Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
 
  25#include <linux/cpumask.h>
 
  26#include <linux/slab.h>
  27#include <linux/profile.h>
  28#include <linux/interrupt.h>
  29#include <linux/mempolicy.h>
  30#include <linux/migrate.h>
  31#include <linux/task_work.h>
  32
  33#include <trace/events/sched.h>
  34
  35#include "sched.h"
  36
  37/*
  38 * Targeted preemption latency for CPU-bound tasks:
  39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  40 *
  41 * NOTE: this latency value is not the same as the concept of
  42 * 'timeslice length' - timeslices in CFS are of variable length
  43 * and have no persistent notion like in traditional, time-slice
  44 * based scheduling concepts.
  45 *
  46 * (to see the precise effective timeslice length of your workload,
  47 *  run vmstat and monitor the context-switches (cs) field)
  48 */
  49unsigned int sysctl_sched_latency = 6000000ULL;
  50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  51
  52/*
  53 * The initial- and re-scaling of tunables is configurable
  54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  55 *
  56 * Options are:
  57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  60 */
  61enum sched_tunable_scaling sysctl_sched_tunable_scaling
  62	= SCHED_TUNABLESCALING_LOG;
  63
  64/*
  65 * Minimal preemption granularity for CPU-bound tasks:
  66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  67 */
  68unsigned int sysctl_sched_min_granularity = 750000ULL;
  69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  70
  71/*
  72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  73 */
  74static unsigned int sched_nr_latency = 8;
  75
  76/*
  77 * After fork, child runs first. If set to 0 (default) then
  78 * parent will (try to) run first.
  79 */
  80unsigned int sysctl_sched_child_runs_first __read_mostly;
  81
  82/*
  83 * SCHED_OTHER wake-up granularity.
  84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  85 *
  86 * This option delays the preemption effects of decoupled workloads
  87 * and reduces their over-scheduling. Synchronous workloads will still
  88 * have immediate wakeup/sleep latencies.
  89 */
  90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  92
  93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  94
  95/*
  96 * The exponential sliding  window over which load is averaged for shares
  97 * distribution.
  98 * (default: 10msec)
  99 */
 100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 101
 102#ifdef CONFIG_CFS_BANDWIDTH
 103/*
 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 105 * each time a cfs_rq requests quota.
 106 *
 107 * Note: in the case that the slice exceeds the runtime remaining (either due
 108 * to consumption or the quota being specified to be smaller than the slice)
 109 * we will always only issue the remaining available time.
 110 *
 111 * default: 5 msec, units: microseconds
 112  */
 113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 114#endif
 115
 116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 117{
 118	lw->weight += inc;
 119	lw->inv_weight = 0;
 120}
 121
 122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 123{
 124	lw->weight -= dec;
 125	lw->inv_weight = 0;
 126}
 127
 128static inline void update_load_set(struct load_weight *lw, unsigned long w)
 129{
 130	lw->weight = w;
 131	lw->inv_weight = 0;
 132}
 133
 134/*
 135 * Increase the granularity value when there are more CPUs,
 136 * because with more CPUs the 'effective latency' as visible
 137 * to users decreases. But the relationship is not linear,
 138 * so pick a second-best guess by going with the log2 of the
 139 * number of CPUs.
 140 *
 141 * This idea comes from the SD scheduler of Con Kolivas:
 142 */
 143static int get_update_sysctl_factor(void)
 144{
 145	unsigned int cpus = min_t(int, num_online_cpus(), 8);
 146	unsigned int factor;
 147
 148	switch (sysctl_sched_tunable_scaling) {
 149	case SCHED_TUNABLESCALING_NONE:
 150		factor = 1;
 151		break;
 152	case SCHED_TUNABLESCALING_LINEAR:
 153		factor = cpus;
 154		break;
 155	case SCHED_TUNABLESCALING_LOG:
 156	default:
 157		factor = 1 + ilog2(cpus);
 158		break;
 159	}
 160
 161	return factor;
 162}
 163
 164static void update_sysctl(void)
 165{
 166	unsigned int factor = get_update_sysctl_factor();
 167
 168#define SET_SYSCTL(name) \
 169	(sysctl_##name = (factor) * normalized_sysctl_##name)
 170	SET_SYSCTL(sched_min_granularity);
 171	SET_SYSCTL(sched_latency);
 172	SET_SYSCTL(sched_wakeup_granularity);
 173#undef SET_SYSCTL
 174}
 175
 176void sched_init_granularity(void)
 177{
 178	update_sysctl();
 179}
 180
 181#define WMULT_CONST	(~0U)
 182#define WMULT_SHIFT	32
 183
 184static void __update_inv_weight(struct load_weight *lw)
 185{
 186	unsigned long w;
 187
 188	if (likely(lw->inv_weight))
 189		return;
 190
 191	w = scale_load_down(lw->weight);
 192
 193	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 194		lw->inv_weight = 1;
 195	else if (unlikely(!w))
 196		lw->inv_weight = WMULT_CONST;
 197	else
 198		lw->inv_weight = WMULT_CONST / w;
 199}
 200
 201/*
 202 * delta_exec * weight / lw.weight
 203 *   OR
 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 205 *
 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 209 *
 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 212 */
 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 214{
 215	u64 fact = scale_load_down(weight);
 216	int shift = WMULT_SHIFT;
 217
 218	__update_inv_weight(lw);
 219
 220	if (unlikely(fact >> 32)) {
 221		while (fact >> 32) {
 222			fact >>= 1;
 223			shift--;
 224		}
 225	}
 226
 227	/* hint to use a 32x32->64 mul */
 228	fact = (u64)(u32)fact * lw->inv_weight;
 229
 230	while (fact >> 32) {
 231		fact >>= 1;
 232		shift--;
 233	}
 234
 235	return mul_u64_u32_shr(delta_exec, fact, shift);
 236}
 237
 238
 239const struct sched_class fair_sched_class;
 240
 241/**************************************************************
 242 * CFS operations on generic schedulable entities:
 243 */
 244
 245#ifdef CONFIG_FAIR_GROUP_SCHED
 246
 247/* cpu runqueue to which this cfs_rq is attached */
 248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 249{
 250	return cfs_rq->rq;
 251}
 252
 253/* An entity is a task if it doesn't "own" a runqueue */
 254#define entity_is_task(se)	(!se->my_q)
 255
 256static inline struct task_struct *task_of(struct sched_entity *se)
 257{
 258#ifdef CONFIG_SCHED_DEBUG
 259	WARN_ON_ONCE(!entity_is_task(se));
 260#endif
 261	return container_of(se, struct task_struct, se);
 262}
 263
 264/* Walk up scheduling entities hierarchy */
 265#define for_each_sched_entity(se) \
 266		for (; se; se = se->parent)
 267
 268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 269{
 270	return p->se.cfs_rq;
 271}
 272
 273/* runqueue on which this entity is (to be) queued */
 274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 275{
 276	return se->cfs_rq;
 277}
 278
 279/* runqueue "owned" by this group */
 280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 281{
 282	return grp->my_q;
 283}
 284
 285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 286				       int force_update);
 287
 288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 289{
 290	if (!cfs_rq->on_list) {
 291		/*
 292		 * Ensure we either appear before our parent (if already
 293		 * enqueued) or force our parent to appear after us when it is
 294		 * enqueued.  The fact that we always enqueue bottom-up
 295		 * reduces this to two cases.
 296		 */
 297		if (cfs_rq->tg->parent &&
 298		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 299			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 300				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 301		} else {
 302			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 303				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 304		}
 305
 306		cfs_rq->on_list = 1;
 307		/* We should have no load, but we need to update last_decay. */
 308		update_cfs_rq_blocked_load(cfs_rq, 0);
 309	}
 310}
 311
 312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 313{
 314	if (cfs_rq->on_list) {
 315		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 316		cfs_rq->on_list = 0;
 317	}
 318}
 319
 320/* Iterate thr' all leaf cfs_rq's on a runqueue */
 321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 322	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 323
 324/* Do the two (enqueued) entities belong to the same group ? */
 325static inline struct cfs_rq *
 326is_same_group(struct sched_entity *se, struct sched_entity *pse)
 327{
 328	if (se->cfs_rq == pse->cfs_rq)
 329		return se->cfs_rq;
 330
 331	return NULL;
 332}
 333
 334static inline struct sched_entity *parent_entity(struct sched_entity *se)
 335{
 336	return se->parent;
 337}
 338
 339static void
 340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 341{
 342	int se_depth, pse_depth;
 343
 344	/*
 345	 * preemption test can be made between sibling entities who are in the
 346	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 347	 * both tasks until we find their ancestors who are siblings of common
 348	 * parent.
 349	 */
 350
 351	/* First walk up until both entities are at same depth */
 352	se_depth = (*se)->depth;
 353	pse_depth = (*pse)->depth;
 354
 355	while (se_depth > pse_depth) {
 356		se_depth--;
 357		*se = parent_entity(*se);
 358	}
 359
 360	while (pse_depth > se_depth) {
 361		pse_depth--;
 362		*pse = parent_entity(*pse);
 363	}
 364
 365	while (!is_same_group(*se, *pse)) {
 366		*se = parent_entity(*se);
 367		*pse = parent_entity(*pse);
 368	}
 369}
 370
 371#else	/* !CONFIG_FAIR_GROUP_SCHED */
 372
 373static inline struct task_struct *task_of(struct sched_entity *se)
 374{
 375	return container_of(se, struct task_struct, se);
 376}
 377
 378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 379{
 380	return container_of(cfs_rq, struct rq, cfs);
 381}
 382
 383#define entity_is_task(se)	1
 384
 385#define for_each_sched_entity(se) \
 386		for (; se; se = NULL)
 387
 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 389{
 390	return &task_rq(p)->cfs;
 391}
 392
 393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 394{
 395	struct task_struct *p = task_of(se);
 396	struct rq *rq = task_rq(p);
 397
 398	return &rq->cfs;
 399}
 400
 401/* runqueue "owned" by this group */
 402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 403{
 404	return NULL;
 405}
 406
 407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 408{
 409}
 410
 411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 412{
 413}
 414
 415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 416		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 417
 418static inline struct sched_entity *parent_entity(struct sched_entity *se)
 419{
 420	return NULL;
 421}
 422
 423static inline void
 424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 425{
 426}
 427
 428#endif	/* CONFIG_FAIR_GROUP_SCHED */
 429
 430static __always_inline
 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 432
 433/**************************************************************
 434 * Scheduling class tree data structure manipulation methods:
 435 */
 436
 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 438{
 439	s64 delta = (s64)(vruntime - max_vruntime);
 440	if (delta > 0)
 441		max_vruntime = vruntime;
 442
 443	return max_vruntime;
 444}
 445
 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 447{
 448	s64 delta = (s64)(vruntime - min_vruntime);
 449	if (delta < 0)
 450		min_vruntime = vruntime;
 451
 452	return min_vruntime;
 453}
 454
 455static inline int entity_before(struct sched_entity *a,
 456				struct sched_entity *b)
 457{
 458	return (s64)(a->vruntime - b->vruntime) < 0;
 459}
 460
 461static void update_min_vruntime(struct cfs_rq *cfs_rq)
 462{
 463	u64 vruntime = cfs_rq->min_vruntime;
 464
 465	if (cfs_rq->curr)
 466		vruntime = cfs_rq->curr->vruntime;
 467
 468	if (cfs_rq->rb_leftmost) {
 469		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 470						   struct sched_entity,
 471						   run_node);
 472
 473		if (!cfs_rq->curr)
 474			vruntime = se->vruntime;
 475		else
 476			vruntime = min_vruntime(vruntime, se->vruntime);
 477	}
 478
 479	/* ensure we never gain time by being placed backwards. */
 480	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 481#ifndef CONFIG_64BIT
 482	smp_wmb();
 483	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 484#endif
 485}
 486
 487/*
 488 * Enqueue an entity into the rb-tree:
 489 */
 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 491{
 492	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 493	struct rb_node *parent = NULL;
 494	struct sched_entity *entry;
 495	int leftmost = 1;
 496
 497	/*
 498	 * Find the right place in the rbtree:
 499	 */
 500	while (*link) {
 501		parent = *link;
 502		entry = rb_entry(parent, struct sched_entity, run_node);
 503		/*
 504		 * We dont care about collisions. Nodes with
 505		 * the same key stay together.
 506		 */
 507		if (entity_before(se, entry)) {
 508			link = &parent->rb_left;
 509		} else {
 510			link = &parent->rb_right;
 511			leftmost = 0;
 512		}
 513	}
 514
 515	/*
 516	 * Maintain a cache of leftmost tree entries (it is frequently
 517	 * used):
 518	 */
 519	if (leftmost)
 520		cfs_rq->rb_leftmost = &se->run_node;
 521
 522	rb_link_node(&se->run_node, parent, link);
 523	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 524}
 525
 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 527{
 528	if (cfs_rq->rb_leftmost == &se->run_node) {
 529		struct rb_node *next_node;
 530
 531		next_node = rb_next(&se->run_node);
 532		cfs_rq->rb_leftmost = next_node;
 533	}
 534
 535	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 536}
 537
 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 539{
 540	struct rb_node *left = cfs_rq->rb_leftmost;
 541
 542	if (!left)
 543		return NULL;
 544
 545	return rb_entry(left, struct sched_entity, run_node);
 546}
 547
 548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 549{
 550	struct rb_node *next = rb_next(&se->run_node);
 551
 552	if (!next)
 553		return NULL;
 554
 555	return rb_entry(next, struct sched_entity, run_node);
 556}
 557
 558#ifdef CONFIG_SCHED_DEBUG
 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 560{
 561	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 562
 563	if (!last)
 564		return NULL;
 565
 566	return rb_entry(last, struct sched_entity, run_node);
 567}
 568
 569/**************************************************************
 570 * Scheduling class statistics methods:
 571 */
 572
 573int sched_proc_update_handler(struct ctl_table *table, int write,
 574		void __user *buffer, size_t *lenp,
 575		loff_t *ppos)
 576{
 577	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 578	int factor = get_update_sysctl_factor();
 579
 580	if (ret || !write)
 581		return ret;
 582
 583	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 584					sysctl_sched_min_granularity);
 585
 586#define WRT_SYSCTL(name) \
 587	(normalized_sysctl_##name = sysctl_##name / (factor))
 588	WRT_SYSCTL(sched_min_granularity);
 589	WRT_SYSCTL(sched_latency);
 590	WRT_SYSCTL(sched_wakeup_granularity);
 591#undef WRT_SYSCTL
 592
 593	return 0;
 594}
 595#endif
 596
 597/*
 598 * delta /= w
 599 */
 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 601{
 602	if (unlikely(se->load.weight != NICE_0_LOAD))
 603		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 604
 605	return delta;
 606}
 607
 608/*
 609 * The idea is to set a period in which each task runs once.
 610 *
 611 * When there are too many tasks (sched_nr_latency) we have to stretch
 612 * this period because otherwise the slices get too small.
 613 *
 614 * p = (nr <= nl) ? l : l*nr/nl
 615 */
 616static u64 __sched_period(unsigned long nr_running)
 617{
 618	u64 period = sysctl_sched_latency;
 619	unsigned long nr_latency = sched_nr_latency;
 620
 621	if (unlikely(nr_running > nr_latency)) {
 622		period = sysctl_sched_min_granularity;
 623		period *= nr_running;
 624	}
 625
 626	return period;
 627}
 628
 629/*
 630 * We calculate the wall-time slice from the period by taking a part
 631 * proportional to the weight.
 632 *
 633 * s = p*P[w/rw]
 634 */
 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 636{
 637	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 638
 639	for_each_sched_entity(se) {
 640		struct load_weight *load;
 641		struct load_weight lw;
 642
 643		cfs_rq = cfs_rq_of(se);
 644		load = &cfs_rq->load;
 645
 646		if (unlikely(!se->on_rq)) {
 647			lw = cfs_rq->load;
 648
 649			update_load_add(&lw, se->load.weight);
 650			load = &lw;
 651		}
 652		slice = __calc_delta(slice, se->load.weight, load);
 653	}
 654	return slice;
 655}
 656
 657/*
 658 * We calculate the vruntime slice of a to-be-inserted task.
 659 *
 660 * vs = s/w
 661 */
 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 663{
 664	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 665}
 666
 667#ifdef CONFIG_SMP
 
