Loading...
1/*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/rtc.h>
19
20#include "tick-internal.h"
21#include "ntp_internal.h"
22
23/*
24 * NTP timekeeping variables:
25 *
26 * Note: All of the NTP state is protected by the timekeeping locks.
27 */
28
29
30/* USER_HZ period (usecs): */
31unsigned long tick_usec = TICK_USEC;
32
33/* SHIFTED_HZ period (nsecs): */
34unsigned long tick_nsec;
35
36static u64 tick_length;
37static u64 tick_length_base;
38
39#define MAX_TICKADJ 500LL /* usecs */
40#define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42
43/*
44 * phase-lock loop variables
45 */
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int time_state = TIME_OK;
53
54/* clock status bits: */
55static int time_status = STA_UNSYNC;
56
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
64static long time_maxerror = NTP_PHASE_LIMIT;
65
66/* estimated error (usecs): */
67static long time_esterror = NTP_PHASE_LIMIT;
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
75static long time_adjust;
76
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
79
80#ifdef CONFIG_NTP_PPS
81
82/*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87#define PPS_VALID 10 /* PPS signal watchdog max (s) */
88#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96static int pps_valid; /* signal watchdog counter */
97static long pps_tf[3]; /* phase median filter */
98static long pps_jitter; /* current jitter (ns) */
99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift; /* current interval duration (s) (shift) */
101static int pps_intcnt; /* interval counter */
102static s64 pps_freq; /* frequency offset (scaled ns/s) */
103static long pps_stabil; /* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt; /* calibration intervals */
109static long pps_jitcnt; /* jitter limit exceeded */
110static long pps_stbcnt; /* stability limit exceeded */
111static long pps_errcnt; /* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 */
136static inline void pps_clear(void)
137{
138 pps_reset_freq_interval();
139 pps_tf[0] = 0;
140 pps_tf[1] = 0;
141 pps_tf[2] = 0;
142 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143 pps_freq = 0;
144}
145
146/* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
149 */
150static inline void pps_dec_valid(void)
151{
152 if (pps_valid > 0)
153 pps_valid--;
154 else {
155 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
156 STA_PPSWANDER | STA_PPSERROR);
157 pps_clear();
158 }
159}
160
161static inline void pps_set_freq(s64 freq)
162{
163 pps_freq = freq;
164}
165
166static inline int is_error_status(int status)
167{
168 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
169 /* PPS signal lost when either PPS time or
170 * PPS frequency synchronization requested
171 */
172 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
173 && !(time_status & STA_PPSSIGNAL))
174 /* PPS jitter exceeded when
175 * PPS time synchronization requested */
176 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
177 == (STA_PPSTIME|STA_PPSJITTER))
178 /* PPS wander exceeded or calibration error when
179 * PPS frequency synchronization requested
180 */
181 || ((time_status & STA_PPSFREQ)
182 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
183}
184
185static inline void pps_fill_timex(struct timex *txc)
186{
187 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
188 PPM_SCALE_INV, NTP_SCALE_SHIFT);
189 txc->jitter = pps_jitter;
190 if (!(time_status & STA_NANO))
191 txc->jitter /= NSEC_PER_USEC;
192 txc->shift = pps_shift;
193 txc->stabil = pps_stabil;
194 txc->jitcnt = pps_jitcnt;
195 txc->calcnt = pps_calcnt;
196 txc->errcnt = pps_errcnt;
197 txc->stbcnt = pps_stbcnt;
198}
199
200#else /* !CONFIG_NTP_PPS */
201
202static inline s64 ntp_offset_chunk(s64 offset)
203{
204 return shift_right(offset, SHIFT_PLL + time_constant);
205}
206
207static inline void pps_reset_freq_interval(void) {}
208static inline void pps_clear(void) {}
209static inline void pps_dec_valid(void) {}
210static inline void pps_set_freq(s64 freq) {}
211
212static inline int is_error_status(int status)
213{
214 return status & (STA_UNSYNC|STA_CLOCKERR);
215}
216
217static inline void pps_fill_timex(struct timex *txc)
218{
219 /* PPS is not implemented, so these are zero */
220 txc->ppsfreq = 0;
221 txc->jitter = 0;
222 txc->shift = 0;
223 txc->stabil = 0;
224 txc->jitcnt = 0;
225 txc->calcnt = 0;
226 txc->errcnt = 0;
227 txc->stbcnt = 0;
228}
229
230#endif /* CONFIG_NTP_PPS */
231
232
233/**
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
235 *
236 */
237static inline int ntp_synced(void)
238{
239 return !(time_status & STA_UNSYNC);
240}
241
242
243/*
244 * NTP methods:
245 */
246
247/*
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
250 */
251static void ntp_update_frequency(void)
252{
253 u64 second_length;
254 u64 new_base;
255
256 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
257 << NTP_SCALE_SHIFT;
258
259 second_length += ntp_tick_adj;
260 second_length += time_freq;
261
262 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
263 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
264
265 /*
266 * Don't wait for the next second_overflow, apply
267 * the change to the tick length immediately:
268 */
269 tick_length += new_base - tick_length_base;
270 tick_length_base = new_base;
271}
272
273static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
274{
275 time_status &= ~STA_MODE;
276
277 if (secs < MINSEC)
278 return 0;
279
280 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
281 return 0;
282
283 time_status |= STA_MODE;
284
285 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
286}
287
288static void ntp_update_offset(long offset)
289{
290 s64 freq_adj;
291 s64 offset64;
292 long secs;
293
294 if (!(time_status & STA_PLL))
295 return;
296
297 if (!(time_status & STA_NANO))
298 offset *= NSEC_PER_USEC;
299
300 /*
301 * Scale the phase adjustment and
302 * clamp to the operating range.
303 */
304 offset = min(offset, MAXPHASE);
305 offset = max(offset, -MAXPHASE);
306
307 /*
308 * Select how the frequency is to be controlled
309 * and in which mode (PLL or FLL).
310 */
311 secs = get_seconds() - time_reftime;
312 if (unlikely(time_status & STA_FREQHOLD))
313 secs = 0;
314
315 time_reftime = get_seconds();
316
317 offset64 = offset;
318 freq_adj = ntp_update_offset_fll(offset64, secs);
319
320 /*
321 * Clamp update interval to reduce PLL gain with low
322 * sampling rate (e.g. intermittent network connection)
323 * to avoid instability.
