Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * linux/kernel/time/tick-common.c
  3 *
  4 * This file contains the base functions to manage periodic tick
  5 * related events.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/module.h>
 
 22
 23#include <asm/irq_regs.h>
 24
 25#include "tick-internal.h"
 26
 27/*
 28 * Tick devices
 29 */
 30DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 31/*
 32 * Tick next event: keeps track of the tick time
 33 */
 34ktime_t tick_next_period;
 35ktime_t tick_period;
 36
 37/*
 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 40 * variable has two functions:
 41 *
 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 43 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 44 *    update is handling it.
 45 *
 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 47 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 48 *    at it will take over and keep the time keeping alive.  The handover
 49 *    procedure also covers cpu hotplug.
 50 */
 51int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 52
 53/*
 54 * Debugging: see timer_list.c
 55 */
 56struct tick_device *tick_get_device(int cpu)
 57{
 58	return &per_cpu(tick_cpu_device, cpu);
 59}
 60
 61/**
 62 * tick_is_oneshot_available - check for a oneshot capable event device
 63 */
 64int tick_is_oneshot_available(void)
 65{
 66	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 67
 68	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 69		return 0;
 70	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 71		return 1;
 72	return tick_broadcast_oneshot_available();
 73}
 74
 75/*
 76 * Periodic tick
 77 */
 78static void tick_periodic(int cpu)
 79{
 80	if (tick_do_timer_cpu == cpu) {
 81		write_seqlock(&jiffies_lock);
 82
 83		/* Keep track of the next tick event */
 84		tick_next_period = ktime_add(tick_next_period, tick_period);
 85
 86		do_timer(1);
 87		write_sequnlock(&jiffies_lock);
 88		update_wall_time();
 89	}
 90
 91	update_process_times(user_mode(get_irq_regs()));
 92	profile_tick(CPU_PROFILING);
 93}
 94
 95/*
 96 * Event handler for periodic ticks
 97 */
 98void tick_handle_periodic(struct clock_event_device *dev)
 99{
100	int cpu = smp_processor_id();
101	ktime_t next = dev->next_event;
102
103	tick_periodic(cpu);
104
105	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
 
 
 
 
 
 
 
 
 