 668static unsigned long task_h_load(struct task_struct *p);
 669
 670static inline void __update_task_entity_contrib(struct sched_entity *se);
 
 
 
 
 
 
 
 671
 672/* Give new task start runnable values to heavy its load in infant time */
 673void init_task_runnable_average(struct task_struct *p)
 674{
 675	u32 slice;
 676
 677	p->se.avg.decay_count = 0;
 678	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
 679	p->se.avg.runnable_avg_sum = slice;
 680	p->se.avg.runnable_avg_period = slice;
 681	__update_task_entity_contrib(&p->se);
 
 
 
 
 
 
 
 682}
 
 
 
 683#else
 684void init_task_runnable_average(struct task_struct *p)
 685{
 686}
 687#endif
 688
 689/*
 690 * Update the current task's runtime statistics.
 691 */
 692static void update_curr(struct cfs_rq *cfs_rq)
 693{
 694	struct sched_entity *curr = cfs_rq->curr;
 695	u64 now = rq_clock_task(rq_of(cfs_rq));
 696	u64 delta_exec;
 697
 698	if (unlikely(!curr))
 699		return;
 700
 701	delta_exec = now - curr->exec_start;
 702	if (unlikely((s64)delta_exec <= 0))
 703		return;
 704
 705	curr->exec_start = now;
 706
 707	schedstat_set(curr->statistics.exec_max,
 708		      max(delta_exec, curr->statistics.exec_max));
 709
 710	curr->sum_exec_runtime += delta_exec;
 711	schedstat_add(cfs_rq, exec_clock, delta_exec);
 712
 713	curr->vruntime += calc_delta_fair(delta_exec, curr);
 714	update_min_vruntime(cfs_rq);
 715
 716	if (entity_is_task(curr)) {
 717		struct task_struct *curtask = task_of(curr);
 718
 719		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 720		cpuacct_charge(curtask, delta_exec);
 721		account_group_exec_runtime(curtask, delta_exec);
 722	}
 723
 724	account_cfs_rq_runtime(cfs_rq, delta_exec);
 725}
 726
 
 
 
 
 
