Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.15
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * manager_mutex to avoid changing binding state while
  69	 * create_worker() is in progress.
  70	 */
  71	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
  72	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  73	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
  74
  75	/* worker flags */
  76	WORKER_STARTED		= 1 << 0,	/* started */
  77	WORKER_DIE		= 1 << 1,	/* die die die */
  78	WORKER_IDLE		= 1 << 2,	/* is idle */
  79	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  80	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  81	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  82	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  83
  84	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  85				  WORKER_UNBOUND | WORKER_REBOUND,
  86
  87	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  88
  89	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  90	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  91
  92	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  93	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  94
  95	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  96						/* call for help after 10ms
  97						   (min two ticks) */
  98	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  99	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 100
 101	/*
 102	 * Rescue workers are used only on emergencies and shared by
 103	 * all cpus.  Give -20.
 104	 */
 105	RESCUER_NICE_LEVEL	= -20,
 106	HIGHPRI_NICE_LEVEL	= -20,
 107
 108	WQ_NAME_LEN		= 24,
 109};
 110
 111/*
 112 * Structure fields follow one of the following exclusion rules.
 113 *
 114 * I: Modifiable by initialization/destruction paths and read-only for
 115 *    everyone else.
 116 *
 117 * P: Preemption protected.  Disabling preemption is enough and should
 118 *    only be modified and accessed from the local cpu.
 119 *
 120 * L: pool->lock protected.  Access with pool->lock held.
 121 *
 122 * X: During normal operation, modification requires pool->lock and should
 123 *    be done only from local cpu.  Either disabling preemption on local
 124 *    cpu or grabbing pool->lock is enough for read access.  If
 125 *    POOL_DISASSOCIATED is set, it's identical to L.
 126 *
 127 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 128 *     locks.  Reads can happen under either lock.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 133 *
 
 
 
 
 
 134 * WQ: wq->mutex protected.
 135 *
 136 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 137 *
 138 * MD: wq_mayday_lock protected.
 139 */
 140
 141/* struct worker is defined in workqueue_internal.h */
 142
 143struct worker_pool {
 144	spinlock_t		lock;		/* the pool lock */
 145	int			cpu;		/* I: the associated cpu */
 146	int			node;		/* I: the associated node ID */
 147	int			id;		/* I: pool ID */
 148	unsigned int		flags;		/* X: flags */
 149
 
 
 150	struct list_head	worklist;	/* L: list of pending works */
 151	int			nr_workers;	/* L: total number of workers */
 152
 153	/* nr_idle includes the ones off idle_list for rebinding */
 154	int			nr_idle;	/* L: currently idle ones */
 155
 156	struct list_head	idle_list;	/* X: list of idle workers */
 157	struct timer_list	idle_timer;	/* L: worker idle timeout */
 158	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 159
 160	/* a workers is either on busy_hash or idle_list, or the manager */
 161	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 162						/* L: hash of busy workers */
 163
 164	/* see manage_workers() for details on the two manager mutexes */
 165	struct mutex		manager_arb;	/* manager arbitration */
 166	struct mutex		manager_mutex;	/* manager exclusion */
 167	struct idr		worker_idr;	/* MG: worker IDs and iteration */
 
 
 
 
 168
 169	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 170	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 171	int			refcnt;		/* PL: refcnt for unbound pools */
 172
 173	/*
 174	 * The current concurrency level.  As it's likely to be accessed
 175	 * from other CPUs during try_to_wake_up(), put it in a separate
 176	 * cacheline.
 177	 */
 178	atomic_t		nr_running ____cacheline_aligned_in_smp;
 179
 180	/*
 181	 * Destruction of pool is sched-RCU protected to allow dereferences
 182	 * from get_work_pool().
 183	 */
 184	struct rcu_head		rcu;
 185} ____cacheline_aligned_in_smp;
 186
 187/*
 188 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 189 * of work_struct->data are used for flags and the remaining high bits
 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 191 * number of flag bits.
 192 */
 193struct pool_workqueue {
 194	struct worker_pool	*pool;		/* I: the associated pool */
 195	struct workqueue_struct *wq;		/* I: the owning workqueue */
 196	int			work_color;	/* L: current color */
 197	int			flush_color;	/* L: flushing color */
 198	int			refcnt;		/* L: reference count */
 199	int			nr_in_flight[WORK_NR_COLORS];
 200						/* L: nr of in_flight works */
 201	int			nr_active;	/* L: nr of active works */
 202	int			max_active;	/* L: max active works */
 203	struct list_head	delayed_works;	/* L: delayed works */
 204	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 205	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 206
 207	/*
 208	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 209	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 210	 * itself is also sched-RCU protected so that the first pwq can be
 211	 * determined without grabbing wq->mutex.
 212	 */
 213	struct work_struct	unbound_release_work;
 214	struct rcu_head		rcu;
 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 216
 217/*
 218 * Structure used to wait for workqueue flush.
 219 */
 220struct wq_flusher {
 221	struct list_head	list;		/* WQ: list of flushers */
 222	int			flush_color;	/* WQ: flush color waiting for */
 223	struct completion	done;		/* flush completion */
 224};
 225
 226struct wq_device;
 227
 228/*
 229 * The externally visible workqueue.  It relays the issued work items to
 230 * the appropriate worker_pool through its pool_workqueues.
 231 */
 232struct workqueue_struct {
 233	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 234	struct list_head	list;		/* PL: list of all workqueues */
 235
 236	struct mutex		mutex;		/* protects this wq */
 237	int			work_color;	/* WQ: current work color */
 238	int			flush_color;	/* WQ: current flush color */
 239	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 240	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 241	struct list_head	flusher_queue;	/* WQ: flush waiters */
 242	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 243
 244	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 245	struct worker		*rescuer;	/* I: rescue worker */
 246
 247	int			nr_drainers;	/* WQ: drain in progress */
 248	int			saved_max_active; /* WQ: saved pwq max_active */
 249
 250	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
 251	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
 252
 253#ifdef CONFIG_SYSFS
 254	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 255#endif
 256#ifdef CONFIG_LOCKDEP
 257	struct lockdep_map	lockdep_map;
 258#endif
 259	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 260
 
 
 
 
 
 
 
 261	/* hot fields used during command issue, aligned to cacheline */
 262	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 263	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 264	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
 265};
 266
 267static struct kmem_cache *pwq_cache;
 268
 269static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
 270static cpumask_var_t *wq_numa_possible_cpumask;
 271					/* possible CPUs of each node */
 272
 273static bool wq_disable_numa;
 274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 275
 276/* see the comment above the definition of WQ_POWER_EFFICIENT */
 277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
 278static bool wq_power_efficient = true;
 279#else
 280static bool wq_power_efficient;
 281#endif
 282
 283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 284
 285static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 286
 287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 289
 290static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 291static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 292
 293static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
 294static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296/* the per-cpu worker pools */
 297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 298				     cpu_worker_pools);
 299
 300static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 301
 302/* PL: hash of all unbound pools keyed by pool->attrs */
 303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 304
 305/* I: attributes used when instantiating standard unbound pools on demand */
 306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 307
 308/* I: attributes used when instantiating ordered pools on demand */
 309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 310
 311struct workqueue_struct *system_wq __read_mostly;
 312EXPORT_SYMBOL(system_wq);
 313struct workqueue_struct *system_highpri_wq __read_mostly;
 314EXPORT_SYMBOL_GPL(system_highpri_wq);
 315struct workqueue_struct *system_long_wq __read_mostly;
 316EXPORT_SYMBOL_GPL(system_long_wq);
 317struct workqueue_struct *system_unbound_wq __read_mostly;
 318EXPORT_SYMBOL_GPL(system_unbound_wq);
 319struct workqueue_struct *system_freezable_wq __read_mostly;
 320EXPORT_SYMBOL_GPL(system_freezable_wq);
 321struct workqueue_struct *system_power_efficient_wq __read_mostly;
 322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 325
 326static int worker_thread(void *__worker);
 327static void copy_workqueue_attrs(struct workqueue_attrs *to,
 328				 const struct workqueue_attrs *from);
 329
 330#define CREATE_TRACE_POINTS
 331#include <trace/events/workqueue.h>
 332
 333#define assert_rcu_or_pool_mutex()					\
 334	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
 335			   lockdep_is_held(&wq_pool_mutex),		\
 336			   "sched RCU or wq_pool_mutex should be held")
 337
 338#define assert_rcu_or_wq_mutex(wq)					\
 339	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
 340			   lockdep_is_held(&wq->mutex),			\
 341			   "sched RCU or wq->mutex should be held")
 342
 343#ifdef CONFIG_LOCKDEP
 344#define assert_manager_or_pool_lock(pool)				\
 345	WARN_ONCE(debug_locks &&					\
 346		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
 347		  !lockdep_is_held(&(pool)->lock),			\
 348		  "pool->manager_mutex or ->lock should be held")
 349#else
 350#define assert_manager_or_pool_lock(pool)	do { } while (0)
 351#endif
 352
 353#define for_each_cpu_worker_pool(pool, cpu)				\
 354	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 355	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 356	     (pool)++)
 357
 358/**
 359 * for_each_pool - iterate through all worker_pools in the system
 360 * @pool: iteration cursor
 361 * @pi: integer used for iteration
 362 *
 363 * This must be called either with wq_pool_mutex held or sched RCU read
 364 * locked.  If the pool needs to be used beyond the locking in effect, the
 365 * caller is responsible for guaranteeing that the pool stays online.
 366 *
 367 * The if/else clause exists only for the lockdep assertion and can be
 368 * ignored.
 369 */
 370#define for_each_pool(pool, pi)						\
 371	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 372		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 373		else
 374
 375/**
 376 * for_each_pool_worker - iterate through all workers of a worker_pool
 377 * @worker: iteration cursor
 378 * @wi: integer used for iteration
 379 * @pool: worker_pool to iterate workers of
 380 *
 381 * This must be called with either @pool->manager_mutex or ->lock held.
 382 *
 383 * The if/else clause exists only for the lockdep assertion and can be
 384 * ignored.
 385 */
 386#define for_each_pool_worker(worker, wi, pool)				\
 387	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
 388		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
 389		else
 390
 391/**
 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 393 * @pwq: iteration cursor
 394 * @wq: the target workqueue
 395 *
 396 * This must be called either with wq->mutex held or sched RCU read locked.
 397 * If the pwq needs to be used beyond the locking in effect, the caller is
 398 * responsible for guaranteeing that the pwq stays online.
 399 *
 400 * The if/else clause exists only for the lockdep assertion and can be
 401 * ignored.
 402 */
 403#define for_each_pwq(pwq, wq)						\
 404	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 405		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 406		else
 407
 408#ifdef CONFIG_DEBUG_OBJECTS_WORK
 409
 410static struct debug_obj_descr work_debug_descr;
 411
 412static void *work_debug_hint(void *addr)
 413{
 414	return ((struct work_struct *) addr)->func;
 415}
 416
 417/*
 418 * fixup_init is called when:
 419 * - an active object is initialized
 420 */
 421static int work_fixup_init(void *addr, enum debug_obj_state state)
 422{
 423	struct work_struct *work = addr;
 424
 425	switch (state) {
 426	case ODEBUG_STATE_ACTIVE:
 427		cancel_work_sync(work);
 428		debug_object_init(work, &work_debug_descr);
 429		return 1;
 430	default:
 431		return 0;
 432	}
 433}
 434
 435/*
 436 * fixup_activate is called when:
 437 * - an active object is activated
 438 * - an unknown object is activated (might be a statically initialized object)
 439 */
 440static int work_fixup_activate(void *addr, enum debug_obj_state state)
 441{
 442	struct work_struct *work = addr;
 443
 444	switch (state) {
 445
 446	case ODEBUG_STATE_NOTAVAILABLE:
 447		/*
 448		 * This is not really a fixup. The work struct was
 449		 * statically initialized. We just make sure that it
 450		 * is tracked in the object tracker.
 451		 */
 452		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 453			debug_object_init(work, &work_debug_descr);
 454			debug_object_activate(work, &work_debug_descr);
 455			return 0;
 456		}
 457		WARN_ON_ONCE(1);
 458		return 0;
 459
 460	case ODEBUG_STATE_ACTIVE:
 461		WARN_ON(1);
 462
 463	default:
 464		return 0;
 465	}
 466}
 467
 468/*
 469 * fixup_free is called when:
 470 * - an active object is freed
 471 */
 472static int work_fixup_free(void *addr, enum debug_obj_state state)
 473{
 474	struct work_struct *work = addr;
 475
 476	switch (state) {
 477	case ODEBUG_STATE_ACTIVE:
 478		cancel_work_sync(work);
 479		debug_object_free(work, &work_debug_descr);
 480		return 1;
 481	default:
 482		return 0;
 483	}
 484}
 485
 486static struct debug_obj_descr work_debug_descr = {
 487	.name		= "work_struct",
 488	.debug_hint	= work_debug_hint,
 489	.fixup_init	= work_fixup_init,
 490	.fixup_activate	= work_fixup_activate,
 491	.fixup_free	= work_fixup_free,
 492};
 493
 494static inline void debug_work_activate(struct work_struct *work)
 495{
 496	debug_object_activate(work, &work_debug_descr);
 497}
 498
 499static inline void debug_work_deactivate(struct work_struct *work)
 500{
 501	debug_object_deactivate(work, &work_debug_descr);
 502}
 503
 504void __init_work(struct work_struct *work, int onstack)
 505{
 506	if (onstack)
 507		debug_object_init_on_stack(work, &work_debug_descr);
 508	else
 509		debug_object_init(work, &work_debug_descr);
 510}
 511EXPORT_SYMBOL_GPL(__init_work);
 512
 513void destroy_work_on_stack(struct work_struct *work)
 514{
 515	debug_object_free(work, &work_debug_descr);
 516}
 517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 518
 519void destroy_delayed_work_on_stack(struct delayed_work *work)
 520{
 521	destroy_timer_on_stack(&work->timer);
 522	debug_object_free(&work->work, &work_debug_descr);
 523}
 524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 525
 526#else
 527static inline void debug_work_activate(struct work_struct *work) { }
 528static inline void debug_work_deactivate(struct work_struct *work) { }
 529#endif
 530
 531/**
 532 * worker_pool_assign_id - allocate ID and assing it to @pool
 533 * @pool: the pool pointer of interest
 534 *
 535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 536 * successfully, -errno on failure.
 537 */
 538static int worker_pool_assign_id(struct worker_pool *pool)
 539{
 540	int ret;
 541
 542	lockdep_assert_held(&wq_pool_mutex);
 543
 544	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 545			GFP_KERNEL);
 546	if (ret >= 0) {
 547		pool->id = ret;
 548		return 0;
 549	}
 550	return ret;
 551}
 552
 553/**
 554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 555 * @wq: the target workqueue
 556 * @node: the node ID
 557 *
 558 * This must be called either with pwq_lock held or sched RCU read locked.
 
 559 * If the pwq needs to be used beyond the locking in effect, the caller is
 560 * responsible for guaranteeing that the pwq stays online.
 561 *
 562 * Return: The unbound pool_workqueue for @node.
 563 */
 564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 565						  int node)
 566{
 567	assert_rcu_or_wq_mutex(wq);
 
 
 
 
 
 
 
 
 
 
 568	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 569}
 570
 571static unsigned int work_color_to_flags(int color)
 572{
 573	return color << WORK_STRUCT_COLOR_SHIFT;
 574}
 575
 576static int get_work_color(struct work_struct *work)
 577{
 578	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 579		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 580}
 581
 582static int work_next_color(int color)
 583{
 584	return (color + 1) % WORK_NR_COLORS;
 585}
 586
 587/*
 588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 589 * contain the pointer to the queued pwq.  Once execution starts, the flag
 590 * is cleared and the high bits contain OFFQ flags and pool ID.
 591 *
 592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 593 * and clear_work_data() can be used to set the pwq, pool or clear
 594 * work->data.  These functions should only be called while the work is
 595 * owned - ie. while the PENDING bit is set.
 596 *
 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 598 * corresponding to a work.  Pool is available once the work has been
 599 * queued anywhere after initialization until it is sync canceled.  pwq is
 600 * available only while the work item is queued.
 601 *
 602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 603 * canceled.  While being canceled, a work item may have its PENDING set
 604 * but stay off timer and worklist for arbitrarily long and nobody should
 605 * try to steal the PENDING bit.
 606 */
 607static inline void set_work_data(struct work_struct *work, unsigned long data,
 608				 unsigned long flags)
 609{
 610	WARN_ON_ONCE(!work_pending(work));
 611	atomic_long_set(&work->data, data | flags | work_static(work));
 612}
 613
 614static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 615			 unsigned long extra_flags)
 616{
 617	set_work_data(work, (unsigned long)pwq,
 618		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 619}
 620
 621static void set_work_pool_and_keep_pending(struct work_struct *work,
 622					   int pool_id)
 623{
 624	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 625		      WORK_STRUCT_PENDING);
 626}
 627
 628static void set_work_pool_and_clear_pending(struct work_struct *work,
 629					    int pool_id)
 630{
 631	/*
 632	 * The following wmb is paired with the implied mb in
 633	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 634	 * here are visible to and precede any updates by the next PENDING
 635	 * owner.
 636	 */
 637	smp_wmb();
 638	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641static void clear_work_data(struct work_struct *work)
 642{
 643	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 644	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 645}
 646
 647static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 648{
 649	unsigned long data = atomic_long_read(&work->data);
 650
 651	if (data & WORK_STRUCT_PWQ)
 652		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 653	else
 654		return NULL;
 655}
 656
 657/**
 658 * get_work_pool - return the worker_pool a given work was associated with
 659 * @work: the work item of interest
 660 *
 661 * Pools are created and destroyed under wq_pool_mutex, and allows read
 662 * access under sched-RCU read lock.  As such, this function should be
 663 * called under wq_pool_mutex or with preemption disabled.
 664 *
 665 * All fields of the returned pool are accessible as long as the above
 666 * mentioned locking is in effect.  If the returned pool needs to be used
 667 * beyond the critical section, the caller is responsible for ensuring the
 668 * returned pool is and stays online.
 669 *
 670 * Return: The worker_pool @work was last associated with.  %NULL if none.
 671 */
 672static struct worker_pool *get_work_pool(struct work_struct *work)
 673{
 674	unsigned long data = atomic_long_read(&work->data);
 675	int pool_id;
 676
 677	assert_rcu_or_pool_mutex();
 678
 679	if (data & WORK_STRUCT_PWQ)
 680		return ((struct pool_workqueue *)
 681			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 682
 683	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 684	if (pool_id == WORK_OFFQ_POOL_NONE)
 685		return NULL;
 686
 687	return idr_find(&worker_pool_idr, pool_id);
 688}
 689
 690/**
 691 * get_work_pool_id - return the worker pool ID a given work is associated with
 692 * @work: the work item of interest
 693 *
 694 * Return: The worker_pool ID @work was last associated with.
 695 * %WORK_OFFQ_POOL_NONE if none.
 696 */
 697static int get_work_pool_id(struct work_struct *work)
 698{
 699	unsigned long data = atomic_long_read(&work->data);
 700
 701	if (data & WORK_STRUCT_PWQ)
 702		return ((struct pool_workqueue *)
 703			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 704
 705	return data >> WORK_OFFQ_POOL_SHIFT;
 706}
 707
 708static void mark_work_canceling(struct work_struct *work)
 709{
 710	unsigned long pool_id = get_work_pool_id(work);
 711
 712	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 713	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 714}
 715
 716static bool work_is_canceling(struct work_struct *work)
 717{
 718	unsigned long data = atomic_long_read(&work->data);
 719
 720	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 721}
 722
 723/*
 724 * Policy functions.  These define the policies on how the global worker
 725 * pools are managed.  Unless noted otherwise, these functions assume that
 726 * they're being called with pool->lock held.
 727 */
 728
 729static bool __need_more_worker(struct worker_pool *pool)
 730{
 731	return !atomic_read(&pool->nr_running);
 732}
 733
 734/*
 735 * Need to wake up a worker?  Called from anything but currently
 736 * running workers.
 737 *
 738 * Note that, because unbound workers never contribute to nr_running, this
 739 * function will always return %true for unbound pools as long as the
 740 * worklist isn't empty.
 741 */
 742static bool need_more_worker(struct worker_pool *pool)
 743{
 744	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 745}
 746
 747/* Can I start working?  Called from busy but !running workers. */
 748static bool may_start_working(struct worker_pool *pool)
 749{
 750	return pool->nr_idle;
 751}
 752
 753/* Do I need to keep working?  Called from currently running workers. */
 754static bool keep_working(struct worker_pool *pool)
 755{
 756	return !list_empty(&pool->worklist) &&
 757		atomic_read(&pool->nr_running) <= 1;
 758}
 759
 760/* Do we need a new worker?  Called from manager. */
 761static bool need_to_create_worker(struct worker_pool *pool)
 762{
 763	return need_more_worker(pool) && !may_start_working(pool);
 764}
 765
 766/* Do I need to be the manager? */
 767static bool need_to_manage_workers(struct worker_pool *pool)
 768{
 769	return need_to_create_worker(pool) ||
 770		(pool->flags & POOL_MANAGE_WORKERS);
 771}
 772
 773/* Do we have too many workers and should some go away? */
 774static bool too_many_workers(struct worker_pool *pool)
 775{
 776	bool managing = mutex_is_locked(&pool->manager_arb);
 777	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 778	int nr_busy = pool->nr_workers - nr_idle;
 779
 780	/*
 781	 * nr_idle and idle_list may disagree if idle rebinding is in
 782	 * progress.  Never return %true if idle_list is empty.
 783	 */
 784	if (list_empty(&pool->idle_list))
 785		return false;
 786
 787	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 788}
 789
 790/*
 791 * Wake up functions.
 792 */
 793
 794/* Return the first worker.  Safe with preemption disabled */
 795static struct worker *first_worker(struct worker_pool *pool)
 796{
 797	if (unlikely(list_empty(&pool->idle_list)))
 798		return NULL;
 799
 800	return list_first_entry(&pool->idle_list, struct worker, entry);
 801}
 802
 803/**
 804 * wake_up_worker - wake up an idle worker
 805 * @pool: worker pool to wake worker from
 806 *
 807 * Wake up the first idle worker of @pool.
 808 *
 809 * CONTEXT:
 810 * spin_lock_irq(pool->lock).
 811 */
 812static void wake_up_worker(struct worker_pool *pool)
 813{
 814	struct worker *worker = first_worker(pool);
 815
 816	if (likely(worker))
 817		wake_up_process(worker->task);
 818}
 819
 820/**
 821 * wq_worker_waking_up - a worker is waking up
 822 * @task: task waking up
 823 * @cpu: CPU @task is waking up to
 824 *
 825 * This function is called during try_to_wake_up() when a worker is
 826 * being awoken.
 827 *
 828 * CONTEXT:
 829 * spin_lock_irq(rq->lock)
 830 */
 831void wq_worker_waking_up(struct task_struct *task, int cpu)
 832{
 833	struct worker *worker = kthread_data(task);
 834
 835	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 836		WARN_ON_ONCE(worker->pool->cpu != cpu);
 837		atomic_inc(&worker->pool->nr_running);
 838	}
 839}
 840
 841/**
 842 * wq_worker_sleeping - a worker is going to sleep
 843 * @task: task going to sleep
 844 * @cpu: CPU in question, must be the current CPU number
 845 *
 846 * This function is called during schedule() when a busy worker is
 847 * going to sleep.  Worker on the same cpu can be woken up by
 848 * returning pointer to its task.
 849 *
 850 * CONTEXT:
 851 * spin_lock_irq(rq->lock)
 852 *
 853 * Return:
 854 * Worker task on @cpu to wake up, %NULL if none.
 855 */
 856struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
 857{
 858	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 859	struct worker_pool *pool;
 860
 861	/*
 862	 * Rescuers, which may not have all the fields set up like normal
 863	 * workers, also reach here, let's not access anything before
 864	 * checking NOT_RUNNING.
 865	 */
 866	if (worker->flags & WORKER_NOT_RUNNING)
 867		return NULL;
 868
 869	pool = worker->pool;
 870
 871	/* this can only happen on the local cpu */
 872	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
 873		return NULL;
 874
 875	/*
 876	 * The counterpart of the following dec_and_test, implied mb,
 877	 * worklist not empty test sequence is in insert_work().
 878	 * Please read comment there.
 879	 *
 880	 * NOT_RUNNING is clear.  This means that we're bound to and
 881	 * running on the local cpu w/ rq lock held and preemption
 882	 * disabled, which in turn means that none else could be
 883	 * manipulating idle_list, so dereferencing idle_list without pool
 884	 * lock is safe.
 885	 */
 886	if (atomic_dec_and_test(&pool->nr_running) &&
 887	    !list_empty(&pool->worklist))
 888		to_wakeup = first_worker(pool);
 889	return to_wakeup ? to_wakeup->task : NULL;
 890}
 891
 892/**
 893 * worker_set_flags - set worker flags and adjust nr_running accordingly
 894 * @worker: self
 895 * @flags: flags to set
 896 * @wakeup: wakeup an idle worker if necessary
 897 *
 898 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 899 * nr_running becomes zero and @wakeup is %true, an idle worker is
 900 * woken up.
 901 *
 902 * CONTEXT:
 903 * spin_lock_irq(pool->lock)
 904 */
 905static inline void worker_set_flags(struct worker *worker, unsigned int flags,
 906				    bool wakeup)
 907{
 908	struct worker_pool *pool = worker->pool;
 909
 910	WARN_ON_ONCE(worker->task != current);
 911
 912	/*
 913	 * If transitioning into NOT_RUNNING, adjust nr_running and
 914	 * wake up an idle worker as necessary if requested by
 915	 * @wakeup.
 916	 */
 917	if ((flags & WORKER_NOT_RUNNING) &&
 918	    !(worker->flags & WORKER_NOT_RUNNING)) {
 919		if (wakeup) {
 920			if (atomic_dec_and_test(&pool->nr_running) &&
 921			    !list_empty(&pool->worklist))
 922				wake_up_worker(pool);
 923		} else
 924			atomic_dec(&pool->nr_running);
 925	}
 926
 927	worker->flags |= flags;
 928}
 929
 930/**
 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 932 * @worker: self
 933 * @flags: flags to clear
 934 *
 935 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 936 *
 937 * CONTEXT:
 938 * spin_lock_irq(pool->lock)
 939 */
 940static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 941{
 942	struct worker_pool *pool = worker->pool;
 943	unsigned int oflags = worker->flags;
 944
 945	WARN_ON_ONCE(worker->task != current);
 946
 947	worker->flags &= ~flags;
 948
 949	/*
 950	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 951	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 952	 * of multiple flags, not a single flag.
 953	 */
 954	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 955		if (!(worker->flags & WORKER_NOT_RUNNING))
 956			atomic_inc(&pool->nr_running);
 957}
 958
 959/**
 960 * find_worker_executing_work - find worker which is executing a work
 961 * @pool: pool of interest
 962 * @work: work to find worker for
 963 *
 964 * Find a worker which is executing @work on @pool by searching
 965 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 966 * to match, its current execution should match the address of @work and
 967 * its work function.  This is to avoid unwanted dependency between
 968 * unrelated work executions through a work item being recycled while still
 969 * being executed.
 970 *
 971 * This is a bit tricky.  A work item may be freed once its execution
 972 * starts and nothing prevents the freed area from being recycled for
 973 * another work item.  If the same work item address ends up being reused
 974 * before the original execution finishes, workqueue will identify the
 975 * recycled work item as currently executing and make it wait until the
 976 * current execution finishes, introducing an unwanted dependency.
 977 *
 978 * This function checks the work item address and work function to avoid
 979 * false positives.  Note that this isn't complete as one may construct a
 980 * work function which can introduce dependency onto itself through a
 981 * recycled work item.  Well, if somebody wants to shoot oneself in the
 982 * foot that badly, there's only so much we can do, and if such deadlock
 983 * actually occurs, it should be easy to locate the culprit work function.
 984 *
 985 * CONTEXT:
 986 * spin_lock_irq(pool->lock).
 987 *
 988 * Return:
 989 * Pointer to worker which is executing @work if found, %NULL
 990 * otherwise.
 991 */
 992static struct worker *find_worker_executing_work(struct worker_pool *pool,
 993						 struct work_struct *work)
 994{
 995	struct worker *worker;
 996
 997	hash_for_each_possible(pool->busy_hash, worker, hentry,
 998			       (unsigned long)work)
 999		if (worker->current_work == work &&
1000		    worker->current_func == work->func)
1001			return worker;
1002
1003	return NULL;
1004}
1005
1006/**
1007 * move_linked_works - move linked works to a list
1008 * @work: start of series of works to be scheduled
1009 * @head: target list to append @work to
1010 * @nextp: out paramter for nested worklist walking
1011 *
1012 * Schedule linked works starting from @work to @head.  Work series to
1013 * be scheduled starts at @work and includes any consecutive work with
1014 * WORK_STRUCT_LINKED set in its predecessor.
1015 *
1016 * If @nextp is not NULL, it's updated to point to the next work of
1017 * the last scheduled work.  This allows move_linked_works() to be
1018 * nested inside outer list_for_each_entry_safe().
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 */
1023static void move_linked_works(struct work_struct *work, struct list_head *head,
1024			      struct work_struct **nextp)
1025{
1026	struct work_struct *n;
1027
1028	/*
1029	 * Linked worklist will always end before the end of the list,
1030	 * use NULL for list head.
1031	 */
1032	list_for_each_entry_safe_from(work, n, NULL, entry) {
1033		list_move_tail(&work->entry, head);
1034		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035			break;
1036	}
1037
1038	/*
1039	 * If we're already inside safe list traversal and have moved
1040	 * multiple works to the scheduled queue, the next position
1041	 * needs to be updated.
1042	 */
1043	if (nextp)
1044		*nextp = n;
1045}
1046
1047/**
1048 * get_pwq - get an extra reference on the specified pool_workqueue
1049 * @pwq: pool_workqueue to get
1050 *
1051 * Obtain an extra reference on @pwq.  The caller should guarantee that
1052 * @pwq has positive refcnt and be holding the matching pool->lock.
1053 */
1054static void get_pwq(struct pool_workqueue *pwq)
1055{
1056	lockdep_assert_held(&pwq->pool->lock);
1057	WARN_ON_ONCE(pwq->refcnt <= 0);
1058	pwq->refcnt++;
1059}
1060
1061/**
1062 * put_pwq - put a pool_workqueue reference
1063 * @pwq: pool_workqueue to put
1064 *
1065 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1066 * destruction.  The caller should be holding the matching pool->lock.
1067 */
1068static void put_pwq(struct pool_workqueue *pwq)
1069{
1070	lockdep_assert_held(&pwq->pool->lock);
1071	if (likely(--pwq->refcnt))
1072		return;
1073	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074		return;
1075	/*
1076	 * @pwq can't be released under pool->lock, bounce to
1077	 * pwq_unbound_release_workfn().  This never recurses on the same
1078	 * pool->lock as this path is taken only for unbound workqueues and
1079	 * the release work item is scheduled on a per-cpu workqueue.  To
1080	 * avoid lockdep warning, unbound pool->locks are given lockdep
1081	 * subclass of 1 in get_unbound_pool().
1082	 */
1083	schedule_work(&pwq->unbound_release_work);
1084}
1085
1086/**
1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088 * @pwq: pool_workqueue to put (can be %NULL)
1089 *
1090 * put_pwq() with locking.  This function also allows %NULL @pwq.
1091 */
1092static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093{
1094	if (pwq) {
1095		/*
1096		 * As both pwqs and pools are sched-RCU protected, the
1097		 * following lock operations are safe.
1098		 */
1099		spin_lock_irq(&pwq->pool->lock);
1100		put_pwq(pwq);
1101		spin_unlock_irq(&pwq->pool->lock);
1102	}
1103}
1104
1105static void pwq_activate_delayed_work(struct work_struct *work)
1106{
1107	struct pool_workqueue *pwq = get_work_pwq(work);
1108
1109	trace_workqueue_activate_work(work);
 
 
1110	move_linked_works(work, &pwq->pool->worklist, NULL);
1111	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112	pwq->nr_active++;
1113}
1114
1115static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116{
1117	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118						    struct work_struct, entry);
1119
1120	pwq_activate_delayed_work(work);
1121}
1122
1123/**
1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125 * @pwq: pwq of interest
1126 * @color: color of work which left the queue
1127 *
1128 * A work either has completed or is removed from pending queue,
1129 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130 *
1131 * CONTEXT:
1132 * spin_lock_irq(pool->lock).
1133 */
1134static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135{
1136	/* uncolored work items don't participate in flushing or nr_active */
1137	if (color == WORK_NO_COLOR)
1138		goto out_put;
1139
1140	pwq->nr_in_flight[color]--;
1141
1142	pwq->nr_active--;
1143	if (!list_empty(&pwq->delayed_works)) {
1144		/* one down, submit a delayed one */
1145		if (pwq->nr_active < pwq->max_active)
1146			pwq_activate_first_delayed(pwq);
1147	}
1148
1149	/* is flush in progress and are we at the flushing tip? */
1150	if (likely(pwq->flush_color != color))
1151		goto out_put;
1152
1153	/* are there still in-flight works? */
1154	if (pwq->nr_in_flight[color])
1155		goto out_put;
1156
1157	/* this pwq is done, clear flush_color */
1158	pwq->flush_color = -1;
1159
1160	/*
1161	 * If this was the last pwq, wake up the first flusher.  It
1162	 * will handle the rest.
1163	 */
1164	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165		complete(&pwq->wq->first_flusher->done);
1166out_put:
1167	put_pwq(pwq);
1168}
1169
1170/**
1171 * try_to_grab_pending - steal work item from worklist and disable irq
1172 * @work: work item to steal
1173 * @is_dwork: @work is a delayed_work
1174 * @flags: place to store irq state
1175 *
1176 * Try to grab PENDING bit of @work.  This function can handle @work in any
1177 * stable state - idle, on timer or on worklist.
1178 *
1179 * Return:
1180 *  1		if @work was pending and we successfully stole PENDING
1181 *  0		if @work was idle and we claimed PENDING
1182 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183 *  -ENOENT	if someone else is canceling @work, this state may persist
1184 *		for arbitrarily long
1185 *
1186 * Note:
1187 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188 * interrupted while holding PENDING and @work off queue, irq must be
1189 * disabled on entry.  This, combined with delayed_work->timer being
1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191 *
1192 * On successful return, >= 0, irq is disabled and the caller is
1193 * responsible for releasing it using local_irq_restore(*@flags).
1194 *
1195 * This function is safe to call from any context including IRQ handler.
1196 */
1197static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198			       unsigned long *flags)
1199{
1200	struct worker_pool *pool;
1201	struct pool_workqueue *pwq;
1202
1203	local_irq_save(*flags);
1204
1205	/* try to steal the timer if it exists */
1206	if (is_dwork) {
1207		struct delayed_work *dwork = to_delayed_work(work);
1208
1209		/*
1210		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1211		 * guaranteed that the timer is not queued anywhere and not
1212		 * running on the local CPU.
1213		 */
1214		if (likely(del_timer(&dwork->timer)))
1215			return 1;
1216	}
1217
1218	/* try to claim PENDING the normal way */
1219	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220		return 0;
1221
1222	/*
1223	 * The queueing is in progress, or it is already queued. Try to
1224	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225	 */
1226	pool = get_work_pool(work);
1227	if (!pool)
1228		goto fail;
1229
1230	spin_lock(&pool->lock);
1231	/*
1232	 * work->data is guaranteed to point to pwq only while the work
1233	 * item is queued on pwq->wq, and both updating work->data to point
1234	 * to pwq on queueing and to pool on dequeueing are done under
1235	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1236	 * points to pwq which is associated with a locked pool, the work
1237	 * item is currently queued on that pool.
1238	 */
1239	pwq = get_work_pwq(work);
1240	if (pwq && pwq->pool == pool) {
1241		debug_work_deactivate(work);
1242
1243		/*
1244		 * A delayed work item cannot be grabbed directly because
1245		 * it might have linked NO_COLOR work items which, if left
1246		 * on the delayed_list, will confuse pwq->nr_active
1247		 * management later on and cause stall.  Make sure the work
1248		 * item is activated before grabbing.
1249		 */
1250		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251			pwq_activate_delayed_work(work);
1252
1253		list_del_init(&work->entry);
1254		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255
1256		/* work->data points to pwq iff queued, point to pool */
1257		set_work_pool_and_keep_pending(work, pool->id);
1258
1259		spin_unlock(&pool->lock);
1260		return 1;
1261	}
1262	spin_unlock(&pool->lock);
1263fail:
1264	local_irq_restore(*flags);
1265	if (work_is_canceling(work))
1266		return -ENOENT;
1267	cpu_relax();
1268	return -EAGAIN;
1269}
1270
1271/**
1272 * insert_work - insert a work into a pool
1273 * @pwq: pwq @work belongs to
1274 * @work: work to insert
1275 * @head: insertion point
1276 * @extra_flags: extra WORK_STRUCT_* flags to set
1277 *
1278 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279 * work_struct flags.
1280 *
1281 * CONTEXT:
1282 * spin_lock_irq(pool->lock).
1283 */
1284static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285			struct list_head *head, unsigned int extra_flags)
1286{
1287	struct worker_pool *pool = pwq->pool;
1288
1289	/* we own @work, set data and link */
1290	set_work_pwq(work, pwq, extra_flags);
1291	list_add_tail(&work->entry, head);
1292	get_pwq(pwq);
1293
1294	/*
1295	 * Ensure either wq_worker_sleeping() sees the above
1296	 * list_add_tail() or we see zero nr_running to avoid workers lying
1297	 * around lazily while there are works to be processed.
1298	 */
1299	smp_mb();
1300
1301	if (__need_more_worker(pool))
1302		wake_up_worker(pool);
1303}
1304
1305/*
1306 * Test whether @work is being queued from another work executing on the
1307 * same workqueue.
1308 */
1309static bool is_chained_work(struct workqueue_struct *wq)
1310{
1311	struct worker *worker;
1312
1313	worker = current_wq_worker();
1314	/*
1315	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1316	 * I'm @worker, it's safe to dereference it without locking.
1317	 */
1318	return worker && worker->current_pwq->wq == wq;
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321static void __queue_work(int cpu, struct workqueue_struct *wq,
1322			 struct work_struct *work)
1323{
1324	struct pool_workqueue *pwq;
1325	struct worker_pool *last_pool;
1326	struct list_head *worklist;
1327	unsigned int work_flags;
1328	unsigned int req_cpu = cpu;
1329
1330	/*
1331	 * While a work item is PENDING && off queue, a task trying to
1332	 * steal the PENDING will busy-loop waiting for it to either get
1333	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1334	 * happen with IRQ disabled.
1335	 */
1336	WARN_ON_ONCE(!irqs_disabled());
1337
1338	debug_work_activate(work);
1339
1340	/* if draining, only works from the same workqueue are allowed */
1341	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342	    WARN_ON_ONCE(!is_chained_work(wq)))
1343		return;
1344retry:
1345	if (req_cpu == WORK_CPU_UNBOUND)
1346		cpu = raw_smp_processor_id();
1347
1348	/* pwq which will be used unless @work is executing elsewhere */
1349	if (!(wq->flags & WQ_UNBOUND))
1350		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351	else
1352		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353
1354	/*
1355	 * If @work was previously on a different pool, it might still be
1356	 * running there, in which case the work needs to be queued on that
1357	 * pool to guarantee non-reentrancy.
1358	 */
1359	last_pool = get_work_pool(work);
1360	if (last_pool && last_pool != pwq->pool) {
1361		struct worker *worker;
1362
1363		spin_lock(&last_pool->lock);
1364
1365		worker = find_worker_executing_work(last_pool, work);
1366
1367		if (worker && worker->current_pwq->wq == wq) {
1368			pwq = worker->current_pwq;
1369		} else {
1370			/* meh... not running there, queue here */
1371			spin_unlock(&last_pool->lock);
1372			spin_lock(&pwq->pool->lock);
1373		}
1374	} else {
1375		spin_lock(&pwq->pool->lock);
1376	}
1377
1378	/*
1379	 * pwq is determined and locked.  For unbound pools, we could have
1380	 * raced with pwq release and it could already be dead.  If its
1381	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382	 * without another pwq replacing it in the numa_pwq_tbl or while
1383	 * work items are executing on it, so the retrying is guaranteed to
1384	 * make forward-progress.
1385	 */
1386	if (unlikely(!pwq->refcnt)) {
1387		if (wq->flags & WQ_UNBOUND) {
1388			spin_unlock(&pwq->pool->lock);
1389			cpu_relax();
1390			goto retry;
1391		}
1392		/* oops */
1393		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394			  wq->name, cpu);
1395	}
1396
1397	/* pwq determined, queue */
1398	trace_workqueue_queue_work(req_cpu, pwq, work);
1399
1400	if (WARN_ON(!list_empty(&work->entry))) {
1401		spin_unlock(&pwq->pool->lock);
1402		return;
1403	}
1404
1405	pwq->nr_in_flight[pwq->work_color]++;
1406	work_flags = work_color_to_flags(pwq->work_color);
1407
1408	if (likely(pwq->nr_active < pwq->max_active)) {
1409		trace_workqueue_activate_work(work);
1410		pwq->nr_active++;
1411		worklist = &pwq->pool->worklist;
 