324 */
325 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
326 secs = 1 << (SHIFT_PLL + 1 + time_constant);
327
328 freq_adj += (offset64 * secs) <<
329 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
330
331 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
332
333 time_freq = max(freq_adj, -MAXFREQ_SCALED);
334
335 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
336}
337
338/**
339 * ntp_clear - Clears the NTP state variables
340 */
341void ntp_clear(void)
342{
343 time_adjust = 0; /* stop active adjtime() */
344 time_status |= STA_UNSYNC;
345 time_maxerror = NTP_PHASE_LIMIT;
346 time_esterror = NTP_PHASE_LIMIT;
347
348 ntp_update_frequency();
349
350 tick_length = tick_length_base;
351 time_offset = 0;
352
353 /* Clear PPS state variables */
354 pps_clear();
355}
356
357
358u64 ntp_tick_length(void)
359{
360 return tick_length;
361}
362
363
364/*
365 * this routine handles the overflow of the microsecond field
366 *
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
371 *
372 * Also handles leap second processing, and returns leap offset
373 */
374int second_overflow(unsigned long secs)
375{
376 s64 delta;
377 int leap = 0;
378
379 /*
380 * Leap second processing. If in leap-insert state at the end of the
381 * day, the system clock is set back one second; if in leap-delete
382 * state, the system clock is set ahead one second.
383 */
384 switch (time_state) {
385 case TIME_OK:
386 if (time_status & STA_INS)
387 time_state = TIME_INS;
388 else if (time_status & STA_DEL)
389 time_state = TIME_DEL;
390 break;
391 case TIME_INS:
392 if (!(time_status & STA_INS))
393 time_state = TIME_OK;
394 else if (secs % 86400 == 0) {
395 leap = -1;
396 time_state = TIME_OOP;
397 printk(KERN_NOTICE
398 "Clock: inserting leap second 23:59:60 UTC\n");
399 }
400 break;
401 case TIME_DEL:
402 if (!(time_status & STA_DEL))
403 time_state = TIME_OK;
404 else if ((secs + 1) % 86400 == 0) {
405 leap = 1;
406 time_state = TIME_WAIT;
407 printk(KERN_NOTICE
408 "Clock: deleting leap second 23:59:59 UTC\n");
409 }
410 break;
411 case TIME_OOP:
412 time_state = TIME_WAIT;
413 break;
414
415 case TIME_WAIT:
416 if (!(time_status & (STA_INS | STA_DEL)))
417 time_state = TIME_OK;
418 break;
419 }
420
421
422 /* Bump the maxerror field */
423 time_maxerror += MAXFREQ / NSEC_PER_USEC;
424 if (time_maxerror > NTP_PHASE_LIMIT) {
425 time_maxerror = NTP_PHASE_LIMIT;
426 time_status |= STA_UNSYNC;
427 }
428
429 /* Compute the phase adjustment for the next second */
430 tick_length = tick_length_base;
431
432 delta = ntp_offset_chunk(time_offset);
433 time_offset -= delta;
434 tick_length += delta;
435
436 /* Check PPS signal */
437 pps_dec_valid();
438
439 if (!time_adjust)
440 goto out;
441
442 if (time_adjust > MAX_TICKADJ) {
443 time_adjust -= MAX_TICKADJ;
444 tick_length += MAX_TICKADJ_SCALED;
445 goto out;
446 }
447
448 if (time_adjust < -MAX_TICKADJ) {
449 time_adjust += MAX_TICKADJ;
450 tick_length -= MAX_TICKADJ_SCALED;
451 goto out;
452 }
453
454 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
455 << NTP_SCALE_SHIFT;
456 time_adjust = 0;
457
458out:
459 return leap;
460}
461
462#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
463static void sync_cmos_clock(struct work_struct *work);
464
465static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
466
467static void sync_cmos_clock(struct work_struct *work)
468{
469 struct timespec now, next;
470 int fail = 1;
471
472 /*
473 * If we have an externally synchronized Linux clock, then update
474 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
475 * called as close as possible to 500 ms before the new second starts.
476 * This code is run on a timer. If the clock is set, that timer
477 * may not expire at the correct time. Thus, we adjust...
478 * We want the clock to be within a couple of ticks from the target.
479 */
480 if (!ntp_synced()) {
481 /*
482 * Not synced, exit, do not restart a timer (if one is
483 * running, let it run out).
484 */
485 return;
486 }
487
488 getnstimeofday(&now);
489 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
490 struct timespec adjust = now;
491
492 fail = -ENODEV;
493 if (persistent_clock_is_local)
494 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
495#ifdef CONFIG_GENERIC_CMOS_UPDATE
496 fail = update_persistent_clock(adjust);
497#endif
498#ifdef CONFIG_RTC_SYSTOHC
499 if (fail == -ENODEV)
500 fail = rtc_set_ntp_time(adjust);
501#endif
502 }
503
504 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
505 if (next.tv_nsec <= 0)
506 next.tv_nsec += NSEC_PER_SEC;
507
508 if (!fail || fail == -ENODEV)
509 next.tv_sec = 659;
510 else
511 next.tv_sec = 0;
512
513 if (next.tv_nsec >= NSEC_PER_SEC) {
514 next.tv_sec++;
515 next.tv_nsec -= NSEC_PER_SEC;
516 }
517 queue_delayed_work(system_power_efficient_wq,
518 &sync_cmos_work, timespec_to_jiffies(&next));
519}
520
521void ntp_notify_cmos_timer(void)
522{
523 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
524}
525
526#else
527void ntp_notify_cmos_timer(void) { }
528#endif
529
530
531/*
532 * Propagate a new txc->status value into the NTP state:
533 */
534static inline void process_adj_status(struct timex *txc, struct timespec *ts)
535{
536 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
537 time_state = TIME_OK;
538 time_status = STA_UNSYNC;
539 /* restart PPS frequency calibration */
540 pps_reset_freq_interval();
541 }
542
543 /*
544 * If we turn on PLL adjustments then reset the
545 * reference time to current time.