 
 727static inline void
 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 729{
 730	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 732
 733/*
 734 * Task is being enqueued - update stats:
 735 */
 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 737{
 738	/*
 739	 * Are we enqueueing a waiting task? (for current tasks
 740	 * a dequeue/enqueue event is a NOP)
 741	 */
 742	if (se != cfs_rq->curr)
 743		update_stats_wait_start(cfs_rq, se);
 744}
 745
 746static void
 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 748{
 749	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 750			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 751	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 752	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 753			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 754#ifdef CONFIG_SCHEDSTATS
 755	if (entity_is_task(se)) {
 756		trace_sched_stat_wait(task_of(se),
 757			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 758	}
 759#endif
 760	schedstat_set(se->statistics.wait_start, 0);
 761}
 762
 763static inline void
 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 765{
 766	/*
 767	 * Mark the end of the wait period if dequeueing a
 768	 * waiting task:
 769	 */
 770	if (se != cfs_rq->curr)
 771		update_stats_wait_end(cfs_rq, se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 774/*
 775 * We are picking a new current task - update its stats:
 776 */
 777static inline void
 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 779{
 780	/*
 781	 * We are starting a new run period:
 782	 */
 783	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 784}
 785
 786/**************************************************
 787 * Scheduling class queueing methods:
 788 */
 789
 790#ifdef CONFIG_NUMA_BALANCING
 791/*
 792 * Approximate time to scan a full NUMA task in ms. The task scan period is
 793 * calculated based on the tasks virtual memory size and
 794 * numa_balancing_scan_size.
 795 */
 796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 798
 799/* Portion of address space to scan in MB */
 800unsigned int sysctl_numa_balancing_scan_size = 256;
 801
 802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 803unsigned int sysctl_numa_balancing_scan_delay = 1000;
 804
 805static unsigned int task_nr_scan_windows(struct task_struct *p)
 806{
 807	unsigned long rss = 0;
 808	unsigned long nr_scan_pages;
 809
 810	/*
 811	 * Calculations based on RSS as non-present and empty pages are skipped
 812	 * by the PTE scanner and NUMA hinting faults should be trapped based
 813	 * on resident pages
 814	 */
 815	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 816	rss = get_mm_rss(p->mm);
 817	if (!rss)
 818		rss = nr_scan_pages;
 819
 820	rss = round_up(rss, nr_scan_pages);
 821	return rss / nr_scan_pages;
 822}
 823
 824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 825#define MAX_SCAN_WINDOW 2560
 826
 827static unsigned int task_scan_min(struct task_struct *p)
 828{
 
 829	unsigned int scan, floor;
 830	unsigned int windows = 1;
 831
 832	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
 833		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
 834	floor = 1000 / windows;
 835
 836	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 837	return max_t(unsigned int, floor, scan);
 838}
 839
 840static unsigned int task_scan_max(struct task_struct *p)
 841{
 842	unsigned int smin = task_scan_min(p);
 843	unsigned int smax;
 844
 845	/* Watch for min being lower than max due to floor calculations */
 846	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 847	return max(smin, smax);
 848}
 849
 850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 851{
 852	rq->nr_numa_running += (p->numa_preferred_nid != -1);
 853	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 854}
 855
 856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 857{
 858	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 859	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 860}
 861
 862struct numa_group {
 863	atomic_t refcount;
 864
 865	spinlock_t lock; /* nr_tasks, tasks */
 866	int nr_tasks;
 867	pid_t gid;
 868	struct list_head task_list;
 869
 870	struct rcu_head rcu;
 871	nodemask_t active_nodes;
 872	unsigned long total_faults;
 
 873	/*
 874	 * Faults_cpu is used to decide whether memory should move
 875	 * towards the CPU. As a consequence, these stats are weighted
 876	 * more by CPU use than by memory faults.
 877	 */
 878	unsigned long *faults_cpu;
 879	unsigned long faults[0];
 880};
 881
 882/* Shared or private faults. */
 883#define NR_NUMA_HINT_FAULT_TYPES 2
 884
 885/* Memory and CPU locality */
 886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 887
 888/* Averaged statistics, and temporary buffers. */
 889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 890
 891pid_t task_numa_group_id(struct task_struct *p)
 892{
 893	return p->numa_group ? p->numa_group->gid : 0;
 894}
 895
 896static inline int task_faults_idx(int nid, int priv)
 
 
 
 
 
 
 897{
 898	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
 899}
 900
 901static inline unsigned long task_faults(struct task_struct *p, int nid)
 902{
 903	if (!p->numa_faults_memory)
 904		return 0;
 905
 906	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
 907		p->numa_faults_memory[task_faults_idx(nid, 1)];
 908}
 909
 910static inline unsigned long group_faults(struct task_struct *p, int nid)
 911{
 912	if (!p->numa_group)
 913		return 0;
 914
 915	return p->numa_group->faults[task_faults_idx(nid, 0)] +
 916		p->numa_group->faults[task_faults_idx(nid, 1)];
 917}
 918
 919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 920{
 921	return group->faults_cpu[task_faults_idx(nid, 0)] +
 922		group->faults_cpu[task_faults_idx(nid, 1)];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923}
 924
 925/*
 926 * These return the fraction of accesses done by a particular task, or
 927 * task group, on a particular numa node.  The group weight is given a
 928 * larger multiplier, in order to group tasks together that are almost
 929 * evenly spread out between numa nodes.
 930 */
 931static inline unsigned long task_weight(struct task_struct *p, int nid)
 
 932{
 933	unsigned long total_faults;
 934
 935	if (!p->numa_faults_memory)
 936		return 0;
 937
 938	total_faults = p->total_numa_faults;
 939
 940	if (!total_faults)
 941		return 0;
 942
 943	return 1000 * task_faults(p, nid) / total_faults;
 
 
 
 944}
 945
 946static inline unsigned long group_weight(struct task_struct *p, int nid)
 
 947{
 948	if (!p->numa_group || !p->numa_group->total_faults)
 
 
 
 
 
 
 
 949		return 0;
 950
 951	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
 
 
 
 952}
 953
 954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 955				int src_nid, int dst_cpu)
 956{
 957	struct numa_group *ng = p->numa_group;
 958	int dst_nid = cpu_to_node(dst_cpu);
 959	int last_cpupid, this_cpupid;
 960
 961	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 962
 963	/*
 964	 * Multi-stage node selection is used in conjunction with a periodic
 965	 * migration fault to build a temporal task<->page relation. By using
 966	 * a two-stage filter we remove short/unlikely relations.
 967	 *
 968	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 969	 * a task's usage of a particular page (n_p) per total usage of this
 970	 * page (n_t) (in a given time-span) to a probability.
 971	 *
 972	 * Our periodic faults will sample this probability and getting the
 973	 * same result twice in a row, given these samples are fully
 974	 * independent, is then given by P(n)^2, provided our sample period
 975	 * is sufficiently short compared to the usage pattern.
 976	 *
 977	 * This quadric squishes small probabilities, making it less likely we
 978	 * act on an unlikely task<->page relation.
 979	 */
 980	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
 981	if (!cpupid_pid_unset(last_cpupid) &&
 982				cpupid_to_nid(last_cpupid) != dst_nid)
 983		return false;
 984
 985	/* Always allow migrate on private faults */
 986	if (cpupid_match_pid(p, last_cpupid))
 987		return true;
 988
 989	/* A shared fault, but p->numa_group has not been set up yet. */
 990	if (!ng)
 991		return true;
 992
 993	/*
 994	 * Do not migrate if the destination is not a node that
 995	 * is actively used by this numa group.
 996	 */
 997	if (!node_isset(dst_nid, ng->active_nodes))
 998		return false;
 999
1000	/*
1001	 * Source is a node that is not actively used by this
1002	 * numa group, while the destination is. Migrate.
1003	 */
1004	if (!node_isset(src_nid, ng->active_nodes))
 
1005		return true;
1006
1007	/*
1008	 * Both source and destination are nodes in active
1009	 * use by this numa group. Maximize memory bandwidth
1010	 * by migrating from more heavily used groups, to less
1011	 * heavily used ones, spreading the load around.
1012	 * Use a 1/4 hysteresis to avoid spurious page movement.
 
1013	 */
1014	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
 
1015}
1016
1017static unsigned long weighted_cpuload(const int cpu);
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023/* Cached statistics for all CPUs within a node */
1024struct numa_stats {
1025	unsigned long nr_running;
1026	unsigned long load;
1027
1028	/* Total compute capacity of CPUs on a node */
1029	unsigned long power;
1030
1031	/* Approximate capacity in terms of runnable tasks on a node */
1032	unsigned long capacity;
1033	int has_capacity;
1034};
1035
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
1041	int cpu, cpus = 0;
 
1042
1043	memset(ns, 0, sizeof(*ns));
1044	for_each_cpu(cpu, cpumask_of_node(nid)) {
1045		struct rq *rq = cpu_rq(cpu);
1046
1047		ns->nr_running += rq->nr_running;
1048		ns->load += weighted_cpuload(cpu);
1049		ns->power += power_of(cpu);
1050
1051		cpus++;
1052	}
1053
1054	/*
1055	 * If we raced with hotplug and there are no CPUs left in our mask
1056	 * the @ns structure is NULL'ed and task_numa_compare() will
1057	 * not find this node attractive.
1058	 *
1059	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060	 * and bail there.
1061	 */
1062	if (!cpus)
1063		return;
1064
1065	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067	ns->has_capacity = (ns->nr_running < ns->capacity);
 
 
 
 
1068}
1069
1070struct task_numa_env {
1071	struct task_struct *p;
1072
1073	int src_cpu, src_nid;
1074	int dst_cpu, dst_nid;
1075
1076	struct numa_stats src_stats, dst_stats;
1077
1078	int imbalance_pct;
 
