Loading...
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29#include <linux/mempolicy.h>
30#include <linux/migrate.h>
31#include <linux/task_work.h>
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
36
37/*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74static unsigned int sched_nr_latency = 8;
75
76/*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82/*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#define WMULT_CONST (~0U)
182#define WMULT_SHIFT 32
183
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
200
201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236}
237
238
239const struct sched_class fair_sched_class;
240
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline struct cfs_rq *
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
377
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
381}
382
383#define entity_is_task(se) 1
384
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389{
390 return &task_rq(p)->cfs;
391}
392
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
430static __always_inline
431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438{
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444}
445
446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
485}
486
487/*
488 * Enqueue an entity into the rb-tree:
489 */
490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524}
525
526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527{
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536}
537
538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539{
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546}
547
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560{
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567}
568
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576{
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591#undef WRT_SYSCTL
592
593 return 0;
594}
595#endif
596
597/*
598 * delta /= w
599 */
600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601{
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606}
607
608/*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627}
628
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636{
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655}
656
657/*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663{
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665}
666
667#ifdef CONFIG_SMP
668static unsigned long task_h_load(struct task_struct *p);
669
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
689/*
690 * Update the current task's runtime statistics.
691 */
692static void update_curr(struct cfs_rq *cfs_rq)
693{
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725}
726
727static inline void
728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729{
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731}
732
733/*
734 * Task is being enqueued - update stats:
735 */
736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737{
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744}
745
746static void
747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748{
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759#endif
760 schedstat_set(se->statistics.wait_start, 0);
761}
762
763static inline void
764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765{
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779{
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784}
785
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
790#ifdef CONFIG_NUMA_BALANCING
791/*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
801
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880};
881
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
896static inline int task_faults_idx(int nid, int priv)
897{
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908}
909
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917}
918
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952}
953
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
1017static unsigned long weighted_cpuload(const int cpu);
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023/* Cached statistics for all CPUs within a node */
1024struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
1034};
1035
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
1041 int cpu, cpus = 0;
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
1050
1051 cpus++;
1052 }
1053
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
1070struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
1078 int imbalance_pct;
1079
1080 struct task_struct *best_task;
1081 long best_imp;
1082 int best_cpu;
1083};
1084
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
1112 long imp = (groupimp > 0) ? groupimp : taskimp;
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
1133 * in any group then look only at task weights.
1134 */
1135 if (cur->numa_group == env->p->numa_group) {
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
1144 } else {
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
1161 }
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
1222 task_numa_compare(env, taskimp, groupimp);
1223 }
1224}
1225
1226static int task_numa_migrate(struct task_struct *p)
1227{
1228 struct task_numa_env env = {
1229 .p = p,
1230
1231 .src_cpu = task_cpu(p),
1232 .src_nid = task_node(p),
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
1239 };
1240 struct sched_domain *sd;
1241 unsigned long taskweight, groupweight;
1242 int nid, ret;
1243 long taskimp, groupimp;
1244
1245 /*
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
1252 */
1253 rcu_read_lock();
1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 rcu_read_unlock();
1258
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
1266 p->numa_preferred_nid = task_node(p);
1267 return -EINVAL;
1268 }
1269
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
1272 update_numa_stats(&env.src_stats, env.src_nid);
1273 env.dst_nid = p->numa_preferred_nid;
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
1276 update_numa_stats(&env.dst_stats, env.dst_nid);
1277
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
1280 task_numa_find_cpu(&env, taskimp, groupimp);
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
1287
1288 /* Only consider nodes where both task and groups benefit */
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
1292 continue;
1293
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
1296 task_numa_find_cpu(&env, taskimp, groupimp);
1297 }
1298 }
1299
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
1304 sched_setnuma(p, env.dst_nid);
1305
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
1312 if (env.best_task == NULL) {
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 put_task_struct(env.best_task);
1323 return ret;
1324}
1325
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
1329 /* This task has no NUMA fault statistics yet */
1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331 return;
1332
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
1337 if (task_node(p) == p->numa_preferred_nid)
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
1341 task_numa_migrate(p);
1342}
1343
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
1478static void task_numa_placement(struct task_struct *p)
1479{
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
1482 unsigned long fault_types[2] = { 0, 0 };
1483 unsigned long total_faults;
1484 u64 runtime, period;
1485 spinlock_t *group_lock = NULL;
1486
1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
1491 p->numa_scan_period_max = task_scan_max(p);
1492
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock_irq(group_lock);
1501 }
1502
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
1505 unsigned long faults = 0, group_faults = 0;
1506 int priv, i;
1507
1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509 long diff, f_diff, f_weight;
1510
1511 i = task_faults_idx(nid, priv);
1512
1513 /* Decay existing window, copy faults since last scan */
1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
1517
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
1533 faults += p->numa_faults_memory[i];
1534 p->total_numa_faults += diff;
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
1537 p->numa_group->faults[i] += diff;
1538 p->numa_group->faults_cpu[i] += f_diff;
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
1541 }
1542 }
1543
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
1557 if (p->numa_group) {
1558 update_numa_active_node_mask(p->numa_group);
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
1572 }
1573 }
1574
1575 spin_unlock_irq(group_lock);
1576 }
1577
1578 /* Preferred node as the node with the most faults */
1579 if (max_faults && max_nid != p->numa_preferred_nid) {
1580 /* Update the preferred nid and migrate task if possible */
1581 sched_setnuma(p, max_nid);
1582 numa_migrate_preferred(p);
1583 }
1584}
1585
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
1608 4*nr_node_ids*sizeof(unsigned long);
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
1617 grp->gid = p->pid;
1618 /* Second half of the array tracks nids where faults happen */
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
1621
1622 node_set(task_node(current), grp->active_nodes);
1623
1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625 grp->faults[i] = p->numa_faults_memory[i];
1626
1627 grp->total_faults = p->total_numa_faults;
1628
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
1638 goto no_join;
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
1642 goto no_join;
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
1646 goto no_join;
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
1653 goto no_join;
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659 goto no_join;
1660
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
1668
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
1672 if (join && !get_numa_group(grp))
1673 goto no_join;
1674
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
1680 BUG_ON(irqs_disabled());
1681 double_lock_irq(&my_grp->lock, &grp->lock);
1682
1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684 my_grp->faults[i] -= p->numa_faults_memory[i];
1685 grp->faults[i] += p->numa_faults_memory[i];
1686 }
1687 my_grp->total_faults -= p->total_numa_faults;
1688 grp->total_faults += p->total_numa_faults;
1689
1690 list_move(&p->numa_entry, &grp->task_list);
1691 my_grp->nr_tasks--;
1692 grp->nr_tasks++;
1693
1694 spin_unlock(&my_grp->lock);
1695 spin_unlock_irq(&grp->lock);
1696
1697 rcu_assign_pointer(p->numa_group, grp);
1698
1699 put_numa_group(my_grp);
1700 return;
1701
1702no_join:
1703 rcu_read_unlock();
1704 return;
1705}
1706
1707void task_numa_free(struct task_struct *p)
1708{
1709 struct numa_group *grp = p->numa_group;
1710 void *numa_faults = p->numa_faults_memory;
1711 unsigned long flags;
1712 int i;
1713
1714 if (grp) {
1715 spin_lock_irqsave(&grp->lock, flags);
1716 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717 grp->faults[i] -= p->numa_faults_memory[i];
1718 grp->total_faults -= p->total_numa_faults;
1719
1720 list_del(&p->numa_entry);
1721 grp->nr_tasks--;
1722 spin_unlock_irqrestore(&grp->lock, flags);
1723 rcu_assign_pointer(p->numa_group, NULL);
1724 put_numa_group(grp);
1725 }
1726
1727 p->numa_faults_memory = NULL;
1728 p->numa_faults_buffer_memory = NULL;
1729 p->numa_faults_cpu= NULL;
1730 p->numa_faults_buffer_cpu = NULL;
1731 kfree(numa_faults);
1732}
1733
1734/*
1735 * Got a PROT_NONE fault for a page on @node.
1736 */
1737void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1738{
1739 struct task_struct *p = current;
1740 bool migrated = flags & TNF_MIGRATED;
1741 int cpu_node = task_node(current);
1742 int priv;
1743
1744 if (!numabalancing_enabled)
1745 return;
1746
1747 /* for example, ksmd faulting in a user's mm */
1748 if (!p->mm)
1749 return;
1750
1751 /* Do not worry about placement if exiting */
1752 if (p->state == TASK_DEAD)
1753 return;
1754
1755 /* Allocate buffer to track faults on a per-node basis */
1756 if (unlikely(!p->numa_faults_memory)) {
1757 int size = sizeof(*p->numa_faults_memory) *
1758 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1759
1760 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1761 if (!p->numa_faults_memory)
1762 return;
1763
1764 BUG_ON(p->numa_faults_buffer_memory);
1765 /*
1766 * The averaged statistics, shared & private, memory & cpu,
1767 * occupy the first half of the array. The second half of the
1768 * array is for current counters, which are averaged into the
1769 * first set by task_numa_placement.
1770 */
1771 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1772 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1773 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1774 p->total_numa_faults = 0;
1775 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1776 }
1777
1778 /*
1779 * First accesses are treated as private, otherwise consider accesses
1780 * to be private if the accessing pid has not changed
1781 */
1782 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783 priv = 1;
1784 } else {
1785 priv = cpupid_match_pid(p, last_cpupid);
1786 if (!priv && !(flags & TNF_NO_GROUP))
1787 task_numa_group(p, last_cpupid, flags, &priv);
1788 }
1789
1790 task_numa_placement(p);
1791
1792 /*
1793 * Retry task to preferred node migration periodically, in case it
1794 * case it previously failed, or the scheduler moved us.
1795 */
1796 if (time_after(jiffies, p->numa_migrate_retry))
1797 numa_migrate_preferred(p);
1798
1799 if (migrated)
1800 p->numa_pages_migrated += pages;
1801
1802 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1803 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1804 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1805}
1806
1807static void reset_ptenuma_scan(struct task_struct *p)
1808{
1809 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1810 p->mm->numa_scan_offset = 0;
1811}
1812
1813/*
1814 * The expensive part of numa migration is done from task_work context.
1815 * Triggered from task_tick_numa().
1816 */
1817void task_numa_work(struct callback_head *work)
1818{
1819 unsigned long migrate, next_scan, now = jiffies;
1820 struct task_struct *p = current;
1821 struct mm_struct *mm = p->mm;
1822 struct vm_area_struct *vma;
1823 unsigned long start, end;
1824 unsigned long nr_pte_updates = 0;
1825 long pages;
1826
1827 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1828
1829 work->next = work; /* protect against double add */
1830 /*
1831 * Who cares about NUMA placement when they're dying.
1832 *
1833 * NOTE: make sure not to dereference p->mm before this check,
1834 * exit_task_work() happens _after_ exit_mm() so we could be called
1835 * without p->mm even though we still had it when we enqueued this
1836 * work.
1837 */
1838 if (p->flags & PF_EXITING)
1839 return;
1840
1841 if (!mm->numa_next_scan) {
1842 mm->numa_next_scan = now +
1843 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 }
1845
1846 /*
1847 * Enforce maximal scan/migration frequency..
1848 */
1849 migrate = mm->numa_next_scan;
1850 if (time_before(now, migrate))
1851 return;
1852
1853 if (p->numa_scan_period == 0) {
1854 p->numa_scan_period_max = task_scan_max(p);
1855 p->numa_scan_period = task_scan_min(p);
1856 }
1857
1858 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1859 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1860 return;
1861
1862 /*
1863 * Delay this task enough that another task of this mm will likely win
1864 * the next time around.
1865 */
1866 p->node_stamp += 2 * TICK_NSEC;
1867
1868 start = mm->numa_scan_offset;
1869 pages = sysctl_numa_balancing_scan_size;
1870 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1871 if (!pages)
1872 return;
1873
1874 down_read(&mm->mmap_sem);
1875 vma = find_vma(mm, start);
1876 if (!vma) {
1877 reset_ptenuma_scan(p);
1878 start = 0;
1879 vma = mm->mmap;
1880 }
1881 for (; vma; vma = vma->vm_next) {
1882 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1883 continue;
1884
1885 /*
1886 * Shared library pages mapped by multiple processes are not
1887 * migrated as it is expected they are cache replicated. Avoid
1888 * hinting faults in read-only file-backed mappings or the vdso
1889 * as migrating the pages will be of marginal benefit.
1890 */
1891 if (!vma->vm_mm ||
1892 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1893 continue;
1894
1895 /*
1896 * Skip inaccessible VMAs to avoid any confusion between
1897 * PROT_NONE and NUMA hinting ptes
1898 */
1899 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1900 continue;
1901
1902 do {
1903 start = max(start, vma->vm_start);
1904 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1905 end = min(end, vma->vm_end);
1906 nr_pte_updates += change_prot_numa(vma, start, end);
1907
1908 /*
1909 * Scan sysctl_numa_balancing_scan_size but ensure that
1910 * at least one PTE is updated so that unused virtual
1911 * address space is quickly skipped.
1912 */
1913 if (nr_pte_updates)
1914 pages -= (end - start) >> PAGE_SHIFT;
1915
1916 start = end;
1917 if (pages <= 0)
1918 goto out;
1919
1920 cond_resched();
1921 } while (end != vma->vm_end);
1922 }
1923
1924out:
1925 /*
1926 * It is possible to reach the end of the VMA list but the last few
1927 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1928 * would find the !migratable VMA on the next scan but not reset the
1929 * scanner to the start so check it now.
1930 */
1931 if (vma)
1932 mm->numa_scan_offset = start;
1933 else
1934 reset_ptenuma_scan(p);
1935 up_read(&mm->mmap_sem);
1936}
1937
1938/*
1939 * Drive the periodic memory faults..
1940 */
1941void task_tick_numa(struct rq *rq, struct task_struct *curr)
1942{
1943 struct callback_head *work = &curr->numa_work;
1944 u64 period, now;
1945
1946 /*
1947 * We don't care about NUMA placement if we don't have memory.
1948 */
1949 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1950 return;
1951
1952 /*
1953 * Using runtime rather than walltime has the dual advantage that
1954 * we (mostly) drive the selection from busy threads and that the
1955 * task needs to have done some actual work before we bother with
1956 * NUMA placement.
1957 */
1958 now = curr->se.sum_exec_runtime;
1959 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1960
1961 if (now - curr->node_stamp > period) {
1962 if (!curr->node_stamp)
1963 curr->numa_scan_period = task_scan_min(curr);
1964 curr->node_stamp += period;
1965
1966 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1967 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1968 task_work_add(curr, work, true);
1969 }
1970 }
1971}
1972#else
1973static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1974{
1975}
1976
1977static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1978{
1979}
1980
1981static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1982{
1983}
1984#endif /* CONFIG_NUMA_BALANCING */
1985
1986static void
1987account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1988{
1989 update_load_add(&cfs_rq->load, se->load.weight);
1990 if (!parent_entity(se))
1991 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1992#ifdef CONFIG_SMP
1993 if (entity_is_task(se)) {
1994 struct rq *rq = rq_of(cfs_rq);
1995
1996 account_numa_enqueue(rq, task_of(se));
1997 list_add(&se->group_node, &rq->cfs_tasks);
1998 }
1999#endif
2000 cfs_rq->nr_running++;
2001}
2002
2003static void
2004account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2005{
2006 update_load_sub(&cfs_rq->load, se->load.weight);
2007 if (!parent_entity(se))
2008 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2009 if (entity_is_task(se)) {
2010 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2011 list_del_init(&se->group_node);
2012 }
2013 cfs_rq->nr_running--;
2014}
2015
2016#ifdef CONFIG_FAIR_GROUP_SCHED
2017# ifdef CONFIG_SMP
2018static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2019{
2020 long tg_weight;
2021
2022 /*
2023 * Use this CPU's actual weight instead of the last load_contribution
2024 * to gain a more accurate current total weight. See
2025 * update_cfs_rq_load_contribution().
2026 */
2027 tg_weight = atomic_long_read(&tg->load_avg);
2028 tg_weight -= cfs_rq->tg_load_contrib;
2029 tg_weight += cfs_rq->load.weight;
2030
2031 return tg_weight;
2032}
2033
2034static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2035{
2036 long tg_weight, load, shares;
2037
2038 tg_weight = calc_tg_weight(tg, cfs_rq);
2039 load = cfs_rq->load.weight;
2040
2041 shares = (tg->shares * load);
2042 if (tg_weight)
2043 shares /= tg_weight;
2044
2045 if (shares < MIN_SHARES)
2046 shares = MIN_SHARES;
2047 if (shares > tg->shares)
2048 shares = tg->shares;
2049
2050 return shares;
2051}
2052# else /* CONFIG_SMP */
2053static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2054{
2055 return tg->shares;
2056}
2057# endif /* CONFIG_SMP */
2058static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2059 unsigned long weight)
2060{
2061 if (se->on_rq) {
2062 /* commit outstanding execution time */
2063 if (cfs_rq->curr == se)
2064 update_curr(cfs_rq);
2065 account_entity_dequeue(cfs_rq, se);
2066 }
2067
2068 update_load_set(&se->load, weight);
2069
2070 if (se->on_rq)
2071 account_entity_enqueue(cfs_rq, se);
2072}
2073
2074static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2075
2076static void update_cfs_shares(struct cfs_rq *cfs_rq)
2077{
2078 struct task_group *tg;
2079 struct sched_entity *se;
2080 long shares;
2081
2082 tg = cfs_rq->tg;
2083 se = tg->se[cpu_of(rq_of(cfs_rq))];
2084 if (!se || throttled_hierarchy(cfs_rq))
2085 return;
2086#ifndef CONFIG_SMP
2087 if (likely(se->load.weight == tg->shares))
2088 return;
2089#endif
2090 shares = calc_cfs_shares(cfs_rq, tg);
2091
2092 reweight_entity(cfs_rq_of(se), se, shares);
2093}
2094#else /* CONFIG_FAIR_GROUP_SCHED */
2095static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2096{
2097}
2098#endif /* CONFIG_FAIR_GROUP_SCHED */
2099
2100#ifdef CONFIG_SMP
2101/*
2102 * We choose a half-life close to 1 scheduling period.
2103 * Note: The tables below are dependent on this value.
2104 */
2105#define LOAD_AVG_PERIOD 32
2106#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2107#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2108
2109/* Precomputed fixed inverse multiplies for multiplication by y^n */
2110static const u32 runnable_avg_yN_inv[] = {
2111 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2112 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2113 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2114 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2115 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2116 0x85aac367, 0x82cd8698,
2117};
2118
2119/*
2120 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2121 * over-estimates when re-combining.
2122 */
2123static const u32 runnable_avg_yN_sum[] = {
2124 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2125 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2126 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2127};
2128
2129/*
2130 * Approximate:
2131 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2132 */
2133static __always_inline u64 decay_load(u64 val, u64 n)
2134{
2135 unsigned int local_n;
2136
2137 if (!n)
2138 return val;
2139 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2140 return 0;
2141
2142 /* after bounds checking we can collapse to 32-bit */
2143 local_n = n;
2144
2145 /*
2146 * As y^PERIOD = 1/2, we can combine
2147 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2148 * With a look-up table which covers k^n (n<PERIOD)
2149 *
2150 * To achieve constant time decay_load.
2151 */
2152 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2153 val >>= local_n / LOAD_AVG_PERIOD;
2154 local_n %= LOAD_AVG_PERIOD;
2155 }
2156
2157 val *= runnable_avg_yN_inv[local_n];
2158 /* We don't use SRR here since we always want to round down. */
2159 return val >> 32;
2160}
2161
2162/*
2163 * For updates fully spanning n periods, the contribution to runnable
2164 * average will be: \Sum 1024*y^n
2165 *
2166 * We can compute this reasonably efficiently by combining:
2167 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2168 */
2169static u32 __compute_runnable_contrib(u64 n)
2170{
2171 u32 contrib = 0;
2172
2173 if (likely(n <= LOAD_AVG_PERIOD))
2174 return runnable_avg_yN_sum[n];
2175 else if (unlikely(n >= LOAD_AVG_MAX_N))
2176 return LOAD_AVG_MAX;
2177
2178 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2179 do {
2180 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2181 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2182
2183 n -= LOAD_AVG_PERIOD;
2184 } while (n > LOAD_AVG_PERIOD);
2185
2186 contrib = decay_load(contrib, n);
2187 return contrib + runnable_avg_yN_sum[n];
2188}
2189
2190/*
2191 * We can represent the historical contribution to runnable average as the
2192 * coefficients of a geometric series. To do this we sub-divide our runnable
2193 * history into segments of approximately 1ms (1024us); label the segment that
2194 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2195 *
2196 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2197 * p0 p1 p2
2198 * (now) (~1ms ago) (~2ms ago)
2199 *
2200 * Let u_i denote the fraction of p_i that the entity was runnable.
2201 *
2202 * We then designate the fractions u_i as our co-efficients, yielding the
2203 * following representation of historical load:
2204 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2205 *
2206 * We choose y based on the with of a reasonably scheduling period, fixing:
2207 * y^32 = 0.5
2208 *
2209 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2210 * approximately half as much as the contribution to load within the last ms
2211 * (u_0).
2212 *
2213 * When a period "rolls over" and we have new u_0`, multiplying the previous
2214 * sum again by y is sufficient to update:
2215 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2216 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2217 */
2218static __always_inline int __update_entity_runnable_avg(u64 now,
2219 struct sched_avg *sa,
2220 int runnable)
2221{
2222 u64 delta, periods;
2223 u32 runnable_contrib;
2224 int delta_w, decayed = 0;
2225
2226 delta = now - sa->last_runnable_update;
2227 /*
2228 * This should only happen when time goes backwards, which it
2229 * unfortunately does during sched clock init when we swap over to TSC.
2230 */
2231 if ((s64)delta < 0) {
2232 sa->last_runnable_update = now;
2233 return 0;
2234 }
2235
2236 /*
2237 * Use 1024ns as the unit of measurement since it's a reasonable
2238 * approximation of 1us and fast to compute.
2239 */
2240 delta >>= 10;
2241 if (!delta)
2242 return 0;
2243 sa->last_runnable_update = now;
2244
2245 /* delta_w is the amount already accumulated against our next period */
2246 delta_w = sa->runnable_avg_period % 1024;
2247 if (delta + delta_w >= 1024) {
2248 /* period roll-over */
2249 decayed = 1;
2250
2251 /*
2252 * Now that we know we're crossing a period boundary, figure
2253 * out how much from delta we need to complete the current
2254 * period and accrue it.
2255 */
2256 delta_w = 1024 - delta_w;
2257 if (runnable)
2258 sa->runnable_avg_sum += delta_w;
2259 sa->runnable_avg_period += delta_w;
2260
2261 delta -= delta_w;
2262
2263 /* Figure out how many additional periods this update spans */
2264 periods = delta / 1024;
2265 delta %= 1024;
2266
2267 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2268 periods + 1);
2269 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2270 periods + 1);
2271
2272 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2273 runnable_contrib = __compute_runnable_contrib(periods);
2274 if (runnable)
2275 sa->runnable_avg_sum += runnable_contrib;
2276 sa->runnable_avg_period += runnable_contrib;
2277 }
2278
2279 /* Remainder of delta accrued against u_0` */
2280 if (runnable)
2281 sa->runnable_avg_sum += delta;
2282 sa->runnable_avg_period += delta;
2283
2284 return decayed;
2285}
2286
2287/* Synchronize an entity's decay with its parenting cfs_rq.*/
2288static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2289{
2290 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2291 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2292
2293 decays -= se->avg.decay_count;
2294 if (!decays)
2295 return 0;
2296
2297 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2298 se->avg.decay_count = 0;
2299
2300 return decays;
2301}
2302
2303#ifdef CONFIG_FAIR_GROUP_SCHED
2304static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2305 int force_update)
2306{
2307 struct task_group *tg = cfs_rq->tg;
2308 long tg_contrib;
2309
2310 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2311 tg_contrib -= cfs_rq->tg_load_contrib;
2312
2313 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2314 atomic_long_add(tg_contrib, &tg->load_avg);
2315 cfs_rq->tg_load_contrib += tg_contrib;
2316 }
2317}
2318
2319/*
2320 * Aggregate cfs_rq runnable averages into an equivalent task_group
2321 * representation for computing load contributions.
2322 */
2323static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2324 struct cfs_rq *cfs_rq)
2325{
2326 struct task_group *tg = cfs_rq->tg;
2327 long contrib;
2328
2329 /* The fraction of a cpu used by this cfs_rq */
2330 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2331 sa->runnable_avg_period + 1);
2332 contrib -= cfs_rq->tg_runnable_contrib;
2333
2334 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2335 atomic_add(contrib, &tg->runnable_avg);
2336 cfs_rq->tg_runnable_contrib += contrib;
2337 }
2338}
2339
2340static inline void __update_group_entity_contrib(struct sched_entity *se)
2341{
2342 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2343 struct task_group *tg = cfs_rq->tg;
2344 int runnable_avg;
2345
2346 u64 contrib;
2347
2348 contrib = cfs_rq->tg_load_contrib * tg->shares;
2349 se->avg.load_avg_contrib = div_u64(contrib,
2350 atomic_long_read(&tg->load_avg) + 1);
2351
2352 /*
2353 * For group entities we need to compute a correction term in the case
2354 * that they are consuming <1 cpu so that we would contribute the same
2355 * load as a task of equal weight.
2356 *
2357 * Explicitly co-ordinating this measurement would be expensive, but
2358 * fortunately the sum of each cpus contribution forms a usable
2359 * lower-bound on the true value.
2360 *
2361 * Consider the aggregate of 2 contributions. Either they are disjoint
2362 * (and the sum represents true value) or they are disjoint and we are
2363 * understating by the aggregate of their overlap.
2364 *
2365 * Extending this to N cpus, for a given overlap, the maximum amount we
2366 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2367 * cpus that overlap for this interval and w_i is the interval width.
2368 *
2369 * On a small machine; the first term is well-bounded which bounds the
2370 * total error since w_i is a subset of the period. Whereas on a
2371 * larger machine, while this first term can be larger, if w_i is the
2372 * of consequential size guaranteed to see n_i*w_i quickly converge to
2373 * our upper bound of 1-cpu.
2374 */
2375 runnable_avg = atomic_read(&tg->runnable_avg);
2376 if (runnable_avg < NICE_0_LOAD) {
2377 se->avg.load_avg_contrib *= runnable_avg;
2378 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2379 }
2380}
2381
2382static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2383{
2384 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2385 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2386}
2387#else /* CONFIG_FAIR_GROUP_SCHED */
2388static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2389 int force_update) {}
2390static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391 struct cfs_rq *cfs_rq) {}
2392static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2393static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2394#endif /* CONFIG_FAIR_GROUP_SCHED */
2395
2396static inline void __update_task_entity_contrib(struct sched_entity *se)
2397{
2398 u32 contrib;
2399
2400 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2401 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2402 contrib /= (se->avg.runnable_avg_period + 1);
2403 se->avg.load_avg_contrib = scale_load(contrib);
2404}
2405
2406/* Compute the current contribution to load_avg by se, return any delta */
2407static long __update_entity_load_avg_contrib(struct sched_entity *se)
2408{
2409 long old_contrib = se->avg.load_avg_contrib;
2410
2411 if (entity_is_task(se)) {
2412 __update_task_entity_contrib(se);
2413 } else {
2414 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2415 __update_group_entity_contrib(se);
2416 }
2417
2418 return se->avg.load_avg_contrib - old_contrib;
2419}
2420
2421static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2422 long load_contrib)
2423{
2424 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2425 cfs_rq->blocked_load_avg -= load_contrib;
2426 else
2427 cfs_rq->blocked_load_avg = 0;
2428}
2429
2430static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2431
2432/* Update a sched_entity's runnable average */
2433static inline void update_entity_load_avg(struct sched_entity *se,
2434 int update_cfs_rq)
2435{
2436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2437 long contrib_delta;
2438 u64 now;
2439
2440 /*
2441 * For a group entity we need to use their owned cfs_rq_clock_task() in
2442 * case they are the parent of a throttled hierarchy.
2443 */
2444 if (entity_is_task(se))
2445 now = cfs_rq_clock_task(cfs_rq);
2446 else
2447 now = cfs_rq_clock_task(group_cfs_rq(se));
2448
2449 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2450 return;
2451
2452 contrib_delta = __update_entity_load_avg_contrib(se);
2453
2454 if (!update_cfs_rq)
2455 return;
2456
2457 if (se->on_rq)
2458 cfs_rq->runnable_load_avg += contrib_delta;
2459 else
2460 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2461}
2462
2463/*
2464 * Decay the load contributed by all blocked children and account this so that
2465 * their contribution may appropriately discounted when they wake up.
2466 */
2467static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2468{
2469 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2470 u64 decays;
2471
2472 decays = now - cfs_rq->last_decay;
2473 if (!decays && !force_update)
2474 return;
2475
2476 if (atomic_long_read(&cfs_rq->removed_load)) {
2477 unsigned long removed_load;
2478 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2479 subtract_blocked_load_contrib(cfs_rq, removed_load);
2480 }
2481
2482 if (decays) {
2483 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2484 decays);
2485 atomic64_add(decays, &cfs_rq->decay_counter);
2486 cfs_rq->last_decay = now;
2487 }
2488
2489 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2490}
2491
2492/* Add the load generated by se into cfs_rq's child load-average */
2493static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2494 struct sched_entity *se,
2495 int wakeup)
2496{
2497 /*
2498 * We track migrations using entity decay_count <= 0, on a wake-up
2499 * migration we use a negative decay count to track the remote decays
2500 * accumulated while sleeping.
2501 *
2502 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2503 * are seen by enqueue_entity_load_avg() as a migration with an already
2504 * constructed load_avg_contrib.
2505 */
2506 if (unlikely(se->avg.decay_count <= 0)) {
2507 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2508 if (se->avg.decay_count) {
2509 /*
2510 * In a wake-up migration we have to approximate the
2511 * time sleeping. This is because we can't synchronize
2512 * clock_task between the two cpus, and it is not
2513 * guaranteed to be read-safe. Instead, we can
2514 * approximate this using our carried decays, which are
2515 * explicitly atomically readable.
2516 */
2517 se->avg.last_runnable_update -= (-se->avg.decay_count)
2518 << 20;
2519 update_entity_load_avg(se, 0);
2520 /* Indicate that we're now synchronized and on-rq */
2521 se->avg.decay_count = 0;
2522 }
2523 wakeup = 0;
2524 } else {
2525 __synchronize_entity_decay(se);
2526 }
2527
2528 /* migrated tasks did not contribute to our blocked load */
2529 if (wakeup) {
2530 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2531 update_entity_load_avg(se, 0);
2532 }
2533
2534 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2535 /* we force update consideration on load-balancer moves */
2536 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2537}
2538
2539/*
2540 * Remove se's load from this cfs_rq child load-average, if the entity is
2541 * transitioning to a blocked state we track its projected decay using
2542 * blocked_load_avg.
2543 */
2544static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2545 struct sched_entity *se,
2546 int sleep)
2547{
2548 update_entity_load_avg(se, 1);
2549 /* we force update consideration on load-balancer moves */
2550 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2551
2552 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2553 if (sleep) {
2554 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2555 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2556 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2557}
2558
2559/*
2560 * Update the rq's load with the elapsed running time before entering
2561 * idle. if the last scheduled task is not a CFS task, idle_enter will
2562 * be the only way to update the runnable statistic.
2563 */
2564void idle_enter_fair(struct rq *this_rq)
2565{
2566 update_rq_runnable_avg(this_rq, 1);
2567}
2568
2569/*
2570 * Update the rq's load with the elapsed idle time before a task is
2571 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2572 * be the only way to update the runnable statistic.
2573 */
2574void idle_exit_fair(struct rq *this_rq)
2575{
2576 update_rq_runnable_avg(this_rq, 0);
2577}
2578
2579static int idle_balance(struct rq *this_rq);
2580
2581#else /* CONFIG_SMP */
2582
2583static inline void update_entity_load_avg(struct sched_entity *se,
2584 int update_cfs_rq) {}
2585static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2586static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2587 struct sched_entity *se,
2588 int wakeup) {}
2589static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2590 struct sched_entity *se,
2591 int sleep) {}
2592static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2593 int force_update) {}
2594
2595static inline int idle_balance(struct rq *rq)
2596{
2597 return 0;
2598}
2599
2600#endif /* CONFIG_SMP */
2601
2602static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
2604#ifdef CONFIG_SCHEDSTATS
2605 struct task_struct *tsk = NULL;
2606
2607 if (entity_is_task(se))
2608 tsk = task_of(se);
2609
2610 if (se->statistics.sleep_start) {
2611 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2612
2613 if ((s64)delta < 0)
2614 delta = 0;
2615
2616 if (unlikely(delta > se->statistics.sleep_max))
2617 se->statistics.sleep_max = delta;
2618
2619 se->statistics.sleep_start = 0;
2620 se->statistics.sum_sleep_runtime += delta;
2621
2622 if (tsk) {
2623 account_scheduler_latency(tsk, delta >> 10, 1);
2624 trace_sched_stat_sleep(tsk, delta);
2625 }
2626 }
2627 if (se->statistics.block_start) {
2628 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2629
2630 if ((s64)delta < 0)
2631 delta = 0;
2632
2633 if (unlikely(delta > se->statistics.block_max))
2634 se->statistics.block_max = delta;
2635
2636 se->statistics.block_start = 0;
2637 se->statistics.sum_sleep_runtime += delta;
2638
2639 if (tsk) {
2640 if (tsk->in_iowait) {
2641 se->statistics.iowait_sum += delta;
2642 se->statistics.iowait_count++;
2643 trace_sched_stat_iowait(tsk, delta);
2644 }
2645
2646 trace_sched_stat_blocked(tsk, delta);
2647
2648 /*
2649 * Blocking time is in units of nanosecs, so shift by
2650 * 20 to get a milliseconds-range estimation of the
2651 * amount of time that the task spent sleeping:
2652 */
2653 if (unlikely(prof_on == SLEEP_PROFILING)) {
2654 profile_hits(SLEEP_PROFILING,
2655 (void *)get_wchan(tsk),
2656 delta >> 20);
2657 }
2658 account_scheduler_latency(tsk, delta >> 10, 0);
2659 }
2660 }
2661#endif
2662}
2663
2664static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666#ifdef CONFIG_SCHED_DEBUG
2667 s64 d = se->vruntime - cfs_rq->min_vruntime;
2668
2669 if (d < 0)
2670 d = -d;
2671
2672 if (d > 3*sysctl_sched_latency)
2673 schedstat_inc(cfs_rq, nr_spread_over);
2674#endif
2675}
2676
2677static void
2678place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2679{
2680 u64 vruntime = cfs_rq->min_vruntime;
2681
2682 /*
2683 * The 'current' period is already promised to the current tasks,
2684 * however the extra weight of the new task will slow them down a
2685 * little, place the new task so that it fits in the slot that
2686 * stays open at the end.
2687 */
2688 if (initial && sched_feat(START_DEBIT))
2689 vruntime += sched_vslice(cfs_rq, se);
2690
2691 /* sleeps up to a single latency don't count. */
2692 if (!initial) {
2693 unsigned long thresh = sysctl_sched_latency;
2694
2695 /*
2696 * Halve their sleep time's effect, to allow
2697 * for a gentler effect of sleepers:
2698 */
2699 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2700 thresh >>= 1;
2701
2702 vruntime -= thresh;
2703 }
2704
2705 /* ensure we never gain time by being placed backwards. */
2706 se->vruntime = max_vruntime(se->vruntime, vruntime);
2707}
2708
2709static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2710
2711static void
2712enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2713{
2714 /*
2715 * Update the normalized vruntime before updating min_vruntime
2716 * through calling update_curr().
2717 */
2718 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2719 se->vruntime += cfs_rq->min_vruntime;
2720
2721 /*
2722 * Update run-time statistics of the 'current'.
2723 */
2724 update_curr(cfs_rq);
2725 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2726 account_entity_enqueue(cfs_rq, se);
2727 update_cfs_shares(cfs_rq);
2728
2729 if (flags & ENQUEUE_WAKEUP) {
2730 place_entity(cfs_rq, se, 0);
2731 enqueue_sleeper(cfs_rq, se);
2732 }
2733
2734 update_stats_enqueue(cfs_rq, se);
2735 check_spread(cfs_rq, se);
2736 if (se != cfs_rq->curr)
2737 __enqueue_entity(cfs_rq, se);
2738 se->on_rq = 1;
2739
2740 if (cfs_rq->nr_running == 1) {
2741 list_add_leaf_cfs_rq(cfs_rq);
2742 check_enqueue_throttle(cfs_rq);
2743 }
2744}
2745
2746static void __clear_buddies_last(struct sched_entity *se)
2747{
2748 for_each_sched_entity(se) {
2749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2750 if (cfs_rq->last != se)
2751 break;
2752
2753 cfs_rq->last = NULL;
2754 }
2755}
2756
2757static void __clear_buddies_next(struct sched_entity *se)
2758{
2759 for_each_sched_entity(se) {
2760 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2761 if (cfs_rq->next != se)
2762 break;
2763
2764 cfs_rq->next = NULL;
2765 }
2766}
2767
2768static void __clear_buddies_skip(struct sched_entity *se)
2769{
2770 for_each_sched_entity(se) {
2771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2772 if (cfs_rq->skip != se)
2773 break;
2774
2775 cfs_rq->skip = NULL;
2776 }
2777}
2778
2779static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2780{
2781 if (cfs_rq->last == se)
2782 __clear_buddies_last(se);
2783
2784 if (cfs_rq->next == se)
2785 __clear_buddies_next(se);
2786
2787 if (cfs_rq->skip == se)
2788 __clear_buddies_skip(se);
2789}
2790
2791static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792
2793static void
2794dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795{
2796 /*
2797 * Update run-time statistics of the 'current'.
2798 */
2799 update_curr(cfs_rq);
2800 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2801
2802 update_stats_dequeue(cfs_rq, se);
2803 if (flags & DEQUEUE_SLEEP) {
2804#ifdef CONFIG_SCHEDSTATS
2805 if (entity_is_task(se)) {
2806 struct task_struct *tsk = task_of(se);
2807
2808 if (tsk->state & TASK_INTERRUPTIBLE)
2809 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2810 if (tsk->state & TASK_UNINTERRUPTIBLE)
2811 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2812 }
2813#endif
2814 }
2815
2816 clear_buddies(cfs_rq, se);
2817
2818 if (se != cfs_rq->curr)
2819 __dequeue_entity(cfs_rq, se);
2820 se->on_rq = 0;
2821 account_entity_dequeue(cfs_rq, se);
2822
2823 /*
2824 * Normalize the entity after updating the min_vruntime because the
2825 * update can refer to the ->curr item and we need to reflect this
2826 * movement in our normalized position.
2827 */
2828 if (!(flags & DEQUEUE_SLEEP))
2829 se->vruntime -= cfs_rq->min_vruntime;
2830
2831 /* return excess runtime on last dequeue */
2832 return_cfs_rq_runtime(cfs_rq);
2833
2834 update_min_vruntime(cfs_rq);
2835 update_cfs_shares(cfs_rq);
2836}
2837
2838/*
2839 * Preempt the current task with a newly woken task if needed:
2840 */
2841static void
2842check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2843{
2844 unsigned long ideal_runtime, delta_exec;
2845 struct sched_entity *se;
2846 s64 delta;
2847
2848 ideal_runtime = sched_slice(cfs_rq, curr);
2849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2850 if (delta_exec > ideal_runtime) {
2851 resched_task(rq_of(cfs_rq)->curr);
2852 /*
2853 * The current task ran long enough, ensure it doesn't get
2854 * re-elected due to buddy favours.
2855 */
2856 clear_buddies(cfs_rq, curr);
2857 return;
2858 }
2859
2860 /*
2861 * Ensure that a task that missed wakeup preemption by a
2862 * narrow margin doesn't have to wait for a full slice.
2863 * This also mitigates buddy induced latencies under load.
2864 */
2865 if (delta_exec < sysctl_sched_min_granularity)
2866 return;
2867
2868 se = __pick_first_entity(cfs_rq);
2869 delta = curr->vruntime - se->vruntime;
2870
2871 if (delta < 0)
2872 return;
2873
2874 if (delta > ideal_runtime)
2875 resched_task(rq_of(cfs_rq)->curr);
2876}
2877
2878static void
2879set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2880{
2881 /* 'current' is not kept within the tree. */
2882 if (se->on_rq) {
2883 /*
2884 * Any task has to be enqueued before it get to execute on
2885 * a CPU. So account for the time it spent waiting on the
2886 * runqueue.
2887 */
2888 update_stats_wait_end(cfs_rq, se);
2889 __dequeue_entity(cfs_rq, se);
2890 }
2891
2892 update_stats_curr_start(cfs_rq, se);
2893 cfs_rq->curr = se;
2894#ifdef CONFIG_SCHEDSTATS
2895 /*
2896 * Track our maximum slice length, if the CPU's load is at
2897 * least twice that of our own weight (i.e. dont track it
2898 * when there are only lesser-weight tasks around):
2899 */
2900 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2901 se->statistics.slice_max = max(se->statistics.slice_max,
2902 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2903 }
2904#endif
2905 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2906}
2907
2908static int
2909wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2910
2911/*
2912 * Pick the next process, keeping these things in mind, in this order:
2913 * 1) keep things fair between processes/task groups
2914 * 2) pick the "next" process, since someone really wants that to run
2915 * 3) pick the "last" process, for cache locality
2916 * 4) do not run the "skip" process, if something else is available
2917 */
2918static struct sched_entity *
2919pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2920{
2921 struct sched_entity *left = __pick_first_entity(cfs_rq);
2922 struct sched_entity *se;
2923
2924 /*
2925 * If curr is set we have to see if its left of the leftmost entity
2926 * still in the tree, provided there was anything in the tree at all.
2927 */
2928 if (!left || (curr && entity_before(curr, left)))
2929 left = curr;
2930
2931 se = left; /* ideally we run the leftmost entity */
2932
2933 /*
2934 * Avoid running the skip buddy, if running something else can
2935 * be done without getting too unfair.
2936 */
2937 if (cfs_rq->skip == se) {
2938 struct sched_entity *second;
2939
2940 if (se == curr) {
2941 second = __pick_first_entity(cfs_rq);
2942 } else {
2943 second = __pick_next_entity(se);
2944 if (!second || (curr && entity_before(curr, second)))
2945 second = curr;
2946 }
2947
2948 if (second && wakeup_preempt_entity(second, left) < 1)
2949 se = second;
2950 }
2951
2952 /*
2953 * Prefer last buddy, try to return the CPU to a preempted task.
2954 */
2955 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2956 se = cfs_rq->last;
2957
2958 /*
2959 * Someone really wants this to run. If it's not unfair, run it.
2960 */
2961 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2962 se = cfs_rq->next;
2963
2964 clear_buddies(cfs_rq, se);
2965
2966 return se;
2967}
2968
2969static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2970
2971static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2972{
2973 /*
2974 * If still on the runqueue then deactivate_task()
2975 * was not called and update_curr() has to be done:
2976 */
2977 if (prev->on_rq)
2978 update_curr(cfs_rq);
2979
2980 /* throttle cfs_rqs exceeding runtime */
2981 check_cfs_rq_runtime(cfs_rq);
2982
2983 check_spread(cfs_rq, prev);
2984 if (prev->on_rq) {
2985 update_stats_wait_start(cfs_rq, prev);
2986 /* Put 'current' back into the tree. */
2987 __enqueue_entity(cfs_rq, prev);
2988 /* in !on_rq case, update occurred at dequeue */
2989 update_entity_load_avg(prev, 1);
2990 }
2991 cfs_rq->curr = NULL;
2992}
2993
2994static void
2995entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2996{
2997 /*
2998 * Update run-time statistics of the 'current'.
2999 */
3000 update_curr(cfs_rq);
3001
3002 /*
3003 * Ensure that runnable average is periodically updated.
3004 */
3005 update_entity_load_avg(curr, 1);
3006 update_cfs_rq_blocked_load(cfs_rq, 1);
3007 update_cfs_shares(cfs_rq);
3008
3009#ifdef CONFIG_SCHED_HRTICK
3010 /*
3011 * queued ticks are scheduled to match the slice, so don't bother
3012 * validating it and just reschedule.
3013 */
3014 if (queued) {
3015 resched_task(rq_of(cfs_rq)->curr);
3016 return;
3017 }
3018 /*
3019 * don't let the period tick interfere with the hrtick preemption
3020 */
3021 if (!sched_feat(DOUBLE_TICK) &&
3022 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3023 return;
3024#endif
3025
3026 if (cfs_rq->nr_running > 1)
3027 check_preempt_tick(cfs_rq, curr);
3028}
3029
3030
3031/**************************************************
3032 * CFS bandwidth control machinery
3033 */
3034
3035#ifdef CONFIG_CFS_BANDWIDTH
3036
3037#ifdef HAVE_JUMP_LABEL
3038static struct static_key __cfs_bandwidth_used;
3039
3040static inline bool cfs_bandwidth_used(void)
3041{
3042 return static_key_false(&__cfs_bandwidth_used);
3043}
3044
3045void cfs_bandwidth_usage_inc(void)
3046{
3047 static_key_slow_inc(&__cfs_bandwidth_used);
3048}
3049
3050void cfs_bandwidth_usage_dec(void)
3051{
3052 static_key_slow_dec(&__cfs_bandwidth_used);
3053}
3054#else /* HAVE_JUMP_LABEL */
3055static bool cfs_bandwidth_used(void)
3056{
3057 return true;
3058}
3059
3060void cfs_bandwidth_usage_inc(void) {}
3061void cfs_bandwidth_usage_dec(void) {}
3062#endif /* HAVE_JUMP_LABEL */
3063
3064/*
3065 * default period for cfs group bandwidth.