 
1412	} else {
1413		work_flags |= WORK_STRUCT_DELAYED;
1414		worklist = &pwq->delayed_works;
1415	}
1416
1417	insert_work(pwq, work, worklist, work_flags);
1418
1419	spin_unlock(&pwq->pool->lock);
1420}
1421
1422/**
1423 * queue_work_on - queue work on specific cpu
1424 * @cpu: CPU number to execute work on
1425 * @wq: workqueue to use
1426 * @work: work to queue
1427 *
1428 * We queue the work to a specific CPU, the caller must ensure it
1429 * can't go away.
1430 *
1431 * Return: %false if @work was already on a queue, %true otherwise.
1432 */
1433bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434		   struct work_struct *work)
1435{
1436	bool ret = false;
1437	unsigned long flags;
1438
1439	local_irq_save(flags);
1440
1441	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442		__queue_work(cpu, wq, work);
1443		ret = true;
1444	}
1445
1446	local_irq_restore(flags);
1447	return ret;
1448}
1449EXPORT_SYMBOL(queue_work_on);
1450
1451void delayed_work_timer_fn(unsigned long __data)
1452{
1453	struct delayed_work *dwork = (struct delayed_work *)__data;
1454
1455	/* should have been called from irqsafe timer with irq already off */
1456	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1457}
1458EXPORT_SYMBOL(delayed_work_timer_fn);
1459
1460static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461				struct delayed_work *dwork, unsigned long delay)
1462{
1463	struct timer_list *timer = &dwork->timer;
1464	struct work_struct *work = &dwork->work;
1465
1466	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467		     timer->data != (unsigned long)dwork);
1468	WARN_ON_ONCE(timer_pending(timer));
1469	WARN_ON_ONCE(!list_empty(&work->entry));
1470
1471	/*
1472	 * If @delay is 0, queue @dwork->work immediately.  This is for
1473	 * both optimization and correctness.  The earliest @timer can
1474	 * expire is on the closest next tick and delayed_work users depend
1475	 * on that there's no such delay when @delay is 0.
1476	 */
1477	if (!delay) {
1478		__queue_work(cpu, wq, &dwork->work);
1479		return;
1480	}
1481
1482	timer_stats_timer_set_start_info(&dwork->timer);
1483
1484	dwork->wq = wq;
1485	dwork->cpu = cpu;
1486	timer->expires = jiffies + delay;
1487
1488	if (unlikely(cpu != WORK_CPU_UNBOUND))
1489		add_timer_on(timer, cpu);
1490	else
1491		add_timer(timer);
1492}
1493
1494/**
1495 * queue_delayed_work_on - queue work on specific CPU after delay
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
1498 * @dwork: work to queue
1499 * @delay: number of jiffies to wait before queueing
1500 *
1501 * Return: %false if @work was already on a queue, %true otherwise.  If
1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503 * execution.
1504 */
1505bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506			   struct delayed_work *dwork, unsigned long delay)
1507{
1508	struct work_struct *work = &dwork->work;
1509	bool ret = false;
1510	unsigned long flags;
1511
1512	/* read the comment in __queue_work() */
1513	local_irq_save(flags);
1514
1515	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516		__queue_delayed_work(cpu, wq, dwork, delay);
1517		ret = true;
1518	}
1519
1520	local_irq_restore(flags);
1521	return ret;
1522}
1523EXPORT_SYMBOL(queue_delayed_work_on);
1524
1525/**
1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
1529 * @dwork: work to queue
1530 * @delay: number of jiffies to wait before queueing
1531 *
1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533 * modify @dwork's timer so that it expires after @delay.  If @delay is
1534 * zero, @work is guaranteed to be scheduled immediately regardless of its
1535 * current state.
1536 *
1537 * Return: %false if @dwork was idle and queued, %true if @dwork was
1538 * pending and its timer was modified.
1539 *
1540 * This function is safe to call from any context including IRQ handler.
1541 * See try_to_grab_pending() for details.
1542 */
1543bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544			 struct delayed_work *dwork, unsigned long delay)
1545{
1546	unsigned long flags;
1547	int ret;
1548
1549	do {
1550		ret = try_to_grab_pending(&dwork->work, true, &flags);
1551	} while (unlikely(ret == -EAGAIN));
1552
1553	if (likely(ret >= 0)) {
1554		__queue_delayed_work(cpu, wq, dwork, delay);
1555		local_irq_restore(flags);
1556	}
1557
1558	/* -ENOENT from try_to_grab_pending() becomes %true */
1559	return ret;
1560}
1561EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562
1563/**
1564 * worker_enter_idle - enter idle state
1565 * @worker: worker which is entering idle state
1566 *
1567 * @worker is entering idle state.  Update stats and idle timer if
1568 * necessary.
1569 *
1570 * LOCKING:
1571 * spin_lock_irq(pool->lock).
1572 */
1573static void worker_enter_idle(struct worker *worker)
1574{
1575	struct worker_pool *pool = worker->pool;
1576
1577	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579			 (worker->hentry.next || worker->hentry.pprev)))
1580		return;
1581
1582	/* can't use worker_set_flags(), also called from start_worker() */
1583	worker->flags |= WORKER_IDLE;
1584	pool->nr_idle++;
1585	worker->last_active = jiffies;
1586
1587	/* idle_list is LIFO */
1588	list_add(&worker->entry, &pool->idle_list);
1589
1590	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592
1593	/*
1594	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596	 * nr_running, the warning may trigger spuriously.  Check iff
1597	 * unbind is not in progress.
1598	 */
1599	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600		     pool->nr_workers == pool->nr_idle &&
1601		     atomic_read(&pool->nr_running));
1602}
1603
1604/**
1605 * worker_leave_idle - leave idle state
1606 * @worker: worker which is leaving idle state
1607 *
1608 * @worker is leaving idle state.  Update stats.
1609 *
1610 * LOCKING:
1611 * spin_lock_irq(pool->lock).
1612 */
1613static void worker_leave_idle(struct worker *worker)
1614{
1615	struct worker_pool *pool = worker->pool;
1616
1617	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618		return;
1619	worker_clr_flags(worker, WORKER_IDLE);
1620	pool->nr_idle--;
1621	list_del_init(&worker->entry);
1622}
1623
1624/**
1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626 * @pool: target worker_pool
1627 *
1628 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629 *
1630 * Works which are scheduled while the cpu is online must at least be
1631 * scheduled to a worker which is bound to the cpu so that if they are
1632 * flushed from cpu callbacks while cpu is going down, they are
1633 * guaranteed to execute on the cpu.
1634 *
1635 * This function is to be used by unbound workers and rescuers to bind
1636 * themselves to the target cpu and may race with cpu going down or
1637 * coming online.  kthread_bind() can't be used because it may put the
1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639 * verbatim as it's best effort and blocking and pool may be
1640 * [dis]associated in the meantime.
1641 *
1642 * This function tries set_cpus_allowed() and locks pool and verifies the
1643 * binding against %POOL_DISASSOCIATED which is set during
1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645 * enters idle state or fetches works without dropping lock, it can
1646 * guarantee the scheduling requirement described in the first paragraph.
1647 *
1648 * CONTEXT:
1649 * Might sleep.  Called without any lock but returns with pool->lock
1650 * held.
1651 *
1652 * Return:
1653 * %true if the associated pool is online (@worker is successfully
1654 * bound), %false if offline.
1655 */
1656static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657__acquires(&pool->lock)
1658{
1659	while (true) {
1660		/*
1661		 * The following call may fail, succeed or succeed
1662		 * without actually migrating the task to the cpu if
1663		 * it races with cpu hotunplug operation.  Verify
1664		 * against POOL_DISASSOCIATED.
1665		 */
1666		if (!(pool->flags & POOL_DISASSOCIATED))
1667			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668
1669		spin_lock_irq(&pool->lock);
1670		if (pool->flags & POOL_DISASSOCIATED)
1671			return false;
1672		if (task_cpu(current) == pool->cpu &&
1673		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674			return true;
1675		spin_unlock_irq(&pool->lock);
1676
1677		/*
1678		 * We've raced with CPU hot[un]plug.  Give it a breather
1679		 * and retry migration.  cond_resched() is required here;
1680		 * otherwise, we might deadlock against cpu_stop trying to
1681		 * bring down the CPU on non-preemptive kernel.
1682		 */
1683		cpu_relax();
1684		cond_resched();
1685	}
1686}
1687
1688static struct worker *alloc_worker(void)
1689{
1690	struct worker *worker;
1691
1692	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1693	if (worker) {
1694		INIT_LIST_HEAD(&worker->entry);
1695		INIT_LIST_HEAD(&worker->scheduled);
 
1696		/* on creation a worker is in !idle && prep state */
1697		worker->flags = WORKER_PREP;
1698	}
1699	return worker;
1700}
1701
1702/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703 * create_worker - create a new workqueue worker
1704 * @pool: pool the new worker will belong to
1705 *
1706 * Create a new worker which is bound to @pool.  The returned worker
1707 * can be started by calling start_worker() or destroyed using
1708 * destroy_worker().
1709 *
1710 * CONTEXT:
1711 * Might sleep.  Does GFP_KERNEL allocations.
1712 *
1713 * Return:
1714 * Pointer to the newly created worker.
1715 */
1716static struct worker *create_worker(struct worker_pool *pool)
1717{
1718	struct worker *worker = NULL;
1719	int id = -1;
1720	char id_buf[16];
1721
1722	lockdep_assert_held(&pool->manager_mutex);
1723
1724	/*
1725	 * ID is needed to determine kthread name.  Allocate ID first
1726	 * without installing the pointer.
1727	 */
1728	idr_preload(GFP_KERNEL);
1729	spin_lock_irq(&pool->lock);
1730
1731	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732
1733	spin_unlock_irq(&pool->lock);
1734	idr_preload_end();
1735	if (id < 0)
1736		goto fail;
1737
1738	worker = alloc_worker();
1739	if (!worker)
1740		goto fail;
1741
1742	worker->pool = pool;
1743	worker->id = id;
1744
1745	if (pool->cpu >= 0)
1746		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747			 pool->attrs->nice < 0  ? "H" : "");
1748	else
1749		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
1751	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752					      "kworker/%s", id_buf);
1753	if (IS_ERR(worker->task))
1754		goto fail;
1755
1756	set_user_nice(worker->task, pool->attrs->nice);
 
1757
1758	/* prevent userland from meddling with cpumask of workqueue workers */
1759	worker->task->flags |= PF_NO_SETAFFINITY;
1760
1761	/*
1762	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1764	 */
1765	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766
1767	/*
1768	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769	 * remains stable across this function.  See the comments above the
1770	 * flag definition for details.
1771	 */
1772	if (pool->flags & POOL_DISASSOCIATED)
1773		worker->flags |= WORKER_UNBOUND;
1774
1775	/* successful, commit the pointer to idr */
1776	spin_lock_irq(&pool->lock);
1777	idr_replace(&pool->worker_idr, worker, worker->id);
 
 
1778	spin_unlock_irq(&pool->lock);
1779
1780	return worker;
1781
1782fail:
1783	if (id >= 0) {
1784		spin_lock_irq(&pool->lock);
1785		idr_remove(&pool->worker_idr, id);
1786		spin_unlock_irq(&pool->lock);
1787	}
1788	kfree(worker);
1789	return NULL;
1790}
1791
1792/**
1793 * start_worker - start a newly created worker
1794 * @worker: worker to start
1795 *
1796 * Make the pool aware of @worker and start it.
1797 *
1798 * CONTEXT:
1799 * spin_lock_irq(pool->lock).
1800 */
1801static void start_worker(struct worker *worker)
1802{
1803	worker->flags |= WORKER_STARTED;
1804	worker->pool->nr_workers++;
1805	worker_enter_idle(worker);
1806	wake_up_process(worker->task);
1807}
1808
1809/**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
1813 * Grab the managership of @pool and create and start a new worker for it.
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
1816 */
1817static int create_and_start_worker(struct worker_pool *pool)
1818{
1819	struct worker *worker;
1820
1821	mutex_lock(&pool->manager_mutex);
1822
1823	worker = create_worker(pool);
1824	if (worker) {
1825		spin_lock_irq(&pool->lock);
1826		start_worker(worker);
1827		spin_unlock_irq(&pool->lock);
1828	}
1829
1830	mutex_unlock(&pool->manager_mutex);
1831
1832	return worker ? 0 : -ENOMEM;
1833}
1834
1835/**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
1839 * Destroy @worker and adjust @pool stats accordingly.
 
1840 *
1841 * CONTEXT:
1842 * spin_lock_irq(pool->lock) which is released and regrabbed.
1843 */
1844static void destroy_worker(struct worker *worker)
1845{
1846	struct worker_pool *pool = worker->pool;
1847
1848	lockdep_assert_held(&pool->manager_mutex);
1849	lockdep_assert_held(&pool->lock);
1850
1851	/* sanity check frenzy */
1852	if (WARN_ON(worker->current_work) ||
1853	    WARN_ON(!list_empty(&worker->scheduled)))
 
1854		return;
1855
1856	if (worker->flags & WORKER_STARTED)
1857		pool->nr_workers--;
1858	if (worker->flags & WORKER_IDLE)
1859		pool->nr_idle--;
1860
1861	/*
1862	 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863	 * point.  Pin to ensure the task stays until we're done with it.
1864	 */
1865	get_task_struct(worker->task);
1866
1867	list_del_init(&worker->entry);
1868	worker->flags |= WORKER_DIE;
1869
1870	idr_remove(&pool->worker_idr, worker->id);
1871
1872	spin_unlock_irq(&pool->lock);
1873
1874	kthread_stop(worker->task);
1875	put_task_struct(worker->task);
1876	kfree(worker);
1877
1878	spin_lock_irq(&pool->lock);
1879}
1880
1881static void idle_worker_timeout(unsigned long __pool)
1882{
1883	struct worker_pool *pool = (void *)__pool;
1884
1885	spin_lock_irq(&pool->lock);
1886
1887	if (too_many_workers(pool)) {
1888		struct worker *worker;
1889		unsigned long expires;
1890
1891		/* idle_list is kept in LIFO order, check the last one */
1892		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894
1895		if (time_before(jiffies, expires))
1896			mod_timer(&pool->idle_timer, expires);
1897		else {
1898			/* it's been idle for too long, wake up manager */
1899			pool->flags |= POOL_MANAGE_WORKERS;
1900			wake_up_worker(pool);
1901		}
 
 
1902	}
1903
1904	spin_unlock_irq(&pool->lock);
1905}
1906
1907static void send_mayday(struct work_struct *work)
1908{
1909	struct pool_workqueue *pwq = get_work_pwq(work);
1910	struct workqueue_struct *wq = pwq->wq;
1911
1912	lockdep_assert_held(&wq_mayday_lock);
1913
1914	if (!wq->rescuer)
1915		return;
1916
1917	/* mayday mayday mayday */
1918	if (list_empty(&pwq->mayday_node)) {
1919		/*
1920		 * If @pwq is for an unbound wq, its base ref may be put at
1921		 * any time due to an attribute change.  Pin @pwq until the
1922		 * rescuer is done with it.
1923		 */
1924		get_pwq(pwq);
1925		list_add_tail(&pwq->mayday_node, &wq->maydays);
1926		wake_up_process(wq->rescuer->task);
1927	}
1928}
1929
1930static void pool_mayday_timeout(unsigned long __pool)
1931{
1932	struct worker_pool *pool = (void *)__pool;
1933	struct work_struct *work;
1934
1935	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1936	spin_lock(&pool->lock);
1937
1938	if (need_to_create_worker(pool)) {
1939		/*
1940		 * We've been trying to create a new worker but
1941		 * haven't been successful.  We might be hitting an
1942		 * allocation deadlock.  Send distress signals to
1943		 * rescuers.
1944		 */
1945		list_for_each_entry(work, &pool->worklist, entry)
1946			send_mayday(work);
1947	}
1948
1949	spin_unlock(&pool->lock);
1950	spin_unlock_irq(&wq_mayday_lock);
1951
1952	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1953}
1954
1955/**
1956 * maybe_create_worker - create a new worker if necessary
1957 * @pool: pool to create a new worker for
1958 *
1959 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1960 * have at least one idle worker on return from this function.  If
1961 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1962 * sent to all rescuers with works scheduled on @pool to resolve
1963 * possible allocation deadlock.
1964 *
1965 * On return, need_to_create_worker() is guaranteed to be %false and
1966 * may_start_working() %true.
1967 *
1968 * LOCKING:
1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1971 * manager.
1972 *
1973 * Return:
1974 * %false if no action was taken and pool->lock stayed locked, %true
1975 * otherwise.
1976 */
1977static bool maybe_create_worker(struct worker_pool *pool)
1978__releases(&pool->lock)
1979__acquires(&pool->lock)
1980{
1981	if (!need_to_create_worker(pool))
1982		return false;
1983restart:
1984	spin_unlock_irq(&pool->lock);
1985
1986	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1987	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1988
1989	while (true) {
1990		struct worker *worker;
1991
1992		worker = create_worker(pool);
1993		if (worker) {
1994			del_timer_sync(&pool->mayday_timer);
1995			spin_lock_irq(&pool->lock);
1996			start_worker(worker);
1997			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1998				goto restart;
1999			return true;
2000		}
2001
2002		if (!need_to_create_worker(pool))
2003			break;
2004
2005		__set_current_state(TASK_INTERRUPTIBLE);
2006		schedule_timeout(CREATE_COOLDOWN);
2007
2008		if (!need_to_create_worker(pool))
2009			break;
2010	}
2011
2012	del_timer_sync(&pool->mayday_timer);
2013	spin_lock_irq(&pool->lock);
 
 
 
 
 
2014	if (need_to_create_worker(pool))
2015		goto restart;
2016	return true;
2017}
2018
2019/**
2020 * maybe_destroy_worker - destroy workers which have been idle for a while
2021 * @pool: pool to destroy workers for
2022 *
2023 * Destroy @pool workers which have been idle for longer than
2024 * IDLE_WORKER_TIMEOUT.
2025 *
2026 * LOCKING:
2027 * spin_lock_irq(pool->lock) which may be released and regrabbed
2028 * multiple times.  Called only from manager.
2029 *
2030 * Return:
2031 * %false if no action was taken and pool->lock stayed locked, %true
2032 * otherwise.
2033 */
2034static bool maybe_destroy_workers(struct worker_pool *pool)
2035{
2036	bool ret = false;
2037
2038	while (too_many_workers(pool)) {
2039		struct worker *worker;
2040		unsigned long expires;
2041
2042		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2043		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2044
2045		if (time_before(jiffies, expires)) {
2046			mod_timer(&pool->idle_timer, expires);
2047			break;
2048		}
2049
2050		destroy_worker(worker);
2051		ret = true;
2052	}
2053
2054	return ret;
2055}
2056
2057/**
2058 * manage_workers - manage worker pool
2059 * @worker: self
2060 *
2061 * Assume the manager role and manage the worker pool @worker belongs
2062 * to.  At any given time, there can be only zero or one manager per
2063 * pool.  The exclusion is handled automatically by this function.
2064 *
2065 * The caller can safely start processing works on false return.  On
2066 * true return, it's guaranteed that need_to_create_worker() is false
2067 * and may_start_working() is true.
2068 *
2069 * CONTEXT:
2070 * spin_lock_irq(pool->lock) which may be released and regrabbed
2071 * multiple times.  Does GFP_KERNEL allocations.
2072 *
2073 * Return:
2074 * %false if the pool don't need management and the caller can safely start
2075 * processing works, %true indicates that the function released pool->lock
2076 * and reacquired it to perform some management function and that the
2077 * conditions that the caller verified while holding the lock before
2078 * calling the function might no longer be true.
2079 */
2080static bool manage_workers(struct worker *worker)
2081{
2082	struct worker_pool *pool = worker->pool;
2083	bool ret = false;
2084
2085	/*
2086	 * Managership is governed by two mutexes - manager_arb and
2087	 * manager_mutex.  manager_arb handles arbitration of manager role.
2088	 * Anyone who successfully grabs manager_arb wins the arbitration
2089	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2090	 * failure while holding pool->lock reliably indicates that someone
2091	 * else is managing the pool and the worker which failed trylock
2092	 * can proceed to executing work items.  This means that anyone
2093	 * grabbing manager_arb is responsible for actually performing
2094	 * manager duties.  If manager_arb is grabbed and released without
2095	 * actual management, the pool may stall indefinitely.
2096	 *
2097	 * manager_mutex is used for exclusion of actual management
2098	 * operations.  The holder of manager_mutex can be sure that none
2099	 * of management operations, including creation and destruction of
2100	 * workers, won't take place until the mutex is released.  Because
2101	 * manager_mutex doesn't interfere with manager role arbitration,
2102	 * it is guaranteed that the pool's management, while may be
2103	 * delayed, won't be disturbed by someone else grabbing
2104	 * manager_mutex.
2105	 */
2106	if (!mutex_trylock(&pool->manager_arb))
2107		return ret;
2108
2109	/*
2110	 * With manager arbitration won, manager_mutex would be free in
2111	 * most cases.  trylock first without dropping @pool->lock.
2112	 */
2113	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2114		spin_unlock_irq(&pool->lock);
2115		mutex_lock(&pool->manager_mutex);
2116		spin_lock_irq(&pool->lock);
2117		ret = true;
2118	}
2119
2120	pool->flags &= ~POOL_MANAGE_WORKERS;
2121
2122	/*
2123	 * Destroy and then create so that may_start_working() is true
2124	 * on return.
2125	 */
2126	ret |= maybe_destroy_workers(pool);
2127	ret |= maybe_create_worker(pool);
2128
2129	mutex_unlock(&pool->manager_mutex);
2130	mutex_unlock(&pool->manager_arb);
2131	return ret;
2132}
2133
2134/**
2135 * process_one_work - process single work
2136 * @worker: self
2137 * @work: work to process
2138 *
2139 * Process @work.  This function contains all the logics necessary to
2140 * process a single work including synchronization against and
2141 * interaction with other workers on the same cpu, queueing and
2142 * flushing.  As long as context requirement is met, any worker can
2143 * call this function to process a work.
2144 *
2145 * CONTEXT:
2146 * spin_lock_irq(pool->lock) which is released and regrabbed.
2147 */
2148static void process_one_work(struct worker *worker, struct work_struct *work)
2149__releases(&pool->lock)
2150__acquires(&pool->lock)
2151{
2152	struct pool_workqueue *pwq = get_work_pwq(work);
2153	struct worker_pool *pool = worker->pool;
2154	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2155	int work_color;
2156	struct worker *collision;
2157#ifdef CONFIG_LOCKDEP
2158	/*
2159	 * It is permissible to free the struct work_struct from
2160	 * inside the function that is called from it, this we need to
2161	 * take into account for lockdep too.  To avoid bogus "held
2162	 * lock freed" warnings as well as problems when looking into
2163	 * work->lockdep_map, make a copy and use that here.
2164	 */
2165	struct lockdep_map lockdep_map;
2166
2167	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168#endif
2169	/*
2170	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2171	 * necessary to avoid spurious warnings from rescuers servicing the
2172	 * unbound or a disassociated pool.
2173	 */
2174	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2175		     !(pool->flags & POOL_DISASSOCIATED) &&
2176		     raw_smp_processor_id() != pool->cpu);
2177
2178	/*
2179	 * A single work shouldn't be executed concurrently by
2180	 * multiple workers on a single cpu.  Check whether anyone is
2181	 * already processing the work.  If so, defer the work to the
2182	 * currently executing one.
2183	 */
2184	collision = find_worker_executing_work(pool, work);
2185	if (unlikely(collision)) {
2186		move_linked_works(work, &collision->scheduled, NULL);
2187		return;
2188	}
2189
2190	/* claim and dequeue */
2191	debug_work_deactivate(work);
2192	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2193	worker->current_work = work;
2194	worker->current_func = work->func;
2195	worker->current_pwq = pwq;
2196	work_color = get_work_color(work);
2197
2198	list_del_init(&work->entry);
2199
2200	/*
2201	 * CPU intensive works don't participate in concurrency
2202	 * management.  They're the scheduler's responsibility.
 
 
2203	 */
2204	if (unlikely(cpu_intensive))
2205		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2206
2207	/*
2208	 * Unbound pool isn't concurrency managed and work items should be
2209	 * executed ASAP.  Wake up another worker if necessary.
 
 
 
2210	 */
2211	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2212		wake_up_worker(pool);
2213
2214	/*
2215	 * Record the last pool and clear PENDING which should be the last
2216	 * update to @work.  Also, do this inside @pool->lock so that
2217	 * PENDING and queued state changes happen together while IRQ is
2218	 * disabled.
2219	 */
2220	set_work_pool_and_clear_pending(work, pool->id);
2221
2222	spin_unlock_irq(&pool->lock);
2223
2224	lock_map_acquire_read(&pwq->wq->lockdep_map);
2225	lock_map_acquire(&lockdep_map);
2226	trace_workqueue_execute_start(work);
2227	worker->current_func(work);
2228	/*
2229	 * While we must be careful to not use "work" after this, the trace
2230	 * point will only record its address.
2231	 */
2232	trace_workqueue_execute_end(work);
2233	lock_map_release(&lockdep_map);
2234	lock_map_release(&pwq->wq->lockdep_map);
2235
2236	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2237		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2238		       "     last function: %pf\n",
2239		       current->comm, preempt_count(), task_pid_nr(current),
2240		       worker->current_func);
2241		debug_show_held_locks(current);
2242		dump_stack();
2243	}
2244
2245	/*
2246	 * The following prevents a kworker from hogging CPU on !PREEMPT
2247	 * kernels, where a requeueing work item waiting for something to
2248	 * happen could deadlock with stop_machine as such work item could
2249	 * indefinitely requeue itself while all other CPUs are trapped in
2250	 * stop_machine.
 
2251	 */
2252	cond_resched();
2253
2254	spin_lock_irq(&pool->lock);
2255
2256	/* clear cpu intensive status */
2257	if (unlikely(cpu_intensive))
2258		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2259
2260	/* we're done with it, release */
2261	hash_del(&worker->hentry);
2262	worker->current_work = NULL;
2263	worker->current_func = NULL;
2264	worker->current_pwq = NULL;
2265	worker->desc_valid = false;
2266	pwq_dec_nr_in_flight(pwq, work_color);
2267}
2268
2269/**
2270 * process_scheduled_works - process scheduled works
2271 * @worker: self
2272 *
2273 * Process all scheduled works.  Please note that the scheduled list
2274 * may change while processing a work, so this function repeatedly
2275 * fetches a work from the top and executes it.
2276 *
2277 * CONTEXT:
2278 * spin_lock_irq(pool->lock) which may be released and regrabbed
2279 * multiple times.
2280 */
2281static void process_scheduled_works(struct worker *worker)
2282{
2283	while (!list_empty(&worker->scheduled)) {
2284		struct work_struct *work = list_first_entry(&worker->scheduled,
2285						struct work_struct, entry);
2286		process_one_work(worker, work);
2287	}
2288}
2289
2290/**
2291 * worker_thread - the worker thread function
2292 * @__worker: self
2293 *
2294 * The worker thread function.  All workers belong to a worker_pool -
2295 * either a per-cpu one or dynamic unbound one.  These workers process all
2296 * work items regardless of their specific target workqueue.  The only
2297 * exception is work items which belong to workqueues with a rescuer which
2298 * will be explained in rescuer_thread().
2299 *
2300 * Return: 0
2301 */
2302static int worker_thread(void *__worker)
2303{
2304	struct worker *worker = __worker;
2305	struct worker_pool *pool = worker->pool;
2306
2307	/* tell the scheduler that this is a workqueue worker */
2308	worker->task->flags |= PF_WQ_WORKER;
2309woke_up:
2310	spin_lock_irq(&pool->lock);
2311
2312	/* am I supposed to die? */
2313	if (unlikely(worker->flags & WORKER_DIE)) {
2314		spin_unlock_irq(&pool->lock);
2315		WARN_ON_ONCE(!list_empty(&worker->entry));
2316		worker->task->flags &= ~PF_WQ_WORKER;
 
 
 
 
 
2317		return 0;
2318	}
2319
2320	worker_leave_idle(worker);
2321recheck:
2322	/* no more worker necessary? */
2323	if (!need_more_worker(pool))
2324		goto sleep;
2325
2326	/* do we need to manage? */
2327	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2328		goto recheck;
2329
2330	/*
2331	 * ->scheduled list can only be filled while a worker is
2332	 * preparing to process a work or actually processing it.
2333	 * Make sure nobody diddled with it while I was sleeping.
2334	 */
2335	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2336
2337	/*
2338	 * Finish PREP stage.  We're guaranteed to have at least one idle
2339	 * worker or that someone else has already assumed the manager
2340	 * role.  This is where @worker starts participating in concurrency
2341	 * management if applicable and concurrency management is restored
2342	 * after being rebound.  See rebind_workers() for details.
2343	 */
2344	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2345
2346	do {
2347		struct work_struct *work =
2348			list_first_entry(&pool->worklist,
2349					 struct work_struct, entry);
2350
 
 
2351		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2352			/* optimization path, not strictly necessary */
2353			process_one_work(worker, work);
2354			if (unlikely(!list_empty(&worker->scheduled)))
2355				process_scheduled_works(worker);
2356		} else {
2357			move_linked_works(work, &worker->scheduled, NULL);
2358			process_scheduled_works(worker);
2359		}
2360	} while (keep_working(pool));
2361
2362	worker_set_flags(worker, WORKER_PREP, false);
2363sleep:
2364	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2365		goto recheck;
2366
2367	/*
2368	 * pool->lock is held and there's no work to process and no need to
2369	 * manage, sleep.  Workers are woken up only while holding
2370	 * pool->lock or from local cpu, so setting the current state
2371	 * before releasing pool->lock is enough to prevent losing any
2372	 * event.
2373	 */
2374	worker_enter_idle(worker);
2375	__set_current_state(TASK_INTERRUPTIBLE);
2376	spin_unlock_irq(&pool->lock);
2377	schedule();
2378	goto woke_up;
2379}
2380
2381/**
2382 * rescuer_thread - the rescuer thread function
2383 * @__rescuer: self
2384 *
2385 * Workqueue rescuer thread function.  There's one rescuer for each
2386 * workqueue which has WQ_MEM_RECLAIM set.
2387 *
2388 * Regular work processing on a pool may block trying to create a new
2389 * worker which uses GFP_KERNEL allocation which has slight chance of
2390 * developing into deadlock if some works currently on the same queue
2391 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2392 * the problem rescuer solves.
2393 *
2394 * When such condition is possible, the pool summons rescuers of all
2395 * workqueues which have works queued on the pool and let them process
2396 * those works so that forward progress can be guaranteed.
2397 *
2398 * This should happen rarely.
2399 *
2400 * Return: 0
2401 */
2402static int rescuer_thread(void *__rescuer)
2403{
2404	struct worker *rescuer = __rescuer;
2405	struct workqueue_struct *wq = rescuer->rescue_wq;
2406	struct list_head *scheduled = &rescuer->scheduled;
2407	bool should_stop;
2408
2409	set_user_nice(current, RESCUER_NICE_LEVEL);
2410
2411	/*
2412	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2413	 * doesn't participate in concurrency management.
2414	 */
2415	rescuer->task->flags |= PF_WQ_WORKER;
2416repeat:
2417	set_current_state(TASK_INTERRUPTIBLE);
2418
2419	/*
2420	 * By the time the rescuer is requested to stop, the workqueue
2421	 * shouldn't have any work pending, but @wq->maydays may still have
2422	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2423	 * all the work items before the rescuer got to them.  Go through
2424	 * @wq->maydays processing before acting on should_stop so that the
2425	 * list is always empty on exit.
2426	 */
2427	should_stop = kthread_should_stop();
2428
2429	/* see whether any pwq is asking for help */
2430	spin_lock_irq(&wq_mayday_lock);
2431
2432	while (!list_empty(&wq->maydays)) {
2433		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2434					struct pool_workqueue, mayday_node);
2435		struct worker_pool *pool = pwq->pool;
2436		struct work_struct *work, *n;
 
2437
2438		__set_current_state(TASK_RUNNING);
2439		list_del_init(&pwq->mayday_node);
2440
2441		spin_unlock_irq(&wq_mayday_lock);
2442
2443		/* migrate to the target cpu if possible */
2444		worker_maybe_bind_and_lock(pool);
 
2445		rescuer->pool = pool;
2446
2447		/*
2448		 * Slurp in all works issued via this workqueue and
2449		 * process'em.
2450		 */
2451		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2452		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2453			if (get_work_pwq(work) == pwq)
 
 
2454				move_linked_works(work, scheduled, &n);
 
 
 
2455
2456		process_scheduled_works(rescuer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457
2458		/*
2459		 * Put the reference grabbed by send_mayday().  @pool won't
2460		 * go away while we're holding its lock.
2461		 */
2462		put_pwq(pwq);
2463
2464		/*
2465		 * Leave this pool.  If keep_working() is %true, notify a
2466		 * regular worker; otherwise, we end up with 0 concurrency
2467		 * and stalling the execution.
2468		 */
2469		if (keep_working(pool))
2470			wake_up_worker(pool);
2471
2472		rescuer->pool = NULL;
2473		spin_unlock(&pool->lock);
2474		spin_lock(&wq_mayday_lock);
 
 
 
2475	}
2476
2477	spin_unlock_irq(&wq_mayday_lock);
2478
2479	if (should_stop) {
2480		__set_current_state(TASK_RUNNING);
2481		rescuer->task->flags &= ~PF_WQ_WORKER;
2482		return 0;
2483	}
2484
2485	/* rescuers should never participate in concurrency management */
2486	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2487	schedule();
2488	goto repeat;
2489}
2490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491struct wq_barrier {
2492	struct work_struct	work;
2493	struct completion	done;
 
2494};
2495
2496static void wq_barrier_func(struct work_struct *work)
2497{
2498	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2499	complete(&barr->done);
2500}
2501
2502/**
2503 * insert_wq_barrier - insert a barrier work
2504 * @pwq: pwq to insert barrier into
2505 * @barr: wq_barrier to insert
2506 * @target: target work to attach @barr to
2507 * @worker: worker currently executing @target, NULL if @target is not executing
2508 *
2509 * @barr is linked to @target such that @barr is completed only after
2510 * @target finishes execution.  Please note that the ordering
2511 * guarantee is observed only with respect to @target and on the local
2512 * cpu.
2513 *
2514 * Currently, a queued barrier can't be canceled.  This is because
2515 * try_to_grab_pending() can't determine whether the work to be
2516 * grabbed is at the head of the queue and thus can't clear LINKED
2517 * flag of the previous work while there must be a valid next work
2518 * after a work with LINKED flag set.
2519 *
2520 * Note that when @worker is non-NULL, @target may be modified
2521 * underneath us, so we can't reliably determine pwq from @target.
2522 *
2523 * CONTEXT:
2524 * spin_lock_irq(pool->lock).
2525 */
2526static void insert_wq_barrier(struct pool_workqueue *pwq,
2527			      struct wq_barrier *barr,
2528			      struct work_struct *target, struct worker *worker)
2529{
2530	struct list_head *head;
2531	unsigned int linked = 0;
2532
2533	/*
2534	 * debugobject calls are safe here even with pool->lock locked
2535	 * as we know for sure that this will not trigger any of the
2536	 * checks and call back into the fixup functions where we
2537	 * might deadlock.
2538	 */
2539	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2540	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2541	init_completion(&barr->done);
 