1079
1080	struct task_struct *best_task;
1081	long best_imp;
1082	int best_cpu;
1083};
1084
1085static void task_numa_assign(struct task_numa_env *env,
1086			     struct task_struct *p, long imp)
1087{
1088	if (env->best_task)
1089		put_task_struct(env->best_task);
1090	if (p)
1091		get_task_struct(p);
1092
1093	env->best_task = p;
1094	env->best_imp = imp;
1095	env->best_cpu = env->dst_cpu;
1096}
1097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
1104static void task_numa_compare(struct task_numa_env *env,
1105			      long taskimp, long groupimp)
1106{
1107	struct rq *src_rq = cpu_rq(env->src_cpu);
1108	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109	struct task_struct *cur;
1110	long dst_load, src_load;
1111	long load;
1112	long imp = (groupimp > 0) ? groupimp : taskimp;
 
 
 
1113
1114	rcu_read_lock();
1115	cur = ACCESS_ONCE(dst_rq->curr);
1116	if (cur->pid == 0) /* idle */
 
 
 
 
 
1117		cur = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118
1119	/*
1120	 * "imp" is the fault differential for the source task between the
1121	 * source and destination node. Calculate the total differential for
1122	 * the source task and potential destination task. The more negative
1123	 * the value is, the more rmeote accesses that would be expected to
1124	 * be incurred if the tasks were swapped.
1125	 */
1126	if (cur) {
1127		/* Skip this swap candidate if cannot move to the source cpu */
1128		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129			goto unlock;
1130
1131		/*
1132		 * If dst and source tasks are in the same NUMA group, or not
1133		 * in any group then look only at task weights.
1134		 */
1135		if (cur->numa_group == env->p->numa_group) {
1136			imp = taskimp + task_weight(cur, env->src_nid) -
1137			      task_weight(cur, env->dst_nid);
1138			/*
1139			 * Add some hysteresis to prevent swapping the
1140			 * tasks within a group over tiny differences.
1141			 */
1142			if (cur->numa_group)
1143				imp -= imp/16;
1144		} else {
1145			/*
1146			 * Compare the group weights. If a task is all by
1147			 * itself (not part of a group), use the task weight
1148			 * instead.
1149			 */
1150			if (env->p->numa_group)
1151				imp = groupimp;
1152			else
1153				imp = taskimp;
1154
1155			if (cur->numa_group)
1156				imp += group_weight(cur, env->src_nid) -
1157				       group_weight(cur, env->dst_nid);
1158			else
1159				imp += task_weight(cur, env->src_nid) -
1160				       task_weight(cur, env->dst_nid);
1161		}
1162	}
1163
1164	if (imp < env->best_imp)
1165		goto unlock;
1166
1167	if (!cur) {
1168		/* Is there capacity at our destination? */
1169		if (env->src_stats.has_capacity &&
1170		    !env->dst_stats.has_capacity)
1171			goto unlock;
1172
1173		goto balance;
1174	}
1175
1176	/* Balance doesn't matter much if we're running a task per cpu */
1177	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
 
1178		goto assign;
1179
1180	/*
1181	 * In the overloaded case, try and keep the load balanced.
1182	 */
1183balance:
1184	dst_load = env->dst_stats.load;
1185	src_load = env->src_stats.load;
1186
1187	/* XXX missing power terms */
1188	load = task_h_load(env->p);
1189	dst_load += load;
1190	src_load -= load;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	if (cur) {
1193		load = task_h_load(cur);
1194		dst_load -= load;
1195		src_load += load;
1196	}
1197
1198	/* make src_load the smaller */
1199	if (dst_load < src_load)
1200		swap(dst_load, src_load);
1201
1202	if (src_load * env->imbalance_pct < dst_load * 100)
1203		goto unlock;
1204
 
 
 
 
 
 
 
1205assign:
 
1206	task_numa_assign(env, cur, imp);
1207unlock:
1208	rcu_read_unlock();
 
 
 
 
 
 
1209}
1210
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212				long taskimp, long groupimp)
1213{
1214	int cpu;
1215
1216	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217		/* Skip this CPU if the source task cannot migrate */
1218		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219			continue;
1220
1221		env->dst_cpu = cpu;
1222		task_numa_compare(env, taskimp, groupimp);
1223	}
1224}
1225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226static int task_numa_migrate(struct task_struct *p)
1227{
1228	struct task_numa_env env = {
1229		.p = p,
1230
1231		.src_cpu = task_cpu(p),
1232		.src_nid = task_node(p),
1233
1234		.imbalance_pct = 112,
1235
1236		.best_task = NULL,
1237		.best_imp = 0,
1238		.best_cpu = -1
1239	};
1240	struct sched_domain *sd;
1241	unsigned long taskweight, groupweight;
1242	int nid, ret;
1243	long taskimp, groupimp;
1244
1245	/*
1246	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247	 * imbalance and would be the first to start moving tasks about.
1248	 *
1249	 * And we want to avoid any moving of tasks about, as that would create
1250	 * random movement of tasks -- counter the numa conditions we're trying
1251	 * to satisfy here.
1252	 */
1253	rcu_read_lock();
1254	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255	if (sd)
1256		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257	rcu_read_unlock();
1258
1259	/*
1260	 * Cpusets can break the scheduler domain tree into smaller
1261	 * balance domains, some of which do not cross NUMA boundaries.
1262	 * Tasks that are "trapped" in such domains cannot be migrated
1263	 * elsewhere, so there is no point in (re)trying.
1264	 */
1265	if (unlikely(!sd)) {
1266		p->numa_preferred_nid = task_node(p);
1267		return -EINVAL;
1268	}
1269
1270	taskweight = task_weight(p, env.src_nid);
1271	groupweight = group_weight(p, env.src_nid);
1272	update_numa_stats(&env.src_stats, env.src_nid);
1273	env.dst_nid = p->numa_preferred_nid;
1274	taskimp = task_weight(p, env.dst_nid) - taskweight;
1275	groupimp = group_weight(p, env.dst_nid) - groupweight;
 
 
 
 
1276	update_numa_stats(&env.dst_stats, env.dst_nid);
1277
1278	/* If the preferred nid has capacity, try to use it. */
1279	if (env.dst_stats.has_capacity)
1280		task_numa_find_cpu(&env, taskimp, groupimp);
1281
1282	/* No space available on the preferred nid. Look elsewhere. */
1283	if (env.best_cpu == -1) {
 
 
 
 
 
 
1284		for_each_online_node(nid) {
1285			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286				continue;
1287
 
 
 
 
 
 
 
1288			/* Only consider nodes where both task and groups benefit */
1289			taskimp = task_weight(p, nid) - taskweight;
1290			groupimp = group_weight(p, nid) - groupweight;
1291			if (taskimp < 0 && groupimp < 0)
1292				continue;
1293
 
1294			env.dst_nid = nid;
1295			update_numa_stats(&env.dst_stats, env.dst_nid);
1296			task_numa_find_cpu(&env, taskimp, groupimp);
 
1297		}
1298	}
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300	/* No better CPU than the current one was found. */
1301	if (env.best_cpu == -1)
1302		return -EAGAIN;
1303
1304	sched_setnuma(p, env.dst_nid);
1305
1306	/*
1307	 * Reset the scan period if the task is being rescheduled on an
1308	 * alternative node to recheck if the tasks is now properly placed.
1309	 */
1310	p->numa_scan_period = task_scan_min(p);
1311
1312	if (env.best_task == NULL) {
1313		ret = migrate_task_to(p, env.best_cpu);
1314		if (ret != 0)
1315			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316		return ret;
1317	}
1318
1319	ret = migrate_swap(p, env.best_task);
1320	if (ret != 0)
1321		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322	put_task_struct(env.best_task);
1323	return ret;
1324}
1325
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
 
 
1329	/* This task has no NUMA fault statistics yet */
1330	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331		return;
1332
1333	/* Periodically retry migrating the task to the preferred node */
1334	p->numa_migrate_retry = jiffies + HZ;
 
1335
1336	/* Success if task is already running on preferred CPU */
1337	if (task_node(p) == p->numa_preferred_nid)
1338		return;
1339
1340	/* Otherwise, try migrate to a CPU on the preferred node */
1341	task_numa_migrate(p);
1342}
1343
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357	unsigned long faults, max_faults = 0;
1358	int nid;
1359
1360	for_each_online_node(nid) {
1361		faults = group_faults_cpu(numa_group, nid);
1362		if (faults > max_faults)
1363			max_faults = faults;
1364	}
1365
1366	for_each_online_node(nid) {
1367		faults = group_faults_cpu(numa_group, nid);
1368		if (!node_isset(nid, numa_group->active_nodes)) {
1369			if (faults > max_faults * 6 / 16)
1370				node_set(nid, numa_group->active_nodes);
1371		} else if (faults < max_faults * 3 / 16)
1372			node_clear(nid, numa_group->active_nodes);
1373	}
 
 
 
1374}
1375
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393			unsigned long shared, unsigned long private)
1394{
1395	unsigned int period_slot;
1396	int ratio;
1397	int diff;
1398
1399	unsigned long remote = p->numa_faults_locality[0];
1400	unsigned long local = p->numa_faults_locality[1];
1401
1402	/*
1403	 * If there were no record hinting faults then either the task is
1404	 * completely idle or all activity is areas that are not of interest
1405	 * to automatic numa balancing. Scan slower
 