3066 * default: 0.1s, units: nanoseconds
3067 */
3068static inline u64 default_cfs_period(void)
3069{
3070 return 100000000ULL;
3071}
3072
3073static inline u64 sched_cfs_bandwidth_slice(void)
3074{
3075 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3076}
3077
3078/*
3079 * Replenish runtime according to assigned quota and update expiration time.
3080 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3081 * additional synchronization around rq->lock.
3082 *
3083 * requires cfs_b->lock
3084 */
3085void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3086{
3087 u64 now;
3088
3089 if (cfs_b->quota == RUNTIME_INF)
3090 return;
3091
3092 now = sched_clock_cpu(smp_processor_id());
3093 cfs_b->runtime = cfs_b->quota;
3094 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3095}
3096
3097static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3098{
3099 return &tg->cfs_bandwidth;
3100}
3101
3102/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3103static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3104{
3105 if (unlikely(cfs_rq->throttle_count))
3106 return cfs_rq->throttled_clock_task;
3107
3108 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3109}
3110
3111/* returns 0 on failure to allocate runtime */
3112static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113{
3114 struct task_group *tg = cfs_rq->tg;
3115 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3116 u64 amount = 0, min_amount, expires;
3117
3118 /* note: this is a positive sum as runtime_remaining <= 0 */
3119 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3120
3121 raw_spin_lock(&cfs_b->lock);
3122 if (cfs_b->quota == RUNTIME_INF)
3123 amount = min_amount;
3124 else {
3125 /*
3126 * If the bandwidth pool has become inactive, then at least one
3127 * period must have elapsed since the last consumption.
3128 * Refresh the global state and ensure bandwidth timer becomes
3129 * active.
3130 */
3131 if (!cfs_b->timer_active) {
3132 __refill_cfs_bandwidth_runtime(cfs_b);
3133 __start_cfs_bandwidth(cfs_b, false);
3134 }
3135
3136 if (cfs_b->runtime > 0) {
3137 amount = min(cfs_b->runtime, min_amount);
3138 cfs_b->runtime -= amount;
3139 cfs_b->idle = 0;
3140 }
3141 }
3142 expires = cfs_b->runtime_expires;
3143 raw_spin_unlock(&cfs_b->lock);
3144
3145 cfs_rq->runtime_remaining += amount;
3146 /*
3147 * we may have advanced our local expiration to account for allowed
3148 * spread between our sched_clock and the one on which runtime was
3149 * issued.
3150 */
3151 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3152 cfs_rq->runtime_expires = expires;
3153
3154 return cfs_rq->runtime_remaining > 0;
3155}
3156
3157/*
3158 * Note: This depends on the synchronization provided by sched_clock and the
3159 * fact that rq->clock snapshots this value.
3160 */
3161static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162{
3163 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3164
3165 /* if the deadline is ahead of our clock, nothing to do */
3166 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3167 return;
3168
3169 if (cfs_rq->runtime_remaining < 0)
3170 return;
3171
3172 /*
3173 * If the local deadline has passed we have to consider the
3174 * possibility that our sched_clock is 'fast' and the global deadline
3175 * has not truly expired.
3176 *
3177 * Fortunately we can check determine whether this the case by checking
3178 * whether the global deadline has advanced.
3179 */
3180
3181 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3182 /* extend local deadline, drift is bounded above by 2 ticks */
3183 cfs_rq->runtime_expires += TICK_NSEC;
3184 } else {
3185 /* global deadline is ahead, expiration has passed */
3186 cfs_rq->runtime_remaining = 0;
3187 }
3188}
3189
3190static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3191{
3192 /* dock delta_exec before expiring quota (as it could span periods) */
3193 cfs_rq->runtime_remaining -= delta_exec;
3194 expire_cfs_rq_runtime(cfs_rq);
3195
3196 if (likely(cfs_rq->runtime_remaining > 0))
3197 return;
3198
3199 /*
3200 * if we're unable to extend our runtime we resched so that the active
3201 * hierarchy can be throttled
3202 */
3203 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3204 resched_task(rq_of(cfs_rq)->curr);
3205}
3206
3207static __always_inline
3208void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3209{
3210 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3211 return;
3212
3213 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3214}
3215
3216static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3217{
3218 return cfs_bandwidth_used() && cfs_rq->throttled;
3219}
3220
3221/* check whether cfs_rq, or any parent, is throttled */
3222static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3223{
3224 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3225}
3226
3227/*
3228 * Ensure that neither of the group entities corresponding to src_cpu or
3229 * dest_cpu are members of a throttled hierarchy when performing group
3230 * load-balance operations.
3231 */
3232static inline int throttled_lb_pair(struct task_group *tg,
3233 int src_cpu, int dest_cpu)
3234{
3235 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3236
3237 src_cfs_rq = tg->cfs_rq[src_cpu];
3238 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3239
3240 return throttled_hierarchy(src_cfs_rq) ||
3241 throttled_hierarchy(dest_cfs_rq);
3242}
3243
3244/* updated child weight may affect parent so we have to do this bottom up */
3245static int tg_unthrottle_up(struct task_group *tg, void *data)
3246{
3247 struct rq *rq = data;
3248 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3249
3250 cfs_rq->throttle_count--;
3251#ifdef CONFIG_SMP
3252 if (!cfs_rq->throttle_count) {
3253 /* adjust cfs_rq_clock_task() */
3254 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3255 cfs_rq->throttled_clock_task;
3256 }
3257#endif
3258
3259 return 0;
3260}
3261
3262static int tg_throttle_down(struct task_group *tg, void *data)
3263{
3264 struct rq *rq = data;
3265 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3266
3267 /* group is entering throttled state, stop time */
3268 if (!cfs_rq->throttle_count)
3269 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3270 cfs_rq->throttle_count++;
3271
3272 return 0;
3273}
3274
3275static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3276{
3277 struct rq *rq = rq_of(cfs_rq);
3278 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3279 struct sched_entity *se;
3280 long task_delta, dequeue = 1;
3281
3282 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3283
3284 /* freeze hierarchy runnable averages while throttled */
3285 rcu_read_lock();
3286 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3287 rcu_read_unlock();
3288
3289 task_delta = cfs_rq->h_nr_running;
3290 for_each_sched_entity(se) {
3291 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3292 /* throttled entity or throttle-on-deactivate */
3293 if (!se->on_rq)
3294 break;
3295
3296 if (dequeue)
3297 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3298 qcfs_rq->h_nr_running -= task_delta;
3299
3300 if (qcfs_rq->load.weight)
3301 dequeue = 0;
3302 }
3303
3304 if (!se)
3305 rq->nr_running -= task_delta;
3306
3307 cfs_rq->throttled = 1;
3308 cfs_rq->throttled_clock = rq_clock(rq);
3309 raw_spin_lock(&cfs_b->lock);
3310 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3311 if (!cfs_b->timer_active)
3312 __start_cfs_bandwidth(cfs_b, false);
3313 raw_spin_unlock(&cfs_b->lock);
3314}
3315
3316void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3317{
3318 struct rq *rq = rq_of(cfs_rq);
3319 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3320 struct sched_entity *se;
3321 int enqueue = 1;
3322 long task_delta;
3323
3324 se = cfs_rq->tg->se[cpu_of(rq)];
3325
3326 cfs_rq->throttled = 0;
3327
3328 update_rq_clock(rq);
3329
3330 raw_spin_lock(&cfs_b->lock);
3331 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3332 list_del_rcu(&cfs_rq->throttled_list);
3333 raw_spin_unlock(&cfs_b->lock);
3334
3335 /* update hierarchical throttle state */
3336 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3337
3338 if (!cfs_rq->load.weight)
3339 return;
3340
3341 task_delta = cfs_rq->h_nr_running;
3342 for_each_sched_entity(se) {
3343 if (se->on_rq)
3344 enqueue = 0;
3345
3346 cfs_rq = cfs_rq_of(se);
3347 if (enqueue)
3348 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3349 cfs_rq->h_nr_running += task_delta;
3350
3351 if (cfs_rq_throttled(cfs_rq))
3352 break;
3353 }
3354
3355 if (!se)
3356 rq->nr_running += task_delta;
3357
3358 /* determine whether we need to wake up potentially idle cpu */
3359 if (rq->curr == rq->idle && rq->cfs.nr_running)
3360 resched_task(rq->curr);
3361}
3362
3363static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3364 u64 remaining, u64 expires)
3365{
3366 struct cfs_rq *cfs_rq;
3367 u64 runtime = remaining;
3368
3369 rcu_read_lock();
3370 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3371 throttled_list) {
3372 struct rq *rq = rq_of(cfs_rq);
3373
3374 raw_spin_lock(&rq->lock);
3375 if (!cfs_rq_throttled(cfs_rq))
3376 goto next;
3377
3378 runtime = -cfs_rq->runtime_remaining + 1;
3379 if (runtime > remaining)
3380 runtime = remaining;
3381 remaining -= runtime;
3382
3383 cfs_rq->runtime_remaining += runtime;
3384 cfs_rq->runtime_expires = expires;
3385
3386 /* we check whether we're throttled above */
3387 if (cfs_rq->runtime_remaining > 0)
3388 unthrottle_cfs_rq(cfs_rq);
3389
3390next:
3391 raw_spin_unlock(&rq->lock);
3392
3393 if (!remaining)
3394 break;
3395 }
3396 rcu_read_unlock();
3397
3398 return remaining;
3399}
3400
3401/*
3402 * Responsible for refilling a task_group's bandwidth and unthrottling its
3403 * cfs_rqs as appropriate. If there has been no activity within the last
3404 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3405 * used to track this state.
3406 */
3407static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3408{
3409 u64 runtime, runtime_expires;
3410 int idle = 1, throttled;
3411
3412 raw_spin_lock(&cfs_b->lock);
3413 /* no need to continue the timer with no bandwidth constraint */
3414 if (cfs_b->quota == RUNTIME_INF)
3415 goto out_unlock;
3416
3417 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3418 /* idle depends on !throttled (for the case of a large deficit) */
3419 idle = cfs_b->idle && !throttled;
3420 cfs_b->nr_periods += overrun;
3421
3422 /* if we're going inactive then everything else can be deferred */
3423 if (idle)
3424 goto out_unlock;
3425
3426 /*
3427 * if we have relooped after returning idle once, we need to update our
3428 * status as actually running, so that other cpus doing
3429 * __start_cfs_bandwidth will stop trying to cancel us.
3430 */
3431 cfs_b->timer_active = 1;
3432
3433 __refill_cfs_bandwidth_runtime(cfs_b);
3434
3435 if (!throttled) {
3436 /* mark as potentially idle for the upcoming period */
3437 cfs_b->idle = 1;
3438 goto out_unlock;
3439 }
3440
3441 /* account preceding periods in which throttling occurred */
3442 cfs_b->nr_throttled += overrun;
3443
3444 /*
3445 * There are throttled entities so we must first use the new bandwidth
3446 * to unthrottle them before making it generally available. This
3447 * ensures that all existing debts will be paid before a new cfs_rq is
3448 * allowed to run.
3449 */
3450 runtime = cfs_b->runtime;
3451 runtime_expires = cfs_b->runtime_expires;
3452 cfs_b->runtime = 0;
3453
3454 /*
3455 * This check is repeated as we are holding onto the new bandwidth
3456 * while we unthrottle. This can potentially race with an unthrottled
3457 * group trying to acquire new bandwidth from the global pool.
3458 */
3459 while (throttled && runtime > 0) {
3460 raw_spin_unlock(&cfs_b->lock);
3461 /* we can't nest cfs_b->lock while distributing bandwidth */
3462 runtime = distribute_cfs_runtime(cfs_b, runtime,
3463 runtime_expires);
3464 raw_spin_lock(&cfs_b->lock);
3465
3466 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 }
3468
3469 /* return (any) remaining runtime */
3470 cfs_b->runtime = runtime;
3471 /*
3472 * While we are ensured activity in the period following an
3473 * unthrottle, this also covers the case in which the new bandwidth is
3474 * insufficient to cover the existing bandwidth deficit. (Forcing the
3475 * timer to remain active while there are any throttled entities.)
3476 */
3477 cfs_b->idle = 0;
3478out_unlock:
3479 if (idle)
3480 cfs_b->timer_active = 0;
3481 raw_spin_unlock(&cfs_b->lock);
3482
3483 return idle;
3484}
3485
3486/* a cfs_rq won't donate quota below this amount */
3487static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3488/* minimum remaining period time to redistribute slack quota */
3489static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3490/* how long we wait to gather additional slack before distributing */
3491static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3492
3493/*
3494 * Are we near the end of the current quota period?
3495 *
3496 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3497 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3498 * migrate_hrtimers, base is never cleared, so we are fine.
3499 */
3500static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3501{
3502 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3503 u64 remaining;
3504
3505 /* if the call-back is running a quota refresh is already occurring */
3506 if (hrtimer_callback_running(refresh_timer))
3507 return 1;
3508
3509 /* is a quota refresh about to occur? */
3510 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3511 if (remaining < min_expire)
3512 return 1;
3513
3514 return 0;
3515}
3516
3517static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3518{
3519 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3520
3521 /* if there's a quota refresh soon don't bother with slack */
3522 if (runtime_refresh_within(cfs_b, min_left))
3523 return;
3524
3525 start_bandwidth_timer(&cfs_b->slack_timer,
3526 ns_to_ktime(cfs_bandwidth_slack_period));
3527}
3528
3529/* we know any runtime found here is valid as update_curr() precedes return */
3530static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3531{
3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3534
3535 if (slack_runtime <= 0)
3536 return;
3537
3538 raw_spin_lock(&cfs_b->lock);
3539 if (cfs_b->quota != RUNTIME_INF &&
3540 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3541 cfs_b->runtime += slack_runtime;
3542
3543 /* we are under rq->lock, defer unthrottling using a timer */
3544 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3545 !list_empty(&cfs_b->throttled_cfs_rq))
3546 start_cfs_slack_bandwidth(cfs_b);
3547 }
3548 raw_spin_unlock(&cfs_b->lock);
3549
3550 /* even if it's not valid for return we don't want to try again */
3551 cfs_rq->runtime_remaining -= slack_runtime;
3552}
3553
3554static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3555{
3556 if (!cfs_bandwidth_used())
3557 return;
3558
3559 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3560 return;
3561
3562 __return_cfs_rq_runtime(cfs_rq);
3563}
3564
3565/*
3566 * This is done with a timer (instead of inline with bandwidth return) since
3567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3568 */
3569static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3570{
3571 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3572 u64 expires;
3573
3574 /* confirm we're still not at a refresh boundary */
3575 raw_spin_lock(&cfs_b->lock);
3576 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3577 raw_spin_unlock(&cfs_b->lock);
3578 return;
3579 }
3580
3581 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3582 runtime = cfs_b->runtime;
3583 cfs_b->runtime = 0;
3584 }
3585 expires = cfs_b->runtime_expires;
3586 raw_spin_unlock(&cfs_b->lock);
3587
3588 if (!runtime)
3589 return;
3590
3591 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3592
3593 raw_spin_lock(&cfs_b->lock);
3594 if (expires == cfs_b->runtime_expires)
3595 cfs_b->runtime = runtime;
3596 raw_spin_unlock(&cfs_b->lock);
3597}
3598
3599/*
3600 * When a group wakes up we want to make sure that its quota is not already
3601 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3602 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3603 */
3604static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3605{
3606 if (!cfs_bandwidth_used())
3607 return;
3608
3609 /* an active group must be handled by the update_curr()->put() path */
3610 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3611 return;
3612
3613 /* ensure the group is not already throttled */
3614 if (cfs_rq_throttled(cfs_rq))
3615 return;
3616
3617 /* update runtime allocation */
3618 account_cfs_rq_runtime(cfs_rq, 0);
3619 if (cfs_rq->runtime_remaining <= 0)
3620 throttle_cfs_rq(cfs_rq);
3621}
3622
3623/* conditionally throttle active cfs_rq's from put_prev_entity() */
3624static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3625{
3626 if (!cfs_bandwidth_used())
3627 return false;
3628
3629 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3630 return false;
3631
3632 /*
3633 * it's possible for a throttled entity to be forced into a running
3634 * state (e.g. set_curr_task), in this case we're finished.
3635 */
3636 if (cfs_rq_throttled(cfs_rq))
3637 return true;
3638
3639 throttle_cfs_rq(cfs_rq);
3640 return true;
3641}
3642
3643static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3644{
3645 struct cfs_bandwidth *cfs_b =
3646 container_of(timer, struct cfs_bandwidth, slack_timer);
3647 do_sched_cfs_slack_timer(cfs_b);
3648
3649 return HRTIMER_NORESTART;
3650}
3651
3652static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3653{
3654 struct cfs_bandwidth *cfs_b =
3655 container_of(timer, struct cfs_bandwidth, period_timer);
3656 ktime_t now;
3657 int overrun;
3658 int idle = 0;
3659
3660 for (;;) {
3661 now = hrtimer_cb_get_time(timer);
3662 overrun = hrtimer_forward(timer, now, cfs_b->period);
3663
3664 if (!overrun)
3665 break;
3666
3667 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3668 }
3669
3670 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3671}
3672
3673void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3674{
3675 raw_spin_lock_init(&cfs_b->lock);
3676 cfs_b->runtime = 0;
3677 cfs_b->quota = RUNTIME_INF;
3678 cfs_b->period = ns_to_ktime(default_cfs_period());
3679
3680 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3681 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682 cfs_b->period_timer.function = sched_cfs_period_timer;
3683 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3684 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3685}
3686
3687static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3688{
3689 cfs_rq->runtime_enabled = 0;
3690 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3691}
3692
3693/* requires cfs_b->lock, may release to reprogram timer */
3694void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3695{
3696 /*
3697 * The timer may be active because we're trying to set a new bandwidth
3698 * period or because we're racing with the tear-down path
3699 * (timer_active==0 becomes visible before the hrtimer call-back
3700 * terminates). In either case we ensure that it's re-programmed
3701 */
3702 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3703 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3704 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3705 raw_spin_unlock(&cfs_b->lock);
3706 cpu_relax();
3707 raw_spin_lock(&cfs_b->lock);
3708 /* if someone else restarted the timer then we're done */
3709 if (!force && cfs_b->timer_active)
3710 return;
3711 }
3712
3713 cfs_b->timer_active = 1;
3714 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3715}
3716
3717static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3718{
3719 hrtimer_cancel(&cfs_b->period_timer);
3720 hrtimer_cancel(&cfs_b->slack_timer);
3721}
3722
3723static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3724{
3725 struct cfs_rq *cfs_rq;
3726
3727 for_each_leaf_cfs_rq(rq, cfs_rq) {
3728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3729
3730 if (!cfs_rq->runtime_enabled)
3731 continue;
3732
3733 /*
3734 * clock_task is not advancing so we just need to make sure
3735 * there's some valid quota amount
3736 */
3737 cfs_rq->runtime_remaining = cfs_b->quota;
3738 if (cfs_rq_throttled(cfs_rq))
3739 unthrottle_cfs_rq(cfs_rq);
3740 }
3741}
3742
3743#else /* CONFIG_CFS_BANDWIDTH */
3744static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3745{
3746 return rq_clock_task(rq_of(cfs_rq));
3747}
3748
3749static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3750static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3751static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3752static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3753
3754static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3755{
3756 return 0;
3757}
3758
3759static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760{
3761 return 0;
3762}
3763
3764static inline int throttled_lb_pair(struct task_group *tg,
3765 int src_cpu, int dest_cpu)
3766{
3767 return 0;
3768}
3769
3770void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3771
3772#ifdef CONFIG_FAIR_GROUP_SCHED
3773static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3774#endif
3775
3776static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3777{
3778 return NULL;
3779}
3780static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3781static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3782
3783#endif /* CONFIG_CFS_BANDWIDTH */
3784
3785/**************************************************
3786 * CFS operations on tasks:
3787 */
3788
3789#ifdef CONFIG_SCHED_HRTICK
3790static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3791{
3792 struct sched_entity *se = &p->se;
3793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3794
3795 WARN_ON(task_rq(p) != rq);
3796
3797 if (cfs_rq->nr_running > 1) {
3798 u64 slice = sched_slice(cfs_rq, se);
3799 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3800 s64 delta = slice - ran;
3801
3802 if (delta < 0) {
3803 if (rq->curr == p)
3804 resched_task(p);
3805 return;
3806 }
3807
3808 /*
3809 * Don't schedule slices shorter than 10000ns, that just
3810 * doesn't make sense. Rely on vruntime for fairness.
3811 */
3812 if (rq->curr != p)
3813 delta = max_t(s64, 10000LL, delta);
3814
3815 hrtick_start(rq, delta);
3816 }
3817}
3818
3819/*
3820 * called from enqueue/dequeue and updates the hrtick when the
3821 * current task is from our class and nr_running is low enough
3822 * to matter.
3823 */
3824static void hrtick_update(struct rq *rq)
3825{
3826 struct task_struct *curr = rq->curr;
3827
3828 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3829 return;
3830
3831 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3832 hrtick_start_fair(rq, curr);
3833}
3834#else /* !CONFIG_SCHED_HRTICK */
3835static inline void
3836hrtick_start_fair(struct rq *rq, struct task_struct *p)
3837{
3838}
3839
3840static inline void hrtick_update(struct rq *rq)
3841{
3842}
3843#endif
3844
3845/*
3846 * The enqueue_task method is called before nr_running is
3847 * increased. Here we update the fair scheduling stats and
3848 * then put the task into the rbtree:
3849 */
3850static void
3851enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3852{
3853 struct cfs_rq *cfs_rq;
3854 struct sched_entity *se = &p->se;
3855
3856 for_each_sched_entity(se) {
3857 if (se->on_rq)
3858 break;
3859 cfs_rq = cfs_rq_of(se);
3860 enqueue_entity(cfs_rq, se, flags);
3861
3862 /*
3863 * end evaluation on encountering a throttled cfs_rq
3864 *
3865 * note: in the case of encountering a throttled cfs_rq we will
3866 * post the final h_nr_running increment below.
3867 */
3868 if (cfs_rq_throttled(cfs_rq))
3869 break;
3870 cfs_rq->h_nr_running++;
3871
3872 flags = ENQUEUE_WAKEUP;
3873 }
3874
3875 for_each_sched_entity(se) {
3876 cfs_rq = cfs_rq_of(se);
3877 cfs_rq->h_nr_running++;
3878
3879 if (cfs_rq_throttled(cfs_rq))
3880 break;
3881
3882 update_cfs_shares(cfs_rq);
3883 update_entity_load_avg(se, 1);
3884 }
3885
3886 if (!se) {
3887 update_rq_runnable_avg(rq, rq->nr_running);
3888 inc_nr_running(rq);
3889 }
3890 hrtick_update(rq);
3891}
3892
3893static void set_next_buddy(struct sched_entity *se);
3894
3895/*
3896 * The dequeue_task method is called before nr_running is
3897 * decreased. We remove the task from the rbtree and
3898 * update the fair scheduling stats:
3899 */
3900static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901{
3902 struct cfs_rq *cfs_rq;
3903 struct sched_entity *se = &p->se;
3904 int task_sleep = flags & DEQUEUE_SLEEP;
3905
3906 for_each_sched_entity(se) {
3907 cfs_rq = cfs_rq_of(se);
3908 dequeue_entity(cfs_rq, se, flags);
3909
3910 /*
3911 * end evaluation on encountering a throttled cfs_rq
3912 *
3913 * note: in the case of encountering a throttled cfs_rq we will
3914 * post the final h_nr_running decrement below.
3915 */
3916 if (cfs_rq_throttled(cfs_rq))
3917 break;
3918 cfs_rq->h_nr_running--;
3919
3920 /* Don't dequeue parent if it has other entities besides us */
3921 if (cfs_rq->load.weight) {
3922 /*
3923 * Bias pick_next to pick a task from this cfs_rq, as
3924 * p is sleeping when it is within its sched_slice.
3925 */
3926 if (task_sleep && parent_entity(se))
3927 set_next_buddy(parent_entity(se));
3928
3929 /* avoid re-evaluating load for this entity */
3930 se = parent_entity(se);
3931 break;
3932 }
3933 flags |= DEQUEUE_SLEEP;
3934 }
3935
3936 for_each_sched_entity(se) {
3937 cfs_rq = cfs_rq_of(se);
3938 cfs_rq->h_nr_running--;
3939
3940 if (cfs_rq_throttled(cfs_rq))
3941 break;
3942
3943 update_cfs_shares(cfs_rq);
3944 update_entity_load_avg(se, 1);
3945 }
3946
3947 if (!se) {
3948 dec_nr_running(rq);
3949 update_rq_runnable_avg(rq, 1);
3950 }
3951 hrtick_update(rq);
3952}
3953
3954#ifdef CONFIG_SMP
3955/* Used instead of source_load when we know the type == 0 */
3956static unsigned long weighted_cpuload(const int cpu)
3957{
3958 return cpu_rq(cpu)->cfs.runnable_load_avg;
3959}
3960
3961/*
3962 * Return a low guess at the load of a migration-source cpu weighted
3963 * according to the scheduling class and "nice" value.
3964 *
3965 * We want to under-estimate the load of migration sources, to
3966 * balance conservatively.
3967 */
3968static unsigned long source_load(int cpu, int type)
3969{
3970 struct rq *rq = cpu_rq(cpu);
3971 unsigned long total = weighted_cpuload(cpu);
3972
3973 if (type == 0 || !sched_feat(LB_BIAS))
3974 return total;
3975
3976 return min(rq->cpu_load[type-1], total);
3977}
3978
3979/*
3980 * Return a high guess at the load of a migration-target cpu weighted
3981 * according to the scheduling class and "nice" value.
3982 */
3983static unsigned long target_load(int cpu, int type)
3984{
3985 struct rq *rq = cpu_rq(cpu);
3986 unsigned long total = weighted_cpuload(cpu);
3987
3988 if (type == 0 || !sched_feat(LB_BIAS))
3989 return total;
3990
3991 return max(rq->cpu_load[type-1], total);
3992}
3993
3994static unsigned long power_of(int cpu)
3995{
3996 return cpu_rq(cpu)->cpu_power;
3997}
3998
3999static unsigned long cpu_avg_load_per_task(int cpu)
4000{
4001 struct rq *rq = cpu_rq(cpu);
4002 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4003 unsigned long load_avg = rq->cfs.runnable_load_avg;
4004
4005 if (nr_running)
4006 return load_avg / nr_running;
4007
4008 return 0;
4009}
4010
4011static void record_wakee(struct task_struct *p)
4012{
4013 /*
4014 * Rough decay (wiping) for cost saving, don't worry
4015 * about the boundary, really active task won't care
4016 * about the loss.
4017 */
4018 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4019 current->wakee_flips = 0;
4020 current->wakee_flip_decay_ts = jiffies;
4021 }
4022
4023 if (current->last_wakee != p) {
4024 current->last_wakee = p;
4025 current->wakee_flips++;
4026 }
4027}
4028
4029static void task_waking_fair(struct task_struct *p)
4030{
4031 struct sched_entity *se = &p->se;
4032 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4033 u64 min_vruntime;
4034
4035#ifndef CONFIG_64BIT
4036 u64 min_vruntime_copy;
4037
4038 do {
4039 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4040 smp_rmb();
4041 min_vruntime = cfs_rq->min_vruntime;
4042 } while (min_vruntime != min_vruntime_copy);
4043#else
4044 min_vruntime = cfs_rq->min_vruntime;
4045#endif
4046
4047 se->vruntime -= min_vruntime;
4048 record_wakee(p);
4049}
4050
4051#ifdef CONFIG_FAIR_GROUP_SCHED
4052/*
4053 * effective_load() calculates the load change as seen from the root_task_group
4054 *
4055 * Adding load to a group doesn't make a group heavier, but can cause movement
4056 * of group shares between cpus. Assuming the shares were perfectly aligned one
4057 * can calculate the shift in shares.
4058 *
4059 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4060 * on this @cpu and results in a total addition (subtraction) of @wg to the
4061 * total group weight.
4062 *
4063 * Given a runqueue weight distribution (rw_i) we can compute a shares
4064 * distribution (s_i) using:
4065 *
4066 * s_i = rw_i / \Sum rw_j (1)
4067 *
4068 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4069 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4070 * shares distribution (s_i):
4071 *
4072 * rw_i = { 2, 4, 1, 0 }
4073 * s_i = { 2/7, 4/7, 1/7, 0 }
4074 *
4075 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4076 * task used to run on and the CPU the waker is running on), we need to
4077 * compute the effect of waking a task on either CPU and, in case of a sync
4078 * wakeup, compute the effect of the current task going to sleep.
4079 *
4080 * So for a change of @wl to the local @cpu with an overall group weight change
4081 * of @wl we can compute the new shares distribution (s'_i) using:
4082 *
4083 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4084 *
4085 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4086 * differences in waking a task to CPU 0. The additional task changes the
4087 * weight and shares distributions like:
4088 *
4089 * rw'_i = { 3, 4, 1, 0 }
4090 * s'_i = { 3/8, 4/8, 1/8, 0 }
4091 *
4092 * We can then compute the difference in effective weight by using:
4093 *
4094 * dw_i = S * (s'_i - s_i) (3)
4095 *
4096 * Where 'S' is the group weight as seen by its parent.
4097 *
4098 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4099 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4100 * 4/7) times the weight of the group.
4101 */
4102static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4103{
4104 struct sched_entity *se = tg->se[cpu];
4105
4106 if (!tg->parent) /* the trivial, non-cgroup case */
4107 return wl;
4108
4109 for_each_sched_entity(se) {
4110 long w, W;
4111
4112 tg = se->my_q->tg;
4113
4114 /*
4115 * W = @wg + \Sum rw_j
4116 */
4117 W = wg + calc_tg_weight(tg, se->my_q);
4118
4119 /*
4120 * w = rw_i + @wl
4121 */
4122 w = se->my_q->load.weight + wl;
4123
4124 /*
4125 * wl = S * s'_i; see (2)
4126 */
4127 if (W > 0 && w < W)
4128 wl = (w * tg->shares) / W;
4129 else
4130 wl = tg->shares;
4131
4132 /*
4133 * Per the above, wl is the new se->load.weight value; since
4134 * those are clipped to [MIN_SHARES, ...) do so now. See
4135 * calc_cfs_shares().
4136 */
4137 if (wl < MIN_SHARES)
4138 wl = MIN_SHARES;
4139
4140 /*
4141 * wl = dw_i = S * (s'_i - s_i); see (3)
4142 */
4143 wl -= se->load.weight;
4144
4145 /*
4146 * Recursively apply this logic to all parent groups to compute
4147 * the final effective load change on the root group. Since
4148 * only the @tg group gets extra weight, all parent groups can
4149 * only redistribute existing shares. @wl is the shift in shares
4150 * resulting from this level per the above.
4151 */
4152 wg = 0;
4153 }
4154
4155 return wl;
4156}
4157#else
4158
4159static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4160{
4161 return wl;
4162}
4163
4164#endif
4165
4166static int wake_wide(struct task_struct *p)
4167{
4168 int factor = this_cpu_read(sd_llc_size);
4169
4170 /*
4171 * Yeah, it's the switching-frequency, could means many wakee or
4172 * rapidly switch, use factor here will just help to automatically
4173 * adjust the loose-degree, so bigger node will lead to more pull.
4174 */
4175 if (p->wakee_flips > factor) {
4176 /*
4177 * wakee is somewhat hot, it needs certain amount of cpu
4178 * resource, so if waker is far more hot, prefer to leave
4179 * it alone.
4180 */
4181 if (current->wakee_flips > (factor * p->wakee_flips))
4182 return 1;
4183 }
4184
4185 return 0;
4186}
4187
4188static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4189{
4190 s64 this_load, load;
4191 int idx, this_cpu, prev_cpu;
4192 unsigned long tl_per_task;
4193 struct task_group *tg;
4194 unsigned long weight;
4195 int balanced;
4196
4197 /*
4198 * If we wake multiple tasks be careful to not bounce
4199 * ourselves around too much.
4200 */
4201 if (wake_wide(p))
4202 return 0;
4203
4204 idx = sd->wake_idx;
4205 this_cpu = smp_processor_id();
4206 prev_cpu = task_cpu(p);
4207 load = source_load(prev_cpu, idx);
4208 this_load = target_load(this_cpu, idx);
4209
4210 /*
4211 * If sync wakeup then subtract the (maximum possible)
4212 * effect of the currently running task from the load
4213 * of the current CPU:
4214 */
4215 if (sync) {
4216 tg = task_group(current);
4217 weight = current->se.load.weight;
4218
4219 this_load += effective_load(tg, this_cpu, -weight, -weight);
4220 load += effective_load(tg, prev_cpu, 0, -weight);
4221 }
4222
4223 tg = task_group(p);
4224 weight = p->se.load.weight;
4225
4226 /*
4227 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4228 * due to the sync cause above having dropped this_load to 0, we'll
4229 * always have an imbalance, but there's really nothing you can do
4230 * about that, so that's good too.
4231 *
4232 * Otherwise check if either cpus are near enough in load to allow this
4233 * task to be woken on this_cpu.
4234 */
4235 if (this_load > 0) {
4236 s64 this_eff_load, prev_eff_load;
4237
4238 this_eff_load = 100;
4239 this_eff_load *= power_of(prev_cpu);
4240 this_eff_load *= this_load +
4241 effective_load(tg, this_cpu, weight, weight);
4242
4243 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4244 prev_eff_load *= power_of(this_cpu);
4245 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4246
4247 balanced = this_eff_load <= prev_eff_load;
4248 } else
4249 balanced = true;
4250
4251 /*
4252 * If the currently running task will sleep within
4253 * a reasonable amount of time then attract this newly
4254 * woken task:
4255 */
4256 if (sync && balanced)
4257 return 1;
4258
4259 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4260 tl_per_task = cpu_avg_load_per_task(this_cpu);
4261
4262 if (balanced ||
4263 (this_load <= load &&
4264 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4265 /*
4266 * This domain has SD_WAKE_AFFINE and
4267 * p is cache cold in this domain, and
4268 * there is no bad imbalance.
4269 */
4270 schedstat_inc(sd, ttwu_move_affine);
4271 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4272
4273 return 1;
4274 }
4275 return 0;
4276}
4277
4278/*
4279 * find_idlest_group finds and returns the least busy CPU group within the
4280 * domain.
4281 */
4282static struct sched_group *
4283find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4284 int this_cpu, int sd_flag)
4285{
4286 struct sched_group *idlest = NULL, *group = sd->groups;
4287 unsigned long min_load = ULONG_MAX, this_load = 0;
4288 int load_idx = sd->forkexec_idx;
4289 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4290
4291 if (sd_flag & SD_BALANCE_WAKE)
4292 load_idx = sd->wake_idx;
4293
4294 do {
4295 unsigned long load, avg_load;
4296 int local_group;
4297 int i;
4298
4299 /* Skip over this group if it has no CPUs allowed */
4300 if (!cpumask_intersects(sched_group_cpus(group),
4301 tsk_cpus_allowed(p)))
4302 continue;
4303
4304 local_group = cpumask_test_cpu(this_cpu,
4305 sched_group_cpus(group));
4306
4307 /* Tally up the load of all CPUs in the group */
4308 avg_load = 0;
4309
4310 for_each_cpu(i, sched_group_cpus(group)) {
4311 /* Bias balancing toward cpus of our domain */
4312 if (local_group)
4313 load = source_load(i, load_idx);
4314 else
4315 load = target_load(i, load_idx);
4316
4317 avg_load += load;
4318 }
4319
4320 /* Adjust by relative CPU power of the group */
4321 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4322
4323 if (local_group) {
4324 this_load = avg_load;
4325 } else if (avg_load < min_load) {
4326 min_load = avg_load;
4327 idlest = group;
4328 }
4329 } while (group = group->next, group != sd->groups);
4330
4331 if (!idlest || 100*this_load < imbalance*min_load)
4332 return NULL;
4333 return idlest;
4334}
4335
4336/*
4337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4338 */
4339static int
4340find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4341{
4342 unsigned long load, min_load = ULONG_MAX;
4343 int idlest = -1;
4344 int i;
4345
4346 /* Traverse only the allowed CPUs */
4347 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4348 load = weighted_cpuload(i);
4349
4350 if (load < min_load || (load == min_load && i == this_cpu)) {
4351 min_load = load;
4352 idlest = i;
4353 }
4354 }
4355
4356 return idlest;
4357}
4358
4359/*
4360 * Try and locate an idle CPU in the sched_domain.
4361 */
4362static int select_idle_sibling(struct task_struct *p, int target)
4363{
4364 struct sched_domain *sd;
4365 struct sched_group *sg;
4366 int i = task_cpu(p);
4367
4368 if (idle_cpu(target))
4369 return target;
4370
4371 /*
4372 * If the prevous cpu is cache affine and idle, don't be stupid.
4373 */
4374 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4375 return i;
4376
4377 /*
4378 * Otherwise, iterate the domains and find an elegible idle cpu.
4379 */
4380 sd = rcu_dereference(per_cpu(sd_llc, target));
4381 for_each_lower_domain(sd) {
4382 sg = sd->groups;
4383 do {
4384 if (!cpumask_intersects(sched_group_cpus(sg),
4385 tsk_cpus_allowed(p)))
4386 goto next;
4387
4388 for_each_cpu(i, sched_group_cpus(sg)) {
4389 if (i == target || !idle_cpu(i))
4390 goto next;
4391 }
4392
4393 target = cpumask_first_and(sched_group_cpus(sg),
4394 tsk_cpus_allowed(p));
4395 goto done;
4396next:
4397 sg = sg->next;
4398 } while (sg != sd->groups);
4399 }
4400done:
4401 return target;
4402}
4403
4404/*
4405 * select_task_rq_fair: Select target runqueue for the waking task in domains
4406 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4407 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4408 *
4409 * Balances load by selecting the idlest cpu in the idlest group, or under
4410 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4411 *
4412 * Returns the target cpu number.
4413 *
4414 * preempt must be disabled.
4415 */
4416static int
4417select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4418{
4419 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4420 int cpu = smp_processor_id();
4421 int new_cpu = cpu;
4422 int want_affine = 0;
4423 int sync = wake_flags & WF_SYNC;
4424
4425 if (p->nr_cpus_allowed == 1)
4426 return prev_cpu;
4427
4428 if (sd_flag & SD_BALANCE_WAKE) {
4429 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4430 want_affine = 1;
4431 new_cpu = prev_cpu;
4432 }
4433
4434 rcu_read_lock();
4435 for_each_domain(cpu, tmp) {
4436 if (!(tmp->flags & SD_LOAD_BALANCE))
4437 continue;
4438
4439 /*
4440 * If both cpu and prev_cpu are part of this domain,
4441 * cpu is a valid SD_WAKE_AFFINE target.
4442 */
4443 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4444 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4445 affine_sd = tmp;
4446 break;
4447 }
4448
4449 if (tmp->flags & sd_flag)
4450 sd = tmp;
4451 }
4452
4453 if (affine_sd) {
4454 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4455 prev_cpu = cpu;
4456
4457 new_cpu = select_idle_sibling(p, prev_cpu);
4458 goto unlock;
4459 }
4460
4461 while (sd) {
4462 struct sched_group *group;
4463 int weight;
4464
4465 if (!(sd->flags & sd_flag)) {
4466 sd = sd->child;
4467 continue;
4468 }
4469
4470 group = find_idlest_group(sd, p, cpu, sd_flag);
4471 if (!group) {
4472 sd = sd->child;
4473 continue;
4474 }
4475
4476 new_cpu = find_idlest_cpu(group, p, cpu);
4477 if (new_cpu == -1 || new_cpu == cpu) {
4478 /* Now try balancing at a lower domain level of cpu */
4479 sd = sd->child;
4480 continue;
4481 }
4482
4483 /* Now try balancing at a lower domain level of new_cpu */
4484 cpu = new_cpu;
4485 weight = sd->span_weight;
4486 sd = NULL;
4487 for_each_domain(cpu, tmp) {
4488 if (weight <= tmp->span_weight)
4489 break;
4490 if (tmp->flags & sd_flag)
4491 sd = tmp;
4492 }
4493 /* while loop will break here if sd == NULL */
4494 }
4495unlock:
4496 rcu_read_unlock();
4497
4498 return new_cpu;
4499}
4500
4501/*
4502 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4503 * cfs_rq_of(p) references at time of call are still valid and identify the
4504 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4505 * other assumptions, including the state of rq->lock, should be made.
4506 */
4507static void
4508migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4509{
4510 struct sched_entity *se = &p->se;
4511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4512
4513 /*
4514 * Load tracking: accumulate removed load so that it can be processed
4515 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4516 * to blocked load iff they have a positive decay-count. It can never
4517 * be negative here since on-rq tasks have decay-count == 0.
4518 */
4519 if (se->avg.decay_count) {
4520 se->avg.decay_count = -__synchronize_entity_decay(se);
4521 atomic_long_add(se->avg.load_avg_contrib,
4522 &cfs_rq->removed_load);
4523 }
4524}
4525#endif /* CONFIG_SMP */
4526
4527static unsigned long
4528wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4529{
4530 unsigned long gran = sysctl_sched_wakeup_granularity;
4531
4532 /*
4533 * Since its curr running now, convert the gran from real-time
4534 * to virtual-time in his units.
4535 *
4536 * By using 'se' instead of 'curr' we penalize light tasks, so
4537 * they get preempted easier. That is, if 'se' < 'curr' then
4538 * the resulting gran will be larger, therefore penalizing the
4539 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4540 * be smaller, again penalizing the lighter task.
4541 *
4542 * This is especially important for buddies when the leftmost
4543 * task is higher priority than the buddy.
4544 */
4545 return calc_delta_fair(gran, se);
4546}
4547
4548/*
4549 * Should 'se' preempt 'curr'.
4550 *
4551 * |s1
4552 * |s2
4553 * |s3
4554 * g
4555 * |<--->|c
4556 *
4557 * w(c, s1) = -1
4558 * w(c, s2) = 0
4559 * w(c, s3) = 1
4560 *
4561 */
4562static int
4563wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4564{
4565 s64 gran, vdiff = curr->vruntime - se->vruntime;
4566
4567 if (vdiff <= 0)
4568 return -1;
4569
4570 gran = wakeup_gran(curr, se);
4571 if (vdiff > gran)
4572 return 1;
4573
4574 return 0;
4575}
4576
4577static void set_last_buddy(struct sched_entity *se)
4578{
4579 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4580 return;
4581
4582 for_each_sched_entity(se)
4583 cfs_rq_of(se)->last = se;
4584}
4585
4586static void set_next_buddy(struct sched_entity *se)
4587{
4588 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4589 return;
4590
4591 for_each_sched_entity(se)
4592 cfs_rq_of(se)->next = se;
4593}
4594
4595static void set_skip_buddy(struct sched_entity *se)
4596{
4597 for_each_sched_entity(se)
4598 cfs_rq_of(se)->skip = se;
4599}
4600
4601/*
4602 * Preempt the current task with a newly woken task if needed:
4603 */
4604static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4605{
4606 struct task_struct *curr = rq->curr;
4607 struct sched_entity *se = &curr->se, *pse = &p->se;
4608 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4609 int scale = cfs_rq->nr_running >= sched_nr_latency;
4610 int next_buddy_marked = 0;
4611
4612 if (unlikely(se == pse))
4613 return;
4614
4615 /*
4616 * This is possible from callers such as move_task(), in which we
4617 * unconditionally check_prempt_curr() after an enqueue (which may have
4618 * lead to a throttle). This both saves work and prevents false
4619 * next-buddy nomination below.
4620 */
4621 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4622 return;
4623
4624 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4625 set_next_buddy(pse);
4626 next_buddy_marked = 1;
4627 }
4628
4629 /*
4630 * We can come here with TIF_NEED_RESCHED already set from new task
4631 * wake up path.
4632 *
4633 * Note: this also catches the edge-case of curr being in a throttled
4634 * group (e.g. via set_curr_task), since update_curr() (in the
4635 * enqueue of curr) will have resulted in resched being set. This
4636 * prevents us from potentially nominating it as a false LAST_BUDDY
4637 * below.
4638 */
4639 if (test_tsk_need_resched(curr))
4640 return;
4641
4642 /* Idle tasks are by definition preempted by non-idle tasks. */
4643 if (unlikely(curr->policy == SCHED_IDLE) &&
4644 likely(p->policy != SCHED_IDLE))
4645 goto preempt;
4646
4647 /*
4648 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4649 * is driven by the tick):
4650 */
4651 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4652 return;
4653
4654 find_matching_se(&se, &pse);
4655 update_curr(cfs_rq_of(se));
4656 BUG_ON(!pse);
4657 if (wakeup_preempt_entity(se, pse) == 1) {
4658 /*
4659 * Bias pick_next to pick the sched entity that is
4660 * triggering this preemption.
4661 */
4662 if (!next_buddy_marked)
4663 set_next_buddy(pse);
4664 goto preempt;
4665 }
4666
4667 return;
4668
4669preempt:
4670 resched_task(curr);
4671 /*
4672 * Only set the backward buddy when the current task is still
4673 * on the rq. This can happen when a wakeup gets interleaved
4674 * with schedule on the ->pre_schedule() or idle_balance()
4675 * point, either of which can * drop the rq lock.
4676 *
4677 * Also, during early boot the idle thread is in the fair class,
4678 * for obvious reasons its a bad idea to schedule back to it.