 
106		return;
107	for (;;) {
108		/*
109		 * Setup the next period for devices, which do not have
110		 * periodic mode:
111		 */
112		next = ktime_add(next, tick_period);
113
114		if (!clockevents_program_event(dev, next, false))
115			return;
116		/*
117		 * Have to be careful here. If we're in oneshot mode,
118		 * before we call tick_periodic() in a loop, we need
119		 * to be sure we're using a real hardware clocksource.
120		 * Otherwise we could get trapped in an infinite
121		 * loop, as the tick_periodic() increments jiffies,
122		 * which then will increment time, possibly causing
123		 * the loop to trigger again and again.
124		 */
125		if (timekeeping_valid_for_hres())
126			tick_periodic(cpu);
127	}
128}
129
130/*
131 * Setup the device for a periodic tick
132 */
133void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
134{
135	tick_set_periodic_handler(dev, broadcast);
136
137	/* Broadcast setup ? */
138	if (!tick_device_is_functional(dev))
139		return;
140
141	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
142	    !tick_broadcast_oneshot_active()) {
143		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
144	} else {
145		unsigned long seq;
146		ktime_t next;
147
148		do {
149			seq = read_seqbegin(&jiffies_lock);
150			next = tick_next_period;
151		} while (read_seqretry(&jiffies_lock, seq));
152
153		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
154
155		for (;;) {
156			if (!clockevents_program_event(dev, next, false))
157				return;
158			next = ktime_add(next, tick_period);
159		}
160	}
161}
162
163/*
164 * Setup the tick device
165 */
166static void tick_setup_device(struct tick_device *td,
167			      struct clock_event_device *newdev, int cpu,
168			      const struct cpumask *cpumask)
169{
170	ktime_t next_event;
171	void (*handler)(struct clock_event_device *) = NULL;
172
173	/*
174	 * First device setup ?
175	 */
176	if (!td->evtdev) {
177		/*
178		 * If no cpu took the do_timer update, assign it to
179		 * this cpu:
180		 */
181		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
182			if (!tick_nohz_full_cpu(cpu))
183				tick_do_timer_cpu = cpu;
184			else
185				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
186			tick_next_period = ktime_get();
187			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
188		}
189
190		/*
191		 * Startup in periodic mode first.
192		 */
193		td->mode = TICKDEV_MODE_PERIODIC;
194	} else {
195		handler = td->evtdev->event_handler;
196		next_event = td->evtdev->next_event;
197		td->evtdev->event_handler = clockevents_handle_noop;
198	}
199
200	td->evtdev = newdev;
201
202	/*
203	 * When the device is not per cpu, pin the interrupt to the
204	 * current cpu:
205	 */
206	if (!cpumask_equal(newdev->cpumask, cpumask))
207		irq_set_affinity(newdev->irq, cpumask);
208
209	/*
210	 * When global broadcasting is active, check if the current
211	 * device is registered as a placeholder for broadcast mode.
212	 * This allows us to handle this x86 misfeature in a generic
213	 * way. This function also returns !=0 when we keep the
214	 * current active broadcast state for this CPU.
215	 */
216	if (tick_device_uses_broadcast(newdev, cpu))
217		return;
218
219	if (td->mode == TICKDEV_MODE_PERIODIC)
220		tick_setup_periodic(newdev, 0);
221	else
222		tick_setup_oneshot(newdev, handler, next_event);
223}
224
225void tick_install_replacement(struct clock_event_device *newdev)
226{
227	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
228	int cpu = smp_processor_id();
229
230	clockevents_exchange_device(td->evtdev, newdev);
231	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
232	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
233		tick_oneshot_notify();
234}
235
236static bool tick_check_percpu(struct clock_event_device *curdev,
237			      struct clock_event_device *newdev, int cpu)
238{
239	if (!cpumask_test_cpu(cpu, newdev->cpumask))
240		return false;
241	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
242		return true;
243	/* Check if irq affinity can be set */
244	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
245		return false;
246	/* Prefer an existing cpu local device */
247	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
248		return false;
249	return true;
250}
251
252static bool tick_check_preferred(struct clock_event_device *curdev,
253				 struct clock_event_device *newdev)
254{
255	/* Prefer oneshot capable device */
256	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
257		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
258			return false;
259		if (tick_oneshot_mode_active())
260			return false;
261	}
262
263	/*
264	 * Use the higher rated one, but prefer a CPU local device with a lower
265	 * rating than a non-CPU local device
266	 */
267	return !curdev ||
268		newdev->rating > curdev->rating ||
269	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
270}
271
272/*
273 * Check whether the new device is a better fit than curdev. curdev
274 * can be NULL !
275 */
276bool tick_check_replacement(struct clock_event_device *curdev,
277			    struct clock_event_device *newdev)
278{
279	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
280		return false;
281
282	return tick_check_preferred(curdev, newdev);
283}
284
285/*
286 * Check, if the new registered device should be used. Called with
287 * clockevents_lock held and interrupts disabled.
288 */
289void tick_check_new_device(struct clock_event_device *newdev)
290{
291	struct clock_event_device *curdev;
292	struct tick_device *td;
293	int cpu;
294
295	cpu = smp_processor_id();
296	if (!cpumask_test_cpu(cpu, newdev->cpumask))
297		goto out_bc;
298
299	td = &per_cpu(tick_cpu_device, cpu);
300	curdev = td->evtdev;
301
302	/* cpu local device ? */
303	if (!tick_check_percpu(curdev, newdev, cpu))
304		goto out_bc;
305
306	/* Preference decision */
307	if (!tick_check_preferred(curdev, newdev))
308		goto out_bc;
309
310	if (!try_module_get(newdev->owner))
311		return;
312
313	/*
314	 * Replace the eventually existing device by the new
315	 * device. If the current device is the broadcast device, do
316	 * not give it back to the clockevents layer !
317	 */
318	if (tick_is_broadcast_device(curdev)) {
319		clockevents_shutdown(curdev);
320		curdev = NULL;
321	}
322	clockevents_exchange_device(curdev, newdev);
323	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
324	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
325		tick_oneshot_notify();
326	return;
327
328out_bc:
329	/*
330	 * Can the new device be used as a broadcast device ?
331	 */
332	tick_install_broadcast_device(newdev);
333}
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335/*
336 * Transfer the do_timer job away from a dying cpu.
337 *
338 * Called with interrupts disabled.
 