546 */
547 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
548 time_reftime = get_seconds();
549
550 /* only set allowed bits */
551 time_status &= STA_RONLY;
552 time_status |= txc->status & ~STA_RONLY;
553}
554
555
556static inline void process_adjtimex_modes(struct timex *txc,
557 struct timespec *ts,
558 s32 *time_tai)
559{
560 if (txc->modes & ADJ_STATUS)
561 process_adj_status(txc, ts);
562
563 if (txc->modes & ADJ_NANO)
564 time_status |= STA_NANO;
565
566 if (txc->modes & ADJ_MICRO)
567 time_status &= ~STA_NANO;
568
569 if (txc->modes & ADJ_FREQUENCY) {
570 time_freq = txc->freq * PPM_SCALE;
571 time_freq = min(time_freq, MAXFREQ_SCALED);
572 time_freq = max(time_freq, -MAXFREQ_SCALED);
573 /* update pps_freq */
574 pps_set_freq(time_freq);
575 }
576
577 if (txc->modes & ADJ_MAXERROR)
578 time_maxerror = txc->maxerror;
579
580 if (txc->modes & ADJ_ESTERROR)
581 time_esterror = txc->esterror;
582
583 if (txc->modes & ADJ_TIMECONST) {
584 time_constant = txc->constant;
585 if (!(time_status & STA_NANO))
586 time_constant += 4;
587 time_constant = min(time_constant, (long)MAXTC);
588 time_constant = max(time_constant, 0l);
589 }
590
591 if (txc->modes & ADJ_TAI && txc->constant > 0)
592 *time_tai = txc->constant;
593
594 if (txc->modes & ADJ_OFFSET)
595 ntp_update_offset(txc->offset);
596
597 if (txc->modes & ADJ_TICK)
598 tick_usec = txc->tick;
599
600 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
601 ntp_update_frequency();
602}
603
604
605
606/**
607 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
608 */
609int ntp_validate_timex(struct timex *txc)
610{
611 if (txc->modes & ADJ_ADJTIME) {
612 /* singleshot must not be used with any other mode bits */
613 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
614 return -EINVAL;
615 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
616 !capable(CAP_SYS_TIME))
617 return -EPERM;
618 } else {
619 /* In order to modify anything, you gotta be super-user! */
620 if (txc->modes && !capable(CAP_SYS_TIME))
621 return -EPERM;
622 /*
623 * if the quartz is off by more than 10% then
624 * something is VERY wrong!
625 */
626 if (txc->modes & ADJ_TICK &&
627 (txc->tick < 900000/USER_HZ ||
628 txc->tick > 1100000/USER_HZ))
629 return -EINVAL;
630 }
631
632 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
633 return -EPERM;
634
635 return 0;
636}
637
638
639/*
640 * adjtimex mainly allows reading (and writing, if superuser) of
641 * kernel time-keeping variables. used by xntpd.
642 */
643int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
644{
645 int result;
646
647 if (txc->modes & ADJ_ADJTIME) {
648 long save_adjust = time_adjust;
649
650 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
651 /* adjtime() is independent from ntp_adjtime() */
652 time_adjust = txc->offset;
653 ntp_update_frequency();
654 }
655 txc->offset = save_adjust;
656 } else {
657
658 /* If there are input parameters, then process them: */
659 if (txc->modes)
660 process_adjtimex_modes(txc, ts, time_tai);
661
662 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
663 NTP_SCALE_SHIFT);
664 if (!(time_status & STA_NANO))
665 txc->offset /= NSEC_PER_USEC;
666 }
667
668 result = time_state; /* mostly `TIME_OK' */
669 /* check for errors */
670 if (is_error_status(time_status))
671 result = TIME_ERROR;
672
673 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
674 PPM_SCALE_INV, NTP_SCALE_SHIFT);
675 txc->maxerror = time_maxerror;
676 txc->esterror = time_esterror;
677 txc->status = time_status;
678 txc->constant = time_constant;
679 txc->precision = 1;
680 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
681 txc->tick = tick_usec;
682 txc->tai = *time_tai;
683
684 /* fill PPS status fields */
685 pps_fill_timex(txc);
686
687 txc->time.tv_sec = ts->tv_sec;
688 txc->time.tv_usec = ts->tv_nsec;
689 if (!(time_status & STA_NANO))
690 txc->time.tv_usec /= NSEC_PER_USEC;
691
692 return result;
693}
694
695#ifdef CONFIG_NTP_PPS
696
697/* actually struct pps_normtime is good old struct timespec, but it is
698 * semantically different (and it is the reason why it was invented):
699 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
700 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
701struct pps_normtime {
702 __kernel_time_t sec; /* seconds */
703 long nsec; /* nanoseconds */
704};
705
706/* normalize the timestamp so that nsec is in the
707 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
708static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
709{
710 struct pps_normtime norm = {
711 .sec = ts.tv_sec,
712 .nsec = ts.tv_nsec
713 };
714
715 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
716 norm.nsec -= NSEC_PER_SEC;
717 norm.sec++;
718 }
719
720 return norm;
721}
722
723/* get current phase correction and jitter */
724static inline long pps_phase_filter_get(long *jitter)
725{
726 *jitter = pps_tf[0] - pps_tf[1];
727 if (*jitter < 0)
728 *jitter = -*jitter;
729
730 /* TODO: test various filters */
731 return pps_tf[0];
732}
733
734/* add the sample to the phase filter */
735static inline void pps_phase_filter_add(long err)
736{
737 pps_tf[2] = pps_tf[1];
738 pps_tf[1] = pps_tf[0];
739 pps_tf[0] = err;
740}
741
742/* decrease frequency calibration interval length.
743 * It is halved after four consecutive unstable intervals.
744 */
745static inline void pps_dec_freq_interval(void)
746{
747 if (--pps_intcnt <= -PPS_INTCOUNT) {
748 pps_intcnt = -PPS_INTCOUNT;
749 if (pps_shift > PPS_INTMIN) {
750 pps_shift--;
751 pps_intcnt = 0;
752 }
753 }
754}
755
756/* increase frequency calibration interval length.
757 * It is doubled after four consecutive stable intervals.
758 */
759static inline void pps_inc_freq_interval(void)
760{
761 if (++pps_intcnt >= PPS_INTCOUNT) {
762 pps_intcnt = PPS_INTCOUNT;
763 if (pps_shift < PPS_INTMAX) {
764 pps_shift++;
765 pps_intcnt = 0;
766 }
767 }
768}
769
770/* update clock frequency based on MONOTONIC_RAW clock PPS signal
771 * timestamps
772 *
773 * At the end of the calibration interval the difference between the
774 * first and last MONOTONIC_RAW clock timestamps divided by the length
775 * of the interval becomes the frequency update. If the interval was
776 * too long, the data are discarded.
777 * Returns the difference between old and new frequency values.
778 */
779static long hardpps_update_freq(struct pps_normtime freq_norm)
780{
781 long delta, delta_mod;
782 s64 ftemp;
783
784 /* check if the frequency interval was too long */
785 if (freq_norm.sec > (2 << pps_shift)) {
786 time_status |= STA_PPSERROR;
787 pps_errcnt++;
788 pps_dec_freq_interval();
789 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
790 freq_norm.sec);
791 return 0;
792 }
793
794 /* here the raw frequency offset and wander (stability) is
795 * calculated. If the wander is less than the wander threshold
796 * the interval is increased; otherwise it is decreased.