2542
2543	/*
2544	 * If @target is currently being executed, schedule the
2545	 * barrier to the worker; otherwise, put it after @target.
2546	 */
2547	if (worker)
2548		head = worker->scheduled.next;
2549	else {
2550		unsigned long *bits = work_data_bits(target);
2551
2552		head = target->entry.next;
2553		/* there can already be other linked works, inherit and set */
2554		linked = *bits & WORK_STRUCT_LINKED;
2555		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2556	}
2557
2558	debug_work_activate(&barr->work);
2559	insert_work(pwq, &barr->work, head,
2560		    work_color_to_flags(WORK_NO_COLOR) | linked);
2561}
2562
2563/**
2564 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2565 * @wq: workqueue being flushed
2566 * @flush_color: new flush color, < 0 for no-op
2567 * @work_color: new work color, < 0 for no-op
2568 *
2569 * Prepare pwqs for workqueue flushing.
2570 *
2571 * If @flush_color is non-negative, flush_color on all pwqs should be
2572 * -1.  If no pwq has in-flight commands at the specified color, all
2573 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2574 * has in flight commands, its pwq->flush_color is set to
2575 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2576 * wakeup logic is armed and %true is returned.
2577 *
2578 * The caller should have initialized @wq->first_flusher prior to
2579 * calling this function with non-negative @flush_color.  If
2580 * @flush_color is negative, no flush color update is done and %false
2581 * is returned.
2582 *
2583 * If @work_color is non-negative, all pwqs should have the same
2584 * work_color which is previous to @work_color and all will be
2585 * advanced to @work_color.
2586 *
2587 * CONTEXT:
2588 * mutex_lock(wq->mutex).
2589 *
2590 * Return:
2591 * %true if @flush_color >= 0 and there's something to flush.  %false
2592 * otherwise.
2593 */
2594static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2595				      int flush_color, int work_color)
2596{
2597	bool wait = false;
2598	struct pool_workqueue *pwq;
2599
2600	if (flush_color >= 0) {
2601		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2602		atomic_set(&wq->nr_pwqs_to_flush, 1);
2603	}
2604
2605	for_each_pwq(pwq, wq) {
2606		struct worker_pool *pool = pwq->pool;
2607
2608		spin_lock_irq(&pool->lock);
2609
2610		if (flush_color >= 0) {
2611			WARN_ON_ONCE(pwq->flush_color != -1);
2612
2613			if (pwq->nr_in_flight[flush_color]) {
2614				pwq->flush_color = flush_color;
2615				atomic_inc(&wq->nr_pwqs_to_flush);
2616				wait = true;
2617			}
2618		}
2619
2620		if (work_color >= 0) {
2621			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2622			pwq->work_color = work_color;
2623		}
2624
2625		spin_unlock_irq(&pool->lock);
2626	}
2627
2628	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2629		complete(&wq->first_flusher->done);
2630
2631	return wait;
2632}
2633
2634/**
2635 * flush_workqueue - ensure that any scheduled work has run to completion.
2636 * @wq: workqueue to flush
2637 *
2638 * This function sleeps until all work items which were queued on entry
2639 * have finished execution, but it is not livelocked by new incoming ones.
2640 */
2641void flush_workqueue(struct workqueue_struct *wq)
2642{
2643	struct wq_flusher this_flusher = {
2644		.list = LIST_HEAD_INIT(this_flusher.list),
2645		.flush_color = -1,
2646		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2647	};
2648	int next_color;
2649
2650	lock_map_acquire(&wq->lockdep_map);
2651	lock_map_release(&wq->lockdep_map);
2652
2653	mutex_lock(&wq->mutex);
2654
2655	/*
2656	 * Start-to-wait phase
2657	 */
2658	next_color = work_next_color(wq->work_color);
2659
2660	if (next_color != wq->flush_color) {
2661		/*
2662		 * Color space is not full.  The current work_color
2663		 * becomes our flush_color and work_color is advanced
2664		 * by one.
2665		 */
2666		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2667		this_flusher.flush_color = wq->work_color;
2668		wq->work_color = next_color;
2669
2670		if (!wq->first_flusher) {
2671			/* no flush in progress, become the first flusher */
2672			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673
2674			wq->first_flusher = &this_flusher;
2675
2676			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2677						       wq->work_color)) {
2678				/* nothing to flush, done */
2679				wq->flush_color = next_color;
2680				wq->first_flusher = NULL;
2681				goto out_unlock;
2682			}
2683		} else {
2684			/* wait in queue */
2685			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2686			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2687			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2688		}
2689	} else {
2690		/*
2691		 * Oops, color space is full, wait on overflow queue.
2692		 * The next flush completion will assign us
2693		 * flush_color and transfer to flusher_queue.
2694		 */
2695		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2696	}
2697
 
 
2698	mutex_unlock(&wq->mutex);
2699
2700	wait_for_completion(&this_flusher.done);
2701
2702	/*
2703	 * Wake-up-and-cascade phase
2704	 *
2705	 * First flushers are responsible for cascading flushes and
2706	 * handling overflow.  Non-first flushers can simply return.
2707	 */
2708	if (wq->first_flusher != &this_flusher)
2709		return;
2710
2711	mutex_lock(&wq->mutex);
2712
2713	/* we might have raced, check again with mutex held */
2714	if (wq->first_flusher != &this_flusher)
2715		goto out_unlock;
2716
2717	wq->first_flusher = NULL;
2718
2719	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2720	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2721
2722	while (true) {
2723		struct wq_flusher *next, *tmp;
2724
2725		/* complete all the flushers sharing the current flush color */
2726		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2727			if (next->flush_color != wq->flush_color)
2728				break;
2729			list_del_init(&next->list);
2730			complete(&next->done);
2731		}
2732
2733		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2734			     wq->flush_color != work_next_color(wq->work_color));
2735
2736		/* this flush_color is finished, advance by one */
2737		wq->flush_color = work_next_color(wq->flush_color);
2738
2739		/* one color has been freed, handle overflow queue */
2740		if (!list_empty(&wq->flusher_overflow)) {
2741			/*
2742			 * Assign the same color to all overflowed
2743			 * flushers, advance work_color and append to
2744			 * flusher_queue.  This is the start-to-wait
2745			 * phase for these overflowed flushers.
2746			 */
2747			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2748				tmp->flush_color = wq->work_color;
2749
2750			wq->work_color = work_next_color(wq->work_color);
2751
2752			list_splice_tail_init(&wq->flusher_overflow,
2753					      &wq->flusher_queue);
2754			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2755		}
2756
2757		if (list_empty(&wq->flusher_queue)) {
2758			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2759			break;
2760		}
2761
2762		/*
2763		 * Need to flush more colors.  Make the next flusher
2764		 * the new first flusher and arm pwqs.
2765		 */
2766		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2767		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2768
2769		list_del_init(&next->list);
2770		wq->first_flusher = next;
2771
2772		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2773			break;
2774
2775		/*
2776		 * Meh... this color is already done, clear first
2777		 * flusher and repeat cascading.
2778		 */
2779		wq->first_flusher = NULL;
2780	}
2781
2782out_unlock:
2783	mutex_unlock(&wq->mutex);
2784}
2785EXPORT_SYMBOL_GPL(flush_workqueue);
2786
2787/**
2788 * drain_workqueue - drain a workqueue
2789 * @wq: workqueue to drain
2790 *
2791 * Wait until the workqueue becomes empty.  While draining is in progress,
2792 * only chain queueing is allowed.  IOW, only currently pending or running
2793 * work items on @wq can queue further work items on it.  @wq is flushed
2794 * repeatedly until it becomes empty.  The number of flushing is detemined
2795 * by the depth of chaining and should be relatively short.  Whine if it
2796 * takes too long.
2797 */
2798void drain_workqueue(struct workqueue_struct *wq)
2799{
2800	unsigned int flush_cnt = 0;
2801	struct pool_workqueue *pwq;
2802
2803	/*
2804	 * __queue_work() needs to test whether there are drainers, is much
2805	 * hotter than drain_workqueue() and already looks at @wq->flags.
2806	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2807	 */
2808	mutex_lock(&wq->mutex);
2809	if (!wq->nr_drainers++)
2810		wq->flags |= __WQ_DRAINING;
2811	mutex_unlock(&wq->mutex);
2812reflush:
2813	flush_workqueue(wq);
2814
2815	mutex_lock(&wq->mutex);
2816
2817	for_each_pwq(pwq, wq) {
2818		bool drained;
2819
2820		spin_lock_irq(&pwq->pool->lock);
2821		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2822		spin_unlock_irq(&pwq->pool->lock);
2823
2824		if (drained)
2825			continue;
2826
2827		if (++flush_cnt == 10 ||
2828		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2829			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2830				wq->name, flush_cnt);
2831
2832		mutex_unlock(&wq->mutex);
2833		goto reflush;
2834	}
2835
2836	if (!--wq->nr_drainers)
2837		wq->flags &= ~__WQ_DRAINING;
2838	mutex_unlock(&wq->mutex);
2839}
2840EXPORT_SYMBOL_GPL(drain_workqueue);
2841
2842static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2843{
2844	struct worker *worker = NULL;
2845	struct worker_pool *pool;
2846	struct pool_workqueue *pwq;
2847
2848	might_sleep();
2849
2850	local_irq_disable();
2851	pool = get_work_pool(work);
2852	if (!pool) {
2853		local_irq_enable();
2854		return false;
2855	}
2856
2857	spin_lock(&pool->lock);
2858	/* see the comment in try_to_grab_pending() with the same code */
2859	pwq = get_work_pwq(work);
2860	if (pwq) {
2861		if (unlikely(pwq->pool != pool))
2862			goto already_gone;
2863	} else {
2864		worker = find_worker_executing_work(pool, work);
2865		if (!worker)
2866			goto already_gone;
2867		pwq = worker->current_pwq;
2868	}
2869
 
 
2870	insert_wq_barrier(pwq, barr, work, worker);
2871	spin_unlock_irq(&pool->lock);
2872
2873	/*
2874	 * If @max_active is 1 or rescuer is in use, flushing another work
2875	 * item on the same workqueue may lead to deadlock.  Make sure the
2876	 * flusher is not running on the same workqueue by verifying write
2877	 * access.
2878	 */
2879	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2880		lock_map_acquire(&pwq->wq->lockdep_map);
2881	else
2882		lock_map_acquire_read(&pwq->wq->lockdep_map);
2883	lock_map_release(&pwq->wq->lockdep_map);
2884
2885	return true;
2886already_gone:
2887	spin_unlock_irq(&pool->lock);
2888	return false;
2889}
2890
2891/**
2892 * flush_work - wait for a work to finish executing the last queueing instance
2893 * @work: the work to flush
2894 *
2895 * Wait until @work has finished execution.  @work is guaranteed to be idle
2896 * on return if it hasn't been requeued since flush started.
2897 *
2898 * Return:
2899 * %true if flush_work() waited for the work to finish execution,
2900 * %false if it was already idle.
2901 */
2902bool flush_work(struct work_struct *work)
2903{
2904	struct wq_barrier barr;
2905
2906	lock_map_acquire(&work->lockdep_map);
2907	lock_map_release(&work->lockdep_map);
2908
2909	if (start_flush_work(work, &barr)) {
2910		wait_for_completion(&barr.done);
2911		destroy_work_on_stack(&barr.work);
2912		return true;
2913	} else {
2914		return false;
2915	}
2916}
2917EXPORT_SYMBOL_GPL(flush_work);
2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2919static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2920{
 
2921	unsigned long flags;
2922	int ret;
2923
2924	do {
2925		ret = try_to_grab_pending(work, is_dwork, &flags);
2926		/*
2927		 * If someone else is canceling, wait for the same event it
2928		 * would be waiting for before retrying.
 
 
 
 
 
 
 
 
 
 
 
 
2929		 */
2930		if (unlikely(ret == -ENOENT))
2931			flush_work(work);
 
 
 
 
 
 
 
 
 
 
 
2932	} while (unlikely(ret < 0));
2933
2934	/* tell other tasks trying to grab @work to back off */
2935	mark_work_canceling(work);
2936	local_irq_restore(flags);
2937
2938	flush_work(work);
2939	clear_work_data(work);
 
 
 
 
 
 
 
 
 
 
2940	return ret;
2941}
2942
2943/**
2944 * cancel_work_sync - cancel a work and wait for it to finish
2945 * @work: the work to cancel
2946 *
2947 * Cancel @work and wait for its execution to finish.  This function
2948 * can be used even if the work re-queues itself or migrates to
2949 * another workqueue.  On return from this function, @work is
2950 * guaranteed to be not pending or executing on any CPU.
2951 *
2952 * cancel_work_sync(&delayed_work->work) must not be used for
2953 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2954 *
2955 * The caller must ensure that the workqueue on which @work was last
2956 * queued can't be destroyed before this function returns.
2957 *
2958 * Return:
2959 * %true if @work was pending, %false otherwise.
2960 */
2961bool cancel_work_sync(struct work_struct *work)
2962{
2963	return __cancel_work_timer(work, false);
2964}
2965EXPORT_SYMBOL_GPL(cancel_work_sync);
2966
2967/**
2968 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2969 * @dwork: the delayed work to flush
2970 *
2971 * Delayed timer is cancelled and the pending work is queued for
2972 * immediate execution.  Like flush_work(), this function only
2973 * considers the last queueing instance of @dwork.
2974 *
2975 * Return:
2976 * %true if flush_work() waited for the work to finish execution,
2977 * %false if it was already idle.
2978 */
2979bool flush_delayed_work(struct delayed_work *dwork)
2980{
2981	local_irq_disable();
2982	if (del_timer_sync(&dwork->timer))
2983		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2984	local_irq_enable();
2985	return flush_work(&dwork->work);
2986}
2987EXPORT_SYMBOL(flush_delayed_work);
2988
2989/**
2990 * cancel_delayed_work - cancel a delayed work
2991 * @dwork: delayed_work to cancel
2992 *
2993 * Kill off a pending delayed_work.
2994 *
2995 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2996 * pending.
2997 *
2998 * Note:
2999 * The work callback function may still be running on return, unless
3000 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3001 * use cancel_delayed_work_sync() to wait on it.
3002 *
3003 * This function is safe to call from any context including IRQ handler.
3004 */
3005bool cancel_delayed_work(struct delayed_work *dwork)
3006{
3007	unsigned long flags;
3008	int ret;
3009
3010	do {
3011		ret = try_to_grab_pending(&dwork->work, true, &flags);
3012	} while (unlikely(ret == -EAGAIN));
3013
3014	if (unlikely(ret < 0))
3015		return false;
3016
3017	set_work_pool_and_clear_pending(&dwork->work,
3018					get_work_pool_id(&dwork->work));
3019	local_irq_restore(flags);
3020	return ret;
3021}
3022EXPORT_SYMBOL(cancel_delayed_work);
3023
3024/**
3025 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026 * @dwork: the delayed work cancel
3027 *
3028 * This is cancel_work_sync() for delayed works.
3029 *
3030 * Return:
3031 * %true if @dwork was pending, %false otherwise.
3032 */
3033bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034{
3035	return __cancel_work_timer(&dwork->work, true);
3036}
3037EXPORT_SYMBOL(cancel_delayed_work_sync);
3038
3039/**
3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041 * @func: the function to call
3042 *
3043 * schedule_on_each_cpu() executes @func on each online CPU using the
3044 * system workqueue and blocks until all CPUs have completed.
3045 * schedule_on_each_cpu() is very slow.
3046 *
3047 * Return:
3048 * 0 on success, -errno on failure.
3049 */
3050int schedule_on_each_cpu(work_func_t func)
3051{
3052	int cpu;
3053	struct work_struct __percpu *works;
3054
3055	works = alloc_percpu(struct work_struct);
3056	if (!works)
3057		return -ENOMEM;
3058
3059	get_online_cpus();
3060
3061	for_each_online_cpu(cpu) {
3062		struct work_struct *work = per_cpu_ptr(works, cpu);
3063
3064		INIT_WORK(work, func);
3065		schedule_work_on(cpu, work);
3066	}
3067
3068	for_each_online_cpu(cpu)
3069		flush_work(per_cpu_ptr(works, cpu));
3070
3071	put_online_cpus();
3072	free_percpu(works);
3073	return 0;
3074}
3075
3076/**
3077 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3078 *
3079 * Forces execution of the kernel-global workqueue and blocks until its
3080 * completion.
3081 *
3082 * Think twice before calling this function!  It's very easy to get into
3083 * trouble if you don't take great care.  Either of the following situations
3084 * will lead to deadlock:
3085 *
3086 *	One of the work items currently on the workqueue needs to acquire
3087 *	a lock held by your code or its caller.
3088 *
3089 *	Your code is running in the context of a work routine.
3090 *
3091 * They will be detected by lockdep when they occur, but the first might not
3092 * occur very often.  It depends on what work items are on the workqueue and
3093 * what locks they need, which you have no control over.
3094 *
3095 * In most situations flushing the entire workqueue is overkill; you merely
3096 * need to know that a particular work item isn't queued and isn't running.
3097 * In such cases you should use cancel_delayed_work_sync() or
3098 * cancel_work_sync() instead.
3099 */
3100void flush_scheduled_work(void)
3101{
3102	flush_workqueue(system_wq);
3103}
3104EXPORT_SYMBOL(flush_scheduled_work);
3105
3106/**
3107 * execute_in_process_context - reliably execute the routine with user context
3108 * @fn:		the function to execute
3109 * @ew:		guaranteed storage for the execute work structure (must
3110 *		be available when the work executes)
3111 *
3112 * Executes the function immediately if process context is available,
3113 * otherwise schedules the function for delayed execution.
3114 *
3115 * Return:	0 - function was executed
3116 *		1 - function was scheduled for execution
3117 */
3118int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3119{
3120	if (!in_interrupt()) {
3121		fn(&ew->work);
3122		return 0;
3123	}
3124
3125	INIT_WORK(&ew->work, fn);
3126	schedule_work(&ew->work);
3127
3128	return 1;
3129}
3130EXPORT_SYMBOL_GPL(execute_in_process_context);
3131
3132#ifdef CONFIG_SYSFS
3133/*
3134 * Workqueues with WQ_SYSFS flag set is visible to userland via
3135 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3136 * following attributes.
3137 *
3138 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3139 *  max_active	RW int	: maximum number of in-flight work items
3140 *
3141 * Unbound workqueues have the following extra attributes.
3142 *
3143 *  id		RO int	: the associated pool ID
3144 *  nice	RW int	: nice value of the workers
3145 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3146 */
3147struct wq_device {
3148	struct workqueue_struct		*wq;
3149	struct device			dev;
3150};
3151
3152static struct workqueue_struct *dev_to_wq(struct device *dev)
3153{
3154	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3155
3156	return wq_dev->wq;
3157}
3158
3159static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3160			    char *buf)
3161{
3162	struct workqueue_struct *wq = dev_to_wq(dev);
3163
3164	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3165}
3166static DEVICE_ATTR_RO(per_cpu);
3167
3168static ssize_t max_active_show(struct device *dev,
3169			       struct device_attribute *attr, char *buf)
3170{
3171	struct workqueue_struct *wq = dev_to_wq(dev);
3172
3173	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3174}
3175
3176static ssize_t max_active_store(struct device *dev,
3177				struct device_attribute *attr, const char *buf,
3178				size_t count)
3179{
3180	struct workqueue_struct *wq = dev_to_wq(dev);
3181	int val;
3182
3183	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3184		return -EINVAL;
3185
3186	workqueue_set_max_active(wq, val);
3187	return count;
3188}
3189static DEVICE_ATTR_RW(max_active);
3190
3191static struct attribute *wq_sysfs_attrs[] = {
3192	&dev_attr_per_cpu.attr,
3193	&dev_attr_max_active.attr,
3194	NULL,
3195};
3196ATTRIBUTE_GROUPS(wq_sysfs);
3197
3198static ssize_t wq_pool_ids_show(struct device *dev,
3199				struct device_attribute *attr, char *buf)
3200{
3201	struct workqueue_struct *wq = dev_to_wq(dev);
3202	const char *delim = "";
3203	int node, written = 0;
3204
3205	rcu_read_lock_sched();
3206	for_each_node(node) {
3207		written += scnprintf(buf + written, PAGE_SIZE - written,
3208				     "%s%d:%d", delim, node,
3209				     unbound_pwq_by_node(wq, node)->pool->id);
3210		delim = " ";
3211	}
3212	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3213	rcu_read_unlock_sched();
3214
3215	return written;
3216}
3217
3218static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3219			    char *buf)
3220{
3221	struct workqueue_struct *wq = dev_to_wq(dev);
3222	int written;
3223
3224	mutex_lock(&wq->mutex);
3225	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3226	mutex_unlock(&wq->mutex);
3227
3228	return written;
3229}
3230
3231/* prepare workqueue_attrs for sysfs store operations */
3232static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3233{
3234	struct workqueue_attrs *attrs;
3235
3236	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3237	if (!attrs)
3238		return NULL;
3239
3240	mutex_lock(&wq->mutex);
3241	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3242	mutex_unlock(&wq->mutex);
3243	return attrs;
3244}
3245
3246static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3247			     const char *buf, size_t count)
3248{
3249	struct workqueue_struct *wq = dev_to_wq(dev);
3250	struct workqueue_attrs *attrs;
3251	int ret;
3252
3253	attrs = wq_sysfs_prep_attrs(wq);
3254	if (!attrs)
3255		return -ENOMEM;
3256
3257	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3258	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3259		ret = apply_workqueue_attrs(wq, attrs);
3260	else
3261		ret = -EINVAL;
3262
3263	free_workqueue_attrs(attrs);
3264	return ret ?: count;
3265}
3266
3267static ssize_t wq_cpumask_show(struct device *dev,
3268			       struct device_attribute *attr, char *buf)
3269{
3270	struct workqueue_struct *wq = dev_to_wq(dev);
3271	int written;
3272
3273	mutex_lock(&wq->mutex);
3274	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3275	mutex_unlock(&wq->mutex);
3276
3277	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3278	return written;
3279}
3280
3281static ssize_t wq_cpumask_store(struct device *dev,
3282				struct device_attribute *attr,
3283				const char *buf, size_t count)
3284{
3285	struct workqueue_struct *wq = dev_to_wq(dev);
3286	struct workqueue_attrs *attrs;
3287	int ret;
3288
3289	attrs = wq_sysfs_prep_attrs(wq);
3290	if (!attrs)
3291		return -ENOMEM;
3292
3293	ret = cpumask_parse(buf, attrs->cpumask);
3294	if (!ret)
3295		ret = apply_workqueue_attrs(wq, attrs);
3296
3297	free_workqueue_attrs(attrs);
3298	return ret ?: count;
3299}
3300
3301static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3302			    char *buf)
3303{
3304	struct workqueue_struct *wq = dev_to_wq(dev);
3305	int written;
3306
3307	mutex_lock(&wq->mutex);
3308	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3309			    !wq->unbound_attrs->no_numa);
3310	mutex_unlock(&wq->mutex);
3311
3312	return written;
3313}
3314
3315static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3316			     const char *buf, size_t count)
3317{
3318	struct workqueue_struct *wq = dev_to_wq(dev);
3319	struct workqueue_attrs *attrs;
3320	int v, ret;
3321
3322	attrs = wq_sysfs_prep_attrs(wq);
3323	if (!attrs)
3324		return -ENOMEM;
3325
3326	ret = -EINVAL;
3327	if (sscanf(buf, "%d", &v) == 1) {
3328		attrs->no_numa = !v;
3329		ret = apply_workqueue_attrs(wq, attrs);
3330	}
3331
3332	free_workqueue_attrs(attrs);
3333	return ret ?: count;
3334}
3335
3336static struct device_attribute wq_sysfs_unbound_attrs[] = {
3337	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3338	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3339	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3340	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3341	__ATTR_NULL,
3342};
3343
3344static struct bus_type wq_subsys = {
3345	.name				= "workqueue",
3346	.dev_groups			= wq_sysfs_groups,
3347};
3348
3349static int __init wq_sysfs_init(void)
3350{
3351	return subsys_virtual_register(&wq_subsys, NULL);
3352}
3353core_initcall(wq_sysfs_init);
3354
3355static void wq_device_release(struct device *dev)
3356{
3357	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3358
3359	kfree(wq_dev);
3360}
3361
3362/**
3363 * workqueue_sysfs_register - make a workqueue visible in sysfs
3364 * @wq: the workqueue to register
3365 *
3366 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3367 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3368 * which is the preferred method.
3369 *
3370 * Workqueue user should use this function directly iff it wants to apply
3371 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3372 * apply_workqueue_attrs() may race against userland updating the
3373 * attributes.
3374 *
3375 * Return: 0 on success, -errno on failure.
3376 */
3377int workqueue_sysfs_register(struct workqueue_struct *wq)
3378{
3379	struct wq_device *wq_dev;
3380	int ret;
3381
3382	/*
3383	 * Adjusting max_active or creating new pwqs by applyting
3384	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3385	 * workqueues.
3386	 */
3387	if (WARN_ON(wq->flags & __WQ_ORDERED))
3388		return -EINVAL;
3389
3390	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3391	if (!wq_dev)
3392		return -ENOMEM;
3393
3394	wq_dev->wq = wq;
3395	wq_dev->dev.bus = &wq_subsys;
3396	wq_dev->dev.init_name = wq->name;
3397	wq_dev->dev.release = wq_device_release;
3398
3399	/*
3400	 * unbound_attrs are created separately.  Suppress uevent until
3401	 * everything is ready.
3402	 */
3403	dev_set_uevent_suppress(&wq_dev->dev, true);
3404
3405	ret = device_register(&wq_dev->dev);
3406	if (ret) {
3407		kfree(wq_dev);
3408		wq->wq_dev = NULL;
3409		return ret;
3410	}
3411
3412	if (wq->flags & WQ_UNBOUND) {
3413		struct device_attribute *attr;
3414
3415		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3416			ret = device_create_file(&wq_dev->dev, attr);
3417			if (ret) {
3418				device_unregister(&wq_dev->dev);
3419				wq->wq_dev = NULL;
3420				return ret;
3421			}
3422		}
3423	}
3424
3425	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3426	return 0;
3427}
3428
3429/**
3430 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3431 * @wq: the workqueue to unregister
3432 *
3433 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3434 */
3435static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3436{
3437	struct wq_device *wq_dev = wq->wq_dev;
3438
3439	if (!wq->wq_dev)
3440		return;
3441
3442	wq->wq_dev = NULL;
3443	device_unregister(&wq_dev->dev);
3444}
3445#else	/* CONFIG_SYSFS */
3446static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3447#endif	/* CONFIG_SYSFS */
3448
3449/**
3450 * free_workqueue_attrs - free a workqueue_attrs
3451 * @attrs: workqueue_attrs to free
3452 *
3453 * Undo alloc_workqueue_attrs().
3454 */
3455void free_workqueue_attrs(struct workqueue_attrs *attrs)
3456{
3457	if (attrs) {
3458		free_cpumask_var(attrs->cpumask);
3459		kfree(attrs);
3460	}
3461}
3462
3463/**
3464 * alloc_workqueue_attrs - allocate a workqueue_attrs
3465 * @gfp_mask: allocation mask to use
3466 *
3467 * Allocate a new workqueue_attrs, initialize with default settings and
3468 * return it.
3469 *
3470 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3471 */
3472struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3473{
3474	struct workqueue_attrs *attrs;
3475
3476	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3477	if (!attrs)
3478		goto fail;
3479	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3480		goto fail;
3481
3482	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3483	return attrs;
3484fail:
3485	free_workqueue_attrs(attrs);
3486	return NULL;
3487}
3488
3489static void copy_workqueue_attrs(struct workqueue_attrs *to,
3490				 const struct workqueue_attrs *from)
3491{
3492	to->nice = from->nice;
3493	cpumask_copy(to->cpumask, from->cpumask);
3494	/*
3495	 * Unlike hash and equality test, this function doesn't ignore
3496	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3497	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3498	 */
3499	to->no_numa = from->no_numa;
3500}
3501
3502/* hash value of the content of @attr */
3503static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3504{
3505	u32 hash = 0;
3506
3507	hash = jhash_1word(attrs->nice, hash);
3508	hash = jhash(cpumask_bits(attrs->cpumask),
3509		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3510	return hash;
3511}
3512
3513/* content equality test */
3514static bool wqattrs_equal(const struct workqueue_attrs *a,
3515			  const struct workqueue_attrs *b)
3516{
3517	if (a->nice != b->nice)
3518		return false;
3519	if (!cpumask_equal(a->cpumask, b->cpumask))
3520		return false;
3521	return true;
3522}
3523
3524/**
3525 * init_worker_pool - initialize a newly zalloc'd worker_pool
3526 * @pool: worker_pool to initialize
3527 *
3528 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3529 *
3530 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3531 * inside @pool proper are initialized and put_unbound_pool() can be called
3532 * on @pool safely to release it.
3533 */
3534static int init_worker_pool(struct worker_pool *pool)
3535{
3536	spin_lock_init(&pool->lock);
3537	pool->id = -1;
3538	pool->cpu = -1;
3539	pool->node = NUMA_NO_NODE;
3540	pool->flags |= POOL_DISASSOCIATED;
 
3541	INIT_LIST_HEAD(&pool->worklist);
3542	INIT_LIST_HEAD(&pool->idle_list);
3543	hash_init(pool->busy_hash);
3544
3545	init_timer_deferrable(&pool->idle_timer);
3546	pool->idle_timer.function = idle_worker_timeout;
3547	pool->idle_timer.data = (unsigned long)pool;
3548
3549	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3550		    (unsigned long)pool);
3551
3552	mutex_init(&pool->manager_arb);
3553	mutex_init(&pool->manager_mutex);
3554	idr_init(&pool->worker_idr);
3555
 
3556	INIT_HLIST_NODE(&pool->hash_node);
3557	pool->refcnt = 1;
3558
3559	/* shouldn't fail above this point */
3560	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3561	if (!pool->attrs)
3562		return -ENOMEM;
3563	return 0;
3564}
3565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566static void rcu_free_pool(struct rcu_head *rcu)
3567{
3568	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3569
3570	idr_destroy(&pool->worker_idr);
3571	free_workqueue_attrs(pool->attrs);
3572	kfree(pool);
3573}
3574
3575/**
3576 * put_unbound_pool - put a worker_pool
3577 * @pool: worker_pool to put
3578 *
3579 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3580 * safe manner.  get_unbound_pool() calls this function on its failure path
3581 * and this function should be able to release pools which went through,
3582 * successfully or not, init_worker_pool().
3583 *
3584 * Should be called with wq_pool_mutex held.
3585 */
3586static void put_unbound_pool(struct worker_pool *pool)
3587{
 
3588	struct worker *worker;
3589
3590	lockdep_assert_held(&wq_pool_mutex);
3591
3592	if (--pool->refcnt)
3593		return;
3594
3595	/* sanity checks */
3596	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3597	    WARN_ON(!list_empty(&pool->worklist)))
3598		return;
3599
3600	/* release id and unhash */
3601	if (pool->id >= 0)
3602		idr_remove(&worker_pool_idr, pool->id);
3603	hash_del(&pool->hash_node);
3604
3605	/*
3606	 * Become the manager and destroy all workers.  Grabbing
3607	 * manager_arb prevents @pool's workers from blocking on
3608	 * manager_mutex.
3609	 */
3610	mutex_lock(&pool->manager_arb);
3611	mutex_lock(&pool->manager_mutex);
3612	spin_lock_irq(&pool->lock);
3613
3614	while ((worker = first_worker(pool)))
 
3615		destroy_worker(worker);
3616	WARN_ON(pool->nr_workers || pool->nr_idle);
3617
3618	spin_unlock_irq(&pool->lock);
3619	mutex_unlock(&pool->manager_mutex);
 
 
 
 
 
 
 
 
3620	mutex_unlock(&pool->manager_arb);
3621
3622	/* shut down the timers */
3623	del_timer_sync(&pool->idle_timer);
3624	del_timer_sync(&pool->mayday_timer);
3625
3626	/* sched-RCU protected to allow dereferences from get_work_pool() */
3627	call_rcu_sched(&pool->rcu, rcu_free_pool);
3628}
3629
3630/**
3631 * get_unbound_pool - get a worker_pool with the specified attributes
3632 * @attrs: the attributes of the worker_pool to get
3633 *
3634 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3635 * reference count and return it.  If there already is a matching
3636 * worker_pool, it will be used; otherwise, this function attempts to
3637 * create a new one.
3638 *
3639 * Should be called with wq_pool_mutex held.
3640 *
3641 * Return: On success, a worker_pool with the same attributes as @attrs.
3642 * On failure, %NULL.
3643 */
3644static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3645{
3646	u32 hash = wqattrs_hash(attrs);
3647	struct worker_pool *pool;
3648	int node;
 
3649
3650	lockdep_assert_held(&wq_pool_mutex);
3651
3652	/* do we already have a matching pool? */
3653	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654		if (wqattrs_equal(pool->attrs, attrs)) {
3655			pool->refcnt++;
3656			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
3657		}
3658	}
3659
3660	/* nope, create a new one */
3661	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3662	if (!pool || init_worker_pool(pool) < 0)
3663		goto fail;
3664
3665	if (workqueue_freezing)
3666		pool->flags |= POOL_FREEZING;
3667
3668	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3669	copy_workqueue_attrs(pool->attrs, attrs);
 
3670
3671	/*
3672	 * no_numa isn't a worker_pool attribute, always clear it.  See
3673	 * 'struct workqueue_attrs' comments for detail.
3674	 */
3675	pool->attrs->no_numa = false;
3676
3677	/* if cpumask is contained inside a NUMA node, we belong to that node */
3678	if (wq_numa_enabled) {
3679		for_each_node(node) {
3680			if (cpumask_subset(pool->attrs->cpumask,
3681					   wq_numa_possible_cpumask[node])) {
3682				pool->node = node;
3683				break;
3684			}
3685		}
3686	}
3687
3688	if (worker_pool_assign_id(pool) < 0)
3689		goto fail;
3690
3691	/* create and start the initial worker */
3692	if (create_and_start_worker(pool) < 0)
3693		goto fail;
3694
3695	/* install */
3696	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3697out_unlock:
3698	return pool;
3699fail:
3700	if (pool)
3701		put_unbound_pool(pool);
3702	return NULL;
3703}
3704
3705static void rcu_free_pwq(struct rcu_head *rcu)
3706{
3707	kmem_cache_free(pwq_cache,
3708			container_of(rcu, struct pool_workqueue, rcu));
3709}
3710
3711/*
3712 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3713 * and needs to be destroyed.
3714 */
3715static void pwq_unbound_release_workfn(struct work_struct *work)
3716{
3717	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3718						  unbound_release_work);
3719	struct workqueue_struct *wq = pwq->wq;
3720	struct worker_pool *pool = pwq->pool;
3721	bool is_last;
3722
3723	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3724		return;
3725
3726	/*
3727	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3728	 * necessary on release but do it anyway.  It's easier to verify
3729	 * and consistent with the linking path.
3730	 */
3731	mutex_lock(&wq->mutex);
3732	list_del_rcu(&pwq->pwqs_node);
3733	is_last = list_empty(&wq->pwqs);
3734	mutex_unlock(&wq->mutex);
3735
3736	mutex_lock(&wq_pool_mutex);
3737	put_unbound_pool(pool);
3738	mutex_unlock(&wq_pool_mutex);
3739
3740	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3741
3742	/*
3743	 * If we're the last pwq going away, @wq is already dead and no one
3744	 * is gonna access it anymore.  Free it.
3745	 */
3746	if (is_last) {
3747		free_workqueue_attrs(wq->unbound_attrs);
3748		kfree(wq);
3749	}
3750}
3751
3752/**
3753 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3754 * @pwq: target pool_workqueue
3755 *
3756 * If @pwq isn't freezing, set @pwq->max_active to the associated
3757 * workqueue's saved_max_active and activate delayed work items
3758 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3759 */
3760static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3761{
3762	struct workqueue_struct *wq = pwq->wq;
3763	bool freezable = wq->flags & WQ_FREEZABLE;
3764
3765	/* for @wq->saved_max_active */
3766	lockdep_assert_held(&wq->mutex);
3767
3768	/* fast exit for non-freezable wqs */
3769	if (!freezable && pwq->max_active == wq->saved_max_active)
3770		return;
3771
3772	spin_lock_irq(&pwq->pool->lock);
3773
3774	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
 
 
 
 
 
3775		pwq->max_active = wq->saved_max_active;
3776
3777		while (!list_empty(&pwq->delayed_works) &&
3778		       pwq->nr_active < pwq->max_active)
3779			pwq_activate_first_delayed(pwq);
3780
3781		/*
3782		 * Need to kick a worker after thawed or an unbound wq's
3783		 * max_active is bumped.  It's a slow path.  Do it always.
3784		 */
3785		wake_up_worker(pwq->pool);
3786	} else {
3787		pwq->max_active = 0;
3788	}
3789
3790	spin_unlock_irq(&pwq->pool->lock);
3791}
3792
3793/* initialize newly alloced @pwq which is associated with @wq and @pool */
3794static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3795		     struct worker_pool *pool)
3796{
3797	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3798
3799	memset(pwq, 0, sizeof(*pwq));
3800
3801	pwq->pool = pool;
3802	pwq->wq = wq;
3803	pwq->flush_color = -1;
3804	pwq->refcnt = 1;
3805	INIT_LIST_HEAD(&pwq->delayed_works);
3806	INIT_LIST_HEAD(&pwq->pwqs_node);
3807	INIT_LIST_HEAD(&pwq->mayday_node);
3808	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3809}
3810
3811/* sync @pwq with the current state of its associated wq and link it */
3812static void link_pwq(struct pool_workqueue *pwq)
3813{
3814	struct workqueue_struct *wq = pwq->wq;
3815
3816	lockdep_assert_held(&wq->mutex);
3817
3818	/* may be called multiple times, ignore if already linked */
3819	if (!list_empty(&pwq->pwqs_node))
3820		return;
3821
3822	/*
3823	 * Set the matching work_color.  This is synchronized with
3824	 * wq->mutex to avoid confusing flush_workqueue().
3825	 */
3826	pwq->work_color = wq->work_color;
3827
3828	/* sync max_active to the current setting */
3829	pwq_adjust_max_active(pwq);
3830
3831	/* link in @pwq */
3832	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833}
3834
3835/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837					const struct workqueue_attrs *attrs)
3838{
3839	struct worker_pool *pool;
3840	struct pool_workqueue *pwq;
3841
3842	lockdep_assert_held(&wq_pool_mutex);
3843
3844	pool = get_unbound_pool(attrs);
3845	if (!pool)
3846		return NULL;
3847
3848	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849	if (!pwq) {
3850		put_unbound_pool(pool);
3851		return NULL;
3852	}
3853
3854	init_pwq(pwq, wq, pool);
3855	return pwq;
3856}
3857
3858/* undo alloc_unbound_pwq(), used only in the error path */
3859static void free_unbound_pwq(struct pool_workqueue *pwq)
3860{
3861	lockdep_assert_held(&wq_pool_mutex);
3862
3863	if (pwq) {
3864		put_unbound_pool(pwq->pool);
3865		kmem_cache_free(pwq_cache, pwq);
3866	}
3867}
3868
3869/**
3870 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3871 * @attrs: the wq_attrs of interest
3872 * @node: the target NUMA node
3873 * @cpu_going_down: if >= 0, the CPU to consider as offline
3874 * @cpumask: outarg, the resulting cpumask
3875 *
3876 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3877 * @cpu_going_down is >= 0, that cpu is considered offline during
3878 * calculation.  The result is stored in @cpumask.
3879 *
3880 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3881 * enabled and @node has online CPUs requested by @attrs, the returned
3882 * cpumask is the intersection of the possible CPUs of @node and
3883 * @attrs->cpumask.
3884 *
3885 * The caller is responsible for ensuring that the cpumask of @node stays
3886 * stable.
3887 *
3888 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3889 * %false if equal.
3890 */
3891static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3892				 int cpu_going_down, cpumask_t *cpumask)
3893{
3894	if (!wq_numa_enabled || attrs->no_numa)
3895		goto use_dfl;
3896
3897	/* does @node have any online CPUs @attrs wants? */
3898	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3899	if (cpu_going_down >= 0)
3900		cpumask_clear_cpu(cpu_going_down, cpumask);
3901
3902	if (cpumask_empty(cpumask))
3903		goto use_dfl;
3904
3905	/* yeap, return possible CPUs in @node that @attrs wants */
3906	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3907	return !cpumask_equal(cpumask, attrs->cpumask);
3908
3909use_dfl:
3910	cpumask_copy(cpumask, attrs->cpumask);
3911	return false;
3912}
3913
3914/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3915static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3916						   int node,
3917						   struct pool_workqueue *pwq)
3918{
3919	struct pool_workqueue *old_pwq;
3920
 