 
1406	 */
1407	if (local + shared == 0) {
1408		p->numa_scan_period = min(p->numa_scan_period_max,
1409			p->numa_scan_period << 1);
1410
1411		p->mm->numa_next_scan = jiffies +
1412			msecs_to_jiffies(p->numa_scan_period);
1413
1414		return;
1415	}
1416
1417	/*
1418	 * Prepare to scale scan period relative to the current period.
1419	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1420	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422	 */
1423	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427		if (!slot)
1428			slot = 1;
1429		diff = slot * period_slot;
1430	} else {
1431		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433		/*
1434		 * Scale scan rate increases based on sharing. There is an
1435		 * inverse relationship between the degree of sharing and
1436		 * the adjustment made to the scanning period. Broadly
1437		 * speaking the intent is that there is little point
1438		 * scanning faster if shared accesses dominate as it may
1439		 * simply bounce migrations uselessly
1440		 */
1441		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443	}
1444
1445	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446			task_scan_min(p), task_scan_max(p));
1447	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459	u64 runtime, delta, now;
1460	/* Use the start of this time slice to avoid calculations. */
1461	now = p->se.exec_start;
1462	runtime = p->se.sum_exec_runtime;
1463
1464	if (p->last_task_numa_placement) {
1465		delta = runtime - p->last_sum_exec_runtime;
1466		*period = now - p->last_task_numa_placement;
1467	} else {
1468		delta = p->se.avg.runnable_avg_sum;
1469		*period = p->se.avg.runnable_avg_period;
1470	}
1471
1472	p->last_sum_exec_runtime = runtime;
1473	p->last_task_numa_placement = now;
1474
1475	return delta;
1476}
1477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478static void task_numa_placement(struct task_struct *p)
1479{
1480	int seq, nid, max_nid = -1, max_group_nid = -1;
1481	unsigned long max_faults = 0, max_group_faults = 0;
1482	unsigned long fault_types[2] = { 0, 0 };
1483	unsigned long total_faults;
1484	u64 runtime, period;
1485	spinlock_t *group_lock = NULL;
1486
1487	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
 
 
 
 
 
1488	if (p->numa_scan_seq == seq)
1489		return;
1490	p->numa_scan_seq = seq;
1491	p->numa_scan_period_max = task_scan_max(p);
1492
1493	total_faults = p->numa_faults_locality[0] +
1494		       p->numa_faults_locality[1];
1495	runtime = numa_get_avg_runtime(p, &period);
1496
1497	/* If the task is part of a group prevent parallel updates to group stats */
1498	if (p->numa_group) {
1499		group_lock = &p->numa_group->lock;
1500		spin_lock_irq(group_lock);
1501	}
1502
1503	/* Find the node with the highest number of faults */
1504	for_each_online_node(nid) {
 
 
1505		unsigned long faults = 0, group_faults = 0;
1506		int priv, i;
1507
1508		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509			long diff, f_diff, f_weight;
1510
1511			i = task_faults_idx(nid, priv);
 
 
 
1512
1513			/* Decay existing window, copy faults since last scan */
1514			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515			fault_types[priv] += p->numa_faults_buffer_memory[i];
1516			p->numa_faults_buffer_memory[i] = 0;
1517
1518			/*
1519			 * Normalize the faults_from, so all tasks in a group
1520			 * count according to CPU use, instead of by the raw
1521			 * number of faults. Tasks with little runtime have
1522			 * little over-all impact on throughput, and thus their
1523			 * faults are less important.
1524			 */
1525			f_weight = div64_u64(runtime << 16, period + 1);
1526			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527				   (total_faults + 1);
1528			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529			p->numa_faults_buffer_cpu[i] = 0;
1530
1531			p->numa_faults_memory[i] += diff;
1532			p->numa_faults_cpu[i] += f_diff;
1533			faults += p->numa_faults_memory[i];
1534			p->total_numa_faults += diff;
1535			if (p->numa_group) {
1536				/* safe because we can only change our own group */
1537				p->numa_group->faults[i] += diff;
1538				p->numa_group->faults_cpu[i] += f_diff;
 
 
 
 
 
 
1539				p->numa_group->total_faults += diff;
1540				group_faults += p->numa_group->faults[i];
1541			}
1542		}
1543
1544		if (faults > max_faults) {
1545			max_faults = faults;
1546			max_nid = nid;
1547		}
1548
1549		if (group_faults > max_group_faults) {
1550			max_group_faults = group_faults;
1551			max_group_nid = nid;
1552		}
1553	}
1554
1555	update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
1557	if (p->numa_group) {
1558		update_numa_active_node_mask(p->numa_group);
1559		/*
1560		 * If the preferred task and group nids are different,
1561		 * iterate over the nodes again to find the best place.
1562		 */
1563		if (max_nid != max_group_nid) {
1564			unsigned long weight, max_weight = 0;
1565
1566			for_each_online_node(nid) {
1567				weight = task_weight(p, nid) + group_weight(p, nid);
1568				if (weight > max_weight) {
1569					max_weight = weight;
1570					max_nid = nid;
1571				}
1572			}
1573		}
1574
1575		spin_unlock_irq(group_lock);
 
1576	}
1577
1578	/* Preferred node as the node with the most faults */
1579	if (max_faults && max_nid != p->numa_preferred_nid) {
1580		/* Update the preferred nid and migrate task if possible */
1581		sched_setnuma(p, max_nid);
1582		numa_migrate_preferred(p);
 
 
1583	}
1584}
1585
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588	return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593	if (atomic_dec_and_test(&grp->refcount))
1594		kfree_rcu(grp, rcu);
1595}
1596
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598			int *priv)
1599{
1600	struct numa_group *grp, *my_grp;
1601	struct task_struct *tsk;
1602	bool join = false;
1603	int cpu = cpupid_to_cpu(cpupid);
1604	int i;
1605
1606	if (unlikely(!p->numa_group)) {
1607		unsigned int size = sizeof(struct numa_group) +
1608				    4*nr_node_ids*sizeof(unsigned long);
1609
1610		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611		if (!grp)
1612			return;
1613
1614		atomic_set(&grp->refcount, 1);
 
 
1615		spin_lock_init(&grp->lock);
1616		INIT_LIST_HEAD(&grp->task_list);
1617		grp->gid = p->pid;
1618		/* Second half of the array tracks nids where faults happen */
1619		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620						nr_node_ids;
1621
1622		node_set(task_node(current), grp->active_nodes);
1623
1624		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625			grp->faults[i] = p->numa_faults_memory[i];
1626
1627		grp->total_faults = p->total_numa_faults;
1628
1629		list_add(&p->numa_entry, &grp->task_list);
1630		grp->nr_tasks++;
1631		rcu_assign_pointer(p->numa_group, grp);
1632	}
1633
1634	rcu_read_lock();
1635	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637	if (!cpupid_match_pid(tsk, cpupid))
1638		goto no_join;
1639
1640	grp = rcu_dereference(tsk->numa_group);
1641	if (!grp)
1642		goto no_join;
1643
1644	my_grp = p->numa_group;
1645	if (grp == my_grp)
1646		goto no_join;
1647
1648	/*
1649	 * Only join the other group if its bigger; if we're the bigger group,
1650	 * the other task will join us.
1651	 */
1652	if (my_grp->nr_tasks > grp->nr_tasks)
1653		goto no_join;
1654
1655	/*
1656	 * Tie-break on the grp address.
1657	 */
1658	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659		goto no_join;
1660
1661	/* Always join threads in the same process. */
1662	if (tsk->mm == current->mm)
1663		join = true;
1664
1665	/* Simple filter to avoid false positives due to PID collisions */
1666	if (flags & TNF_SHARED)
1667		join = true;
1668
1669	/* Update priv based on whether false sharing was detected */
1670	*priv = !join;
1671
1672	if (join && !get_numa_group(grp))
1673		goto no_join;
1674
1675	rcu_read_unlock();
1676
1677	if (!join)
1678		return;
1679
1680	BUG_ON(irqs_disabled());
1681	double_lock_irq(&my_grp->lock, &grp->lock);
1682
1683	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684		my_grp->faults[i] -= p->numa_faults_memory[i];
1685		grp->faults[i] += p->numa_faults_memory[i];
1686	}
1687	my_grp->total_faults -= p->total_numa_faults;
1688	grp->total_faults += p->total_numa_faults;
1689
1690	list_move(&p->numa_entry, &grp->task_list);
1691	my_grp->nr_tasks--;
1692	grp->nr_tasks++;
1693
1694	spin_unlock(&my_grp->lock);
1695	spin_unlock_irq(&grp->lock);
1696
1697	rcu_assign_pointer(p->numa_group, grp);
1698
1699	put_numa_group(my_grp);
1700	return;
1701
1702no_join:
1703	rcu_read_unlock();
1704	return;
1705}
1706
1707void task_numa_free(struct task_struct *p)
1708{
1709	struct numa_group *grp = p->numa_group;
1710	void *numa_faults = p->numa_faults_memory;
1711	unsigned long flags;
1712	int i;
1713
1714	if (grp) {
1715		spin_lock_irqsave(&grp->lock, flags);
1716		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717			grp->faults[i] -= p->numa_faults_memory[i];
1718		grp->total_faults -= p->total_numa_faults;
1719
1720		list_del(&p->numa_entry);
1721		grp->nr_tasks--;
1722		spin_unlock_irqrestore(&grp->lock, flags);
1723		rcu_assign_pointer(p->numa_group, NULL);
1724		put_numa_group(grp);
1725	}
1726
1727	p->numa_faults_memory = NULL;
1728	p->numa_faults_buffer_memory = NULL;
1729	p->numa_faults_cpu= NULL;
1730	p->numa_faults_buffer_cpu = NULL;
1731	kfree(numa_faults);
1732}
1733
1734/*
1735 * Got a PROT_NONE fault for a page on @node.
1736 */
1737void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1738{
1739	struct task_struct *p = current;
1740	bool migrated = flags & TNF_MIGRATED;
1741	int cpu_node = task_node(current);
 