4679 */
4680 if (unlikely(!se->on_rq || curr == rq->idle))
4681 return;
4682
4683 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4684 set_last_buddy(se);
4685}
4686
4687static struct task_struct *
4688pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4689{
4690 struct cfs_rq *cfs_rq = &rq->cfs;
4691 struct sched_entity *se;
4692 struct task_struct *p;
4693 int new_tasks;
4694
4695again:
4696#ifdef CONFIG_FAIR_GROUP_SCHED
4697 if (!cfs_rq->nr_running)
4698 goto idle;
4699
4700 if (prev->sched_class != &fair_sched_class)
4701 goto simple;
4702
4703 /*
4704 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4705 * likely that a next task is from the same cgroup as the current.
4706 *
4707 * Therefore attempt to avoid putting and setting the entire cgroup
4708 * hierarchy, only change the part that actually changes.
4709 */
4710
4711 do {
4712 struct sched_entity *curr = cfs_rq->curr;
4713
4714 /*
4715 * Since we got here without doing put_prev_entity() we also
4716 * have to consider cfs_rq->curr. If it is still a runnable
4717 * entity, update_curr() will update its vruntime, otherwise
4718 * forget we've ever seen it.
4719 */
4720 if (curr && curr->on_rq)
4721 update_curr(cfs_rq);
4722 else
4723 curr = NULL;
4724
4725 /*
4726 * This call to check_cfs_rq_runtime() will do the throttle and
4727 * dequeue its entity in the parent(s). Therefore the 'simple'
4728 * nr_running test will indeed be correct.
4729 */
4730 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4731 goto simple;
4732
4733 se = pick_next_entity(cfs_rq, curr);
4734 cfs_rq = group_cfs_rq(se);
4735 } while (cfs_rq);
4736
4737 p = task_of(se);
4738
4739 /*
4740 * Since we haven't yet done put_prev_entity and if the selected task
4741 * is a different task than we started out with, try and touch the
4742 * least amount of cfs_rqs.
4743 */
4744 if (prev != p) {
4745 struct sched_entity *pse = &prev->se;
4746
4747 while (!(cfs_rq = is_same_group(se, pse))) {
4748 int se_depth = se->depth;
4749 int pse_depth = pse->depth;
4750
4751 if (se_depth <= pse_depth) {
4752 put_prev_entity(cfs_rq_of(pse), pse);
4753 pse = parent_entity(pse);
4754 }
4755 if (se_depth >= pse_depth) {
4756 set_next_entity(cfs_rq_of(se), se);
4757 se = parent_entity(se);
4758 }
4759 }
4760
4761 put_prev_entity(cfs_rq, pse);
4762 set_next_entity(cfs_rq, se);
4763 }
4764
4765 if (hrtick_enabled(rq))
4766 hrtick_start_fair(rq, p);
4767
4768 return p;
4769simple:
4770 cfs_rq = &rq->cfs;
4771#endif
4772
4773 if (!cfs_rq->nr_running)
4774 goto idle;
4775
4776 put_prev_task(rq, prev);
4777
4778 do {
4779 se = pick_next_entity(cfs_rq, NULL);
4780 set_next_entity(cfs_rq, se);
4781 cfs_rq = group_cfs_rq(se);
4782 } while (cfs_rq);
4783
4784 p = task_of(se);
4785
4786 if (hrtick_enabled(rq))
4787 hrtick_start_fair(rq, p);
4788
4789 return p;
4790
4791idle:
4792 new_tasks = idle_balance(rq);
4793 /*
4794 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4795 * possible for any higher priority task to appear. In that case we
4796 * must re-start the pick_next_entity() loop.
4797 */
4798 if (new_tasks < 0)
4799 return RETRY_TASK;
4800
4801 if (new_tasks > 0)
4802 goto again;
4803
4804 return NULL;
4805}
4806
4807/*
4808 * Account for a descheduled task:
4809 */
4810static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4811{
4812 struct sched_entity *se = &prev->se;
4813 struct cfs_rq *cfs_rq;
4814
4815 for_each_sched_entity(se) {
4816 cfs_rq = cfs_rq_of(se);
4817 put_prev_entity(cfs_rq, se);
4818 }
4819}
4820
4821/*
4822 * sched_yield() is very simple
4823 *
4824 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4825 */
4826static void yield_task_fair(struct rq *rq)
4827{
4828 struct task_struct *curr = rq->curr;
4829 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4830 struct sched_entity *se = &curr->se;
4831
4832 /*
4833 * Are we the only task in the tree?
4834 */
4835 if (unlikely(rq->nr_running == 1))
4836 return;
4837
4838 clear_buddies(cfs_rq, se);
4839
4840 if (curr->policy != SCHED_BATCH) {
4841 update_rq_clock(rq);
4842 /*
4843 * Update run-time statistics of the 'current'.
4844 */
4845 update_curr(cfs_rq);
4846 /*
4847 * Tell update_rq_clock() that we've just updated,
4848 * so we don't do microscopic update in schedule()
4849 * and double the fastpath cost.
4850 */
4851 rq->skip_clock_update = 1;
4852 }
4853
4854 set_skip_buddy(se);
4855}
4856
4857static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4858{
4859 struct sched_entity *se = &p->se;
4860
4861 /* throttled hierarchies are not runnable */
4862 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4863 return false;
4864
4865 /* Tell the scheduler that we'd really like pse to run next. */
4866 set_next_buddy(se);
4867
4868 yield_task_fair(rq);
4869
4870 return true;
4871}
4872
4873#ifdef CONFIG_SMP
4874/**************************************************
4875 * Fair scheduling class load-balancing methods.
4876 *
4877 * BASICS
4878 *
4879 * The purpose of load-balancing is to achieve the same basic fairness the
4880 * per-cpu scheduler provides, namely provide a proportional amount of compute
4881 * time to each task. This is expressed in the following equation:
4882 *
4883 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4884 *
4885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4886 * W_i,0 is defined as:
4887 *
4888 * W_i,0 = \Sum_j w_i,j (2)
4889 *
4890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4891 * is derived from the nice value as per prio_to_weight[].
4892 *
4893 * The weight average is an exponential decay average of the instantaneous
4894 * weight:
4895 *
4896 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4897 *
4898 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4900 * can also include other factors [XXX].
4901 *
4902 * To achieve this balance we define a measure of imbalance which follows
4903 * directly from (1):
4904 *
4905 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4906 *
4907 * We them move tasks around to minimize the imbalance. In the continuous
4908 * function space it is obvious this converges, in the discrete case we get
4909 * a few fun cases generally called infeasible weight scenarios.
4910 *
4911 * [XXX expand on:
4912 * - infeasible weights;
4913 * - local vs global optima in the discrete case. ]
4914 *
4915 *
4916 * SCHED DOMAINS
4917 *
4918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4919 * for all i,j solution, we create a tree of cpus that follows the hardware
4920 * topology where each level pairs two lower groups (or better). This results
4921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4922 * tree to only the first of the previous level and we decrease the frequency
4923 * of load-balance at each level inv. proportional to the number of cpus in
4924 * the groups.
4925 *
4926 * This yields:
4927 *
4928 * log_2 n 1 n
4929 * \Sum { --- * --- * 2^i } = O(n) (5)
4930 * i = 0 2^i 2^i
4931 * `- size of each group
4932 * | | `- number of cpus doing load-balance
4933 * | `- freq
4934 * `- sum over all levels
4935 *
4936 * Coupled with a limit on how many tasks we can migrate every balance pass,
4937 * this makes (5) the runtime complexity of the balancer.
4938 *
4939 * An important property here is that each CPU is still (indirectly) connected
4940 * to every other cpu in at most O(log n) steps:
4941 *
4942 * The adjacency matrix of the resulting graph is given by:
4943 *
4944 * log_2 n
4945 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4946 * k = 0
4947 *
4948 * And you'll find that:
4949 *
4950 * A^(log_2 n)_i,j != 0 for all i,j (7)
4951 *
4952 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4953 * The task movement gives a factor of O(m), giving a convergence complexity
4954 * of:
4955 *
4956 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4957 *
4958 *
4959 * WORK CONSERVING
4960 *
4961 * In order to avoid CPUs going idle while there's still work to do, new idle
4962 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4963 * tree itself instead of relying on other CPUs to bring it work.
4964 *
4965 * This adds some complexity to both (5) and (8) but it reduces the total idle
4966 * time.
4967 *
4968 * [XXX more?]
4969 *
4970 *
4971 * CGROUPS
4972 *
4973 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4974 *
4975 * s_k,i
4976 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4977 * S_k
4978 *
4979 * Where
4980 *
4981 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4982 *
4983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4984 *
4985 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4986 * property.
4987 *
4988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4989 * rewrite all of this once again.]
4990 */
4991
4992static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4993
4994enum fbq_type { regular, remote, all };
4995
4996#define LBF_ALL_PINNED 0x01
4997#define LBF_NEED_BREAK 0x02
4998#define LBF_DST_PINNED 0x04
4999#define LBF_SOME_PINNED 0x08
5000
5001struct lb_env {
5002 struct sched_domain *sd;
5003
5004 struct rq *src_rq;
5005 int src_cpu;
5006
5007 int dst_cpu;
5008 struct rq *dst_rq;
5009
5010 struct cpumask *dst_grpmask;
5011 int new_dst_cpu;
5012 enum cpu_idle_type idle;
5013 long imbalance;
5014 /* The set of CPUs under consideration for load-balancing */
5015 struct cpumask *cpus;
5016
5017 unsigned int flags;
5018
5019 unsigned int loop;
5020 unsigned int loop_break;
5021 unsigned int loop_max;
5022
5023 enum fbq_type fbq_type;
5024};
5025
5026/*
5027 * move_task - move a task from one runqueue to another runqueue.
5028 * Both runqueues must be locked.
5029 */
5030static void move_task(struct task_struct *p, struct lb_env *env)
5031{
5032 deactivate_task(env->src_rq, p, 0);
5033 set_task_cpu(p, env->dst_cpu);
5034 activate_task(env->dst_rq, p, 0);
5035 check_preempt_curr(env->dst_rq, p, 0);
5036}
5037
5038/*
5039 * Is this task likely cache-hot:
5040 */
5041static int
5042task_hot(struct task_struct *p, u64 now)
5043{
5044 s64 delta;
5045
5046 if (p->sched_class != &fair_sched_class)
5047 return 0;
5048
5049 if (unlikely(p->policy == SCHED_IDLE))
5050 return 0;
5051
5052 /*
5053 * Buddy candidates are cache hot:
5054 */
5055 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5056 (&p->se == cfs_rq_of(&p->se)->next ||
5057 &p->se == cfs_rq_of(&p->se)->last))
5058 return 1;
5059
5060 if (sysctl_sched_migration_cost == -1)
5061 return 1;
5062 if (sysctl_sched_migration_cost == 0)
5063 return 0;
5064
5065 delta = now - p->se.exec_start;
5066
5067 return delta < (s64)sysctl_sched_migration_cost;
5068}
5069
5070#ifdef CONFIG_NUMA_BALANCING
5071/* Returns true if the destination node has incurred more faults */
5072static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5073{
5074 int src_nid, dst_nid;
5075
5076 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5077 !(env->sd->flags & SD_NUMA)) {
5078 return false;
5079 }
5080
5081 src_nid = cpu_to_node(env->src_cpu);
5082 dst_nid = cpu_to_node(env->dst_cpu);
5083
5084 if (src_nid == dst_nid)
5085 return false;
5086
5087 /* Always encourage migration to the preferred node. */
5088 if (dst_nid == p->numa_preferred_nid)
5089 return true;
5090
5091 /* If both task and group weight improve, this move is a winner. */
5092 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5093 group_weight(p, dst_nid) > group_weight(p, src_nid))
5094 return true;
5095
5096 return false;
5097}
5098
5099
5100static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5101{
5102 int src_nid, dst_nid;
5103
5104 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5105 return false;
5106
5107 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5108 return false;
5109
5110 src_nid = cpu_to_node(env->src_cpu);
5111 dst_nid = cpu_to_node(env->dst_cpu);
5112
5113 if (src_nid == dst_nid)
5114 return false;
5115
5116 /* Migrating away from the preferred node is always bad. */
5117 if (src_nid == p->numa_preferred_nid)
5118 return true;
5119
5120 /* If either task or group weight get worse, don't do it. */
5121 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5122 group_weight(p, dst_nid) < group_weight(p, src_nid))
5123 return true;
5124
5125 return false;
5126}
5127
5128#else
5129static inline bool migrate_improves_locality(struct task_struct *p,
5130 struct lb_env *env)
5131{
5132 return false;
5133}
5134
5135static inline bool migrate_degrades_locality(struct task_struct *p,
5136 struct lb_env *env)
5137{
5138 return false;
5139}
5140#endif
5141
5142/*
5143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5144 */
5145static
5146int can_migrate_task(struct task_struct *p, struct lb_env *env)
5147{
5148 int tsk_cache_hot = 0;
5149 /*
5150 * We do not migrate tasks that are:
5151 * 1) throttled_lb_pair, or
5152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5153 * 3) running (obviously), or
5154 * 4) are cache-hot on their current CPU.
5155 */
5156 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5157 return 0;
5158
5159 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5160 int cpu;
5161
5162 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5163
5164 env->flags |= LBF_SOME_PINNED;
5165
5166 /*
5167 * Remember if this task can be migrated to any other cpu in
5168 * our sched_group. We may want to revisit it if we couldn't
5169 * meet load balance goals by pulling other tasks on src_cpu.
5170 *
5171 * Also avoid computing new_dst_cpu if we have already computed
5172 * one in current iteration.
5173 */
5174 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5175 return 0;
5176
5177 /* Prevent to re-select dst_cpu via env's cpus */
5178 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5179 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5180 env->flags |= LBF_DST_PINNED;
5181 env->new_dst_cpu = cpu;
5182 break;
5183 }
5184 }
5185
5186 return 0;
5187 }
5188
5189 /* Record that we found atleast one task that could run on dst_cpu */
5190 env->flags &= ~LBF_ALL_PINNED;
5191
5192 if (task_running(env->src_rq, p)) {
5193 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5194 return 0;
5195 }
5196
5197 /*
5198 * Aggressive migration if:
5199 * 1) destination numa is preferred
5200 * 2) task is cache cold, or
5201 * 3) too many balance attempts have failed.
5202 */
5203 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5204 if (!tsk_cache_hot)
5205 tsk_cache_hot = migrate_degrades_locality(p, env);
5206
5207 if (migrate_improves_locality(p, env)) {
5208#ifdef CONFIG_SCHEDSTATS
5209 if (tsk_cache_hot) {
5210 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5211 schedstat_inc(p, se.statistics.nr_forced_migrations);
5212 }
5213#endif
5214 return 1;
5215 }
5216
5217 if (!tsk_cache_hot ||
5218 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5219
5220 if (tsk_cache_hot) {
5221 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5222 schedstat_inc(p, se.statistics.nr_forced_migrations);
5223 }
5224
5225 return 1;
5226 }
5227
5228 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5229 return 0;
5230}
5231
5232/*
5233 * move_one_task tries to move exactly one task from busiest to this_rq, as
5234 * part of active balancing operations within "domain".
5235 * Returns 1 if successful and 0 otherwise.
5236 *
5237 * Called with both runqueues locked.
5238 */
5239static int move_one_task(struct lb_env *env)
5240{
5241 struct task_struct *p, *n;
5242
5243 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5244 if (!can_migrate_task(p, env))
5245 continue;
5246
5247 move_task(p, env);
5248 /*
5249 * Right now, this is only the second place move_task()
5250 * is called, so we can safely collect move_task()
5251 * stats here rather than inside move_task().
5252 */
5253 schedstat_inc(env->sd, lb_gained[env->idle]);
5254 return 1;
5255 }
5256 return 0;
5257}
5258
5259static const unsigned int sched_nr_migrate_break = 32;
5260
5261/*
5262 * move_tasks tries to move up to imbalance weighted load from busiest to
5263 * this_rq, as part of a balancing operation within domain "sd".
5264 * Returns 1 if successful and 0 otherwise.
5265 *
5266 * Called with both runqueues locked.
5267 */
5268static int move_tasks(struct lb_env *env)
5269{
5270 struct list_head *tasks = &env->src_rq->cfs_tasks;
5271 struct task_struct *p;
5272 unsigned long load;
5273 int pulled = 0;
5274
5275 if (env->imbalance <= 0)
5276 return 0;
5277
5278 while (!list_empty(tasks)) {
5279 p = list_first_entry(tasks, struct task_struct, se.group_node);
5280
5281 env->loop++;
5282 /* We've more or less seen every task there is, call it quits */
5283 if (env->loop > env->loop_max)
5284 break;
5285
5286 /* take a breather every nr_migrate tasks */
5287 if (env->loop > env->loop_break) {
5288 env->loop_break += sched_nr_migrate_break;
5289 env->flags |= LBF_NEED_BREAK;
5290 break;
5291 }
5292
5293 if (!can_migrate_task(p, env))
5294 goto next;
5295
5296 load = task_h_load(p);
5297
5298 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5299 goto next;
5300
5301 if ((load / 2) > env->imbalance)
5302 goto next;
5303
5304 move_task(p, env);
5305 pulled++;
5306 env->imbalance -= load;
5307
5308#ifdef CONFIG_PREEMPT
5309 /*
5310 * NEWIDLE balancing is a source of latency, so preemptible
5311 * kernels will stop after the first task is pulled to minimize
5312 * the critical section.
5313 */
5314 if (env->idle == CPU_NEWLY_IDLE)
5315 break;
5316#endif
5317
5318 /*
5319 * We only want to steal up to the prescribed amount of
5320 * weighted load.
5321 */
5322 if (env->imbalance <= 0)
5323 break;
5324
5325 continue;
5326next:
5327 list_move_tail(&p->se.group_node, tasks);
5328 }
5329
5330 /*
5331 * Right now, this is one of only two places move_task() is called,
5332 * so we can safely collect move_task() stats here rather than
5333 * inside move_task().
5334 */
5335 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5336
5337 return pulled;
5338}
5339
5340#ifdef CONFIG_FAIR_GROUP_SCHED
5341/*
5342 * update tg->load_weight by folding this cpu's load_avg
5343 */
5344static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5345{
5346 struct sched_entity *se = tg->se[cpu];
5347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5348
5349 /* throttled entities do not contribute to load */
5350 if (throttled_hierarchy(cfs_rq))
5351 return;
5352
5353 update_cfs_rq_blocked_load(cfs_rq, 1);
5354
5355 if (se) {
5356 update_entity_load_avg(se, 1);
5357 /*
5358 * We pivot on our runnable average having decayed to zero for
5359 * list removal. This generally implies that all our children
5360 * have also been removed (modulo rounding error or bandwidth
5361 * control); however, such cases are rare and we can fix these
5362 * at enqueue.
5363 *
5364 * TODO: fix up out-of-order children on enqueue.
5365 */
5366 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5367 list_del_leaf_cfs_rq(cfs_rq);
5368 } else {
5369 struct rq *rq = rq_of(cfs_rq);
5370 update_rq_runnable_avg(rq, rq->nr_running);
5371 }
5372}
5373
5374static void update_blocked_averages(int cpu)
5375{
5376 struct rq *rq = cpu_rq(cpu);
5377 struct cfs_rq *cfs_rq;
5378 unsigned long flags;
5379
5380 raw_spin_lock_irqsave(&rq->lock, flags);
5381 update_rq_clock(rq);
5382 /*
5383 * Iterates the task_group tree in a bottom up fashion, see
5384 * list_add_leaf_cfs_rq() for details.
5385 */
5386 for_each_leaf_cfs_rq(rq, cfs_rq) {
5387 /*
5388 * Note: We may want to consider periodically releasing
5389 * rq->lock about these updates so that creating many task
5390 * groups does not result in continually extending hold time.
5391 */
5392 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5393 }
5394
5395 raw_spin_unlock_irqrestore(&rq->lock, flags);
5396}
5397
5398/*
5399 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5400 * This needs to be done in a top-down fashion because the load of a child
5401 * group is a fraction of its parents load.
5402 */
5403static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5404{
5405 struct rq *rq = rq_of(cfs_rq);
5406 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5407 unsigned long now = jiffies;
5408 unsigned long load;
5409
5410 if (cfs_rq->last_h_load_update == now)
5411 return;
5412
5413 cfs_rq->h_load_next = NULL;
5414 for_each_sched_entity(se) {
5415 cfs_rq = cfs_rq_of(se);
5416 cfs_rq->h_load_next = se;
5417 if (cfs_rq->last_h_load_update == now)
5418 break;
5419 }
5420
5421 if (!se) {
5422 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5423 cfs_rq->last_h_load_update = now;
5424 }
5425
5426 while ((se = cfs_rq->h_load_next) != NULL) {
5427 load = cfs_rq->h_load;
5428 load = div64_ul(load * se->avg.load_avg_contrib,
5429 cfs_rq->runnable_load_avg + 1);
5430 cfs_rq = group_cfs_rq(se);
5431 cfs_rq->h_load = load;
5432 cfs_rq->last_h_load_update = now;
5433 }
5434}
5435
5436static unsigned long task_h_load(struct task_struct *p)
5437{
5438 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5439
5440 update_cfs_rq_h_load(cfs_rq);
5441 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5442 cfs_rq->runnable_load_avg + 1);
5443}
5444#else
5445static inline void update_blocked_averages(int cpu)
5446{
5447}
5448
5449static unsigned long task_h_load(struct task_struct *p)
5450{
5451 return p->se.avg.load_avg_contrib;
5452}
5453#endif
5454
5455/********** Helpers for find_busiest_group ************************/
5456/*
5457 * sg_lb_stats - stats of a sched_group required for load_balancing
5458 */
5459struct sg_lb_stats {
5460 unsigned long avg_load; /*Avg load across the CPUs of the group */
5461 unsigned long group_load; /* Total load over the CPUs of the group */
5462 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5463 unsigned long load_per_task;
5464 unsigned long group_power;
5465 unsigned int sum_nr_running; /* Nr tasks running in the group */
5466 unsigned int group_capacity;
5467 unsigned int idle_cpus;
5468 unsigned int group_weight;
5469 int group_imb; /* Is there an imbalance in the group ? */
5470 int group_has_capacity; /* Is there extra capacity in the group? */
5471#ifdef CONFIG_NUMA_BALANCING
5472 unsigned int nr_numa_running;
5473 unsigned int nr_preferred_running;
5474#endif
5475};
5476
5477/*
5478 * sd_lb_stats - Structure to store the statistics of a sched_domain
5479 * during load balancing.
5480 */
5481struct sd_lb_stats {
5482 struct sched_group *busiest; /* Busiest group in this sd */
5483 struct sched_group *local; /* Local group in this sd */
5484 unsigned long total_load; /* Total load of all groups in sd */
5485 unsigned long total_pwr; /* Total power of all groups in sd */
5486 unsigned long avg_load; /* Average load across all groups in sd */
5487
5488 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5489 struct sg_lb_stats local_stat; /* Statistics of the local group */
5490};
5491
5492static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5493{
5494 /*
5495 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5496 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5497 * We must however clear busiest_stat::avg_load because
5498 * update_sd_pick_busiest() reads this before assignment.
5499 */
5500 *sds = (struct sd_lb_stats){
5501 .busiest = NULL,
5502 .local = NULL,
5503 .total_load = 0UL,
5504 .total_pwr = 0UL,
5505 .busiest_stat = {
5506 .avg_load = 0UL,
5507 },
5508 };
5509}
5510
5511/**
5512 * get_sd_load_idx - Obtain the load index for a given sched domain.
5513 * @sd: The sched_domain whose load_idx is to be obtained.
5514 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5515 *
5516 * Return: The load index.
5517 */
5518static inline int get_sd_load_idx(struct sched_domain *sd,
5519 enum cpu_idle_type idle)
5520{
5521 int load_idx;
5522
5523 switch (idle) {
5524 case CPU_NOT_IDLE:
5525 load_idx = sd->busy_idx;
5526 break;
5527
5528 case CPU_NEWLY_IDLE:
5529 load_idx = sd->newidle_idx;
5530 break;
5531 default:
5532 load_idx = sd->idle_idx;
5533 break;
5534 }
5535
5536 return load_idx;
5537}
5538
5539static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5540{
5541 return SCHED_POWER_SCALE;
5542}
5543
5544unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5545{
5546 return default_scale_freq_power(sd, cpu);
5547}
5548
5549static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5550{
5551 unsigned long weight = sd->span_weight;
5552 unsigned long smt_gain = sd->smt_gain;
5553
5554 smt_gain /= weight;
5555
5556 return smt_gain;
5557}
5558
5559unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5560{
5561 return default_scale_smt_power(sd, cpu);
5562}
5563
5564static unsigned long scale_rt_power(int cpu)
5565{
5566 struct rq *rq = cpu_rq(cpu);
5567 u64 total, available, age_stamp, avg;
5568
5569 /*
5570 * Since we're reading these variables without serialization make sure
5571 * we read them once before doing sanity checks on them.
5572 */
5573 age_stamp = ACCESS_ONCE(rq->age_stamp);
5574 avg = ACCESS_ONCE(rq->rt_avg);
5575
5576 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5577
5578 if (unlikely(total < avg)) {
5579 /* Ensures that power won't end up being negative */
5580 available = 0;
5581 } else {
5582 available = total - avg;
5583 }
5584
5585 if (unlikely((s64)total < SCHED_POWER_SCALE))
5586 total = SCHED_POWER_SCALE;
5587
5588 total >>= SCHED_POWER_SHIFT;
5589
5590 return div_u64(available, total);
5591}
5592
5593static void update_cpu_power(struct sched_domain *sd, int cpu)
5594{
5595 unsigned long weight = sd->span_weight;
5596 unsigned long power = SCHED_POWER_SCALE;
5597 struct sched_group *sdg = sd->groups;
5598
5599 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5600 if (sched_feat(ARCH_POWER))
5601 power *= arch_scale_smt_power(sd, cpu);
5602 else
5603 power *= default_scale_smt_power(sd, cpu);
5604
5605 power >>= SCHED_POWER_SHIFT;
5606 }
5607
5608 sdg->sgp->power_orig = power;
5609
5610 if (sched_feat(ARCH_POWER))
5611 power *= arch_scale_freq_power(sd, cpu);
5612 else
5613 power *= default_scale_freq_power(sd, cpu);
5614
5615 power >>= SCHED_POWER_SHIFT;
5616
5617 power *= scale_rt_power(cpu);
5618 power >>= SCHED_POWER_SHIFT;
5619
5620 if (!power)
5621 power = 1;
5622
5623 cpu_rq(cpu)->cpu_power = power;
5624 sdg->sgp->power = power;
5625}
5626
5627void update_group_power(struct sched_domain *sd, int cpu)
5628{
5629 struct sched_domain *child = sd->child;
5630 struct sched_group *group, *sdg = sd->groups;
5631 unsigned long power, power_orig;
5632 unsigned long interval;
5633
5634 interval = msecs_to_jiffies(sd->balance_interval);
5635 interval = clamp(interval, 1UL, max_load_balance_interval);
5636 sdg->sgp->next_update = jiffies + interval;
5637
5638 if (!child) {
5639 update_cpu_power(sd, cpu);
5640 return;
5641 }
5642
5643 power_orig = power = 0;
5644
5645 if (child->flags & SD_OVERLAP) {
5646 /*
5647 * SD_OVERLAP domains cannot assume that child groups
5648 * span the current group.
5649 */
5650
5651 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5652 struct sched_group_power *sgp;
5653 struct rq *rq = cpu_rq(cpu);
5654
5655 /*
5656 * build_sched_domains() -> init_sched_groups_power()
5657 * gets here before we've attached the domains to the
5658 * runqueues.
5659 *
5660 * Use power_of(), which is set irrespective of domains
5661 * in update_cpu_power().
5662 *
5663 * This avoids power/power_orig from being 0 and
5664 * causing divide-by-zero issues on boot.
5665 *
5666 * Runtime updates will correct power_orig.
5667 */
5668 if (unlikely(!rq->sd)) {
5669 power_orig += power_of(cpu);
5670 power += power_of(cpu);
5671 continue;
5672 }
5673
5674 sgp = rq->sd->groups->sgp;
5675 power_orig += sgp->power_orig;
5676 power += sgp->power;
5677 }
5678 } else {
5679 /*
5680 * !SD_OVERLAP domains can assume that child groups
5681 * span the current group.
5682 */
5683
5684 group = child->groups;
5685 do {
5686 power_orig += group->sgp->power_orig;
5687 power += group->sgp->power;
5688 group = group->next;
5689 } while (group != child->groups);
5690 }
5691
5692 sdg->sgp->power_orig = power_orig;
5693 sdg->sgp->power = power;
5694}
5695
5696/*
5697 * Try and fix up capacity for tiny siblings, this is needed when
5698 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5699 * which on its own isn't powerful enough.
5700 *
5701 * See update_sd_pick_busiest() and check_asym_packing().
5702 */
5703static inline int
5704fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5705{
5706 /*
5707 * Only siblings can have significantly less than SCHED_POWER_SCALE
5708 */
5709 if (!(sd->flags & SD_SHARE_CPUPOWER))
5710 return 0;
5711
5712 /*
5713 * If ~90% of the cpu_power is still there, we're good.
5714 */
5715 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5716 return 1;
5717
5718 return 0;
5719}
5720
5721/*
5722 * Group imbalance indicates (and tries to solve) the problem where balancing
5723 * groups is inadequate due to tsk_cpus_allowed() constraints.
5724 *
5725 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5726 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5727 * Something like:
5728 *
5729 * { 0 1 2 3 } { 4 5 6 7 }
5730 * * * * *
5731 *
5732 * If we were to balance group-wise we'd place two tasks in the first group and
5733 * two tasks in the second group. Clearly this is undesired as it will overload
5734 * cpu 3 and leave one of the cpus in the second group unused.
5735 *
5736 * The current solution to this issue is detecting the skew in the first group
5737 * by noticing the lower domain failed to reach balance and had difficulty
5738 * moving tasks due to affinity constraints.
5739 *
5740 * When this is so detected; this group becomes a candidate for busiest; see
5741 * update_sd_pick_busiest(). And calculate_imbalance() and
5742 * find_busiest_group() avoid some of the usual balance conditions to allow it
5743 * to create an effective group imbalance.
5744 *
5745 * This is a somewhat tricky proposition since the next run might not find the
5746 * group imbalance and decide the groups need to be balanced again. A most
5747 * subtle and fragile situation.
5748 */
5749
5750static inline int sg_imbalanced(struct sched_group *group)
5751{
5752 return group->sgp->imbalance;
5753}
5754
5755/*
5756 * Compute the group capacity.
5757 *
5758 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5759 * first dividing out the smt factor and computing the actual number of cores
5760 * and limit power unit capacity with that.
5761 */
5762static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5763{
5764 unsigned int capacity, smt, cpus;
5765 unsigned int power, power_orig;
5766
5767 power = group->sgp->power;
5768 power_orig = group->sgp->power_orig;
5769 cpus = group->group_weight;
5770
5771 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5772 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5773 capacity = cpus / smt; /* cores */
5774
5775 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5776 if (!capacity)
5777 capacity = fix_small_capacity(env->sd, group);
5778
5779 return capacity;
5780}
5781
5782/**
5783 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5784 * @env: The load balancing environment.
5785 * @group: sched_group whose statistics are to be updated.
5786 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5787 * @local_group: Does group contain this_cpu.
5788 * @sgs: variable to hold the statistics for this group.
5789 */
5790static inline void update_sg_lb_stats(struct lb_env *env,
5791 struct sched_group *group, int load_idx,
5792 int local_group, struct sg_lb_stats *sgs)
5793{
5794 unsigned long load;
5795 int i;
5796
5797 memset(sgs, 0, sizeof(*sgs));
5798
5799 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5800 struct rq *rq = cpu_rq(i);
5801
5802 /* Bias balancing toward cpus of our domain */
5803 if (local_group)
5804 load = target_load(i, load_idx);
5805 else
5806 load = source_load(i, load_idx);
5807
5808 sgs->group_load += load;
5809 sgs->sum_nr_running += rq->nr_running;
5810#ifdef CONFIG_NUMA_BALANCING
5811 sgs->nr_numa_running += rq->nr_numa_running;
5812 sgs->nr_preferred_running += rq->nr_preferred_running;
5813#endif
5814 sgs->sum_weighted_load += weighted_cpuload(i);
5815 if (idle_cpu(i))
5816 sgs->idle_cpus++;
5817 }
5818
5819 /* Adjust by relative CPU power of the group */
5820 sgs->group_power = group->sgp->power;
5821 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5822
5823 if (sgs->sum_nr_running)
5824 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5825
5826 sgs->group_weight = group->group_weight;
5827
5828 sgs->group_imb = sg_imbalanced(group);
5829 sgs->group_capacity = sg_capacity(env, group);
5830
5831 if (sgs->group_capacity > sgs->sum_nr_running)
5832 sgs->group_has_capacity = 1;
5833}
5834
5835/**
5836 * update_sd_pick_busiest - return 1 on busiest group
5837 * @env: The load balancing environment.
5838 * @sds: sched_domain statistics
5839 * @sg: sched_group candidate to be checked for being the busiest
5840 * @sgs: sched_group statistics
5841 *
5842 * Determine if @sg is a busier group than the previously selected
5843 * busiest group.
5844 *
5845 * Return: %true if @sg is a busier group than the previously selected
5846 * busiest group. %false otherwise.
5847 */
5848static bool update_sd_pick_busiest(struct lb_env *env,
5849 struct sd_lb_stats *sds,
5850 struct sched_group *sg,
5851 struct sg_lb_stats *sgs)
5852{
5853 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5854 return false;
5855
5856 if (sgs->sum_nr_running > sgs->group_capacity)
5857 return true;
5858
5859 if (sgs->group_imb)
5860 return true;
5861
5862 /*
5863 * ASYM_PACKING needs to move all the work to the lowest
5864 * numbered CPUs in the group, therefore mark all groups
5865 * higher than ourself as busy.
5866 */
5867 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5868 env->dst_cpu < group_first_cpu(sg)) {
5869 if (!sds->busiest)
5870 return true;
5871
5872 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5873 return true;
5874 }
5875
5876 return false;
5877}
5878
5879#ifdef CONFIG_NUMA_BALANCING
5880static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5881{
5882 if (sgs->sum_nr_running > sgs->nr_numa_running)
5883 return regular;
5884 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5885 return remote;
5886 return all;
5887}
5888
5889static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5890{
5891 if (rq->nr_running > rq->nr_numa_running)
5892 return regular;
5893 if (rq->nr_running > rq->nr_preferred_running)
5894 return remote;
5895 return all;
5896}
5897#else
5898static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5899{
5900 return all;
5901}
5902
5903static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5904{
5905 return regular;
5906}
5907#endif /* CONFIG_NUMA_BALANCING */
5908
5909/**
5910 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5911 * @env: The load balancing environment.
5912 * @sds: variable to hold the statistics for this sched_domain.
5913 */
5914static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5915{
5916 struct sched_domain *child = env->sd->child;
5917 struct sched_group *sg = env->sd->groups;
5918 struct sg_lb_stats tmp_sgs;
5919 int load_idx, prefer_sibling = 0;
5920
5921 if (child && child->flags & SD_PREFER_SIBLING)
5922 prefer_sibling = 1;
5923
5924 load_idx = get_sd_load_idx(env->sd, env->idle);
5925
5926 do {
5927 struct sg_lb_stats *sgs = &tmp_sgs;
5928 int local_group;
5929
5930 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5931 if (local_group) {
5932 sds->local = sg;
5933 sgs = &sds->local_stat;
5934
5935 if (env->idle != CPU_NEWLY_IDLE ||
5936 time_after_eq(jiffies, sg->sgp->next_update))
5937 update_group_power(env->sd, env->dst_cpu);
5938 }
5939
5940 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5941
5942 if (local_group)
5943 goto next_group;
5944
5945 /*
5946 * In case the child domain prefers tasks go to siblings
5947 * first, lower the sg capacity to one so that we'll try
5948 * and move all the excess tasks away. We lower the capacity
5949 * of a group only if the local group has the capacity to fit
5950 * these excess tasks, i.e. nr_running < group_capacity. The
5951 * extra check prevents the case where you always pull from the
5952 * heaviest group when it is already under-utilized (possible
5953 * with a large weight task outweighs the tasks on the system).
5954 */
5955 if (prefer_sibling && sds->local &&
5956 sds->local_stat.group_has_capacity)
5957 sgs->group_capacity = min(sgs->group_capacity, 1U);
5958
5959 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5960 sds->busiest = sg;
5961 sds->busiest_stat = *sgs;
5962 }
5963
5964next_group:
5965 /* Now, start updating sd_lb_stats */
5966 sds->total_load += sgs->group_load;
5967 sds->total_pwr += sgs->group_power;
5968
5969 sg = sg->next;
5970 } while (sg != env->sd->groups);
5971
5972 if (env->sd->flags & SD_NUMA)
5973 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5974}
5975
5976/**
5977 * check_asym_packing - Check to see if the group is packed into the
5978 * sched doman.
5979 *
5980 * This is primarily intended to used at the sibling level. Some
5981 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5982 * case of POWER7, it can move to lower SMT modes only when higher
5983 * threads are idle. When in lower SMT modes, the threads will
5984 * perform better since they share less core resources. Hence when we
5985 * have idle threads, we want them to be the higher ones.
5986 *
5987 * This packing function is run on idle threads. It checks to see if
5988 * the busiest CPU in this domain (core in the P7 case) has a higher
5989 * CPU number than the packing function is being run on. Here we are
5990 * assuming lower CPU number will be equivalent to lower a SMT thread
5991 * number.
5992 *
5993 * Return: 1 when packing is required and a task should be moved to
5994 * this CPU. The amount of the imbalance is returned in *imbalance.
5995 *
5996 * @env: The load balancing environment.
5997 * @sds: Statistics of the sched_domain which is to be packed
5998 */
5999static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6000{
6001 int busiest_cpu;
6002
6003 if (!(env->sd->flags & SD_ASYM_PACKING))
6004 return 0;
6005
6006 if (!sds->busiest)
6007 return 0;
6008
6009 busiest_cpu = group_first_cpu(sds->busiest);
6010 if (env->dst_cpu > busiest_cpu)
6011 return 0;
6012
6013 env->imbalance = DIV_ROUND_CLOSEST(
6014 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6015 SCHED_POWER_SCALE);
6016
6017 return 1;
6018}
6019
6020/**
6021 * fix_small_imbalance - Calculate the minor imbalance that exists
6022 * amongst the groups of a sched_domain, during
6023 * load balancing.
6024 * @env: The load balancing environment.
6025 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6026 */
6027static inline
6028void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6029{
6030 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6031 unsigned int imbn = 2;
6032 unsigned long scaled_busy_load_per_task;
6033 struct sg_lb_stats *local, *busiest;
6034
6035 local = &sds->local_stat;
6036 busiest = &sds->busiest_stat;
6037
6038 if (!local->sum_nr_running)
6039 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6040 else if (busiest->load_per_task > local->load_per_task)
6041 imbn = 1;
6042
6043 scaled_busy_load_per_task =
6044 (busiest->load_per_task * SCHED_POWER_SCALE) /
6045 busiest->group_power;
6046
6047 if (busiest->avg_load + scaled_busy_load_per_task >=
6048 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6049 env->imbalance = busiest->load_per_task;
6050 return;
6051 }
6052
6053 /*
6054 * OK, we don't have enough imbalance to justify moving tasks,
6055 * however we may be able to increase total CPU power used by
6056 * moving them.
6057 */
6058
6059 pwr_now += busiest->group_power *
6060 min(busiest->load_per_task, busiest->avg_load);
6061 pwr_now += local->group_power *
6062 min(local->load_per_task, local->avg_load);
6063 pwr_now /= SCHED_POWER_SCALE;
6064
6065 /* Amount of load we'd subtract */
6066 if (busiest->avg_load > scaled_busy_load_per_task) {
6067 pwr_move += busiest->group_power *
6068 min(busiest->load_per_task,
6069 busiest->avg_load - scaled_busy_load_per_task);
6070 }
6071
6072 /* Amount of load we'd add */
6073 if (busiest->avg_load * busiest->group_power <
6074 busiest->load_per_task * SCHED_POWER_SCALE) {
6075 tmp = (busiest->avg_load * busiest->group_power) /
6076 local->group_power;
6077 } else {
6078 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079 local->group_power;
6080 }
6081 pwr_move += local->group_power *
6082 min(local->load_per_task, local->avg_load + tmp);
6083 pwr_move /= SCHED_POWER_SCALE;
6084
6085 /* Move if we gain throughput */
6086 if (pwr_move > pwr_now)
6087 env->imbalance = busiest->load_per_task;
6088}
6089
6090/**
6091 * calculate_imbalance - Calculate the amount of imbalance present within the
6092 * groups of a given sched_domain during load balance.
6093 * @env: load balance environment
6094 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6095 */
6096static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6097{
6098 unsigned long max_pull, load_above_capacity = ~0UL;
6099 struct sg_lb_stats *local, *busiest;
6100
6101 local = &sds->local_stat;
6102 busiest = &sds->busiest_stat;
6103
6104 if (busiest->group_imb) {
6105 /*
6106 * In the group_imb case we cannot rely on group-wide averages
6107 * to ensure cpu-load equilibrium, look at wider averages. XXX
6108 */
6109 busiest->load_per_task =
6110 min(busiest->load_per_task, sds->avg_load);
6111 }
6112
6113 /*
6114 * In the presence of smp nice balancing, certain scenarios can have
6115 * max load less than avg load(as we skip the groups at or below
6116 * its cpu_power, while calculating max_load..)
6117 */
6118 if (busiest->avg_load <= sds->avg_load ||
6119 local->avg_load >= sds->avg_load) {
6120 env->imbalance = 0;
6121 return fix_small_imbalance(env, sds);
6122 }
6123
6124 if (!busiest->group_imb) {
6125 /*
6126 * Don't want to pull so many tasks that a group would go idle.
6127 * Except of course for the group_imb case, since then we might
6128 * have to drop below capacity to reach cpu-load equilibrium.
6129 */
6130 load_above_capacity =
6131 (busiest->sum_nr_running - busiest->group_capacity);
6132
6133 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6134 load_above_capacity /= busiest->group_power;
6135 }
6136
6137 /*
6138 * We're trying to get all the cpus to the average_load, so we don't
6139 * want to push ourselves above the average load, nor do we wish to
6140 * reduce the max loaded cpu below the average load. At the same time,
6141 * we also don't want to reduce the group load below the group capacity
6142 * (so that we can implement power-savings policies etc). Thus we look
6143 * for the minimum possible imbalance.
6144 */
6145 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6146
6147 /* How much load to actually move to equalise the imbalance */
6148 env->imbalance = min(
6149 max_pull * busiest->group_power,
6150 (sds->avg_load - local->avg_load) * local->group_power
6151 ) / SCHED_POWER_SCALE;
6152
6153 /*
6154 * if *imbalance is less than the average load per runnable task
6155 * there is no guarantee that any tasks will be moved so we'll have
6156 * a think about bumping its value to force at least one task to be
6157 * moved
6158 */
6159 if (env->imbalance < busiest->load_per_task)
6160 return fix_small_imbalance(env, sds);
6161}
6162
6163/******* find_busiest_group() helpers end here *********************/
6164
6165/**
6166 * find_busiest_group - Returns the busiest group within the sched_domain
6167 * if there is an imbalance. If there isn't an imbalance, and
6168 * the user has opted for power-savings, it returns a group whose
6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6170 * such a group exists.
6171 *
6172 * Also calculates the amount of weighted load which should be moved
6173 * to restore balance.
6174 *
6175 * @env: The load balancing environment.
6176 *
6177 * Return: - The busiest group if imbalance exists.
6178 * - If no imbalance and user has opted for power-savings balance,
6179 * return the least loaded group whose CPUs can be
6180 * put to idle by rebalancing its tasks onto our group.
6181 */
6182static struct sched_group *find_busiest_group(struct lb_env *env)
6183{
6184 struct sg_lb_stats *local, *busiest;
6185 struct sd_lb_stats sds;
6186
6187 init_sd_lb_stats(&sds);
6188
6189 /*
6190 * Compute the various statistics relavent for load balancing at
6191 * this level.
6192 */
6193 update_sd_lb_stats(env, &sds);
6194 local = &sds.local_stat;
6195 busiest = &sds.busiest_stat;
6196
6197 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6198 check_asym_packing(env, &sds))
6199 return sds.busiest;
6200
6201 /* There is no busy sibling group to pull tasks from */
6202 if (!sds.busiest || busiest->sum_nr_running == 0)
6203 goto out_balanced;
6204
6205 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6206
6207 /*
6208 * If the busiest group is imbalanced the below checks don't
6209 * work because they assume all things are equal, which typically
6210 * isn't true due to cpus_allowed constraints and the like.
6211 */
6212 if (busiest->group_imb)
6213 goto force_balance;
6214
6215 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6216 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6217 !busiest->group_has_capacity)
6218 goto force_balance;
6219
6220 /*
6221 * If the local group is more busy than the selected busiest group
6222 * don't try and pull any tasks.
6223 */
6224 if (local->avg_load >= busiest->avg_load)
6225 goto out_balanced;
6226
6227 /*
6228 * Don't pull any tasks if this group is already above the domain
6229 * average load.
6230 */
6231 if (local->avg_load >= sds.avg_load)
6232 goto out_balanced;
6233
6234 if (env->idle == CPU_IDLE) {
6235 /*
6236 * This cpu is idle. If the busiest group load doesn't
6237 * have more tasks than the number of available cpu's and
6238 * there is no imbalance between this and busiest group
6239 * wrt to idle cpu's, it is balanced.