3921	lockdep_assert_held(&wq->mutex);
3922
3923	/* link_pwq() can handle duplicate calls */
3924	link_pwq(pwq);
3925
3926	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3927	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3928	return old_pwq;
3929}
3930
3931/**
3932 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3933 * @wq: the target workqueue
3934 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3935 *
3936 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3937 * machines, this function maps a separate pwq to each NUMA node with
3938 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3939 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3940 * items finish.  Note that a work item which repeatedly requeues itself
3941 * back-to-back will stay on its current pwq.
3942 *
3943 * Performs GFP_KERNEL allocations.
3944 *
3945 * Return: 0 on success and -errno on failure.
3946 */
3947int apply_workqueue_attrs(struct workqueue_struct *wq,
3948			  const struct workqueue_attrs *attrs)
 
 
 
 
 
 
 
 
 
 
 
3949{
 
3950	struct workqueue_attrs *new_attrs, *tmp_attrs;
3951	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3952	int node, ret;
3953
3954	/* only unbound workqueues can change attributes */
3955	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3956		return -EINVAL;
3957
3958	/* creating multiple pwqs breaks ordering guarantee */
3959	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3960		return -EINVAL;
3961
3962	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3963	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3964	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3965	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3966		goto enomem;
3967
3968	/* make a copy of @attrs and sanitize it */
 
 
 
 
3969	copy_workqueue_attrs(new_attrs, attrs);
3970	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
 
 
3971
3972	/*
3973	 * We may create multiple pwqs with differing cpumasks.  Make a
3974	 * copy of @new_attrs which will be modified and used to obtain
3975	 * pools.
3976	 */
3977	copy_workqueue_attrs(tmp_attrs, new_attrs);
3978
3979	/*
3980	 * CPUs should stay stable across pwq creations and installations.
3981	 * Pin CPUs, determine the target cpumask for each node and create
3982	 * pwqs accordingly.
3983	 */
3984	get_online_cpus();
3985
3986	mutex_lock(&wq_pool_mutex);
3987
3988	/*
3989	 * If something goes wrong during CPU up/down, we'll fall back to
3990	 * the default pwq covering whole @attrs->cpumask.  Always create
3991	 * it even if we don't use it immediately.
3992	 */
3993	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994	if (!dfl_pwq)
3995		goto enomem_pwq;
3996
3997	for_each_node(node) {
3998		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3999			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000			if (!pwq_tbl[node])
4001				goto enomem_pwq;
4002		} else {
4003			dfl_pwq->refcnt++;
4004			pwq_tbl[node] = dfl_pwq;
4005		}
4006	}
4007
4008	mutex_unlock(&wq_pool_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4009
4010	/* all pwqs have been created successfully, let's install'em */
4011	mutex_lock(&wq->mutex);
4012
4013	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4014
4015	/* save the previous pwq and install the new one */
4016	for_each_node(node)
4017		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
 
4018
4019	/* @dfl_pwq might not have been used, ensure it's linked */
4020	link_pwq(dfl_pwq);
4021	swap(wq->dfl_pwq, dfl_pwq);
4022
4023	mutex_unlock(&wq->mutex);
4024
4025	/* put the old pwqs */
4026	for_each_node(node)
4027		put_pwq_unlocked(pwq_tbl[node]);
4028	put_pwq_unlocked(dfl_pwq);
4029
4030	put_online_cpus();
4031	ret = 0;
4032	/* fall through */
4033out_free:
4034	free_workqueue_attrs(tmp_attrs);
4035	free_workqueue_attrs(new_attrs);
4036	kfree(pwq_tbl);
4037	return ret;
4038
4039enomem_pwq:
4040	free_unbound_pwq(dfl_pwq);
4041	for_each_node(node)
4042		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4043			free_unbound_pwq(pwq_tbl[node]);
4044	mutex_unlock(&wq_pool_mutex);
4045	put_online_cpus();
4046enomem:
4047	ret = -ENOMEM;
4048	goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049}
4050
4051/**
4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053 * @wq: the target workqueue
4054 * @cpu: the CPU coming up or going down
4055 * @online: whether @cpu is coming up or going down
4056 *
4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4059 * @wq accordingly.
4060 *
4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062 * falls back to @wq->dfl_pwq which may not be optimal but is always
4063 * correct.
4064 *
4065 * Note that when the last allowed CPU of a NUMA node goes offline for a
4066 * workqueue with a cpumask spanning multiple nodes, the workers which were
4067 * already executing the work items for the workqueue will lose their CPU
4068 * affinity and may execute on any CPU.  This is similar to how per-cpu
4069 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4070 * affinity, it's the user's responsibility to flush the work item from
4071 * CPU_DOWN_PREPARE.
4072 */
4073static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074				   bool online)
4075{
4076	int node = cpu_to_node(cpu);
4077	int cpu_off = online ? -1 : cpu;
4078	struct pool_workqueue *old_pwq = NULL, *pwq;
4079	struct workqueue_attrs *target_attrs;
4080	cpumask_t *cpumask;
4081
4082	lockdep_assert_held(&wq_pool_mutex);
4083
4084	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
 
4085		return;
4086
4087	/*
4088	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4089	 * Let's use a preallocated one.  The following buf is protected by
4090	 * CPU hotplug exclusion.
4091	 */
4092	target_attrs = wq_update_unbound_numa_attrs_buf;
4093	cpumask = target_attrs->cpumask;
4094
4095	mutex_lock(&wq->mutex);
4096	if (wq->unbound_attrs->no_numa)
4097		goto out_unlock;
4098
4099	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100	pwq = unbound_pwq_by_node(wq, node);
4101
4102	/*
4103	 * Let's determine what needs to be done.  If the target cpumask is
4104	 * different from wq's, we need to compare it to @pwq's and create
4105	 * a new one if they don't match.  If the target cpumask equals
4106	 * wq's, the default pwq should be used.  If @pwq is already the
4107	 * default one, nothing to do; otherwise, install the default one.
4108	 */
4109	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4110		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4111			goto out_unlock;
4112	} else {
4113		if (pwq == wq->dfl_pwq)
4114			goto out_unlock;
4115		else
4116			goto use_dfl_pwq;
4117	}
4118
4119	mutex_unlock(&wq->mutex);
4120
4121	/* create a new pwq */
4122	pwq = alloc_unbound_pwq(wq, target_attrs);
4123	if (!pwq) {
4124		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4125			   wq->name);
4126		mutex_lock(&wq->mutex);
4127		goto use_dfl_pwq;
4128	}
4129
4130	/*
4131	 * Install the new pwq.  As this function is called only from CPU
4132	 * hotplug callbacks and applying a new attrs is wrapped with
4133	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4134	 * inbetween.
4135	 */
4136	mutex_lock(&wq->mutex);
4137	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4138	goto out_unlock;
4139
4140use_dfl_pwq:
 
4141	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4142	get_pwq(wq->dfl_pwq);
4143	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4144	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4145out_unlock:
4146	mutex_unlock(&wq->mutex);
4147	put_pwq_unlocked(old_pwq);
4148}
4149
4150static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4151{
4152	bool highpri = wq->flags & WQ_HIGHPRI;
4153	int cpu, ret;
4154
4155	if (!(wq->flags & WQ_UNBOUND)) {
4156		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4157		if (!wq->cpu_pwqs)
4158			return -ENOMEM;
4159
4160		for_each_possible_cpu(cpu) {
4161			struct pool_workqueue *pwq =
4162				per_cpu_ptr(wq->cpu_pwqs, cpu);
4163			struct worker_pool *cpu_pools =
4164				per_cpu(cpu_worker_pools, cpu);
4165
4166			init_pwq(pwq, wq, &cpu_pools[highpri]);
4167
4168			mutex_lock(&wq->mutex);
4169			link_pwq(pwq);
4170			mutex_unlock(&wq->mutex);
4171		}
4172		return 0;
4173	} else if (wq->flags & __WQ_ORDERED) {
4174		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4175		/* there should only be single pwq for ordering guarantee */
4176		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4177			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4178		     "ordering guarantee broken for workqueue %s\n", wq->name);
4179		return ret;
4180	} else {
4181		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4182	}
4183}
4184
4185static int wq_clamp_max_active(int max_active, unsigned int flags,
4186			       const char *name)
4187{
4188	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4189
4190	if (max_active < 1 || max_active > lim)
4191		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4192			max_active, name, 1, lim);
4193
4194	return clamp_val(max_active, 1, lim);
4195}
4196
4197struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4198					       unsigned int flags,
4199					       int max_active,
4200					       struct lock_class_key *key,
4201					       const char *lock_name, ...)
4202{
4203	size_t tbl_size = 0;
4204	va_list args;
4205	struct workqueue_struct *wq;
4206	struct pool_workqueue *pwq;
4207
4208	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4209	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4210		flags |= WQ_UNBOUND;
4211
4212	/* allocate wq and format name */
4213	if (flags & WQ_UNBOUND)
4214		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4215
4216	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4217	if (!wq)
4218		return NULL;
4219
4220	if (flags & WQ_UNBOUND) {
4221		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4222		if (!wq->unbound_attrs)
4223			goto err_free_wq;
4224	}
4225
4226	va_start(args, lock_name);
4227	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4228	va_end(args);
4229
4230	max_active = max_active ?: WQ_DFL_ACTIVE;
4231	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4232
4233	/* init wq */
4234	wq->flags = flags;
4235	wq->saved_max_active = max_active;
4236	mutex_init(&wq->mutex);
4237	atomic_set(&wq->nr_pwqs_to_flush, 0);
4238	INIT_LIST_HEAD(&wq->pwqs);
4239	INIT_LIST_HEAD(&wq->flusher_queue);
4240	INIT_LIST_HEAD(&wq->flusher_overflow);
4241	INIT_LIST_HEAD(&wq->maydays);
4242
4243	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4244	INIT_LIST_HEAD(&wq->list);
4245
4246	if (alloc_and_link_pwqs(wq) < 0)
4247		goto err_free_wq;
4248
4249	/*
4250	 * Workqueues which may be used during memory reclaim should
4251	 * have a rescuer to guarantee forward progress.
4252	 */
4253	if (flags & WQ_MEM_RECLAIM) {
4254		struct worker *rescuer;
4255
4256		rescuer = alloc_worker();
4257		if (!rescuer)
4258			goto err_destroy;
4259
4260		rescuer->rescue_wq = wq;
4261		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4262					       wq->name);
4263		if (IS_ERR(rescuer->task)) {
4264			kfree(rescuer);
4265			goto err_destroy;
4266		}
4267
4268		wq->rescuer = rescuer;
4269		rescuer->task->flags |= PF_NO_SETAFFINITY;
4270		wake_up_process(rescuer->task);
4271	}
4272
4273	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4274		goto err_destroy;
4275
4276	/*
4277	 * wq_pool_mutex protects global freeze state and workqueues list.
4278	 * Grab it, adjust max_active and add the new @wq to workqueues
4279	 * list.
4280	 */
4281	mutex_lock(&wq_pool_mutex);
4282
4283	mutex_lock(&wq->mutex);
4284	for_each_pwq(pwq, wq)
4285		pwq_adjust_max_active(pwq);
4286	mutex_unlock(&wq->mutex);
4287
4288	list_add(&wq->list, &workqueues);
4289
4290	mutex_unlock(&wq_pool_mutex);
4291
4292	return wq;
4293
4294err_free_wq:
4295	free_workqueue_attrs(wq->unbound_attrs);
4296	kfree(wq);
4297	return NULL;
4298err_destroy:
4299	destroy_workqueue(wq);
4300	return NULL;
4301}
4302EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4303
4304/**
4305 * destroy_workqueue - safely terminate a workqueue
4306 * @wq: target workqueue
4307 *
4308 * Safely destroy a workqueue. All work currently pending will be done first.
4309 */
4310void destroy_workqueue(struct workqueue_struct *wq)
4311{
4312	struct pool_workqueue *pwq;
4313	int node;
4314
4315	/* drain it before proceeding with destruction */
4316	drain_workqueue(wq);
4317
4318	/* sanity checks */
4319	mutex_lock(&wq->mutex);
4320	for_each_pwq(pwq, wq) {
4321		int i;
4322
4323		for (i = 0; i < WORK_NR_COLORS; i++) {
4324			if (WARN_ON(pwq->nr_in_flight[i])) {
4325				mutex_unlock(&wq->mutex);
4326				return;
4327			}
4328		}
4329
4330		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4331		    WARN_ON(pwq->nr_active) ||
4332		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4333			mutex_unlock(&wq->mutex);
4334			return;
4335		}
4336	}
4337	mutex_unlock(&wq->mutex);
4338
4339	/*
4340	 * wq list is used to freeze wq, remove from list after
4341	 * flushing is complete in case freeze races us.
4342	 */
4343	mutex_lock(&wq_pool_mutex);
4344	list_del_init(&wq->list);
4345	mutex_unlock(&wq_pool_mutex);
4346
4347	workqueue_sysfs_unregister(wq);
4348
4349	if (wq->rescuer) {
4350		kthread_stop(wq->rescuer->task);
4351		kfree(wq->rescuer);
4352		wq->rescuer = NULL;
4353	}
4354
4355	if (!(wq->flags & WQ_UNBOUND)) {
4356		/*
4357		 * The base ref is never dropped on per-cpu pwqs.  Directly
4358		 * free the pwqs and wq.
4359		 */
4360		free_percpu(wq->cpu_pwqs);
4361		kfree(wq);
4362	} else {
4363		/*
4364		 * We're the sole accessor of @wq at this point.  Directly
4365		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4366		 * @wq will be freed when the last pwq is released.
4367		 */
4368		for_each_node(node) {
4369			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4370			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4371			put_pwq_unlocked(pwq);
4372		}
4373
4374		/*
4375		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4376		 * put.  Don't access it afterwards.
4377		 */
4378		pwq = wq->dfl_pwq;
4379		wq->dfl_pwq = NULL;
4380		put_pwq_unlocked(pwq);
4381	}
4382}
4383EXPORT_SYMBOL_GPL(destroy_workqueue);
4384
4385/**
4386 * workqueue_set_max_active - adjust max_active of a workqueue
4387 * @wq: target workqueue
4388 * @max_active: new max_active value.
4389 *
4390 * Set max_active of @wq to @max_active.
4391 *
4392 * CONTEXT:
4393 * Don't call from IRQ context.
4394 */
4395void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4396{
4397	struct pool_workqueue *pwq;
4398
4399	/* disallow meddling with max_active for ordered workqueues */
4400	if (WARN_ON(wq->flags & __WQ_ORDERED))
4401		return;
4402
4403	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4404
4405	mutex_lock(&wq->mutex);
4406
4407	wq->saved_max_active = max_active;
4408
4409	for_each_pwq(pwq, wq)
4410		pwq_adjust_max_active(pwq);
4411
4412	mutex_unlock(&wq->mutex);
4413}
4414EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4415
4416/**
4417 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4418 *
4419 * Determine whether %current is a workqueue rescuer.  Can be used from
4420 * work functions to determine whether it's being run off the rescuer task.
4421 *
4422 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4423 */
4424bool current_is_workqueue_rescuer(void)
4425{
4426	struct worker *worker = current_wq_worker();
4427
4428	return worker && worker->rescue_wq;
4429}
4430
4431/**
4432 * workqueue_congested - test whether a workqueue is congested
4433 * @cpu: CPU in question
4434 * @wq: target workqueue
4435 *
4436 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4437 * no synchronization around this function and the test result is
4438 * unreliable and only useful as advisory hints or for debugging.
4439 *
4440 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4441 * Note that both per-cpu and unbound workqueues may be associated with
4442 * multiple pool_workqueues which have separate congested states.  A
4443 * workqueue being congested on one CPU doesn't mean the workqueue is also
4444 * contested on other CPUs / NUMA nodes.
4445 *
4446 * Return:
4447 * %true if congested, %false otherwise.
4448 */
4449bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4450{
4451	struct pool_workqueue *pwq;
4452	bool ret;
4453
4454	rcu_read_lock_sched();
4455
4456	if (cpu == WORK_CPU_UNBOUND)
4457		cpu = smp_processor_id();
4458
4459	if (!(wq->flags & WQ_UNBOUND))
4460		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4461	else
4462		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4463
4464	ret = !list_empty(&pwq->delayed_works);
4465	rcu_read_unlock_sched();
4466
4467	return ret;
4468}
4469EXPORT_SYMBOL_GPL(workqueue_congested);
4470
4471/**
4472 * work_busy - test whether a work is currently pending or running
4473 * @work: the work to be tested
4474 *
4475 * Test whether @work is currently pending or running.  There is no
4476 * synchronization around this function and the test result is
4477 * unreliable and only useful as advisory hints or for debugging.
4478 *
4479 * Return:
4480 * OR'd bitmask of WORK_BUSY_* bits.
4481 */
4482unsigned int work_busy(struct work_struct *work)
4483{
4484	struct worker_pool *pool;
4485	unsigned long flags;
4486	unsigned int ret = 0;
4487
4488	if (work_pending(work))
4489		ret |= WORK_BUSY_PENDING;
4490
4491	local_irq_save(flags);
4492	pool = get_work_pool(work);
4493	if (pool) {
4494		spin_lock(&pool->lock);
4495		if (find_worker_executing_work(pool, work))
4496			ret |= WORK_BUSY_RUNNING;
4497		spin_unlock(&pool->lock);
4498	}
4499	local_irq_restore(flags);
4500
4501	return ret;
4502}
4503EXPORT_SYMBOL_GPL(work_busy);
4504
4505/**
4506 * set_worker_desc - set description for the current work item
4507 * @fmt: printf-style format string
4508 * @...: arguments for the format string
4509 *
4510 * This function can be called by a running work function to describe what
4511 * the work item is about.  If the worker task gets dumped, this
4512 * information will be printed out together to help debugging.  The
4513 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4514 */
4515void set_worker_desc(const char *fmt, ...)
4516{
4517	struct worker *worker = current_wq_worker();
4518	va_list args;
4519
4520	if (worker) {
4521		va_start(args, fmt);
4522		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4523		va_end(args);
4524		worker->desc_valid = true;
4525	}
4526}
4527
4528/**
4529 * print_worker_info - print out worker information and description
4530 * @log_lvl: the log level to use when printing
4531 * @task: target task
4532 *
4533 * If @task is a worker and currently executing a work item, print out the
4534 * name of the workqueue being serviced and worker description set with
4535 * set_worker_desc() by the currently executing work item.
4536 *
4537 * This function can be safely called on any task as long as the
4538 * task_struct itself is accessible.  While safe, this function isn't
4539 * synchronized and may print out mixups or garbages of limited length.
4540 */
4541void print_worker_info(const char *log_lvl, struct task_struct *task)
4542{
4543	work_func_t *fn = NULL;
4544	char name[WQ_NAME_LEN] = { };
4545	char desc[WORKER_DESC_LEN] = { };
4546	struct pool_workqueue *pwq = NULL;
4547	struct workqueue_struct *wq = NULL;
4548	bool desc_valid = false;
4549	struct worker *worker;
4550
4551	if (!(task->flags & PF_WQ_WORKER))
4552		return;
4553
4554	/*
4555	 * This function is called without any synchronization and @task
4556	 * could be in any state.  Be careful with dereferences.
4557	 */
4558	worker = probe_kthread_data(task);
4559
4560	/*
4561	 * Carefully copy the associated workqueue's workfn and name.  Keep
4562	 * the original last '\0' in case the original contains garbage.
4563	 */
4564	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4565	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4566	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4567	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4568
4569	/* copy worker description */
4570	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4571	if (desc_valid)
4572		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4573
4574	if (fn || name[0] || desc[0]) {
4575		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4576		if (desc[0])
4577			pr_cont(" (%s)", desc);
4578		pr_cont("\n");
4579	}
4580}
4581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4582/*
4583 * CPU hotplug.
4584 *
4585 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586 * are a lot of assumptions on strong associations among work, pwq and
4587 * pool which make migrating pending and scheduled works very
4588 * difficult to implement without impacting hot paths.  Secondly,
4589 * worker pools serve mix of short, long and very long running works making
4590 * blocked draining impractical.
4591 *
4592 * This is solved by allowing the pools to be disassociated from the CPU
4593 * running as an unbound one and allowing it to be reattached later if the
4594 * cpu comes back online.
4595 */
4596
4597static void wq_unbind_fn(struct work_struct *work)
4598{
4599	int cpu = smp_processor_id();
4600	struct worker_pool *pool;
4601	struct worker *worker;
4602	int wi;
4603
4604	for_each_cpu_worker_pool(pool, cpu) {
4605		WARN_ON_ONCE(cpu != smp_processor_id());
4606
4607		mutex_lock(&pool->manager_mutex);
4608		spin_lock_irq(&pool->lock);
4609
4610		/*
4611		 * We've blocked all manager operations.  Make all workers
4612		 * unbound and set DISASSOCIATED.  Before this, all workers
4613		 * except for the ones which are still executing works from
4614		 * before the last CPU down must be on the cpu.  After
4615		 * this, they may become diasporas.
4616		 */
4617		for_each_pool_worker(worker, wi, pool)
4618			worker->flags |= WORKER_UNBOUND;
4619
4620		pool->flags |= POOL_DISASSOCIATED;
4621
4622		spin_unlock_irq(&pool->lock);
4623		mutex_unlock(&pool->manager_mutex);
4624
4625		/*
4626		 * Call schedule() so that we cross rq->lock and thus can
4627		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4628		 * This is necessary as scheduler callbacks may be invoked
4629		 * from other cpus.
4630		 */
4631		schedule();
4632
4633		/*
4634		 * Sched callbacks are disabled now.  Zap nr_running.
4635		 * After this, nr_running stays zero and need_more_worker()
4636		 * and keep_working() are always true as long as the
4637		 * worklist is not empty.  This pool now behaves as an
4638		 * unbound (in terms of concurrency management) pool which
4639		 * are served by workers tied to the pool.
4640		 */
4641		atomic_set(&pool->nr_running, 0);
4642
4643		/*
4644		 * With concurrency management just turned off, a busy
4645		 * worker blocking could lead to lengthy stalls.  Kick off
4646		 * unbound chain execution of currently pending work items.
4647		 */
4648		spin_lock_irq(&pool->lock);
4649		wake_up_worker(pool);
4650		spin_unlock_irq(&pool->lock);
4651	}
4652}
4653
4654/**
4655 * rebind_workers - rebind all workers of a pool to the associated CPU
4656 * @pool: pool of interest
4657 *
4658 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4659 */
4660static void rebind_workers(struct worker_pool *pool)
4661{
4662	struct worker *worker;
4663	int wi;
4664
4665	lockdep_assert_held(&pool->manager_mutex);
4666
4667	/*
4668	 * Restore CPU affinity of all workers.  As all idle workers should
4669	 * be on the run-queue of the associated CPU before any local
4670	 * wake-ups for concurrency management happen, restore CPU affinty
4671	 * of all workers first and then clear UNBOUND.  As we're called
4672	 * from CPU_ONLINE, the following shouldn't fail.
4673	 */
4674	for_each_pool_worker(worker, wi, pool)
4675		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4676						  pool->attrs->cpumask) < 0);
4677
4678	spin_lock_irq(&pool->lock);
4679
4680	for_each_pool_worker(worker, wi, pool) {
 
 
 
 
 
 
 
 
 
 
 
 
4681		unsigned int worker_flags = worker->flags;
4682
4683		/*
4684		 * A bound idle worker should actually be on the runqueue
4685		 * of the associated CPU for local wake-ups targeting it to
4686		 * work.  Kick all idle workers so that they migrate to the
4687		 * associated CPU.  Doing this in the same loop as
4688		 * replacing UNBOUND with REBOUND is safe as no worker will
4689		 * be bound before @pool->lock is released.
4690		 */
4691		if (worker_flags & WORKER_IDLE)
4692			wake_up_process(worker->task);
4693
4694		/*
4695		 * We want to clear UNBOUND but can't directly call
4696		 * worker_clr_flags() or adjust nr_running.  Atomically
4697		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4698		 * @worker will clear REBOUND using worker_clr_flags() when
4699		 * it initiates the next execution cycle thus restoring
4700		 * concurrency management.  Note that when or whether
4701		 * @worker clears REBOUND doesn't affect correctness.
4702		 *
4703		 * ACCESS_ONCE() is necessary because @worker->flags may be
4704		 * tested without holding any lock in
4705		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4706		 * fail incorrectly leading to premature concurrency
4707		 * management operations.
4708		 */
4709		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4710		worker_flags |= WORKER_REBOUND;
4711		worker_flags &= ~WORKER_UNBOUND;
4712		ACCESS_ONCE(worker->flags) = worker_flags;
4713	}
4714
4715	spin_unlock_irq(&pool->lock);
4716}
4717
4718/**
4719 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4720 * @pool: unbound pool of interest
4721 * @cpu: the CPU which is coming up
4722 *
4723 * An unbound pool may end up with a cpumask which doesn't have any online
4724 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4725 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4726 * online CPU before, cpus_allowed of all its workers should be restored.
4727 */
4728static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4729{
4730	static cpumask_t cpumask;
4731	struct worker *worker;
4732	int wi;
4733
4734	lockdep_assert_held(&pool->manager_mutex);
4735
4736	/* is @cpu allowed for @pool? */
4737	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4738		return;
4739
4740	/* is @cpu the only online CPU? */
4741	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4742	if (cpumask_weight(&cpumask) != 1)
4743		return;
4744
4745	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4746	for_each_pool_worker(worker, wi, pool)
4747		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4748						  pool->attrs->cpumask) < 0);
4749}
4750
4751/*
4752 * Workqueues should be brought up before normal priority CPU notifiers.
4753 * This will be registered high priority CPU notifier.
4754 */
4755static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4756					       unsigned long action,
4757					       void *hcpu)
4758{
4759	int cpu = (unsigned long)hcpu;
4760	struct worker_pool *pool;
4761	struct workqueue_struct *wq;
4762	int pi;
4763
4764	switch (action & ~CPU_TASKS_FROZEN) {
4765	case CPU_UP_PREPARE:
4766		for_each_cpu_worker_pool(pool, cpu) {
4767			if (pool->nr_workers)
4768				continue;
4769			if (create_and_start_worker(pool) < 0)
4770				return NOTIFY_BAD;
4771		}
4772		break;
4773
4774	case CPU_DOWN_FAILED:
4775	case CPU_ONLINE:
4776		mutex_lock(&wq_pool_mutex);
4777
4778		for_each_pool(pool, pi) {
4779			mutex_lock(&pool->manager_mutex);
4780
4781			if (pool->cpu == cpu) {
4782				spin_lock_irq(&pool->lock);
4783				pool->flags &= ~POOL_DISASSOCIATED;
4784				spin_unlock_irq(&pool->lock);
4785
 
4786				rebind_workers(pool);
4787			} else if (pool->cpu < 0) {
4788				restore_unbound_workers_cpumask(pool, cpu);
4789			}
4790
4791			mutex_unlock(&pool->manager_mutex);
4792		}
4793
4794		/* update NUMA affinity of unbound workqueues */
4795		list_for_each_entry(wq, &workqueues, list)
4796			wq_update_unbound_numa(wq, cpu, true);
4797
4798		mutex_unlock(&wq_pool_mutex);
4799		break;
4800	}
4801	return NOTIFY_OK;
4802}
4803
4804/*
4805 * Workqueues should be brought down after normal priority CPU notifiers.
4806 * This will be registered as low priority CPU notifier.
4807 */
4808static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4809						 unsigned long action,
4810						 void *hcpu)
4811{
4812	int cpu = (unsigned long)hcpu;
4813	struct work_struct unbind_work;
4814	struct workqueue_struct *wq;
4815
4816	switch (action & ~CPU_TASKS_FROZEN) {
4817	case CPU_DOWN_PREPARE:
4818		/* unbinding per-cpu workers should happen on the local CPU */
4819		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4820		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4821
4822		/* update NUMA affinity of unbound workqueues */
4823		mutex_lock(&wq_pool_mutex);
4824		list_for_each_entry(wq, &workqueues, list)
4825			wq_update_unbound_numa(wq, cpu, false);
4826		mutex_unlock(&wq_pool_mutex);
4827
4828		/* wait for per-cpu unbinding to finish */
4829		flush_work(&unbind_work);
4830		destroy_work_on_stack(&unbind_work);
4831		break;
4832	}
4833	return NOTIFY_OK;
4834}
4835
4836#ifdef CONFIG_SMP
4837
4838struct work_for_cpu {
4839	struct work_struct work;
4840	long (*fn)(void *);
4841	void *arg;
4842	long ret;
4843};
4844
4845static void work_for_cpu_fn(struct work_struct *work)
4846{
4847	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4848
4849	wfc->ret = wfc->fn(wfc->arg);
4850}
4851
4852/**
4853 * work_on_cpu - run a function in user context on a particular cpu
4854 * @cpu: the cpu to run on
4855 * @fn: the function to run
4856 * @arg: the function arg
4857 *
4858 * It is up to the caller to ensure that the cpu doesn't go offline.
4859 * The caller must not hold any locks which would prevent @fn from completing.
4860 *
4861 * Return: The value @fn returns.
4862 */
4863long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4864{
4865	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4866
4867	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4868	schedule_work_on(cpu, &wfc.work);
4869	flush_work(&wfc.work);
4870	destroy_work_on_stack(&wfc.work);
4871	return wfc.ret;
4872}
4873EXPORT_SYMBOL_GPL(work_on_cpu);
4874#endif /* CONFIG_SMP */
4875
4876#ifdef CONFIG_FREEZER
4877
4878/**
4879 * freeze_workqueues_begin - begin freezing workqueues
4880 *
4881 * Start freezing workqueues.  After this function returns, all freezable
4882 * workqueues will queue new works to their delayed_works list instead of
4883 * pool->worklist.
4884 *
4885 * CONTEXT:
4886 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4887 */
4888void freeze_workqueues_begin(void)
4889{
4890	struct worker_pool *pool;
4891	struct workqueue_struct *wq;
4892	struct pool_workqueue *pwq;
4893	int pi;
4894
4895	mutex_lock(&wq_pool_mutex);
4896
4897	WARN_ON_ONCE(workqueue_freezing);
4898	workqueue_freezing = true;
4899
4900	/* set FREEZING */
4901	for_each_pool(pool, pi) {
4902		spin_lock_irq(&pool->lock);
4903		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4904		pool->flags |= POOL_FREEZING;
4905		spin_unlock_irq(&pool->lock);
4906	}
4907
4908	list_for_each_entry(wq, &workqueues, list) {
4909		mutex_lock(&wq->mutex);
4910		for_each_pwq(pwq, wq)
4911			pwq_adjust_max_active(pwq);
4912		mutex_unlock(&wq->mutex);
4913	}
4914
4915	mutex_unlock(&wq_pool_mutex);
4916}
4917
4918/**
4919 * freeze_workqueues_busy - are freezable workqueues still busy?
4920 *
4921 * Check whether freezing is complete.  This function must be called
4922 * between freeze_workqueues_begin() and thaw_workqueues().
4923 *
4924 * CONTEXT:
4925 * Grabs and releases wq_pool_mutex.
4926 *
4927 * Return:
4928 * %true if some freezable workqueues are still busy.  %false if freezing
4929 * is complete.
4930 */
4931bool freeze_workqueues_busy(void)
4932{
4933	bool busy = false;
4934	struct workqueue_struct *wq;
4935	struct pool_workqueue *pwq;
4936
4937	mutex_lock(&wq_pool_mutex);
4938
4939	WARN_ON_ONCE(!workqueue_freezing);
4940
4941	list_for_each_entry(wq, &workqueues, list) {
4942		if (!(wq->flags & WQ_FREEZABLE))
4943			continue;
4944		/*
4945		 * nr_active is monotonically decreasing.  It's safe
4946		 * to peek without lock.
4947		 */
4948		rcu_read_lock_sched();
4949		for_each_pwq(pwq, wq) {
4950			WARN_ON_ONCE(pwq->nr_active < 0);
4951			if (pwq->nr_active) {
4952				busy = true;
4953				rcu_read_unlock_sched();
4954				goto out_unlock;
4955			}
4956		}
4957		rcu_read_unlock_sched();
4958	}
4959out_unlock:
4960	mutex_unlock(&wq_pool_mutex);
4961	return busy;
4962}
4963
4964/**
4965 * thaw_workqueues - thaw workqueues
4966 *
4967 * Thaw workqueues.  Normal queueing is restored and all collected
4968 * frozen works are transferred to their respective pool worklists.
4969 *
4970 * CONTEXT:
4971 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4972 */
4973void thaw_workqueues(void)
4974{
4975	struct workqueue_struct *wq;
4976	struct pool_workqueue *pwq;
4977	struct worker_pool *pool;
4978	int pi;
4979
4980	mutex_lock(&wq_pool_mutex);
4981
4982	if (!workqueue_freezing)
4983		goto out_unlock;
4984
4985	/* clear FREEZING */
4986	for_each_pool(pool, pi) {
4987		spin_lock_irq(&pool->lock);
4988		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4989		pool->flags &= ~POOL_FREEZING;
4990		spin_unlock_irq(&pool->lock);
4991	}
4992
4993	/* restore max_active and repopulate worklist */
4994	list_for_each_entry(wq, &workqueues, list) {
4995		mutex_lock(&wq->mutex);
4996		for_each_pwq(pwq, wq)
4997			pwq_adjust_max_active(pwq);
4998		mutex_unlock(&wq->mutex);
4999	}
5000
5001	workqueue_freezing = false;
5002out_unlock:
5003	mutex_unlock(&wq_pool_mutex);
5004}
5005#endif /* CONFIG_FREEZER */
5006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5007static void __init wq_numa_init(void)
5008{
5009	cpumask_var_t *tbl;
5010	int node, cpu;
5011
5012	/* determine NUMA pwq table len - highest node id + 1 */
5013	for_each_node(node)
5014		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5015
5016	if (num_possible_nodes() <= 1)
5017		return;
5018
5019	if (wq_disable_numa) {
5020		pr_info("workqueue: NUMA affinity support disabled\n");
5021		return;
5022	}
5023
5024	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5025	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5026
5027	/*
5028	 * We want masks of possible CPUs of each node which isn't readily
5029	 * available.  Build one from cpu_to_node() which should have been
5030	 * fully initialized by now.
5031	 */
5032	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5033	BUG_ON(!tbl);
5034
5035	for_each_node(node)
5036		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5037				node_online(node) ? node : NUMA_NO_NODE));
5038
5039	for_each_possible_cpu(cpu) {
5040		node = cpu_to_node(cpu);
5041		if (WARN_ON(node == NUMA_NO_NODE)) {
5042			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5043			/* happens iff arch is bonkers, let's just proceed */
5044			return;
5045		}
5046		cpumask_set_cpu(cpu, tbl[node]);
5047	}
5048
5049	wq_numa_possible_cpumask = tbl;
5050	wq_numa_enabled = true;
5051}
5052
5053static int __init init_workqueues(void)
5054{
5055	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5056	int i, cpu;
5057
5058	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5059
 
 
 
5060	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5061
5062	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5063	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5064
5065	wq_numa_init();
5066
5067	/* initialize CPU pools */
5068	for_each_possible_cpu(cpu) {
5069		struct worker_pool *pool;
5070
5071		i = 0;
5072		for_each_cpu_worker_pool(pool, cpu) {
5073			BUG_ON(init_worker_pool(pool));
5074			pool->cpu = cpu;
5075			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5076			pool->attrs->nice = std_nice[i++];
5077			pool->node = cpu_to_node(cpu);
5078
5079			/* alloc pool ID */
5080			mutex_lock(&wq_pool_mutex);
5081			BUG_ON(worker_pool_assign_id(pool));
5082			mutex_unlock(&wq_pool_mutex);
5083		}
5084	}
5085
5086	/* create the initial worker */
5087	for_each_online_cpu(cpu) {
5088		struct worker_pool *pool;
5089
5090		for_each_cpu_worker_pool(pool, cpu) {
5091			pool->flags &= ~POOL_DISASSOCIATED;
5092			BUG_ON(create_and_start_worker(pool) < 0);
5093		}
5094	}
5095
5096	/* create default unbound and ordered wq attrs */
5097	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5098		struct workqueue_attrs *attrs;
5099
5100		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5101		attrs->nice = std_nice[i];
5102		unbound_std_wq_attrs[i] = attrs;
5103
5104		/*
5105		 * An ordered wq should have only one pwq as ordering is
5106		 * guaranteed by max_active which is enforced by pwqs.
5107		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5108		 */
5109		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5110		attrs->nice = std_nice[i];
5111		attrs->no_numa = true;
5112		ordered_wq_attrs[i] = attrs;
5113	}
5114
5115	system_wq = alloc_workqueue("events", 0, 0);
5116	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5117	system_long_wq = alloc_workqueue("events_long", 0, 0);
5118	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5119					    WQ_UNBOUND_MAX_ACTIVE);
5120	system_freezable_wq = alloc_workqueue("events_freezable",
5121					      WQ_FREEZABLE, 0);
5122	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5123					      WQ_POWER_EFFICIENT, 0);
5124	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5125					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5126					      0);
5127	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5128	       !system_unbound_wq || !system_freezable_wq ||
5129	       !system_power_efficient_wq ||
5130	       !system_freezable_power_efficient_wq);
 
