484	return totalpages;
485}
486EXPORT_SYMBOL(frontswap_curr_pages);
487
488static int __init init_frontswap(void)
489{
490#ifdef CONFIG_DEBUG_FS
491	struct dentry *root = debugfs_create_dir("frontswap", NULL);
492	if (root == NULL)
493		return -ENXIO;
494	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
495	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
496	debugfs_create_u64("failed_stores", S_IRUGO, root,
497				&frontswap_failed_stores);
498	debugfs_create_u64("invalidates", S_IRUGO,
499				root, &frontswap_invalidates);
500#endif
501	return 0;
502}
503
504module_init(init_frontswap);