339 */
340void tick_handover_do_timer(int *cpup)
341{
342	if (*cpup == tick_do_timer_cpu) {
343		int cpu = cpumask_first(cpu_online_mask);
344
345		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
346			TICK_DO_TIMER_NONE;
347	}
348}
349
350/*
351 * Shutdown an event device on a given cpu:
352 *
353 * This is called on a life CPU, when a CPU is dead. So we cannot
354 * access the hardware device itself.
355 * We just set the mode and remove it from the lists.
356 */
357void tick_shutdown(unsigned int *cpup)
358{
359	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
360	struct clock_event_device *dev = td->evtdev;
361
362	td->mode = TICKDEV_MODE_PERIODIC;
363	if (dev) {
364		/*
365		 * Prevent that the clock events layer tries to call
366		 * the set mode function!
367		 */
368		dev->mode = CLOCK_EVT_MODE_UNUSED;
369		clockevents_exchange_device(dev, NULL);
370		dev->event_handler = clockevents_handle_noop;
371		td->evtdev = NULL;
372	}
373}
 
374
375void tick_suspend(void)
 
 
 
 
 
 
 
376{
377	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
378
379	clockevents_shutdown(td->evtdev);
380}
381
382void tick_resume(void)
 
 
 
 
 
 
 
383{
384	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
385	int broadcast = tick_resume_broadcast();
386
387	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
388
 
389	if (!broadcast) {
390		if (td->mode == TICKDEV_MODE_PERIODIC)
391			tick_setup_periodic(td->evtdev, 0);
392		else
393			tick_resume_oneshot();
394	}
395}
396
397/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398 * tick_init - initialize the tick control
399 */
400void __init tick_init(void)
401{
402	tick_broadcast_init();
 