 
 
5131	return 0;
5132}
5133early_initcall(init_workqueues);
v4.6
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * attach_mutex to avoid changing binding state while
  69	 * worker_attach_to_pool() is in progress.
  70	 */
 
  71	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
 
  72
  73	/* worker flags */
 
  74	WORKER_DIE		= 1 << 1,	/* die die die */
  75	WORKER_IDLE		= 1 << 2,	/* is idle */
  76	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  77	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  78	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  79	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  80
  81	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  82				  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  85
  86	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  87	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  88
  89	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  90	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  91
  92	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93						/* call for help after 10ms
  94						   (min two ticks) */
  95	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  96	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  97
  98	/*
  99	 * Rescue workers are used only on emergencies and shared by
 100	 * all cpus.  Give MIN_NICE.
 101	 */
 102	RESCUER_NICE_LEVEL	= MIN_NICE,
 103	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 104
 105	WQ_NAME_LEN		= 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145	spinlock_t		lock;		/* the pool lock */
 146	int			cpu;		/* I: the associated cpu */
 147	int			node;		/* I: the associated node ID */
 148	int			id;		/* I: pool ID */
 149	unsigned int		flags;		/* X: flags */
 150
 151	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 152
 153	struct list_head	worklist;	/* L: list of pending works */
 154	int			nr_workers;	/* L: total number of workers */
 155
 156	/* nr_idle includes the ones off idle_list for rebinding */
 157	int			nr_idle;	/* L: currently idle ones */
 158
 159	struct list_head	idle_list;	/* X: list of idle workers */
 160	struct timer_list	idle_timer;	/* L: worker idle timeout */
 161	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 162
 163	/* a workers is either on busy_hash or idle_list, or the manager */
 164	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165						/* L: hash of busy workers */
 166
 167	/* see manage_workers() for details on the two manager mutexes */
 168	struct mutex		manager_arb;	/* manager arbitration */
 169	struct worker		*manager;	/* L: purely informational */
 170	struct mutex		attach_mutex;	/* attach/detach exclusion */
 171	struct list_head	workers;	/* A: attached workers */
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is sched-RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also sched-RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* I: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264	struct lockdep_map	lockdep_map;
 265#endif
 266	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268	/*
 269	 * Destruction of workqueue_struct is sched-RCU protected to allow
 270	 * walking the workqueues list without grabbing wq_pool_mutex.
 271	 * This is used to dump all workqueues from sysrq.
 272	 */
 273	struct rcu_head		rcu;
 274
 275	/* hot fields used during command issue, aligned to cacheline */
 276	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284					/* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 
 
 
 
 
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 293static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 294
 295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 297
 298static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 299static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 300
 301static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 302static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 303
 304/* PL: allowable cpus for unbound wqs and work items */
 305static cpumask_var_t wq_unbound_cpumask;
 306
 307/* CPU where unbound work was last round robin scheduled from this CPU */
 308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 309
 310/*
 311 * Local execution of unbound work items is no longer guaranteed.  The
 312 * following always forces round-robin CPU selection on unbound work items
 313 * to uncover usages which depend on it.
 314 */
 315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 316static bool wq_debug_force_rr_cpu = true;
 317#else
 318static bool wq_debug_force_rr_cpu = false;
 319#endif
 320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 321
 322/* the per-cpu worker pools */
 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 
 324
 325static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 326
 327/* PL: hash of all unbound pools keyed by pool->attrs */
 328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 329
 330/* I: attributes used when instantiating standard unbound pools on demand */
 331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 332
 333/* I: attributes used when instantiating ordered pools on demand */
 334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 335
 336struct workqueue_struct *system_wq __read_mostly;
 337EXPORT_SYMBOL(system_wq);
 338struct workqueue_struct *system_highpri_wq __read_mostly;
 339EXPORT_SYMBOL_GPL(system_highpri_wq);
 340struct workqueue_struct *system_long_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_long_wq);
 342struct workqueue_struct *system_unbound_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_unbound_wq);
 344struct workqueue_struct *system_freezable_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_freezable_wq);
 346struct workqueue_struct *system_power_efficient_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 350
 351static int worker_thread(void *__worker);
 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 
 353
 354#define CREATE_TRACE_POINTS
 355#include <trace/events/workqueue.h>
 356
 357#define assert_rcu_or_pool_mutex()					\
 358	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 359			 !lockdep_is_held(&wq_pool_mutex),		\
 360			 "sched RCU or wq_pool_mutex should be held")
 361
 362#define assert_rcu_or_wq_mutex(wq)					\
 363	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 364			 !lockdep_is_held(&wq->mutex),			\
 365			 "sched RCU or wq->mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 368	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 369			 !lockdep_is_held(&wq->mutex) &&		\
 370			 !lockdep_is_held(&wq_pool_mutex),		\
 371			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 
 
 
 
 372
 373#define for_each_cpu_worker_pool(pool, cpu)				\
 374	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 375	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 376	     (pool)++)
 377
 378/**
 379 * for_each_pool - iterate through all worker_pools in the system
 380 * @pool: iteration cursor
 381 * @pi: integer used for iteration
 382 *
 383 * This must be called either with wq_pool_mutex held or sched RCU read
 384 * locked.  If the pool needs to be used beyond the locking in effect, the
 385 * caller is responsible for guaranteeing that the pool stays online.
 386 *
 387 * The if/else clause exists only for the lockdep assertion and can be
 388 * ignored.
 389 */
 390#define for_each_pool(pool, pi)						\
 391	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 392		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 393		else
 394
 395/**
 396 * for_each_pool_worker - iterate through all workers of a worker_pool
 397 * @worker: iteration cursor
 
 398 * @pool: worker_pool to iterate workers of
 399 *
 400 * This must be called with @pool->attach_mutex.
 401 *
 402 * The if/else clause exists only for the lockdep assertion and can be
 403 * ignored.
 404 */
 405#define for_each_pool_worker(worker, pool)				\
 406	list_for_each_entry((worker), &(pool)->workers, node)		\
 407		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 408		else
 409
 410/**
 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 412 * @pwq: iteration cursor
 413 * @wq: the target workqueue
 414 *
 415 * This must be called either with wq->mutex held or sched RCU read locked.
 416 * If the pwq needs to be used beyond the locking in effect, the caller is
 417 * responsible for guaranteeing that the pwq stays online.
 418 *
 419 * The if/else clause exists only for the lockdep assertion and can be
 420 * ignored.
 421 */
 422#define for_each_pwq(pwq, wq)						\
 423	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 424		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 425		else
 426
 427#ifdef CONFIG_DEBUG_OBJECTS_WORK
 428
 429static struct debug_obj_descr work_debug_descr;
 430
 431static void *work_debug_hint(void *addr)
 432{
 433	return ((struct work_struct *) addr)->func;
 434}
 435
 436/*
 437 * fixup_init is called when:
 438 * - an active object is initialized
 439 */
 440static int work_fixup_init(void *addr, enum debug_obj_state state)
 441{
 442	struct work_struct *work = addr;
 443
 444	switch (state) {
 445	case ODEBUG_STATE_ACTIVE:
 446		cancel_work_sync(work);
 447		debug_object_init(work, &work_debug_descr);
 448		return 1;
 449	default:
 450		return 0;
 451	}
 452}
 453
 454/*
 455 * fixup_activate is called when:
 456 * - an active object is activated
 457 * - an unknown object is activated (might be a statically initialized object)
 458 */
 459static int work_fixup_activate(void *addr, enum debug_obj_state state)
 460{
 461	struct work_struct *work = addr;
 462
 463	switch (state) {
 464
 465	case ODEBUG_STATE_NOTAVAILABLE:
 466		/*
 467		 * This is not really a fixup. The work struct was
 468		 * statically initialized. We just make sure that it
 469		 * is tracked in the object tracker.
 470		 */
 471		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 472			debug_object_init(work, &work_debug_descr);
 473			debug_object_activate(work, &work_debug_descr);
 474			return 0;
 475		}
 476		WARN_ON_ONCE(1);
 477		return 0;
 478
 479	case ODEBUG_STATE_ACTIVE:
 480		WARN_ON(1);
 481
 482	default:
 483		return 0;
 484	}
 485}
 486
 487/*
 488 * fixup_free is called when:
 489 * - an active object is freed
 490 */
 491static int work_fixup_free(void *addr, enum debug_obj_state state)
 492{
 493	struct work_struct *work = addr;
 494
 495	switch (state) {
 496	case ODEBUG_STATE_ACTIVE:
 497		cancel_work_sync(work);
 498		debug_object_free(work, &work_debug_descr);
 499		return 1;
 500	default:
 501		return 0;
 502	}
 503}
 504
 505static struct debug_obj_descr work_debug_descr = {
 506	.name		= "work_struct",
 507	.debug_hint	= work_debug_hint,
 508	.fixup_init	= work_fixup_init,
 509	.fixup_activate	= work_fixup_activate,
 510	.fixup_free	= work_fixup_free,
 511};
 512
 513static inline void debug_work_activate(struct work_struct *work)
 514{
 515	debug_object_activate(work, &work_debug_descr);
 516}
 517
 518static inline void debug_work_deactivate(struct work_struct *work)
 519{
 520	debug_object_deactivate(work, &work_debug_descr);
 521}
 522
 523void __init_work(struct work_struct *work, int onstack)
 524{
 525	if (onstack)
 526		debug_object_init_on_stack(work, &work_debug_descr);
 527	else
 528		debug_object_init(work, &work_debug_descr);
 529}
 530EXPORT_SYMBOL_GPL(__init_work);
 531
 532void destroy_work_on_stack(struct work_struct *work)
 533{
 534	debug_object_free(work, &work_debug_descr);
 535}
 536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 537
 538void destroy_delayed_work_on_stack(struct delayed_work *work)
 539{
 540	destroy_timer_on_stack(&work->timer);
 541	debug_object_free(&work->work, &work_debug_descr);
 542}
 543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 544
 545#else
 546static inline void debug_work_activate(struct work_struct *work) { }
 547static inline void debug_work_deactivate(struct work_struct *work) { }
 548#endif
 549
 550/**
 551 * worker_pool_assign_id - allocate ID and assing it to @pool
 552 * @pool: the pool pointer of interest
 553 *
 554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 555 * successfully, -errno on failure.
 556 */
 557static int worker_pool_assign_id(struct worker_pool *pool)
 558{
 559	int ret;
 560
 561	lockdep_assert_held(&wq_pool_mutex);
 562
 563	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 564			GFP_KERNEL);
 565	if (ret >= 0) {
 566		pool->id = ret;
 567		return 0;
 568	}
 569	return ret;
 570}
 571
 572/**
 573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 574 * @wq: the target workqueue
 575 * @node: the node ID
 576 *
 577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 578 * read locked.
 579 * If the pwq needs to be used beyond the locking in effect, the caller is
 580 * responsible for guaranteeing that the pwq stays online.
 581 *
 582 * Return: The unbound pool_workqueue for @node.
 583 */
 584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 585						  int node)
 586{
 587	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 588
 589	/*
 590	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 591	 * delayed item is pending.  The plan is to keep CPU -> NODE
 592	 * mapping valid and stable across CPU on/offlines.  Once that
 593	 * happens, this workaround can be removed.
 594	 */
 595	if (unlikely(node == NUMA_NO_NODE))
 596		return wq->dfl_pwq;
 597
 598	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 599}
 600
 601static unsigned int work_color_to_flags(int color)
 602{
 603	return color << WORK_STRUCT_COLOR_SHIFT;
 604}
 605
 606static int get_work_color(struct work_struct *work)
 607{
 608	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 609		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 610}
 611
 612static int work_next_color(int color)
 613{
 614	return (color + 1) % WORK_NR_COLORS;
 615}
 616
 617/*
 618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 619 * contain the pointer to the queued pwq.  Once execution starts, the flag
 620 * is cleared and the high bits contain OFFQ flags and pool ID.
 621 *
 622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 623 * and clear_work_data() can be used to set the pwq, pool or clear
 624 * work->data.  These functions should only be called while the work is
 625 * owned - ie. while the PENDING bit is set.
 626 *
 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 628 * corresponding to a work.  Pool is available once the work has been
 629 * queued anywhere after initialization until it is sync canceled.  pwq is
 630 * available only while the work item is queued.
 631 *
 632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 633 * canceled.  While being canceled, a work item may have its PENDING set
 634 * but stay off timer and worklist for arbitrarily long and nobody should
 635 * try to steal the PENDING bit.
 636 */
 637static inline void set_work_data(struct work_struct *work, unsigned long data,
 638				 unsigned long flags)
 639{
 640	WARN_ON_ONCE(!work_pending(work));
 641	atomic_long_set(&work->data, data | flags | work_static(work));
 642}
 643
 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 645			 unsigned long extra_flags)
 646{
 647	set_work_data(work, (unsigned long)pwq,
 648		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 649}
 650
 651static void set_work_pool_and_keep_pending(struct work_struct *work,
 652					   int pool_id)
 653{
 654	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 655		      WORK_STRUCT_PENDING);
 656}
 657
 658static void set_work_pool_and_clear_pending(struct work_struct *work,
 659					    int pool_id)
 660{
 661	/*
 662	 * The following wmb is paired with the implied mb in
 663	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 664	 * here are visible to and precede any updates by the next PENDING
 665	 * owner.
 666	 */
 667	smp_wmb();
 668	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 669	/*
 670	 * The following mb guarantees that previous clear of a PENDING bit
 671	 * will not be reordered with any speculative LOADS or STORES from
 672	 * work->current_func, which is executed afterwards.  This possible
 673	 * reordering can lead to a missed execution on attempt to qeueue
 674	 * the same @work.  E.g. consider this case:
 675	 *
 676	 *   CPU#0                         CPU#1
 677	 *   ----------------------------  --------------------------------
 678	 *
 679	 * 1  STORE event_indicated
 680	 * 2  queue_work_on() {
 681	 * 3    test_and_set_bit(PENDING)
 682	 * 4 }                             set_..._and_clear_pending() {
 683	 * 5                                 set_work_data() # clear bit
 684	 * 6                                 smp_mb()
 685	 * 7                               work->current_func() {
 686	 * 8				      LOAD event_indicated
 687	 *				   }
 688	 *
 689	 * Without an explicit full barrier speculative LOAD on line 8 can
 690	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 691	 * CPU#0 observes the PENDING bit is still set and new execution of
 692	 * a @work is not queued in a hope, that CPU#1 will eventually
 693	 * finish the queued @work.  Meanwhile CPU#1 does not see
 694	 * event_indicated is set, because speculative LOAD was executed
 695	 * before actual STORE.
 696	 */
 697	smp_mb();
 698}
 699
 700static void clear_work_data(struct work_struct *work)
 701{
 702	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 703	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 704}
 705
 706static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 707{
 708	unsigned long data = atomic_long_read(&work->data);
 709
 710	if (data & WORK_STRUCT_PWQ)
 711		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 712	else
 713		return NULL;
 714}
 715
 716/**
 717 * get_work_pool - return the worker_pool a given work was associated with
 718 * @work: the work item of interest
 719 *
 720 * Pools are created and destroyed under wq_pool_mutex, and allows read
 721 * access under sched-RCU read lock.  As such, this function should be
 722 * called under wq_pool_mutex or with preemption disabled.
 723 *
 724 * All fields of the returned pool are accessible as long as the above
 725 * mentioned locking is in effect.  If the returned pool needs to be used
 726 * beyond the critical section, the caller is responsible for ensuring the
 727 * returned pool is and stays online.
 728 *
 729 * Return: The worker_pool @work was last associated with.  %NULL if none.
 730 */
 731static struct worker_pool *get_work_pool(struct work_struct *work)
 732{
 733	unsigned long data = atomic_long_read(&work->data);
 734	int pool_id;
 735
 736	assert_rcu_or_pool_mutex();
 737
 738	if (data & WORK_STRUCT_PWQ)
 739		return ((struct pool_workqueue *)
 740			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 741
 742	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 743	if (pool_id == WORK_OFFQ_POOL_NONE)
 744		return NULL;
 745
 746	return idr_find(&worker_pool_idr, pool_id);
 747}
 748
 749/**
 750 * get_work_pool_id - return the worker pool ID a given work is associated with
 751 * @work: the work item of interest
 752 *
 753 * Return: The worker_pool ID @work was last associated with.
 754 * %WORK_OFFQ_POOL_NONE if none.
 755 */
 756static int get_work_pool_id(struct work_struct *work)
 757{
 758	unsigned long data = atomic_long_read(&work->data);
 759
 760	if (data & WORK_STRUCT_PWQ)
 761		return ((struct pool_workqueue *)
 762			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 763
 764	return data >> WORK_OFFQ_POOL_SHIFT;
 765}
 766
 767static void mark_work_canceling(struct work_struct *work)
 768{
 769	unsigned long pool_id = get_work_pool_id(work);
 770
 771	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 772	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 773}
 774
 775static bool work_is_canceling(struct work_struct *work)
 776{
 777	unsigned long data = atomic_long_read(&work->data);
 778
 779	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 780}
 781
 782/*
 783 * Policy functions.  These define the policies on how the global worker
 784 * pools are managed.  Unless noted otherwise, these functions assume that
 785 * they're being called with pool->lock held.
 786 */
 787
 788static bool __need_more_worker(struct worker_pool *pool)
 789{
 790	return !atomic_read(&pool->nr_running);
 791}
 792
 793/*
 794 * Need to wake up a worker?  Called from anything but currently
 795 * running workers.
 796 *
 797 * Note that, because unbound workers never contribute to nr_running, this
 798 * function will always return %true for unbound pools as long as the
 799 * worklist isn't empty.
 800 */
 801static bool need_more_worker(struct worker_pool *pool)
 802{
 803	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 804}
 805
 806/* Can I start working?  Called from busy but !running workers. */
 807static bool may_start_working(struct worker_pool *pool)
 808{
 809	return pool->nr_idle;
 810}
 811
 812/* Do I need to keep working?  Called from currently running workers. */
 813static bool keep_working(struct worker_pool *pool)
 814{
 815	return !list_empty(&pool->worklist) &&
 816		atomic_read(&pool->nr_running) <= 1;
 817}
 818
 819/* Do we need a new worker?  Called from manager. */
 820static bool need_to_create_worker(struct worker_pool *pool)
 821{
 822	return need_more_worker(pool) && !may_start_working(pool);
 823}
 824
 
 
 
 
 
 
 
 825/* Do we have too many workers and should some go away? */
 826static bool too_many_workers(struct worker_pool *pool)
 827{
 828	bool managing = mutex_is_locked(&pool->manager_arb);
 829	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 830	int nr_busy = pool->nr_workers - nr_idle;
 831
 
 
 
 
 
 
 
 832	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 833}
 834
 835/*
 836 * Wake up functions.
 837 */
 838
 839/* Return the first idle worker.  Safe with preemption disabled */
 840static struct worker *first_idle_worker(struct worker_pool *pool)
 841{
 842	if (unlikely(list_empty(&pool->idle_list)))
 843		return NULL;
 844
 845	return list_first_entry(&pool->idle_list, struct worker, entry);
 846}
 847
 848/**
 849 * wake_up_worker - wake up an idle worker
 850 * @pool: worker pool to wake worker from
 851 *
 852 * Wake up the first idle worker of @pool.
 853 *
 854 * CONTEXT:
 855 * spin_lock_irq(pool->lock).
 856 */
 857static void wake_up_worker(struct worker_pool *pool)
 858{
 859	struct worker *worker = first_idle_worker(pool);
 860
 861	if (likely(worker))
 862		wake_up_process(worker->task);
 863}
 864
 865/**
 866 * wq_worker_waking_up - a worker is waking up
 867 * @task: task waking up
 868 * @cpu: CPU @task is waking up to
 869 *
 870 * This function is called during try_to_wake_up() when a worker is
 871 * being awoken.
 872 *
 873 * CONTEXT:
 874 * spin_lock_irq(rq->lock)
 875 */
 876void wq_worker_waking_up(struct task_struct *task, int cpu)
 877{
 878	struct worker *worker = kthread_data(task);
 879
 880	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 881		WARN_ON_ONCE(worker->pool->cpu != cpu);
 882		atomic_inc(&worker->pool->nr_running);
 883	}
 884}
 885
 886/**
 887 * wq_worker_sleeping - a worker is going to sleep
 888 * @task: task going to sleep
 
 889 *
 890 * This function is called during schedule() when a busy worker is
 891 * going to sleep.  Worker on the same cpu can be woken up by
 892 * returning pointer to its task.
 893 *
 894 * CONTEXT:
 895 * spin_lock_irq(rq->lock)
 896 *
 897 * Return:
 898 * Worker task on @cpu to wake up, %NULL if none.
 899 */
 900struct task_struct *wq_worker_sleeping(struct task_struct *task)
 901{
 902	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 903	struct worker_pool *pool;
 904
 905	/*
 906	 * Rescuers, which may not have all the fields set up like normal
 907	 * workers, also reach here, let's not access anything before
 908	 * checking NOT_RUNNING.
 909	 */
 910	if (worker->flags & WORKER_NOT_RUNNING)
 911		return NULL;
 912
 913	pool = worker->pool;
 914
 915	/* this can only happen on the local cpu */
 916	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 917		return NULL;
 918
 919	/*
 920	 * The counterpart of the following dec_and_test, implied mb,
 921	 * worklist not empty test sequence is in insert_work().
 922	 * Please read comment there.
 923	 *
 924	 * NOT_RUNNING is clear.  This means that we're bound to and
 925	 * running on the local cpu w/ rq lock held and preemption
 926	 * disabled, which in turn means that none else could be
 927	 * manipulating idle_list, so dereferencing idle_list without pool
 928	 * lock is safe.
 929	 */
 930	if (atomic_dec_and_test(&pool->nr_running) &&
 931	    !list_empty(&pool->worklist))
 932		to_wakeup = first_idle_worker(pool);
 933	return to_wakeup ? to_wakeup->task : NULL;
 934}
 935
 936/**
 937 * worker_set_flags - set worker flags and adjust nr_running accordingly
 938 * @worker: self
 939 * @flags: flags to set
 
 940 *
 941 * Set @flags in @worker->flags and adjust nr_running accordingly.
 
 
 942 *
 943 * CONTEXT:
 944 * spin_lock_irq(pool->lock)
 945 */
 946static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 
 947{
 948	struct worker_pool *pool = worker->pool;
 949
 950	WARN_ON_ONCE(worker->task != current);
 951
 952	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 
 
 
 
 953	if ((flags & WORKER_NOT_RUNNING) &&
 954	    !(worker->flags & WORKER_NOT_RUNNING)) {
 955		atomic_dec(&pool->nr_running);
 
 
 
 
 
 956	}
 957
 958	worker->flags |= flags;
 959}
 960
 961/**
 962 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to clear
 965 *
 966 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 967 *
 968 * CONTEXT:
 969 * spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 972{
 973	struct worker_pool *pool = worker->pool;
 974	unsigned int oflags = worker->flags;
 975
 976	WARN_ON_ONCE(worker->task != current);
 977
 978	worker->flags &= ~flags;
 979
 980	/*
 981	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 982	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 983	 * of multiple flags, not a single flag.
 984	 */
 985	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 986		if (!(worker->flags & WORKER_NOT_RUNNING))
 987			atomic_inc(&pool->nr_running);
 988}
 989
 990/**
 991 * find_worker_executing_work - find worker which is executing a work
 992 * @pool: pool of interest
 993 * @work: work to find worker for
 994 *
 995 * Find a worker which is executing @work on @pool by searching
 996 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 997 * to match, its current execution should match the address of @work and
 998 * its work function.  This is to avoid unwanted dependency between
 999 * unrelated work executions through a work item being recycled while still
1000 * being executed.
1001 *
1002 * This is a bit tricky.  A work item may be freed once its execution
1003 * starts and nothing prevents the freed area from being recycled for
1004 * another work item.  If the same work item address ends up being reused
1005 * before the original execution finishes, workqueue will identify the
1006 * recycled work item as currently executing and make it wait until the
1007 * current execution finishes, introducing an unwanted dependency.
1008 *
1009 * This function checks the work item address and work function to avoid
1010 * false positives.  Note that this isn't complete as one may construct a
1011 * work function which can introduce dependency onto itself through a
1012 * recycled work item.  Well, if somebody wants to shoot oneself in the
1013 * foot that badly, there's only so much we can do, and if such deadlock
1014 * actually occurs, it should be easy to locate the culprit work function.
1015 *
1016 * CONTEXT:
1017 * spin_lock_irq(pool->lock).
1018 *
1019 * Return:
1020 * Pointer to worker which is executing @work if found, %NULL
1021 * otherwise.
1022 */
1023static struct worker *find_worker_executing_work(struct worker_pool *pool,
1024						 struct work_struct *work)
1025{
1026	struct worker *worker;
1027
1028	hash_for_each_possible(pool->busy_hash, worker, hentry,
1029			       (unsigned long)work)
1030		if (worker->current_work == work &&
1031		    worker->current_func == work->func)
1032			return worker;
1033
1034	return NULL;
1035}
1036
1037/**
1038 * move_linked_works - move linked works to a list
1039 * @work: start of series of works to be scheduled
1040 * @head: target list to append @work to
1041 * @nextp: out parameter for nested worklist walking
1042 *
1043 * Schedule linked works starting from @work to @head.  Work series to
1044 * be scheduled starts at @work and includes any consecutive work with
1045 * WORK_STRUCT_LINKED set in its predecessor.
1046 *
1047 * If @nextp is not NULL, it's updated to point to the next work of
1048 * the last scheduled work.  This allows move_linked_works() to be
1049 * nested inside outer list_for_each_entry_safe().
1050 *
1051 * CONTEXT:
1052 * spin_lock_irq(pool->lock).
1053 */
1054static void move_linked_works(struct work_struct *work, struct list_head *head,
1055			      struct work_struct **nextp)
1056{
1057	struct work_struct *n;
1058
1059	/*
1060	 * Linked worklist will always end before the end of the list,
1061	 * use NULL for list head.
1062	 */
1063	list_for_each_entry_safe_from(work, n, NULL, entry) {
1064		list_move_tail(&work->entry, head);
1065		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066			break;
1067	}
1068
1069	/*
1070	 * If we're already inside safe list traversal and have moved
1071	 * multiple works to the scheduled queue, the next position
1072	 * needs to be updated.
1073	 */
1074	if (nextp)
1075		*nextp = n;
1076}
1077
1078/**
1079 * get_pwq - get an extra reference on the specified pool_workqueue
1080 * @pwq: pool_workqueue to get
1081 *
1082 * Obtain an extra reference on @pwq.  The caller should guarantee that
1083 * @pwq has positive refcnt and be holding the matching pool->lock.
1084 */
1085static void get_pwq(struct pool_workqueue *pwq)
1086{
1087	lockdep_assert_held(&pwq->pool->lock);
1088	WARN_ON_ONCE(pwq->refcnt <= 0);
1089	pwq->refcnt++;
1090}
1091
1092/**
1093 * put_pwq - put a pool_workqueue reference
1094 * @pwq: pool_workqueue to put
1095 *
1096 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1097 * destruction.  The caller should be holding the matching pool->lock.
1098 */
1099static void put_pwq(struct pool_workqueue *pwq)
1100{
1101	lockdep_assert_held(&pwq->pool->lock);
1102	if (likely(--pwq->refcnt))
1103		return;
1104	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105		return;
1106	/*
1107	 * @pwq can't be released under pool->lock, bounce to
1108	 * pwq_unbound_release_workfn().  This never recurses on the same
1109	 * pool->lock as this path is taken only for unbound workqueues and
1110	 * the release work item is scheduled on a per-cpu workqueue.  To
1111	 * avoid lockdep warning, unbound pool->locks are given lockdep
1112	 * subclass of 1 in get_unbound_pool().
1113	 */
1114	schedule_work(&pwq->unbound_release_work);
1115}
1116
1117/**
1118 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119 * @pwq: pool_workqueue to put (can be %NULL)
1120 *
1121 * put_pwq() with locking.  This function also allows %NULL @pwq.
1122 */
1123static void put_pwq_unlocked(struct pool_workqueue *pwq)
1124{
1125	if (pwq) {
1126		/*
1127		 * As both pwqs and pools are sched-RCU protected, the
1128		 * following lock operations are safe.
1129		 */
1130		spin_lock_irq(&pwq->pool->lock);
1131		put_pwq(pwq);
1132		spin_unlock_irq(&pwq->pool->lock);
1133	}
1134}
1135
1136static void pwq_activate_delayed_work(struct work_struct *work)
1137{
1138	struct pool_workqueue *pwq = get_work_pwq(work);
1139
1140	trace_workqueue_activate_work(work);
1141	if (list_empty(&pwq->pool->worklist))
1142		pwq->pool->watchdog_ts = jiffies;
1143	move_linked_works(work, &pwq->pool->worklist, NULL);
1144	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1145	pwq->nr_active++;
1146}
1147
1148static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1149{
1150	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1151						    struct work_struct, entry);
1152
1153	pwq_activate_delayed_work(work);
1154}
1155
1156/**
1157 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158 * @pwq: pwq of interest
1159 * @color: color of work which left the queue
1160 *
1161 * A work either has completed or is removed from pending queue,
1162 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1163 *
1164 * CONTEXT:
1165 * spin_lock_irq(pool->lock).
1166 */
1167static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1168{
1169	/* uncolored work items don't participate in flushing or nr_active */
1170	if (color == WORK_NO_COLOR)
1171		goto out_put;
1172
1173	pwq->nr_in_flight[color]--;
1174
1175	pwq->nr_active--;
1176	if (!list_empty(&pwq->delayed_works)) {
1177		/* one down, submit a delayed one */
1178		if (pwq->nr_active < pwq->max_active)
1179			pwq_activate_first_delayed(pwq);
1180	}
1181
1182	/* is flush in progress and are we at the flushing tip? */
1183	if (likely(pwq->flush_color != color))
1184		goto out_put;
1185
1186	/* are there still in-flight works? */
1187	if (pwq->nr_in_flight[color])
1188		goto out_put;
1189
1190	/* this pwq is done, clear flush_color */
1191	pwq->flush_color = -1;
1192
1193	/*
1194	 * If this was the last pwq, wake up the first flusher.  It
1195	 * will handle the rest.
1196	 */
1197	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198		complete(&pwq->wq->first_flusher->done);
1199out_put:
1200	put_pwq(pwq);
1201}
1202
1203/**
1204 * try_to_grab_pending - steal work item from worklist and disable irq
1205 * @work: work item to steal
1206 * @is_dwork: @work is a delayed_work
1207 * @flags: place to store irq state
1208 *
1209 * Try to grab PENDING bit of @work.  This function can handle @work in any
1210 * stable state - idle, on timer or on worklist.
1211 *
1212 * Return:
1213 *  1		if @work was pending and we successfully stole PENDING
1214 *  0		if @work was idle and we claimed PENDING
1215 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1216 *  -ENOENT	if someone else is canceling @work, this state may persist
1217 *		for arbitrarily long
1218 *
1219 * Note:
1220 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1221 * interrupted while holding PENDING and @work off queue, irq must be
1222 * disabled on entry.  This, combined with delayed_work->timer being
1223 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1224 *
1225 * On successful return, >= 0, irq is disabled and the caller is
1226 * responsible for releasing it using local_irq_restore(*@flags).
1227 *
1228 * This function is safe to call from any context including IRQ handler.
1229 */
1230static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231			       unsigned long *flags)
1232{
1233	struct worker_pool *pool;
1234	struct pool_workqueue *pwq;
1235
1236	local_irq_save(*flags);
1237
1238	/* try to steal the timer if it exists */
1239	if (is_dwork) {
1240		struct delayed_work *dwork = to_delayed_work(work);
1241
1242		/*
1243		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1244		 * guaranteed that the timer is not queued anywhere and not
1245		 * running on the local CPU.
1246		 */
1247		if (likely(del_timer(&dwork->timer)))
1248			return 1;
1249	}
1250
1251	/* try to claim PENDING the normal way */
1252	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253		return 0;
1254
1255	/*
1256	 * The queueing is in progress, or it is already queued. Try to
1257	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258	 */
1259	pool = get_work_pool(work);
1260	if (!pool)
1261		goto fail;
1262
1263	spin_lock(&pool->lock);
1264	/*
1265	 * work->data is guaranteed to point to pwq only while the work
1266	 * item is queued on pwq->wq, and both updating work->data to point
1267	 * to pwq on queueing and to pool on dequeueing are done under
1268	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269	 * points to pwq which is associated with a locked pool, the work
1270	 * item is currently queued on that pool.
1271	 */
1272	pwq = get_work_pwq(work);
1273	if (pwq && pwq->pool == pool) {
1274		debug_work_deactivate(work);
1275
1276		/*
1277		 * A delayed work item cannot be grabbed directly because
1278		 * it might have linked NO_COLOR work items which, if left
1279		 * on the delayed_list, will confuse pwq->nr_active
1280		 * management later on and cause stall.  Make sure the work
1281		 * item is activated before grabbing.
1282		 */
1283		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284			pwq_activate_delayed_work(work);
1285
1286		list_del_init(&work->entry);
1287		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288
1289		/* work->data points to pwq iff queued, point to pool */
1290		set_work_pool_and_keep_pending(work, pool->id);
1291
1292		spin_unlock(&pool->lock);
1293		return 1;
1294	}
1295	spin_unlock(&pool->lock);
1296fail:
1297	local_irq_restore(*flags);
1298	if (work_is_canceling(work))
1299		return -ENOENT;
1300	cpu_relax();
1301	return -EAGAIN;
1302}
1303
1304/**
1305 * insert_work - insert a work into a pool
1306 * @pwq: pwq @work belongs to
1307 * @work: work to insert
1308 * @head: insertion point
1309 * @extra_flags: extra WORK_STRUCT_* flags to set
1310 *
1311 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1312 * work_struct flags.
1313 *
1314 * CONTEXT:
1315 * spin_lock_irq(pool->lock).
1316 */
1317static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318			struct list_head *head, unsigned int extra_flags)
1319{
1320	struct worker_pool *pool = pwq->pool;
1321
1322	/* we own @work, set data and link */
1323	set_work_pwq(work, pwq, extra_flags);
1324	list_add_tail(&work->entry, head);
1325	get_pwq(pwq);
1326
1327	/*
1328	 * Ensure either wq_worker_sleeping() sees the above
1329	 * list_add_tail() or we see zero nr_running to avoid workers lying
1330	 * around lazily while there are works to be processed.
1331	 */
1332	smp_mb();
1333
1334	if (__need_more_worker(pool))
1335		wake_up_worker(pool);
1336}
1337
1338/*
1339 * Test whether @work is being queued from another work executing on the
1340 * same workqueue.
1341 */
1342static bool is_chained_work(struct workqueue_struct *wq)
1343{
1344	struct worker *worker;
1345
1346	worker = current_wq_worker();
1347	/*
1348	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1349	 * I'm @worker, it's safe to dereference it without locking.
1350	 */
1351	return worker && worker->current_pwq->wq == wq;
1352}
1353
1354/*
1355 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1357 * avoid perturbing sensitive tasks.
1358 */
1359static int wq_select_unbound_cpu(int cpu)
1360{
1361	static bool printed_dbg_warning;
1362	int new_cpu;
1363
1364	if (likely(!wq_debug_force_rr_cpu)) {
1365		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366			return cpu;
1367	} else if (!printed_dbg_warning) {
1368		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369		printed_dbg_warning = true;
1370	}
1371
1372	if (cpumask_empty(wq_unbound_cpumask))
1373		return cpu;
1374
1375	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377	if (unlikely(new_cpu >= nr_cpu_ids)) {
1378		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379		if (unlikely(new_cpu >= nr_cpu_ids))
1380			return cpu;
1381	}
1382	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1383
1384	return new_cpu;
1385}
1386
1387static void __queue_work(int cpu, struct workqueue_struct *wq,
1388			 struct work_struct *work)
1389{
1390	struct pool_workqueue *pwq;
1391	struct worker_pool *last_pool;
1392	struct list_head *worklist;
1393	unsigned int work_flags;
1394	unsigned int req_cpu = cpu;
1395
1396	/*
1397	 * While a work item is PENDING && off queue, a task trying to
1398	 * steal the PENDING will busy-loop waiting for it to either get
1399	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1400	 * happen with IRQ disabled.
1401	 */
1402	WARN_ON_ONCE(!irqs_disabled());
1403
1404	debug_work_activate(work);
1405
1406	/* if draining, only works from the same workqueue are allowed */
1407	if (unlikely(wq->flags & __WQ_DRAINING) &&
1408	    WARN_ON_ONCE(!is_chained_work(wq)))
1409		return;
1410retry:
1411	if (req_cpu == WORK_CPU_UNBOUND)
1412		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1413
1414	/* pwq which will be used unless @work is executing elsewhere */
1415	if (!(wq->flags & WQ_UNBOUND))
1416		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1417	else
1418		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1419
1420	/*
1421	 * If @work was previously on a different pool, it might still be
1422	 * running there, in which case the work needs to be queued on that
1423	 * pool to guarantee non-reentrancy.
1424	 */
1425	last_pool = get_work_pool(work);
1426	if (last_pool && last_pool != pwq->pool) {
1427		struct worker *worker;
1428
1429		spin_lock(&last_pool->lock);
1430
1431		worker = find_worker_executing_work(last_pool, work);
1432
1433		if (worker && worker->current_pwq->wq == wq) {
1434			pwq = worker->current_pwq;
1435		} else {
1436			/* meh... not running there, queue here */
1437			spin_unlock(&last_pool->lock);
1438			spin_lock(&pwq->pool->lock);
1439		}
1440	} else {
1441		spin_lock(&pwq->pool->lock);
1442	}
1443
1444	/*
1445	 * pwq is determined and locked.  For unbound pools, we could have
1446	 * raced with pwq release and it could already be dead.  If its
1447	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1448	 * without another pwq replacing it in the numa_pwq_tbl or while
1449	 * work items are executing on it, so the retrying is guaranteed to
1450	 * make forward-progress.
1451	 */
1452	if (unlikely(!pwq->refcnt)) {
1453		if (wq->flags & WQ_UNBOUND) {
1454			spin_unlock(&pwq->pool->lock);
1455			cpu_relax();
1456			goto retry;
1457		}
1458		/* oops */
1459		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460			  wq->name, cpu);
1461	}
1462
1463	/* pwq determined, queue */
1464	trace_workqueue_queue_work(req_cpu, pwq, work);
1465
1466	if (WARN_ON(!list_empty(&work->entry))) {
1467		spin_unlock(&pwq->pool->lock);
1468		return;
1469	}
1470
1471	pwq->nr_in_flight[pwq->work_color]++;
1472	work_flags = work_color_to_flags(pwq->work_color);
1473
1474	if (likely(pwq->nr_active < pwq->max_active)) {
1475		trace_workqueue_activate_work(work);
1476		pwq->nr_active++;
1477		worklist = &pwq->pool->worklist;
1478		if (list_empty(worklist))
1479			pwq->pool->watchdog_ts = jiffies;
1480	} else {
1481		work_flags |= WORK_STRUCT_DELAYED;
1482		worklist = &pwq->delayed_works;
1483	}
1484
1485	insert_work(pwq, work, worklist, work_flags);
1486
1487	spin_unlock(&pwq->pool->lock);
1488}
1489
1490/**
1491 * queue_work_on - queue work on specific cpu
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @work: work to queue
1495 *
1496 * We queue the work to a specific CPU, the caller must ensure it
1497 * can't go away.
1498 *
1499 * Return: %false if @work was already on a queue, %true otherwise.
1500 */
1501bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502		   struct work_struct *work)
1503{
1504	bool ret = false;
1505	unsigned long flags;
1506
1507	local_irq_save(flags);
1508
1509	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510		__queue_work(cpu, wq, work);
1511		ret = true;
1512	}
1513
1514	local_irq_restore(flags);
1515	return ret;
1516}
1517EXPORT_SYMBOL(queue_work_on);
1518
1519void delayed_work_timer_fn(unsigned long __data)
1520{
1521	struct delayed_work *dwork = (struct delayed_work *)__data;
1522
1523	/* should have been called from irqsafe timer with irq already off */
1524	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1525}
1526EXPORT_SYMBOL(delayed_work_timer_fn);
1527
1528static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529				struct delayed_work *dwork, unsigned long delay)
1530{
1531	struct timer_list *timer = &dwork->timer;
1532	struct work_struct *work = &dwork->work;
1533
1534	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535		     timer->data != (unsigned long)dwork);
1536	WARN_ON_ONCE(timer_pending(timer));
1537	WARN_ON_ONCE(!list_empty(&work->entry));
1538
1539	/*
1540	 * If @delay is 0, queue @dwork->work immediately.  This is for
1541	 * both optimization and correctness.  The earliest @timer can
1542	 * expire is on the closest next tick and delayed_work users depend
1543	 * on that there's no such delay when @delay is 0.
1544	 */
1545	if (!delay) {
1546		__queue_work(cpu, wq, &dwork->work);
1547		return;
1548	}
1549
1550	timer_stats_timer_set_start_info(&dwork->timer);
1551
1552	dwork->wq = wq;
1553	dwork->cpu = cpu;
1554	timer->expires = jiffies + delay;
1555
1556	if (unlikely(cpu != WORK_CPU_UNBOUND))
1557		add_timer_on(timer, cpu);
1558	else
1559		add_timer(timer);
1560}
1561
1562/**
1563 * queue_delayed_work_on - queue work on specific CPU after delay
1564 * @cpu: CPU number to execute work on
1565 * @wq: workqueue to use
1566 * @dwork: work to queue
1567 * @delay: number of jiffies to wait before queueing
1568 *
1569 * Return: %false if @work was already on a queue, %true otherwise.  If
1570 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571 * execution.
1572 */
1573bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574			   struct delayed_work *dwork, unsigned long delay)
1575{
1576	struct work_struct *work = &dwork->work;
1577	bool ret = false;
1578	unsigned long flags;
1579
1580	/* read the comment in __queue_work() */
1581	local_irq_save(flags);
1582
1583	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1584		__queue_delayed_work(cpu, wq, dwork, delay);
1585		ret = true;
1586	}
1587
1588	local_irq_restore(flags);
1589	return ret;
1590}
1591EXPORT_SYMBOL(queue_delayed_work_on);
1592
1593/**
1594 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595 * @cpu: CPU number to execute work on
1596 * @wq: workqueue to use
1597 * @dwork: work to queue
1598 * @delay: number of jiffies to wait before queueing
1599 *
1600 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601 * modify @dwork's timer so that it expires after @delay.  If @delay is
1602 * zero, @work is guaranteed to be scheduled immediately regardless of its
1603 * current state.
1604 *
1605 * Return: %false if @dwork was idle and queued, %true if @dwork was
1606 * pending and its timer was modified.
1607 *
1608 * This function is safe to call from any context including IRQ handler.
1609 * See try_to_grab_pending() for details.
1610 */
1611bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612			 struct delayed_work *dwork, unsigned long delay)
1613{
1614	unsigned long flags;
1615	int ret;
1616
1617	do {
1618		ret = try_to_grab_pending(&dwork->work, true, &flags);
1619	} while (unlikely(ret == -EAGAIN));
1620
1621	if (likely(ret >= 0)) {
1622		__queue_delayed_work(cpu, wq, dwork, delay);
1623		local_irq_restore(flags);
1624	}
1625
1626	/* -ENOENT from try_to_grab_pending() becomes %true */
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1630
1631/**
1632 * worker_enter_idle - enter idle state
1633 * @worker: worker which is entering idle state
1634 *
1635 * @worker is entering idle state.  Update stats and idle timer if
1636 * necessary.
1637 *
1638 * LOCKING:
1639 * spin_lock_irq(pool->lock).
1640 */
1641static void worker_enter_idle(struct worker *worker)
1642{
1643	struct worker_pool *pool = worker->pool;
1644
1645	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647			 (worker->hentry.next || worker->hentry.pprev)))
1648		return;
1649
1650	/* can't use worker_set_flags(), also called from create_worker() */
1651	worker->flags |= WORKER_IDLE;
1652	pool->nr_idle++;
1653	worker->last_active = jiffies;
1654
1655	/* idle_list is LIFO */
1656	list_add(&worker->entry, &pool->idle_list);
1657
1658	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1660
1661	/*
1662	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1663	 * pool->lock between setting %WORKER_UNBOUND and zapping
1664	 * nr_running, the warning may trigger spuriously.  Check iff
1665	 * unbind is not in progress.
1666	 */
1667	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1668		     pool->nr_workers == pool->nr_idle &&
1669		     atomic_read(&pool->nr_running));
1670}
1671
1672/**
1673 * worker_leave_idle - leave idle state
1674 * @worker: worker which is leaving idle state
1675 *
1676 * @worker is leaving idle state.  Update stats.
1677 *
1678 * LOCKING:
1679 * spin_lock_irq(pool->lock).
1680 */
1681static void worker_leave_idle(struct worker *worker)
1682{
1683	struct worker_pool *pool = worker->pool;
1684
1685	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686		return;
1687	worker_clr_flags(worker, WORKER_IDLE);
1688	pool->nr_idle--;
1689	list_del_init(&worker->entry);
1690}
1691
1692static struct worker *alloc_worker(int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693{
1694	struct worker *worker;
1695
1696	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1697	if (worker) {
1698		INIT_LIST_HEAD(&worker->entry);
1699		INIT_LIST_HEAD(&worker->scheduled);
1700		INIT_LIST_HEAD(&worker->node);
1701		/* on creation a worker is in !idle && prep state */
1702		worker->flags = WORKER_PREP;
1703	}
1704	return worker;
1705}
1706
1707/**
1708 * worker_attach_to_pool() - attach a worker to a pool
1709 * @worker: worker to be attached
1710 * @pool: the target pool
1711 *
1712 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1713 * cpu-binding of @worker are kept coordinated with the pool across
1714 * cpu-[un]hotplugs.
1715 */
1716static void worker_attach_to_pool(struct worker *worker,
1717				   struct worker_pool *pool)
1718{
1719	mutex_lock(&pool->attach_mutex);
1720
1721	/*
1722	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1724	 */
1725	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726
1727	/*
1728	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729	 * stable across this function.  See the comments above the
1730	 * flag definition for details.
1731	 */
1732	if (pool->flags & POOL_DISASSOCIATED)
1733		worker->flags |= WORKER_UNBOUND;
1734
1735	list_add_tail(&worker->node, &pool->workers);
1736
1737	mutex_unlock(&pool->attach_mutex);
1738}
1739
1740/**
1741 * worker_detach_from_pool() - detach a worker from its pool
1742 * @worker: worker which is attached to its pool
1743 * @pool: the pool @worker is attached to
1744 *
1745 * Undo the attaching which had been done in worker_attach_to_pool().  The
1746 * caller worker shouldn't access to the pool after detached except it has
1747 * other reference to the pool.
1748 */
1749static void worker_detach_from_pool(struct worker *worker,
1750				    struct worker_pool *pool)
1751{
1752	struct completion *detach_completion = NULL;
1753
1754	mutex_lock(&pool->attach_mutex);
1755	list_del(&worker->node);
1756	if (list_empty(&pool->workers))
1757		detach_completion = pool->detach_completion;
1758	mutex_unlock(&pool->attach_mutex);
1759
1760	/* clear leftover flags without pool->lock after it is detached */
1761	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1762
1763	if (detach_completion)
1764		complete(detach_completion);
1765}
1766
1767/**
1768 * create_worker - create a new workqueue worker
1769 * @pool: pool the new worker will belong to
1770 *
1771 * Create and start a new worker which is attached to @pool.
 