 
1742	int priv;
1743
1744	if (!numabalancing_enabled)
1745		return;
1746
1747	/* for example, ksmd faulting in a user's mm */
1748	if (!p->mm)
1749		return;
1750
1751	/* Do not worry about placement if exiting */
1752	if (p->state == TASK_DEAD)
1753		return;
1754
1755	/* Allocate buffer to track faults on a per-node basis */
1756	if (unlikely(!p->numa_faults_memory)) {
1757		int size = sizeof(*p->numa_faults_memory) *
1758			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1759
1760		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1761		if (!p->numa_faults_memory)
1762			return;
1763
1764		BUG_ON(p->numa_faults_buffer_memory);
1765		/*
1766		 * The averaged statistics, shared & private, memory & cpu,
1767		 * occupy the first half of the array. The second half of the
1768		 * array is for current counters, which are averaged into the
1769		 * first set by task_numa_placement.
1770		 */
1771		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1772		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1773		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1774		p->total_numa_faults = 0;
1775		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1776	}
1777
1778	/*
1779	 * First accesses are treated as private, otherwise consider accesses
1780	 * to be private if the accessing pid has not changed
1781	 */
1782	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783		priv = 1;
1784	} else {
1785		priv = cpupid_match_pid(p, last_cpupid);
1786		if (!priv && !(flags & TNF_NO_GROUP))
1787			task_numa_group(p, last_cpupid, flags, &priv);
1788	}
1789
 
 
 
 
 
 
 
 
 
 
 
 
1790	task_numa_placement(p);
1791
1792	/*
1793	 * Retry task to preferred node migration periodically, in case it
1794	 * case it previously failed, or the scheduler moved us.
1795	 */
1796	if (time_after(jiffies, p->numa_migrate_retry))
1797		numa_migrate_preferred(p);
1798
1799	if (migrated)
1800		p->numa_pages_migrated += pages;
 
 
1801
1802	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1803	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1804	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1805}
1806
1807static void reset_ptenuma_scan(struct task_struct *p)
1808{
1809	ACCESS_ONCE(p->mm->numa_scan_seq)++;
 
 
 
 
 
 
 
 
1810	p->mm->numa_scan_offset = 0;
1811}
1812
1813/*
1814 * The expensive part of numa migration is done from task_work context.
1815 * Triggered from task_tick_numa().
1816 */
1817void task_numa_work(struct callback_head *work)
1818{
1819	unsigned long migrate, next_scan, now = jiffies;
1820	struct task_struct *p = current;
1821	struct mm_struct *mm = p->mm;
 
1822	struct vm_area_struct *vma;
1823	unsigned long start, end;
1824	unsigned long nr_pte_updates = 0;
1825	long pages;
1826
1827	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1828
1829	work->next = work; /* protect against double add */
1830	/*
1831	 * Who cares about NUMA placement when they're dying.
1832	 *
1833	 * NOTE: make sure not to dereference p->mm before this check,
1834	 * exit_task_work() happens _after_ exit_mm() so we could be called
1835	 * without p->mm even though we still had it when we enqueued this
1836	 * work.
1837	 */
1838	if (p->flags & PF_EXITING)
1839		return;
1840
1841	if (!mm->numa_next_scan) {
1842		mm->numa_next_scan = now +
1843			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844	}
1845
1846	/*
1847	 * Enforce maximal scan/migration frequency..
1848	 */
1849	migrate = mm->numa_next_scan;
1850	if (time_before(now, migrate))
1851		return;
1852
1853	if (p->numa_scan_period == 0) {
1854		p->numa_scan_period_max = task_scan_max(p);
1855		p->numa_scan_period = task_scan_min(p);
1856	}
1857
1858	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1859	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1860		return;
1861
1862	/*
1863	 * Delay this task enough that another task of this mm will likely win
1864	 * the next time around.
1865	 */
1866	p->node_stamp += 2 * TICK_NSEC;
1867
1868	start = mm->numa_scan_offset;
1869	pages = sysctl_numa_balancing_scan_size;
1870	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 
1871	if (!pages)
1872		return;
1873
 
1874	down_read(&mm->mmap_sem);
1875	vma = find_vma(mm, start);
1876	if (!vma) {
1877		reset_ptenuma_scan(p);
1878		start = 0;
1879		vma = mm->mmap;
1880	}
1881	for (; vma; vma = vma->vm_next) {
1882		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
 
1883			continue;
 
1884
1885		/*
1886		 * Shared library pages mapped by multiple processes are not
1887		 * migrated as it is expected they are cache replicated. Avoid
1888		 * hinting faults in read-only file-backed mappings or the vdso
1889		 * as migrating the pages will be of marginal benefit.
1890		 */
1891		if (!vma->vm_mm ||
1892		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1893			continue;
1894
1895		/*
1896		 * Skip inaccessible VMAs to avoid any confusion between
1897		 * PROT_NONE and NUMA hinting ptes
1898		 */
1899		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1900			continue;
1901
1902		do {
1903			start = max(start, vma->vm_start);
1904			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1905			end = min(end, vma->vm_end);
1906			nr_pte_updates += change_prot_numa(vma, start, end);
1907
1908			/*
1909			 * Scan sysctl_numa_balancing_scan_size but ensure that
1910			 * at least one PTE is updated so that unused virtual
1911			 * address space is quickly skipped.
 
 
 
1912			 */
1913			if (nr_pte_updates)
1914				pages -= (end - start) >> PAGE_SHIFT;
 