797 */
798 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
799 freq_norm.sec);
800 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
801 pps_freq = ftemp;
802 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
803 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
804 time_status |= STA_PPSWANDER;
805 pps_stbcnt++;
806 pps_dec_freq_interval();
807 } else { /* good sample */
808 pps_inc_freq_interval();
809 }
810
811 /* the stability metric is calculated as the average of recent
812 * frequency changes, but is used only for performance
813 * monitoring
814 */
815 delta_mod = delta;
816 if (delta_mod < 0)
817 delta_mod = -delta_mod;
818 pps_stabil += (div_s64(((s64)delta_mod) <<
819 (NTP_SCALE_SHIFT - SHIFT_USEC),
820 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
821
822 /* if enabled, the system clock frequency is updated */
823 if ((time_status & STA_PPSFREQ) != 0 &&
824 (time_status & STA_FREQHOLD) == 0) {
825 time_freq = pps_freq;
826 ntp_update_frequency();
827 }
828
829 return delta;
830}
831
832/* correct REALTIME clock phase error against PPS signal */
833static void hardpps_update_phase(long error)
834{
835 long correction = -error;
836 long jitter;
837
838 /* add the sample to the median filter */
839 pps_phase_filter_add(correction);
840 correction = pps_phase_filter_get(&jitter);
841
842 /* Nominal jitter is due to PPS signal noise. If it exceeds the
843 * threshold, the sample is discarded; otherwise, if so enabled,
844 * the time offset is updated.
845 */
846 if (jitter > (pps_jitter << PPS_POPCORN)) {
847 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
848 jitter, (pps_jitter << PPS_POPCORN));
849 time_status |= STA_PPSJITTER;
850 pps_jitcnt++;
851 } else if (time_status & STA_PPSTIME) {
852 /* correct the time using the phase offset */
853 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
854 NTP_INTERVAL_FREQ);
855 /* cancel running adjtime() */
856 time_adjust = 0;
857 }
858 /* update jitter */
859 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
860}
861
862/*
863 * __hardpps() - discipline CPU clock oscillator to external PPS signal
864 *
865 * This routine is called at each PPS signal arrival in order to
866 * discipline the CPU clock oscillator to the PPS signal. It takes two
867 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
868 * is used to correct clock phase error and the latter is used to
869 * correct the frequency.
870 *
871 * This code is based on David Mills's reference nanokernel
872 * implementation. It was mostly rewritten but keeps the same idea.
873 */
874void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
875{
876 struct pps_normtime pts_norm, freq_norm;
877
878 pts_norm = pps_normalize_ts(*phase_ts);
879
880 /* clear the error bits, they will be set again if needed */
881 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
882
883 /* indicate signal presence */
884 time_status |= STA_PPSSIGNAL;
885 pps_valid = PPS_VALID;
886
887 /* when called for the first time,
888 * just start the frequency interval */
889 if (unlikely(pps_fbase.tv_sec == 0)) {
890 pps_fbase = *raw_ts;
891 return;
892 }
893
894 /* ok, now we have a base for frequency calculation */
895 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
896
897 /* check that the signal is in the range
898 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
899 if ((freq_norm.sec == 0) ||
900 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
901 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
902 time_status |= STA_PPSJITTER;
903 /* restart the frequency calibration interval */
904 pps_fbase = *raw_ts;
905 pr_err("hardpps: PPSJITTER: bad pulse\n");
906 return;
907 }
908
909 /* signal is ok */
910
911 /* check if the current frequency interval is finished */
912 if (freq_norm.sec >= (1 << pps_shift)) {
913 pps_calcnt++;
914 /* restart the frequency calibration interval */
915 pps_fbase = *raw_ts;
916 hardpps_update_freq(freq_norm);
917 }
918
919 hardpps_update_phase(pts_norm.nsec);
920
921}
922#endif /* CONFIG_NTP_PPS */
923
924static int __init ntp_tick_adj_setup(char *str)
925{
926 ntp_tick_adj = simple_strtol(str, NULL, 0);
927 ntp_tick_adj <<= NTP_SCALE_SHIFT;
928
929 return 1;
930}
931
932__setup("ntp_tick_adj=", ntp_tick_adj_setup);
933
934void __init ntp_init(void)
935{
936 ntp_clear();
937}
1/*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/rtc.h>
19#include <linux/math64.h>
20
21#include "ntp_internal.h"
22#include "timekeeping_internal.h"
23
24
25/*
26 * NTP timekeeping variables:
27 *
28 * Note: All of the NTP state is protected by the timekeeping locks.
29 */
30
31
32/* USER_HZ period (usecs): */
33unsigned long tick_usec = TICK_USEC;
34
35/* SHIFTED_HZ period (nsecs): */
36unsigned long tick_nsec;
37
38static u64 tick_length;
39static u64 tick_length_base;
40
41#define SECS_PER_DAY 86400
42#define MAX_TICKADJ 500LL /* usecs */
43#define MAX_TICKADJ_SCALED \
44 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45
46/*
47 * phase-lock loop variables
48 */
49
50/*
51 * clock synchronization status
52 *
53 * (TIME_ERROR prevents overwriting the CMOS clock)
54 */
55static int time_state = TIME_OK;
56
57/* clock status bits: */
58static int time_status = STA_UNSYNC;
59
60/* time adjustment (nsecs): */
61static s64 time_offset;
62
63/* pll time constant: */
64static long time_constant = 2;
65
66/* maximum error (usecs): */
67static long time_maxerror = NTP_PHASE_LIMIT;
68
69/* estimated error (usecs): */
70static long time_esterror = NTP_PHASE_LIMIT;
71
72/* frequency offset (scaled nsecs/secs): */
73static s64 time_freq;
74
75/* time at last adjustment (secs): */
76static time64_t time_reftime;
77
78static long time_adjust;
79
80/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
81static s64 ntp_tick_adj;
82
83/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
84static time64_t ntp_next_leap_sec = TIME64_MAX;
85
86#ifdef CONFIG_NTP_PPS
87
88/*
89 * The following variables are used when a pulse-per-second (PPS) signal
90 * is available. They establish the engineering parameters of the clock
91 * discipline loop when controlled by the PPS signal.
92 */
93#define PPS_VALID 10 /* PPS signal watchdog max (s) */
94#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
95#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
96#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
97#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
98 increase pps_shift or consecutive bad
99 intervals to decrease it */
100#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
101
102static int pps_valid; /* signal watchdog counter */
103static long pps_tf[3]; /* phase median filter */
104static long pps_jitter; /* current jitter (ns) */
105static struct timespec64 pps_fbase; /* beginning of the last freq interval */
106static int pps_shift; /* current interval duration (s) (shift) */
107static int pps_intcnt; /* interval counter */
108static s64 pps_freq; /* frequency offset (scaled ns/s) */
109static long pps_stabil; /* current stability (scaled ns/s) */
110
111/*
112 * PPS signal quality monitors
113 */
114static long pps_calcnt; /* calibration intervals */
115static long pps_jitcnt; /* jitter limit exceeded */
116static long pps_stbcnt; /* stability limit exceeded */
117static long pps_errcnt; /* calibration errors */
118
119
120/* PPS kernel consumer compensates the whole phase error immediately.