 
1772 *
1773 * CONTEXT:
1774 * Might sleep.  Does GFP_KERNEL allocations.
1775 *
1776 * Return:
1777 * Pointer to the newly created worker.
1778 */
1779static struct worker *create_worker(struct worker_pool *pool)
1780{
1781	struct worker *worker = NULL;
1782	int id = -1;
1783	char id_buf[16];
1784
1785	/* ID is needed to determine kthread name */
1786	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
1787	if (id < 0)
1788		goto fail;
1789
1790	worker = alloc_worker(pool->node);
1791	if (!worker)
1792		goto fail;
1793
1794	worker->pool = pool;
1795	worker->id = id;
1796
1797	if (pool->cpu >= 0)
1798		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799			 pool->attrs->nice < 0  ? "H" : "");
1800	else
1801		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1802
1803	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1804					      "kworker/%s", id_buf);
1805	if (IS_ERR(worker->task))
1806		goto fail;
1807
1808	set_user_nice(worker->task, pool->attrs->nice);
1809	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1810
1811	/* successful, attach the worker to the pool */
1812	worker_attach_to_pool(worker, pool);
1813
1814	/* start the newly created worker */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	spin_lock_irq(&pool->lock);
1816	worker->pool->nr_workers++;
1817	worker_enter_idle(worker);
1818	wake_up_process(worker->task);
1819	spin_unlock_irq(&pool->lock);
1820
1821	return worker;
1822
1823fail:
1824	if (id >= 0)
1825		ida_simple_remove(&pool->worker_ida, id);
 
 
 
1826	kfree(worker);
1827	return NULL;
1828}
1829
1830/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831 * destroy_worker - destroy a workqueue worker
1832 * @worker: worker to be destroyed
1833 *
1834 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1835 * be idle.
1836 *
1837 * CONTEXT:
1838 * spin_lock_irq(pool->lock).
1839 */
1840static void destroy_worker(struct worker *worker)
1841{
1842	struct worker_pool *pool = worker->pool;
1843
 
1844	lockdep_assert_held(&pool->lock);
1845
1846	/* sanity check frenzy */
1847	if (WARN_ON(worker->current_work) ||
1848	    WARN_ON(!list_empty(&worker->scheduled)) ||
1849	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1850		return;
1851
1852	pool->nr_workers--;
1853	pool->nr_idle--;
 
 
 
 
 
 
 
 
1854
1855	list_del_init(&worker->entry);
1856	worker->flags |= WORKER_DIE;
1857	wake_up_process(worker->task);
 
 
 
 
 
 
 
 
 
1858}
1859
1860static void idle_worker_timeout(unsigned long __pool)
1861{
1862	struct worker_pool *pool = (void *)__pool;
1863
1864	spin_lock_irq(&pool->lock);
1865
1866	while (too_many_workers(pool)) {
1867		struct worker *worker;
1868		unsigned long expires;
1869
1870		/* idle_list is kept in LIFO order, check the last one */
1871		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
1874		if (time_before(jiffies, expires)) {
1875			mod_timer(&pool->idle_timer, expires);
1876			break;
 
 
 
1877		}
1878
1879		destroy_worker(worker);
1880	}
1881
1882	spin_unlock_irq(&pool->lock);
1883}
1884
1885static void send_mayday(struct work_struct *work)
1886{
1887	struct pool_workqueue *pwq = get_work_pwq(work);
1888	struct workqueue_struct *wq = pwq->wq;
1889
1890	lockdep_assert_held(&wq_mayday_lock);
1891
1892	if (!wq->rescuer)
1893		return;
1894
1895	/* mayday mayday mayday */
1896	if (list_empty(&pwq->mayday_node)) {
1897		/*
1898		 * If @pwq is for an unbound wq, its base ref may be put at
1899		 * any time due to an attribute change.  Pin @pwq until the
1900		 * rescuer is done with it.
1901		 */
1902		get_pwq(pwq);
1903		list_add_tail(&pwq->mayday_node, &wq->maydays);
1904		wake_up_process(wq->rescuer->task);
1905	}
1906}
1907
1908static void pool_mayday_timeout(unsigned long __pool)
1909{
1910	struct worker_pool *pool = (void *)__pool;
1911	struct work_struct *work;
1912
1913	spin_lock_irq(&pool->lock);
1914	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1915
1916	if (need_to_create_worker(pool)) {
1917		/*
1918		 * We've been trying to create a new worker but
1919		 * haven't been successful.  We might be hitting an
1920		 * allocation deadlock.  Send distress signals to
1921		 * rescuers.
1922		 */
1923		list_for_each_entry(work, &pool->worklist, entry)
1924			send_mayday(work);
1925	}
1926
1927	spin_unlock(&wq_mayday_lock);
1928	spin_unlock_irq(&pool->lock);
1929
1930	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1931}
1932
1933/**
1934 * maybe_create_worker - create a new worker if necessary
1935 * @pool: pool to create a new worker for
1936 *
1937 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1938 * have at least one idle worker on return from this function.  If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940 * sent to all rescuers with works scheduled on @pool to resolve
1941 * possible allocation deadlock.
1942 *
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
1945 *
1946 * LOCKING:
1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1949 * manager.
 
 
 
 
1950 */
1951static void maybe_create_worker(struct worker_pool *pool)
1952__releases(&pool->lock)
1953__acquires(&pool->lock)
1954{
 
 
1955restart:
1956	spin_unlock_irq(&pool->lock);
1957
1958	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1960
1961	while (true) {
1962		if (create_worker(pool) || !need_to_create_worker(pool))
 
 
 
 
 
 
 
 
 
 
 
 
1963			break;
1964
1965		schedule_timeout_interruptible(CREATE_COOLDOWN);
 
1966
1967		if (!need_to_create_worker(pool))
1968			break;
1969	}
1970
1971	del_timer_sync(&pool->mayday_timer);
1972	spin_lock_irq(&pool->lock);
1973	/*
1974	 * This is necessary even after a new worker was just successfully
1975	 * created as @pool->lock was dropped and the new worker might have
1976	 * already become busy.
1977	 */
1978	if (need_to_create_worker(pool))
1979		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980}
1981
1982/**
1983 * manage_workers - manage worker pool
1984 * @worker: self
1985 *
1986 * Assume the manager role and manage the worker pool @worker belongs
1987 * to.  At any given time, there can be only zero or one manager per
1988 * pool.  The exclusion is handled automatically by this function.
1989 *
1990 * The caller can safely start processing works on false return.  On
1991 * true return, it's guaranteed that need_to_create_worker() is false
1992 * and may_start_working() is true.
1993 *
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which may be released and regrabbed
1996 * multiple times.  Does GFP_KERNEL allocations.
1997 *
1998 * Return:
1999 * %false if the pool doesn't need management and the caller can safely
2000 * start processing works, %true if management function was performed and
2001 * the conditions that the caller verified before calling the function may
2002 * no longer be true.
 
2003 */
2004static bool manage_workers(struct worker *worker)
2005{
2006	struct worker_pool *pool = worker->pool;
 
2007
2008	/*
 
 
2009	 * Anyone who successfully grabs manager_arb wins the arbitration
2010	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2011	 * failure while holding pool->lock reliably indicates that someone
2012	 * else is managing the pool and the worker which failed trylock
2013	 * can proceed to executing work items.  This means that anyone
2014	 * grabbing manager_arb is responsible for actually performing
2015	 * manager duties.  If manager_arb is grabbed and released without
2016	 * actual management, the pool may stall indefinitely.
 
 
 
 
 
 
 
 
 
2017	 */
2018	if (!mutex_trylock(&pool->manager_arb))
2019		return false;
2020	pool->manager = worker;
 
 
 
 
 
 
 
 
 
 
 
 
2021
2022	maybe_create_worker(pool);
 
 
 
 
 
2023
2024	pool->manager = NULL;
2025	mutex_unlock(&pool->manager_arb);
2026	return true;
2027}
2028
2029/**
2030 * process_one_work - process single work
2031 * @worker: self
2032 * @work: work to process
2033 *
2034 * Process @work.  This function contains all the logics necessary to
2035 * process a single work including synchronization against and
2036 * interaction with other workers on the same cpu, queueing and
2037 * flushing.  As long as context requirement is met, any worker can
2038 * call this function to process a work.
2039 *
2040 * CONTEXT:
2041 * spin_lock_irq(pool->lock) which is released and regrabbed.
2042 */
2043static void process_one_work(struct worker *worker, struct work_struct *work)
2044__releases(&pool->lock)
2045__acquires(&pool->lock)
2046{
2047	struct pool_workqueue *pwq = get_work_pwq(work);
2048	struct worker_pool *pool = worker->pool;
2049	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2050	int work_color;
2051	struct worker *collision;
2052#ifdef CONFIG_LOCKDEP
2053	/*
2054	 * It is permissible to free the struct work_struct from
2055	 * inside the function that is called from it, this we need to
2056	 * take into account for lockdep too.  To avoid bogus "held
2057	 * lock freed" warnings as well as problems when looking into
2058	 * work->lockdep_map, make a copy and use that here.
2059	 */
2060	struct lockdep_map lockdep_map;
2061
2062	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2063#endif
2064	/* ensure we're on the correct CPU */
2065	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
 
 
 
 
 
2066		     raw_smp_processor_id() != pool->cpu);
2067
2068	/*
2069	 * A single work shouldn't be executed concurrently by
2070	 * multiple workers on a single cpu.  Check whether anyone is
2071	 * already processing the work.  If so, defer the work to the
2072	 * currently executing one.
2073	 */
2074	collision = find_worker_executing_work(pool, work);
2075	if (unlikely(collision)) {
2076		move_linked_works(work, &collision->scheduled, NULL);
2077		return;
2078	}
2079
2080	/* claim and dequeue */
2081	debug_work_deactivate(work);
2082	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2083	worker->current_work = work;
2084	worker->current_func = work->func;
2085	worker->current_pwq = pwq;
2086	work_color = get_work_color(work);
2087
2088	list_del_init(&work->entry);
2089
2090	/*
2091	 * CPU intensive works don't participate in concurrency management.
2092	 * They're the scheduler's responsibility.  This takes @worker out
2093	 * of concurrency management and the next code block will chain
2094	 * execution of the pending work items.
2095	 */
2096	if (unlikely(cpu_intensive))
2097		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2098
2099	/*
2100	 * Wake up another worker if necessary.  The condition is always
2101	 * false for normal per-cpu workers since nr_running would always
2102	 * be >= 1 at this point.  This is used to chain execution of the
2103	 * pending work items for WORKER_NOT_RUNNING workers such as the
2104	 * UNBOUND and CPU_INTENSIVE ones.
2105	 */
2106	if (need_more_worker(pool))
2107		wake_up_worker(pool);
2108
2109	/*
2110	 * Record the last pool and clear PENDING which should be the last
2111	 * update to @work.  Also, do this inside @pool->lock so that
2112	 * PENDING and queued state changes happen together while IRQ is
2113	 * disabled.
2114	 */
2115	set_work_pool_and_clear_pending(work, pool->id);
2116
2117	spin_unlock_irq(&pool->lock);
2118
2119	lock_map_acquire_read(&pwq->wq->lockdep_map);
2120	lock_map_acquire(&lockdep_map);
2121	trace_workqueue_execute_start(work);
2122	worker->current_func(work);
2123	/*
2124	 * While we must be careful to not use "work" after this, the trace
2125	 * point will only record its address.
2126	 */
2127	trace_workqueue_execute_end(work);
2128	lock_map_release(&lockdep_map);
2129	lock_map_release(&pwq->wq->lockdep_map);
2130
2131	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2132		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133		       "     last function: %pf\n",
2134		       current->comm, preempt_count(), task_pid_nr(current),
2135		       worker->current_func);
2136		debug_show_held_locks(current);
2137		dump_stack();
2138	}
2139
2140	/*
2141	 * The following prevents a kworker from hogging CPU on !PREEMPT
2142	 * kernels, where a requeueing work item waiting for something to
2143	 * happen could deadlock with stop_machine as such work item could
2144	 * indefinitely requeue itself while all other CPUs are trapped in
2145	 * stop_machine. At the same time, report a quiescent RCU state so
2146	 * the same condition doesn't freeze RCU.
2147	 */
2148	cond_resched_rcu_qs();
2149
2150	spin_lock_irq(&pool->lock);
2151
2152	/* clear cpu intensive status */
2153	if (unlikely(cpu_intensive))
2154		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2155
2156	/* we're done with it, release */
2157	hash_del(&worker->hentry);
2158	worker->current_work = NULL;
2159	worker->current_func = NULL;
2160	worker->current_pwq = NULL;
2161	worker->desc_valid = false;
2162	pwq_dec_nr_in_flight(pwq, work_color);
2163}
2164
2165/**
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2168 *
2169 * Process all scheduled works.  Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2172 *
2173 * CONTEXT:
2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 * multiple times.
2176 */
2177static void process_scheduled_works(struct worker *worker)
2178{
2179	while (!list_empty(&worker->scheduled)) {
2180		struct work_struct *work = list_first_entry(&worker->scheduled,
2181						struct work_struct, entry);
2182		process_one_work(worker, work);
2183	}
2184}
2185
2186/**
2187 * worker_thread - the worker thread function
2188 * @__worker: self
2189 *
2190 * The worker thread function.  All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one.  These workers process all
2192 * work items regardless of their specific target workqueue.  The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
2195 *
2196 * Return: 0
2197 */
2198static int worker_thread(void *__worker)
2199{
2200	struct worker *worker = __worker;
2201	struct worker_pool *pool = worker->pool;
2202
2203	/* tell the scheduler that this is a workqueue worker */
2204	worker->task->flags |= PF_WQ_WORKER;
2205woke_up:
2206	spin_lock_irq(&pool->lock);
2207
2208	/* am I supposed to die? */
2209	if (unlikely(worker->flags & WORKER_DIE)) {
2210		spin_unlock_irq(&pool->lock);
2211		WARN_ON_ONCE(!list_empty(&worker->entry));
2212		worker->task->flags &= ~PF_WQ_WORKER;
2213
2214		set_task_comm(worker->task, "kworker/dying");
2215		ida_simple_remove(&pool->worker_ida, worker->id);
2216		worker_detach_from_pool(worker, pool);
2217		kfree(worker);
2218		return 0;
2219	}
2220
2221	worker_leave_idle(worker);
2222recheck:
2223	/* no more worker necessary? */
2224	if (!need_more_worker(pool))
2225		goto sleep;
2226
2227	/* do we need to manage? */
2228	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2229		goto recheck;
2230
2231	/*
2232	 * ->scheduled list can only be filled while a worker is
2233	 * preparing to process a work or actually processing it.
2234	 * Make sure nobody diddled with it while I was sleeping.
2235	 */
2236	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2237
2238	/*
2239	 * Finish PREP stage.  We're guaranteed to have at least one idle
2240	 * worker or that someone else has already assumed the manager
2241	 * role.  This is where @worker starts participating in concurrency
2242	 * management if applicable and concurrency management is restored
2243	 * after being rebound.  See rebind_workers() for details.
2244	 */
2245	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2246
2247	do {
2248		struct work_struct *work =
2249			list_first_entry(&pool->worklist,
2250					 struct work_struct, entry);
2251
2252		pool->watchdog_ts = jiffies;
2253
2254		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255			/* optimization path, not strictly necessary */
2256			process_one_work(worker, work);
2257			if (unlikely(!list_empty(&worker->scheduled)))
2258				process_scheduled_works(worker);
2259		} else {
2260			move_linked_works(work, &worker->scheduled, NULL);
2261			process_scheduled_works(worker);
2262		}
2263	} while (keep_working(pool));
2264
2265	worker_set_flags(worker, WORKER_PREP);
2266sleep:
 
 
 
2267	/*
2268	 * pool->lock is held and there's no work to process and no need to
2269	 * manage, sleep.  Workers are woken up only while holding
2270	 * pool->lock or from local cpu, so setting the current state
2271	 * before releasing pool->lock is enough to prevent losing any
2272	 * event.
2273	 */
2274	worker_enter_idle(worker);
2275	__set_current_state(TASK_INTERRUPTIBLE);
2276	spin_unlock_irq(&pool->lock);
2277	schedule();
2278	goto woke_up;
2279}
2280
2281/**
2282 * rescuer_thread - the rescuer thread function
2283 * @__rescuer: self
2284 *
2285 * Workqueue rescuer thread function.  There's one rescuer for each
2286 * workqueue which has WQ_MEM_RECLAIM set.
2287 *
2288 * Regular work processing on a pool may block trying to create a new
2289 * worker which uses GFP_KERNEL allocation which has slight chance of
2290 * developing into deadlock if some works currently on the same queue
2291 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2292 * the problem rescuer solves.
2293 *
2294 * When such condition is possible, the pool summons rescuers of all
2295 * workqueues which have works queued on the pool and let them process
2296 * those works so that forward progress can be guaranteed.
2297 *
2298 * This should happen rarely.
2299 *
2300 * Return: 0
2301 */
2302static int rescuer_thread(void *__rescuer)
2303{
2304	struct worker *rescuer = __rescuer;
2305	struct workqueue_struct *wq = rescuer->rescue_wq;
2306	struct list_head *scheduled = &rescuer->scheduled;
2307	bool should_stop;
2308
2309	set_user_nice(current, RESCUER_NICE_LEVEL);
2310
2311	/*
2312	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2313	 * doesn't participate in concurrency management.
2314	 */
2315	rescuer->task->flags |= PF_WQ_WORKER;
2316repeat:
2317	set_current_state(TASK_INTERRUPTIBLE);
2318
2319	/*
2320	 * By the time the rescuer is requested to stop, the workqueue
2321	 * shouldn't have any work pending, but @wq->maydays may still have
2322	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2323	 * all the work items before the rescuer got to them.  Go through
2324	 * @wq->maydays processing before acting on should_stop so that the
2325	 * list is always empty on exit.
2326	 */
2327	should_stop = kthread_should_stop();
2328
2329	/* see whether any pwq is asking for help */
2330	spin_lock_irq(&wq_mayday_lock);
2331
2332	while (!list_empty(&wq->maydays)) {
2333		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334					struct pool_workqueue, mayday_node);
2335		struct worker_pool *pool = pwq->pool;
2336		struct work_struct *work, *n;
2337		bool first = true;
2338
2339		__set_current_state(TASK_RUNNING);
2340		list_del_init(&pwq->mayday_node);
2341
2342		spin_unlock_irq(&wq_mayday_lock);
2343
2344		worker_attach_to_pool(rescuer, pool);
2345
2346		spin_lock_irq(&pool->lock);
2347		rescuer->pool = pool;
2348
2349		/*
2350		 * Slurp in all works issued via this workqueue and
2351		 * process'em.
2352		 */
2353		WARN_ON_ONCE(!list_empty(scheduled));
2354		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355			if (get_work_pwq(work) == pwq) {
2356				if (first)
2357					pool->watchdog_ts = jiffies;
2358				move_linked_works(work, scheduled, &n);
2359			}
2360			first = false;
2361		}
2362
2363		if (!list_empty(scheduled)) {
2364			process_scheduled_works(rescuer);
2365
2366			/*
2367			 * The above execution of rescued work items could
2368			 * have created more to rescue through
2369			 * pwq_activate_first_delayed() or chained
2370			 * queueing.  Let's put @pwq back on mayday list so
2371			 * that such back-to-back work items, which may be
2372			 * being used to relieve memory pressure, don't
2373			 * incur MAYDAY_INTERVAL delay inbetween.
2374			 */
2375			if (need_to_create_worker(pool)) {
2376				spin_lock(&wq_mayday_lock);
2377				get_pwq(pwq);
2378				list_move_tail(&pwq->mayday_node, &wq->maydays);
2379				spin_unlock(&wq_mayday_lock);
2380			}
2381		}
2382
2383		/*
2384		 * Put the reference grabbed by send_mayday().  @pool won't
2385		 * go away while we're still attached to it.
2386		 */
2387		put_pwq(pwq);
2388
2389		/*
2390		 * Leave this pool.  If need_more_worker() is %true, notify a
2391		 * regular worker; otherwise, we end up with 0 concurrency
2392		 * and stalling the execution.
2393		 */
2394		if (need_more_worker(pool))
2395			wake_up_worker(pool);
2396
2397		rescuer->pool = NULL;
2398		spin_unlock_irq(&pool->lock);
2399
2400		worker_detach_from_pool(rescuer, pool);
2401
2402		spin_lock_irq(&wq_mayday_lock);
2403	}
2404
2405	spin_unlock_irq(&wq_mayday_lock);
2406
2407	if (should_stop) {
2408		__set_current_state(TASK_RUNNING);
2409		rescuer->task->flags &= ~PF_WQ_WORKER;
2410		return 0;
2411	}
2412
2413	/* rescuers should never participate in concurrency management */
2414	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2415	schedule();
2416	goto repeat;
2417}
2418
2419/**
2420 * check_flush_dependency - check for flush dependency sanity
2421 * @target_wq: workqueue being flushed
2422 * @target_work: work item being flushed (NULL for workqueue flushes)
2423 *
2424 * %current is trying to flush the whole @target_wq or @target_work on it.
2425 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426 * reclaiming memory or running on a workqueue which doesn't have
2427 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428 * a deadlock.
2429 */
2430static void check_flush_dependency(struct workqueue_struct *target_wq,
2431				   struct work_struct *target_work)
2432{
2433	work_func_t target_func = target_work ? target_work->func : NULL;
2434	struct worker *worker;
2435
2436	if (target_wq->flags & WQ_MEM_RECLAIM)
2437		return;
2438
2439	worker = current_wq_worker();
2440
2441	WARN_ONCE(current->flags & PF_MEMALLOC,
2442		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443		  current->pid, current->comm, target_wq->name, target_func);
2444	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2446		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447		  worker->current_pwq->wq->name, worker->current_func,
2448		  target_wq->name, target_func);
2449}
2450
2451struct wq_barrier {
2452	struct work_struct	work;
2453	struct completion	done;
2454	struct task_struct	*task;	/* purely informational */
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460	complete(&barr->done);
2461}
2462
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @pwq: pwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2469 *
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution.  Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled.  This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine pwq from @target.
2483 *
2484 * CONTEXT:
2485 * spin_lock_irq(pool->lock).
2486 */
2487static void insert_wq_barrier(struct pool_workqueue *pwq,
2488			      struct wq_barrier *barr,
2489			      struct work_struct *target, struct worker *worker)
2490{
2491	struct list_head *head;
2492	unsigned int linked = 0;
2493
2494	/*
2495	 * debugobject calls are safe here even with pool->lock locked
2496	 * as we know for sure that this will not trigger any of the
2497	 * checks and call back into the fixup functions where we
2498	 * might deadlock.
2499	 */
2500	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502	init_completion(&barr->done);
2503	barr->task = current;
2504
2505	/*
2506	 * If @target is currently being executed, schedule the
2507	 * barrier to the worker; otherwise, put it after @target.
2508	 */
2509	if (worker)
2510		head = worker->scheduled.next;
2511	else {
2512		unsigned long *bits = work_data_bits(target);
2513
2514		head = target->entry.next;
2515		/* there can already be other linked works, inherit and set */
2516		linked = *bits & WORK_STRUCT_LINKED;
2517		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518	}
2519
2520	debug_work_activate(&barr->work);
2521	insert_work(pwq, &barr->work, head,
2522		    work_color_to_flags(WORK_NO_COLOR) | linked);
2523}
2524
2525/**
2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
2531 * Prepare pwqs for workqueue flushing.
2532 *
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1.  If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color.  If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
2545 * If @work_color is non-negative, all pwqs should have the same
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
2550 * mutex_lock(wq->mutex).
2551 *
2552 * Return:
2553 * %true if @flush_color >= 0 and there's something to flush.  %false
2554 * otherwise.
2555 */
2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557				      int flush_color, int work_color)
2558{
2559	bool wait = false;
2560	struct pool_workqueue *pwq;
2561
2562	if (flush_color >= 0) {
2563		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564		atomic_set(&wq->nr_pwqs_to_flush, 1);
2565	}
2566
2567	for_each_pwq(pwq, wq) {
2568		struct worker_pool *pool = pwq->pool;
2569
2570		spin_lock_irq(&pool->lock);
2571
2572		if (flush_color >= 0) {
2573			WARN_ON_ONCE(pwq->flush_color != -1);
2574
2575			if (pwq->nr_in_flight[flush_color]) {
2576				pwq->flush_color = flush_color;
2577				atomic_inc(&wq->nr_pwqs_to_flush);
2578				wait = true;
2579			}
2580		}
2581
2582		if (work_color >= 0) {
2583			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584			pwq->work_color = work_color;
2585		}
2586
2587		spin_unlock_irq(&pool->lock);
2588	}
2589
2590	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591		complete(&wq->first_flusher->done);
2592
2593	return wait;
2594}
2595
2596/**
2597 * flush_workqueue - ensure that any scheduled work has run to completion.
2598 * @wq: workqueue to flush
2599 *
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
2602 */
2603void flush_workqueue(struct workqueue_struct *wq)
2604{
2605	struct wq_flusher this_flusher = {
2606		.list = LIST_HEAD_INIT(this_flusher.list),
2607		.flush_color = -1,
2608		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609	};
2610	int next_color;
2611
2612	lock_map_acquire(&wq->lockdep_map);
2613	lock_map_release(&wq->lockdep_map);
2614
2615	mutex_lock(&wq->mutex);
2616
2617	/*
2618	 * Start-to-wait phase
2619	 */
2620	next_color = work_next_color(wq->work_color);
2621
2622	if (next_color != wq->flush_color) {
2623		/*
2624		 * Color space is not full.  The current work_color
2625		 * becomes our flush_color and work_color is advanced
2626		 * by one.
2627		 */
2628		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2629		this_flusher.flush_color = wq->work_color;
2630		wq->work_color = next_color;
2631
2632		if (!wq->first_flusher) {
2633			/* no flush in progress, become the first flusher */
2634			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2635
2636			wq->first_flusher = &this_flusher;
2637
2638			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2639						       wq->work_color)) {
2640				/* nothing to flush, done */
2641				wq->flush_color = next_color;
2642				wq->first_flusher = NULL;
2643				goto out_unlock;
2644			}
2645		} else {
2646			/* wait in queue */
2647			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2648			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2649			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2650		}
2651	} else {
2652		/*
2653		 * Oops, color space is full, wait on overflow queue.
2654		 * The next flush completion will assign us
2655		 * flush_color and transfer to flusher_queue.
2656		 */
2657		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2658	}
2659
2660	check_flush_dependency(wq, NULL);
2661
2662	mutex_unlock(&wq->mutex);
2663
2664	wait_for_completion(&this_flusher.done);
2665
2666	/*
2667	 * Wake-up-and-cascade phase
2668	 *
2669	 * First flushers are responsible for cascading flushes and
2670	 * handling overflow.  Non-first flushers can simply return.
2671	 */
2672	if (wq->first_flusher != &this_flusher)
2673		return;
2674
2675	mutex_lock(&wq->mutex);
2676
2677	/* we might have raced, check again with mutex held */
2678	if (wq->first_flusher != &this_flusher)
2679		goto out_unlock;
2680
2681	wq->first_flusher = NULL;
2682
2683	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2685
2686	while (true) {
2687		struct wq_flusher *next, *tmp;
2688
2689		/* complete all the flushers sharing the current flush color */
2690		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691			if (next->flush_color != wq->flush_color)
2692				break;
2693			list_del_init(&next->list);
2694			complete(&next->done);
2695		}
2696
2697		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698			     wq->flush_color != work_next_color(wq->work_color));
2699
2700		/* this flush_color is finished, advance by one */
2701		wq->flush_color = work_next_color(wq->flush_color);
2702
2703		/* one color has been freed, handle overflow queue */
2704		if (!list_empty(&wq->flusher_overflow)) {
2705			/*
2706			 * Assign the same color to all overflowed
2707			 * flushers, advance work_color and append to
2708			 * flusher_queue.  This is the start-to-wait
2709			 * phase for these overflowed flushers.
2710			 */
2711			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712				tmp->flush_color = wq->work_color;
2713
2714			wq->work_color = work_next_color(wq->work_color);
2715
2716			list_splice_tail_init(&wq->flusher_overflow,
2717					      &wq->flusher_queue);
2718			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2719		}
2720
2721		if (list_empty(&wq->flusher_queue)) {
2722			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2723			break;
2724		}
2725
2726		/*
2727		 * Need to flush more colors.  Make the next flusher
2728		 * the new first flusher and arm pwqs.
2729		 */
2730		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2732
2733		list_del_init(&next->list);
2734		wq->first_flusher = next;
2735
2736		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2737			break;
2738
2739		/*
2740		 * Meh... this color is already done, clear first
2741		 * flusher and repeat cascading.
2742		 */
2743		wq->first_flusher = NULL;
2744	}
2745
2746out_unlock:
2747	mutex_unlock(&wq->mutex);
2748}
2749EXPORT_SYMBOL(flush_workqueue);
2750
2751/**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty.  While draining is in progress,
2756 * only chain queueing is allowed.  IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it.  @wq is flushed
2758 * repeatedly until it becomes empty.  The number of flushing is determined
2759 * by the depth of chaining and should be relatively short.  Whine if it
2760 * takes too long.
2761 */
2762void drain_workqueue(struct workqueue_struct *wq)
2763{
2764	unsigned int flush_cnt = 0;
2765	struct pool_workqueue *pwq;
2766
2767	/*
2768	 * __queue_work() needs to test whether there are drainers, is much
2769	 * hotter than drain_workqueue() and already looks at @wq->flags.
2770	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771	 */
2772	mutex_lock(&wq->mutex);
2773	if (!wq->nr_drainers++)
2774		wq->flags |= __WQ_DRAINING;
2775	mutex_unlock(&wq->mutex);
2776reflush:
2777	flush_workqueue(wq);
2778
2779	mutex_lock(&wq->mutex);
2780
2781	for_each_pwq(pwq, wq) {
2782		bool drained;
2783
2784		spin_lock_irq(&pwq->pool->lock);
2785		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2786		spin_unlock_irq(&pwq->pool->lock);
2787
2788		if (drained)
2789			continue;
2790
2791		if (++flush_cnt == 10 ||
2792		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2794				wq->name, flush_cnt);
2795
2796		mutex_unlock(&wq->mutex);
2797		goto reflush;
2798	}
2799
2800	if (!--wq->nr_drainers)
2801		wq->flags &= ~__WQ_DRAINING;
2802	mutex_unlock(&wq->mutex);
2803}
2804EXPORT_SYMBOL_GPL(drain_workqueue);
2805
2806static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2807{
2808	struct worker *worker = NULL;
2809	struct worker_pool *pool;
2810	struct pool_workqueue *pwq;
2811
2812	might_sleep();
2813
2814	local_irq_disable();
2815	pool = get_work_pool(work);
2816	if (!pool) {
2817		local_irq_enable();
2818		return false;
2819	}
2820
2821	spin_lock(&pool->lock);
2822	/* see the comment in try_to_grab_pending() with the same code */
2823	pwq = get_work_pwq(work);
2824	if (pwq) {
2825		if (unlikely(pwq->pool != pool))
2826			goto already_gone;
2827	} else {
2828		worker = find_worker_executing_work(pool, work);
2829		if (!worker)
2830			goto already_gone;
2831		pwq = worker->current_pwq;
2832	}
2833
2834	check_flush_dependency(pwq->wq, work);
2835
2836	insert_wq_barrier(pwq, barr, work, worker);
2837	spin_unlock_irq(&pool->lock);
2838
2839	/*
2840	 * If @max_active is 1 or rescuer is in use, flushing another work
2841	 * item on the same workqueue may lead to deadlock.  Make sure the
2842	 * flusher is not running on the same workqueue by verifying write
2843	 * access.
2844	 */
2845	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2846		lock_map_acquire(&pwq->wq->lockdep_map);
2847	else
2848		lock_map_acquire_read(&pwq->wq->lockdep_map);
2849	lock_map_release(&pwq->wq->lockdep_map);
2850
2851	return true;
2852already_gone:
2853	spin_unlock_irq(&pool->lock);
2854	return false;
2855}
2856
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution.  @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
2863 *
2864 * Return:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868bool flush_work(struct work_struct *work)
2869{
2870	struct wq_barrier barr;
2871
2872	lock_map_acquire(&work->lockdep_map);
2873	lock_map_release(&work->lockdep_map);
2874
2875	if (start_flush_work(work, &barr)) {
2876		wait_for_completion(&barr.done);
2877		destroy_work_on_stack(&barr.work);
2878		return true;
2879	} else {
2880		return false;
2881	}
2882}
2883EXPORT_SYMBOL_GPL(flush_work);
2884
2885struct cwt_wait {
2886	wait_queue_t		wait;
2887	struct work_struct	*work;
2888};
2889
2890static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2891{
2892	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2893
2894	if (cwait->work != key)
2895		return 0;
2896	return autoremove_wake_function(wait, mode, sync, key);
2897}
2898
2899static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2900{
2901	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2902	unsigned long flags;
2903	int ret;
2904
2905	do {
2906		ret = try_to_grab_pending(work, is_dwork, &flags);
2907		/*
2908		 * If someone else is already canceling, wait for it to
2909		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2910		 * because we may get scheduled between @work's completion
2911		 * and the other canceling task resuming and clearing
2912		 * CANCELING - flush_work() will return false immediately
2913		 * as @work is no longer busy, try_to_grab_pending() will
2914		 * return -ENOENT as @work is still being canceled and the
2915		 * other canceling task won't be able to clear CANCELING as
2916		 * we're hogging the CPU.
2917		 *
2918		 * Let's wait for completion using a waitqueue.  As this
2919		 * may lead to the thundering herd problem, use a custom
2920		 * wake function which matches @work along with exclusive
2921		 * wait and wakeup.
2922		 */
2923		if (unlikely(ret == -ENOENT)) {
2924			struct cwt_wait cwait;
2925
2926			init_wait(&cwait.wait);
2927			cwait.wait.func = cwt_wakefn;
2928			cwait.work = work;
2929
2930			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931						  TASK_UNINTERRUPTIBLE);
2932			if (work_is_canceling(work))
2933				schedule();
2934			finish_wait(&cancel_waitq, &cwait.wait);
2935		}
2936	} while (unlikely(ret < 0));
2937
2938	/* tell other tasks trying to grab @work to back off */
2939	mark_work_canceling(work);
2940	local_irq_restore(flags);
2941
2942	flush_work(work);
2943	clear_work_data(work);
2944
2945	/*
2946	 * Paired with prepare_to_wait() above so that either
2947	 * waitqueue_active() is visible here or !work_is_canceling() is
2948	 * visible there.
2949	 */
2950	smp_mb();
2951	if (waitqueue_active(&cancel_waitq))
2952		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
2954	return ret;
2955}
2956
2957/**
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
2960 *
2961 * Cancel @work and wait for its execution to finish.  This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue.  On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
2965 *
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968 *
2969 * The caller must ensure that the workqueue on which @work was last
2970 * queued can't be destroyed before this function returns.
2971 *
2972 * Return:
2973 * %true if @work was pending, %false otherwise.
2974 */
2975bool cancel_work_sync(struct work_struct *work)
2976{
2977	return __cancel_work_timer(work, false);
2978}
2979EXPORT_SYMBOL_GPL(cancel_work_sync);
2980
2981/**
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
2984 *
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution.  Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
2988 *
2989 * Return:
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
2992 */
2993bool flush_delayed_work(struct delayed_work *dwork)
2994{
2995	local_irq_disable();
2996	if (del_timer_sync(&dwork->timer))
2997		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998	local_irq_enable();
2999	return flush_work(&dwork->work);
3000}
3001EXPORT_SYMBOL(flush_delayed_work);
3002
3003/**
3004 * cancel_delayed_work - cancel a delayed work
3005 * @dwork: delayed_work to cancel
3006 *
3007 * Kill off a pending delayed_work.
3008 *
3009 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010 * pending.
3011 *
3012 * Note:
3013 * The work callback function may still be running on return, unless
3014 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3015 * use cancel_delayed_work_sync() to wait on it.
3016 *
3017 * This function is safe to call from any context including IRQ handler.
3018 */
3019bool cancel_delayed_work(struct delayed_work *dwork)
3020{
3021	unsigned long flags;
3022	int ret;
3023
3024	do {
3025		ret = try_to_grab_pending(&dwork->work, true, &flags);
3026	} while (unlikely(ret == -EAGAIN));
3027
3028	if (unlikely(ret < 0))
3029		return false;
3030
3031	set_work_pool_and_clear_pending(&dwork->work,
3032					get_work_pool_id(&dwork->work));
3033	local_irq_restore(flags);
3034	return ret;
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049	return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066	int cpu;
3067	struct work_struct __percpu *works;
3068
3069	works = alloc_percpu(struct work_struct);
3070	if (!works)
3071		return -ENOMEM;
3072
3073	get_online_cpus();
3074
3075	for_each_online_cpu(cpu) {
3076		struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078		INIT_WORK(work, func);
3079		schedule_work_on(cpu, work);
3080	}
3081
3082	for_each_online_cpu(cpu)
3083		flush_work(per_cpu_ptr(works, cpu));
3084
3085	put_online_cpus();
3086	free_percpu(works);
3087	return 0;
3088}
3089
3090/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:		the function to execute
3093 * @ew:		guaranteed storage for the execute work structure (must
3094 *		be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:	0 - function was executed
3100 *		1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104	if (!in_interrupt()) {
3105		fn(&ew->work);
3106		return 0;
3107	}
3108
3109	INIT_WORK(&ew->work, fn);
3110	schedule_work(&ew->work);
3111
3112	return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124	if (attrs) {
3125		free_cpumask_var(attrs->cpumask);
3126		kfree(attrs);
3127	}
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141	struct workqueue_attrs *attrs;
3142
3143	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144	if (!attrs)
3145		goto fail;
3146	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147		goto fail;
3148
3149	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150	return attrs;
3151fail:
3152	free_workqueue_attrs(attrs);
3153	return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157				 const struct workqueue_attrs *from)
3158{
3159	to->nice = from->nice;
3160	cpumask_copy(to->cpumask, from->cpumask);
3161	/*
3162	 * Unlike hash and equality test, this function doesn't ignore
3163	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165	 */
3166	to->no_numa = from->no_numa;
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172	u32 hash = 0;
3173
3174	hash = jhash_1word(attrs->nice, hash);
3175	hash = jhash(cpumask_bits(attrs->cpumask),
3176		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177	return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182			  const struct workqueue_attrs *b)
3183{
3184	if (a->nice != b->nice)
3185		return false;
3186	if (!cpumask_equal(a->cpumask, b->cpumask))
3187		return false;
3188	return true;
3189}
3190
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203	spin_lock_init(&pool->lock);
3204	pool->id = -1;
3205	pool->cpu = -1;
3206	pool->node = NUMA_NO_NODE;
3207	pool->flags |= POOL_DISASSOCIATED;
3208	pool->watchdog_ts = jiffies;
3209	INIT_LIST_HEAD(&pool->worklist);
3210	INIT_LIST_HEAD(&pool->idle_list);
3211	hash_init(pool->busy_hash);
3212
3213	init_timer_deferrable(&pool->idle_timer);
3214	pool->idle_timer.function = idle_worker_timeout;
3215	pool->idle_timer.data = (unsigned long)pool;
3216
3217	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218		    (unsigned long)pool);
3219
3220	mutex_init(&pool->manager_arb);
3221	mutex_init(&pool->attach_mutex);
3222	INIT_LIST_HEAD(&pool->workers);
3223
3224	ida_init(&pool->worker_ida);
3225	INIT_HLIST_NODE(&pool->hash_node);
3226	pool->refcnt = 1;
3227
3228	/* shouldn't fail above this point */
3229	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230	if (!pool->attrs)
3231		return -ENOMEM;
3232	return 0;
3233}
3234
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237	struct workqueue_struct *wq =
3238		container_of(rcu, struct workqueue_struct, rcu);
3239
3240	if (!(wq->flags & WQ_UNBOUND))
3241		free_percpu(wq->cpu_pwqs);
3242	else
3243		free_workqueue_attrs(wq->unbound_attrs);
3244
3245	kfree(wq->rescuer);
3246	kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253	ida_destroy(&pool->worker_ida);
3254	free_workqueue_attrs(pool->attrs);
3255	kfree(pool);
3256}
3257
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272	struct worker *worker;
3273
3274	lockdep_assert_held(&wq_pool_mutex);
3275
3276	if (--pool->refcnt)
3277		return;
3278
3279	/* sanity checks */
3280	if (WARN_ON(!(pool->cpu < 0)) ||
3281	    WARN_ON(!list_empty(&pool->worklist)))
3282		return;
3283
3284	/* release id and unhash */
3285	if (pool->id >= 0)
3286		idr_remove(&worker_pool_idr, pool->id);
3287	hash_del(&pool->hash_node);
3288
3289	/*
3290	 * Become the manager and destroy all workers.  Grabbing
3291	 * manager_arb prevents @pool's workers from blocking on
3292	 * attach_mutex.
3293	 */
3294	mutex_lock(&pool->manager_arb);
 