6240 */
6241 if ((local->idle_cpus < busiest->idle_cpus) &&
6242 busiest->sum_nr_running <= busiest->group_weight)
6243 goto out_balanced;
6244 } else {
6245 /*
6246 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6247 * imbalance_pct to be conservative.
6248 */
6249 if (100 * busiest->avg_load <=
6250 env->sd->imbalance_pct * local->avg_load)
6251 goto out_balanced;
6252 }
6253
6254force_balance:
6255 /* Looks like there is an imbalance. Compute it */
6256 calculate_imbalance(env, &sds);
6257 return sds.busiest;
6258
6259out_balanced:
6260 env->imbalance = 0;
6261 return NULL;
6262}
6263
6264/*
6265 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6266 */
6267static struct rq *find_busiest_queue(struct lb_env *env,
6268 struct sched_group *group)
6269{
6270 struct rq *busiest = NULL, *rq;
6271 unsigned long busiest_load = 0, busiest_power = 1;
6272 int i;
6273
6274 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6275 unsigned long power, capacity, wl;
6276 enum fbq_type rt;
6277
6278 rq = cpu_rq(i);
6279 rt = fbq_classify_rq(rq);
6280
6281 /*
6282 * We classify groups/runqueues into three groups:
6283 * - regular: there are !numa tasks
6284 * - remote: there are numa tasks that run on the 'wrong' node
6285 * - all: there is no distinction
6286 *
6287 * In order to avoid migrating ideally placed numa tasks,
6288 * ignore those when there's better options.
6289 *
6290 * If we ignore the actual busiest queue to migrate another
6291 * task, the next balance pass can still reduce the busiest
6292 * queue by moving tasks around inside the node.
6293 *
6294 * If we cannot move enough load due to this classification
6295 * the next pass will adjust the group classification and
6296 * allow migration of more tasks.
6297 *
6298 * Both cases only affect the total convergence complexity.
6299 */
6300 if (rt > env->fbq_type)
6301 continue;
6302
6303 power = power_of(i);
6304 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6305 if (!capacity)
6306 capacity = fix_small_capacity(env->sd, group);
6307
6308 wl = weighted_cpuload(i);
6309
6310 /*
6311 * When comparing with imbalance, use weighted_cpuload()
6312 * which is not scaled with the cpu power.
6313 */
6314 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6315 continue;
6316
6317 /*
6318 * For the load comparisons with the other cpu's, consider
6319 * the weighted_cpuload() scaled with the cpu power, so that
6320 * the load can be moved away from the cpu that is potentially
6321 * running at a lower capacity.
6322 *
6323 * Thus we're looking for max(wl_i / power_i), crosswise
6324 * multiplication to rid ourselves of the division works out
6325 * to: wl_i * power_j > wl_j * power_i; where j is our
6326 * previous maximum.
6327 */
6328 if (wl * busiest_power > busiest_load * power) {
6329 busiest_load = wl;
6330 busiest_power = power;
6331 busiest = rq;
6332 }
6333 }
6334
6335 return busiest;
6336}
6337
6338/*
6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6340 * so long as it is large enough.
6341 */
6342#define MAX_PINNED_INTERVAL 512
6343
6344/* Working cpumask for load_balance and load_balance_newidle. */
6345DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6346
6347static int need_active_balance(struct lb_env *env)
6348{
6349 struct sched_domain *sd = env->sd;
6350
6351 if (env->idle == CPU_NEWLY_IDLE) {
6352
6353 /*
6354 * ASYM_PACKING needs to force migrate tasks from busy but
6355 * higher numbered CPUs in order to pack all tasks in the
6356 * lowest numbered CPUs.
6357 */
6358 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6359 return 1;
6360 }
6361
6362 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6363}
6364
6365static int active_load_balance_cpu_stop(void *data);
6366
6367static int should_we_balance(struct lb_env *env)
6368{
6369 struct sched_group *sg = env->sd->groups;
6370 struct cpumask *sg_cpus, *sg_mask;
6371 int cpu, balance_cpu = -1;
6372
6373 /*
6374 * In the newly idle case, we will allow all the cpu's
6375 * to do the newly idle load balance.
6376 */
6377 if (env->idle == CPU_NEWLY_IDLE)
6378 return 1;
6379
6380 sg_cpus = sched_group_cpus(sg);
6381 sg_mask = sched_group_mask(sg);
6382 /* Try to find first idle cpu */
6383 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6384 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6385 continue;
6386
6387 balance_cpu = cpu;
6388 break;
6389 }
6390
6391 if (balance_cpu == -1)
6392 balance_cpu = group_balance_cpu(sg);
6393
6394 /*
6395 * First idle cpu or the first cpu(busiest) in this sched group
6396 * is eligible for doing load balancing at this and above domains.
6397 */
6398 return balance_cpu == env->dst_cpu;
6399}
6400
6401/*
6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6403 * tasks if there is an imbalance.
6404 */
6405static int load_balance(int this_cpu, struct rq *this_rq,
6406 struct sched_domain *sd, enum cpu_idle_type idle,
6407 int *continue_balancing)
6408{
6409 int ld_moved, cur_ld_moved, active_balance = 0;
6410 struct sched_domain *sd_parent = sd->parent;
6411 struct sched_group *group;
6412 struct rq *busiest;
6413 unsigned long flags;
6414 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6415
6416 struct lb_env env = {
6417 .sd = sd,
6418 .dst_cpu = this_cpu,
6419 .dst_rq = this_rq,
6420 .dst_grpmask = sched_group_cpus(sd->groups),
6421 .idle = idle,
6422 .loop_break = sched_nr_migrate_break,
6423 .cpus = cpus,
6424 .fbq_type = all,
6425 };
6426
6427 /*
6428 * For NEWLY_IDLE load_balancing, we don't need to consider
6429 * other cpus in our group
6430 */
6431 if (idle == CPU_NEWLY_IDLE)
6432 env.dst_grpmask = NULL;
6433
6434 cpumask_copy(cpus, cpu_active_mask);
6435
6436 schedstat_inc(sd, lb_count[idle]);
6437
6438redo:
6439 if (!should_we_balance(&env)) {
6440 *continue_balancing = 0;
6441 goto out_balanced;
6442 }
6443
6444 group = find_busiest_group(&env);
6445 if (!group) {
6446 schedstat_inc(sd, lb_nobusyg[idle]);
6447 goto out_balanced;
6448 }
6449
6450 busiest = find_busiest_queue(&env, group);
6451 if (!busiest) {
6452 schedstat_inc(sd, lb_nobusyq[idle]);
6453 goto out_balanced;
6454 }
6455
6456 BUG_ON(busiest == env.dst_rq);
6457
6458 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6459
6460 ld_moved = 0;
6461 if (busiest->nr_running > 1) {
6462 /*
6463 * Attempt to move tasks. If find_busiest_group has found
6464 * an imbalance but busiest->nr_running <= 1, the group is
6465 * still unbalanced. ld_moved simply stays zero, so it is
6466 * correctly treated as an imbalance.
6467 */
6468 env.flags |= LBF_ALL_PINNED;
6469 env.src_cpu = busiest->cpu;
6470 env.src_rq = busiest;
6471 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472
6473more_balance:
6474 local_irq_save(flags);
6475 double_rq_lock(env.dst_rq, busiest);
6476
6477 /*
6478 * cur_ld_moved - load moved in current iteration
6479 * ld_moved - cumulative load moved across iterations
6480 */
6481 cur_ld_moved = move_tasks(&env);
6482 ld_moved += cur_ld_moved;
6483 double_rq_unlock(env.dst_rq, busiest);
6484 local_irq_restore(flags);
6485
6486 /*
6487 * some other cpu did the load balance for us.
6488 */
6489 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6490 resched_cpu(env.dst_cpu);
6491
6492 if (env.flags & LBF_NEED_BREAK) {
6493 env.flags &= ~LBF_NEED_BREAK;
6494 goto more_balance;
6495 }
6496
6497 /*
6498 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6499 * us and move them to an alternate dst_cpu in our sched_group
6500 * where they can run. The upper limit on how many times we
6501 * iterate on same src_cpu is dependent on number of cpus in our
6502 * sched_group.
6503 *
6504 * This changes load balance semantics a bit on who can move
6505 * load to a given_cpu. In addition to the given_cpu itself
6506 * (or a ilb_cpu acting on its behalf where given_cpu is
6507 * nohz-idle), we now have balance_cpu in a position to move
6508 * load to given_cpu. In rare situations, this may cause
6509 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6510 * _independently_ and at _same_ time to move some load to
6511 * given_cpu) causing exceess load to be moved to given_cpu.
6512 * This however should not happen so much in practice and
6513 * moreover subsequent load balance cycles should correct the
6514 * excess load moved.
6515 */
6516 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6517
6518 /* Prevent to re-select dst_cpu via env's cpus */
6519 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6520
6521 env.dst_rq = cpu_rq(env.new_dst_cpu);
6522 env.dst_cpu = env.new_dst_cpu;
6523 env.flags &= ~LBF_DST_PINNED;
6524 env.loop = 0;
6525 env.loop_break = sched_nr_migrate_break;
6526
6527 /*
6528 * Go back to "more_balance" rather than "redo" since we
6529 * need to continue with same src_cpu.
6530 */
6531 goto more_balance;
6532 }
6533
6534 /*
6535 * We failed to reach balance because of affinity.
6536 */
6537 if (sd_parent) {
6538 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6539
6540 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6541 *group_imbalance = 1;
6542 } else if (*group_imbalance)
6543 *group_imbalance = 0;
6544 }
6545
6546 /* All tasks on this runqueue were pinned by CPU affinity */
6547 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6548 cpumask_clear_cpu(cpu_of(busiest), cpus);
6549 if (!cpumask_empty(cpus)) {
6550 env.loop = 0;
6551 env.loop_break = sched_nr_migrate_break;
6552 goto redo;
6553 }
6554 goto out_balanced;
6555 }
6556 }
6557
6558 if (!ld_moved) {
6559 schedstat_inc(sd, lb_failed[idle]);
6560 /*
6561 * Increment the failure counter only on periodic balance.
6562 * We do not want newidle balance, which can be very
6563 * frequent, pollute the failure counter causing
6564 * excessive cache_hot migrations and active balances.
6565 */
6566 if (idle != CPU_NEWLY_IDLE)
6567 sd->nr_balance_failed++;
6568
6569 if (need_active_balance(&env)) {
6570 raw_spin_lock_irqsave(&busiest->lock, flags);
6571
6572 /* don't kick the active_load_balance_cpu_stop,
6573 * if the curr task on busiest cpu can't be
6574 * moved to this_cpu
6575 */
6576 if (!cpumask_test_cpu(this_cpu,
6577 tsk_cpus_allowed(busiest->curr))) {
6578 raw_spin_unlock_irqrestore(&busiest->lock,
6579 flags);
6580 env.flags |= LBF_ALL_PINNED;
6581 goto out_one_pinned;
6582 }
6583
6584 /*
6585 * ->active_balance synchronizes accesses to
6586 * ->active_balance_work. Once set, it's cleared
6587 * only after active load balance is finished.
6588 */
6589 if (!busiest->active_balance) {
6590 busiest->active_balance = 1;
6591 busiest->push_cpu = this_cpu;
6592 active_balance = 1;
6593 }
6594 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6595
6596 if (active_balance) {
6597 stop_one_cpu_nowait(cpu_of(busiest),
6598 active_load_balance_cpu_stop, busiest,
6599 &busiest->active_balance_work);
6600 }
6601
6602 /*
6603 * We've kicked active balancing, reset the failure
6604 * counter.
6605 */
6606 sd->nr_balance_failed = sd->cache_nice_tries+1;
6607 }
6608 } else
6609 sd->nr_balance_failed = 0;
6610
6611 if (likely(!active_balance)) {
6612 /* We were unbalanced, so reset the balancing interval */
6613 sd->balance_interval = sd->min_interval;
6614 } else {
6615 /*
6616 * If we've begun active balancing, start to back off. This
6617 * case may not be covered by the all_pinned logic if there
6618 * is only 1 task on the busy runqueue (because we don't call
6619 * move_tasks).
6620 */
6621 if (sd->balance_interval < sd->max_interval)
6622 sd->balance_interval *= 2;
6623 }
6624
6625 goto out;
6626
6627out_balanced:
6628 schedstat_inc(sd, lb_balanced[idle]);
6629
6630 sd->nr_balance_failed = 0;
6631
6632out_one_pinned:
6633 /* tune up the balancing interval */
6634 if (((env.flags & LBF_ALL_PINNED) &&
6635 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6636 (sd->balance_interval < sd->max_interval))
6637 sd->balance_interval *= 2;
6638
6639 ld_moved = 0;
6640out:
6641 return ld_moved;
6642}
6643
6644/*
6645 * idle_balance is called by schedule() if this_cpu is about to become
6646 * idle. Attempts to pull tasks from other CPUs.
6647 */
6648static int idle_balance(struct rq *this_rq)
6649{
6650 struct sched_domain *sd;
6651 int pulled_task = 0;
6652 unsigned long next_balance = jiffies + HZ;
6653 u64 curr_cost = 0;
6654 int this_cpu = this_rq->cpu;
6655
6656 idle_enter_fair(this_rq);
6657
6658 /*
6659 * We must set idle_stamp _before_ calling idle_balance(), such that we
6660 * measure the duration of idle_balance() as idle time.
6661 */
6662 this_rq->idle_stamp = rq_clock(this_rq);
6663
6664 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6665 goto out;
6666
6667 /*
6668 * Drop the rq->lock, but keep IRQ/preempt disabled.
6669 */
6670 raw_spin_unlock(&this_rq->lock);
6671
6672 update_blocked_averages(this_cpu);
6673 rcu_read_lock();
6674 for_each_domain(this_cpu, sd) {
6675 unsigned long interval;
6676 int continue_balancing = 1;
6677 u64 t0, domain_cost;
6678
6679 if (!(sd->flags & SD_LOAD_BALANCE))
6680 continue;
6681
6682 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6683 break;
6684
6685 if (sd->flags & SD_BALANCE_NEWIDLE) {
6686 t0 = sched_clock_cpu(this_cpu);
6687
6688 /* If we've pulled tasks over stop searching: */
6689 pulled_task = load_balance(this_cpu, this_rq,
6690 sd, CPU_NEWLY_IDLE,
6691 &continue_balancing);
6692
6693 domain_cost = sched_clock_cpu(this_cpu) - t0;
6694 if (domain_cost > sd->max_newidle_lb_cost)
6695 sd->max_newidle_lb_cost = domain_cost;
6696
6697 curr_cost += domain_cost;
6698 }
6699
6700 interval = msecs_to_jiffies(sd->balance_interval);
6701 if (time_after(next_balance, sd->last_balance + interval))
6702 next_balance = sd->last_balance + interval;
6703 if (pulled_task)
6704 break;
6705 }
6706 rcu_read_unlock();
6707
6708 raw_spin_lock(&this_rq->lock);
6709
6710 if (curr_cost > this_rq->max_idle_balance_cost)
6711 this_rq->max_idle_balance_cost = curr_cost;
6712
6713 /*
6714 * While browsing the domains, we released the rq lock, a task could
6715 * have been enqueued in the meantime. Since we're not going idle,
6716 * pretend we pulled a task.
6717 */
6718 if (this_rq->cfs.h_nr_running && !pulled_task)
6719 pulled_task = 1;
6720
6721 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6722 /*
6723 * We are going idle. next_balance may be set based on
6724 * a busy processor. So reset next_balance.
6725 */
6726 this_rq->next_balance = next_balance;
6727 }
6728
6729out:
6730 /* Is there a task of a high priority class? */
6731 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6732 ((this_rq->stop && this_rq->stop->on_rq) ||
6733 this_rq->dl.dl_nr_running ||
6734 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6735 pulled_task = -1;
6736
6737 if (pulled_task) {
6738 idle_exit_fair(this_rq);
6739 this_rq->idle_stamp = 0;
6740 }
6741
6742 return pulled_task;
6743}
6744
6745/*
6746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6747 * running tasks off the busiest CPU onto idle CPUs. It requires at
6748 * least 1 task to be running on each physical CPU where possible, and
6749 * avoids physical / logical imbalances.
6750 */
6751static int active_load_balance_cpu_stop(void *data)
6752{
6753 struct rq *busiest_rq = data;
6754 int busiest_cpu = cpu_of(busiest_rq);
6755 int target_cpu = busiest_rq->push_cpu;
6756 struct rq *target_rq = cpu_rq(target_cpu);
6757 struct sched_domain *sd;
6758
6759 raw_spin_lock_irq(&busiest_rq->lock);
6760
6761 /* make sure the requested cpu hasn't gone down in the meantime */
6762 if (unlikely(busiest_cpu != smp_processor_id() ||
6763 !busiest_rq->active_balance))
6764 goto out_unlock;
6765
6766 /* Is there any task to move? */
6767 if (busiest_rq->nr_running <= 1)
6768 goto out_unlock;
6769
6770 /*
6771 * This condition is "impossible", if it occurs
6772 * we need to fix it. Originally reported by
6773 * Bjorn Helgaas on a 128-cpu setup.
6774 */
6775 BUG_ON(busiest_rq == target_rq);
6776
6777 /* move a task from busiest_rq to target_rq */
6778 double_lock_balance(busiest_rq, target_rq);
6779
6780 /* Search for an sd spanning us and the target CPU. */
6781 rcu_read_lock();
6782 for_each_domain(target_cpu, sd) {
6783 if ((sd->flags & SD_LOAD_BALANCE) &&
6784 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6785 break;
6786 }
6787
6788 if (likely(sd)) {
6789 struct lb_env env = {
6790 .sd = sd,
6791 .dst_cpu = target_cpu,
6792 .dst_rq = target_rq,
6793 .src_cpu = busiest_rq->cpu,
6794 .src_rq = busiest_rq,
6795 .idle = CPU_IDLE,
6796 };
6797
6798 schedstat_inc(sd, alb_count);
6799
6800 if (move_one_task(&env))
6801 schedstat_inc(sd, alb_pushed);
6802 else
6803 schedstat_inc(sd, alb_failed);
6804 }
6805 rcu_read_unlock();
6806 double_unlock_balance(busiest_rq, target_rq);
6807out_unlock:
6808 busiest_rq->active_balance = 0;
6809 raw_spin_unlock_irq(&busiest_rq->lock);
6810 return 0;
6811}
6812
6813static inline int on_null_domain(struct rq *rq)
6814{
6815 return unlikely(!rcu_dereference_sched(rq->sd));
6816}
6817
6818#ifdef CONFIG_NO_HZ_COMMON
6819/*
6820 * idle load balancing details
6821 * - When one of the busy CPUs notice that there may be an idle rebalancing
6822 * needed, they will kick the idle load balancer, which then does idle
6823 * load balancing for all the idle CPUs.
6824 */
6825static struct {
6826 cpumask_var_t idle_cpus_mask;
6827 atomic_t nr_cpus;
6828 unsigned long next_balance; /* in jiffy units */
6829} nohz ____cacheline_aligned;
6830
6831static inline int find_new_ilb(void)
6832{
6833 int ilb = cpumask_first(nohz.idle_cpus_mask);
6834
6835 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6836 return ilb;
6837
6838 return nr_cpu_ids;
6839}
6840
6841/*
6842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6844 * CPU (if there is one).
6845 */
6846static void nohz_balancer_kick(void)
6847{
6848 int ilb_cpu;
6849
6850 nohz.next_balance++;
6851
6852 ilb_cpu = find_new_ilb();
6853
6854 if (ilb_cpu >= nr_cpu_ids)
6855 return;
6856
6857 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6858 return;
6859 /*
6860 * Use smp_send_reschedule() instead of resched_cpu().
6861 * This way we generate a sched IPI on the target cpu which
6862 * is idle. And the softirq performing nohz idle load balance
6863 * will be run before returning from the IPI.
6864 */
6865 smp_send_reschedule(ilb_cpu);
6866 return;
6867}
6868
6869static inline void nohz_balance_exit_idle(int cpu)
6870{
6871 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6872 /*
6873 * Completely isolated CPUs don't ever set, so we must test.
6874 */
6875 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6876 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6877 atomic_dec(&nohz.nr_cpus);
6878 }
6879 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6880 }
6881}
6882
6883static inline void set_cpu_sd_state_busy(void)
6884{
6885 struct sched_domain *sd;
6886 int cpu = smp_processor_id();
6887
6888 rcu_read_lock();
6889 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6890
6891 if (!sd || !sd->nohz_idle)
6892 goto unlock;
6893 sd->nohz_idle = 0;
6894
6895 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6896unlock:
6897 rcu_read_unlock();
6898}
6899
6900void set_cpu_sd_state_idle(void)
6901{
6902 struct sched_domain *sd;
6903 int cpu = smp_processor_id();
6904
6905 rcu_read_lock();
6906 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6907
6908 if (!sd || sd->nohz_idle)
6909 goto unlock;
6910 sd->nohz_idle = 1;
6911
6912 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6913unlock:
6914 rcu_read_unlock();
6915}
6916
6917/*
6918 * This routine will record that the cpu is going idle with tick stopped.
6919 * This info will be used in performing idle load balancing in the future.
6920 */
6921void nohz_balance_enter_idle(int cpu)
6922{
6923 /*
6924 * If this cpu is going down, then nothing needs to be done.
6925 */
6926 if (!cpu_active(cpu))
6927 return;
6928
6929 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6930 return;
6931
6932 /*
6933 * If we're a completely isolated CPU, we don't play.
6934 */
6935 if (on_null_domain(cpu_rq(cpu)))
6936 return;
6937
6938 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6939 atomic_inc(&nohz.nr_cpus);
6940 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6941}
6942
6943static int sched_ilb_notifier(struct notifier_block *nfb,
6944 unsigned long action, void *hcpu)
6945{
6946 switch (action & ~CPU_TASKS_FROZEN) {
6947 case CPU_DYING:
6948 nohz_balance_exit_idle(smp_processor_id());
6949 return NOTIFY_OK;
6950 default:
6951 return NOTIFY_DONE;
6952 }
6953}
6954#endif
6955
6956static DEFINE_SPINLOCK(balancing);
6957
6958/*
6959 * Scale the max load_balance interval with the number of CPUs in the system.
6960 * This trades load-balance latency on larger machines for less cross talk.
6961 */
6962void update_max_interval(void)
6963{
6964 max_load_balance_interval = HZ*num_online_cpus()/10;
6965}
6966
6967/*
6968 * It checks each scheduling domain to see if it is due to be balanced,
6969 * and initiates a balancing operation if so.
6970 *
6971 * Balancing parameters are set up in init_sched_domains.
6972 */
6973static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6974{
6975 int continue_balancing = 1;
6976 int cpu = rq->cpu;
6977 unsigned long interval;
6978 struct sched_domain *sd;
6979 /* Earliest time when we have to do rebalance again */
6980 unsigned long next_balance = jiffies + 60*HZ;
6981 int update_next_balance = 0;
6982 int need_serialize, need_decay = 0;
6983 u64 max_cost = 0;
6984
6985 update_blocked_averages(cpu);
6986
6987 rcu_read_lock();
6988 for_each_domain(cpu, sd) {
6989 /*
6990 * Decay the newidle max times here because this is a regular
6991 * visit to all the domains. Decay ~1% per second.
6992 */
6993 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6994 sd->max_newidle_lb_cost =
6995 (sd->max_newidle_lb_cost * 253) / 256;
6996 sd->next_decay_max_lb_cost = jiffies + HZ;
6997 need_decay = 1;
6998 }
6999 max_cost += sd->max_newidle_lb_cost;
7000
7001 if (!(sd->flags & SD_LOAD_BALANCE))
7002 continue;
7003
7004 /*
7005 * Stop the load balance at this level. There is another
7006 * CPU in our sched group which is doing load balancing more
7007 * actively.
7008 */
7009 if (!continue_balancing) {
7010 if (need_decay)
7011 continue;
7012 break;
7013 }
7014
7015 interval = sd->balance_interval;
7016 if (idle != CPU_IDLE)
7017 interval *= sd->busy_factor;
7018
7019 /* scale ms to jiffies */
7020 interval = msecs_to_jiffies(interval);
7021 interval = clamp(interval, 1UL, max_load_balance_interval);
7022
7023 need_serialize = sd->flags & SD_SERIALIZE;
7024
7025 if (need_serialize) {
7026 if (!spin_trylock(&balancing))
7027 goto out;
7028 }
7029
7030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7031 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7032 /*
7033 * The LBF_DST_PINNED logic could have changed
7034 * env->dst_cpu, so we can't know our idle
7035 * state even if we migrated tasks. Update it.
7036 */
7037 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7038 }
7039 sd->last_balance = jiffies;
7040 }
7041 if (need_serialize)
7042 spin_unlock(&balancing);
7043out:
7044 if (time_after(next_balance, sd->last_balance + interval)) {
7045 next_balance = sd->last_balance + interval;
7046 update_next_balance = 1;
7047 }
7048 }
7049 if (need_decay) {
7050 /*
7051 * Ensure the rq-wide value also decays but keep it at a
7052 * reasonable floor to avoid funnies with rq->avg_idle.
7053 */
7054 rq->max_idle_balance_cost =
7055 max((u64)sysctl_sched_migration_cost, max_cost);
7056 }
7057 rcu_read_unlock();
7058
7059 /*
7060 * next_balance will be updated only when there is a need.
7061 * When the cpu is attached to null domain for ex, it will not be
7062 * updated.
7063 */
7064 if (likely(update_next_balance))
7065 rq->next_balance = next_balance;
7066}
7067
7068#ifdef CONFIG_NO_HZ_COMMON
7069/*
7070 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7071 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7072 */
7073static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7074{
7075 int this_cpu = this_rq->cpu;
7076 struct rq *rq;
7077 int balance_cpu;
7078
7079 if (idle != CPU_IDLE ||
7080 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7081 goto end;
7082
7083 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7084 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7085 continue;
7086
7087 /*
7088 * If this cpu gets work to do, stop the load balancing
7089 * work being done for other cpus. Next load
7090 * balancing owner will pick it up.
7091 */
7092 if (need_resched())
7093 break;
7094
7095 rq = cpu_rq(balance_cpu);
7096
7097 raw_spin_lock_irq(&rq->lock);
7098 update_rq_clock(rq);
7099 update_idle_cpu_load(rq);
7100 raw_spin_unlock_irq(&rq->lock);
7101
7102 rebalance_domains(rq, CPU_IDLE);
7103
7104 if (time_after(this_rq->next_balance, rq->next_balance))
7105 this_rq->next_balance = rq->next_balance;
7106 }
7107 nohz.next_balance = this_rq->next_balance;
7108end:
7109 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7110}
7111
7112/*
7113 * Current heuristic for kicking the idle load balancer in the presence
7114 * of an idle cpu is the system.
7115 * - This rq has more than one task.
7116 * - At any scheduler domain level, this cpu's scheduler group has multiple
7117 * busy cpu's exceeding the group's power.
7118 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7119 * domain span are idle.
7120 */
7121static inline int nohz_kick_needed(struct rq *rq)
7122{
7123 unsigned long now = jiffies;
7124 struct sched_domain *sd;
7125 struct sched_group_power *sgp;
7126 int nr_busy, cpu = rq->cpu;
7127
7128 if (unlikely(rq->idle_balance))
7129 return 0;
7130
7131 /*
7132 * We may be recently in ticked or tickless idle mode. At the first
7133 * busy tick after returning from idle, we will update the busy stats.
7134 */
7135 set_cpu_sd_state_busy();
7136 nohz_balance_exit_idle(cpu);
7137
7138 /*
7139 * None are in tickless mode and hence no need for NOHZ idle load
7140 * balancing.
7141 */
7142 if (likely(!atomic_read(&nohz.nr_cpus)))
7143 return 0;
7144
7145 if (time_before(now, nohz.next_balance))
7146 return 0;
7147
7148 if (rq->nr_running >= 2)
7149 goto need_kick;
7150
7151 rcu_read_lock();
7152 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7153
7154 if (sd) {
7155 sgp = sd->groups->sgp;
7156 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7157
7158 if (nr_busy > 1)
7159 goto need_kick_unlock;
7160 }
7161
7162 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7163
7164 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7165 sched_domain_span(sd)) < cpu))
7166 goto need_kick_unlock;
7167
7168 rcu_read_unlock();
7169 return 0;
7170
7171need_kick_unlock:
7172 rcu_read_unlock();
7173need_kick:
7174 return 1;
7175}
7176#else
7177static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7178#endif
7179
7180/*
7181 * run_rebalance_domains is triggered when needed from the scheduler tick.
7182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7183 */
7184static void run_rebalance_domains(struct softirq_action *h)
7185{
7186 struct rq *this_rq = this_rq();
7187 enum cpu_idle_type idle = this_rq->idle_balance ?
7188 CPU_IDLE : CPU_NOT_IDLE;
7189
7190 rebalance_domains(this_rq, idle);
7191
7192 /*
7193 * If this cpu has a pending nohz_balance_kick, then do the
7194 * balancing on behalf of the other idle cpus whose ticks are
7195 * stopped.
7196 */
7197 nohz_idle_balance(this_rq, idle);
7198}
7199
7200/*
7201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7202 */
7203void trigger_load_balance(struct rq *rq)
7204{
7205 /* Don't need to rebalance while attached to NULL domain */
7206 if (unlikely(on_null_domain(rq)))
7207 return;
7208
7209 if (time_after_eq(jiffies, rq->next_balance))
7210 raise_softirq(SCHED_SOFTIRQ);
7211#ifdef CONFIG_NO_HZ_COMMON
7212 if (nohz_kick_needed(rq))
7213 nohz_balancer_kick();
7214#endif
7215}
7216
7217static void rq_online_fair(struct rq *rq)
7218{
7219 update_sysctl();
7220}
7221
7222static void rq_offline_fair(struct rq *rq)
7223{
7224 update_sysctl();
7225
7226 /* Ensure any throttled groups are reachable by pick_next_task */
7227 unthrottle_offline_cfs_rqs(rq);
7228}
7229
7230#endif /* CONFIG_SMP */
7231
7232/*
7233 * scheduler tick hitting a task of our scheduling class:
7234 */
7235static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7236{
7237 struct cfs_rq *cfs_rq;
7238 struct sched_entity *se = &curr->se;
7239
7240 for_each_sched_entity(se) {
7241 cfs_rq = cfs_rq_of(se);
7242 entity_tick(cfs_rq, se, queued);
7243 }
7244
7245 if (numabalancing_enabled)
7246 task_tick_numa(rq, curr);
7247
7248 update_rq_runnable_avg(rq, 1);
7249}
7250
7251/*
7252 * called on fork with the child task as argument from the parent's context
7253 * - child not yet on the tasklist
7254 * - preemption disabled
7255 */
7256static void task_fork_fair(struct task_struct *p)
7257{
7258 struct cfs_rq *cfs_rq;
7259 struct sched_entity *se = &p->se, *curr;
7260 int this_cpu = smp_processor_id();
7261 struct rq *rq = this_rq();
7262 unsigned long flags;
7263
7264 raw_spin_lock_irqsave(&rq->lock, flags);
7265
7266 update_rq_clock(rq);
7267
7268 cfs_rq = task_cfs_rq(current);
7269 curr = cfs_rq->curr;
7270
7271 /*
7272 * Not only the cpu but also the task_group of the parent might have
7273 * been changed after parent->se.parent,cfs_rq were copied to
7274 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7275 * of child point to valid ones.
7276 */
7277 rcu_read_lock();
7278 __set_task_cpu(p, this_cpu);
7279 rcu_read_unlock();
7280
7281 update_curr(cfs_rq);
7282
7283 if (curr)
7284 se->vruntime = curr->vruntime;
7285 place_entity(cfs_rq, se, 1);
7286
7287 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7288 /*
7289 * Upon rescheduling, sched_class::put_prev_task() will place
7290 * 'current' within the tree based on its new key value.
7291 */
7292 swap(curr->vruntime, se->vruntime);
7293 resched_task(rq->curr);
7294 }
7295
7296 se->vruntime -= cfs_rq->min_vruntime;
7297
7298 raw_spin_unlock_irqrestore(&rq->lock, flags);
7299}
7300
7301/*
7302 * Priority of the task has changed. Check to see if we preempt
7303 * the current task.
7304 */
7305static void
7306prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7307{
7308 if (!p->se.on_rq)
7309 return;
7310
7311 /*
7312 * Reschedule if we are currently running on this runqueue and
7313 * our priority decreased, or if we are not currently running on
7314 * this runqueue and our priority is higher than the current's
7315 */
7316 if (rq->curr == p) {
7317 if (p->prio > oldprio)
7318 resched_task(rq->curr);
7319 } else
7320 check_preempt_curr(rq, p, 0);
7321}
7322
7323static void switched_from_fair(struct rq *rq, struct task_struct *p)
7324{
7325 struct sched_entity *se = &p->se;
7326 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7327
7328 /*
7329 * Ensure the task's vruntime is normalized, so that when it's
7330 * switched back to the fair class the enqueue_entity(.flags=0) will
7331 * do the right thing.
7332 *
7333 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7334 * have normalized the vruntime, if it's !on_rq, then only when
7335 * the task is sleeping will it still have non-normalized vruntime.
7336 */
7337 if (!p->on_rq && p->state != TASK_RUNNING) {
7338 /*
7339 * Fix up our vruntime so that the current sleep doesn't
7340 * cause 'unlimited' sleep bonus.
7341 */
7342 place_entity(cfs_rq, se, 0);
7343 se->vruntime -= cfs_rq->min_vruntime;
7344 }
7345
7346#ifdef CONFIG_SMP
7347 /*
7348 * Remove our load from contribution when we leave sched_fair
7349 * and ensure we don't carry in an old decay_count if we
7350 * switch back.
7351 */
7352 if (se->avg.decay_count) {
7353 __synchronize_entity_decay(se);
7354 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7355 }
7356#endif
7357}
7358
7359/*
7360 * We switched to the sched_fair class.
7361 */
7362static void switched_to_fair(struct rq *rq, struct task_struct *p)
7363{
7364 struct sched_entity *se = &p->se;
7365#ifdef CONFIG_FAIR_GROUP_SCHED
7366 /*
7367 * Since the real-depth could have been changed (only FAIR
7368 * class maintain depth value), reset depth properly.
7369 */
7370 se->depth = se->parent ? se->parent->depth + 1 : 0;
7371#endif
7372 if (!se->on_rq)
7373 return;
7374
7375 /*
7376 * We were most likely switched from sched_rt, so
7377 * kick off the schedule if running, otherwise just see
7378 * if we can still preempt the current task.
7379 */
7380 if (rq->curr == p)
7381 resched_task(rq->curr);
7382 else
7383 check_preempt_curr(rq, p, 0);
7384}
7385
7386/* Account for a task changing its policy or group.
7387 *
7388 * This routine is mostly called to set cfs_rq->curr field when a task
7389 * migrates between groups/classes.
7390 */
7391static void set_curr_task_fair(struct rq *rq)
7392{
7393 struct sched_entity *se = &rq->curr->se;
7394
7395 for_each_sched_entity(se) {
7396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7397
7398 set_next_entity(cfs_rq, se);
7399 /* ensure bandwidth has been allocated on our new cfs_rq */
7400 account_cfs_rq_runtime(cfs_rq, 0);
7401 }
7402}
7403
7404void init_cfs_rq(struct cfs_rq *cfs_rq)
7405{
7406 cfs_rq->tasks_timeline = RB_ROOT;
7407 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7408#ifndef CONFIG_64BIT
7409 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7410#endif
7411#ifdef CONFIG_SMP
7412 atomic64_set(&cfs_rq->decay_counter, 1);
7413 atomic_long_set(&cfs_rq->removed_load, 0);
7414#endif
7415}
7416
7417#ifdef CONFIG_FAIR_GROUP_SCHED
7418static void task_move_group_fair(struct task_struct *p, int on_rq)
7419{
7420 struct sched_entity *se = &p->se;
7421 struct cfs_rq *cfs_rq;
7422
7423 /*
7424 * If the task was not on the rq at the time of this cgroup movement
7425 * it must have been asleep, sleeping tasks keep their ->vruntime
7426 * absolute on their old rq until wakeup (needed for the fair sleeper
7427 * bonus in place_entity()).
7428 *
7429 * If it was on the rq, we've just 'preempted' it, which does convert
7430 * ->vruntime to a relative base.
7431 *
7432 * Make sure both cases convert their relative position when migrating
7433 * to another cgroup's rq. This does somewhat interfere with the
7434 * fair sleeper stuff for the first placement, but who cares.
7435 */
7436 /*
7437 * When !on_rq, vruntime of the task has usually NOT been normalized.
7438 * But there are some cases where it has already been normalized:
7439 *
7440 * - Moving a forked child which is waiting for being woken up by
7441 * wake_up_new_task().
7442 * - Moving a task which has been woken up by try_to_wake_up() and
7443 * waiting for actually being woken up by sched_ttwu_pending().
7444 *
7445 * To prevent boost or penalty in the new cfs_rq caused by delta
7446 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7447 */
7448 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7449 on_rq = 1;
7450
7451 if (!on_rq)
7452 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7453 set_task_rq(p, task_cpu(p));
7454 se->depth = se->parent ? se->parent->depth + 1 : 0;
7455 if (!on_rq) {
7456 cfs_rq = cfs_rq_of(se);
7457 se->vruntime += cfs_rq->min_vruntime;
7458#ifdef CONFIG_SMP
7459 /*
7460 * migrate_task_rq_fair() will have removed our previous
7461 * contribution, but we must synchronize for ongoing future
7462 * decay.
7463 */
7464 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7465 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7466#endif
7467 }
7468}
7469
7470void free_fair_sched_group(struct task_group *tg)
7471{
7472 int i;
7473
7474 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7475
7476 for_each_possible_cpu(i) {
7477 if (tg->cfs_rq)
7478 kfree(tg->cfs_rq[i]);
7479 if (tg->se)
7480 kfree(tg->se[i]);
7481 }
7482
7483 kfree(tg->cfs_rq);
7484 kfree(tg->se);
7485}
7486
7487int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7488{
7489 struct cfs_rq *cfs_rq;
7490 struct sched_entity *se;
7491 int i;
7492
7493 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7494 if (!tg->cfs_rq)
7495 goto err;
7496 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7497 if (!tg->se)
7498 goto err;
7499
7500 tg->shares = NICE_0_LOAD;
7501
7502 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7503
7504 for_each_possible_cpu(i) {
7505 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7506 GFP_KERNEL, cpu_to_node(i));
7507 if (!cfs_rq)
7508 goto err;
7509
7510 se = kzalloc_node(sizeof(struct sched_entity),
7511 GFP_KERNEL, cpu_to_node(i));
7512 if (!se)
7513 goto err_free_rq;
7514
7515 init_cfs_rq(cfs_rq);
7516 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7517 }
7518
7519 return 1;
7520
7521err_free_rq:
7522 kfree(cfs_rq);
7523err:
7524 return 0;
7525}
7526
7527void unregister_fair_sched_group(struct task_group *tg, int cpu)
7528{
7529 struct rq *rq = cpu_rq(cpu);
7530 unsigned long flags;
7531
7532 /*
7533 * Only empty task groups can be destroyed; so we can speculatively
7534 * check on_list without danger of it being re-added.
7535 */
7536 if (!tg->cfs_rq[cpu]->on_list)
7537 return;
7538
7539 raw_spin_lock_irqsave(&rq->lock, flags);
7540 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7541 raw_spin_unlock_irqrestore(&rq->lock, flags);
7542}
7543
7544void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7545 struct sched_entity *se, int cpu,
7546 struct sched_entity *parent)
7547{
7548 struct rq *rq = cpu_rq(cpu);
7549
7550 cfs_rq->tg = tg;
7551 cfs_rq->rq = rq;
7552 init_cfs_rq_runtime(cfs_rq);
7553
7554 tg->cfs_rq[cpu] = cfs_rq;
7555 tg->se[cpu] = se;
7556
7557 /* se could be NULL for root_task_group */
7558 if (!se)
7559 return;
7560
7561 if (!parent) {
7562 se->cfs_rq = &rq->cfs;
7563 se->depth = 0;
7564 } else {
7565 se->cfs_rq = parent->my_q;
7566 se->depth = parent->depth + 1;
7567 }
7568
7569 se->my_q = cfs_rq;
7570 /* guarantee group entities always have weight */
7571 update_load_set(&se->load, NICE_0_LOAD);
7572 se->parent = parent;
7573}
7574
7575static DEFINE_MUTEX(shares_mutex);
7576
7577int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7578{
7579 int i;
7580 unsigned long flags;
7581
7582 /*
7583 * We can't change the weight of the root cgroup.
7584 */
7585 if (!tg->se[0])
7586 return -EINVAL;
7587
7588 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7589
7590 mutex_lock(&shares_mutex);
7591 if (tg->shares == shares)
7592 goto done;
7593
7594 tg->shares = shares;
7595 for_each_possible_cpu(i) {
7596 struct rq *rq = cpu_rq(i);
7597 struct sched_entity *se;
7598
7599 se = tg->se[i];
7600 /* Propagate contribution to hierarchy */
7601 raw_spin_lock_irqsave(&rq->lock, flags);
7602
7603 /* Possible calls to update_curr() need rq clock */
7604 update_rq_clock(rq);
7605 for_each_sched_entity(se)
7606 update_cfs_shares(group_cfs_rq(se));
7607 raw_spin_unlock_irqrestore(&rq->lock, flags);
7608 }
7609
7610done:
7611 mutex_unlock(&shares_mutex);
7612 return 0;
7613}
7614#else /* CONFIG_FAIR_GROUP_SCHED */
7615
7616void free_fair_sched_group(struct task_group *tg) { }
7617
7618int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7619{
7620 return 1;
7621}
7622
7623void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7624
7625#endif /* CONFIG_FAIR_GROUP_SCHED */
7626
7627
7628static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7629{
7630 struct sched_entity *se = &task->se;
7631 unsigned int rr_interval = 0;
7632
7633 /*
7634 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7635 * idle runqueue:
7636 */
7637 if (rq->cfs.load.weight)
7638 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7639
7640 return rr_interval;
7641}
7642
7643/*
7644 * All the scheduling class methods:
7645 */
7646const struct sched_class fair_sched_class = {
7647 .next = &idle_sched_class,
7648 .enqueue_task = enqueue_task_fair,
7649 .dequeue_task = dequeue_task_fair,
7650 .yield_task = yield_task_fair,
7651 .yield_to_task = yield_to_task_fair,
7652
7653 .check_preempt_curr = check_preempt_wakeup,
7654
7655 .pick_next_task = pick_next_task_fair,
7656 .put_prev_task = put_prev_task_fair,
7657
7658#ifdef CONFIG_SMP
7659 .select_task_rq = select_task_rq_fair,
7660 .migrate_task_rq = migrate_task_rq_fair,
7661
7662 .rq_online = rq_online_fair,
7663 .rq_offline = rq_offline_fair,
7664
7665 .task_waking = task_waking_fair,
7666#endif
7667
7668 .set_curr_task = set_curr_task_fair,
7669 .task_tick = task_tick_fair,
7670 .task_fork = task_fork_fair,
7671
7672 .prio_changed = prio_changed_fair,
7673 .switched_from = switched_from_fair,
7674 .switched_to = switched_to_fair,
7675
7676 .get_rr_interval = get_rr_interval_fair,
7677
7678#ifdef CONFIG_FAIR_GROUP_SCHED
7679 .task_move_group = task_move_group_fair,
7680#endif
7681};
7682
7683#ifdef CONFIG_SCHED_DEBUG
7684void print_cfs_stats(struct seq_file *m, int cpu)
7685{
7686 struct cfs_rq *cfs_rq;
7687
7688 rcu_read_lock();
7689 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7690 print_cfs_rq(m, cpu, cfs_rq);
7691 rcu_read_unlock();
7692}
7693#endif
7694
7695__init void init_sched_fair_class(void)
7696{
7697#ifdef CONFIG_SMP
7698 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7699
7700#ifdef CONFIG_NO_HZ_COMMON
7701 nohz.next_balance = jiffies;
7702 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7703 cpu_notifier(sched_ilb_notifier, 0);
7704#endif
7705#endif /* SMP */
7706
7707}
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23#include <linux/sched.h>
24#include <linux/latencytop.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65/*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75static unsigned int sched_nr_latency = 8;
76
77/*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83/*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static unsigned int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
182#define WMULT_CONST (~0U)
183#define WMULT_SHIFT 32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
201
202/*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251 return cfs_rq->rq;
252}
253
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
321static inline struct cfs_rq *
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
373
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
377}
378
379#define entity_is_task(se) 1
380
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385{
386 return &task_rq(p)->cfs;
387}
388
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
426static __always_inline
427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434{
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440}
441
442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
481}
482
483/*
484 * Enqueue an entity into the rb-tree:
485 */
486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520}
521
522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523{
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532}
533
534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535{
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542}
543
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556{
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563}
564
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572{
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587#undef WRT_SYSCTL
588
589 return 0;
590}
591#endif
592
593/*
594 * delta /= w
595 */
596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597{
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602}
603
604/*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612static u64 __sched_period(unsigned long nr_running)
613{
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618}
619
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646}
647
648/*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654{
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656}
657
658#ifdef CONFIG_SMP
659static int select_idle_sibling(struct task_struct *p, int cpu);
660static unsigned long task_h_load(struct task_struct *p);
661
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
673{
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688}
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692#else
693void init_entity_runnable_average(struct sched_entity *se)
694{
695}
696#endif
697
698/*
699 * Update the current task's runtime statistics.