403}
v4.6
  1/*
  2 * linux/kernel/time/tick-common.c
  3 *
  4 * This file contains the base functions to manage periodic tick
  5 * related events.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/module.h>
 22#include <trace/events/power.h>
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 28/*
 29 * Tick devices
 30 */
 31DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 32/*
 33 * Tick next event: keeps track of the tick time
 34 */
 35ktime_t tick_next_period;
 36ktime_t tick_period;
 37
 38/*
 39 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 40 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 41 * variable has two functions:
 42 *
 43 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 44 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 45 *    update is handling it.
 46 *
 47 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 48 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 49 *    at it will take over and keep the time keeping alive.  The handover
 50 *    procedure also covers cpu hotplug.
 51 */
 52int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 53
 54/*
 55 * Debugging: see timer_list.c
 56 */
 57struct tick_device *tick_get_device(int cpu)
 58{
 59	return &per_cpu(tick_cpu_device, cpu);
 60}
 61
 62/**
 63 * tick_is_oneshot_available - check for a oneshot capable event device
 64 */
 65int tick_is_oneshot_available(void)
 66{
 67	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 68
 69	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 70		return 0;
 71	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 72		return 1;
 73	return tick_broadcast_oneshot_available();
 74}
 75
 76/*
 77 * Periodic tick
 78 */
 79static void tick_periodic(int cpu)
 80{
 81	if (tick_do_timer_cpu == cpu) {
 82		write_seqlock(&jiffies_lock);
 83
 84		/* Keep track of the next tick event */
 85		tick_next_period = ktime_add(tick_next_period, tick_period);
 86
 87		do_timer(1);
 88		write_sequnlock(&jiffies_lock);
 89		update_wall_time();
 90	}
 91
 92	update_process_times(user_mode(get_irq_regs()));
 93	profile_tick(CPU_PROFILING);
 94}
 95
 96/*
 97 * Event handler for periodic ticks
 98 */
 99void tick_handle_periodic(struct clock_event_device *dev)
100{
101	int cpu = smp_processor_id();
102	ktime_t next = dev->next_event;
103
104	tick_periodic(cpu);
105
106#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
107	/*
108	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
109	 * update_process_times() -> run_local_timers() ->
110	 * hrtimer_run_queues().
111	 */
112	if (dev->event_handler != tick_handle_periodic)
113		return;
114#endif
115
116	if (!clockevent_state_oneshot(dev))
117		return;
118	for (;;) {
119		/*
120		 * Setup the next period for devices, which do not have
121		 * periodic mode:
122		 */
123		next = ktime_add(next, tick_period);
124
125		if (!clockevents_program_event(dev, next, false))
126			return;
127		/*
128		 * Have to be careful here. If we're in oneshot mode,
129		 * before we call tick_periodic() in a loop, we need
130		 * to be sure we're using a real hardware clocksource.
131		 * Otherwise we could get trapped in an infinite
132		 * loop, as the tick_periodic() increments jiffies,
133		 * which then will increment time, possibly causing
134		 * the loop to trigger again and again.
135		 */
136		if (timekeeping_valid_for_hres())
137			tick_periodic(cpu);
138	}
139}
140
141/*
142 * Setup the device for a periodic tick
143 */
144void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
145{
146	tick_set_periodic_handler(dev, broadcast);
147
148	/* Broadcast setup ? */
149	if (!tick_device_is_functional(dev))
150		return;
151
152	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
153	    !tick_broadcast_oneshot_active()) {
154		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
155	} else {
156		unsigned long seq;
157		ktime_t next;
158
159		do {
160			seq = read_seqbegin(&jiffies_lock);
161			next = tick_next_period;
162		} while (read_seqretry(&jiffies_lock, seq));
163
164		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
165
166		for (;;) {
167			if (!clockevents_program_event(dev, next, false))
168				return;
169			next = ktime_add(next, tick_period);
170		}
171	}
172}
173
174/*
175 * Setup the tick device
176 */
177static void tick_setup_device(struct tick_device *td,
178			      struct clock_event_device *newdev, int cpu,
179			      const struct cpumask *cpumask)
180{
181	ktime_t next_event;
182	void (*handler)(struct clock_event_device *) = NULL;
183
184	/*
185	 * First device setup ?
186	 */
187	if (!td->evtdev) {
188		/*
189		 * If no cpu took the do_timer update, assign it to
190		 * this cpu:
191		 */
192		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
193			if (!tick_nohz_full_cpu(cpu))
194				tick_do_timer_cpu = cpu;
195			else
196				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
197			tick_next_period = ktime_get();
198			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
199		}
200
201		/*
202		 * Startup in periodic mode first.
203		 */
204		td->mode = TICKDEV_MODE_PERIODIC;
205	} else {
206		handler = td->evtdev->event_handler;
207		next_event = td->evtdev->next_event;
208		td->evtdev->event_handler = clockevents_handle_noop;
209	}
210
211	td->evtdev = newdev;
212
213	/*
214	 * When the device is not per cpu, pin the interrupt to the
215	 * current cpu:
216	 */
217	if (!cpumask_equal(newdev->cpumask, cpumask))
218		irq_set_affinity(newdev->irq, cpumask);
219
220	/*
221	 * When global broadcasting is active, check if the current
222	 * device is registered as a placeholder for broadcast mode.
223	 * This allows us to handle this x86 misfeature in a generic
224	 * way. This function also returns !=0 when we keep the
225	 * current active broadcast state for this CPU.
226	 */
227	if (tick_device_uses_broadcast(newdev, cpu))
228		return;
229
230	if (td->mode == TICKDEV_MODE_PERIODIC)
231		tick_setup_periodic(newdev, 0);
232	else
233		tick_setup_oneshot(newdev, handler, next_event);
234}
235
236void tick_install_replacement(struct clock_event_device *newdev)
237{
238	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
239	int cpu = smp_processor_id();
240
241	clockevents_exchange_device(td->evtdev, newdev);
242	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
243	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
244		tick_oneshot_notify();
245}
246
247static bool tick_check_percpu(struct clock_event_device *curdev,
248			      struct clock_event_device *newdev, int cpu)
249{
250	if (!cpumask_test_cpu(cpu, newdev->cpumask))
251		return false;
252	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
253		return true;
254	/* Check if irq affinity can be set */
255	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
256		return false;
257	/* Prefer an existing cpu local device */
258	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
259		return false;
260	return true;
261}
262
263static bool tick_check_preferred(struct clock_event_device *curdev,
264				 struct clock_event_device *newdev)
265{
266	/* Prefer oneshot capable device */
267	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
268		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
269			return false;
270		if (tick_oneshot_mode_active())
271			return false;
272	}
273
274	/*
275	 * Use the higher rated one, but prefer a CPU local device with a lower
276	 * rating than a non-CPU local device
277	 */
278	return !curdev ||
279		newdev->rating > curdev->rating ||
280	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
281}
282
283/*
284 * Check whether the new device is a better fit than curdev. curdev
285 * can be NULL !
286 */
287bool tick_check_replacement(struct clock_event_device *curdev,
288			    struct clock_event_device *newdev)
289{
290	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
291		return false;
292
293	return tick_check_preferred(curdev, newdev);
294}
295
296/*
297 * Check, if the new registered device should be used. Called with
298 * clockevents_lock held and interrupts disabled.
299 */
300void tick_check_new_device(struct clock_event_device *newdev)
301{
302	struct clock_event_device *curdev;
303	struct tick_device *td;
304	int cpu;
305
306	cpu = smp_processor_id();
 