 
3295
3296	spin_lock_irq(&pool->lock);
3297	while ((worker = first_idle_worker(pool)))
3298		destroy_worker(worker);
3299	WARN_ON(pool->nr_workers || pool->nr_idle);
 
3300	spin_unlock_irq(&pool->lock);
3301
3302	mutex_lock(&pool->attach_mutex);
3303	if (!list_empty(&pool->workers))
3304		pool->detach_completion = &detach_completion;
3305	mutex_unlock(&pool->attach_mutex);
3306
3307	if (pool->detach_completion)
3308		wait_for_completion(pool->detach_completion);
3309
3310	mutex_unlock(&pool->manager_arb);
3311
3312	/* shut down the timers */
3313	del_timer_sync(&pool->idle_timer);
3314	del_timer_sync(&pool->mayday_timer);
3315
3316	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
3336	u32 hash = wqattrs_hash(attrs);
3337	struct worker_pool *pool;
3338	int node;
3339	int target_node = NUMA_NO_NODE;
3340
3341	lockdep_assert_held(&wq_pool_mutex);
3342
3343	/* do we already have a matching pool? */
3344	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345		if (wqattrs_equal(pool->attrs, attrs)) {
3346			pool->refcnt++;
3347			return pool;
3348		}
3349	}
3350
3351	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352	if (wq_numa_enabled) {
3353		for_each_node(node) {
3354			if (cpumask_subset(attrs->cpumask,
3355					   wq_numa_possible_cpumask[node])) {
3356				target_node = node;
3357				break;
3358			}
3359		}
3360	}
3361
3362	/* nope, create a new one */
3363	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364	if (!pool || init_worker_pool(pool) < 0)
3365		goto fail;
3366
 
 
 
3367	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368	copy_workqueue_attrs(pool->attrs, attrs);
3369	pool->node = target_node;
3370
3371	/*
3372	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373	 * 'struct workqueue_attrs' comments for detail.
3374	 */
3375	pool->attrs->no_numa = false;
3376
 
 
 
 
 
 
 
 
 
 
 
3377	if (worker_pool_assign_id(pool) < 0)
3378		goto fail;
3379
3380	/* create and start the initial worker */
3381	if (!create_worker(pool))
3382		goto fail;
3383
3384	/* install */
3385	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387	return pool;
3388fail:
3389	if (pool)
3390		put_unbound_pool(pool);
3391	return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396	kmem_cache_free(pwq_cache,
3397			container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407						  unbound_release_work);
3408	struct workqueue_struct *wq = pwq->wq;
3409	struct worker_pool *pool = pwq->pool;
3410	bool is_last;
3411
3412	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413		return;
3414
 
 
 
 
 
3415	mutex_lock(&wq->mutex);
3416	list_del_rcu(&pwq->pwqs_node);
3417	is_last = list_empty(&wq->pwqs);
3418	mutex_unlock(&wq->mutex);
3419
3420	mutex_lock(&wq_pool_mutex);
3421	put_unbound_pool(pool);
3422	mutex_unlock(&wq_pool_mutex);
3423
3424	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426	/*
3427	 * If we're the last pwq going away, @wq is already dead and no one
3428	 * is gonna access it anymore.  Schedule RCU free.
3429	 */
3430	if (is_last)
3431		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
 
3432}
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444	struct workqueue_struct *wq = pwq->wq;
3445	bool freezable = wq->flags & WQ_FREEZABLE;
3446
3447	/* for @wq->saved_max_active */
3448	lockdep_assert_held(&wq->mutex);
3449
3450	/* fast exit for non-freezable wqs */
3451	if (!freezable && pwq->max_active == wq->saved_max_active)
3452		return;
3453
3454	spin_lock_irq(&pwq->pool->lock);
3455
3456	/*
3457	 * During [un]freezing, the caller is responsible for ensuring that
3458	 * this function is called at least once after @workqueue_freezing
3459	 * is updated and visible.
3460	 */
3461	if (!freezable || !workqueue_freezing) {
3462		pwq->max_active = wq->saved_max_active;
3463
3464		while (!list_empty(&pwq->delayed_works) &&
3465		       pwq->nr_active < pwq->max_active)
3466			pwq_activate_first_delayed(pwq);
3467
3468		/*
3469		 * Need to kick a worker after thawed or an unbound wq's
3470		 * max_active is bumped.  It's a slow path.  Do it always.
3471		 */
3472		wake_up_worker(pwq->pool);
3473	} else {
3474		pwq->max_active = 0;
3475	}
3476
3477	spin_unlock_irq(&pwq->pool->lock);
3478}
3479
3480/* initialize newly alloced @pwq which is associated with @wq and @pool */
3481static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482		     struct worker_pool *pool)
3483{
3484	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485
3486	memset(pwq, 0, sizeof(*pwq));
3487
3488	pwq->pool = pool;
3489	pwq->wq = wq;
3490	pwq->flush_color = -1;
3491	pwq->refcnt = 1;
3492	INIT_LIST_HEAD(&pwq->delayed_works);
3493	INIT_LIST_HEAD(&pwq->pwqs_node);
3494	INIT_LIST_HEAD(&pwq->mayday_node);
3495	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496}
3497
3498/* sync @pwq with the current state of its associated wq and link it */
3499static void link_pwq(struct pool_workqueue *pwq)
3500{
3501	struct workqueue_struct *wq = pwq->wq;
3502
3503	lockdep_assert_held(&wq->mutex);
3504
3505	/* may be called multiple times, ignore if already linked */
3506	if (!list_empty(&pwq->pwqs_node))
3507		return;
3508
3509	/* set the matching work_color */
 
 
 
3510	pwq->work_color = wq->work_color;
3511
3512	/* sync max_active to the current setting */
3513	pwq_adjust_max_active(pwq);
3514
3515	/* link in @pwq */
3516	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517}
3518
3519/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521					const struct workqueue_attrs *attrs)
3522{
3523	struct worker_pool *pool;
3524	struct pool_workqueue *pwq;
3525
3526	lockdep_assert_held(&wq_pool_mutex);
3527
3528	pool = get_unbound_pool(attrs);
3529	if (!pool)
3530		return NULL;
3531
3532	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533	if (!pwq) {
3534		put_unbound_pool(pool);
3535		return NULL;
3536	}
3537
3538	init_pwq(pwq, wq, pool);
3539	return pwq;
3540}
3541
 
 
 
 
 
 
 
 
 
 
 
3542/**
3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
3548 *
3549 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation.  The result is stored in @cpumask.
3552 *
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
3557 *
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3560 *
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
3563 */
3564static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565				 int cpu_going_down, cpumask_t *cpumask)
3566{
3567	if (!wq_numa_enabled || attrs->no_numa)
3568		goto use_dfl;
3569
3570	/* does @node have any online CPUs @attrs wants? */
3571	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572	if (cpu_going_down >= 0)
3573		cpumask_clear_cpu(cpu_going_down, cpumask);
3574
3575	if (cpumask_empty(cpumask))
3576		goto use_dfl;
3577
3578	/* yeap, return possible CPUs in @node that @attrs wants */
3579	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580	return !cpumask_equal(cpumask, attrs->cpumask);
3581
3582use_dfl:
3583	cpumask_copy(cpumask, attrs->cpumask);
3584	return false;
3585}
3586
3587/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589						   int node,
3590						   struct pool_workqueue *pwq)
3591{
3592	struct pool_workqueue *old_pwq;
3593
3594	lockdep_assert_held(&wq_pool_mutex);
3595	lockdep_assert_held(&wq->mutex);
3596
3597	/* link_pwq() can handle duplicate calls */
3598	link_pwq(pwq);
3599
3600	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602	return old_pwq;
3603}
3604
3605/* context to store the prepared attrs & pwqs before applying */
3606struct apply_wqattrs_ctx {
3607	struct workqueue_struct	*wq;		/* target workqueue */
3608	struct workqueue_attrs	*attrs;		/* attrs to apply */
3609	struct list_head	list;		/* queued for batching commit */
3610	struct pool_workqueue	*dfl_pwq;
3611	struct pool_workqueue	*pwq_tbl[];
3612};
3613
3614/* free the resources after success or abort */
3615static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616{
3617	if (ctx) {
3618		int node;
3619
3620		for_each_node(node)
3621			put_pwq_unlocked(ctx->pwq_tbl[node]);
3622		put_pwq_unlocked(ctx->dfl_pwq);
3623
3624		free_workqueue_attrs(ctx->attrs);
3625
3626		kfree(ctx);
3627	}
3628}
3629
3630/* allocate the attrs and pwqs for later installation */
3631static struct apply_wqattrs_ctx *
3632apply_wqattrs_prepare(struct workqueue_struct *wq,
3633		      const struct workqueue_attrs *attrs)
3634{
3635	struct apply_wqattrs_ctx *ctx;
3636	struct workqueue_attrs *new_attrs, *tmp_attrs;
3637	int node;
 
3638
3639	lockdep_assert_held(&wq_pool_mutex);
 
 
3640
3641	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642		      GFP_KERNEL);
 
3643
 
3644	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646	if (!ctx || !new_attrs || !tmp_attrs)
3647		goto out_free;
3648
3649	/*
3650	 * Calculate the attrs of the default pwq.
3651	 * If the user configured cpumask doesn't overlap with the
3652	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653	 */
3654	copy_workqueue_attrs(new_attrs, attrs);
3655	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658
3659	/*
3660	 * We may create multiple pwqs with differing cpumasks.  Make a
3661	 * copy of @new_attrs which will be modified and used to obtain
3662	 * pools.
3663	 */
3664	copy_workqueue_attrs(tmp_attrs, new_attrs);
3665
3666	/*
 
 
 
 
 
 
 
 
 
3667	 * If something goes wrong during CPU up/down, we'll fall back to
3668	 * the default pwq covering whole @attrs->cpumask.  Always create
3669	 * it even if we don't use it immediately.
3670	 */
3671	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672	if (!ctx->dfl_pwq)
3673		goto out_free;
3674
3675	for_each_node(node) {
3676		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678			if (!ctx->pwq_tbl[node])
3679				goto out_free;
3680		} else {
3681			ctx->dfl_pwq->refcnt++;
3682			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683		}
3684	}
3685
3686	/* save the user configured attrs and sanitize it. */
3687	copy_workqueue_attrs(new_attrs, attrs);
3688	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689	ctx->attrs = new_attrs;
3690
3691	ctx->wq = wq;
3692	free_workqueue_attrs(tmp_attrs);
3693	return ctx;
3694
3695out_free:
3696	free_workqueue_attrs(tmp_attrs);
3697	free_workqueue_attrs(new_attrs);
3698	apply_wqattrs_cleanup(ctx);
3699	return NULL;
3700}
3701
3702/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704{
3705	int node;
3706
3707	/* all pwqs have been created successfully, let's install'em */
3708	mutex_lock(&ctx->wq->mutex);
3709
3710	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711
3712	/* save the previous pwq and install the new one */
3713	for_each_node(node)
3714		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715							  ctx->pwq_tbl[node]);
3716
3717	/* @dfl_pwq might not have been used, ensure it's linked */
3718	link_pwq(ctx->dfl_pwq);
3719	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720
3721	mutex_unlock(&ctx->wq->mutex);
3722}
 
 
 
 
3723
3724static void apply_wqattrs_lock(void)
3725{
3726	/* CPUs should stay stable across pwq creations and installations */
3727	get_online_cpus();
3728	mutex_lock(&wq_pool_mutex);
3729}
 
 
3730
3731static void apply_wqattrs_unlock(void)
3732{
 
 
 
3733	mutex_unlock(&wq_pool_mutex);
3734	put_online_cpus();
3735}
3736
3737static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738					const struct workqueue_attrs *attrs)
3739{
3740	struct apply_wqattrs_ctx *ctx;
3741
3742	/* only unbound workqueues can change attributes */
3743	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744		return -EINVAL;
3745
3746	/* creating multiple pwqs breaks ordering guarantee */
3747	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748		return -EINVAL;
3749
3750	ctx = apply_wqattrs_prepare(wq, attrs);
3751	if (!ctx)
3752		return -ENOMEM;
3753
3754	/* the ctx has been prepared successfully, let's commit it */
3755	apply_wqattrs_commit(ctx);
3756	apply_wqattrs_cleanup(ctx);
3757
3758	return 0;
3759}
3760
3761/**
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765 *
3766 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3770 * items finish.  Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3772 *
3773 * Performs GFP_KERNEL allocations.
3774 *
3775 * Return: 0 on success and -errno on failure.
3776 */
3777int apply_workqueue_attrs(struct workqueue_struct *wq,
3778			  const struct workqueue_attrs *attrs)
3779{
3780	int ret;
3781
3782	apply_wqattrs_lock();
3783	ret = apply_workqueue_attrs_locked(wq, attrs);
3784	apply_wqattrs_unlock();
3785
3786	return ret;
3787}
3788
3789/**
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3794 *
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3798 *
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3802 *
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU.  This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3810 */
3811static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812				   bool online)
3813{
3814	int node = cpu_to_node(cpu);
3815	int cpu_off = online ? -1 : cpu;
3816	struct pool_workqueue *old_pwq = NULL, *pwq;
3817	struct workqueue_attrs *target_attrs;
3818	cpumask_t *cpumask;
3819
3820	lockdep_assert_held(&wq_pool_mutex);
3821
3822	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823	    wq->unbound_attrs->no_numa)
3824		return;
3825
3826	/*
3827	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828	 * Let's use a preallocated one.  The following buf is protected by
3829	 * CPU hotplug exclusion.
3830	 */
3831	target_attrs = wq_update_unbound_numa_attrs_buf;
3832	cpumask = target_attrs->cpumask;
3833
 
 
 
 
3834	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835	pwq = unbound_pwq_by_node(wq, node);
3836
3837	/*
3838	 * Let's determine what needs to be done.  If the target cpumask is
3839	 * different from the default pwq's, we need to compare it to @pwq's
3840	 * and create a new one if they don't match.  If the target cpumask
3841	 * equals the default pwq's, the default pwq should be used.
 
3842	 */
3843	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845			return;
3846	} else {
3847		goto use_dfl_pwq;
 
 
 
3848	}
3849
 
 
3850	/* create a new pwq */
3851	pwq = alloc_unbound_pwq(wq, target_attrs);
3852	if (!pwq) {
3853		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854			wq->name);
 
3855		goto use_dfl_pwq;
3856	}
3857
3858	/* Install the new pwq. */
 
 
 
 
 
3859	mutex_lock(&wq->mutex);
3860	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861	goto out_unlock;
3862
3863use_dfl_pwq:
3864	mutex_lock(&wq->mutex);
3865	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866	get_pwq(wq->dfl_pwq);
3867	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869out_unlock:
3870	mutex_unlock(&wq->mutex);
3871	put_pwq_unlocked(old_pwq);
3872}
3873
3874static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875{
3876	bool highpri = wq->flags & WQ_HIGHPRI;
3877	int cpu, ret;
3878
3879	if (!(wq->flags & WQ_UNBOUND)) {
3880		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881		if (!wq->cpu_pwqs)
3882			return -ENOMEM;
3883
3884		for_each_possible_cpu(cpu) {
3885			struct pool_workqueue *pwq =
3886				per_cpu_ptr(wq->cpu_pwqs, cpu);
3887			struct worker_pool *cpu_pools =
3888				per_cpu(cpu_worker_pools, cpu);
3889
3890			init_pwq(pwq, wq, &cpu_pools[highpri]);
3891
3892			mutex_lock(&wq->mutex);
3893			link_pwq(pwq);
3894			mutex_unlock(&wq->mutex);
3895		}
3896		return 0;
3897	} else if (wq->flags & __WQ_ORDERED) {
3898		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899		/* there should only be single pwq for ordering guarantee */
3900		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902		     "ordering guarantee broken for workqueue %s\n", wq->name);
3903		return ret;
3904	} else {
3905		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906	}
3907}
3908
3909static int wq_clamp_max_active(int max_active, unsigned int flags,
3910			       const char *name)
3911{
3912	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913
3914	if (max_active < 1 || max_active > lim)
3915		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916			max_active, name, 1, lim);
3917
3918	return clamp_val(max_active, 1, lim);
3919}
3920
3921struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922					       unsigned int flags,
3923					       int max_active,
3924					       struct lock_class_key *key,
3925					       const char *lock_name, ...)
3926{
3927	size_t tbl_size = 0;
3928	va_list args;
3929	struct workqueue_struct *wq;
3930	struct pool_workqueue *pwq;
3931
3932	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3933	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934		flags |= WQ_UNBOUND;
3935
3936	/* allocate wq and format name */
3937	if (flags & WQ_UNBOUND)
3938		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939
3940	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941	if (!wq)
3942		return NULL;
3943
3944	if (flags & WQ_UNBOUND) {
3945		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946		if (!wq->unbound_attrs)
3947			goto err_free_wq;
3948	}
3949
3950	va_start(args, lock_name);
3951	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952	va_end(args);
3953
3954	max_active = max_active ?: WQ_DFL_ACTIVE;
3955	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956
3957	/* init wq */
3958	wq->flags = flags;
3959	wq->saved_max_active = max_active;
3960	mutex_init(&wq->mutex);
3961	atomic_set(&wq->nr_pwqs_to_flush, 0);
3962	INIT_LIST_HEAD(&wq->pwqs);
3963	INIT_LIST_HEAD(&wq->flusher_queue);
3964	INIT_LIST_HEAD(&wq->flusher_overflow);
3965	INIT_LIST_HEAD(&wq->maydays);
3966
3967	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968	INIT_LIST_HEAD(&wq->list);
3969
3970	if (alloc_and_link_pwqs(wq) < 0)
3971		goto err_free_wq;
3972
3973	/*
3974	 * Workqueues which may be used during memory reclaim should
3975	 * have a rescuer to guarantee forward progress.
3976	 */
3977	if (flags & WQ_MEM_RECLAIM) {
3978		struct worker *rescuer;
3979
3980		rescuer = alloc_worker(NUMA_NO_NODE);
3981		if (!rescuer)
3982			goto err_destroy;
3983
3984		rescuer->rescue_wq = wq;
3985		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986					       wq->name);
3987		if (IS_ERR(rescuer->task)) {
3988			kfree(rescuer);
3989			goto err_destroy;
3990		}
3991
3992		wq->rescuer = rescuer;
3993		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994		wake_up_process(rescuer->task);
3995	}
3996
3997	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998		goto err_destroy;
3999
4000	/*
4001	 * wq_pool_mutex protects global freeze state and workqueues list.
4002	 * Grab it, adjust max_active and add the new @wq to workqueues
4003	 * list.
4004	 */
4005	mutex_lock(&wq_pool_mutex);
4006
4007	mutex_lock(&wq->mutex);
4008	for_each_pwq(pwq, wq)
4009		pwq_adjust_max_active(pwq);
4010	mutex_unlock(&wq->mutex);
4011
4012	list_add_tail_rcu(&wq->list, &workqueues);
4013
4014	mutex_unlock(&wq_pool_mutex);
4015
4016	return wq;
4017
4018err_free_wq:
4019	free_workqueue_attrs(wq->unbound_attrs);
4020	kfree(wq);
4021	return NULL;
4022err_destroy:
4023	destroy_workqueue(wq);
4024	return NULL;
4025}
4026EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4027
4028/**
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4031 *
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4033 */
4034void destroy_workqueue(struct workqueue_struct *wq)
4035{
4036	struct pool_workqueue *pwq;
4037	int node;
4038
4039	/* drain it before proceeding with destruction */
4040	drain_workqueue(wq);
4041
4042	/* sanity checks */
4043	mutex_lock(&wq->mutex);
4044	for_each_pwq(pwq, wq) {
4045		int i;
4046
4047		for (i = 0; i < WORK_NR_COLORS; i++) {
4048			if (WARN_ON(pwq->nr_in_flight[i])) {
4049				mutex_unlock(&wq->mutex);
4050				return;
4051			}
4052		}
4053
4054		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4055		    WARN_ON(pwq->nr_active) ||
4056		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4057			mutex_unlock(&wq->mutex);
4058			return;
4059		}
4060	}
4061	mutex_unlock(&wq->mutex);
4062
4063	/*
4064	 * wq list is used to freeze wq, remove from list after
4065	 * flushing is complete in case freeze races us.
4066	 */
4067	mutex_lock(&wq_pool_mutex);
4068	list_del_rcu(&wq->list);
4069	mutex_unlock(&wq_pool_mutex);
4070
4071	workqueue_sysfs_unregister(wq);
4072
4073	if (wq->rescuer)
4074		kthread_stop(wq->rescuer->task);
 
 
 
4075
4076	if (!(wq->flags & WQ_UNBOUND)) {
4077		/*
4078		 * The base ref is never dropped on per-cpu pwqs.  Directly
4079		 * schedule RCU free.
4080		 */
4081		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
4082	} else {
4083		/*
4084		 * We're the sole accessor of @wq at this point.  Directly
4085		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086		 * @wq will be freed when the last pwq is released.
4087		 */
4088		for_each_node(node) {
4089			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091			put_pwq_unlocked(pwq);
4092		}
4093
4094		/*
4095		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4096		 * put.  Don't access it afterwards.
4097		 */
4098		pwq = wq->dfl_pwq;
4099		wq->dfl_pwq = NULL;
4100		put_pwq_unlocked(pwq);
4101	}
4102}
4103EXPORT_SYMBOL_GPL(destroy_workqueue);
4104
4105/**
4106 * workqueue_set_max_active - adjust max_active of a workqueue
4107 * @wq: target workqueue
4108 * @max_active: new max_active value.
4109 *
4110 * Set max_active of @wq to @max_active.
4111 *
4112 * CONTEXT:
4113 * Don't call from IRQ context.
4114 */
4115void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4116{
4117	struct pool_workqueue *pwq;
4118
4119	/* disallow meddling with max_active for ordered workqueues */
4120	if (WARN_ON(wq->flags & __WQ_ORDERED))
4121		return;
4122
4123	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4124
4125	mutex_lock(&wq->mutex);
4126
4127	wq->saved_max_active = max_active;
4128
4129	for_each_pwq(pwq, wq)
4130		pwq_adjust_max_active(pwq);
4131
4132	mutex_unlock(&wq->mutex);
4133}
4134EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4135
4136/**
4137 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4138 *
4139 * Determine whether %current is a workqueue rescuer.  Can be used from
4140 * work functions to determine whether it's being run off the rescuer task.
4141 *
4142 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4143 */
4144bool current_is_workqueue_rescuer(void)
4145{
4146	struct worker *worker = current_wq_worker();
4147
4148	return worker && worker->rescue_wq;
4149}
4150
4151/**
4152 * workqueue_congested - test whether a workqueue is congested
4153 * @cpu: CPU in question
4154 * @wq: target workqueue
4155 *
4156 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4157 * no synchronization around this function and the test result is
4158 * unreliable and only useful as advisory hints or for debugging.
4159 *
4160 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161 * Note that both per-cpu and unbound workqueues may be associated with
4162 * multiple pool_workqueues which have separate congested states.  A
4163 * workqueue being congested on one CPU doesn't mean the workqueue is also
4164 * contested on other CPUs / NUMA nodes.
4165 *
4166 * Return:
4167 * %true if congested, %false otherwise.
4168 */
4169bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4170{
4171	struct pool_workqueue *pwq;
4172	bool ret;
4173
4174	rcu_read_lock_sched();
4175
4176	if (cpu == WORK_CPU_UNBOUND)
4177		cpu = smp_processor_id();
4178
4179	if (!(wq->flags & WQ_UNBOUND))
4180		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181	else
4182		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4183
4184	ret = !list_empty(&pwq->delayed_works);
4185	rcu_read_unlock_sched();
4186
4187	return ret;
4188}
4189EXPORT_SYMBOL_GPL(workqueue_congested);
4190
4191/**
4192 * work_busy - test whether a work is currently pending or running
4193 * @work: the work to be tested
4194 *
4195 * Test whether @work is currently pending or running.  There is no
4196 * synchronization around this function and the test result is
4197 * unreliable and only useful as advisory hints or for debugging.
4198 *
4199 * Return:
4200 * OR'd bitmask of WORK_BUSY_* bits.
4201 */
4202unsigned int work_busy(struct work_struct *work)
4203{
4204	struct worker_pool *pool;
4205	unsigned long flags;
4206	unsigned int ret = 0;
4207
4208	if (work_pending(work))
4209		ret |= WORK_BUSY_PENDING;
4210
4211	local_irq_save(flags);
4212	pool = get_work_pool(work);
4213	if (pool) {
4214		spin_lock(&pool->lock);
4215		if (find_worker_executing_work(pool, work))
4216			ret |= WORK_BUSY_RUNNING;
4217		spin_unlock(&pool->lock);
4218	}
4219	local_irq_restore(flags);
4220
4221	return ret;
4222}
4223EXPORT_SYMBOL_GPL(work_busy);
4224
4225/**
4226 * set_worker_desc - set description for the current work item
4227 * @fmt: printf-style format string
4228 * @...: arguments for the format string
4229 *
4230 * This function can be called by a running work function to describe what
4231 * the work item is about.  If the worker task gets dumped, this
4232 * information will be printed out together to help debugging.  The
4233 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4234 */
4235void set_worker_desc(const char *fmt, ...)
4236{
4237	struct worker *worker = current_wq_worker();
4238	va_list args;
4239
4240	if (worker) {
4241		va_start(args, fmt);
4242		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243		va_end(args);
4244		worker->desc_valid = true;
4245	}
4246}
4247
4248/**
4249 * print_worker_info - print out worker information and description
4250 * @log_lvl: the log level to use when printing
4251 * @task: target task
4252 *
4253 * If @task is a worker and currently executing a work item, print out the
4254 * name of the workqueue being serviced and worker description set with
4255 * set_worker_desc() by the currently executing work item.
4256 *
4257 * This function can be safely called on any task as long as the
4258 * task_struct itself is accessible.  While safe, this function isn't
4259 * synchronized and may print out mixups or garbages of limited length.
4260 */
4261void print_worker_info(const char *log_lvl, struct task_struct *task)
4262{
4263	work_func_t *fn = NULL;
4264	char name[WQ_NAME_LEN] = { };
4265	char desc[WORKER_DESC_LEN] = { };
4266	struct pool_workqueue *pwq = NULL;
4267	struct workqueue_struct *wq = NULL;
4268	bool desc_valid = false;
4269	struct worker *worker;
4270
4271	if (!(task->flags & PF_WQ_WORKER))
4272		return;
4273
4274	/*
4275	 * This function is called without any synchronization and @task
4276	 * could be in any state.  Be careful with dereferences.
4277	 */
4278	worker = probe_kthread_data(task);
4279
4280	/*
4281	 * Carefully copy the associated workqueue's workfn and name.  Keep
4282	 * the original last '\0' in case the original contains garbage.
4283	 */
4284	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4288
4289	/* copy worker description */
4290	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291	if (desc_valid)
4292		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4293
4294	if (fn || name[0] || desc[0]) {
4295		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296		if (desc[0])
4297			pr_cont(" (%s)", desc);
4298		pr_cont("\n");
4299	}
4300}
4301
4302static void pr_cont_pool_info(struct worker_pool *pool)
4303{
4304	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305	if (pool->node != NUMA_NO_NODE)
4306		pr_cont(" node=%d", pool->node);
4307	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4308}
4309
4310static void pr_cont_work(bool comma, struct work_struct *work)
4311{
4312	if (work->func == wq_barrier_func) {
4313		struct wq_barrier *barr;
4314
4315		barr = container_of(work, struct wq_barrier, work);
4316
4317		pr_cont("%s BAR(%d)", comma ? "," : "",
4318			task_pid_nr(barr->task));
4319	} else {
4320		pr_cont("%s %pf", comma ? "," : "", work->func);
4321	}
4322}
4323
4324static void show_pwq(struct pool_workqueue *pwq)
4325{
4326	struct worker_pool *pool = pwq->pool;
4327	struct work_struct *work;
4328	struct worker *worker;
4329	bool has_in_flight = false, has_pending = false;
4330	int bkt;
4331
4332	pr_info("  pwq %d:", pool->id);
4333	pr_cont_pool_info(pool);
4334
4335	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4336		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4337
4338	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339		if (worker->current_pwq == pwq) {
4340			has_in_flight = true;
4341			break;
4342		}
4343	}
4344	if (has_in_flight) {
4345		bool comma = false;
4346
4347		pr_info("    in-flight:");
4348		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349			if (worker->current_pwq != pwq)
4350				continue;
4351
4352			pr_cont("%s %d%s:%pf", comma ? "," : "",
4353				task_pid_nr(worker->task),
4354				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355				worker->current_func);
4356			list_for_each_entry(work, &worker->scheduled, entry)
4357				pr_cont_work(false, work);
4358			comma = true;
4359		}
4360		pr_cont("\n");
4361	}
4362
4363	list_for_each_entry(work, &pool->worklist, entry) {
4364		if (get_work_pwq(work) == pwq) {
4365			has_pending = true;
4366			break;
4367		}
4368	}
4369	if (has_pending) {
4370		bool comma = false;
4371
4372		pr_info("    pending:");
4373		list_for_each_entry(work, &pool->worklist, entry) {
4374			if (get_work_pwq(work) != pwq)
4375				continue;
4376
4377			pr_cont_work(comma, work);
4378			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4379		}
4380		pr_cont("\n");
4381	}
4382
4383	if (!list_empty(&pwq->delayed_works)) {
4384		bool comma = false;
4385
4386		pr_info("    delayed:");
4387		list_for_each_entry(work, &pwq->delayed_works, entry) {
4388			pr_cont_work(comma, work);
4389			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4390		}
4391		pr_cont("\n");
4392	}
4393}
4394
4395/**
4396 * show_workqueue_state - dump workqueue state
4397 *
4398 * Called from a sysrq handler and prints out all busy workqueues and
4399 * pools.
4400 */
4401void show_workqueue_state(void)
4402{
4403	struct workqueue_struct *wq;
4404	struct worker_pool *pool;
4405	unsigned long flags;
4406	int pi;
4407
4408	rcu_read_lock_sched();
4409
4410	pr_info("Showing busy workqueues and worker pools:\n");
4411
4412	list_for_each_entry_rcu(wq, &workqueues, list) {
4413		struct pool_workqueue *pwq;
4414		bool idle = true;
4415
4416		for_each_pwq(pwq, wq) {
4417			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418				idle = false;
4419				break;
4420			}
4421		}
4422		if (idle)
4423			continue;
4424
4425		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4426
4427		for_each_pwq(pwq, wq) {
4428			spin_lock_irqsave(&pwq->pool->lock, flags);
4429			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430				show_pwq(pwq);
4431			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4432		}
4433	}
4434
4435	for_each_pool(pool, pi) {
4436		struct worker *worker;
4437		bool first = true;
4438
4439		spin_lock_irqsave(&pool->lock, flags);
4440		if (pool->nr_workers == pool->nr_idle)
4441			goto next_pool;
4442
4443		pr_info("pool %d:", pool->id);
4444		pr_cont_pool_info(pool);
4445		pr_cont(" hung=%us workers=%d",
4446			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447			pool->nr_workers);
4448		if (pool->manager)
4449			pr_cont(" manager: %d",
4450				task_pid_nr(pool->manager->task));
4451		list_for_each_entry(worker, &pool->idle_list, entry) {
4452			pr_cont(" %s%d", first ? "idle: " : "",
4453				task_pid_nr(worker->task));
4454			first = false;
4455		}
4456		pr_cont("\n");
4457	next_pool:
4458		spin_unlock_irqrestore(&pool->lock, flags);
4459	}
4460
4461	rcu_read_unlock_sched();
4462}
4463
4464/*
4465 * CPU hotplug.
4466 *
4467 * There are two challenges in supporting CPU hotplug.  Firstly, there
4468 * are a lot of assumptions on strong associations among work, pwq and
4469 * pool which make migrating pending and scheduled works very
4470 * difficult to implement without impacting hot paths.  Secondly,
4471 * worker pools serve mix of short, long and very long running works making
4472 * blocked draining impractical.
4473 *
4474 * This is solved by allowing the pools to be disassociated from the CPU
4475 * running as an unbound one and allowing it to be reattached later if the
4476 * cpu comes back online.
4477 */
4478
4479static void wq_unbind_fn(struct work_struct *work)
4480{
4481	int cpu = smp_processor_id();
4482	struct worker_pool *pool;
4483	struct worker *worker;
 