700 */
701static void update_curr(struct cfs_rq *cfs_rq)
702{
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734}
735
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
741#ifdef CONFIG_SCHEDSTATS
742static inline void
743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744{
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
752}
753
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
781
782/*
783 * Task is being enqueued - update stats:
784 */
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787{
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
792 if (se != cfs_rq->curr)
793 update_stats_wait_start(cfs_rq, se);
794}
795
796static inline void
797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798{
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
803 if (se != cfs_rq->curr)
804 update_stats_wait_end(cfs_rq, se);
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
837}
838#endif
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845{
846 /*
847 * We are starting a new run period:
848 */
849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
850}
851
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
856#ifdef CONFIG_NUMA_BALANCING
857/*
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
861 */
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
867
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
934 pid_t gid;
935 int active_nodes;
936
937 struct rcu_head rcu;
938 unsigned long total_faults;
939 unsigned long max_faults_cpu;
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
945 unsigned long *faults_cpu;
946 unsigned long faults[0];
947};
948
949/* Shared or private faults. */
950#define NR_NUMA_HINT_FAULT_TYPES 2
951
952/* Memory and CPU locality */
953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955/* Averaged statistics, and temporary buffers. */
956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
958pid_t task_numa_group_id(struct task_struct *p)
959{
960 return p->numa_group ? p->numa_group->gid : 0;
961}
962
963/*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970{
971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972}
973
974static inline unsigned long task_faults(struct task_struct *p, int nid)
975{
976 if (!p->numa_faults)
977 return 0;
978
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981}
982
983static inline unsigned long group_faults(struct task_struct *p, int nid)
984{
985 if (!p->numa_group)
986 return 0;
987
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990}
991
992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993{
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996}
997
998/*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013{
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073}
1074
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
1083{
1084 unsigned long faults, total_faults;
1085
1086 if (!p->numa_faults)
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
1094 faults = task_faults(p, nid);
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
1097 return 1000 * faults / total_faults;
1098}
1099
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
1102{
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
1111 return 0;
1112
1113 faults = group_faults(p, nid);
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
1116 return 1000 * faults / total_faults;
1117}
1118
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121{
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
1161 */
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
1164 return true;
1165
1166 /*
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
1173 */
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176}
1177
1178static unsigned long weighted_cpuload(const int cpu);
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
1181static unsigned long capacity_of(int cpu);
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184/* Cached statistics for all CPUs within a node */
1185struct numa_stats {
1186 unsigned long nr_running;
1187 unsigned long load;
1188
1189 /* Total compute capacity of CPUs on a node */
1190 unsigned long compute_capacity;
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
1193 unsigned long task_capacity;
1194 int has_free_capacity;
1195};
1196
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
1211 ns->compute_capacity += capacity_of(cpu);
1212
1213 cpus++;
1214 }
1215
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
1223 */
1224 if (!cpus)
1225 return;
1226
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234}
1235
1236struct task_numa_env {
1237 struct task_struct *p;
1238
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
1241
1242 struct numa_stats src_stats, dst_stats;
1243
1244 int imbalance_pct;
1245 int dist;
1246
1247 struct task_struct *best_task;
1248 long best_imp;
1249 int best_cpu;
1250};
1251
1252static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254{
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261}
1262
1263static bool load_too_imbalanced(long src_load, long dst_load,
1264 struct task_numa_env *env)
1265{
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
1279
1280 /* We care about the slope of the imbalance, not the direction. */
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
1283
1284 /* Is the difference below the threshold? */
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
1292 * Compare it with the old imbalance.
1293 */
1294 orig_src_load = env->src_stats.load;
1295 orig_dst_load = env->dst_stats.load;
1296
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
1299
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
1305}
1306
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
1315{
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
1319 long src_load, dst_load;
1320 long load;
1321 long imp = env->p->numa_group ? groupimp : taskimp;
1322 long moveimp = imp;
1323 int dist = env->dist;
1324 bool assigned = false;
1325
1326 rcu_read_lock();
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1331 * No need to move the exiting task or idle task.
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 cur = NULL;
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1348 raw_spin_unlock_irq(&dst_rq->lock);
1349
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
1371 * in any group then look only at task weights.
1372 */
1373 if (cur->numa_group == env->p->numa_group) {
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
1382 } else {
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
1388 if (cur->numa_group)
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
1391 else
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
1394 }
1395 }
1396
1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 !env->dst_stats.has_free_capacity)
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417balance:
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
1421
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1431 put_task_struct(cur);
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
1440 if (cur) {
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
1444 }
1445
1446 if (load_too_imbalanced(src_load, dst_load, env))
1447 goto unlock;
1448
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456assign:
1457 assigned = true;
1458 task_numa_assign(env, cur, imp);
1459unlock:
1460 rcu_read_unlock();
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
1467}
1468
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
1471{
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
1480 task_numa_compare(env, taskimp, groupimp);
1481 }
1482}
1483
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
1504 return true;
1505
1506 return false;
1507}
1508
1509static int task_numa_migrate(struct task_struct *p)
1510{
1511 struct task_numa_env env = {
1512 .p = p,
1513
1514 .src_cpu = task_cpu(p),
1515 .src_nid = task_node(p),
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
1521 .best_cpu = -1,
1522 };
1523 struct sched_domain *sd;
1524 unsigned long taskweight, groupweight;
1525 int nid, ret, dist;
1526 long taskimp, groupimp;
1527
1528 /*
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
1535 */
1536 rcu_read_lock();
1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 rcu_read_unlock();
1541
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
1549 p->numa_preferred_nid = task_node(p);
1550 return -EINVAL;
1551 }
1552
1553 env.dst_nid = p->numa_preferred_nid;
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562 /* Try to find a spot on the preferred nid. */
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
1577
1578 dist = node_distance(env.src_nid, env.dst_nid);
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
1584
1585 /* Only consider nodes where both task and groups benefit */
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
1588 if (taskimp < 0 && groupimp < 0)
1589 continue;
1590
1591 env.dist = dist;
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
1596 }
1597 }
1598
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
1607 if (p->numa_group) {
1608 struct numa_group *ng = p->numa_group;
1609
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
1622
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
1629 if (env.best_task == NULL) {
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 put_task_struct(env.best_task);
1640 return ret;
1641}
1642
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
1646 unsigned long interval = HZ;
1647
1648 /* This task has no NUMA fault statistics yet */
1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 return;
1651
1652 /* Periodically retry migrating the task to the preferred node */
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
1655
1656 /* Success if task is already running on preferred CPU */
1657 if (task_node(p) == p->numa_preferred_nid)
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
1661 task_numa_migrate(p);
1662}
1663
1664/*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
1669 */
1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671{
1672 unsigned long faults, max_faults = 0;
1673 int nid, active_nodes = 0;
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
1685 }
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
1689}
1690
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698#define NUMA_PERIOD_SLOTS 10
1699#define NUMA_PERIOD_THRESHOLD 7
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709{
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
1723 */
1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793}
1794
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
1842 nodemask_t max_group = NODE_MASK_NONE;
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
1876 if (!max_faults)
1877 break;
1878 nodes = max_group;
1879 }
1880 return nid;
1881}
1882
1883static void task_numa_placement(struct task_struct *p)
1884{
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
1887 unsigned long fault_types[2] = { 0, 0 };
1888 unsigned long total_faults;
1889 u64 runtime, period;
1890 spinlock_t *group_lock = NULL;
1891
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
1897 seq = READ_ONCE(p->mm->numa_scan_seq);
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
1901 p->numa_scan_period_max = task_scan_max(p);
1902
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
1910 spin_lock_irq(group_lock);
1911 }
1912
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 unsigned long faults = 0, group_faults = 0;
1918 int priv;
1919
1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 long diff, f_diff, f_weight;
1922
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928 /* Decay existing window, copy faults since last scan */
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
1932
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 (total_faults + 1);
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
1945
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
1949 p->total_numa_faults += diff;
1950 if (p->numa_group) {
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 p->numa_group->total_faults += diff;
1961 group_faults += p->numa_group->faults[mem_idx];
1962 }
1963 }
1964
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978 if (p->numa_group) {
1979 numa_group_count_active_nodes(p->numa_group);
1980 spin_unlock_irq(group_lock);
1981 max_nid = preferred_group_nid(p, max_group_nid);
1982 }
1983
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
1991 }
1992}
1993
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996 return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003}
2004
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
2007{
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
2016 4*nr_node_ids*sizeof(unsigned long);
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
2025 spin_lock_init(&grp->lock);
2026 grp->gid = p->pid;
2027 /* Second half of the array tracks nids where faults happen */
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
2030
2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 grp->faults[i] = p->numa_faults[i];
2033
2034 grp->total_faults = p->total_numa_faults;
2035
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
2044 goto no_join;
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
2048 goto no_join;
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
2052 goto no_join;
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
2059 goto no_join;
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 goto no_join;
2066
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
2074
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
2078 if (join && !get_numa_group(grp))
2079 goto no_join;
2080
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
2092 }
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
2095
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
2100 spin_unlock_irq(&grp->lock);
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
2105 return;
2106
2107no_join:
2108 rcu_read_unlock();
2109 return;
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114 struct numa_group *grp = p->numa_group;
2115 void *numa_faults = p->numa_faults;
2116 unsigned long flags;
2117 int i;
2118
2119 if (grp) {
2120 spin_lock_irqsave(&grp->lock, flags);
2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 grp->faults[i] -= p->numa_faults[i];
2123 grp->total_faults -= p->total_numa_faults;
2124
2125 grp->nr_tasks--;
2126 spin_unlock_irqrestore(&grp->lock, flags);
2127 RCU_INIT_POINTER(p->numa_group, NULL);
2128 put_numa_group(grp);
2129 }
2130
2131 p->numa_faults = NULL;
2132 kfree(numa_faults);
2133}
2134
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139{
2140 struct task_struct *p = current;
2141 bool migrated = flags & TNF_MIGRATED;
2142 int cpu_node = task_node(current);
2143 int local = !!(flags & TNF_FAULT_LOCAL);
2144 struct numa_group *ng;
2145 int priv;
2146
2147 if (!static_branch_likely(&sched_numa_balancing))
2148 return;
2149
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
2154 /* Allocate buffer to track faults on a per-node basis */
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
2161 return;
2162
2163 p->total_numa_faults = 0;
2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 }
2166
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
2175 if (!priv && !(flags & TNF_NO_GROUP))
2176 task_numa_group(p, last_cpupid, flags, &priv);
2177 }
2178
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
2189 local = 1;
2190
2191 task_numa_placement(p);
2192
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
2198 numa_migrate_preferred(p);
2199
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
2204
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 p->numa_faults_locality[local] += pages;
2208}
2209
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 p->mm->numa_scan_offset = 0;
2222}
2223
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
2233 u64 runtime = p->se.sum_exec_runtime;
2234 struct vm_area_struct *vma;
2235 unsigned long start, end;
2236 unsigned long nr_pte_updates = 0;
2237 long pages, virtpages;
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
2253 if (!mm->numa_next_scan) {
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 }
2257
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
2269
2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 virtpages = pages * 8; /* Scan up to this much virtual space */
2284 if (!pages)
2285 return;
2286
2287
2288 down_read(&mm->mmap_sem);
2289 vma = find_vma(mm, start);
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
2292 start = 0;
2293 vma = mm->mmap;
2294 }
2295 for (; vma; vma = vma->vm_next) {
2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 continue;
2299 }
2300
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
2317
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
2322 nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324 /*
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
2334 virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336 start = end;
2337 if (pages <= 0 || virtpages <= 0)
2338 goto out;
2339
2340 cond_resched();
2341 } while (end != vma->vm_end);
2342 }
2343
2344out:
2345 /*
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
2350 */
2351 if (vma)
2352 mm->numa_scan_offset = start;
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392 if (now > curr->node_stamp + period) {
2393 if (!curr->node_stamp)
2394 curr->numa_scan_period = task_scan_min(curr);
2395 curr->node_stamp += period;
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
2415#endif /* CONFIG_NUMA_BALANCING */
2416
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420 update_load_add(&cfs_rq->load, se->load.weight);
2421 if (!parent_entity(se))
2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423#ifdef CONFIG_SMP
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
2430#endif
2431 cfs_rq->nr_running++;
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437 update_load_sub(&cfs_rq->load, se->load.weight);
2438 if (!parent_entity(se))
2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 list_del_init(&se->group_node);
2443 }
2444 cfs_rq->nr_running--;
2445}
2446
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451 long tg_weight;
2452
2453 /*
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
2457 */
2458 tg_weight = atomic_long_read(&tg->load_avg);
2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 tg_weight += cfs_rq->load.weight;
2461
2462 return tg_weight;
2463}
2464
2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466{
2467 long tg_weight, load, shares;
2468
2469 tg_weight = calc_tg_weight(tg, cfs_rq);
2470 load = cfs_rq->load.weight;
2471
2472 shares = (tg->shares * load);
2473 if (tg_weight)
2474 shares /= tg_weight;
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482}
2483# else /* CONFIG_SMP */
2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485{
2486 return tg->shares;
2487}
2488# endif /* CONFIG_SMP */
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491{
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2496 account_entity_dequeue(cfs_rq, se);
2497 }
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503}
2504
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508{
2509 struct task_group *tg;
2510 struct sched_entity *se;
2511 long shares;
2512
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 if (!se || throttled_hierarchy(cfs_rq))
2516 return;
2517#ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520#endif
2521 shares = calc_cfs_shares(cfs_rq, tg);
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531#ifdef CONFIG_SMP
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
2552/*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
2578 }
2579
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
2610}
2611
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649{
2650 u64 delta, scaled_delta, periods;
2651 u32 contrib;
2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 unsigned long scale_freq, scale_cpu;
2654
2655 delta = now - sa->last_update_time;
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
2661 sa->last_update_time = now;
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
2672 sa->last_update_time = now;
2673
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677 /* delta_w is the amount already accumulated against our next period */
2678 delta_w = sa->period_contrib;
2679 if (delta + delta_w >= 1024) {
2680 decayed = 1;
2681
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 if (weight) {
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
2698 }
2699 if (running)
2700 sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 contrib = __compute_runnable_contrib(periods);
2717 contrib = cap_scale(contrib, scale_freq);
2718 if (weight) {
2719 sa->load_sum += weight * contrib;
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
2723 if (running)
2724 sa->util_sum += contrib * scale_cpu;
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
2728 scaled_delta = cap_scale(delta, scale_freq);
2729 if (weight) {
2730 sa->load_sum += weight * scaled_delta;
2731 if (cfs_rq)
2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 }
2734 if (running)
2735 sa->util_sum += scaled_delta * scale_cpu;
2736
2737 sa->period_contrib += delta;
2738
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 }
2747
2748 return decayed;
2749}
2750
2751#ifdef CONFIG_FAIR_GROUP_SCHED
2752/*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757{
2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 }
2770}
2771
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809#else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812#endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817}
2818#else /* CONFIG_FAIR_GROUP_SCHED */
2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820#endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826{
2827 struct sched_avg *sa = &cfs_rq->avg;
2828 int decayed, removed = 0;
2829
2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 removed = 1;
2835 }
2836
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 }
2842
2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845
2846#ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
2850
2851 return decayed || removed;
2852}
2853
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856{
2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 u64 now = cfs_rq_clock_task(cfs_rq);
2859 struct rq *rq = rq_of(cfs_rq);
2860 int cpu = cpu_of(rq);
2861
2862 /*
2863 * Track task load average for carrying it to new CPU after migrated, and
2864 * track group sched_entity load average for task_h_load calc in migration
2865 */
2866 __update_load_avg(now, cpu, &se->avg,
2867 se->on_rq * scale_load_down(se->load.weight),
2868 cfs_rq->curr == se, NULL);
2869
2870 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 update_tg_load_avg(cfs_rq, 0);
2872
2873 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 unsigned long max = rq->cpu_capacity_orig;
2875
2876 /*
2877 * There are a few boundary cases this might miss but it should
2878 * get called often enough that that should (hopefully) not be
2879 * a real problem -- added to that it only calls on the local
2880 * CPU, so if we enqueue remotely we'll miss an update, but
2881 * the next tick/schedule should update.
2882 *
2883 * It will not get called when we go idle, because the idle
2884 * thread is a different class (!fair), nor will the utilization
2885 * number include things like RT tasks.
2886 *
2887 * As is, the util number is not freq-invariant (we'd have to
2888 * implement arch_scale_freq_capacity() for that).
2889 *
2890 * See cpu_util().
2891 */
2892 cpufreq_update_util(rq_clock(rq),
2893 min(cfs_rq->avg.util_avg, max), max);
2894 }
2895}
2896
2897static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898{
2899 if (!sched_feat(ATTACH_AGE_LOAD))
2900 goto skip_aging;
2901
2902 /*
2903 * If we got migrated (either between CPUs or between cgroups) we'll
2904 * have aged the average right before clearing @last_update_time.
2905 */
2906 if (se->avg.last_update_time) {
2907 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 &se->avg, 0, 0, NULL);
2909
2910 /*
2911 * XXX: we could have just aged the entire load away if we've been
2912 * absent from the fair class for too long.
2913 */
2914 }
2915
2916skip_aging:
2917 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 cfs_rq->avg.load_avg += se->avg.load_avg;
2919 cfs_rq->avg.load_sum += se->avg.load_sum;
2920 cfs_rq->avg.util_avg += se->avg.util_avg;
2921 cfs_rq->avg.util_sum += se->avg.util_sum;
2922}
2923
2924static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925{
2926 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 cfs_rq->curr == se, NULL);
2929
2930 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934}
2935
2936/* Add the load generated by se into cfs_rq's load average */
2937static inline void
2938enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939{
2940 struct sched_avg *sa = &se->avg;
2941 u64 now = cfs_rq_clock_task(cfs_rq);
2942 int migrated, decayed;
2943
2944 migrated = !sa->last_update_time;
2945 if (!migrated) {
2946 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947 se->on_rq * scale_load_down(se->load.weight),
2948 cfs_rq->curr == se, NULL);
2949 }
2950
2951 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952
2953 cfs_rq->runnable_load_avg += sa->load_avg;
2954 cfs_rq->runnable_load_sum += sa->load_sum;
2955
2956 if (migrated)
2957 attach_entity_load_avg(cfs_rq, se);
2958
2959 if (decayed || migrated)
2960 update_tg_load_avg(cfs_rq, 0);
2961}
2962
2963/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964static inline void
2965dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966{
2967 update_load_avg(se, 1);
2968
2969 cfs_rq->runnable_load_avg =
2970 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 cfs_rq->runnable_load_sum =
2972 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973}
2974
2975#ifndef CONFIG_64BIT
2976static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977{
2978 u64 last_update_time_copy;
2979 u64 last_update_time;
2980
2981 do {
2982 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 smp_rmb();
2984 last_update_time = cfs_rq->avg.last_update_time;
2985 } while (last_update_time != last_update_time_copy);
2986
2987 return last_update_time;
2988}
2989#else
2990static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991{
2992 return cfs_rq->avg.last_update_time;
2993}
2994#endif
2995
2996/*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
2999 */
3000void remove_entity_load_avg(struct sched_entity *se)
3001{
3002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 u64 last_update_time;
3004
3005 /*
3006 * Newly created task or never used group entity should not be removed
3007 * from its (source) cfs_rq
3008 */
3009 if (se->avg.last_update_time == 0)
3010 return;
3011
3012 last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
3014 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017}
3018
3019static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020{
3021 return cfs_rq->runnable_load_avg;
3022}
3023
3024static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025{
3026 return cfs_rq->avg.load_avg;
3027}
3028
3029static int idle_balance(struct rq *this_rq);
3030
3031#else /* CONFIG_SMP */
3032
3033static inline void update_load_avg(struct sched_entity *se, int not_used)
3034{
3035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3036 struct rq *rq = rq_of(cfs_rq);
3037
3038 cpufreq_trigger_update(rq_clock(rq));
3039}
3040
3041static inline void
3042enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3043static inline void
3044dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3045static inline void remove_entity_load_avg(struct sched_entity *se) {}
3046
3047static inline void
3048attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3049static inline void
3050detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3051
3052static inline int idle_balance(struct rq *rq)
3053{
3054 return 0;
3055}
3056
3057#endif /* CONFIG_SMP */
3058
3059static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061#ifdef CONFIG_SCHEDSTATS
3062 struct task_struct *tsk = NULL;
3063
3064 if (entity_is_task(se))
3065 tsk = task_of(se);
3066
3067 if (se->statistics.sleep_start) {
3068 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3069
3070 if ((s64)delta < 0)
3071 delta = 0;
3072
3073 if (unlikely(delta > se->statistics.sleep_max))
3074 se->statistics.sleep_max = delta;
3075
3076 se->statistics.sleep_start = 0;
3077 se->statistics.sum_sleep_runtime += delta;
3078
3079 if (tsk) {
3080 account_scheduler_latency(tsk, delta >> 10, 1);
3081 trace_sched_stat_sleep(tsk, delta);
3082 }
3083 }
3084 if (se->statistics.block_start) {
3085 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3086
3087 if ((s64)delta < 0)
3088 delta = 0;
3089
3090 if (unlikely(delta > se->statistics.block_max))
3091 se->statistics.block_max = delta;
3092
3093 se->statistics.block_start = 0;
3094 se->statistics.sum_sleep_runtime += delta;
3095
3096 if (tsk) {
3097 if (tsk->in_iowait) {
3098 se->statistics.iowait_sum += delta;
3099 se->statistics.iowait_count++;
3100 trace_sched_stat_iowait(tsk, delta);
3101 }
3102
3103 trace_sched_stat_blocked(tsk, delta);
3104
3105 /*
3106 * Blocking time is in units of nanosecs, so shift by
3107 * 20 to get a milliseconds-range estimation of the
3108 * amount of time that the task spent sleeping:
3109 */
3110 if (unlikely(prof_on == SLEEP_PROFILING)) {
3111 profile_hits(SLEEP_PROFILING,
3112 (void *)get_wchan(tsk),
3113 delta >> 20);
3114 }
3115 account_scheduler_latency(tsk, delta >> 10, 0);
3116 }
3117 }
3118#endif
3119}
3120
3121static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3122{
3123#ifdef CONFIG_SCHED_DEBUG
3124 s64 d = se->vruntime - cfs_rq->min_vruntime;
3125
3126 if (d < 0)
3127 d = -d;
3128
3129 if (d > 3*sysctl_sched_latency)
3130 schedstat_inc(cfs_rq, nr_spread_over);
3131#endif
3132}
3133
3134static void
3135place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3136{
3137 u64 vruntime = cfs_rq->min_vruntime;
3138
3139 /*
3140 * The 'current' period is already promised to the current tasks,
3141 * however the extra weight of the new task will slow them down a
3142 * little, place the new task so that it fits in the slot that
3143 * stays open at the end.
3144 */
3145 if (initial && sched_feat(START_DEBIT))
3146 vruntime += sched_vslice(cfs_rq, se);
3147
3148 /* sleeps up to a single latency don't count. */
3149 if (!initial) {
3150 unsigned long thresh = sysctl_sched_latency;
3151
3152 /*
3153 * Halve their sleep time's effect, to allow
3154 * for a gentler effect of sleepers:
3155 */
3156 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3157 thresh >>= 1;
3158
3159 vruntime -= thresh;
3160 }
3161
3162 /* ensure we never gain time by being placed backwards. */
3163 se->vruntime = max_vruntime(se->vruntime, vruntime);
3164}
3165
3166static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3167
3168static inline void check_schedstat_required(void)
3169{
3170#ifdef CONFIG_SCHEDSTATS
3171 if (schedstat_enabled())
3172 return;
3173
3174 /* Force schedstat enabled if a dependent tracepoint is active */
3175 if (trace_sched_stat_wait_enabled() ||
3176 trace_sched_stat_sleep_enabled() ||
3177 trace_sched_stat_iowait_enabled() ||
3178 trace_sched_stat_blocked_enabled() ||
3179 trace_sched_stat_runtime_enabled()) {
3180 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3181 "stat_blocked and stat_runtime require the "
3182 "kernel parameter schedstats=enabled or "
3183 "kernel.sched_schedstats=1\n");
3184 }
3185#endif
3186}
3187
3188static void
3189enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3190{
3191 /*
3192 * Update the normalized vruntime before updating min_vruntime
3193 * through calling update_curr().
3194 */
3195 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3196 se->vruntime += cfs_rq->min_vruntime;
3197
3198 /*
3199 * Update run-time statistics of the 'current'.
3200 */
3201 update_curr(cfs_rq);
3202 enqueue_entity_load_avg(cfs_rq, se);
3203 account_entity_enqueue(cfs_rq, se);
3204 update_cfs_shares(cfs_rq);
3205
3206 if (flags & ENQUEUE_WAKEUP) {
3207 place_entity(cfs_rq, se, 0);
3208 if (schedstat_enabled())
3209 enqueue_sleeper(cfs_rq, se);
3210 }
3211
3212 check_schedstat_required();
3213 if (schedstat_enabled()) {
3214 update_stats_enqueue(cfs_rq, se);
3215 check_spread(cfs_rq, se);
3216 }
3217 if (se != cfs_rq->curr)
3218 __enqueue_entity(cfs_rq, se);
3219 se->on_rq = 1;
3220
3221 if (cfs_rq->nr_running == 1) {
3222 list_add_leaf_cfs_rq(cfs_rq);
3223 check_enqueue_throttle(cfs_rq);
3224 }
3225}
3226
3227static void __clear_buddies_last(struct sched_entity *se)
3228{
3229 for_each_sched_entity(se) {
3230 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3231 if (cfs_rq->last != se)
3232 break;
3233
3234 cfs_rq->last = NULL;
3235 }
3236}
3237
3238static void __clear_buddies_next(struct sched_entity *se)
3239{
3240 for_each_sched_entity(se) {
3241 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3242 if (cfs_rq->next != se)
3243 break;
3244
3245 cfs_rq->next = NULL;
3246 }
3247}
3248
3249static void __clear_buddies_skip(struct sched_entity *se)
3250{
3251 for_each_sched_entity(se) {
3252 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3253 if (cfs_rq->skip != se)
3254 break;
3255
3256 cfs_rq->skip = NULL;
3257 }
3258}
3259
3260static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3261{
3262 if (cfs_rq->last == se)
3263 __clear_buddies_last(se);
3264
3265 if (cfs_rq->next == se)
3266 __clear_buddies_next(se);
3267
3268 if (cfs_rq->skip == se)
3269 __clear_buddies_skip(se);
3270}
3271
3272static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3273
3274static void
3275dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3276{
3277 /*
3278 * Update run-time statistics of the 'current'.
3279 */
3280 update_curr(cfs_rq);
3281 dequeue_entity_load_avg(cfs_rq, se);
3282
3283 if (schedstat_enabled())
3284 update_stats_dequeue(cfs_rq, se, flags);
3285
3286 clear_buddies(cfs_rq, se);
3287
3288 if (se != cfs_rq->curr)
3289 __dequeue_entity(cfs_rq, se);
3290 se->on_rq = 0;
3291 account_entity_dequeue(cfs_rq, se);
3292
3293 /*
3294 * Normalize the entity after updating the min_vruntime because the
3295 * update can refer to the ->curr item and we need to reflect this
3296 * movement in our normalized position.
3297 */
3298 if (!(flags & DEQUEUE_SLEEP))
3299 se->vruntime -= cfs_rq->min_vruntime;
3300
3301 /* return excess runtime on last dequeue */
3302 return_cfs_rq_runtime(cfs_rq);
3303
3304 update_min_vruntime(cfs_rq);
3305 update_cfs_shares(cfs_rq);
3306}
3307
3308/*
3309 * Preempt the current task with a newly woken task if needed:
3310 */
3311static void
3312check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3313{
3314 unsigned long ideal_runtime, delta_exec;
3315 struct sched_entity *se;
3316 s64 delta;
3317
3318 ideal_runtime = sched_slice(cfs_rq, curr);
3319 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3320 if (delta_exec > ideal_runtime) {
3321 resched_curr(rq_of(cfs_rq));
3322 /*
3323 * The current task ran long enough, ensure it doesn't get
3324 * re-elected due to buddy favours.
3325 */
3326 clear_buddies(cfs_rq, curr);
3327 return;
3328 }
3329
3330 /*
3331 * Ensure that a task that missed wakeup preemption by a
3332 * narrow margin doesn't have to wait for a full slice.
3333 * This also mitigates buddy induced latencies under load.
3334 */
3335 if (delta_exec < sysctl_sched_min_granularity)
3336 return;
3337
3338 se = __pick_first_entity(cfs_rq);
3339 delta = curr->vruntime - se->vruntime;
3340
3341 if (delta < 0)
3342 return;
3343
3344 if (delta > ideal_runtime)
3345 resched_curr(rq_of(cfs_rq));
3346}
3347
3348static void
3349set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3350{
3351 /* 'current' is not kept within the tree. */
3352 if (se->on_rq) {
3353 /*
3354 * Any task has to be enqueued before it get to execute on
3355 * a CPU. So account for the time it spent waiting on the
3356 * runqueue.
3357 */
3358 if (schedstat_enabled())
3359 update_stats_wait_end(cfs_rq, se);
3360 __dequeue_entity(cfs_rq, se);
3361 update_load_avg(se, 1);
3362 }
3363
3364 update_stats_curr_start(cfs_rq, se);
3365 cfs_rq->curr = se;
3366#ifdef CONFIG_SCHEDSTATS
3367 /*
3368 * Track our maximum slice length, if the CPU's load is at
3369 * least twice that of our own weight (i.e. dont track it
3370 * when there are only lesser-weight tasks around):
3371 */
3372 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3373 se->statistics.slice_max = max(se->statistics.slice_max,
3374 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3375 }
3376#endif
3377 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3378}
3379
3380static int
3381wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3382
3383/*
3384 * Pick the next process, keeping these things in mind, in this order:
3385 * 1) keep things fair between processes/task groups
3386 * 2) pick the "next" process, since someone really wants that to run
3387 * 3) pick the "last" process, for cache locality
3388 * 4) do not run the "skip" process, if something else is available
3389 */
3390static struct sched_entity *
3391pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3392{
3393 struct sched_entity *left = __pick_first_entity(cfs_rq);
3394 struct sched_entity *se;
3395
3396 /*
3397 * If curr is set we have to see if its left of the leftmost entity
3398 * still in the tree, provided there was anything in the tree at all.
3399 */
3400 if (!left || (curr && entity_before(curr, left)))
3401 left = curr;
3402
3403 se = left; /* ideally we run the leftmost entity */
3404
3405 /*
3406 * Avoid running the skip buddy, if running something else can
3407 * be done without getting too unfair.
3408 */
3409 if (cfs_rq->skip == se) {
3410 struct sched_entity *second;
3411
3412 if (se == curr) {
3413 second = __pick_first_entity(cfs_rq);
3414 } else {
3415 second = __pick_next_entity(se);
3416 if (!second || (curr && entity_before(curr, second)))
3417 second = curr;
3418 }
3419
3420 if (second && wakeup_preempt_entity(second, left) < 1)
3421 se = second;
3422 }
3423
3424 /*
3425 * Prefer last buddy, try to return the CPU to a preempted task.
3426 */
3427 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3428 se = cfs_rq->last;
3429
3430 /*
3431 * Someone really wants this to run. If it's not unfair, run it.
3432 */
3433 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3434 se = cfs_rq->next;
3435
3436 clear_buddies(cfs_rq, se);
3437
3438 return se;
3439}
3440
3441static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3442
3443static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3444{
3445 /*
3446 * If still on the runqueue then deactivate_task()
3447 * was not called and update_curr() has to be done:
3448 */
3449 if (prev->on_rq)
3450 update_curr(cfs_rq);
3451
3452 /* throttle cfs_rqs exceeding runtime */
3453 check_cfs_rq_runtime(cfs_rq);
3454
3455 if (schedstat_enabled()) {
3456 check_spread(cfs_rq, prev);
3457 if (prev->on_rq)
3458 update_stats_wait_start(cfs_rq, prev);
3459 }
3460
3461 if (prev->on_rq) {
3462 /* Put 'current' back into the tree. */
3463 __enqueue_entity(cfs_rq, prev);
3464 /* in !on_rq case, update occurred at dequeue */
3465 update_load_avg(prev, 0);
3466 }
3467 cfs_rq->curr = NULL;
3468}
3469
3470static void
3471entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3472{
3473 /*
3474 * Update run-time statistics of the 'current'.
3475 */
3476 update_curr(cfs_rq);
3477
3478 /*
3479 * Ensure that runnable average is periodically updated.
3480 */
3481 update_load_avg(curr, 1);
3482 update_cfs_shares(cfs_rq);
3483
3484#ifdef CONFIG_SCHED_HRTICK
3485 /*
3486 * queued ticks are scheduled to match the slice, so don't bother
3487 * validating it and just reschedule.
3488 */
3489 if (queued) {
3490 resched_curr(rq_of(cfs_rq));
3491 return;
3492 }
3493 /*
3494 * don't let the period tick interfere with the hrtick preemption
3495 */
3496 if (!sched_feat(DOUBLE_TICK) &&
3497 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3498 return;
3499#endif
3500
3501 if (cfs_rq->nr_running > 1)
3502 check_preempt_tick(cfs_rq, curr);
3503}
3504
3505
3506/**************************************************
3507 * CFS bandwidth control machinery
3508 */
3509
3510#ifdef CONFIG_CFS_BANDWIDTH
3511
3512#ifdef HAVE_JUMP_LABEL
3513static struct static_key __cfs_bandwidth_used;
3514
3515static inline bool cfs_bandwidth_used(void)
3516{
3517 return static_key_false(&__cfs_bandwidth_used);
3518}
3519
3520void cfs_bandwidth_usage_inc(void)
3521{
3522 static_key_slow_inc(&__cfs_bandwidth_used);
3523}
3524
3525void cfs_bandwidth_usage_dec(void)
3526{
3527 static_key_slow_dec(&__cfs_bandwidth_used);
3528}
3529#else /* HAVE_JUMP_LABEL */
3530static bool cfs_bandwidth_used(void)
3531{
3532 return true;
3533}
3534
3535void cfs_bandwidth_usage_inc(void) {}
3536void cfs_bandwidth_usage_dec(void) {}
3537#endif /* HAVE_JUMP_LABEL */
3538
3539/*
3540 * default period for cfs group bandwidth.
3541 * default: 0.1s, units: nanoseconds
3542 */
3543static inline u64 default_cfs_period(void)
3544{
3545 return 100000000ULL;
3546}
3547
3548static inline u64 sched_cfs_bandwidth_slice(void)
3549{
3550 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3551}
3552
3553/*
3554 * Replenish runtime according to assigned quota and update expiration time.
3555 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3556 * additional synchronization around rq->lock.
3557 *
3558 * requires cfs_b->lock
3559 */
3560void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3561{
3562 u64 now;
3563
3564 if (cfs_b->quota == RUNTIME_INF)
3565 return;
3566
3567 now = sched_clock_cpu(smp_processor_id());
3568 cfs_b->runtime = cfs_b->quota;
3569 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3570}
3571
3572static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3573{
3574 return &tg->cfs_bandwidth;
3575}
3576
3577/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3578static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3579{
3580 if (unlikely(cfs_rq->throttle_count))
3581 return cfs_rq->throttled_clock_task;
3582
3583 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3584}
3585
3586/* returns 0 on failure to allocate runtime */
3587static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3588{
3589 struct task_group *tg = cfs_rq->tg;
3590 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3591 u64 amount = 0, min_amount, expires;
3592
3593 /* note: this is a positive sum as runtime_remaining <= 0 */
3594 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3595
3596 raw_spin_lock(&cfs_b->lock);
3597 if (cfs_b->quota == RUNTIME_INF)
3598 amount = min_amount;
3599 else {
3600 start_cfs_bandwidth(cfs_b);
3601
3602 if (cfs_b->runtime > 0) {
3603 amount = min(cfs_b->runtime, min_amount);
3604 cfs_b->runtime -= amount;
3605 cfs_b->idle = 0;
3606 }
3607 }
3608 expires = cfs_b->runtime_expires;
3609 raw_spin_unlock(&cfs_b->lock);
3610
3611 cfs_rq->runtime_remaining += amount;
3612 /*
3613 * we may have advanced our local expiration to account for allowed
3614 * spread between our sched_clock and the one on which runtime was
3615 * issued.
3616 */
3617 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3618 cfs_rq->runtime_expires = expires;
3619
3620 return cfs_rq->runtime_remaining > 0;
3621}
3622
3623/*
3624 * Note: This depends on the synchronization provided by sched_clock and the
3625 * fact that rq->clock snapshots this value.
3626 */
3627static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3628{
3629 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3630
3631 /* if the deadline is ahead of our clock, nothing to do */
3632 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3633 return;
3634
3635 if (cfs_rq->runtime_remaining < 0)
3636 return;
3637
3638 /*
3639 * If the local deadline has passed we have to consider the
3640 * possibility that our sched_clock is 'fast' and the global deadline
3641 * has not truly expired.
3642 *
3643 * Fortunately we can check determine whether this the case by checking
3644 * whether the global deadline has advanced. It is valid to compare
3645 * cfs_b->runtime_expires without any locks since we only care about
3646 * exact equality, so a partial write will still work.
3647 */
3648
3649 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3650 /* extend local deadline, drift is bounded above by 2 ticks */
3651 cfs_rq->runtime_expires += TICK_NSEC;
3652 } else {
3653 /* global deadline is ahead, expiration has passed */
3654 cfs_rq->runtime_remaining = 0;
3655 }
3656}
3657
3658static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3659{
3660 /* dock delta_exec before expiring quota (as it could span periods) */
3661 cfs_rq->runtime_remaining -= delta_exec;
3662 expire_cfs_rq_runtime(cfs_rq);
3663
3664 if (likely(cfs_rq->runtime_remaining > 0))
3665 return;
3666
3667 /*
3668 * if we're unable to extend our runtime we resched so that the active
3669 * hierarchy can be throttled
3670 */
3671 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3672 resched_curr(rq_of(cfs_rq));
3673}
3674
3675static __always_inline
3676void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3677{
3678 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3679 return;
3680
3681 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3682}
3683
3684static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3685{
3686 return cfs_bandwidth_used() && cfs_rq->throttled;
3687}
3688
3689/* check whether cfs_rq, or any parent, is throttled */
3690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3691{
3692 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3693}
3694
3695/*
3696 * Ensure that neither of the group entities corresponding to src_cpu or
3697 * dest_cpu are members of a throttled hierarchy when performing group
3698 * load-balance operations.
3699 */
3700static inline int throttled_lb_pair(struct task_group *tg,
3701 int src_cpu, int dest_cpu)
3702{
3703 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3704
3705 src_cfs_rq = tg->cfs_rq[src_cpu];
3706 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3707
3708 return throttled_hierarchy(src_cfs_rq) ||
3709 throttled_hierarchy(dest_cfs_rq);
3710}
3711
3712/* updated child weight may affect parent so we have to do this bottom up */
3713static int tg_unthrottle_up(struct task_group *tg, void *data)
3714{
3715 struct rq *rq = data;
3716 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3717
3718 cfs_rq->throttle_count--;
3719#ifdef CONFIG_SMP
3720 if (!cfs_rq->throttle_count) {
3721 /* adjust cfs_rq_clock_task() */
3722 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3723 cfs_rq->throttled_clock_task;
3724 }
3725#endif
3726
3727 return 0;
3728}
3729
3730static int tg_throttle_down(struct task_group *tg, void *data)
3731{
3732 struct rq *rq = data;
3733 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3734
3735 /* group is entering throttled state, stop time */
3736 if (!cfs_rq->throttle_count)
3737 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3738 cfs_rq->throttle_count++;
3739
3740 return 0;
3741}
3742
3743static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3744{
3745 struct rq *rq = rq_of(cfs_rq);
3746 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3747 struct sched_entity *se;
3748 long task_delta, dequeue = 1;
3749 bool empty;
3750
3751 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3752
3753 /* freeze hierarchy runnable averages while throttled */
3754 rcu_read_lock();
3755 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3756 rcu_read_unlock();
3757
3758 task_delta = cfs_rq->h_nr_running;
3759 for_each_sched_entity(se) {
3760 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3761 /* throttled entity or throttle-on-deactivate */
3762 if (!se->on_rq)
3763 break;
3764
3765 if (dequeue)
3766 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3767 qcfs_rq->h_nr_running -= task_delta;
3768
3769 if (qcfs_rq->load.weight)
3770 dequeue = 0;
3771 }
3772
3773 if (!se)
3774 sub_nr_running(rq, task_delta);
3775
3776 cfs_rq->throttled = 1;
3777 cfs_rq->throttled_clock = rq_clock(rq);
3778 raw_spin_lock(&cfs_b->lock);
3779 empty = list_empty(&cfs_b->throttled_cfs_rq);
3780
3781 /*
3782 * Add to the _head_ of the list, so that an already-started
3783 * distribute_cfs_runtime will not see us
3784 */
3785 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3786
3787 /*
3788 * If we're the first throttled task, make sure the bandwidth
3789 * timer is running.
3790 */
3791 if (empty)
3792 start_cfs_bandwidth(cfs_b);
3793
3794 raw_spin_unlock(&cfs_b->lock);
3795}
3796
3797void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3798{
3799 struct rq *rq = rq_of(cfs_rq);
3800 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3801 struct sched_entity *se;
3802 int enqueue = 1;
3803 long task_delta;
3804
3805 se = cfs_rq->tg->se[cpu_of(rq)];
3806
3807 cfs_rq->throttled = 0;
3808
3809 update_rq_clock(rq);
3810
3811 raw_spin_lock(&cfs_b->lock);
3812 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3813 list_del_rcu(&cfs_rq->throttled_list);
3814 raw_spin_unlock(&cfs_b->lock);
3815
3816 /* update hierarchical throttle state */
3817 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3818
3819 if (!cfs_rq->load.weight)
3820 return;
3821
3822 task_delta = cfs_rq->h_nr_running;
3823 for_each_sched_entity(se) {
3824 if (se->on_rq)
3825 enqueue = 0;
3826
3827 cfs_rq = cfs_rq_of(se);
3828 if (enqueue)
3829 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3830 cfs_rq->h_nr_running += task_delta;
3831
3832 if (cfs_rq_throttled(cfs_rq))
3833 break;
3834 }
3835
3836 if (!se)
3837 add_nr_running(rq, task_delta);
3838
3839 /* determine whether we need to wake up potentially idle cpu */
3840 if (rq->curr == rq->idle && rq->cfs.nr_running)
3841 resched_curr(rq);
3842}
3843
3844static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3845 u64 remaining, u64 expires)
3846{
3847 struct cfs_rq *cfs_rq;
3848 u64 runtime;
3849 u64 starting_runtime = remaining;
3850
3851 rcu_read_lock();
3852 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3853 throttled_list) {
3854 struct rq *rq = rq_of(cfs_rq);
3855
3856 raw_spin_lock(&rq->lock);
3857 if (!cfs_rq_throttled(cfs_rq))
3858 goto next;
3859
3860 runtime = -cfs_rq->runtime_remaining + 1;
3861 if (runtime > remaining)
3862 runtime = remaining;
3863 remaining -= runtime;
3864
3865 cfs_rq->runtime_remaining += runtime;
3866 cfs_rq->runtime_expires = expires;
3867
3868 /* we check whether we're throttled above */
3869 if (cfs_rq->runtime_remaining > 0)
3870 unthrottle_cfs_rq(cfs_rq);
3871
3872next:
3873 raw_spin_unlock(&rq->lock);
3874
3875 if (!remaining)
3876 break;
3877 }
3878 rcu_read_unlock();
3879
3880 return starting_runtime - remaining;
3881}
3882
3883/*
3884 * Responsible for refilling a task_group's bandwidth and unthrottling its
3885 * cfs_rqs as appropriate. If there has been no activity within the last
3886 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3887 * used to track this state.
3888 */
3889static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3890{
3891 u64 runtime, runtime_expires;
3892 int throttled;
3893
3894 /* no need to continue the timer with no bandwidth constraint */
3895 if (cfs_b->quota == RUNTIME_INF)
3896 goto out_deactivate;
3897
3898 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3899 cfs_b->nr_periods += overrun;
3900
3901 /*
3902 * idle depends on !throttled (for the case of a large deficit), and if
3903 * we're going inactive then everything else can be deferred
3904 */
3905 if (cfs_b->idle && !throttled)
3906 goto out_deactivate;
3907
3908 __refill_cfs_bandwidth_runtime(cfs_b);
3909
3910 if (!throttled) {
3911 /* mark as potentially idle for the upcoming period */
3912 cfs_b->idle = 1;
3913 return 0;
3914 }
3915
3916 /* account preceding periods in which throttling occurred */
3917 cfs_b->nr_throttled += overrun;
3918
3919 runtime_expires = cfs_b->runtime_expires;
3920
3921 /*
3922 * This check is repeated as we are holding onto the new bandwidth while
3923 * we unthrottle. This can potentially race with an unthrottled group
3924 * trying to acquire new bandwidth from the global pool. This can result
3925 * in us over-using our runtime if it is all used during this loop, but
3926 * only by limited amounts in that extreme case.
3927 */
3928 while (throttled && cfs_b->runtime > 0) {
3929 runtime = cfs_b->runtime;
3930 raw_spin_unlock(&cfs_b->lock);
3931 /* we can't nest cfs_b->lock while distributing bandwidth */
3932 runtime = distribute_cfs_runtime(cfs_b, runtime,
3933 runtime_expires);
3934 raw_spin_lock(&cfs_b->lock);
3935
3936 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3937
3938 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3939 }
3940
3941 /*
3942 * While we are ensured activity in the period following an
3943 * unthrottle, this also covers the case in which the new bandwidth is
3944 * insufficient to cover the existing bandwidth deficit. (Forcing the
3945 * timer to remain active while there are any throttled entities.)