1915
1916			start = end;
1917			if (pages <= 0)
1918				goto out;
1919
1920			cond_resched();
1921		} while (end != vma->vm_end);
1922	}
1923
1924out:
1925	/*
1926	 * It is possible to reach the end of the VMA list but the last few
1927	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1928	 * would find the !migratable VMA on the next scan but not reset the
1929	 * scanner to the start so check it now.
1930	 */
1931	if (vma)
1932		mm->numa_scan_offset = start;
1933	else
1934		reset_ptenuma_scan(p);
1935	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
1936}
1937
1938/*
1939 * Drive the periodic memory faults..
1940 */
1941void task_tick_numa(struct rq *rq, struct task_struct *curr)
1942{
1943	struct callback_head *work = &curr->numa_work;
1944	u64 period, now;
1945
1946	/*
1947	 * We don't care about NUMA placement if we don't have memory.
1948	 */
1949	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1950		return;
1951
1952	/*
1953	 * Using runtime rather than walltime has the dual advantage that
1954	 * we (mostly) drive the selection from busy threads and that the
1955	 * task needs to have done some actual work before we bother with
1956	 * NUMA placement.
1957	 */
1958	now = curr->se.sum_exec_runtime;
1959	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1960
1961	if (now - curr->node_stamp > period) {
1962		if (!curr->node_stamp)
1963			curr->numa_scan_period = task_scan_min(curr);
1964		curr->node_stamp += period;
1965
1966		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1967			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1968			task_work_add(curr, work, true);
1969		}
1970	}
1971}
1972#else
1973static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1974{
1975}
1976
1977static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1978{
1979}
1980
1981static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1982{
1983}
1984#endif /* CONFIG_NUMA_BALANCING */
1985
1986static void
1987account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1988{
1989	update_load_add(&cfs_rq->load, se->load.weight);
1990	if (!parent_entity(se))
1991		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1992#ifdef CONFIG_SMP
1993	if (entity_is_task(se)) {
1994		struct rq *rq = rq_of(cfs_rq);
1995
1996		account_numa_enqueue(rq, task_of(se));
1997		list_add(&se->group_node, &rq->cfs_tasks);
1998	}
1999#endif
2000	cfs_rq->nr_running++;
2001}
2002
2003static void
2004account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2005{
2006	update_load_sub(&cfs_rq->load, se->load.weight);
2007	if (!parent_entity(se))
2008		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2009	if (entity_is_task(se)) {
2010		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2011		list_del_init(&se->group_node);
2012	}
2013	cfs_rq->nr_running--;
2014}
2015
2016#ifdef CONFIG_FAIR_GROUP_SCHED
2017# ifdef CONFIG_SMP
2018static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2019{
2020	long tg_weight;
2021
2022	/*
2023	 * Use this CPU's actual weight instead of the last load_contribution
2024	 * to gain a more accurate current total weight. See
2025	 * update_cfs_rq_load_contribution().
2026	 */
2027	tg_weight = atomic_long_read(&tg->load_avg);
2028	tg_weight -= cfs_rq->tg_load_contrib;
2029	tg_weight += cfs_rq->load.weight;
2030
2031	return tg_weight;
2032}
2033
2034static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2035{
2036	long tg_weight, load, shares;
2037
2038	tg_weight = calc_tg_weight(tg, cfs_rq);
2039	load = cfs_rq->load.weight;
2040
2041	shares = (tg->shares * load);
2042	if (tg_weight)
2043		shares /= tg_weight;
2044
2045	if (shares < MIN_SHARES)
2046		shares = MIN_SHARES;
2047	if (shares > tg->shares)
2048		shares = tg->shares;
2049
2050	return shares;
2051}
2052# else /* CONFIG_SMP */
2053static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2054{
2055	return tg->shares;
2056}
2057# endif /* CONFIG_SMP */
2058static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2059			    unsigned long weight)
2060{
2061	if (se->on_rq) {
2062		/* commit outstanding execution time */
2063		if (cfs_rq->curr == se)
2064			update_curr(cfs_rq);
2065		account_entity_dequeue(cfs_rq, se);
2066	}
2067
2068	update_load_set(&se->load, weight);
2069
2070	if (se->on_rq)
2071		account_entity_enqueue(cfs_rq, se);
2072}
2073
2074static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2075
2076static void update_cfs_shares(struct cfs_rq *cfs_rq)
2077{
2078	struct task_group *tg;
2079	struct sched_entity *se;
2080	long shares;
2081
2082	tg = cfs_rq->tg;
2083	se = tg->se[cpu_of(rq_of(cfs_rq))];
2084	if (!se || throttled_hierarchy(cfs_rq))
2085		return;
2086#ifndef CONFIG_SMP
2087	if (likely(se->load.weight == tg->shares))
2088		return;
2089#endif
2090	shares = calc_cfs_shares(cfs_rq, tg);
2091
2092	reweight_entity(cfs_rq_of(se), se, shares);
2093}
2094#else /* CONFIG_FAIR_GROUP_SCHED */
2095static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2096{
2097}
2098#endif /* CONFIG_FAIR_GROUP_SCHED */
2099
2100#ifdef CONFIG_SMP
2101/*
2102 * We choose a half-life close to 1 scheduling period.
2103 * Note: The tables below are dependent on this value.
2104 */
2105#define LOAD_AVG_PERIOD 32
2106#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2107#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2108
2109/* Precomputed fixed inverse multiplies for multiplication by y^n */
2110static const u32 runnable_avg_yN_inv[] = {
2111	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2112	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2113	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2114	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2115	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2116	0x85aac367, 0x82cd8698,
2117};
2118
2119/*
2120 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2121 * over-estimates when re-combining.
2122 */
2123static const u32 runnable_avg_yN_sum[] = {
2124	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2125	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2126	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2127};
2128
2129/*
2130 * Approximate:
2131 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2132 */
2133static __always_inline u64 decay_load(u64 val, u64 n)
2134{
2135	unsigned int local_n;
2136
2137	if (!n)
2138		return val;
2139	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2140		return 0;
2141
2142	/* after bounds checking we can collapse to 32-bit */
2143	local_n = n;
2144
2145	/*
2146	 * As y^PERIOD = 1/2, we can combine
2147	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2148	 * With a look-up table which covers k^n (n<PERIOD)
2149	 *
2150	 * To achieve constant time decay_load.
2151	 */
2152	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2153		val >>= local_n / LOAD_AVG_PERIOD;
2154		local_n %= LOAD_AVG_PERIOD;
2155	}
2156
2157	val *= runnable_avg_yN_inv[local_n];
2158	/* We don't use SRR here since we always want to round down. */
2159	return val >> 32;
2160}
2161
2162/*
2163 * For updates fully spanning n periods, the contribution to runnable
2164 * average will be: \Sum 1024*y^n
2165 *
2166 * We can compute this reasonably efficiently by combining:
2167 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2168 */
2169static u32 __compute_runnable_contrib(u64 n)
2170{
2171	u32 contrib = 0;
2172
2173	if (likely(n <= LOAD_AVG_PERIOD))
2174		return runnable_avg_yN_sum[n];
2175	else if (unlikely(n >= LOAD_AVG_MAX_N))
2176		return LOAD_AVG_MAX;
2177
2178	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2179	do {
2180		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2181		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2182
2183		n -= LOAD_AVG_PERIOD;
2184	} while (n > LOAD_AVG_PERIOD);
2185
2186	contrib = decay_load(contrib, n);
2187	return contrib + runnable_avg_yN_sum[n];
2188}
2189
 
 
 
 
 
 
2190/*
2191 * We can represent the historical contribution to runnable average as the
2192 * coefficients of a geometric series.  To do this we sub-divide our runnable
2193 * history into segments of approximately 1ms (1024us); label the segment that
2194 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2195 *
2196 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2197 *      p0            p1           p2
2198 *     (now)       (~1ms ago)  (~2ms ago)
2199 *
2200 * Let u_i denote the fraction of p_i that the entity was runnable.
2201 *
2202 * We then designate the fractions u_i as our co-efficients, yielding the
2203 * following representation of historical load:
2204 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2205 *
2206 * We choose y based on the with of a reasonably scheduling period, fixing:
2207 *   y^32 = 0.5
2208 *
2209 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2210 * approximately half as much as the contribution to load within the last ms
2211 * (u_0).
2212 *
2213 * When a period "rolls over" and we have new u_0`, multiplying the previous
2214 * sum again by y is sufficient to update:
2215 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2216 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2217 */
2218static __always_inline int __update_entity_runnable_avg(u64 now,
2219							struct sched_avg *sa,
2220							int runnable)
2221{
2222	u64 delta, periods;
2223	u32 runnable_contrib;
2224	int delta_w, decayed = 0;
 
2225
2226	delta = now - sa->last_runnable_update;
2227	/*
2228	 * This should only happen when time goes backwards, which it
2229	 * unfortunately does during sched clock init when we swap over to TSC.
2230	 */
2231	if ((s64)delta < 0) {
2232		sa->last_runnable_update = now;
2233		return 0;
2234	}
2235
2236	/*
2237	 * Use 1024ns as the unit of measurement since it's a reasonable
2238	 * approximation of 1us and fast to compute.
2239	 */
2240	delta >>= 10;
2241	if (!delta)
2242		return 0;
2243	sa->last_runnable_update = now;
 
 
 
2244
2245	/* delta_w is the amount already accumulated against our next period */
2246	delta_w = sa->runnable_avg_period % 1024;
2247	if (delta + delta_w >= 1024) {
2248		/* period roll-over */
2249		decayed = 1;
2250
 
 
 
2251		/*
2252		 * Now that we know we're crossing a period boundary, figure
2253		 * out how much from delta we need to complete the current
2254		 * period and accrue it.
2255		 */
2256		delta_w = 1024 - delta_w;
2257		if (runnable)
2258			sa->runnable_avg_sum += delta_w;
2259		sa->runnable_avg_period += delta_w;
 
 
 
 
 
 
 
2260
2261		delta -= delta_w;
2262
2263		/* Figure out how many additional periods this update spans */
2264		periods = delta / 1024;
2265		delta %= 1024;
2266
2267		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2268						  periods + 1);
2269		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2270						     periods + 1);
 
 
2271
2272		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2273		runnable_contrib = __compute_runnable_contrib(periods);
2274		if (runnable)
2275			sa->runnable_avg_sum += runnable_contrib;
2276		sa->runnable_avg_period += runnable_contrib;
 
 
 
 
 
2277	}
2278
2279	/* Remainder of delta accrued against u_0` */
2280	if (runnable)
2281		sa->runnable_avg_sum += delta;
2282	sa->runnable_avg_period += delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283
2284	return decayed;
2285}
2286
2287/* Synchronize an entity's decay with its parenting cfs_rq.*/
2288static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2289{
2290	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2291	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2292
2293	decays -= se->avg.decay_count;
2294	if (!decays)
2295		return 0;
2296
2297	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2298	se->avg.decay_count = 0;
2299
2300	return decays;
2301}
2302
2303#ifdef CONFIG_FAIR_GROUP_SCHED
2304static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2305						 int force_update)
 
 
 
2306{
2307	struct task_group *tg = cfs_rq->tg;
2308	long tg_contrib;
2309
2310	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2311	tg_contrib -= cfs_rq->tg_load_contrib;
 
 
 
2312
2313	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2314		atomic_long_add(tg_contrib, &tg->load_avg);
2315		cfs_rq->tg_load_contrib += tg_contrib;
2316	}
2317}
2318
2319/*
2320 * Aggregate cfs_rq runnable averages into an equivalent task_group
2321 * representation for computing load contributions.
 