4484
4485	for_each_cpu_worker_pool(pool, cpu) {
4486		mutex_lock(&pool->attach_mutex);
 
 
4487		spin_lock_irq(&pool->lock);
4488
4489		/*
4490		 * We've blocked all attach/detach operations. Make all workers
4491		 * unbound and set DISASSOCIATED.  Before this, all workers
4492		 * except for the ones which are still executing works from
4493		 * before the last CPU down must be on the cpu.  After
4494		 * this, they may become diasporas.
4495		 */
4496		for_each_pool_worker(worker, pool)
4497			worker->flags |= WORKER_UNBOUND;
4498
4499		pool->flags |= POOL_DISASSOCIATED;
4500
4501		spin_unlock_irq(&pool->lock);
4502		mutex_unlock(&pool->attach_mutex);
4503
4504		/*
4505		 * Call schedule() so that we cross rq->lock and thus can
4506		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507		 * This is necessary as scheduler callbacks may be invoked
4508		 * from other cpus.
4509		 */
4510		schedule();
4511
4512		/*
4513		 * Sched callbacks are disabled now.  Zap nr_running.
4514		 * After this, nr_running stays zero and need_more_worker()
4515		 * and keep_working() are always true as long as the
4516		 * worklist is not empty.  This pool now behaves as an
4517		 * unbound (in terms of concurrency management) pool which
4518		 * are served by workers tied to the pool.
4519		 */
4520		atomic_set(&pool->nr_running, 0);
4521
4522		/*
4523		 * With concurrency management just turned off, a busy
4524		 * worker blocking could lead to lengthy stalls.  Kick off
4525		 * unbound chain execution of currently pending work items.
4526		 */
4527		spin_lock_irq(&pool->lock);
4528		wake_up_worker(pool);
4529		spin_unlock_irq(&pool->lock);
4530	}
4531}
4532
4533/**
4534 * rebind_workers - rebind all workers of a pool to the associated CPU
4535 * @pool: pool of interest
4536 *
4537 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4538 */
4539static void rebind_workers(struct worker_pool *pool)
4540{
4541	struct worker *worker;
 
4542
4543	lockdep_assert_held(&pool->attach_mutex);
4544
4545	/*
4546	 * Restore CPU affinity of all workers.  As all idle workers should
4547	 * be on the run-queue of the associated CPU before any local
4548	 * wake-ups for concurrency management happen, restore CPU affinity
4549	 * of all workers first and then clear UNBOUND.  As we're called
4550	 * from CPU_ONLINE, the following shouldn't fail.
4551	 */
4552	for_each_pool_worker(worker, pool)
4553		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554						  pool->attrs->cpumask) < 0);
4555
4556	spin_lock_irq(&pool->lock);
4557
4558	/*
4559	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4560	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4561	 * being reworked and this can go away in time.
4562	 */
4563	if (!(pool->flags & POOL_DISASSOCIATED)) {
4564		spin_unlock_irq(&pool->lock);
4565		return;
4566	}
4567
4568	pool->flags &= ~POOL_DISASSOCIATED;
4569
4570	for_each_pool_worker(worker, pool) {
4571		unsigned int worker_flags = worker->flags;
4572
4573		/*
4574		 * A bound idle worker should actually be on the runqueue
4575		 * of the associated CPU for local wake-ups targeting it to
4576		 * work.  Kick all idle workers so that they migrate to the
4577		 * associated CPU.  Doing this in the same loop as
4578		 * replacing UNBOUND with REBOUND is safe as no worker will
4579		 * be bound before @pool->lock is released.
4580		 */
4581		if (worker_flags & WORKER_IDLE)
4582			wake_up_process(worker->task);
4583
4584		/*
4585		 * We want to clear UNBOUND but can't directly call
4586		 * worker_clr_flags() or adjust nr_running.  Atomically
4587		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4588		 * @worker will clear REBOUND using worker_clr_flags() when
4589		 * it initiates the next execution cycle thus restoring
4590		 * concurrency management.  Note that when or whether
4591		 * @worker clears REBOUND doesn't affect correctness.
4592		 *
4593		 * ACCESS_ONCE() is necessary because @worker->flags may be
4594		 * tested without holding any lock in
4595		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4596		 * fail incorrectly leading to premature concurrency
4597		 * management operations.
4598		 */
4599		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4600		worker_flags |= WORKER_REBOUND;
4601		worker_flags &= ~WORKER_UNBOUND;
4602		ACCESS_ONCE(worker->flags) = worker_flags;
4603	}
4604
4605	spin_unlock_irq(&pool->lock);
4606}
4607
4608/**
4609 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4610 * @pool: unbound pool of interest
4611 * @cpu: the CPU which is coming up
4612 *
4613 * An unbound pool may end up with a cpumask which doesn't have any online
4614 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4615 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4616 * online CPU before, cpus_allowed of all its workers should be restored.
4617 */
4618static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4619{
4620	static cpumask_t cpumask;
4621	struct worker *worker;
 
4622
4623	lockdep_assert_held(&pool->attach_mutex);
4624
4625	/* is @cpu allowed for @pool? */
4626	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4627		return;
4628
4629	/* is @cpu the only online CPU? */
4630	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4631	if (cpumask_weight(&cpumask) != 1)
4632		return;
4633
4634	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4635	for_each_pool_worker(worker, pool)
4636		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4637						  pool->attrs->cpumask) < 0);
4638}
4639
4640/*
4641 * Workqueues should be brought up before normal priority CPU notifiers.
4642 * This will be registered high priority CPU notifier.
4643 */
4644static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4645					       unsigned long action,
4646					       void *hcpu)
4647{
4648	int cpu = (unsigned long)hcpu;
4649	struct worker_pool *pool;
4650	struct workqueue_struct *wq;
4651	int pi;
4652
4653	switch (action & ~CPU_TASKS_FROZEN) {
4654	case CPU_UP_PREPARE:
4655		for_each_cpu_worker_pool(pool, cpu) {
4656			if (pool->nr_workers)
4657				continue;
4658			if (!create_worker(pool))
4659				return NOTIFY_BAD;
4660		}
4661		break;
4662
4663	case CPU_DOWN_FAILED:
4664	case CPU_ONLINE:
4665		mutex_lock(&wq_pool_mutex);
4666
4667		for_each_pool(pool, pi) {
4668			mutex_lock(&pool->attach_mutex);
 
 
 
 
 
4669
4670			if (pool->cpu == cpu)
4671				rebind_workers(pool);
4672			else if (pool->cpu < 0)
4673				restore_unbound_workers_cpumask(pool, cpu);
 
4674
4675			mutex_unlock(&pool->attach_mutex);
4676		}
4677
4678		/* update NUMA affinity of unbound workqueues */
4679		list_for_each_entry(wq, &workqueues, list)
4680			wq_update_unbound_numa(wq, cpu, true);
4681
4682		mutex_unlock(&wq_pool_mutex);
4683		break;
4684	}
4685	return NOTIFY_OK;
4686}
4687
4688/*
4689 * Workqueues should be brought down after normal priority CPU notifiers.
4690 * This will be registered as low priority CPU notifier.
4691 */
4692static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4693						 unsigned long action,
4694						 void *hcpu)
4695{
4696	int cpu = (unsigned long)hcpu;
4697	struct work_struct unbind_work;
4698	struct workqueue_struct *wq;
4699
4700	switch (action & ~CPU_TASKS_FROZEN) {
4701	case CPU_DOWN_PREPARE:
4702		/* unbinding per-cpu workers should happen on the local CPU */
4703		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4704		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4705
4706		/* update NUMA affinity of unbound workqueues */
4707		mutex_lock(&wq_pool_mutex);
4708		list_for_each_entry(wq, &workqueues, list)
4709			wq_update_unbound_numa(wq, cpu, false);
4710		mutex_unlock(&wq_pool_mutex);
4711
4712		/* wait for per-cpu unbinding to finish */
4713		flush_work(&unbind_work);
4714		destroy_work_on_stack(&unbind_work);
4715		break;
4716	}
4717	return NOTIFY_OK;
4718}
4719
4720#ifdef CONFIG_SMP
4721
4722struct work_for_cpu {
4723	struct work_struct work;
4724	long (*fn)(void *);
4725	void *arg;
4726	long ret;
4727};
4728
4729static void work_for_cpu_fn(struct work_struct *work)
4730{
4731	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4732
4733	wfc->ret = wfc->fn(wfc->arg);
4734}
4735
4736/**
4737 * work_on_cpu - run a function in thread context on a particular cpu
4738 * @cpu: the cpu to run on
4739 * @fn: the function to run
4740 * @arg: the function arg
4741 *
4742 * It is up to the caller to ensure that the cpu doesn't go offline.
4743 * The caller must not hold any locks which would prevent @fn from completing.
4744 *
4745 * Return: The value @fn returns.
4746 */
4747long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4748{
4749	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4750
4751	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4752	schedule_work_on(cpu, &wfc.work);
4753	flush_work(&wfc.work);
4754	destroy_work_on_stack(&wfc.work);
4755	return wfc.ret;
4756}
4757EXPORT_SYMBOL_GPL(work_on_cpu);
4758#endif /* CONFIG_SMP */
4759
4760#ifdef CONFIG_FREEZER
4761
4762/**
4763 * freeze_workqueues_begin - begin freezing workqueues
4764 *
4765 * Start freezing workqueues.  After this function returns, all freezable
4766 * workqueues will queue new works to their delayed_works list instead of
4767 * pool->worklist.
4768 *
4769 * CONTEXT:
4770 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4771 */
4772void freeze_workqueues_begin(void)
4773{
 
4774	struct workqueue_struct *wq;
4775	struct pool_workqueue *pwq;
 
4776
4777	mutex_lock(&wq_pool_mutex);
4778
4779	WARN_ON_ONCE(workqueue_freezing);
4780	workqueue_freezing = true;
4781
 
 
 
 
 
 
 
 
4782	list_for_each_entry(wq, &workqueues, list) {
4783		mutex_lock(&wq->mutex);
4784		for_each_pwq(pwq, wq)
4785			pwq_adjust_max_active(pwq);
4786		mutex_unlock(&wq->mutex);
4787	}
4788
4789	mutex_unlock(&wq_pool_mutex);
4790}
4791
4792/**
4793 * freeze_workqueues_busy - are freezable workqueues still busy?
4794 *
4795 * Check whether freezing is complete.  This function must be called
4796 * between freeze_workqueues_begin() and thaw_workqueues().
4797 *
4798 * CONTEXT:
4799 * Grabs and releases wq_pool_mutex.
4800 *
4801 * Return:
4802 * %true if some freezable workqueues are still busy.  %false if freezing
4803 * is complete.
4804 */
4805bool freeze_workqueues_busy(void)
4806{
4807	bool busy = false;
4808	struct workqueue_struct *wq;
4809	struct pool_workqueue *pwq;
4810
4811	mutex_lock(&wq_pool_mutex);
4812
4813	WARN_ON_ONCE(!workqueue_freezing);
4814
4815	list_for_each_entry(wq, &workqueues, list) {
4816		if (!(wq->flags & WQ_FREEZABLE))
4817			continue;
4818		/*
4819		 * nr_active is monotonically decreasing.  It's safe
4820		 * to peek without lock.
4821		 */
4822		rcu_read_lock_sched();
4823		for_each_pwq(pwq, wq) {
4824			WARN_ON_ONCE(pwq->nr_active < 0);
4825			if (pwq->nr_active) {
4826				busy = true;
4827				rcu_read_unlock_sched();
4828				goto out_unlock;
4829			}
4830		}
4831		rcu_read_unlock_sched();
4832	}
4833out_unlock:
4834	mutex_unlock(&wq_pool_mutex);
4835	return busy;
4836}
4837
4838/**
4839 * thaw_workqueues - thaw workqueues
4840 *
4841 * Thaw workqueues.  Normal queueing is restored and all collected
4842 * frozen works are transferred to their respective pool worklists.
4843 *
4844 * CONTEXT:
4845 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4846 */
4847void thaw_workqueues(void)
4848{
4849	struct workqueue_struct *wq;
4850	struct pool_workqueue *pwq;
 
 
4851
4852	mutex_lock(&wq_pool_mutex);
4853
4854	if (!workqueue_freezing)
4855		goto out_unlock;
4856
4857	workqueue_freezing = false;
 
 
 
 
 
 
4858
4859	/* restore max_active and repopulate worklist */
4860	list_for_each_entry(wq, &workqueues, list) {
4861		mutex_lock(&wq->mutex);
4862		for_each_pwq(pwq, wq)
4863			pwq_adjust_max_active(pwq);
4864		mutex_unlock(&wq->mutex);
4865	}
4866
 
4867out_unlock:
4868	mutex_unlock(&wq_pool_mutex);
4869}
4870#endif /* CONFIG_FREEZER */
4871
4872static int workqueue_apply_unbound_cpumask(void)
4873{
4874	LIST_HEAD(ctxs);
4875	int ret = 0;
4876	struct workqueue_struct *wq;
4877	struct apply_wqattrs_ctx *ctx, *n;
4878
4879	lockdep_assert_held(&wq_pool_mutex);
4880
4881	list_for_each_entry(wq, &workqueues, list) {
4882		if (!(wq->flags & WQ_UNBOUND))
4883			continue;
4884		/* creating multiple pwqs breaks ordering guarantee */
4885		if (wq->flags & __WQ_ORDERED)
4886			continue;
4887
4888		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4889		if (!ctx) {
4890			ret = -ENOMEM;
4891			break;
4892		}
4893
4894		list_add_tail(&ctx->list, &ctxs);
4895	}
4896
4897	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4898		if (!ret)
4899			apply_wqattrs_commit(ctx);
4900		apply_wqattrs_cleanup(ctx);
4901	}
4902
4903	return ret;
4904}
4905
4906/**
4907 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4908 *  @cpumask: the cpumask to set
4909 *
4910 *  The low-level workqueues cpumask is a global cpumask that limits
4911 *  the affinity of all unbound workqueues.  This function check the @cpumask
4912 *  and apply it to all unbound workqueues and updates all pwqs of them.
4913 *
4914 *  Retun:	0	- Success
4915 *  		-EINVAL	- Invalid @cpumask
4916 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4917 */
4918int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4919{
4920	int ret = -EINVAL;
4921	cpumask_var_t saved_cpumask;
4922
4923	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4924		return -ENOMEM;
4925
4926	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4927	if (!cpumask_empty(cpumask)) {
4928		apply_wqattrs_lock();
4929
4930		/* save the old wq_unbound_cpumask. */
4931		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4932
4933		/* update wq_unbound_cpumask at first and apply it to wqs. */
4934		cpumask_copy(wq_unbound_cpumask, cpumask);
4935		ret = workqueue_apply_unbound_cpumask();
4936
4937		/* restore the wq_unbound_cpumask when failed. */
4938		if (ret < 0)
4939			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4940
4941		apply_wqattrs_unlock();
4942	}
4943
4944	free_cpumask_var(saved_cpumask);
4945	return ret;
4946}
4947
4948#ifdef CONFIG_SYSFS
4949/*
4950 * Workqueues with WQ_SYSFS flag set is visible to userland via
4951 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4952 * following attributes.
4953 *
4954 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4955 *  max_active	RW int	: maximum number of in-flight work items
4956 *
4957 * Unbound workqueues have the following extra attributes.
4958 *
4959 *  id		RO int	: the associated pool ID
4960 *  nice	RW int	: nice value of the workers
4961 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4962 */
4963struct wq_device {
4964	struct workqueue_struct		*wq;
4965	struct device			dev;
4966};
4967
4968static struct workqueue_struct *dev_to_wq(struct device *dev)
4969{
4970	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4971
4972	return wq_dev->wq;
4973}
4974
4975static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4976			    char *buf)
4977{
4978	struct workqueue_struct *wq = dev_to_wq(dev);
4979
4980	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4981}
4982static DEVICE_ATTR_RO(per_cpu);
4983
4984static ssize_t max_active_show(struct device *dev,
4985			       struct device_attribute *attr, char *buf)
4986{
4987	struct workqueue_struct *wq = dev_to_wq(dev);
4988
4989	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4990}
4991
4992static ssize_t max_active_store(struct device *dev,
4993				struct device_attribute *attr, const char *buf,
4994				size_t count)
4995{
4996	struct workqueue_struct *wq = dev_to_wq(dev);
4997	int val;
4998
4999	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5000		return -EINVAL;
5001
5002	workqueue_set_max_active(wq, val);
5003	return count;
5004}
5005static DEVICE_ATTR_RW(max_active);
5006
5007static struct attribute *wq_sysfs_attrs[] = {
5008	&dev_attr_per_cpu.attr,
5009	&dev_attr_max_active.attr,
5010	NULL,
5011};
5012ATTRIBUTE_GROUPS(wq_sysfs);
5013
5014static ssize_t wq_pool_ids_show(struct device *dev,
5015				struct device_attribute *attr, char *buf)
5016{
5017	struct workqueue_struct *wq = dev_to_wq(dev);
5018	const char *delim = "";
5019	int node, written = 0;
5020
5021	rcu_read_lock_sched();
5022	for_each_node(node) {
5023		written += scnprintf(buf + written, PAGE_SIZE - written,
5024				     "%s%d:%d", delim, node,
5025				     unbound_pwq_by_node(wq, node)->pool->id);
5026		delim = " ";
5027	}
5028	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5029	rcu_read_unlock_sched();
5030
5031	return written;
5032}
5033
5034static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5035			    char *buf)
5036{
5037	struct workqueue_struct *wq = dev_to_wq(dev);
5038	int written;
5039
5040	mutex_lock(&wq->mutex);
5041	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5042	mutex_unlock(&wq->mutex);
5043
5044	return written;
5045}
5046
5047/* prepare workqueue_attrs for sysfs store operations */
5048static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5049{
5050	struct workqueue_attrs *attrs;
5051
5052	lockdep_assert_held(&wq_pool_mutex);
5053
5054	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5055	if (!attrs)
5056		return NULL;
5057
5058	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5059	return attrs;
5060}
5061
5062static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5063			     const char *buf, size_t count)
5064{
5065	struct workqueue_struct *wq = dev_to_wq(dev);
5066	struct workqueue_attrs *attrs;
5067	int ret = -ENOMEM;
5068
5069	apply_wqattrs_lock();
5070
5071	attrs = wq_sysfs_prep_attrs(wq);
5072	if (!attrs)
5073		goto out_unlock;
5074
5075	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5076	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5077		ret = apply_workqueue_attrs_locked(wq, attrs);
5078	else
5079		ret = -EINVAL;
5080
5081out_unlock:
5082	apply_wqattrs_unlock();
5083	free_workqueue_attrs(attrs);
5084	return ret ?: count;
5085}
5086
5087static ssize_t wq_cpumask_show(struct device *dev,
5088			       struct device_attribute *attr, char *buf)
5089{
5090	struct workqueue_struct *wq = dev_to_wq(dev);
5091	int written;
5092
5093	mutex_lock(&wq->mutex);
5094	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5095			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5096	mutex_unlock(&wq->mutex);
5097	return written;
5098}
5099
5100static ssize_t wq_cpumask_store(struct device *dev,
5101				struct device_attribute *attr,
5102				const char *buf, size_t count)
5103{
5104	struct workqueue_struct *wq = dev_to_wq(dev);
5105	struct workqueue_attrs *attrs;
5106	int ret = -ENOMEM;
5107
5108	apply_wqattrs_lock();
5109
5110	attrs = wq_sysfs_prep_attrs(wq);
5111	if (!attrs)
5112		goto out_unlock;
5113
5114	ret = cpumask_parse(buf, attrs->cpumask);
5115	if (!ret)
5116		ret = apply_workqueue_attrs_locked(wq, attrs);
5117
5118out_unlock:
5119	apply_wqattrs_unlock();
5120	free_workqueue_attrs(attrs);
5121	return ret ?: count;
5122}
5123
5124static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5125			    char *buf)
5126{
5127	struct workqueue_struct *wq = dev_to_wq(dev);
5128	int written;
5129
5130	mutex_lock(&wq->mutex);
5131	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5132			    !wq->unbound_attrs->no_numa);
5133	mutex_unlock(&wq->mutex);
5134
5135	return written;
5136}
5137
5138static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5139			     const char *buf, size_t count)
5140{
5141	struct workqueue_struct *wq = dev_to_wq(dev);
5142	struct workqueue_attrs *attrs;
5143	int v, ret = -ENOMEM;
5144
5145	apply_wqattrs_lock();
5146
5147	attrs = wq_sysfs_prep_attrs(wq);
5148	if (!attrs)
5149		goto out_unlock;
5150
5151	ret = -EINVAL;
5152	if (sscanf(buf, "%d", &v) == 1) {
5153		attrs->no_numa = !v;
5154		ret = apply_workqueue_attrs_locked(wq, attrs);
5155	}
5156
5157out_unlock:
5158	apply_wqattrs_unlock();
5159	free_workqueue_attrs(attrs);
5160	return ret ?: count;
5161}
5162
5163static struct device_attribute wq_sysfs_unbound_attrs[] = {
5164	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5165	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5166	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5167	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5168	__ATTR_NULL,
5169};
5170
5171static struct bus_type wq_subsys = {
5172	.name				= "workqueue",
5173	.dev_groups			= wq_sysfs_groups,
5174};
5175
5176static ssize_t wq_unbound_cpumask_show(struct device *dev,
5177		struct device_attribute *attr, char *buf)
5178{
5179	int written;
5180
5181	mutex_lock(&wq_pool_mutex);
5182	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5183			    cpumask_pr_args(wq_unbound_cpumask));
5184	mutex_unlock(&wq_pool_mutex);
5185
5186	return written;
5187}
5188
5189static ssize_t wq_unbound_cpumask_store(struct device *dev,
5190		struct device_attribute *attr, const char *buf, size_t count)
5191{
5192	cpumask_var_t cpumask;
5193	int ret;
5194
5195	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5196		return -ENOMEM;
5197
5198	ret = cpumask_parse(buf, cpumask);
5199	if (!ret)
5200		ret = workqueue_set_unbound_cpumask(cpumask);
5201
5202	free_cpumask_var(cpumask);
5203	return ret ? ret : count;
5204}
5205
5206static struct device_attribute wq_sysfs_cpumask_attr =
5207	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5208	       wq_unbound_cpumask_store);
5209
5210static int __init wq_sysfs_init(void)
5211{
5212	int err;
5213
5214	err = subsys_virtual_register(&wq_subsys, NULL);
5215	if (err)
5216		return err;
5217
5218	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5219}
5220core_initcall(wq_sysfs_init);
5221
5222static void wq_device_release(struct device *dev)
5223{
5224	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5225
5226	kfree(wq_dev);
5227}
5228
5229/**
5230 * workqueue_sysfs_register - make a workqueue visible in sysfs
5231 * @wq: the workqueue to register
5232 *
5233 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5234 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5235 * which is the preferred method.
5236 *
5237 * Workqueue user should use this function directly iff it wants to apply
5238 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5239 * apply_workqueue_attrs() may race against userland updating the
5240 * attributes.
5241 *
5242 * Return: 0 on success, -errno on failure.
5243 */
5244int workqueue_sysfs_register(struct workqueue_struct *wq)
5245{
5246	struct wq_device *wq_dev;
5247	int ret;
5248
5249	/*
5250	 * Adjusting max_active or creating new pwqs by applying
5251	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5252	 * workqueues.
5253	 */
5254	if (WARN_ON(wq->flags & __WQ_ORDERED))
5255		return -EINVAL;
5256
5257	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5258	if (!wq_dev)
5259		return -ENOMEM;
5260
5261	wq_dev->wq = wq;
5262	wq_dev->dev.bus = &wq_subsys;
5263	wq_dev->dev.release = wq_device_release;
5264	dev_set_name(&wq_dev->dev, "%s", wq->name);
5265
5266	/*
5267	 * unbound_attrs are created separately.  Suppress uevent until
5268	 * everything is ready.
5269	 */
5270	dev_set_uevent_suppress(&wq_dev->dev, true);
5271
5272	ret = device_register(&wq_dev->dev);
5273	if (ret) {
5274		kfree(wq_dev);
5275		wq->wq_dev = NULL;
5276		return ret;
5277	}
5278
5279	if (wq->flags & WQ_UNBOUND) {
5280		struct device_attribute *attr;
5281
5282		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5283			ret = device_create_file(&wq_dev->dev, attr);
5284			if (ret) {
5285				device_unregister(&wq_dev->dev);
5286				wq->wq_dev = NULL;
5287				return ret;
5288			}
5289		}
5290	}
5291
5292	dev_set_uevent_suppress(&wq_dev->dev, false);
5293	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5294	return 0;
5295}
5296
5297/**
5298 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5299 * @wq: the workqueue to unregister
5300 *
5301 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5302 */
5303static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5304{
5305	struct wq_device *wq_dev = wq->wq_dev;
5306
5307	if (!wq->wq_dev)
5308		return;
5309
5310	wq->wq_dev = NULL;
5311	device_unregister(&wq_dev->dev);
5312}
5313#else	/* CONFIG_SYSFS */
5314static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5315#endif	/* CONFIG_SYSFS */
5316
5317/*
5318 * Workqueue watchdog.
5319 *
5320 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5321 * flush dependency, a concurrency managed work item which stays RUNNING
5322 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5323 * usual warning mechanisms don't trigger and internal workqueue state is
5324 * largely opaque.
5325 *
5326 * Workqueue watchdog monitors all worker pools periodically and dumps
5327 * state if some pools failed to make forward progress for a while where
5328 * forward progress is defined as the first item on ->worklist changing.
5329 *
5330 * This mechanism is controlled through the kernel parameter
5331 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5332 * corresponding sysfs parameter file.
5333 */
5334#ifdef CONFIG_WQ_WATCHDOG
5335
5336static void wq_watchdog_timer_fn(unsigned long data);
5337
5338static unsigned long wq_watchdog_thresh = 30;
5339static struct timer_list wq_watchdog_timer =
5340	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5341
5342static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5343static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5344
5345static void wq_watchdog_reset_touched(void)
5346{
5347	int cpu;
5348
5349	wq_watchdog_touched = jiffies;
5350	for_each_possible_cpu(cpu)
5351		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5352}
5353
5354static void wq_watchdog_timer_fn(unsigned long data)
5355{
5356	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5357	bool lockup_detected = false;
5358	struct worker_pool *pool;
5359	int pi;
5360
5361	if (!thresh)
5362		return;
5363
5364	rcu_read_lock();
5365
5366	for_each_pool(pool, pi) {
5367		unsigned long pool_ts, touched, ts;
5368
5369		if (list_empty(&pool->worklist))
5370			continue;
5371
5372		/* get the latest of pool and touched timestamps */
5373		pool_ts = READ_ONCE(pool->watchdog_ts);
5374		touched = READ_ONCE(wq_watchdog_touched);
5375
5376		if (time_after(pool_ts, touched))
5377			ts = pool_ts;
5378		else
5379			ts = touched;
5380
5381		if (pool->cpu >= 0) {
5382			unsigned long cpu_touched =
5383				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5384						  pool->cpu));
5385			if (time_after(cpu_touched, ts))
5386				ts = cpu_touched;
5387		}
5388
5389		/* did we stall? */
5390		if (time_after(jiffies, ts + thresh)) {
5391			lockup_detected = true;
5392			pr_emerg("BUG: workqueue lockup - pool");
5393			pr_cont_pool_info(pool);
5394			pr_cont(" stuck for %us!\n",
5395				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5396		}
5397	}
5398
5399	rcu_read_unlock();
5400
5401	if (lockup_detected)
5402		show_workqueue_state();
5403
5404	wq_watchdog_reset_touched();
5405	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5406}
5407
5408void wq_watchdog_touch(int cpu)
5409{
5410	if (cpu >= 0)
5411		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5412	else
5413		wq_watchdog_touched = jiffies;
5414}
5415
5416static void wq_watchdog_set_thresh(unsigned long thresh)
5417{
5418	wq_watchdog_thresh = 0;
5419	del_timer_sync(&wq_watchdog_timer);
5420
5421	if (thresh) {
5422		wq_watchdog_thresh = thresh;
5423		wq_watchdog_reset_touched();
5424		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5425	}
5426}
5427
5428static int wq_watchdog_param_set_thresh(const char *val,
5429					const struct kernel_param *kp)
5430{
5431	unsigned long thresh;
5432	int ret;
5433
5434	ret = kstrtoul(val, 0, &thresh);
5435	if (ret)
5436		return ret;
5437
5438	if (system_wq)
5439		wq_watchdog_set_thresh(thresh);
5440	else
5441		wq_watchdog_thresh = thresh;
5442
5443	return 0;
5444}
5445
5446static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5447	.set	= wq_watchdog_param_set_thresh,
5448	.get	= param_get_ulong,
5449};
5450
5451module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5452		0644);
5453
5454static void wq_watchdog_init(void)
5455{
5456	wq_watchdog_set_thresh(wq_watchdog_thresh);
5457}
5458
5459#else	/* CONFIG_WQ_WATCHDOG */
5460
5461static inline void wq_watchdog_init(void) { }
5462
5463#endif	/* CONFIG_WQ_WATCHDOG */
5464
5465static void __init wq_numa_init(void)
5466{
5467	cpumask_var_t *tbl;
5468	int node, cpu;
5469
 
 
 
 
5470	if (num_possible_nodes() <= 1)
5471		return;
5472
5473	if (wq_disable_numa) {
5474		pr_info("workqueue: NUMA affinity support disabled\n");
5475		return;
5476	}
5477
5478	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5479	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5480
5481	/*
5482	 * We want masks of possible CPUs of each node which isn't readily
5483	 * available.  Build one from cpu_to_node() which should have been
5484	 * fully initialized by now.
5485	 */
5486	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5487	BUG_ON(!tbl);
5488
5489	for_each_node(node)
5490		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5491				node_online(node) ? node : NUMA_NO_NODE));
5492
5493	for_each_possible_cpu(cpu) {
5494		node = cpu_to_node(cpu);
5495		if (WARN_ON(node == NUMA_NO_NODE)) {
5496			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5497			/* happens iff arch is bonkers, let's just proceed */
5498			return;
5499		}
5500		cpumask_set_cpu(cpu, tbl[node]);
5501	}
5502
5503	wq_numa_possible_cpumask = tbl;
5504	wq_numa_enabled = true;
5505}
5506
5507static int __init init_workqueues(void)
5508{
5509	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5510	int i, cpu;
5511
5512	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5513
5514	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5515	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5516
5517	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5518
5519	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5520	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5521
5522	wq_numa_init();
5523
5524	/* initialize CPU pools */
5525	for_each_possible_cpu(cpu) {
5526		struct worker_pool *pool;
5527
5528		i = 0;
5529		for_each_cpu_worker_pool(pool, cpu) {
5530			BUG_ON(init_worker_pool(pool));
5531			pool->cpu = cpu;
5532			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5533			pool->attrs->nice = std_nice[i++];
5534			pool->node = cpu_to_node(cpu);
5535
5536			/* alloc pool ID */
5537			mutex_lock(&wq_pool_mutex);
5538			BUG_ON(worker_pool_assign_id(pool));
5539			mutex_unlock(&wq_pool_mutex);
5540		}
5541	}
5542
5543	/* create the initial worker */
5544	for_each_online_cpu(cpu) {
5545		struct worker_pool *pool;
5546
5547		for_each_cpu_worker_pool(pool, cpu) {
5548			pool->flags &= ~POOL_DISASSOCIATED;
5549			BUG_ON(!create_worker(pool));
5550		}
5551	}
5552
5553	/* create default unbound and ordered wq attrs */
5554	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5555		struct workqueue_attrs *attrs;
5556
5557		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5558		attrs->nice = std_nice[i];
5559		unbound_std_wq_attrs[i] = attrs;
5560
5561		/*
5562		 * An ordered wq should have only one pwq as ordering is
5563		 * guaranteed by max_active which is enforced by pwqs.
5564		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5565		 */
5566		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5567		attrs->nice = std_nice[i];
5568		attrs->no_numa = true;
5569		ordered_wq_attrs[i] = attrs;
5570	}
5571
5572	system_wq = alloc_workqueue("events", 0, 0);
5573	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5574	system_long_wq = alloc_workqueue("events_long", 0, 0);
5575	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5576					    WQ_UNBOUND_MAX_ACTIVE);
5577	system_freezable_wq = alloc_workqueue("events_freezable",
5578					      WQ_FREEZABLE, 0);
5579	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5580					      WQ_POWER_EFFICIENT, 0);
5581	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5582					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5583					      0);
5584	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5585	       !system_unbound_wq || !system_freezable_wq ||
5586	       !system_power_efficient_wq ||
5587	       !system_freezable_power_efficient_wq);
5588
5589	wq_watchdog_init();
5590
5591	return 0;
5592}
5593early_initcall(init_workqueues);