3946 */
3947 cfs_b->idle = 0;
3948
3949 return 0;
3950
3951out_deactivate:
3952 return 1;
3953}
3954
3955/* a cfs_rq won't donate quota below this amount */
3956static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3957/* minimum remaining period time to redistribute slack quota */
3958static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3959/* how long we wait to gather additional slack before distributing */
3960static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3961
3962/*
3963 * Are we near the end of the current quota period?
3964 *
3965 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3966 * hrtimer base being cleared by hrtimer_start. In the case of
3967 * migrate_hrtimers, base is never cleared, so we are fine.
3968 */
3969static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3970{
3971 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3972 u64 remaining;
3973
3974 /* if the call-back is running a quota refresh is already occurring */
3975 if (hrtimer_callback_running(refresh_timer))
3976 return 1;
3977
3978 /* is a quota refresh about to occur? */
3979 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3980 if (remaining < min_expire)
3981 return 1;
3982
3983 return 0;
3984}
3985
3986static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3987{
3988 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3989
3990 /* if there's a quota refresh soon don't bother with slack */
3991 if (runtime_refresh_within(cfs_b, min_left))
3992 return;
3993
3994 hrtimer_start(&cfs_b->slack_timer,
3995 ns_to_ktime(cfs_bandwidth_slack_period),
3996 HRTIMER_MODE_REL);
3997}
3998
3999/* we know any runtime found here is valid as update_curr() precedes return */
4000static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4001{
4002 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4003 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4004
4005 if (slack_runtime <= 0)
4006 return;
4007
4008 raw_spin_lock(&cfs_b->lock);
4009 if (cfs_b->quota != RUNTIME_INF &&
4010 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4011 cfs_b->runtime += slack_runtime;
4012
4013 /* we are under rq->lock, defer unthrottling using a timer */
4014 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4015 !list_empty(&cfs_b->throttled_cfs_rq))
4016 start_cfs_slack_bandwidth(cfs_b);
4017 }
4018 raw_spin_unlock(&cfs_b->lock);
4019
4020 /* even if it's not valid for return we don't want to try again */
4021 cfs_rq->runtime_remaining -= slack_runtime;
4022}
4023
4024static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4025{
4026 if (!cfs_bandwidth_used())
4027 return;
4028
4029 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4030 return;
4031
4032 __return_cfs_rq_runtime(cfs_rq);
4033}
4034
4035/*
4036 * This is done with a timer (instead of inline with bandwidth return) since
4037 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4038 */
4039static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4040{
4041 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4042 u64 expires;
4043
4044 /* confirm we're still not at a refresh boundary */
4045 raw_spin_lock(&cfs_b->lock);
4046 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4047 raw_spin_unlock(&cfs_b->lock);
4048 return;
4049 }
4050
4051 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4052 runtime = cfs_b->runtime;
4053
4054 expires = cfs_b->runtime_expires;
4055 raw_spin_unlock(&cfs_b->lock);
4056
4057 if (!runtime)
4058 return;
4059
4060 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4061
4062 raw_spin_lock(&cfs_b->lock);
4063 if (expires == cfs_b->runtime_expires)
4064 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4065 raw_spin_unlock(&cfs_b->lock);
4066}
4067
4068/*
4069 * When a group wakes up we want to make sure that its quota is not already
4070 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4071 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4072 */
4073static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4074{
4075 if (!cfs_bandwidth_used())
4076 return;
4077
4078 /* an active group must be handled by the update_curr()->put() path */
4079 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4080 return;
4081
4082 /* ensure the group is not already throttled */
4083 if (cfs_rq_throttled(cfs_rq))
4084 return;
4085
4086 /* update runtime allocation */
4087 account_cfs_rq_runtime(cfs_rq, 0);
4088 if (cfs_rq->runtime_remaining <= 0)
4089 throttle_cfs_rq(cfs_rq);
4090}
4091
4092/* conditionally throttle active cfs_rq's from put_prev_entity() */
4093static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094{
4095 if (!cfs_bandwidth_used())
4096 return false;
4097
4098 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4099 return false;
4100
4101 /*
4102 * it's possible for a throttled entity to be forced into a running
4103 * state (e.g. set_curr_task), in this case we're finished.
4104 */
4105 if (cfs_rq_throttled(cfs_rq))
4106 return true;
4107
4108 throttle_cfs_rq(cfs_rq);
4109 return true;
4110}
4111
4112static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4113{
4114 struct cfs_bandwidth *cfs_b =
4115 container_of(timer, struct cfs_bandwidth, slack_timer);
4116
4117 do_sched_cfs_slack_timer(cfs_b);
4118
4119 return HRTIMER_NORESTART;
4120}
4121
4122static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4123{
4124 struct cfs_bandwidth *cfs_b =
4125 container_of(timer, struct cfs_bandwidth, period_timer);
4126 int overrun;
4127 int idle = 0;
4128
4129 raw_spin_lock(&cfs_b->lock);
4130 for (;;) {
4131 overrun = hrtimer_forward_now(timer, cfs_b->period);
4132 if (!overrun)
4133 break;
4134
4135 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4136 }
4137 if (idle)
4138 cfs_b->period_active = 0;
4139 raw_spin_unlock(&cfs_b->lock);
4140
4141 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4142}
4143
4144void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145{
4146 raw_spin_lock_init(&cfs_b->lock);
4147 cfs_b->runtime = 0;
4148 cfs_b->quota = RUNTIME_INF;
4149 cfs_b->period = ns_to_ktime(default_cfs_period());
4150
4151 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4152 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4153 cfs_b->period_timer.function = sched_cfs_period_timer;
4154 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4155 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4156}
4157
4158static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4159{
4160 cfs_rq->runtime_enabled = 0;
4161 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4162}
4163
4164void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4165{
4166 lockdep_assert_held(&cfs_b->lock);
4167
4168 if (!cfs_b->period_active) {
4169 cfs_b->period_active = 1;
4170 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4171 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4172 }
4173}
4174
4175static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4176{
4177 /* init_cfs_bandwidth() was not called */
4178 if (!cfs_b->throttled_cfs_rq.next)
4179 return;
4180
4181 hrtimer_cancel(&cfs_b->period_timer);
4182 hrtimer_cancel(&cfs_b->slack_timer);
4183}
4184
4185static void __maybe_unused update_runtime_enabled(struct rq *rq)
4186{
4187 struct cfs_rq *cfs_rq;
4188
4189 for_each_leaf_cfs_rq(rq, cfs_rq) {
4190 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4191
4192 raw_spin_lock(&cfs_b->lock);
4193 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4194 raw_spin_unlock(&cfs_b->lock);
4195 }
4196}
4197
4198static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4199{
4200 struct cfs_rq *cfs_rq;
4201
4202 for_each_leaf_cfs_rq(rq, cfs_rq) {
4203 if (!cfs_rq->runtime_enabled)
4204 continue;
4205
4206 /*
4207 * clock_task is not advancing so we just need to make sure
4208 * there's some valid quota amount
4209 */
4210 cfs_rq->runtime_remaining = 1;
4211 /*
4212 * Offline rq is schedulable till cpu is completely disabled
4213 * in take_cpu_down(), so we prevent new cfs throttling here.
4214 */
4215 cfs_rq->runtime_enabled = 0;
4216
4217 if (cfs_rq_throttled(cfs_rq))
4218 unthrottle_cfs_rq(cfs_rq);
4219 }
4220}
4221
4222#else /* CONFIG_CFS_BANDWIDTH */
4223static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4224{
4225 return rq_clock_task(rq_of(cfs_rq));
4226}
4227
4228static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4229static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4230static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4231static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4232
4233static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4234{
4235 return 0;
4236}
4237
4238static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4239{
4240 return 0;
4241}
4242
4243static inline int throttled_lb_pair(struct task_group *tg,
4244 int src_cpu, int dest_cpu)
4245{
4246 return 0;
4247}
4248
4249void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4250
4251#ifdef CONFIG_FAIR_GROUP_SCHED
4252static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4253#endif
4254
4255static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4256{
4257 return NULL;
4258}
4259static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4260static inline void update_runtime_enabled(struct rq *rq) {}
4261static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4262
4263#endif /* CONFIG_CFS_BANDWIDTH */
4264
4265/**************************************************
4266 * CFS operations on tasks:
4267 */
4268
4269#ifdef CONFIG_SCHED_HRTICK
4270static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4271{
4272 struct sched_entity *se = &p->se;
4273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274
4275 WARN_ON(task_rq(p) != rq);
4276
4277 if (cfs_rq->nr_running > 1) {
4278 u64 slice = sched_slice(cfs_rq, se);
4279 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4280 s64 delta = slice - ran;
4281
4282 if (delta < 0) {
4283 if (rq->curr == p)
4284 resched_curr(rq);
4285 return;
4286 }
4287 hrtick_start(rq, delta);
4288 }
4289}
4290
4291/*
4292 * called from enqueue/dequeue and updates the hrtick when the
4293 * current task is from our class and nr_running is low enough
4294 * to matter.
4295 */
4296static void hrtick_update(struct rq *rq)
4297{
4298 struct task_struct *curr = rq->curr;
4299
4300 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4301 return;
4302
4303 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4304 hrtick_start_fair(rq, curr);
4305}
4306#else /* !CONFIG_SCHED_HRTICK */
4307static inline void
4308hrtick_start_fair(struct rq *rq, struct task_struct *p)
4309{
4310}
4311
4312static inline void hrtick_update(struct rq *rq)
4313{
4314}
4315#endif
4316
4317/*
4318 * The enqueue_task method is called before nr_running is
4319 * increased. Here we update the fair scheduling stats and
4320 * then put the task into the rbtree:
4321 */
4322static void
4323enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4324{
4325 struct cfs_rq *cfs_rq;
4326 struct sched_entity *se = &p->se;
4327
4328 for_each_sched_entity(se) {
4329 if (se->on_rq)
4330 break;
4331 cfs_rq = cfs_rq_of(se);
4332 enqueue_entity(cfs_rq, se, flags);
4333
4334 /*
4335 * end evaluation on encountering a throttled cfs_rq
4336 *
4337 * note: in the case of encountering a throttled cfs_rq we will
4338 * post the final h_nr_running increment below.
4339 */
4340 if (cfs_rq_throttled(cfs_rq))
4341 break;
4342 cfs_rq->h_nr_running++;
4343
4344 flags = ENQUEUE_WAKEUP;
4345 }
4346
4347 for_each_sched_entity(se) {
4348 cfs_rq = cfs_rq_of(se);
4349 cfs_rq->h_nr_running++;
4350
4351 if (cfs_rq_throttled(cfs_rq))
4352 break;
4353
4354 update_load_avg(se, 1);
4355 update_cfs_shares(cfs_rq);
4356 }
4357
4358 if (!se)
4359 add_nr_running(rq, 1);
4360
4361 hrtick_update(rq);
4362}
4363
4364static void set_next_buddy(struct sched_entity *se);
4365
4366/*
4367 * The dequeue_task method is called before nr_running is
4368 * decreased. We remove the task from the rbtree and
4369 * update the fair scheduling stats:
4370 */
4371static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4372{
4373 struct cfs_rq *cfs_rq;
4374 struct sched_entity *se = &p->se;
4375 int task_sleep = flags & DEQUEUE_SLEEP;
4376
4377 for_each_sched_entity(se) {
4378 cfs_rq = cfs_rq_of(se);
4379 dequeue_entity(cfs_rq, se, flags);
4380
4381 /*
4382 * end evaluation on encountering a throttled cfs_rq
4383 *
4384 * note: in the case of encountering a throttled cfs_rq we will
4385 * post the final h_nr_running decrement below.
4386 */
4387 if (cfs_rq_throttled(cfs_rq))
4388 break;
4389 cfs_rq->h_nr_running--;
4390
4391 /* Don't dequeue parent if it has other entities besides us */
4392 if (cfs_rq->load.weight) {
4393 /*
4394 * Bias pick_next to pick a task from this cfs_rq, as
4395 * p is sleeping when it is within its sched_slice.
4396 */
4397 if (task_sleep && parent_entity(se))
4398 set_next_buddy(parent_entity(se));
4399
4400 /* avoid re-evaluating load for this entity */
4401 se = parent_entity(se);
4402 break;
4403 }
4404 flags |= DEQUEUE_SLEEP;
4405 }
4406
4407 for_each_sched_entity(se) {
4408 cfs_rq = cfs_rq_of(se);
4409 cfs_rq->h_nr_running--;
4410
4411 if (cfs_rq_throttled(cfs_rq))
4412 break;
4413
4414 update_load_avg(se, 1);
4415 update_cfs_shares(cfs_rq);
4416 }
4417
4418 if (!se)
4419 sub_nr_running(rq, 1);
4420
4421 hrtick_update(rq);
4422}
4423
4424#ifdef CONFIG_SMP
4425
4426/*
4427 * per rq 'load' arrray crap; XXX kill this.
4428 */
4429
4430/*
4431 * The exact cpuload calculated at every tick would be:
4432 *
4433 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4434 *
4435 * If a cpu misses updates for n ticks (as it was idle) and update gets
4436 * called on the n+1-th tick when cpu may be busy, then we have:
4437 *
4438 * load_n = (1 - 1/2^i)^n * load_0
4439 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4440 *
4441 * decay_load_missed() below does efficient calculation of
4442 *
4443 * load' = (1 - 1/2^i)^n * load
4444 *
4445 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4446 * This allows us to precompute the above in said factors, thereby allowing the
4447 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4448 * fixed_power_int())
4449 *
4450 * The calculation is approximated on a 128 point scale.
4451 */
4452#define DEGRADE_SHIFT 7
4453
4454static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4455static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4456 { 0, 0, 0, 0, 0, 0, 0, 0 },
4457 { 64, 32, 8, 0, 0, 0, 0, 0 },
4458 { 96, 72, 40, 12, 1, 0, 0, 0 },
4459 { 112, 98, 75, 43, 15, 1, 0, 0 },
4460 { 120, 112, 98, 76, 45, 16, 2, 0 }
4461};
4462
4463/*
4464 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4465 * would be when CPU is idle and so we just decay the old load without
4466 * adding any new load.
4467 */
4468static unsigned long
4469decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4470{
4471 int j = 0;
4472
4473 if (!missed_updates)
4474 return load;
4475
4476 if (missed_updates >= degrade_zero_ticks[idx])
4477 return 0;
4478
4479 if (idx == 1)
4480 return load >> missed_updates;
4481
4482 while (missed_updates) {
4483 if (missed_updates % 2)
4484 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4485
4486 missed_updates >>= 1;
4487 j++;
4488 }
4489 return load;
4490}
4491
4492/**
4493 * __update_cpu_load - update the rq->cpu_load[] statistics
4494 * @this_rq: The rq to update statistics for
4495 * @this_load: The current load
4496 * @pending_updates: The number of missed updates
4497 * @active: !0 for NOHZ_FULL
4498 *
4499 * Update rq->cpu_load[] statistics. This function is usually called every
4500 * scheduler tick (TICK_NSEC).
4501 *
4502 * This function computes a decaying average:
4503 *
4504 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4505 *
4506 * Because of NOHZ it might not get called on every tick which gives need for
4507 * the @pending_updates argument.
4508 *
4509 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4510 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4511 * = A * (A * load[i]_n-2 + B) + B
4512 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4513 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4514 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4515 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4516 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4517 *
4518 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4519 * any change in load would have resulted in the tick being turned back on.
4520 *
4521 * For regular NOHZ, this reduces to:
4522 *
4523 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4524 *
4525 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4526 * term. See the @active paramter.
4527 */
4528static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4529 unsigned long pending_updates, int active)
4530{
4531 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4532 int i, scale;
4533
4534 this_rq->nr_load_updates++;
4535
4536 /* Update our load: */
4537 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4538 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4539 unsigned long old_load, new_load;
4540
4541 /* scale is effectively 1 << i now, and >> i divides by scale */
4542
4543 old_load = this_rq->cpu_load[i];
4544 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4545 if (tickless_load) {
4546 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4547 /*
4548 * old_load can never be a negative value because a
4549 * decayed tickless_load cannot be greater than the
4550 * original tickless_load.
4551 */
4552 old_load += tickless_load;
4553 }
4554 new_load = this_load;
4555 /*
4556 * Round up the averaging division if load is increasing. This
4557 * prevents us from getting stuck on 9 if the load is 10, for
4558 * example.
4559 */
4560 if (new_load > old_load)
4561 new_load += scale - 1;
4562
4563 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4564 }
4565
4566 sched_avg_update(this_rq);
4567}
4568
4569/* Used instead of source_load when we know the type == 0 */
4570static unsigned long weighted_cpuload(const int cpu)
4571{
4572 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4573}
4574
4575#ifdef CONFIG_NO_HZ_COMMON
4576static void __update_cpu_load_nohz(struct rq *this_rq,
4577 unsigned long curr_jiffies,
4578 unsigned long load,
4579 int active)
4580{
4581 unsigned long pending_updates;
4582
4583 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4584 if (pending_updates) {
4585 this_rq->last_load_update_tick = curr_jiffies;
4586 /*
4587 * In the regular NOHZ case, we were idle, this means load 0.
4588 * In the NOHZ_FULL case, we were non-idle, we should consider
4589 * its weighted load.
4590 */
4591 __update_cpu_load(this_rq, load, pending_updates, active);
4592 }
4593}
4594
4595/*
4596 * There is no sane way to deal with nohz on smp when using jiffies because the
4597 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4598 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4599 *
4600 * Therefore we cannot use the delta approach from the regular tick since that
4601 * would seriously skew the load calculation. However we'll make do for those
4602 * updates happening while idle (nohz_idle_balance) or coming out of idle
4603 * (tick_nohz_idle_exit).
4604 *
4605 * This means we might still be one tick off for nohz periods.
4606 */
4607
4608/*
4609 * Called from nohz_idle_balance() to update the load ratings before doing the
4610 * idle balance.
4611 */
4612static void update_cpu_load_idle(struct rq *this_rq)
4613{
4614 /*
4615 * bail if there's load or we're actually up-to-date.
4616 */
4617 if (weighted_cpuload(cpu_of(this_rq)))
4618 return;
4619
4620 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4621}
4622
4623/*
4624 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4625 */
4626void update_cpu_load_nohz(int active)
4627{
4628 struct rq *this_rq = this_rq();
4629 unsigned long curr_jiffies = READ_ONCE(jiffies);
4630 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4631
4632 if (curr_jiffies == this_rq->last_load_update_tick)
4633 return;
4634
4635 raw_spin_lock(&this_rq->lock);
4636 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4637 raw_spin_unlock(&this_rq->lock);
4638}
4639#endif /* CONFIG_NO_HZ */
4640
4641/*
4642 * Called from scheduler_tick()
4643 */
4644void update_cpu_load_active(struct rq *this_rq)
4645{
4646 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4647 /*
4648 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4649 */
4650 this_rq->last_load_update_tick = jiffies;
4651 __update_cpu_load(this_rq, load, 1, 1);
4652}
4653
4654/*
4655 * Return a low guess at the load of a migration-source cpu weighted
4656 * according to the scheduling class and "nice" value.
4657 *
4658 * We want to under-estimate the load of migration sources, to
4659 * balance conservatively.
4660 */
4661static unsigned long source_load(int cpu, int type)
4662{
4663 struct rq *rq = cpu_rq(cpu);
4664 unsigned long total = weighted_cpuload(cpu);
4665
4666 if (type == 0 || !sched_feat(LB_BIAS))
4667 return total;
4668
4669 return min(rq->cpu_load[type-1], total);
4670}
4671
4672/*
4673 * Return a high guess at the load of a migration-target cpu weighted
4674 * according to the scheduling class and "nice" value.
4675 */
4676static unsigned long target_load(int cpu, int type)
4677{
4678 struct rq *rq = cpu_rq(cpu);
4679 unsigned long total = weighted_cpuload(cpu);
4680
4681 if (type == 0 || !sched_feat(LB_BIAS))
4682 return total;
4683
4684 return max(rq->cpu_load[type-1], total);
4685}
4686
4687static unsigned long capacity_of(int cpu)
4688{
4689 return cpu_rq(cpu)->cpu_capacity;
4690}
4691
4692static unsigned long capacity_orig_of(int cpu)
4693{
4694 return cpu_rq(cpu)->cpu_capacity_orig;
4695}
4696
4697static unsigned long cpu_avg_load_per_task(int cpu)
4698{
4699 struct rq *rq = cpu_rq(cpu);
4700 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4701 unsigned long load_avg = weighted_cpuload(cpu);
4702
4703 if (nr_running)
4704 return load_avg / nr_running;
4705
4706 return 0;
4707}
4708
4709static void record_wakee(struct task_struct *p)
4710{
4711 /*
4712 * Rough decay (wiping) for cost saving, don't worry
4713 * about the boundary, really active task won't care
4714 * about the loss.
4715 */
4716 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4717 current->wakee_flips >>= 1;
4718 current->wakee_flip_decay_ts = jiffies;
4719 }
4720
4721 if (current->last_wakee != p) {
4722 current->last_wakee = p;
4723 current->wakee_flips++;
4724 }
4725}
4726
4727static void task_waking_fair(struct task_struct *p)
4728{
4729 struct sched_entity *se = &p->se;
4730 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4731 u64 min_vruntime;
4732
4733#ifndef CONFIG_64BIT
4734 u64 min_vruntime_copy;
4735
4736 do {
4737 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4738 smp_rmb();
4739 min_vruntime = cfs_rq->min_vruntime;
4740 } while (min_vruntime != min_vruntime_copy);
4741#else
4742 min_vruntime = cfs_rq->min_vruntime;
4743#endif
4744
4745 se->vruntime -= min_vruntime;
4746 record_wakee(p);
4747}
4748
4749#ifdef CONFIG_FAIR_GROUP_SCHED
4750/*
4751 * effective_load() calculates the load change as seen from the root_task_group
4752 *
4753 * Adding load to a group doesn't make a group heavier, but can cause movement
4754 * of group shares between cpus. Assuming the shares were perfectly aligned one
4755 * can calculate the shift in shares.
4756 *
4757 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4758 * on this @cpu and results in a total addition (subtraction) of @wg to the
4759 * total group weight.
4760 *
4761 * Given a runqueue weight distribution (rw_i) we can compute a shares
4762 * distribution (s_i) using:
4763 *
4764 * s_i = rw_i / \Sum rw_j (1)
4765 *
4766 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4767 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4768 * shares distribution (s_i):
4769 *
4770 * rw_i = { 2, 4, 1, 0 }
4771 * s_i = { 2/7, 4/7, 1/7, 0 }
4772 *
4773 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4774 * task used to run on and the CPU the waker is running on), we need to
4775 * compute the effect of waking a task on either CPU and, in case of a sync
4776 * wakeup, compute the effect of the current task going to sleep.
4777 *
4778 * So for a change of @wl to the local @cpu with an overall group weight change
4779 * of @wl we can compute the new shares distribution (s'_i) using:
4780 *
4781 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4782 *
4783 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4784 * differences in waking a task to CPU 0. The additional task changes the
4785 * weight and shares distributions like:
4786 *
4787 * rw'_i = { 3, 4, 1, 0 }
4788 * s'_i = { 3/8, 4/8, 1/8, 0 }
4789 *
4790 * We can then compute the difference in effective weight by using:
4791 *
4792 * dw_i = S * (s'_i - s_i) (3)
4793 *
4794 * Where 'S' is the group weight as seen by its parent.
4795 *
4796 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4797 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4798 * 4/7) times the weight of the group.
4799 */
4800static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4801{
4802 struct sched_entity *se = tg->se[cpu];
4803
4804 if (!tg->parent) /* the trivial, non-cgroup case */
4805 return wl;
4806
4807 for_each_sched_entity(se) {
4808 long w, W;
4809
4810 tg = se->my_q->tg;
4811
4812 /*
4813 * W = @wg + \Sum rw_j
4814 */
4815 W = wg + calc_tg_weight(tg, se->my_q);
4816
4817 /*
4818 * w = rw_i + @wl
4819 */
4820 w = cfs_rq_load_avg(se->my_q) + wl;
4821
4822 /*
4823 * wl = S * s'_i; see (2)
4824 */
4825 if (W > 0 && w < W)
4826 wl = (w * (long)tg->shares) / W;
4827 else
4828 wl = tg->shares;
4829
4830 /*
4831 * Per the above, wl is the new se->load.weight value; since
4832 * those are clipped to [MIN_SHARES, ...) do so now. See
4833 * calc_cfs_shares().
4834 */
4835 if (wl < MIN_SHARES)
4836 wl = MIN_SHARES;
4837
4838 /*
4839 * wl = dw_i = S * (s'_i - s_i); see (3)
4840 */
4841 wl -= se->avg.load_avg;
4842
4843 /*
4844 * Recursively apply this logic to all parent groups to compute
4845 * the final effective load change on the root group. Since
4846 * only the @tg group gets extra weight, all parent groups can
4847 * only redistribute existing shares. @wl is the shift in shares
4848 * resulting from this level per the above.
4849 */
4850 wg = 0;
4851 }
4852
4853 return wl;
4854}
4855#else
4856
4857static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4858{
4859 return wl;
4860}
4861
4862#endif
4863
4864/*
4865 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4866 * A waker of many should wake a different task than the one last awakened
4867 * at a frequency roughly N times higher than one of its wakees. In order
4868 * to determine whether we should let the load spread vs consolodating to
4869 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4870 * partner, and a factor of lls_size higher frequency in the other. With
4871 * both conditions met, we can be relatively sure that the relationship is
4872 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4873 * being client/server, worker/dispatcher, interrupt source or whatever is
4874 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4875 */
4876static int wake_wide(struct task_struct *p)
4877{
4878 unsigned int master = current->wakee_flips;
4879 unsigned int slave = p->wakee_flips;
4880 int factor = this_cpu_read(sd_llc_size);
4881
4882 if (master < slave)
4883 swap(master, slave);
4884 if (slave < factor || master < slave * factor)
4885 return 0;
4886 return 1;
4887}
4888
4889static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4890{
4891 s64 this_load, load;
4892 s64 this_eff_load, prev_eff_load;
4893 int idx, this_cpu, prev_cpu;
4894 struct task_group *tg;
4895 unsigned long weight;
4896 int balanced;
4897
4898 idx = sd->wake_idx;
4899 this_cpu = smp_processor_id();
4900 prev_cpu = task_cpu(p);
4901 load = source_load(prev_cpu, idx);
4902 this_load = target_load(this_cpu, idx);
4903
4904 /*
4905 * If sync wakeup then subtract the (maximum possible)
4906 * effect of the currently running task from the load
4907 * of the current CPU:
4908 */
4909 if (sync) {
4910 tg = task_group(current);
4911 weight = current->se.avg.load_avg;
4912
4913 this_load += effective_load(tg, this_cpu, -weight, -weight);
4914 load += effective_load(tg, prev_cpu, 0, -weight);
4915 }
4916
4917 tg = task_group(p);
4918 weight = p->se.avg.load_avg;
4919
4920 /*
4921 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4922 * due to the sync cause above having dropped this_load to 0, we'll
4923 * always have an imbalance, but there's really nothing you can do
4924 * about that, so that's good too.
4925 *
4926 * Otherwise check if either cpus are near enough in load to allow this
4927 * task to be woken on this_cpu.
4928 */
4929 this_eff_load = 100;
4930 this_eff_load *= capacity_of(prev_cpu);
4931
4932 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4933 prev_eff_load *= capacity_of(this_cpu);
4934
4935 if (this_load > 0) {
4936 this_eff_load *= this_load +
4937 effective_load(tg, this_cpu, weight, weight);
4938
4939 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4940 }
4941
4942 balanced = this_eff_load <= prev_eff_load;
4943
4944 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4945
4946 if (!balanced)
4947 return 0;
4948
4949 schedstat_inc(sd, ttwu_move_affine);
4950 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4951
4952 return 1;
4953}
4954
4955/*
4956 * find_idlest_group finds and returns the least busy CPU group within the
4957 * domain.
4958 */
4959static struct sched_group *
4960find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4961 int this_cpu, int sd_flag)
4962{
4963 struct sched_group *idlest = NULL, *group = sd->groups;
4964 unsigned long min_load = ULONG_MAX, this_load = 0;
4965 int load_idx = sd->forkexec_idx;
4966 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4967
4968 if (sd_flag & SD_BALANCE_WAKE)
4969 load_idx = sd->wake_idx;
4970
4971 do {
4972 unsigned long load, avg_load;
4973 int local_group;
4974 int i;
4975
4976 /* Skip over this group if it has no CPUs allowed */
4977 if (!cpumask_intersects(sched_group_cpus(group),
4978 tsk_cpus_allowed(p)))
4979 continue;
4980
4981 local_group = cpumask_test_cpu(this_cpu,
4982 sched_group_cpus(group));
4983
4984 /* Tally up the load of all CPUs in the group */
4985 avg_load = 0;
4986
4987 for_each_cpu(i, sched_group_cpus(group)) {
4988 /* Bias balancing toward cpus of our domain */
4989 if (local_group)
4990 load = source_load(i, load_idx);
4991 else
4992 load = target_load(i, load_idx);
4993
4994 avg_load += load;
4995 }
4996
4997 /* Adjust by relative CPU capacity of the group */
4998 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4999
5000 if (local_group) {
5001 this_load = avg_load;
5002 } else if (avg_load < min_load) {
5003 min_load = avg_load;
5004 idlest = group;
5005 }
5006 } while (group = group->next, group != sd->groups);
5007
5008 if (!idlest || 100*this_load < imbalance*min_load)
5009 return NULL;
5010 return idlest;
5011}
5012
5013/*
5014 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5015 */
5016static int
5017find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5018{
5019 unsigned long load, min_load = ULONG_MAX;
5020 unsigned int min_exit_latency = UINT_MAX;
5021 u64 latest_idle_timestamp = 0;
5022 int least_loaded_cpu = this_cpu;
5023 int shallowest_idle_cpu = -1;
5024 int i;
5025
5026 /* Traverse only the allowed CPUs */
5027 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5028 if (idle_cpu(i)) {
5029 struct rq *rq = cpu_rq(i);
5030 struct cpuidle_state *idle = idle_get_state(rq);
5031 if (idle && idle->exit_latency < min_exit_latency) {
5032 /*
5033 * We give priority to a CPU whose idle state
5034 * has the smallest exit latency irrespective
5035 * of any idle timestamp.
5036 */
5037 min_exit_latency = idle->exit_latency;
5038 latest_idle_timestamp = rq->idle_stamp;
5039 shallowest_idle_cpu = i;
5040 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5041 rq->idle_stamp > latest_idle_timestamp) {
5042 /*
5043 * If equal or no active idle state, then
5044 * the most recently idled CPU might have
5045 * a warmer cache.
5046 */
5047 latest_idle_timestamp = rq->idle_stamp;
5048 shallowest_idle_cpu = i;
5049 }
5050 } else if (shallowest_idle_cpu == -1) {
5051 load = weighted_cpuload(i);
5052 if (load < min_load || (load == min_load && i == this_cpu)) {
5053 min_load = load;
5054 least_loaded_cpu = i;
5055 }
5056 }
5057 }
5058
5059 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5060}
5061
5062/*
5063 * Try and locate an idle CPU in the sched_domain.
5064 */
5065static int select_idle_sibling(struct task_struct *p, int target)
5066{
5067 struct sched_domain *sd;
5068 struct sched_group *sg;
5069 int i = task_cpu(p);
5070
5071 if (idle_cpu(target))
5072 return target;
5073
5074 /*
5075 * If the prevous cpu is cache affine and idle, don't be stupid.
5076 */
5077 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5078 return i;
5079
5080 /*
5081 * Otherwise, iterate the domains and find an eligible idle cpu.
5082 *
5083 * A completely idle sched group at higher domains is more
5084 * desirable than an idle group at a lower level, because lower
5085 * domains have smaller groups and usually share hardware
5086 * resources which causes tasks to contend on them, e.g. x86
5087 * hyperthread siblings in the lowest domain (SMT) can contend
5088 * on the shared cpu pipeline.
5089 *
5090 * However, while we prefer idle groups at higher domains
5091 * finding an idle cpu at the lowest domain is still better than
5092 * returning 'target', which we've already established, isn't
5093 * idle.
5094 */
5095 sd = rcu_dereference(per_cpu(sd_llc, target));
5096 for_each_lower_domain(sd) {
5097 sg = sd->groups;
5098 do {
5099 if (!cpumask_intersects(sched_group_cpus(sg),
5100 tsk_cpus_allowed(p)))
5101 goto next;
5102
5103 /* Ensure the entire group is idle */
5104 for_each_cpu(i, sched_group_cpus(sg)) {
5105 if (i == target || !idle_cpu(i))
5106 goto next;
5107 }
5108
5109 /*
5110 * It doesn't matter which cpu we pick, the
5111 * whole group is idle.
5112 */
5113 target = cpumask_first_and(sched_group_cpus(sg),
5114 tsk_cpus_allowed(p));
5115 goto done;
5116next:
5117 sg = sg->next;
5118 } while (sg != sd->groups);
5119 }
5120done:
5121 return target;
5122}
5123
5124/*
5125 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5126 * tasks. The unit of the return value must be the one of capacity so we can
5127 * compare the utilization with the capacity of the CPU that is available for
5128 * CFS task (ie cpu_capacity).
5129 *
5130 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5131 * recent utilization of currently non-runnable tasks on a CPU. It represents
5132 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5133 * capacity_orig is the cpu_capacity available at the highest frequency
5134 * (arch_scale_freq_capacity()).
5135 * The utilization of a CPU converges towards a sum equal to or less than the
5136 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5137 * the running time on this CPU scaled by capacity_curr.
5138 *
5139 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5140 * higher than capacity_orig because of unfortunate rounding in
5141 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5142 * the average stabilizes with the new running time. We need to check that the
5143 * utilization stays within the range of [0..capacity_orig] and cap it if
5144 * necessary. Without utilization capping, a group could be seen as overloaded
5145 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5146 * available capacity. We allow utilization to overshoot capacity_curr (but not
5147 * capacity_orig) as it useful for predicting the capacity required after task
5148 * migrations (scheduler-driven DVFS).
5149 */
5150static int cpu_util(int cpu)
5151{
5152 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5153 unsigned long capacity = capacity_orig_of(cpu);
5154
5155 return (util >= capacity) ? capacity : util;
5156}
5157
5158/*
5159 * select_task_rq_fair: Select target runqueue for the waking task in domains
5160 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5161 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5162 *
5163 * Balances load by selecting the idlest cpu in the idlest group, or under
5164 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5165 *
5166 * Returns the target cpu number.
5167 *
5168 * preempt must be disabled.
5169 */
5170static int
5171select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5172{
5173 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5174 int cpu = smp_processor_id();
5175 int new_cpu = prev_cpu;
5176 int want_affine = 0;
5177 int sync = wake_flags & WF_SYNC;
5178
5179 if (sd_flag & SD_BALANCE_WAKE)
5180 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5181
5182 rcu_read_lock();
5183 for_each_domain(cpu, tmp) {
5184 if (!(tmp->flags & SD_LOAD_BALANCE))
5185 break;
5186
5187 /*
5188 * If both cpu and prev_cpu are part of this domain,
5189 * cpu is a valid SD_WAKE_AFFINE target.
5190 */
5191 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5192 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5193 affine_sd = tmp;
5194 break;
5195 }
5196
5197 if (tmp->flags & sd_flag)
5198 sd = tmp;
5199 else if (!want_affine)
5200 break;
5201 }
5202
5203 if (affine_sd) {
5204 sd = NULL; /* Prefer wake_affine over balance flags */
5205 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5206 new_cpu = cpu;
5207 }
5208
5209 if (!sd) {
5210 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5211 new_cpu = select_idle_sibling(p, new_cpu);
5212
5213 } else while (sd) {
5214 struct sched_group *group;
5215 int weight;
5216
5217 if (!(sd->flags & sd_flag)) {
5218 sd = sd->child;
5219 continue;
5220 }
5221
5222 group = find_idlest_group(sd, p, cpu, sd_flag);
5223 if (!group) {
5224 sd = sd->child;
5225 continue;
5226 }
5227
5228 new_cpu = find_idlest_cpu(group, p, cpu);
5229 if (new_cpu == -1 || new_cpu == cpu) {
5230 /* Now try balancing at a lower domain level of cpu */
5231 sd = sd->child;
5232 continue;
5233 }
5234
5235 /* Now try balancing at a lower domain level of new_cpu */
5236 cpu = new_cpu;
5237 weight = sd->span_weight;
5238 sd = NULL;
5239 for_each_domain(cpu, tmp) {
5240 if (weight <= tmp->span_weight)
5241 break;
5242 if (tmp->flags & sd_flag)
5243 sd = tmp;
5244 }
5245 /* while loop will break here if sd == NULL */
5246 }
5247 rcu_read_unlock();
5248
5249 return new_cpu;
5250}
5251
5252/*
5253 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5254 * cfs_rq_of(p) references at time of call are still valid and identify the
5255 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5256 */
5257static void migrate_task_rq_fair(struct task_struct *p)
5258{
5259 /*
5260 * We are supposed to update the task to "current" time, then its up to date
5261 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5262 * what current time is, so simply throw away the out-of-date time. This
5263 * will result in the wakee task is less decayed, but giving the wakee more
5264 * load sounds not bad.
5265 */
5266 remove_entity_load_avg(&p->se);
5267
5268 /* Tell new CPU we are migrated */
5269 p->se.avg.last_update_time = 0;
5270
5271 /* We have migrated, no longer consider this task hot */
5272 p->se.exec_start = 0;
5273}
5274
5275static void task_dead_fair(struct task_struct *p)
5276{
5277 remove_entity_load_avg(&p->se);
5278}
5279#endif /* CONFIG_SMP */
5280
5281static unsigned long
5282wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5283{
5284 unsigned long gran = sysctl_sched_wakeup_granularity;
5285
5286 /*
5287 * Since its curr running now, convert the gran from real-time
5288 * to virtual-time in his units.
5289 *
5290 * By using 'se' instead of 'curr' we penalize light tasks, so
5291 * they get preempted easier. That is, if 'se' < 'curr' then
5292 * the resulting gran will be larger, therefore penalizing the
5293 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5294 * be smaller, again penalizing the lighter task.
5295 *
5296 * This is especially important for buddies when the leftmost
5297 * task is higher priority than the buddy.
5298 */
5299 return calc_delta_fair(gran, se);
5300}
5301
5302/*
5303 * Should 'se' preempt 'curr'.
5304 *
5305 * |s1
5306 * |s2
5307 * |s3
5308 * g
5309 * |<--->|c
5310 *
5311 * w(c, s1) = -1
5312 * w(c, s2) = 0
5313 * w(c, s3) = 1
5314 *
5315 */
5316static int
5317wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5318{
5319 s64 gran, vdiff = curr->vruntime - se->vruntime;
5320
5321 if (vdiff <= 0)
5322 return -1;
5323
5324 gran = wakeup_gran(curr, se);
5325 if (vdiff > gran)
5326 return 1;
5327
5328 return 0;
5329}
5330
5331static void set_last_buddy(struct sched_entity *se)
5332{
5333 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5334 return;
5335
5336 for_each_sched_entity(se)
5337 cfs_rq_of(se)->last = se;
5338}
5339
5340static void set_next_buddy(struct sched_entity *se)
5341{
5342 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5343 return;
5344
5345 for_each_sched_entity(se)
5346 cfs_rq_of(se)->next = se;
5347}
5348
5349static void set_skip_buddy(struct sched_entity *se)
5350{
5351 for_each_sched_entity(se)
5352 cfs_rq_of(se)->skip = se;
5353}
5354
5355/*
5356 * Preempt the current task with a newly woken task if needed:
5357 */
5358static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5359{
5360 struct task_struct *curr = rq->curr;
5361 struct sched_entity *se = &curr->se, *pse = &p->se;
5362 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5363 int scale = cfs_rq->nr_running >= sched_nr_latency;
5364 int next_buddy_marked = 0;
5365
5366 if (unlikely(se == pse))
5367 return;
5368
5369 /*
5370 * This is possible from callers such as attach_tasks(), in which we
5371 * unconditionally check_prempt_curr() after an enqueue (which may have
5372 * lead to a throttle). This both saves work and prevents false
5373 * next-buddy nomination below.
5374 */
5375 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5376 return;
5377
5378 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5379 set_next_buddy(pse);
5380 next_buddy_marked = 1;
5381 }
5382
5383 /*
5384 * We can come here with TIF_NEED_RESCHED already set from new task
5385 * wake up path.
5386 *
5387 * Note: this also catches the edge-case of curr being in a throttled
5388 * group (e.g. via set_curr_task), since update_curr() (in the
5389 * enqueue of curr) will have resulted in resched being set. This
5390 * prevents us from potentially nominating it as a false LAST_BUDDY
5391 * below.
5392 */
5393 if (test_tsk_need_resched(curr))
5394 return;
5395
5396 /* Idle tasks are by definition preempted by non-idle tasks. */
5397 if (unlikely(curr->policy == SCHED_IDLE) &&
5398 likely(p->policy != SCHED_IDLE))
5399 goto preempt;
5400
5401 /*
5402 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5403 * is driven by the tick):
5404 */
5405 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5406 return;
5407
5408 find_matching_se(&se, &pse);
5409 update_curr(cfs_rq_of(se));
5410 BUG_ON(!pse);
5411 if (wakeup_preempt_entity(se, pse) == 1) {
5412 /*
5413 * Bias pick_next to pick the sched entity that is
5414 * triggering this preemption.
5415 */
5416 if (!next_buddy_marked)
5417 set_next_buddy(pse);
5418 goto preempt;
5419 }
5420
5421 return;
5422
5423preempt:
5424 resched_curr(rq);
5425 /*
5426 * Only set the backward buddy when the current task is still
5427 * on the rq. This can happen when a wakeup gets interleaved
5428 * with schedule on the ->pre_schedule() or idle_balance()
5429 * point, either of which can * drop the rq lock.
5430 *
5431 * Also, during early boot the idle thread is in the fair class,
5432 * for obvious reasons its a bad idea to schedule back to it.
5433 */
5434 if (unlikely(!se->on_rq || curr == rq->idle))
5435 return;
5436
5437 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5438 set_last_buddy(se);
5439}
5440
5441static struct task_struct *
5442pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5443{
5444 struct cfs_rq *cfs_rq = &rq->cfs;
5445 struct sched_entity *se;
5446 struct task_struct *p;
5447 int new_tasks;
5448
5449again:
5450#ifdef CONFIG_FAIR_GROUP_SCHED
5451 if (!cfs_rq->nr_running)
5452 goto idle;
5453
5454 if (prev->sched_class != &fair_sched_class)
5455 goto simple;
5456
5457 /*
5458 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5459 * likely that a next task is from the same cgroup as the current.
5460 *
5461 * Therefore attempt to avoid putting and setting the entire cgroup
5462 * hierarchy, only change the part that actually changes.
5463 */
5464
5465 do {
5466 struct sched_entity *curr = cfs_rq->curr;
5467
5468 /*
5469 * Since we got here without doing put_prev_entity() we also
5470 * have to consider cfs_rq->curr. If it is still a runnable
5471 * entity, update_curr() will update its vruntime, otherwise
5472 * forget we've ever seen it.
5473 */
5474 if (curr) {
5475 if (curr->on_rq)
5476 update_curr(cfs_rq);
5477 else
5478 curr = NULL;
5479
5480 /*
5481 * This call to check_cfs_rq_runtime() will do the
5482 * throttle and dequeue its entity in the parent(s).
5483 * Therefore the 'simple' nr_running test will indeed
5484 * be correct.
5485 */
5486 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5487 goto simple;
5488 }
5489
5490 se = pick_next_entity(cfs_rq, curr);
5491 cfs_rq = group_cfs_rq(se);
5492 } while (cfs_rq);
5493
5494 p = task_of(se);
5495
5496 /*
5497 * Since we haven't yet done put_prev_entity and if the selected task
5498 * is a different task than we started out with, try and touch the
5499 * least amount of cfs_rqs.
5500 */
5501 if (prev != p) {
5502 struct sched_entity *pse = &prev->se;
5503
5504 while (!(cfs_rq = is_same_group(se, pse))) {
5505 int se_depth = se->depth;
5506 int pse_depth = pse->depth;
5507
5508 if (se_depth <= pse_depth) {
5509 put_prev_entity(cfs_rq_of(pse), pse);
5510 pse = parent_entity(pse);
5511 }
5512 if (se_depth >= pse_depth) {
5513 set_next_entity(cfs_rq_of(se), se);
5514 se = parent_entity(se);
5515 }
5516 }
5517
5518 put_prev_entity(cfs_rq, pse);
5519 set_next_entity(cfs_rq, se);
5520 }
5521
5522 if (hrtick_enabled(rq))
5523 hrtick_start_fair(rq, p);
5524
5525 return p;
5526simple:
5527 cfs_rq = &rq->cfs;
5528#endif
5529
5530 if (!cfs_rq->nr_running)
5531 goto idle;
5532
5533 put_prev_task(rq, prev);
5534
5535 do {
5536 se = pick_next_entity(cfs_rq, NULL);
5537 set_next_entity(cfs_rq, se);
5538 cfs_rq = group_cfs_rq(se);
5539 } while (cfs_rq);
5540
5541 p = task_of(se);
5542
5543 if (hrtick_enabled(rq))
5544 hrtick_start_fair(rq, p);
5545
5546 return p;
5547
5548idle:
5549 /*
5550 * This is OK, because current is on_cpu, which avoids it being picked
5551 * for load-balance and preemption/IRQs are still disabled avoiding
5552 * further scheduler activity on it and we're being very careful to
5553 * re-start the picking loop.