 
 
307	td = &per_cpu(tick_cpu_device, cpu);
308	curdev = td->evtdev;
309
310	/* cpu local device ? */
311	if (!tick_check_percpu(curdev, newdev, cpu))
312		goto out_bc;
313
314	/* Preference decision */
315	if (!tick_check_preferred(curdev, newdev))
316		goto out_bc;
317
318	if (!try_module_get(newdev->owner))
319		return;
320
321	/*
322	 * Replace the eventually existing device by the new
323	 * device. If the current device is the broadcast device, do
324	 * not give it back to the clockevents layer !
325	 */
326	if (tick_is_broadcast_device(curdev)) {
327		clockevents_shutdown(curdev);
328		curdev = NULL;
329	}
330	clockevents_exchange_device(curdev, newdev);
331	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
332	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
333		tick_oneshot_notify();
334	return;
335
336out_bc:
337	/*
338	 * Can the new device be used as a broadcast device ?
339	 */
340	tick_install_broadcast_device(newdev);
341}
342
343/**
344 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
345 * @state:	The target state (enter/exit)
346 *
347 * The system enters/leaves a state, where affected devices might stop
348 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
349 *
350 * Called with interrupts disabled, so clockevents_lock is not
351 * required here because the local clock event device cannot go away
352 * under us.
353 */
354int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
355{
356	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
357
358	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
359		return 0;
360
361	return __tick_broadcast_oneshot_control(state);
362}
363EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
364
365#ifdef CONFIG_HOTPLUG_CPU
366/*
367 * Transfer the do_timer job away from a dying cpu.
368 *
369 * Called with interrupts disabled. Not locking required. If
370 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
371 */
372void tick_handover_do_timer(void)
373{
374	if (tick_do_timer_cpu == smp_processor_id()) {
375		int cpu = cpumask_first(cpu_online_mask);
376
377		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
378			TICK_DO_TIMER_NONE;
379	}
380}
381
382/*
383 * Shutdown an event device on a given cpu:
384 *
385 * This is called on a life CPU, when a CPU is dead. So we cannot
386 * access the hardware device itself.
387 * We just set the mode and remove it from the lists.
388 */
389void tick_shutdown(unsigned int cpu)
390{
391	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
392	struct clock_event_device *dev = td->evtdev;
393
394	td->mode = TICKDEV_MODE_PERIODIC;
395	if (dev) {
396		/*
397		 * Prevent that the clock events layer tries to call
398		 * the set mode function!
399		 */
400		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
401		clockevents_exchange_device(dev, NULL);
402		dev->event_handler = clockevents_handle_noop;
403		td->evtdev = NULL;
404	}
405}
406#endif
407
408/**
409 * tick_suspend_local - Suspend the local tick device
410 *
411 * Called from the local cpu for freeze with interrupts disabled.
412 *
413 * No locks required. Nothing can change the per cpu device.
414 */
415void tick_suspend_local(void)
416{
417	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
418
419	clockevents_shutdown(td->evtdev);
420}
421
422/**
423 * tick_resume_local - Resume the local tick device
424 *
425 * Called from the local CPU for unfreeze or XEN resume magic.
426 *
427 * No locks required. Nothing can change the per cpu device.
428 */
429void tick_resume_local(void)
430{
431	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
432	bool broadcast = tick_resume_check_broadcast();
 