121 * Otherwise, reduce the offset by a fixed factor times the time constant.
122 */
123static inline s64 ntp_offset_chunk(s64 offset)
124{
125 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
126 return offset;
127 else
128 return shift_right(offset, SHIFT_PLL + time_constant);
129}
130
131static inline void pps_reset_freq_interval(void)
132{
133 /* the PPS calibration interval may end
134 surprisingly early */
135 pps_shift = PPS_INTMIN;
136 pps_intcnt = 0;
137}
138
139/**
140 * pps_clear - Clears the PPS state variables
141 */
142static inline void pps_clear(void)
143{
144 pps_reset_freq_interval();
145 pps_tf[0] = 0;
146 pps_tf[1] = 0;
147 pps_tf[2] = 0;
148 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
149 pps_freq = 0;
150}
151
152/* Decrease pps_valid to indicate that another second has passed since
153 * the last PPS signal. When it reaches 0, indicate that PPS signal is
154 * missing.
155 */
156static inline void pps_dec_valid(void)
157{
158 if (pps_valid > 0)
159 pps_valid--;
160 else {
161 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 STA_PPSWANDER | STA_PPSERROR);
163 pps_clear();
164 }
165}
166
167static inline void pps_set_freq(s64 freq)
168{
169 pps_freq = freq;
170}
171
172static inline int is_error_status(int status)
173{
174 return (status & (STA_UNSYNC|STA_CLOCKERR))
175 /* PPS signal lost when either PPS time or
176 * PPS frequency synchronization requested
177 */
178 || ((status & (STA_PPSFREQ|STA_PPSTIME))
179 && !(status & STA_PPSSIGNAL))
180 /* PPS jitter exceeded when
181 * PPS time synchronization requested */
182 || ((status & (STA_PPSTIME|STA_PPSJITTER))
183 == (STA_PPSTIME|STA_PPSJITTER))
184 /* PPS wander exceeded or calibration error when
185 * PPS frequency synchronization requested
186 */
187 || ((status & STA_PPSFREQ)
188 && (status & (STA_PPSWANDER|STA_PPSERROR)));
189}
190
191static inline void pps_fill_timex(struct timex *txc)
192{
193 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 txc->jitter = pps_jitter;
196 if (!(time_status & STA_NANO))
197 txc->jitter /= NSEC_PER_USEC;
198 txc->shift = pps_shift;
199 txc->stabil = pps_stabil;
200 txc->jitcnt = pps_jitcnt;
201 txc->calcnt = pps_calcnt;
202 txc->errcnt = pps_errcnt;
203 txc->stbcnt = pps_stbcnt;
204}
205
206#else /* !CONFIG_NTP_PPS */
207
208static inline s64 ntp_offset_chunk(s64 offset)
209{
210 return shift_right(offset, SHIFT_PLL + time_constant);
211}
212
213static inline void pps_reset_freq_interval(void) {}
214static inline void pps_clear(void) {}
215static inline void pps_dec_valid(void) {}
216static inline void pps_set_freq(s64 freq) {}
217
218static inline int is_error_status(int status)
219{
220 return status & (STA_UNSYNC|STA_CLOCKERR);
221}
222
223static inline void pps_fill_timex(struct timex *txc)
224{
225 /* PPS is not implemented, so these are zero */
226 txc->ppsfreq = 0;
227 txc->jitter = 0;
228 txc->shift = 0;
229 txc->stabil = 0;
230 txc->jitcnt = 0;
231 txc->calcnt = 0;
232 txc->errcnt = 0;
233 txc->stbcnt = 0;
234}
235
236#endif /* CONFIG_NTP_PPS */
237
238
239/**
240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241 *
242 */
243static inline int ntp_synced(void)
244{
245 return !(time_status & STA_UNSYNC);
246}
247
248
249/*
250 * NTP methods:
251 */
252
253/*
254 * Update (tick_length, tick_length_base, tick_nsec), based
255 * on (tick_usec, ntp_tick_adj, time_freq):
256 */
257static void ntp_update_frequency(void)
258{
259 u64 second_length;
260 u64 new_base;
261
262 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 << NTP_SCALE_SHIFT;
264
265 second_length += ntp_tick_adj;
266 second_length += time_freq;
267
268 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
270
271 /*
272 * Don't wait for the next second_overflow, apply
273 * the change to the tick length immediately:
274 */
275 tick_length += new_base - tick_length_base;
276 tick_length_base = new_base;
277}
278
279static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280{
281 time_status &= ~STA_MODE;
282
283 if (secs < MINSEC)
284 return 0;
285
286 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 return 0;
288
289 time_status |= STA_MODE;
290
291 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292}
293
294static void ntp_update_offset(long offset)
295{
296 s64 freq_adj;
297 s64 offset64;
298 long secs;
299
300 if (!(time_status & STA_PLL))
301 return;
302
303 if (!(time_status & STA_NANO)) {
304 /* Make sure the multiplication below won't overflow */
305 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
306 offset *= NSEC_PER_USEC;
307 }
308
309 /*
310 * Scale the phase adjustment and
311 * clamp to the operating range.
312 */
313 offset = clamp(offset, -MAXPHASE, MAXPHASE);
314
315 /*
316 * Select how the frequency is to be controlled
317 * and in which mode (PLL or FLL).
318 */
319 secs = (long)(__ktime_get_real_seconds() - time_reftime);
320 if (unlikely(time_status & STA_FREQHOLD))
321 secs = 0;
322
323 time_reftime = __ktime_get_real_seconds();
324
325 offset64 = offset;
326 freq_adj = ntp_update_offset_fll(offset64, secs);
327
328 /*
329 * Clamp update interval to reduce PLL gain with low
330 * sampling rate (e.g. intermittent network connection)
331 * to avoid instability.