5554 */
5555 lockdep_unpin_lock(&rq->lock);
5556 new_tasks = idle_balance(rq);
5557 lockdep_pin_lock(&rq->lock);
5558 /*
5559 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5560 * possible for any higher priority task to appear. In that case we
5561 * must re-start the pick_next_entity() loop.
5562 */
5563 if (new_tasks < 0)
5564 return RETRY_TASK;
5565
5566 if (new_tasks > 0)
5567 goto again;
5568
5569 return NULL;
5570}
5571
5572/*
5573 * Account for a descheduled task:
5574 */
5575static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5576{
5577 struct sched_entity *se = &prev->se;
5578 struct cfs_rq *cfs_rq;
5579
5580 for_each_sched_entity(se) {
5581 cfs_rq = cfs_rq_of(se);
5582 put_prev_entity(cfs_rq, se);
5583 }
5584}
5585
5586/*
5587 * sched_yield() is very simple
5588 *
5589 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5590 */
5591static void yield_task_fair(struct rq *rq)
5592{
5593 struct task_struct *curr = rq->curr;
5594 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5595 struct sched_entity *se = &curr->se;
5596
5597 /*
5598 * Are we the only task in the tree?
5599 */
5600 if (unlikely(rq->nr_running == 1))
5601 return;
5602
5603 clear_buddies(cfs_rq, se);
5604
5605 if (curr->policy != SCHED_BATCH) {
5606 update_rq_clock(rq);
5607 /*
5608 * Update run-time statistics of the 'current'.
5609 */
5610 update_curr(cfs_rq);
5611 /*
5612 * Tell update_rq_clock() that we've just updated,
5613 * so we don't do microscopic update in schedule()
5614 * and double the fastpath cost.
5615 */
5616 rq_clock_skip_update(rq, true);
5617 }
5618
5619 set_skip_buddy(se);
5620}
5621
5622static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5623{
5624 struct sched_entity *se = &p->se;
5625
5626 /* throttled hierarchies are not runnable */
5627 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5628 return false;
5629
5630 /* Tell the scheduler that we'd really like pse to run next. */
5631 set_next_buddy(se);
5632
5633 yield_task_fair(rq);
5634
5635 return true;
5636}
5637
5638#ifdef CONFIG_SMP
5639/**************************************************
5640 * Fair scheduling class load-balancing methods.
5641 *
5642 * BASICS
5643 *
5644 * The purpose of load-balancing is to achieve the same basic fairness the
5645 * per-cpu scheduler provides, namely provide a proportional amount of compute
5646 * time to each task. This is expressed in the following equation:
5647 *
5648 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5649 *
5650 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5651 * W_i,0 is defined as:
5652 *
5653 * W_i,0 = \Sum_j w_i,j (2)
5654 *
5655 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5656 * is derived from the nice value as per prio_to_weight[].
5657 *
5658 * The weight average is an exponential decay average of the instantaneous
5659 * weight:
5660 *
5661 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5662 *
5663 * C_i is the compute capacity of cpu i, typically it is the
5664 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5665 * can also include other factors [XXX].
5666 *
5667 * To achieve this balance we define a measure of imbalance which follows
5668 * directly from (1):
5669 *
5670 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5671 *
5672 * We them move tasks around to minimize the imbalance. In the continuous
5673 * function space it is obvious this converges, in the discrete case we get
5674 * a few fun cases generally called infeasible weight scenarios.
5675 *
5676 * [XXX expand on:
5677 * - infeasible weights;
5678 * - local vs global optima in the discrete case. ]
5679 *
5680 *
5681 * SCHED DOMAINS
5682 *
5683 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5684 * for all i,j solution, we create a tree of cpus that follows the hardware
5685 * topology where each level pairs two lower groups (or better). This results
5686 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5687 * tree to only the first of the previous level and we decrease the frequency
5688 * of load-balance at each level inv. proportional to the number of cpus in
5689 * the groups.
5690 *
5691 * This yields:
5692 *
5693 * log_2 n 1 n
5694 * \Sum { --- * --- * 2^i } = O(n) (5)
5695 * i = 0 2^i 2^i
5696 * `- size of each group
5697 * | | `- number of cpus doing load-balance
5698 * | `- freq
5699 * `- sum over all levels
5700 *
5701 * Coupled with a limit on how many tasks we can migrate every balance pass,
5702 * this makes (5) the runtime complexity of the balancer.
5703 *
5704 * An important property here is that each CPU is still (indirectly) connected
5705 * to every other cpu in at most O(log n) steps:
5706 *
5707 * The adjacency matrix of the resulting graph is given by:
5708 *
5709 * log_2 n
5710 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5711 * k = 0
5712 *
5713 * And you'll find that:
5714 *
5715 * A^(log_2 n)_i,j != 0 for all i,j (7)
5716 *
5717 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5718 * The task movement gives a factor of O(m), giving a convergence complexity
5719 * of:
5720 *
5721 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5722 *
5723 *
5724 * WORK CONSERVING
5725 *
5726 * In order to avoid CPUs going idle while there's still work to do, new idle
5727 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5728 * tree itself instead of relying on other CPUs to bring it work.
5729 *
5730 * This adds some complexity to both (5) and (8) but it reduces the total idle
5731 * time.
5732 *
5733 * [XXX more?]
5734 *
5735 *
5736 * CGROUPS
5737 *
5738 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5739 *
5740 * s_k,i
5741 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5742 * S_k
5743 *
5744 * Where
5745 *
5746 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5747 *
5748 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5749 *
5750 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5751 * property.
5752 *
5753 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5754 * rewrite all of this once again.]
5755 */
5756
5757static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5758
5759enum fbq_type { regular, remote, all };
5760
5761#define LBF_ALL_PINNED 0x01
5762#define LBF_NEED_BREAK 0x02
5763#define LBF_DST_PINNED 0x04
5764#define LBF_SOME_PINNED 0x08
5765
5766struct lb_env {
5767 struct sched_domain *sd;
5768
5769 struct rq *src_rq;
5770 int src_cpu;
5771
5772 int dst_cpu;
5773 struct rq *dst_rq;
5774
5775 struct cpumask *dst_grpmask;
5776 int new_dst_cpu;
5777 enum cpu_idle_type idle;
5778 long imbalance;
5779 /* The set of CPUs under consideration for load-balancing */
5780 struct cpumask *cpus;
5781
5782 unsigned int flags;
5783
5784 unsigned int loop;
5785 unsigned int loop_break;
5786 unsigned int loop_max;
5787
5788 enum fbq_type fbq_type;
5789 struct list_head tasks;
5790};
5791
5792/*
5793 * Is this task likely cache-hot:
5794 */
5795static int task_hot(struct task_struct *p, struct lb_env *env)
5796{
5797 s64 delta;
5798
5799 lockdep_assert_held(&env->src_rq->lock);
5800
5801 if (p->sched_class != &fair_sched_class)
5802 return 0;
5803
5804 if (unlikely(p->policy == SCHED_IDLE))
5805 return 0;
5806
5807 /*
5808 * Buddy candidates are cache hot:
5809 */
5810 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5811 (&p->se == cfs_rq_of(&p->se)->next ||
5812 &p->se == cfs_rq_of(&p->se)->last))
5813 return 1;
5814
5815 if (sysctl_sched_migration_cost == -1)
5816 return 1;
5817 if (sysctl_sched_migration_cost == 0)
5818 return 0;
5819
5820 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5821
5822 return delta < (s64)sysctl_sched_migration_cost;
5823}
5824
5825#ifdef CONFIG_NUMA_BALANCING
5826/*
5827 * Returns 1, if task migration degrades locality
5828 * Returns 0, if task migration improves locality i.e migration preferred.
5829 * Returns -1, if task migration is not affected by locality.
5830 */
5831static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5832{
5833 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5834 unsigned long src_faults, dst_faults;
5835 int src_nid, dst_nid;
5836
5837 if (!static_branch_likely(&sched_numa_balancing))
5838 return -1;
5839
5840 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5841 return -1;
5842
5843 src_nid = cpu_to_node(env->src_cpu);
5844 dst_nid = cpu_to_node(env->dst_cpu);
5845
5846 if (src_nid == dst_nid)
5847 return -1;
5848
5849 /* Migrating away from the preferred node is always bad. */
5850 if (src_nid == p->numa_preferred_nid) {
5851 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5852 return 1;
5853 else
5854 return -1;
5855 }
5856
5857 /* Encourage migration to the preferred node. */
5858 if (dst_nid == p->numa_preferred_nid)
5859 return 0;
5860
5861 if (numa_group) {
5862 src_faults = group_faults(p, src_nid);
5863 dst_faults = group_faults(p, dst_nid);
5864 } else {
5865 src_faults = task_faults(p, src_nid);
5866 dst_faults = task_faults(p, dst_nid);
5867 }
5868
5869 return dst_faults < src_faults;
5870}
5871
5872#else
5873static inline int migrate_degrades_locality(struct task_struct *p,
5874 struct lb_env *env)
5875{
5876 return -1;
5877}
5878#endif
5879
5880/*
5881 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5882 */
5883static
5884int can_migrate_task(struct task_struct *p, struct lb_env *env)
5885{
5886 int tsk_cache_hot;
5887
5888 lockdep_assert_held(&env->src_rq->lock);
5889
5890 /*
5891 * We do not migrate tasks that are:
5892 * 1) throttled_lb_pair, or
5893 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5894 * 3) running (obviously), or
5895 * 4) are cache-hot on their current CPU.
5896 */
5897 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5898 return 0;
5899
5900 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5901 int cpu;
5902
5903 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5904
5905 env->flags |= LBF_SOME_PINNED;
5906
5907 /*
5908 * Remember if this task can be migrated to any other cpu in
5909 * our sched_group. We may want to revisit it if we couldn't
5910 * meet load balance goals by pulling other tasks on src_cpu.
5911 *
5912 * Also avoid computing new_dst_cpu if we have already computed
5913 * one in current iteration.
5914 */
5915 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5916 return 0;
5917
5918 /* Prevent to re-select dst_cpu via env's cpus */
5919 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5920 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5921 env->flags |= LBF_DST_PINNED;
5922 env->new_dst_cpu = cpu;
5923 break;
5924 }
5925 }
5926
5927 return 0;
5928 }
5929
5930 /* Record that we found atleast one task that could run on dst_cpu */
5931 env->flags &= ~LBF_ALL_PINNED;
5932
5933 if (task_running(env->src_rq, p)) {
5934 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5935 return 0;
5936 }
5937
5938 /*
5939 * Aggressive migration if:
5940 * 1) destination numa is preferred
5941 * 2) task is cache cold, or
5942 * 3) too many balance attempts have failed.
5943 */
5944 tsk_cache_hot = migrate_degrades_locality(p, env);
5945 if (tsk_cache_hot == -1)
5946 tsk_cache_hot = task_hot(p, env);
5947
5948 if (tsk_cache_hot <= 0 ||
5949 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5950 if (tsk_cache_hot == 1) {
5951 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5952 schedstat_inc(p, se.statistics.nr_forced_migrations);
5953 }
5954 return 1;
5955 }
5956
5957 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5958 return 0;
5959}
5960
5961/*
5962 * detach_task() -- detach the task for the migration specified in env
5963 */
5964static void detach_task(struct task_struct *p, struct lb_env *env)
5965{
5966 lockdep_assert_held(&env->src_rq->lock);
5967
5968 p->on_rq = TASK_ON_RQ_MIGRATING;
5969 deactivate_task(env->src_rq, p, 0);
5970 set_task_cpu(p, env->dst_cpu);
5971}
5972
5973/*
5974 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5975 * part of active balancing operations within "domain".
5976 *
5977 * Returns a task if successful and NULL otherwise.
5978 */
5979static struct task_struct *detach_one_task(struct lb_env *env)
5980{
5981 struct task_struct *p, *n;
5982
5983 lockdep_assert_held(&env->src_rq->lock);
5984
5985 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5986 if (!can_migrate_task(p, env))
5987 continue;
5988
5989 detach_task(p, env);
5990
5991 /*
5992 * Right now, this is only the second place where
5993 * lb_gained[env->idle] is updated (other is detach_tasks)
5994 * so we can safely collect stats here rather than
5995 * inside detach_tasks().
5996 */
5997 schedstat_inc(env->sd, lb_gained[env->idle]);
5998 return p;
5999 }
6000 return NULL;
6001}
6002
6003static const unsigned int sched_nr_migrate_break = 32;
6004
6005/*
6006 * detach_tasks() -- tries to detach up to imbalance weighted load from
6007 * busiest_rq, as part of a balancing operation within domain "sd".
6008 *
6009 * Returns number of detached tasks if successful and 0 otherwise.
6010 */
6011static int detach_tasks(struct lb_env *env)
6012{
6013 struct list_head *tasks = &env->src_rq->cfs_tasks;
6014 struct task_struct *p;
6015 unsigned long load;
6016 int detached = 0;
6017
6018 lockdep_assert_held(&env->src_rq->lock);
6019
6020 if (env->imbalance <= 0)
6021 return 0;
6022
6023 while (!list_empty(tasks)) {
6024 /*
6025 * We don't want to steal all, otherwise we may be treated likewise,
6026 * which could at worst lead to a livelock crash.
6027 */
6028 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6029 break;
6030
6031 p = list_first_entry(tasks, struct task_struct, se.group_node);
6032
6033 env->loop++;
6034 /* We've more or less seen every task there is, call it quits */
6035 if (env->loop > env->loop_max)
6036 break;
6037
6038 /* take a breather every nr_migrate tasks */
6039 if (env->loop > env->loop_break) {
6040 env->loop_break += sched_nr_migrate_break;
6041 env->flags |= LBF_NEED_BREAK;
6042 break;
6043 }
6044
6045 if (!can_migrate_task(p, env))
6046 goto next;
6047
6048 load = task_h_load(p);
6049
6050 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6051 goto next;
6052
6053 if ((load / 2) > env->imbalance)
6054 goto next;
6055
6056 detach_task(p, env);
6057 list_add(&p->se.group_node, &env->tasks);
6058
6059 detached++;
6060 env->imbalance -= load;
6061
6062#ifdef CONFIG_PREEMPT
6063 /*
6064 * NEWIDLE balancing is a source of latency, so preemptible
6065 * kernels will stop after the first task is detached to minimize
6066 * the critical section.
6067 */
6068 if (env->idle == CPU_NEWLY_IDLE)
6069 break;
6070#endif
6071
6072 /*
6073 * We only want to steal up to the prescribed amount of
6074 * weighted load.
6075 */
6076 if (env->imbalance <= 0)
6077 break;
6078
6079 continue;
6080next:
6081 list_move_tail(&p->se.group_node, tasks);
6082 }
6083
6084 /*
6085 * Right now, this is one of only two places we collect this stat
6086 * so we can safely collect detach_one_task() stats here rather
6087 * than inside detach_one_task().
6088 */
6089 schedstat_add(env->sd, lb_gained[env->idle], detached);
6090
6091 return detached;
6092}
6093
6094/*
6095 * attach_task() -- attach the task detached by detach_task() to its new rq.
6096 */
6097static void attach_task(struct rq *rq, struct task_struct *p)
6098{
6099 lockdep_assert_held(&rq->lock);
6100
6101 BUG_ON(task_rq(p) != rq);
6102 activate_task(rq, p, 0);
6103 p->on_rq = TASK_ON_RQ_QUEUED;
6104 check_preempt_curr(rq, p, 0);
6105}
6106
6107/*
6108 * attach_one_task() -- attaches the task returned from detach_one_task() to
6109 * its new rq.
6110 */
6111static void attach_one_task(struct rq *rq, struct task_struct *p)
6112{
6113 raw_spin_lock(&rq->lock);
6114 attach_task(rq, p);
6115 raw_spin_unlock(&rq->lock);
6116}
6117
6118/*
6119 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6120 * new rq.
6121 */
6122static void attach_tasks(struct lb_env *env)
6123{
6124 struct list_head *tasks = &env->tasks;
6125 struct task_struct *p;
6126
6127 raw_spin_lock(&env->dst_rq->lock);
6128
6129 while (!list_empty(tasks)) {
6130 p = list_first_entry(tasks, struct task_struct, se.group_node);
6131 list_del_init(&p->se.group_node);
6132
6133 attach_task(env->dst_rq, p);
6134 }
6135
6136 raw_spin_unlock(&env->dst_rq->lock);
6137}
6138
6139#ifdef CONFIG_FAIR_GROUP_SCHED
6140static void update_blocked_averages(int cpu)
6141{
6142 struct rq *rq = cpu_rq(cpu);
6143 struct cfs_rq *cfs_rq;
6144 unsigned long flags;
6145
6146 raw_spin_lock_irqsave(&rq->lock, flags);
6147 update_rq_clock(rq);
6148
6149 /*
6150 * Iterates the task_group tree in a bottom up fashion, see
6151 * list_add_leaf_cfs_rq() for details.
6152 */
6153 for_each_leaf_cfs_rq(rq, cfs_rq) {
6154 /* throttled entities do not contribute to load */
6155 if (throttled_hierarchy(cfs_rq))
6156 continue;
6157
6158 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6159 update_tg_load_avg(cfs_rq, 0);
6160 }
6161 raw_spin_unlock_irqrestore(&rq->lock, flags);
6162}
6163
6164/*
6165 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6166 * This needs to be done in a top-down fashion because the load of a child
6167 * group is a fraction of its parents load.
6168 */
6169static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6170{
6171 struct rq *rq = rq_of(cfs_rq);
6172 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6173 unsigned long now = jiffies;
6174 unsigned long load;
6175
6176 if (cfs_rq->last_h_load_update == now)
6177 return;
6178
6179 cfs_rq->h_load_next = NULL;
6180 for_each_sched_entity(se) {
6181 cfs_rq = cfs_rq_of(se);
6182 cfs_rq->h_load_next = se;
6183 if (cfs_rq->last_h_load_update == now)
6184 break;
6185 }
6186
6187 if (!se) {
6188 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6189 cfs_rq->last_h_load_update = now;
6190 }
6191
6192 while ((se = cfs_rq->h_load_next) != NULL) {
6193 load = cfs_rq->h_load;
6194 load = div64_ul(load * se->avg.load_avg,
6195 cfs_rq_load_avg(cfs_rq) + 1);
6196 cfs_rq = group_cfs_rq(se);
6197 cfs_rq->h_load = load;
6198 cfs_rq->last_h_load_update = now;
6199 }
6200}
6201
6202static unsigned long task_h_load(struct task_struct *p)
6203{
6204 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6205
6206 update_cfs_rq_h_load(cfs_rq);
6207 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6208 cfs_rq_load_avg(cfs_rq) + 1);
6209}
6210#else
6211static inline void update_blocked_averages(int cpu)
6212{
6213 struct rq *rq = cpu_rq(cpu);
6214 struct cfs_rq *cfs_rq = &rq->cfs;
6215 unsigned long flags;
6216
6217 raw_spin_lock_irqsave(&rq->lock, flags);
6218 update_rq_clock(rq);
6219 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6220 raw_spin_unlock_irqrestore(&rq->lock, flags);
6221}
6222
6223static unsigned long task_h_load(struct task_struct *p)
6224{
6225 return p->se.avg.load_avg;
6226}
6227#endif
6228
6229/********** Helpers for find_busiest_group ************************/
6230
6231enum group_type {
6232 group_other = 0,
6233 group_imbalanced,
6234 group_overloaded,
6235};
6236
6237/*
6238 * sg_lb_stats - stats of a sched_group required for load_balancing
6239 */
6240struct sg_lb_stats {
6241 unsigned long avg_load; /*Avg load across the CPUs of the group */
6242 unsigned long group_load; /* Total load over the CPUs of the group */
6243 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6244 unsigned long load_per_task;
6245 unsigned long group_capacity;
6246 unsigned long group_util; /* Total utilization of the group */
6247 unsigned int sum_nr_running; /* Nr tasks running in the group */
6248 unsigned int idle_cpus;
6249 unsigned int group_weight;
6250 enum group_type group_type;
6251 int group_no_capacity;
6252#ifdef CONFIG_NUMA_BALANCING
6253 unsigned int nr_numa_running;
6254 unsigned int nr_preferred_running;
6255#endif
6256};
6257
6258/*
6259 * sd_lb_stats - Structure to store the statistics of a sched_domain
6260 * during load balancing.
6261 */
6262struct sd_lb_stats {
6263 struct sched_group *busiest; /* Busiest group in this sd */
6264 struct sched_group *local; /* Local group in this sd */
6265 unsigned long total_load; /* Total load of all groups in sd */
6266 unsigned long total_capacity; /* Total capacity of all groups in sd */
6267 unsigned long avg_load; /* Average load across all groups in sd */
6268
6269 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6270 struct sg_lb_stats local_stat; /* Statistics of the local group */
6271};
6272
6273static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6274{
6275 /*
6276 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6277 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6278 * We must however clear busiest_stat::avg_load because
6279 * update_sd_pick_busiest() reads this before assignment.
6280 */
6281 *sds = (struct sd_lb_stats){
6282 .busiest = NULL,
6283 .local = NULL,
6284 .total_load = 0UL,
6285 .total_capacity = 0UL,
6286 .busiest_stat = {
6287 .avg_load = 0UL,
6288 .sum_nr_running = 0,
6289 .group_type = group_other,
6290 },
6291 };
6292}
6293
6294/**
6295 * get_sd_load_idx - Obtain the load index for a given sched domain.
6296 * @sd: The sched_domain whose load_idx is to be obtained.
6297 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6298 *
6299 * Return: The load index.
6300 */
6301static inline int get_sd_load_idx(struct sched_domain *sd,
6302 enum cpu_idle_type idle)
6303{
6304 int load_idx;
6305
6306 switch (idle) {
6307 case CPU_NOT_IDLE:
6308 load_idx = sd->busy_idx;
6309 break;
6310
6311 case CPU_NEWLY_IDLE:
6312 load_idx = sd->newidle_idx;
6313 break;
6314 default:
6315 load_idx = sd->idle_idx;
6316 break;
6317 }
6318
6319 return load_idx;
6320}
6321
6322static unsigned long scale_rt_capacity(int cpu)
6323{
6324 struct rq *rq = cpu_rq(cpu);
6325 u64 total, used, age_stamp, avg;
6326 s64 delta;
6327
6328 /*
6329 * Since we're reading these variables without serialization make sure
6330 * we read them once before doing sanity checks on them.
6331 */
6332 age_stamp = READ_ONCE(rq->age_stamp);
6333 avg = READ_ONCE(rq->rt_avg);
6334 delta = __rq_clock_broken(rq) - age_stamp;
6335
6336 if (unlikely(delta < 0))
6337 delta = 0;
6338
6339 total = sched_avg_period() + delta;
6340
6341 used = div_u64(avg, total);
6342
6343 if (likely(used < SCHED_CAPACITY_SCALE))
6344 return SCHED_CAPACITY_SCALE - used;
6345
6346 return 1;
6347}
6348
6349static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6350{
6351 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6352 struct sched_group *sdg = sd->groups;
6353
6354 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6355
6356 capacity *= scale_rt_capacity(cpu);
6357 capacity >>= SCHED_CAPACITY_SHIFT;
6358
6359 if (!capacity)
6360 capacity = 1;
6361
6362 cpu_rq(cpu)->cpu_capacity = capacity;
6363 sdg->sgc->capacity = capacity;
6364}
6365
6366void update_group_capacity(struct sched_domain *sd, int cpu)
6367{
6368 struct sched_domain *child = sd->child;
6369 struct sched_group *group, *sdg = sd->groups;
6370 unsigned long capacity;
6371 unsigned long interval;
6372
6373 interval = msecs_to_jiffies(sd->balance_interval);
6374 interval = clamp(interval, 1UL, max_load_balance_interval);
6375 sdg->sgc->next_update = jiffies + interval;
6376
6377 if (!child) {
6378 update_cpu_capacity(sd, cpu);
6379 return;
6380 }
6381
6382 capacity = 0;
6383
6384 if (child->flags & SD_OVERLAP) {
6385 /*
6386 * SD_OVERLAP domains cannot assume that child groups
6387 * span the current group.
6388 */
6389
6390 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6391 struct sched_group_capacity *sgc;
6392 struct rq *rq = cpu_rq(cpu);
6393
6394 /*
6395 * build_sched_domains() -> init_sched_groups_capacity()
6396 * gets here before we've attached the domains to the
6397 * runqueues.
6398 *
6399 * Use capacity_of(), which is set irrespective of domains
6400 * in update_cpu_capacity().
6401 *
6402 * This avoids capacity from being 0 and
6403 * causing divide-by-zero issues on boot.
6404 */
6405 if (unlikely(!rq->sd)) {
6406 capacity += capacity_of(cpu);
6407 continue;
6408 }
6409
6410 sgc = rq->sd->groups->sgc;
6411 capacity += sgc->capacity;
6412 }
6413 } else {
6414 /*
6415 * !SD_OVERLAP domains can assume that child groups
6416 * span the current group.
6417 */
6418
6419 group = child->groups;
6420 do {
6421 capacity += group->sgc->capacity;
6422 group = group->next;
6423 } while (group != child->groups);
6424 }
6425
6426 sdg->sgc->capacity = capacity;
6427}
6428
6429/*
6430 * Check whether the capacity of the rq has been noticeably reduced by side
6431 * activity. The imbalance_pct is used for the threshold.
6432 * Return true is the capacity is reduced
6433 */
6434static inline int
6435check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6436{
6437 return ((rq->cpu_capacity * sd->imbalance_pct) <
6438 (rq->cpu_capacity_orig * 100));
6439}
6440
6441/*
6442 * Group imbalance indicates (and tries to solve) the problem where balancing
6443 * groups is inadequate due to tsk_cpus_allowed() constraints.
6444 *
6445 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6446 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6447 * Something like:
6448 *
6449 * { 0 1 2 3 } { 4 5 6 7 }
6450 * * * * *
6451 *
6452 * If we were to balance group-wise we'd place two tasks in the first group and
6453 * two tasks in the second group. Clearly this is undesired as it will overload
6454 * cpu 3 and leave one of the cpus in the second group unused.
6455 *
6456 * The current solution to this issue is detecting the skew in the first group
6457 * by noticing the lower domain failed to reach balance and had difficulty
6458 * moving tasks due to affinity constraints.
6459 *
6460 * When this is so detected; this group becomes a candidate for busiest; see
6461 * update_sd_pick_busiest(). And calculate_imbalance() and
6462 * find_busiest_group() avoid some of the usual balance conditions to allow it
6463 * to create an effective group imbalance.
6464 *
6465 * This is a somewhat tricky proposition since the next run might not find the
6466 * group imbalance and decide the groups need to be balanced again. A most
6467 * subtle and fragile situation.
6468 */
6469
6470static inline int sg_imbalanced(struct sched_group *group)
6471{
6472 return group->sgc->imbalance;
6473}
6474
6475/*
6476 * group_has_capacity returns true if the group has spare capacity that could
6477 * be used by some tasks.
6478 * We consider that a group has spare capacity if the * number of task is
6479 * smaller than the number of CPUs or if the utilization is lower than the
6480 * available capacity for CFS tasks.
6481 * For the latter, we use a threshold to stabilize the state, to take into
6482 * account the variance of the tasks' load and to return true if the available
6483 * capacity in meaningful for the load balancer.
6484 * As an example, an available capacity of 1% can appear but it doesn't make
6485 * any benefit for the load balance.
6486 */
6487static inline bool
6488group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6489{
6490 if (sgs->sum_nr_running < sgs->group_weight)
6491 return true;
6492
6493 if ((sgs->group_capacity * 100) >
6494 (sgs->group_util * env->sd->imbalance_pct))
6495 return true;
6496
6497 return false;
6498}
6499
6500/*
6501 * group_is_overloaded returns true if the group has more tasks than it can
6502 * handle.
6503 * group_is_overloaded is not equals to !group_has_capacity because a group
6504 * with the exact right number of tasks, has no more spare capacity but is not
6505 * overloaded so both group_has_capacity and group_is_overloaded return
6506 * false.
6507 */
6508static inline bool
6509group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6510{
6511 if (sgs->sum_nr_running <= sgs->group_weight)
6512 return false;
6513
6514 if ((sgs->group_capacity * 100) <
6515 (sgs->group_util * env->sd->imbalance_pct))
6516 return true;
6517
6518 return false;
6519}
6520
6521static inline enum
6522group_type group_classify(struct sched_group *group,
6523 struct sg_lb_stats *sgs)
6524{
6525 if (sgs->group_no_capacity)
6526 return group_overloaded;
6527
6528 if (sg_imbalanced(group))
6529 return group_imbalanced;
6530
6531 return group_other;
6532}
6533
6534/**
6535 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6536 * @env: The load balancing environment.
6537 * @group: sched_group whose statistics are to be updated.
6538 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6539 * @local_group: Does group contain this_cpu.
6540 * @sgs: variable to hold the statistics for this group.
6541 * @overload: Indicate more than one runnable task for any CPU.
6542 */
6543static inline void update_sg_lb_stats(struct lb_env *env,
6544 struct sched_group *group, int load_idx,
6545 int local_group, struct sg_lb_stats *sgs,
6546 bool *overload)
6547{
6548 unsigned long load;
6549 int i, nr_running;
6550
6551 memset(sgs, 0, sizeof(*sgs));
6552
6553 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6554 struct rq *rq = cpu_rq(i);
6555
6556 /* Bias balancing toward cpus of our domain */
6557 if (local_group)
6558 load = target_load(i, load_idx);
6559 else
6560 load = source_load(i, load_idx);
6561
6562 sgs->group_load += load;
6563 sgs->group_util += cpu_util(i);
6564 sgs->sum_nr_running += rq->cfs.h_nr_running;
6565
6566 nr_running = rq->nr_running;
6567 if (nr_running > 1)
6568 *overload = true;
6569
6570#ifdef CONFIG_NUMA_BALANCING
6571 sgs->nr_numa_running += rq->nr_numa_running;
6572 sgs->nr_preferred_running += rq->nr_preferred_running;
6573#endif
6574 sgs->sum_weighted_load += weighted_cpuload(i);
6575 /*
6576 * No need to call idle_cpu() if nr_running is not 0
6577 */
6578 if (!nr_running && idle_cpu(i))
6579 sgs->idle_cpus++;
6580 }
6581
6582 /* Adjust by relative CPU capacity of the group */
6583 sgs->group_capacity = group->sgc->capacity;
6584 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6585
6586 if (sgs->sum_nr_running)
6587 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6588
6589 sgs->group_weight = group->group_weight;
6590
6591 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6592 sgs->group_type = group_classify(group, sgs);
6593}
6594
6595/**
6596 * update_sd_pick_busiest - return 1 on busiest group
6597 * @env: The load balancing environment.
6598 * @sds: sched_domain statistics
6599 * @sg: sched_group candidate to be checked for being the busiest
6600 * @sgs: sched_group statistics
6601 *
6602 * Determine if @sg is a busier group than the previously selected
6603 * busiest group.
6604 *
6605 * Return: %true if @sg is a busier group than the previously selected
6606 * busiest group. %false otherwise.
6607 */
6608static bool update_sd_pick_busiest(struct lb_env *env,
6609 struct sd_lb_stats *sds,
6610 struct sched_group *sg,
6611 struct sg_lb_stats *sgs)
6612{
6613 struct sg_lb_stats *busiest = &sds->busiest_stat;
6614
6615 if (sgs->group_type > busiest->group_type)
6616 return true;
6617
6618 if (sgs->group_type < busiest->group_type)
6619 return false;
6620
6621 if (sgs->avg_load <= busiest->avg_load)
6622 return false;
6623
6624 /* This is the busiest node in its class. */
6625 if (!(env->sd->flags & SD_ASYM_PACKING))
6626 return true;
6627
6628 /*
6629 * ASYM_PACKING needs to move all the work to the lowest
6630 * numbered CPUs in the group, therefore mark all groups
6631 * higher than ourself as busy.
6632 */
6633 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6634 if (!sds->busiest)
6635 return true;
6636
6637 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6638 return true;
6639 }
6640
6641 return false;
6642}
6643
6644#ifdef CONFIG_NUMA_BALANCING
6645static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6646{
6647 if (sgs->sum_nr_running > sgs->nr_numa_running)
6648 return regular;
6649 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6650 return remote;
6651 return all;
6652}
6653
6654static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6655{
6656 if (rq->nr_running > rq->nr_numa_running)
6657 return regular;
6658 if (rq->nr_running > rq->nr_preferred_running)
6659 return remote;
6660 return all;
6661}
6662#else
6663static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6664{
6665 return all;
6666}
6667
6668static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6669{
6670 return regular;
6671}
6672#endif /* CONFIG_NUMA_BALANCING */
6673
6674/**
6675 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6676 * @env: The load balancing environment.
6677 * @sds: variable to hold the statistics for this sched_domain.
6678 */
6679static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6680{
6681 struct sched_domain *child = env->sd->child;
6682 struct sched_group *sg = env->sd->groups;
6683 struct sg_lb_stats tmp_sgs;
6684 int load_idx, prefer_sibling = 0;
6685 bool overload = false;
6686
6687 if (child && child->flags & SD_PREFER_SIBLING)
6688 prefer_sibling = 1;
6689
6690 load_idx = get_sd_load_idx(env->sd, env->idle);
6691
6692 do {
6693 struct sg_lb_stats *sgs = &tmp_sgs;
6694 int local_group;
6695
6696 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6697 if (local_group) {
6698 sds->local = sg;
6699 sgs = &sds->local_stat;
6700
6701 if (env->idle != CPU_NEWLY_IDLE ||
6702 time_after_eq(jiffies, sg->sgc->next_update))
6703 update_group_capacity(env->sd, env->dst_cpu);
6704 }
6705
6706 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6707 &overload);
6708
6709 if (local_group)
6710 goto next_group;
6711
6712 /*
6713 * In case the child domain prefers tasks go to siblings
6714 * first, lower the sg capacity so that we'll try
6715 * and move all the excess tasks away. We lower the capacity
6716 * of a group only if the local group has the capacity to fit
6717 * these excess tasks. The extra check prevents the case where
6718 * you always pull from the heaviest group when it is already
6719 * under-utilized (possible with a large weight task outweighs
6720 * the tasks on the system).
6721 */
6722 if (prefer_sibling && sds->local &&
6723 group_has_capacity(env, &sds->local_stat) &&
6724 (sgs->sum_nr_running > 1)) {
6725 sgs->group_no_capacity = 1;
6726 sgs->group_type = group_classify(sg, sgs);
6727 }
6728
6729 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6730 sds->busiest = sg;
6731 sds->busiest_stat = *sgs;
6732 }
6733
6734next_group:
6735 /* Now, start updating sd_lb_stats */
6736 sds->total_load += sgs->group_load;
6737 sds->total_capacity += sgs->group_capacity;
6738
6739 sg = sg->next;
6740 } while (sg != env->sd->groups);
6741
6742 if (env->sd->flags & SD_NUMA)
6743 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6744
6745 if (!env->sd->parent) {
6746 /* update overload indicator if we are at root domain */
6747 if (env->dst_rq->rd->overload != overload)
6748 env->dst_rq->rd->overload = overload;
6749 }
6750
6751}
6752
6753/**
6754 * check_asym_packing - Check to see if the group is packed into the
6755 * sched doman.
6756 *
6757 * This is primarily intended to used at the sibling level. Some
6758 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6759 * case of POWER7, it can move to lower SMT modes only when higher
6760 * threads are idle. When in lower SMT modes, the threads will
6761 * perform better since they share less core resources. Hence when we
6762 * have idle threads, we want them to be the higher ones.
6763 *
6764 * This packing function is run on idle threads. It checks to see if
6765 * the busiest CPU in this domain (core in the P7 case) has a higher
6766 * CPU number than the packing function is being run on. Here we are
6767 * assuming lower CPU number will be equivalent to lower a SMT thread
6768 * number.
6769 *
6770 * Return: 1 when packing is required and a task should be moved to
6771 * this CPU. The amount of the imbalance is returned in *imbalance.
6772 *
6773 * @env: The load balancing environment.
6774 * @sds: Statistics of the sched_domain which is to be packed
6775 */
6776static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6777{
6778 int busiest_cpu;
6779
6780 if (!(env->sd->flags & SD_ASYM_PACKING))
6781 return 0;
6782
6783 if (!sds->busiest)
6784 return 0;
6785
6786 busiest_cpu = group_first_cpu(sds->busiest);
6787 if (env->dst_cpu > busiest_cpu)
6788 return 0;
6789
6790 env->imbalance = DIV_ROUND_CLOSEST(
6791 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6792 SCHED_CAPACITY_SCALE);
6793
6794 return 1;
6795}
6796
6797/**
6798 * fix_small_imbalance - Calculate the minor imbalance that exists
6799 * amongst the groups of a sched_domain, during
6800 * load balancing.
6801 * @env: The load balancing environment.
6802 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6803 */
6804static inline
6805void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6806{
6807 unsigned long tmp, capa_now = 0, capa_move = 0;
6808 unsigned int imbn = 2;
6809 unsigned long scaled_busy_load_per_task;
6810 struct sg_lb_stats *local, *busiest;
6811
6812 local = &sds->local_stat;
6813 busiest = &sds->busiest_stat;
6814
6815 if (!local->sum_nr_running)
6816 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6817 else if (busiest->load_per_task > local->load_per_task)
6818 imbn = 1;
6819
6820 scaled_busy_load_per_task =
6821 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6822 busiest->group_capacity;
6823
6824 if (busiest->avg_load + scaled_busy_load_per_task >=
6825 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6826 env->imbalance = busiest->load_per_task;
6827 return;
6828 }
6829
6830 /*
6831 * OK, we don't have enough imbalance to justify moving tasks,
6832 * however we may be able to increase total CPU capacity used by
6833 * moving them.
6834 */
6835
6836 capa_now += busiest->group_capacity *
6837 min(busiest->load_per_task, busiest->avg_load);
6838 capa_now += local->group_capacity *
6839 min(local->load_per_task, local->avg_load);
6840 capa_now /= SCHED_CAPACITY_SCALE;
6841
6842 /* Amount of load we'd subtract */
6843 if (busiest->avg_load > scaled_busy_load_per_task) {
6844 capa_move += busiest->group_capacity *
6845 min(busiest->load_per_task,
6846 busiest->avg_load - scaled_busy_load_per_task);
6847 }
6848
6849 /* Amount of load we'd add */
6850 if (busiest->avg_load * busiest->group_capacity <
6851 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6852 tmp = (busiest->avg_load * busiest->group_capacity) /
6853 local->group_capacity;
6854 } else {
6855 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6856 local->group_capacity;
6857 }
6858 capa_move += local->group_capacity *
6859 min(local->load_per_task, local->avg_load + tmp);
6860 capa_move /= SCHED_CAPACITY_SCALE;
6861
6862 /* Move if we gain throughput */
6863 if (capa_move > capa_now)
6864 env->imbalance = busiest->load_per_task;
6865}
6866
6867/**
6868 * calculate_imbalance - Calculate the amount of imbalance present within the
6869 * groups of a given sched_domain during load balance.
6870 * @env: load balance environment
6871 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6872 */
6873static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6874{
6875 unsigned long max_pull, load_above_capacity = ~0UL;
6876 struct sg_lb_stats *local, *busiest;
6877
6878 local = &sds->local_stat;
6879 busiest = &sds->busiest_stat;
6880
6881 if (busiest->group_type == group_imbalanced) {
6882 /*
6883 * In the group_imb case we cannot rely on group-wide averages
6884 * to ensure cpu-load equilibrium, look at wider averages. XXX
6885 */
6886 busiest->load_per_task =
6887 min(busiest->load_per_task, sds->avg_load);
6888 }
6889
6890 /*
6891 * In the presence of smp nice balancing, certain scenarios can have
6892 * max load less than avg load(as we skip the groups at or below
6893 * its cpu_capacity, while calculating max_load..)
6894 */
6895 if (busiest->avg_load <= sds->avg_load ||
6896 local->avg_load >= sds->avg_load) {
6897 env->imbalance = 0;
6898 return fix_small_imbalance(env, sds);
6899 }
6900
6901 /*
6902 * If there aren't any idle cpus, avoid creating some.
6903 */
6904 if (busiest->group_type == group_overloaded &&
6905 local->group_type == group_overloaded) {
6906 load_above_capacity = busiest->sum_nr_running *
6907 SCHED_LOAD_SCALE;
6908 if (load_above_capacity > busiest->group_capacity)
6909 load_above_capacity -= busiest->group_capacity;
6910 else
6911 load_above_capacity = ~0UL;
6912 }
6913
6914 /*
6915 * We're trying to get all the cpus to the average_load, so we don't
6916 * want to push ourselves above the average load, nor do we wish to
6917 * reduce the max loaded cpu below the average load. At the same time,
6918 * we also don't want to reduce the group load below the group capacity
6919 * (so that we can implement power-savings policies etc). Thus we look
6920 * for the minimum possible imbalance.
6921 */
6922 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6923
6924 /* How much load to actually move to equalise the imbalance */
6925 env->imbalance = min(
6926 max_pull * busiest->group_capacity,
6927 (sds->avg_load - local->avg_load) * local->group_capacity
6928 ) / SCHED_CAPACITY_SCALE;
6929
6930 /*
6931 * if *imbalance is less than the average load per runnable task
6932 * there is no guarantee that any tasks will be moved so we'll have
6933 * a think about bumping its value to force at least one task to be
6934 * moved
6935 */
6936 if (env->imbalance < busiest->load_per_task)
6937 return fix_small_imbalance(env, sds);
6938}
6939
6940/******* find_busiest_group() helpers end here *********************/
6941
6942/**
6943 * find_busiest_group - Returns the busiest group within the sched_domain
6944 * if there is an imbalance. If there isn't an imbalance, and
6945 * the user has opted for power-savings, it returns a group whose
6946 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6947 * such a group exists.
6948 *
6949 * Also calculates the amount of weighted load which should be moved
6950 * to restore balance.
6951 *
6952 * @env: The load balancing environment.
6953 *
6954 * Return: - The busiest group if imbalance exists.
6955 * - If no imbalance and user has opted for power-savings balance,
6956 * return the least loaded group whose CPUs can be
6957 * put to idle by rebalancing its tasks onto our group.
6958 */
6959static struct sched_group *find_busiest_group(struct lb_env *env)
6960{
6961 struct sg_lb_stats *local, *busiest;
6962 struct sd_lb_stats sds;
6963
6964 init_sd_lb_stats(&sds);
6965
6966 /*
6967 * Compute the various statistics relavent for load balancing at
6968 * this level.
6969 */
6970 update_sd_lb_stats(env, &sds);
6971 local = &sds.local_stat;
6972 busiest = &sds.busiest_stat;
6973
6974 /* ASYM feature bypasses nice load balance check */
6975 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6976 check_asym_packing(env, &sds))
6977 return sds.busiest;
6978
6979 /* There is no busy sibling group to pull tasks from */
6980 if (!sds.busiest || busiest->sum_nr_running == 0)
6981 goto out_balanced;
6982
6983 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6984 / sds.total_capacity;
6985
6986 /*
6987 * If the busiest group is imbalanced the below checks don't
6988 * work because they assume all things are equal, which typically
6989 * isn't true due to cpus_allowed constraints and the like.
6990 */
6991 if (busiest->group_type == group_imbalanced)
6992 goto force_balance;
6993
6994 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6995 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6996 busiest->group_no_capacity)
6997 goto force_balance;
6998
6999 /*
7000 * If the local group is busier than the selected busiest group
7001 * don't try and pull any tasks.
7002 */
7003 if (local->avg_load >= busiest->avg_load)
7004 goto out_balanced;
7005
7006 /*
7007 * Don't pull any tasks if this group is already above the domain
7008 * average load.
7009 */
7010 if (local->avg_load >= sds.avg_load)
7011 goto out_balanced;
7012
7013 if (env->idle == CPU_IDLE) {
7014 /*
7015 * This cpu is idle. If the busiest group is not overloaded
7016 * and there is no imbalance between this and busiest group
7017 * wrt idle cpus, it is balanced. The imbalance becomes
7018 * significant if the diff is greater than 1 otherwise we
7019 * might end up to just move the imbalance on another group
7020 */
7021 if ((busiest->group_type != group_overloaded) &&
7022 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7023 goto out_balanced;
7024 } else {
7025 /*
7026 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7027 * imbalance_pct to be conservative.
7028 */
7029 if (100 * busiest->avg_load <=
7030 env->sd->imbalance_pct * local->avg_load)
7031 goto out_balanced;
7032 }
7033
7034force_balance:
7035 /* Looks like there is an imbalance. Compute it */
7036 calculate_imbalance(env, &sds);
7037 return sds.busiest;
7038
7039out_balanced:
7040 env->imbalance = 0;
7041 return NULL;
7042}
7043
7044/*
7045 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7046 */
7047static struct rq *find_busiest_queue(struct lb_env *env,
7048 struct sched_group *group)
7049{
7050 struct rq *busiest = NULL, *rq;
7051 unsigned long busiest_load = 0, busiest_capacity = 1;
7052 int i;
7053
7054 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7055 unsigned long capacity, wl;
7056 enum fbq_type rt;
7057
7058 rq = cpu_rq(i);
7059 rt = fbq_classify_rq(rq);
7060
7061 /*
7062 * We classify groups/runqueues into three groups:
7063 * - regular: there are !numa tasks
7064 * - remote: there are numa tasks that run on the 'wrong' node
7065 * - all: there is no distinction
7066 *
7067 * In order to avoid migrating ideally placed numa tasks,
7068 * ignore those when there's better options.