 
433
434	clockevents_tick_resume(td->evtdev);
435	if (!broadcast) {
436		if (td->mode == TICKDEV_MODE_PERIODIC)
437			tick_setup_periodic(td->evtdev, 0);
438		else
439			tick_resume_oneshot();
440	}
441}
442
443/**
444 * tick_suspend - Suspend the tick and the broadcast device
445 *
446 * Called from syscore_suspend() via timekeeping_suspend with only one
447 * CPU online and interrupts disabled or from tick_unfreeze() under
448 * tick_freeze_lock.
449 *
450 * No locks required. Nothing can change the per cpu device.
451 */
452void tick_suspend(void)
453{
454	tick_suspend_local();
455	tick_suspend_broadcast();
456}
457
458/**
459 * tick_resume - Resume the tick and the broadcast device
460 *
461 * Called from syscore_resume() via timekeeping_resume with only one
462 * CPU online and interrupts disabled.
463 *
464 * No locks required. Nothing can change the per cpu device.
465 */
466void tick_resume(void)
467{
468	tick_resume_broadcast();
469	tick_resume_local();
470}
471
472#ifdef CONFIG_SUSPEND
473static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
474static unsigned int tick_freeze_depth;
475
476/**
477 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
478 *
479 * Check if this is the last online CPU executing the function and if so,
480 * suspend timekeeping.  Otherwise suspend the local tick.
481 *
482 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
483 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
484 */
485void tick_freeze(void)
486{
487	raw_spin_lock(&tick_freeze_lock);
488
489	tick_freeze_depth++;
490	if (tick_freeze_depth == num_online_cpus()) {
491		trace_suspend_resume(TPS("timekeeping_freeze"),
492				     smp_processor_id(), true);
493		timekeeping_suspend();
494	} else {
495		tick_suspend_local();
496	}
497
498	raw_spin_unlock(&tick_freeze_lock);
499}
500
501/**
502 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
503 *
504 * Check if this is the first CPU executing the function and if so, resume
505 * timekeeping.  Otherwise resume the local tick.
506 *
507 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
508 * Interrupts must not be enabled after the preceding %tick_freeze().
509 */
510void tick_unfreeze(void)
511{
512	raw_spin_lock(&tick_freeze_lock);
513
514	if (tick_freeze_depth == num_online_cpus()) {
515		timekeeping_resume();
516		trace_suspend_resume(TPS("timekeeping_freeze"),
517				     smp_processor_id(), false);
518	} else {
519		tick_resume_local();
520	}
521
522	tick_freeze_depth--;
523
524	raw_spin_unlock(&tick_freeze_lock);
525}
526#endif /* CONFIG_SUSPEND */
527
528/**
529 * tick_init - initialize the tick control
530 */
531void __init tick_init(void)
532{
533	tick_broadcast_init();
534	tick_nohz_init();
535}