332 */
333 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
334 secs = 1 << (SHIFT_PLL + 1 + time_constant);
335
336 freq_adj += (offset64 * secs) <<
337 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
338
339 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
340
341 time_freq = max(freq_adj, -MAXFREQ_SCALED);
342
343 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344}
345
346/**
347 * ntp_clear - Clears the NTP state variables
348 */
349void ntp_clear(void)
350{
351 time_adjust = 0; /* stop active adjtime() */
352 time_status |= STA_UNSYNC;
353 time_maxerror = NTP_PHASE_LIMIT;
354 time_esterror = NTP_PHASE_LIMIT;
355
356 ntp_update_frequency();
357
358 tick_length = tick_length_base;
359 time_offset = 0;
360
361 ntp_next_leap_sec = TIME64_MAX;
362 /* Clear PPS state variables */
363 pps_clear();
364}
365
366
367u64 ntp_tick_length(void)
368{
369 return tick_length;
370}
371
372/**
373 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
374 *
375 * Provides the time of the next leapsecond against CLOCK_REALTIME in
376 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
377 */
378ktime_t ntp_get_next_leap(void)
379{
380 ktime_t ret;
381
382 if ((time_state == TIME_INS) && (time_status & STA_INS))
383 return ktime_set(ntp_next_leap_sec, 0);
384 ret.tv64 = KTIME_MAX;
385 return ret;
386}
387
388/*
389 * this routine handles the overflow of the microsecond field
390 *
391 * The tricky bits of code to handle the accurate clock support
392 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393 * They were originally developed for SUN and DEC kernels.
394 * All the kudos should go to Dave for this stuff.
395 *
396 * Also handles leap second processing, and returns leap offset
397 */
398int second_overflow(time64_t secs)
399{
400 s64 delta;
401 int leap = 0;
402 s32 rem;
403
404 /*
405 * Leap second processing. If in leap-insert state at the end of the
406 * day, the system clock is set back one second; if in leap-delete
407 * state, the system clock is set ahead one second.
408 */
409 switch (time_state) {
410 case TIME_OK:
411 if (time_status & STA_INS) {
412 time_state = TIME_INS;
413 div_s64_rem(secs, SECS_PER_DAY, &rem);
414 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
415 } else if (time_status & STA_DEL) {
416 time_state = TIME_DEL;
417 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
418 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
419 }
420 break;
421 case TIME_INS:
422 if (!(time_status & STA_INS)) {
423 ntp_next_leap_sec = TIME64_MAX;
424 time_state = TIME_OK;
425 } else if (secs == ntp_next_leap_sec) {
426 leap = -1;
427 time_state = TIME_OOP;
428 printk(KERN_NOTICE
429 "Clock: inserting leap second 23:59:60 UTC\n");
430 }
431 break;
432 case TIME_DEL:
433 if (!(time_status & STA_DEL)) {
434 ntp_next_leap_sec = TIME64_MAX;
435 time_state = TIME_OK;
436 } else if (secs == ntp_next_leap_sec) {
437 leap = 1;
438 ntp_next_leap_sec = TIME64_MAX;
439 time_state = TIME_WAIT;
440 printk(KERN_NOTICE
441 "Clock: deleting leap second 23:59:59 UTC\n");
442 }
443 break;
444 case TIME_OOP:
445 ntp_next_leap_sec = TIME64_MAX;
446 time_state = TIME_WAIT;
447 break;
448 case TIME_WAIT:
449 if (!(time_status & (STA_INS | STA_DEL)))
450 time_state = TIME_OK;
451 break;
452 }
453
454
455 /* Bump the maxerror field */
456 time_maxerror += MAXFREQ / NSEC_PER_USEC;
457 if (time_maxerror > NTP_PHASE_LIMIT) {
458 time_maxerror = NTP_PHASE_LIMIT;
459 time_status |= STA_UNSYNC;
460 }
461
462 /* Compute the phase adjustment for the next second */
463 tick_length = tick_length_base;
464
465 delta = ntp_offset_chunk(time_offset);
466 time_offset -= delta;
467 tick_length += delta;
468
469 /* Check PPS signal */
470 pps_dec_valid();
471
472 if (!time_adjust)
473 goto out;
474
475 if (time_adjust > MAX_TICKADJ) {
476 time_adjust -= MAX_TICKADJ;
477 tick_length += MAX_TICKADJ_SCALED;
478 goto out;
479 }
480
481 if (time_adjust < -MAX_TICKADJ) {
482 time_adjust += MAX_TICKADJ;
483 tick_length -= MAX_TICKADJ_SCALED;
484 goto out;
485 }
486
487 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
488 << NTP_SCALE_SHIFT;
489 time_adjust = 0;
490
491out:
492 return leap;
493}
494
495#ifdef CONFIG_GENERIC_CMOS_UPDATE
496int __weak update_persistent_clock(struct timespec now)
497{
498 return -ENODEV;
499}
500
501int __weak update_persistent_clock64(struct timespec64 now64)
502{
503 struct timespec now;
504
505 now = timespec64_to_timespec(now64);
506 return update_persistent_clock(now);
507}
508#endif
509
510#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
511static void sync_cmos_clock(struct work_struct *work);
512
513static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
514
515static void sync_cmos_clock(struct work_struct *work)
516{
517 struct timespec64 now;
518 struct timespec64 next;
519 int fail = 1;
520
521 /*
522 * If we have an externally synchronized Linux clock, then update
523 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
524 * called as close as possible to 500 ms before the new second starts.
525 * This code is run on a timer. If the clock is set, that timer
526 * may not expire at the correct time. Thus, we adjust...
527 * We want the clock to be within a couple of ticks from the target.
528 */
529 if (!ntp_synced()) {
530 /*
531 * Not synced, exit, do not restart a timer (if one is
532 * running, let it run out).
533 */
534 return;
535 }
536
537 getnstimeofday64(&now);
538 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
539 struct timespec64 adjust = now;
540
541 fail = -ENODEV;
542 if (persistent_clock_is_local)
543 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
544#ifdef CONFIG_GENERIC_CMOS_UPDATE
545 fail = update_persistent_clock64(adjust);
546#endif
547
548#ifdef CONFIG_RTC_SYSTOHC
549 if (fail == -ENODEV)
550 fail = rtc_set_ntp_time(adjust);
551#endif
552 }
553
554 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
555 if (next.tv_nsec <= 0)
556 next.tv_nsec += NSEC_PER_SEC;
557
558 if (!fail || fail == -ENODEV)
559 next.tv_sec = 659;
560 else
561 next.tv_sec = 0;
562
563 if (next.tv_nsec >= NSEC_PER_SEC) {
564 next.tv_sec++;
565 next.tv_nsec -= NSEC_PER_SEC;
566 }
567 queue_delayed_work(system_power_efficient_wq,
568 &sync_cmos_work, timespec64_to_jiffies(&next));
569}
570
571void ntp_notify_cmos_timer(void)
572{
573 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
574}
575
576#else
577void ntp_notify_cmos_timer(void) { }
578#endif
579
580
581/*
582 * Propagate a new txc->status value into the NTP state:
583 */
584static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
585{
586 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
587 time_state = TIME_OK;
588 time_status = STA_UNSYNC;
589 ntp_next_leap_sec = TIME64_MAX;
590 /* restart PPS frequency calibration */
591 pps_reset_freq_interval();
592 }
593
594 /*
595 * If we turn on PLL adjustments then reset the
596 * reference time to current time.