7069 *
7070 * If we ignore the actual busiest queue to migrate another
7071 * task, the next balance pass can still reduce the busiest
7072 * queue by moving tasks around inside the node.
7073 *
7074 * If we cannot move enough load due to this classification
7075 * the next pass will adjust the group classification and
7076 * allow migration of more tasks.
7077 *
7078 * Both cases only affect the total convergence complexity.
7079 */
7080 if (rt > env->fbq_type)
7081 continue;
7082
7083 capacity = capacity_of(i);
7084
7085 wl = weighted_cpuload(i);
7086
7087 /*
7088 * When comparing with imbalance, use weighted_cpuload()
7089 * which is not scaled with the cpu capacity.
7090 */
7091
7092 if (rq->nr_running == 1 && wl > env->imbalance &&
7093 !check_cpu_capacity(rq, env->sd))
7094 continue;
7095
7096 /*
7097 * For the load comparisons with the other cpu's, consider
7098 * the weighted_cpuload() scaled with the cpu capacity, so
7099 * that the load can be moved away from the cpu that is
7100 * potentially running at a lower capacity.
7101 *
7102 * Thus we're looking for max(wl_i / capacity_i), crosswise
7103 * multiplication to rid ourselves of the division works out
7104 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7105 * our previous maximum.
7106 */
7107 if (wl * busiest_capacity > busiest_load * capacity) {
7108 busiest_load = wl;
7109 busiest_capacity = capacity;
7110 busiest = rq;
7111 }
7112 }
7113
7114 return busiest;
7115}
7116
7117/*
7118 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7119 * so long as it is large enough.
7120 */
7121#define MAX_PINNED_INTERVAL 512
7122
7123/* Working cpumask for load_balance and load_balance_newidle. */
7124DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7125
7126static int need_active_balance(struct lb_env *env)
7127{
7128 struct sched_domain *sd = env->sd;
7129
7130 if (env->idle == CPU_NEWLY_IDLE) {
7131
7132 /*
7133 * ASYM_PACKING needs to force migrate tasks from busy but
7134 * higher numbered CPUs in order to pack all tasks in the
7135 * lowest numbered CPUs.
7136 */
7137 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7138 return 1;
7139 }
7140
7141 /*
7142 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7143 * It's worth migrating the task if the src_cpu's capacity is reduced
7144 * because of other sched_class or IRQs if more capacity stays
7145 * available on dst_cpu.
7146 */
7147 if ((env->idle != CPU_NOT_IDLE) &&
7148 (env->src_rq->cfs.h_nr_running == 1)) {
7149 if ((check_cpu_capacity(env->src_rq, sd)) &&
7150 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7151 return 1;
7152 }
7153
7154 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7155}
7156
7157static int active_load_balance_cpu_stop(void *data);
7158
7159static int should_we_balance(struct lb_env *env)
7160{
7161 struct sched_group *sg = env->sd->groups;
7162 struct cpumask *sg_cpus, *sg_mask;
7163 int cpu, balance_cpu = -1;
7164
7165 /*
7166 * In the newly idle case, we will allow all the cpu's
7167 * to do the newly idle load balance.
7168 */
7169 if (env->idle == CPU_NEWLY_IDLE)
7170 return 1;
7171
7172 sg_cpus = sched_group_cpus(sg);
7173 sg_mask = sched_group_mask(sg);
7174 /* Try to find first idle cpu */
7175 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7176 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7177 continue;
7178
7179 balance_cpu = cpu;
7180 break;
7181 }
7182
7183 if (balance_cpu == -1)
7184 balance_cpu = group_balance_cpu(sg);
7185
7186 /*
7187 * First idle cpu or the first cpu(busiest) in this sched group
7188 * is eligible for doing load balancing at this and above domains.
7189 */
7190 return balance_cpu == env->dst_cpu;
7191}
7192
7193/*
7194 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7195 * tasks if there is an imbalance.
7196 */
7197static int load_balance(int this_cpu, struct rq *this_rq,
7198 struct sched_domain *sd, enum cpu_idle_type idle,
7199 int *continue_balancing)
7200{
7201 int ld_moved, cur_ld_moved, active_balance = 0;
7202 struct sched_domain *sd_parent = sd->parent;
7203 struct sched_group *group;
7204 struct rq *busiest;
7205 unsigned long flags;
7206 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7207
7208 struct lb_env env = {
7209 .sd = sd,
7210 .dst_cpu = this_cpu,
7211 .dst_rq = this_rq,
7212 .dst_grpmask = sched_group_cpus(sd->groups),
7213 .idle = idle,
7214 .loop_break = sched_nr_migrate_break,
7215 .cpus = cpus,
7216 .fbq_type = all,
7217 .tasks = LIST_HEAD_INIT(env.tasks),
7218 };
7219
7220 /*
7221 * For NEWLY_IDLE load_balancing, we don't need to consider
7222 * other cpus in our group
7223 */
7224 if (idle == CPU_NEWLY_IDLE)
7225 env.dst_grpmask = NULL;
7226
7227 cpumask_copy(cpus, cpu_active_mask);
7228
7229 schedstat_inc(sd, lb_count[idle]);
7230
7231redo:
7232 if (!should_we_balance(&env)) {
7233 *continue_balancing = 0;
7234 goto out_balanced;
7235 }
7236
7237 group = find_busiest_group(&env);
7238 if (!group) {
7239 schedstat_inc(sd, lb_nobusyg[idle]);
7240 goto out_balanced;
7241 }
7242
7243 busiest = find_busiest_queue(&env, group);
7244 if (!busiest) {
7245 schedstat_inc(sd, lb_nobusyq[idle]);
7246 goto out_balanced;
7247 }
7248
7249 BUG_ON(busiest == env.dst_rq);
7250
7251 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7252
7253 env.src_cpu = busiest->cpu;
7254 env.src_rq = busiest;
7255
7256 ld_moved = 0;
7257 if (busiest->nr_running > 1) {
7258 /*
7259 * Attempt to move tasks. If find_busiest_group has found
7260 * an imbalance but busiest->nr_running <= 1, the group is
7261 * still unbalanced. ld_moved simply stays zero, so it is
7262 * correctly treated as an imbalance.
7263 */
7264 env.flags |= LBF_ALL_PINNED;
7265 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7266
7267more_balance:
7268 raw_spin_lock_irqsave(&busiest->lock, flags);
7269
7270 /*
7271 * cur_ld_moved - load moved in current iteration
7272 * ld_moved - cumulative load moved across iterations
7273 */
7274 cur_ld_moved = detach_tasks(&env);
7275
7276 /*
7277 * We've detached some tasks from busiest_rq. Every
7278 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7279 * unlock busiest->lock, and we are able to be sure
7280 * that nobody can manipulate the tasks in parallel.
7281 * See task_rq_lock() family for the details.
7282 */
7283
7284 raw_spin_unlock(&busiest->lock);
7285
7286 if (cur_ld_moved) {
7287 attach_tasks(&env);
7288 ld_moved += cur_ld_moved;
7289 }
7290
7291 local_irq_restore(flags);
7292
7293 if (env.flags & LBF_NEED_BREAK) {
7294 env.flags &= ~LBF_NEED_BREAK;
7295 goto more_balance;
7296 }
7297
7298 /*
7299 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7300 * us and move them to an alternate dst_cpu in our sched_group
7301 * where they can run. The upper limit on how many times we
7302 * iterate on same src_cpu is dependent on number of cpus in our
7303 * sched_group.
7304 *
7305 * This changes load balance semantics a bit on who can move
7306 * load to a given_cpu. In addition to the given_cpu itself
7307 * (or a ilb_cpu acting on its behalf where given_cpu is
7308 * nohz-idle), we now have balance_cpu in a position to move
7309 * load to given_cpu. In rare situations, this may cause
7310 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7311 * _independently_ and at _same_ time to move some load to
7312 * given_cpu) causing exceess load to be moved to given_cpu.
7313 * This however should not happen so much in practice and
7314 * moreover subsequent load balance cycles should correct the
7315 * excess load moved.
7316 */
7317 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7318
7319 /* Prevent to re-select dst_cpu via env's cpus */
7320 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7321
7322 env.dst_rq = cpu_rq(env.new_dst_cpu);
7323 env.dst_cpu = env.new_dst_cpu;
7324 env.flags &= ~LBF_DST_PINNED;
7325 env.loop = 0;
7326 env.loop_break = sched_nr_migrate_break;
7327
7328 /*
7329 * Go back to "more_balance" rather than "redo" since we
7330 * need to continue with same src_cpu.
7331 */
7332 goto more_balance;
7333 }
7334
7335 /*
7336 * We failed to reach balance because of affinity.
7337 */
7338 if (sd_parent) {
7339 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7340
7341 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7342 *group_imbalance = 1;
7343 }
7344
7345 /* All tasks on this runqueue were pinned by CPU affinity */
7346 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7347 cpumask_clear_cpu(cpu_of(busiest), cpus);
7348 if (!cpumask_empty(cpus)) {
7349 env.loop = 0;
7350 env.loop_break = sched_nr_migrate_break;
7351 goto redo;
7352 }
7353 goto out_all_pinned;
7354 }
7355 }
7356
7357 if (!ld_moved) {
7358 schedstat_inc(sd, lb_failed[idle]);
7359 /*
7360 * Increment the failure counter only on periodic balance.
7361 * We do not want newidle balance, which can be very
7362 * frequent, pollute the failure counter causing
7363 * excessive cache_hot migrations and active balances.
7364 */
7365 if (idle != CPU_NEWLY_IDLE)
7366 sd->nr_balance_failed++;
7367
7368 if (need_active_balance(&env)) {
7369 raw_spin_lock_irqsave(&busiest->lock, flags);
7370
7371 /* don't kick the active_load_balance_cpu_stop,
7372 * if the curr task on busiest cpu can't be
7373 * moved to this_cpu
7374 */
7375 if (!cpumask_test_cpu(this_cpu,
7376 tsk_cpus_allowed(busiest->curr))) {
7377 raw_spin_unlock_irqrestore(&busiest->lock,
7378 flags);
7379 env.flags |= LBF_ALL_PINNED;
7380 goto out_one_pinned;
7381 }
7382
7383 /*
7384 * ->active_balance synchronizes accesses to
7385 * ->active_balance_work. Once set, it's cleared
7386 * only after active load balance is finished.
7387 */
7388 if (!busiest->active_balance) {
7389 busiest->active_balance = 1;
7390 busiest->push_cpu = this_cpu;
7391 active_balance = 1;
7392 }
7393 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7394
7395 if (active_balance) {
7396 stop_one_cpu_nowait(cpu_of(busiest),
7397 active_load_balance_cpu_stop, busiest,
7398 &busiest->active_balance_work);
7399 }
7400
7401 /*
7402 * We've kicked active balancing, reset the failure
7403 * counter.
7404 */
7405 sd->nr_balance_failed = sd->cache_nice_tries+1;
7406 }
7407 } else
7408 sd->nr_balance_failed = 0;
7409
7410 if (likely(!active_balance)) {
7411 /* We were unbalanced, so reset the balancing interval */
7412 sd->balance_interval = sd->min_interval;
7413 } else {
7414 /*
7415 * If we've begun active balancing, start to back off. This
7416 * case may not be covered by the all_pinned logic if there
7417 * is only 1 task on the busy runqueue (because we don't call
7418 * detach_tasks).
7419 */
7420 if (sd->balance_interval < sd->max_interval)
7421 sd->balance_interval *= 2;
7422 }
7423
7424 goto out;
7425
7426out_balanced:
7427 /*
7428 * We reach balance although we may have faced some affinity
7429 * constraints. Clear the imbalance flag if it was set.
7430 */
7431 if (sd_parent) {
7432 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7433
7434 if (*group_imbalance)
7435 *group_imbalance = 0;
7436 }
7437
7438out_all_pinned:
7439 /*
7440 * We reach balance because all tasks are pinned at this level so
7441 * we can't migrate them. Let the imbalance flag set so parent level
7442 * can try to migrate them.
7443 */
7444 schedstat_inc(sd, lb_balanced[idle]);
7445
7446 sd->nr_balance_failed = 0;
7447
7448out_one_pinned:
7449 /* tune up the balancing interval */
7450 if (((env.flags & LBF_ALL_PINNED) &&
7451 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7452 (sd->balance_interval < sd->max_interval))
7453 sd->balance_interval *= 2;
7454
7455 ld_moved = 0;
7456out:
7457 return ld_moved;
7458}
7459
7460static inline unsigned long
7461get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7462{
7463 unsigned long interval = sd->balance_interval;
7464
7465 if (cpu_busy)
7466 interval *= sd->busy_factor;
7467
7468 /* scale ms to jiffies */
7469 interval = msecs_to_jiffies(interval);
7470 interval = clamp(interval, 1UL, max_load_balance_interval);
7471
7472 return interval;
7473}
7474
7475static inline void
7476update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7477{
7478 unsigned long interval, next;
7479
7480 interval = get_sd_balance_interval(sd, cpu_busy);
7481 next = sd->last_balance + interval;
7482
7483 if (time_after(*next_balance, next))
7484 *next_balance = next;
7485}
7486
7487/*
7488 * idle_balance is called by schedule() if this_cpu is about to become
7489 * idle. Attempts to pull tasks from other CPUs.
7490 */
7491static int idle_balance(struct rq *this_rq)
7492{
7493 unsigned long next_balance = jiffies + HZ;
7494 int this_cpu = this_rq->cpu;
7495 struct sched_domain *sd;
7496 int pulled_task = 0;
7497 u64 curr_cost = 0;
7498
7499 /*
7500 * We must set idle_stamp _before_ calling idle_balance(), such that we
7501 * measure the duration of idle_balance() as idle time.
7502 */
7503 this_rq->idle_stamp = rq_clock(this_rq);
7504
7505 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7506 !this_rq->rd->overload) {
7507 rcu_read_lock();
7508 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7509 if (sd)
7510 update_next_balance(sd, 0, &next_balance);
7511 rcu_read_unlock();
7512
7513 goto out;
7514 }
7515
7516 raw_spin_unlock(&this_rq->lock);
7517
7518 update_blocked_averages(this_cpu);
7519 rcu_read_lock();
7520 for_each_domain(this_cpu, sd) {
7521 int continue_balancing = 1;
7522 u64 t0, domain_cost;
7523
7524 if (!(sd->flags & SD_LOAD_BALANCE))
7525 continue;
7526
7527 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7528 update_next_balance(sd, 0, &next_balance);
7529 break;
7530 }
7531
7532 if (sd->flags & SD_BALANCE_NEWIDLE) {
7533 t0 = sched_clock_cpu(this_cpu);
7534
7535 pulled_task = load_balance(this_cpu, this_rq,
7536 sd, CPU_NEWLY_IDLE,
7537 &continue_balancing);
7538
7539 domain_cost = sched_clock_cpu(this_cpu) - t0;
7540 if (domain_cost > sd->max_newidle_lb_cost)
7541 sd->max_newidle_lb_cost = domain_cost;
7542
7543 curr_cost += domain_cost;
7544 }
7545
7546 update_next_balance(sd, 0, &next_balance);
7547
7548 /*
7549 * Stop searching for tasks to pull if there are
7550 * now runnable tasks on this rq.
7551 */
7552 if (pulled_task || this_rq->nr_running > 0)
7553 break;
7554 }
7555 rcu_read_unlock();
7556
7557 raw_spin_lock(&this_rq->lock);
7558
7559 if (curr_cost > this_rq->max_idle_balance_cost)
7560 this_rq->max_idle_balance_cost = curr_cost;
7561
7562 /*
7563 * While browsing the domains, we released the rq lock, a task could
7564 * have been enqueued in the meantime. Since we're not going idle,
7565 * pretend we pulled a task.
7566 */
7567 if (this_rq->cfs.h_nr_running && !pulled_task)
7568 pulled_task = 1;
7569
7570out:
7571 /* Move the next balance forward */
7572 if (time_after(this_rq->next_balance, next_balance))
7573 this_rq->next_balance = next_balance;
7574
7575 /* Is there a task of a high priority class? */
7576 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7577 pulled_task = -1;
7578
7579 if (pulled_task)
7580 this_rq->idle_stamp = 0;
7581
7582 return pulled_task;
7583}
7584
7585/*
7586 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7587 * running tasks off the busiest CPU onto idle CPUs. It requires at
7588 * least 1 task to be running on each physical CPU where possible, and
7589 * avoids physical / logical imbalances.
7590 */
7591static int active_load_balance_cpu_stop(void *data)
7592{
7593 struct rq *busiest_rq = data;
7594 int busiest_cpu = cpu_of(busiest_rq);
7595 int target_cpu = busiest_rq->push_cpu;
7596 struct rq *target_rq = cpu_rq(target_cpu);
7597 struct sched_domain *sd;
7598 struct task_struct *p = NULL;
7599
7600 raw_spin_lock_irq(&busiest_rq->lock);
7601
7602 /* make sure the requested cpu hasn't gone down in the meantime */
7603 if (unlikely(busiest_cpu != smp_processor_id() ||
7604 !busiest_rq->active_balance))
7605 goto out_unlock;
7606
7607 /* Is there any task to move? */
7608 if (busiest_rq->nr_running <= 1)
7609 goto out_unlock;
7610
7611 /*
7612 * This condition is "impossible", if it occurs
7613 * we need to fix it. Originally reported by
7614 * Bjorn Helgaas on a 128-cpu setup.
7615 */
7616 BUG_ON(busiest_rq == target_rq);
7617
7618 /* Search for an sd spanning us and the target CPU. */
7619 rcu_read_lock();
7620 for_each_domain(target_cpu, sd) {
7621 if ((sd->flags & SD_LOAD_BALANCE) &&
7622 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7623 break;
7624 }
7625
7626 if (likely(sd)) {
7627 struct lb_env env = {
7628 .sd = sd,
7629 .dst_cpu = target_cpu,
7630 .dst_rq = target_rq,
7631 .src_cpu = busiest_rq->cpu,
7632 .src_rq = busiest_rq,
7633 .idle = CPU_IDLE,
7634 };
7635
7636 schedstat_inc(sd, alb_count);
7637
7638 p = detach_one_task(&env);
7639 if (p)
7640 schedstat_inc(sd, alb_pushed);
7641 else
7642 schedstat_inc(sd, alb_failed);
7643 }
7644 rcu_read_unlock();
7645out_unlock:
7646 busiest_rq->active_balance = 0;
7647 raw_spin_unlock(&busiest_rq->lock);
7648
7649 if (p)
7650 attach_one_task(target_rq, p);
7651
7652 local_irq_enable();
7653
7654 return 0;
7655}
7656
7657static inline int on_null_domain(struct rq *rq)
7658{
7659 return unlikely(!rcu_dereference_sched(rq->sd));
7660}
7661
7662#ifdef CONFIG_NO_HZ_COMMON
7663/*
7664 * idle load balancing details
7665 * - When one of the busy CPUs notice that there may be an idle rebalancing
7666 * needed, they will kick the idle load balancer, which then does idle
7667 * load balancing for all the idle CPUs.
7668 */
7669static struct {
7670 cpumask_var_t idle_cpus_mask;
7671 atomic_t nr_cpus;
7672 unsigned long next_balance; /* in jiffy units */
7673} nohz ____cacheline_aligned;
7674
7675static inline int find_new_ilb(void)
7676{
7677 int ilb = cpumask_first(nohz.idle_cpus_mask);
7678
7679 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7680 return ilb;
7681
7682 return nr_cpu_ids;
7683}
7684
7685/*
7686 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7687 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7688 * CPU (if there is one).
7689 */
7690static void nohz_balancer_kick(void)
7691{
7692 int ilb_cpu;
7693
7694 nohz.next_balance++;
7695
7696 ilb_cpu = find_new_ilb();
7697
7698 if (ilb_cpu >= nr_cpu_ids)
7699 return;
7700
7701 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7702 return;
7703 /*
7704 * Use smp_send_reschedule() instead of resched_cpu().
7705 * This way we generate a sched IPI on the target cpu which
7706 * is idle. And the softirq performing nohz idle load balance
7707 * will be run before returning from the IPI.
7708 */
7709 smp_send_reschedule(ilb_cpu);
7710 return;
7711}
7712
7713static inline void nohz_balance_exit_idle(int cpu)
7714{
7715 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7716 /*
7717 * Completely isolated CPUs don't ever set, so we must test.
7718 */
7719 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7720 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7721 atomic_dec(&nohz.nr_cpus);
7722 }
7723 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7724 }
7725}
7726
7727static inline void set_cpu_sd_state_busy(void)
7728{
7729 struct sched_domain *sd;
7730 int cpu = smp_processor_id();
7731
7732 rcu_read_lock();
7733 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7734
7735 if (!sd || !sd->nohz_idle)
7736 goto unlock;
7737 sd->nohz_idle = 0;
7738
7739 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7740unlock:
7741 rcu_read_unlock();
7742}
7743
7744void set_cpu_sd_state_idle(void)
7745{
7746 struct sched_domain *sd;
7747 int cpu = smp_processor_id();
7748
7749 rcu_read_lock();
7750 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7751
7752 if (!sd || sd->nohz_idle)
7753 goto unlock;
7754 sd->nohz_idle = 1;
7755
7756 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7757unlock:
7758 rcu_read_unlock();
7759}
7760
7761/*
7762 * This routine will record that the cpu is going idle with tick stopped.
7763 * This info will be used in performing idle load balancing in the future.
7764 */
7765void nohz_balance_enter_idle(int cpu)
7766{
7767 /*
7768 * If this cpu is going down, then nothing needs to be done.
7769 */
7770 if (!cpu_active(cpu))
7771 return;
7772
7773 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7774 return;
7775
7776 /*
7777 * If we're a completely isolated CPU, we don't play.
7778 */
7779 if (on_null_domain(cpu_rq(cpu)))
7780 return;
7781
7782 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7783 atomic_inc(&nohz.nr_cpus);
7784 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7785}
7786
7787static int sched_ilb_notifier(struct notifier_block *nfb,
7788 unsigned long action, void *hcpu)
7789{
7790 switch (action & ~CPU_TASKS_FROZEN) {
7791 case CPU_DYING:
7792 nohz_balance_exit_idle(smp_processor_id());
7793 return NOTIFY_OK;
7794 default:
7795 return NOTIFY_DONE;
7796 }
7797}
7798#endif
7799
7800static DEFINE_SPINLOCK(balancing);
7801
7802/*
7803 * Scale the max load_balance interval with the number of CPUs in the system.
7804 * This trades load-balance latency on larger machines for less cross talk.
7805 */
7806void update_max_interval(void)
7807{
7808 max_load_balance_interval = HZ*num_online_cpus()/10;
7809}
7810
7811/*
7812 * It checks each scheduling domain to see if it is due to be balanced,
7813 * and initiates a balancing operation if so.
7814 *
7815 * Balancing parameters are set up in init_sched_domains.
7816 */
7817static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7818{
7819 int continue_balancing = 1;
7820 int cpu = rq->cpu;
7821 unsigned long interval;
7822 struct sched_domain *sd;
7823 /* Earliest time when we have to do rebalance again */
7824 unsigned long next_balance = jiffies + 60*HZ;
7825 int update_next_balance = 0;
7826 int need_serialize, need_decay = 0;
7827 u64 max_cost = 0;
7828
7829 update_blocked_averages(cpu);
7830
7831 rcu_read_lock();
7832 for_each_domain(cpu, sd) {
7833 /*
7834 * Decay the newidle max times here because this is a regular
7835 * visit to all the domains. Decay ~1% per second.
7836 */
7837 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7838 sd->max_newidle_lb_cost =
7839 (sd->max_newidle_lb_cost * 253) / 256;
7840 sd->next_decay_max_lb_cost = jiffies + HZ;
7841 need_decay = 1;
7842 }
7843 max_cost += sd->max_newidle_lb_cost;
7844
7845 if (!(sd->flags & SD_LOAD_BALANCE))
7846 continue;
7847
7848 /*
7849 * Stop the load balance at this level. There is another
7850 * CPU in our sched group which is doing load balancing more
7851 * actively.
7852 */
7853 if (!continue_balancing) {
7854 if (need_decay)
7855 continue;
7856 break;
7857 }
7858
7859 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7860
7861 need_serialize = sd->flags & SD_SERIALIZE;
7862 if (need_serialize) {
7863 if (!spin_trylock(&balancing))
7864 goto out;
7865 }
7866
7867 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7868 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7869 /*
7870 * The LBF_DST_PINNED logic could have changed
7871 * env->dst_cpu, so we can't know our idle
7872 * state even if we migrated tasks. Update it.
7873 */
7874 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7875 }
7876 sd->last_balance = jiffies;
7877 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7878 }
7879 if (need_serialize)
7880 spin_unlock(&balancing);
7881out:
7882 if (time_after(next_balance, sd->last_balance + interval)) {
7883 next_balance = sd->last_balance + interval;
7884 update_next_balance = 1;
7885 }
7886 }
7887 if (need_decay) {
7888 /*
7889 * Ensure the rq-wide value also decays but keep it at a
7890 * reasonable floor to avoid funnies with rq->avg_idle.
7891 */
7892 rq->max_idle_balance_cost =
7893 max((u64)sysctl_sched_migration_cost, max_cost);
7894 }
7895 rcu_read_unlock();
7896
7897 /*
7898 * next_balance will be updated only when there is a need.
7899 * When the cpu is attached to null domain for ex, it will not be
7900 * updated.
7901 */
7902 if (likely(update_next_balance)) {
7903 rq->next_balance = next_balance;
7904
7905#ifdef CONFIG_NO_HZ_COMMON
7906 /*
7907 * If this CPU has been elected to perform the nohz idle
7908 * balance. Other idle CPUs have already rebalanced with
7909 * nohz_idle_balance() and nohz.next_balance has been
7910 * updated accordingly. This CPU is now running the idle load
7911 * balance for itself and we need to update the
7912 * nohz.next_balance accordingly.
7913 */
7914 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7915 nohz.next_balance = rq->next_balance;
7916#endif
7917 }
7918}
7919
7920#ifdef CONFIG_NO_HZ_COMMON
7921/*
7922 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7923 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7924 */
7925static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7926{
7927 int this_cpu = this_rq->cpu;
7928 struct rq *rq;
7929 int balance_cpu;
7930 /* Earliest time when we have to do rebalance again */
7931 unsigned long next_balance = jiffies + 60*HZ;
7932 int update_next_balance = 0;
7933
7934 if (idle != CPU_IDLE ||
7935 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7936 goto end;
7937
7938 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7939 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7940 continue;
7941
7942 /*
7943 * If this cpu gets work to do, stop the load balancing
7944 * work being done for other cpus. Next load
7945 * balancing owner will pick it up.
7946 */
7947 if (need_resched())
7948 break;
7949
7950 rq = cpu_rq(balance_cpu);
7951
7952 /*
7953 * If time for next balance is due,
7954 * do the balance.
7955 */
7956 if (time_after_eq(jiffies, rq->next_balance)) {
7957 raw_spin_lock_irq(&rq->lock);
7958 update_rq_clock(rq);
7959 update_cpu_load_idle(rq);
7960 raw_spin_unlock_irq(&rq->lock);
7961 rebalance_domains(rq, CPU_IDLE);
7962 }
7963
7964 if (time_after(next_balance, rq->next_balance)) {
7965 next_balance = rq->next_balance;
7966 update_next_balance = 1;
7967 }
7968 }
7969
7970 /*
7971 * next_balance will be updated only when there is a need.
7972 * When the CPU is attached to null domain for ex, it will not be
7973 * updated.
7974 */
7975 if (likely(update_next_balance))
7976 nohz.next_balance = next_balance;
7977end:
7978 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7979}
7980
7981/*
7982 * Current heuristic for kicking the idle load balancer in the presence
7983 * of an idle cpu in the system.
7984 * - This rq has more than one task.
7985 * - This rq has at least one CFS task and the capacity of the CPU is
7986 * significantly reduced because of RT tasks or IRQs.
7987 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7988 * multiple busy cpu.
7989 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7990 * domain span are idle.
7991 */
7992static inline bool nohz_kick_needed(struct rq *rq)
7993{
7994 unsigned long now = jiffies;
7995 struct sched_domain *sd;
7996 struct sched_group_capacity *sgc;
7997 int nr_busy, cpu = rq->cpu;
7998 bool kick = false;
7999
8000 if (unlikely(rq->idle_balance))
8001 return false;
8002
8003 /*
8004 * We may be recently in ticked or tickless idle mode. At the first
8005 * busy tick after returning from idle, we will update the busy stats.
8006 */
8007 set_cpu_sd_state_busy();
8008 nohz_balance_exit_idle(cpu);
8009
8010 /*
8011 * None are in tickless mode and hence no need for NOHZ idle load
8012 * balancing.
8013 */
8014 if (likely(!atomic_read(&nohz.nr_cpus)))
8015 return false;
8016
8017 if (time_before(now, nohz.next_balance))
8018 return false;
8019
8020 if (rq->nr_running >= 2)
8021 return true;
8022
8023 rcu_read_lock();
8024 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8025 if (sd) {
8026 sgc = sd->groups->sgc;
8027 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8028
8029 if (nr_busy > 1) {
8030 kick = true;
8031 goto unlock;
8032 }
8033
8034 }
8035
8036 sd = rcu_dereference(rq->sd);
8037 if (sd) {
8038 if ((rq->cfs.h_nr_running >= 1) &&
8039 check_cpu_capacity(rq, sd)) {
8040 kick = true;
8041 goto unlock;
8042 }
8043 }
8044
8045 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8046 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8047 sched_domain_span(sd)) < cpu)) {
8048 kick = true;
8049 goto unlock;
8050 }
8051
8052unlock:
8053 rcu_read_unlock();
8054 return kick;
8055}
8056#else
8057static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8058#endif
8059
8060/*
8061 * run_rebalance_domains is triggered when needed from the scheduler tick.
8062 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8063 */
8064static void run_rebalance_domains(struct softirq_action *h)
8065{
8066 struct rq *this_rq = this_rq();
8067 enum cpu_idle_type idle = this_rq->idle_balance ?
8068 CPU_IDLE : CPU_NOT_IDLE;
8069
8070 /*
8071 * If this cpu has a pending nohz_balance_kick, then do the
8072 * balancing on behalf of the other idle cpus whose ticks are
8073 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8074 * give the idle cpus a chance to load balance. Else we may
8075 * load balance only within the local sched_domain hierarchy
8076 * and abort nohz_idle_balance altogether if we pull some load.
8077 */
8078 nohz_idle_balance(this_rq, idle);
8079 rebalance_domains(this_rq, idle);
8080}
8081
8082/*
8083 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8084 */
8085void trigger_load_balance(struct rq *rq)
8086{
8087 /* Don't need to rebalance while attached to NULL domain */
8088 if (unlikely(on_null_domain(rq)))
8089 return;
8090
8091 if (time_after_eq(jiffies, rq->next_balance))
8092 raise_softirq(SCHED_SOFTIRQ);
8093#ifdef CONFIG_NO_HZ_COMMON
8094 if (nohz_kick_needed(rq))
8095 nohz_balancer_kick();
8096#endif
8097}
8098
8099static void rq_online_fair(struct rq *rq)
8100{
8101 update_sysctl();
8102
8103 update_runtime_enabled(rq);
8104}
8105
8106static void rq_offline_fair(struct rq *rq)
8107{
8108 update_sysctl();
8109
8110 /* Ensure any throttled groups are reachable by pick_next_task */
8111 unthrottle_offline_cfs_rqs(rq);
8112}
8113
8114#endif /* CONFIG_SMP */
8115
8116/*
8117 * scheduler tick hitting a task of our scheduling class:
8118 */
8119static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8120{
8121 struct cfs_rq *cfs_rq;
8122 struct sched_entity *se = &curr->se;
8123
8124 for_each_sched_entity(se) {
8125 cfs_rq = cfs_rq_of(se);
8126 entity_tick(cfs_rq, se, queued);
8127 }
8128
8129 if (static_branch_unlikely(&sched_numa_balancing))
8130 task_tick_numa(rq, curr);
8131}
8132
8133/*
8134 * called on fork with the child task as argument from the parent's context
8135 * - child not yet on the tasklist
8136 * - preemption disabled
8137 */
8138static void task_fork_fair(struct task_struct *p)
8139{
8140 struct cfs_rq *cfs_rq;
8141 struct sched_entity *se = &p->se, *curr;
8142 int this_cpu = smp_processor_id();
8143 struct rq *rq = this_rq();
8144 unsigned long flags;
8145
8146 raw_spin_lock_irqsave(&rq->lock, flags);
8147
8148 update_rq_clock(rq);
8149
8150 cfs_rq = task_cfs_rq(current);
8151 curr = cfs_rq->curr;
8152
8153 /*
8154 * Not only the cpu but also the task_group of the parent might have
8155 * been changed after parent->se.parent,cfs_rq were copied to
8156 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8157 * of child point to valid ones.
8158 */
8159 rcu_read_lock();
8160 __set_task_cpu(p, this_cpu);
8161 rcu_read_unlock();
8162
8163 update_curr(cfs_rq);
8164
8165 if (curr)
8166 se->vruntime = curr->vruntime;
8167 place_entity(cfs_rq, se, 1);
8168
8169 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8170 /*
8171 * Upon rescheduling, sched_class::put_prev_task() will place
8172 * 'current' within the tree based on its new key value.
8173 */
8174 swap(curr->vruntime, se->vruntime);
8175 resched_curr(rq);
8176 }
8177
8178 se->vruntime -= cfs_rq->min_vruntime;
8179
8180 raw_spin_unlock_irqrestore(&rq->lock, flags);
8181}
8182
8183/*
8184 * Priority of the task has changed. Check to see if we preempt
8185 * the current task.
8186 */
8187static void
8188prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8189{
8190 if (!task_on_rq_queued(p))
8191 return;
8192
8193 /*
8194 * Reschedule if we are currently running on this runqueue and
8195 * our priority decreased, or if we are not currently running on
8196 * this runqueue and our priority is higher than the current's
8197 */
8198 if (rq->curr == p) {
8199 if (p->prio > oldprio)
8200 resched_curr(rq);
8201 } else
8202 check_preempt_curr(rq, p, 0);
8203}
8204
8205static inline bool vruntime_normalized(struct task_struct *p)
8206{
8207 struct sched_entity *se = &p->se;
8208
8209 /*
8210 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8211 * the dequeue_entity(.flags=0) will already have normalized the
8212 * vruntime.
8213 */
8214 if (p->on_rq)
8215 return true;
8216
8217 /*
8218 * When !on_rq, vruntime of the task has usually NOT been normalized.
8219 * But there are some cases where it has already been normalized:
8220 *
8221 * - A forked child which is waiting for being woken up by
8222 * wake_up_new_task().
8223 * - A task which has been woken up by try_to_wake_up() and
8224 * waiting for actually being woken up by sched_ttwu_pending().
8225 */
8226 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8227 return true;
8228
8229 return false;
8230}
8231
8232static void detach_task_cfs_rq(struct task_struct *p)
8233{
8234 struct sched_entity *se = &p->se;
8235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8236
8237 if (!vruntime_normalized(p)) {
8238 /*
8239 * Fix up our vruntime so that the current sleep doesn't
8240 * cause 'unlimited' sleep bonus.
8241 */
8242 place_entity(cfs_rq, se, 0);
8243 se->vruntime -= cfs_rq->min_vruntime;
8244 }
8245
8246 /* Catch up with the cfs_rq and remove our load when we leave */
8247 detach_entity_load_avg(cfs_rq, se);
8248}
8249
8250static void attach_task_cfs_rq(struct task_struct *p)
8251{
8252 struct sched_entity *se = &p->se;
8253 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8254
8255#ifdef CONFIG_FAIR_GROUP_SCHED
8256 /*
8257 * Since the real-depth could have been changed (only FAIR
8258 * class maintain depth value), reset depth properly.
8259 */
8260 se->depth = se->parent ? se->parent->depth + 1 : 0;
8261#endif
8262
8263 /* Synchronize task with its cfs_rq */
8264 attach_entity_load_avg(cfs_rq, se);
8265
8266 if (!vruntime_normalized(p))
8267 se->vruntime += cfs_rq->min_vruntime;
8268}
8269
8270static void switched_from_fair(struct rq *rq, struct task_struct *p)
8271{
8272 detach_task_cfs_rq(p);
8273}
8274
8275static void switched_to_fair(struct rq *rq, struct task_struct *p)
8276{
8277 attach_task_cfs_rq(p);
8278
8279 if (task_on_rq_queued(p)) {
8280 /*
8281 * We were most likely switched from sched_rt, so
8282 * kick off the schedule if running, otherwise just see
8283 * if we can still preempt the current task.
8284 */
8285 if (rq->curr == p)
8286 resched_curr(rq);
8287 else
8288 check_preempt_curr(rq, p, 0);
8289 }
8290}
8291
8292/* Account for a task changing its policy or group.
8293 *
8294 * This routine is mostly called to set cfs_rq->curr field when a task
8295 * migrates between groups/classes.
8296 */
8297static void set_curr_task_fair(struct rq *rq)
8298{
8299 struct sched_entity *se = &rq->curr->se;
8300
8301 for_each_sched_entity(se) {
8302 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8303
8304 set_next_entity(cfs_rq, se);
8305 /* ensure bandwidth has been allocated on our new cfs_rq */
8306 account_cfs_rq_runtime(cfs_rq, 0);
8307 }
8308}
8309
8310void init_cfs_rq(struct cfs_rq *cfs_rq)
8311{
8312 cfs_rq->tasks_timeline = RB_ROOT;
8313 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8314#ifndef CONFIG_64BIT
8315 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8316#endif
8317#ifdef CONFIG_SMP
8318 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8319 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8320#endif
8321}
8322
8323#ifdef CONFIG_FAIR_GROUP_SCHED
8324static void task_move_group_fair(struct task_struct *p)
8325{
8326 detach_task_cfs_rq(p);
8327 set_task_rq(p, task_cpu(p));
8328
8329#ifdef CONFIG_SMP
8330 /* Tell se's cfs_rq has been changed -- migrated */
8331 p->se.avg.last_update_time = 0;
8332#endif
8333 attach_task_cfs_rq(p);
8334}
8335
8336void free_fair_sched_group(struct task_group *tg)
8337{
8338 int i;
8339
8340 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8341
8342 for_each_possible_cpu(i) {
8343 if (tg->cfs_rq)
8344 kfree(tg->cfs_rq[i]);
8345 if (tg->se)
8346 kfree(tg->se[i]);
8347 }
8348
8349 kfree(tg->cfs_rq);
8350 kfree(tg->se);
8351}
8352
8353int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8354{
8355 struct cfs_rq *cfs_rq;
8356 struct sched_entity *se;
8357 int i;
8358
8359 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8360 if (!tg->cfs_rq)
8361 goto err;
8362 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8363 if (!tg->se)
8364 goto err;
8365
8366 tg->shares = NICE_0_LOAD;
8367
8368 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8369
8370 for_each_possible_cpu(i) {
8371 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8372 GFP_KERNEL, cpu_to_node(i));
8373 if (!cfs_rq)
8374 goto err;
8375
8376 se = kzalloc_node(sizeof(struct sched_entity),
8377 GFP_KERNEL, cpu_to_node(i));
8378 if (!se)
8379 goto err_free_rq;
8380
8381 init_cfs_rq(cfs_rq);
8382 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8383 init_entity_runnable_average(se);
8384 }
8385
8386 return 1;
8387
8388err_free_rq:
8389 kfree(cfs_rq);
8390err:
8391 return 0;
8392}
8393
8394void unregister_fair_sched_group(struct task_group *tg)
8395{
8396 unsigned long flags;
8397 struct rq *rq;
8398 int cpu;
8399
8400 for_each_possible_cpu(cpu) {
8401 if (tg->se[cpu])
8402 remove_entity_load_avg(tg->se[cpu]);
8403
8404 /*
8405 * Only empty task groups can be destroyed; so we can speculatively
8406 * check on_list without danger of it being re-added.
8407 */
8408 if (!tg->cfs_rq[cpu]->on_list)
8409 continue;
8410
8411 rq = cpu_rq(cpu);
8412
8413 raw_spin_lock_irqsave(&rq->lock, flags);
8414 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8415 raw_spin_unlock_irqrestore(&rq->lock, flags);
8416 }
8417}
8418
8419void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8420 struct sched_entity *se, int cpu,
8421 struct sched_entity *parent)
8422{
8423 struct rq *rq = cpu_rq(cpu);
8424
8425 cfs_rq->tg = tg;
8426 cfs_rq->rq = rq;
8427 init_cfs_rq_runtime(cfs_rq);
8428
8429 tg->cfs_rq[cpu] = cfs_rq;
8430 tg->se[cpu] = se;
8431
8432 /* se could be NULL for root_task_group */
8433 if (!se)
8434 return;
8435
8436 if (!parent) {
8437 se->cfs_rq = &rq->cfs;
8438 se->depth = 0;
8439 } else {
8440 se->cfs_rq = parent->my_q;
8441 se->depth = parent->depth + 1;
8442 }
8443
8444 se->my_q = cfs_rq;
8445 /* guarantee group entities always have weight */
8446 update_load_set(&se->load, NICE_0_LOAD);
8447 se->parent = parent;
8448}
8449
8450static DEFINE_MUTEX(shares_mutex);
8451
8452int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8453{
8454 int i;
8455 unsigned long flags;
8456
8457 /*
8458 * We can't change the weight of the root cgroup.
8459 */
8460 if (!tg->se[0])
8461 return -EINVAL;
8462
8463 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8464
8465 mutex_lock(&shares_mutex);
8466 if (tg->shares == shares)
8467 goto done;
8468
8469 tg->shares = shares;
8470 for_each_possible_cpu(i) {
8471 struct rq *rq = cpu_rq(i);
8472 struct sched_entity *se;
8473
8474 se = tg->se[i];
8475 /* Propagate contribution to hierarchy */
8476 raw_spin_lock_irqsave(&rq->lock, flags);
8477
8478 /* Possible calls to update_curr() need rq clock */
8479 update_rq_clock(rq);
8480 for_each_sched_entity(se)
8481 update_cfs_shares(group_cfs_rq(se));
8482 raw_spin_unlock_irqrestore(&rq->lock, flags);
8483 }
8484
8485done:
8486 mutex_unlock(&shares_mutex);
8487 return 0;
8488}
8489#else /* CONFIG_FAIR_GROUP_SCHED */
8490
8491void free_fair_sched_group(struct task_group *tg) { }
8492
8493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8494{
8495 return 1;
8496}
8497
8498void unregister_fair_sched_group(struct task_group *tg) { }
8499
8500#endif /* CONFIG_FAIR_GROUP_SCHED */
8501
8502
8503static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8504{
8505 struct sched_entity *se = &task->se;
8506 unsigned int rr_interval = 0;
8507
8508 /*
8509 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8510 * idle runqueue:
8511 */
8512 if (rq->cfs.load.weight)
8513 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8514
8515 return rr_interval;
8516}
8517
8518/*
8519 * All the scheduling class methods:
8520 */
8521const struct sched_class fair_sched_class = {
8522 .next = &idle_sched_class,
8523 .enqueue_task = enqueue_task_fair,
8524 .dequeue_task = dequeue_task_fair,
8525 .yield_task = yield_task_fair,
8526 .yield_to_task = yield_to_task_fair,
8527
8528 .check_preempt_curr = check_preempt_wakeup,
8529
8530 .pick_next_task = pick_next_task_fair,
8531 .put_prev_task = put_prev_task_fair,
8532
8533#ifdef CONFIG_SMP
8534 .select_task_rq = select_task_rq_fair,
8535 .migrate_task_rq = migrate_task_rq_fair,
8536
8537 .rq_online = rq_online_fair,
8538 .rq_offline = rq_offline_fair,
8539
8540 .task_waking = task_waking_fair,
8541 .task_dead = task_dead_fair,
8542 .set_cpus_allowed = set_cpus_allowed_common,
8543#endif
8544
8545 .set_curr_task = set_curr_task_fair,
8546 .task_tick = task_tick_fair,
8547 .task_fork = task_fork_fair,
8548
8549 .prio_changed = prio_changed_fair,
8550 .switched_from = switched_from_fair,
8551 .switched_to = switched_to_fair,
8552
8553 .get_rr_interval = get_rr_interval_fair,
8554
8555 .update_curr = update_curr_fair,
8556
8557#ifdef CONFIG_FAIR_GROUP_SCHED
8558 .task_move_group = task_move_group_fair,
8559#endif
8560};
8561
8562#ifdef CONFIG_SCHED_DEBUG
8563void print_cfs_stats(struct seq_file *m, int cpu)
8564{
8565 struct cfs_rq *cfs_rq;
8566
8567 rcu_read_lock();
8568 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8569 print_cfs_rq(m, cpu, cfs_rq);
8570 rcu_read_unlock();
8571}
8572
8573#ifdef CONFIG_NUMA_BALANCING
8574void show_numa_stats(struct task_struct *p, struct seq_file *m)
8575{
8576 int node;
8577 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8578
8579 for_each_online_node(node) {
8580 if (p->numa_faults) {
8581 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8582 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8583 }
8584 if (p->numa_group) {
8585 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8586 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8587 }
8588 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8589 }
8590}
8591#endif /* CONFIG_NUMA_BALANCING */
8592#endif /* CONFIG_SCHED_DEBUG */
8593
8594__init void init_sched_fair_class(void)
8595{
8596#ifdef CONFIG_SMP
8597 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8598
8599#ifdef CONFIG_NO_HZ_COMMON
8600 nohz.next_balance = jiffies;
8601 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8602 cpu_notifier(sched_ilb_notifier, 0);
8603#endif
8604#endif /* SMP */
8605
8606}