597 */
598 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
599 time_reftime = __ktime_get_real_seconds();
600
601 /* only set allowed bits */
602 time_status &= STA_RONLY;
603 time_status |= txc->status & ~STA_RONLY;
604}
605
606
607static inline void process_adjtimex_modes(struct timex *txc,
608 struct timespec64 *ts,
609 s32 *time_tai)
610{
611 if (txc->modes & ADJ_STATUS)
612 process_adj_status(txc, ts);
613
614 if (txc->modes & ADJ_NANO)
615 time_status |= STA_NANO;
616
617 if (txc->modes & ADJ_MICRO)
618 time_status &= ~STA_NANO;
619
620 if (txc->modes & ADJ_FREQUENCY) {
621 time_freq = txc->freq * PPM_SCALE;
622 time_freq = min(time_freq, MAXFREQ_SCALED);
623 time_freq = max(time_freq, -MAXFREQ_SCALED);
624 /* update pps_freq */
625 pps_set_freq(time_freq);
626 }
627
628 if (txc->modes & ADJ_MAXERROR)
629 time_maxerror = txc->maxerror;
630
631 if (txc->modes & ADJ_ESTERROR)
632 time_esterror = txc->esterror;
633
634 if (txc->modes & ADJ_TIMECONST) {
635 time_constant = txc->constant;
636 if (!(time_status & STA_NANO))
637 time_constant += 4;
638 time_constant = min(time_constant, (long)MAXTC);
639 time_constant = max(time_constant, 0l);
640 }
641
642 if (txc->modes & ADJ_TAI && txc->constant > 0)
643 *time_tai = txc->constant;
644
645 if (txc->modes & ADJ_OFFSET)
646 ntp_update_offset(txc->offset);
647
648 if (txc->modes & ADJ_TICK)
649 tick_usec = txc->tick;
650
651 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
652 ntp_update_frequency();
653}
654
655
656
657/**
658 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
659 */
660int ntp_validate_timex(struct timex *txc)
661{
662 if (txc->modes & ADJ_ADJTIME) {
663 /* singleshot must not be used with any other mode bits */
664 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
665 return -EINVAL;
666 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
667 !capable(CAP_SYS_TIME))
668 return -EPERM;
669 } else {
670 /* In order to modify anything, you gotta be super-user! */
671 if (txc->modes && !capable(CAP_SYS_TIME))
672 return -EPERM;
673 /*
674 * if the quartz is off by more than 10% then
675 * something is VERY wrong!
676 */
677 if (txc->modes & ADJ_TICK &&
678 (txc->tick < 900000/USER_HZ ||
679 txc->tick > 1100000/USER_HZ))
680 return -EINVAL;
681 }
682
683 if (txc->modes & ADJ_SETOFFSET) {
684 /* In order to inject time, you gotta be super-user! */
685 if (!capable(CAP_SYS_TIME))
686 return -EPERM;
687
688 if (txc->modes & ADJ_NANO) {
689 struct timespec ts;
690
691 ts.tv_sec = txc->time.tv_sec;
692 ts.tv_nsec = txc->time.tv_usec;
693 if (!timespec_inject_offset_valid(&ts))
694 return -EINVAL;
695
696 } else {
697 if (!timeval_inject_offset_valid(&txc->time))
698 return -EINVAL;
699 }
700 }
701
702 /*
703 * Check for potential multiplication overflows that can
704 * only happen on 64-bit systems:
705 */
706 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
707 if (LLONG_MIN / PPM_SCALE > txc->freq)
708 return -EINVAL;
709 if (LLONG_MAX / PPM_SCALE < txc->freq)
710 return -EINVAL;
711 }
712
713 return 0;
714}
715
716
717/*
718 * adjtimex mainly allows reading (and writing, if superuser) of
719 * kernel time-keeping variables. used by xntpd.
720 */
721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
722{
723 int result;
724
725 if (txc->modes & ADJ_ADJTIME) {
726 long save_adjust = time_adjust;
727
728 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
729 /* adjtime() is independent from ntp_adjtime() */
730 time_adjust = txc->offset;
731 ntp_update_frequency();
732 }
733 txc->offset = save_adjust;
734 } else {
735
736 /* If there are input parameters, then process them: */
737 if (txc->modes)
738 process_adjtimex_modes(txc, ts, time_tai);
739
740 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
741 NTP_SCALE_SHIFT);
742 if (!(time_status & STA_NANO))
743 txc->offset /= NSEC_PER_USEC;
744 }
745
746 result = time_state; /* mostly `TIME_OK' */
747 /* check for errors */
748 if (is_error_status(time_status))
749 result = TIME_ERROR;
750
751 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
752 PPM_SCALE_INV, NTP_SCALE_SHIFT);
753 txc->maxerror = time_maxerror;
754 txc->esterror = time_esterror;
755 txc->status = time_status;
756 txc->constant = time_constant;
757 txc->precision = 1;
758 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
759 txc->tick = tick_usec;
760 txc->tai = *time_tai;
761
762 /* fill PPS status fields */
763 pps_fill_timex(txc);
764
765 txc->time.tv_sec = (time_t)ts->tv_sec;
766 txc->time.tv_usec = ts->tv_nsec;
767 if (!(time_status & STA_NANO))
768 txc->time.tv_usec /= NSEC_PER_USEC;
769
770 /* Handle leapsec adjustments */
771 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
772 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
773 result = TIME_OOP;
774 txc->tai++;
775 txc->time.tv_sec--;
776 }
777 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
778 result = TIME_WAIT;
779 txc->tai--;
780 txc->time.tv_sec++;
781 }
782 if ((time_state == TIME_OOP) &&
783 (ts->tv_sec == ntp_next_leap_sec)) {
784 result = TIME_WAIT;
785 }
786 }
787
788 return result;
789}
790
791#ifdef CONFIG_NTP_PPS
792
793/* actually struct pps_normtime is good old struct timespec, but it is
794 * semantically different (and it is the reason why it was invented):
795 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
796 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
797struct pps_normtime {
798 s64 sec; /* seconds */
799 long nsec; /* nanoseconds */
800};
801
802/* normalize the timestamp so that nsec is in the
803 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
805{
806 struct pps_normtime norm = {
807 .sec = ts.tv_sec,
808 .nsec = ts.tv_nsec
809 };
810
811 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
812 norm.nsec -= NSEC_PER_SEC;
813 norm.sec++;
814 }
815
816 return norm;
817}
818
819/* get current phase correction and jitter */
820static inline long pps_phase_filter_get(long *jitter)
821{
822 *jitter = pps_tf[0] - pps_tf[1];
823 if (*jitter < 0)
824 *jitter = -*jitter;
825
826 /* TODO: test various filters */
827 return pps_tf[0];
828}
829
830/* add the sample to the phase filter */
831static inline void pps_phase_filter_add(long err)
832{
833 pps_tf[2] = pps_tf[1];
834 pps_tf[1] = pps_tf[0];
835 pps_tf[0] = err;
836}
837
838/* decrease frequency calibration interval length.
839 * It is halved after four consecutive unstable intervals.
840 */
841static inline void pps_dec_freq_interval(void)
842{
843 if (--pps_intcnt <= -PPS_INTCOUNT) {
844 pps_intcnt = -PPS_INTCOUNT;
845 if (pps_shift > PPS_INTMIN) {
846 pps_shift--;
847 pps_intcnt = 0;
848 }
849 }
850}
851
852/* increase frequency calibration interval length.
853 * It is doubled after four consecutive stable intervals.
854 */
855static inline void pps_inc_freq_interval(void)
856{
857 if (++pps_intcnt >= PPS_INTCOUNT) {
858 pps_intcnt = PPS_INTCOUNT;
859 if (pps_shift < PPS_INTMAX) {
860 pps_shift++;
861 pps_intcnt = 0;
862 }
863 }
864}
865
866/* update clock frequency based on MONOTONIC_RAW clock PPS signal
867 * timestamps
868 *
869 * At the end of the calibration interval the difference between the
870 * first and last MONOTONIC_RAW clock timestamps divided by the length
871 * of the interval becomes the frequency update. If the interval was
872 * too long, the data are discarded.
873 * Returns the difference between old and new frequency values.
874 */
875static long hardpps_update_freq(struct pps_normtime freq_norm)
876{
877 long delta, delta_mod;
878 s64 ftemp;
879
880 /* check if the frequency interval was too long */
881 if (freq_norm.sec > (2 << pps_shift)) {
882 time_status |= STA_PPSERROR;
883 pps_errcnt++;
884 pps_dec_freq_interval();
885 printk_deferred(KERN_ERR
886 "hardpps: PPSERROR: interval too long - %lld s\n",
887 freq_norm.sec);
888 return 0;
889 }
890
891 /* here the raw frequency offset and wander (stability) is
892 * calculated. If the wander is less than the wander threshold
893 * the interval is increased; otherwise it is decreased.
894 */
895 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
896 freq_norm.sec);
897 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
898 pps_freq = ftemp;
899 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
900 printk_deferred(KERN_WARNING
901 "hardpps: PPSWANDER: change=%ld\n", delta);
902 time_status |= STA_PPSWANDER;
903 pps_stbcnt++;
904 pps_dec_freq_interval();
905 } else { /* good sample */
906 pps_inc_freq_interval();
907 }
908
909 /* the stability metric is calculated as the average of recent
910 * frequency changes, but is used only for performance
911 * monitoring
912 */
913 delta_mod = delta;
914 if (delta_mod < 0)
915 delta_mod = -delta_mod;
916 pps_stabil += (div_s64(((s64)delta_mod) <<
917 (NTP_SCALE_SHIFT - SHIFT_USEC),
918 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
919
920 /* if enabled, the system clock frequency is updated */
921 if ((time_status & STA_PPSFREQ) != 0 &&
922 (time_status & STA_FREQHOLD) == 0) {
923 time_freq = pps_freq;
924 ntp_update_frequency();
925 }
926
927 return delta;
928}
929
930/* correct REALTIME clock phase error against PPS signal */
931static void hardpps_update_phase(long error)
932{
933 long correction = -error;
934 long jitter;
935
936 /* add the sample to the median filter */
937 pps_phase_filter_add(correction);
938 correction = pps_phase_filter_get(&jitter);
939
940 /* Nominal jitter is due to PPS signal noise. If it exceeds the
941 * threshold, the sample is discarded; otherwise, if so enabled,
942 * the time offset is updated.
943 */
944 if (jitter > (pps_jitter << PPS_POPCORN)) {
945 printk_deferred(KERN_WARNING
946 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
947 jitter, (pps_jitter << PPS_POPCORN));
948 time_status |= STA_PPSJITTER;
949 pps_jitcnt++;
950 } else if (time_status & STA_PPSTIME) {
951 /* correct the time using the phase offset */
952 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
953 NTP_INTERVAL_FREQ);
954 /* cancel running adjtime() */
955 time_adjust = 0;
956 }
957 /* update jitter */
958 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
959}
960
961/*
962 * __hardpps() - discipline CPU clock oscillator to external PPS signal
963 *
964 * This routine is called at each PPS signal arrival in order to
965 * discipline the CPU clock oscillator to the PPS signal. It takes two
966 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
967 * is used to correct clock phase error and the latter is used to
968 * correct the frequency.
969 *
970 * This code is based on David Mills's reference nanokernel
971 * implementation. It was mostly rewritten but keeps the same idea.
972 */
973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
974{
975 struct pps_normtime pts_norm, freq_norm;
976
977 pts_norm = pps_normalize_ts(*phase_ts);
978
979 /* clear the error bits, they will be set again if needed */
980 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
981
982 /* indicate signal presence */
983 time_status |= STA_PPSSIGNAL;
984 pps_valid = PPS_VALID;
985
986 /* when called for the first time,
987 * just start the frequency interval */
988 if (unlikely(pps_fbase.tv_sec == 0)) {
989 pps_fbase = *raw_ts;
990 return;
991 }
992
993 /* ok, now we have a base for frequency calculation */
994 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
995
996 /* check that the signal is in the range
997 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
998 if ((freq_norm.sec == 0) ||
999 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001 time_status |= STA_PPSJITTER;
1002 /* restart the frequency calibration interval */
1003 pps_fbase = *raw_ts;
1004 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1005 return;
1006 }
1007
1008 /* signal is ok */
1009
1010 /* check if the current frequency interval is finished */
1011 if (freq_norm.sec >= (1 << pps_shift)) {
1012 pps_calcnt++;
1013 /* restart the frequency calibration interval */
1014 pps_fbase = *raw_ts;
1015 hardpps_update_freq(freq_norm);
1016 }
1017
1018 hardpps_update_phase(pts_norm.nsec);
1019
1020}
1021#endif /* CONFIG_NTP_PPS */
1022
1023static int __init ntp_tick_adj_setup(char *str)
1024{
1025 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027 if (rc)
1028 return rc;
1029 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
1031 return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035
1036void __init ntp_init(void)
1037{
1038 ntp_clear();
1039}