2322 */
2323static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2324						  struct cfs_rq *cfs_rq)
2325{
2326	struct task_group *tg = cfs_rq->tg;
2327	long contrib;
2328
2329	/* The fraction of a cpu used by this cfs_rq */
2330	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2331			  sa->runnable_avg_period + 1);
2332	contrib -= cfs_rq->tg_runnable_contrib;
 
 
 
 
 
 
2333
2334	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2335		atomic_add(contrib, &tg->runnable_avg);
2336		cfs_rq->tg_runnable_contrib += contrib;
2337	}
2338}
2339
2340static inline void __update_group_entity_contrib(struct sched_entity *se)
2341{
2342	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2343	struct task_group *tg = cfs_rq->tg;
2344	int runnable_avg;
2345
2346	u64 contrib;
2347
2348	contrib = cfs_rq->tg_load_contrib * tg->shares;
2349	se->avg.load_avg_contrib = div_u64(contrib,
2350				     atomic_long_read(&tg->load_avg) + 1);
2351
2352	/*
2353	 * For group entities we need to compute a correction term in the case
2354	 * that they are consuming <1 cpu so that we would contribute the same
2355	 * load as a task of equal weight.
2356	 *
2357	 * Explicitly co-ordinating this measurement would be expensive, but
2358	 * fortunately the sum of each cpus contribution forms a usable
2359	 * lower-bound on the true value.
2360	 *
2361	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2362	 * (and the sum represents true value) or they are disjoint and we are
2363	 * understating by the aggregate of their overlap.
2364	 *
2365	 * Extending this to N cpus, for a given overlap, the maximum amount we
2366	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2367	 * cpus that overlap for this interval and w_i is the interval width.
2368	 *
2369	 * On a small machine; the first term is well-bounded which bounds the
2370	 * total error since w_i is a subset of the period.  Whereas on a
2371	 * larger machine, while this first term can be larger, if w_i is the
2372	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2373	 * our upper bound of 1-cpu.
2374	 */
2375	runnable_avg = atomic_read(&tg->runnable_avg);
2376	if (runnable_avg < NICE_0_LOAD) {
2377		se->avg.load_avg_contrib *= runnable_avg;
2378		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2379	}
2380}
2381
2382static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2383{
2384	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2385	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2386}
2387#else /* CONFIG_FAIR_GROUP_SCHED */
2388static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2389						 int force_update) {}
2390static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391						  struct cfs_rq *cfs_rq) {}
2392static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2393static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2394#endif /* CONFIG_FAIR_GROUP_SCHED */
2395
2396static inline void __update_task_entity_contrib(struct sched_entity *se)
2397{
2398	u32 contrib;
2399
2400	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2401	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2402	contrib /= (se->avg.runnable_avg_period + 1);
2403	se->avg.load_avg_contrib = scale_load(contrib);
2404}
2405
2406/* Compute the current contribution to load_avg by se, return any delta */
2407static long __update_entity_load_avg_contrib(struct sched_entity *se)
2408{
2409	long old_contrib = se->avg.load_avg_contrib;
 
2410
2411	if (entity_is_task(se)) {
2412		__update_task_entity_contrib(se);
2413	} else {
2414		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2415		__update_group_entity_contrib(se);
2416	}
2417
2418	return se->avg.load_avg_contrib - old_contrib;
2419}
 
 
 
2420
2421static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2422						 long load_contrib)
2423{
2424	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2425		cfs_rq->blocked_load_avg -= load_contrib;
2426	else
2427		cfs_rq->blocked_load_avg = 0;
2428}
2429
2430static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 
 
 
2431
2432/* Update a sched_entity's runnable average */
2433static inline void update_entity_load_avg(struct sched_entity *se,
2434					  int update_cfs_rq)
 
 
2435{
2436	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2437	long contrib_delta;
2438	u64 now;
 
2439
2440	/*
2441	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2442	 * case they are the parent of a throttled hierarchy.
2443	 */
2444	if (entity_is_task(se))
2445		now = cfs_rq_clock_task(cfs_rq);
2446	else
2447		now = cfs_rq_clock_task(group_cfs_rq(se));
2448
2449	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2450		return;
2451
2452	contrib_delta = __update_entity_load_avg_contrib(se);
 
2453
2454	if (!update_cfs_rq)
2455		return;
2456
2457	if (se->on_rq)
2458		cfs_rq->runnable_load_avg += contrib_delta;
2459	else
2460		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461}
2462
2463/*
2464 * Decay the load contributed by all blocked children and account this so that
2465 * their contribution may appropriately discounted when they wake up.
2466 */
2467static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2468{
2469	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2470	u64 decays;
2471
2472	decays = now - cfs_rq->last_decay;
2473	if (!decays && !force_update)
2474		return;
 
 
 
 
2475
2476	if (atomic_long_read(&cfs_rq->removed_load)) {
2477		unsigned long removed_load;
2478		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2479		subtract_blocked_load_contrib(cfs_rq, removed_load);
2480	}
2481
2482	if (decays) {
2483		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2484						      decays);
2485		atomic64_add(decays, &cfs_rq->decay_counter);
2486		cfs_rq->last_decay = now;
2487	}
 
2488
2489	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
 
 
 
 
 
 
 
 
 
2490}
2491
2492/* Add the load generated by se into cfs_rq's child load-average */
2493static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2494						  struct sched_entity *se,
2495						  int wakeup)
2496{
2497	/*
2498	 * We track migrations using entity decay_count <= 0, on a wake-up
2499	 * migration we use a negative decay count to track the remote decays
2500	 * accumulated while sleeping.
2501	 *
2502	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2503	 * are seen by enqueue_entity_load_avg() as a migration with an already
2504	 * constructed load_avg_contrib.
2505	 */
2506	if (unlikely(se->avg.decay_count <= 0)) {
2507		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2508		if (se->avg.decay_count) {
2509			/*
2510			 * In a wake-up migration we have to approximate the
2511			 * time sleeping.  This is because we can't synchronize
2512			 * clock_task between the two cpus, and it is not
2513			 * guaranteed to be read-safe.  Instead, we can
2514			 * approximate this using our carried decays, which are
2515			 * explicitly atomically readable.
2516			 */
2517			se->avg.last_runnable_update -= (-se->avg.decay_count)
2518							<< 20;
2519			update_entity_load_avg(se, 0);
2520			/* Indicate that we're now synchronized and on-rq */
2521			se->avg.decay_count = 0;
2522		}
2523		wakeup = 0;
2524	} else {
2525		__synchronize_entity_decay(se);
2526	}
2527
2528	/* migrated tasks did not contribute to our blocked load */
2529	if (wakeup) {
2530		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2531		update_entity_load_avg(se, 0);
 
2532	}
2533
2534	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2535	/* we force update consideration on load-balancer moves */
2536	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
 
 
 
 
 
 
 
2537}
2538
2539/*
2540 * Remove se's load from this cfs_rq child load-average, if the entity is
2541 * transitioning to a blocked state we track its projected decay using
2542 * blocked_load_avg.
2543 */
2544static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2545						  struct sched_entity *se,
2546						  int sleep)
2547{
2548	update_entity_load_avg(se, 1);
2549	/* we force update consideration on load-balancer moves */
2550	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2551
2552	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2553	if (sleep) {
2554		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2555		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2556	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2557}
2558
2559/*
2560 * Update the rq's load with the elapsed running time before entering
2561 * idle. if the last scheduled task is not a CFS task, idle_enter will
2562 * be the only way to update the runnable statistic.
2563 */
2564void idle_enter_fair(struct rq *this_rq)
 
 
 
 
 
 
 
 
 
 
2565{
2566	update_rq_runnable_avg(this_rq, 1);
2567}
 
2568
2569/*
2570 * Update the rq's load with the elapsed idle time before a task is
2571 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2572 * be the only way to update the runnable statistic.
2573 */
2574void idle_exit_fair(struct rq *this_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575{
2576	update_rq_runnable_avg(this_rq, 0);
 
 
 
 
 
2577}
2578
2579static int idle_balance(struct rq *this_rq);
2580
2581#else /* CONFIG_SMP */
2582
2583static inline void update_entity_load_avg(struct sched_entity *se,
2584					  int update_cfs_rq) {}
2585static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2586static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2587					   struct sched_entity *se,
2588					   int wakeup) {}
2589static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2590					   struct sched_entity *se,
2591					   int sleep) {}
2592static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2593					      int force_update) {}
 
 
 
 
 
 
 
2594
2595static inline int idle_balance(struct rq *rq)
2596{
2597	return 0;
2598}
2599
2600#endif /* CONFIG_SMP */
2601
2602static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
2604#ifdef CONFIG_SCHEDSTATS
2605	struct task_struct *tsk = NULL;
2606
2607	if (entity_is_task(se))
2608		tsk = task_of(se);
2609
2610	if (se->statistics.sleep_start) {
2611		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2612
2613		if ((s64)delta < 0)
2614			delta = 0;
2615
2616		if (unlikely(delta > se->statistics.sleep_max))
2617			se->statistics.sleep_max = delta;
2618
2619		se->statistics.sleep_start = 0;
2620		se->statistics.sum_sleep_runtime += delta;
2621
2622		if (tsk) {
2623			account_scheduler_latency(tsk, delta >> 10, 1);
2624			trace_sched_stat_sleep(tsk, delta);
2625		}
2626	}
2627	if (se->statistics.block_start) {
2628		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2629
2630		if ((s64)delta < 0)
2631			delta = 0;
2632
2633		if (unlikely(delta > se->statistics.block_max))
2634			se->statistics.block_max = delta;
2635
2636		se->statistics.block_start = 0;
2637		se->statistics.sum_sleep_runtime += delta;
2638
2639		if (tsk) {
2640			if (tsk->in_iowait) {
2641				se->statistics.iowait_sum += delta;
2642				se->statistics.iowait_count++;
2643				trace_sched_stat_iowait(tsk, delta);
2644			}
2645
2646			trace_sched_stat_blocked(tsk, delta);
2647
2648			/*
2649			 * Blocking time is in units of nanosecs, so shift by
2650			 * 20 to get a milliseconds-range estimation of the
2651			 * amount of time that the task spent sleeping:
2652			 */
2653			if (unlikely(prof_on == SLEEP_PROFILING)) {
2654				profile_hits(SLEEP_PROFILING,
2655						(void *)get_wchan(tsk),
2656						delta >> 20);
2657			}
2658			account_scheduler_latency(tsk, delta >> 10, 0);
2659		}
2660	}
2661#endif
2662}
2663
2664static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666#ifdef CONFIG_SCHED_DEBUG
2667	s64 d = se->vruntime - cfs_rq->min_vruntime;
2668
2669	if (d < 0)
2670		d = -d;
2671
2672	if (d > 3*sysctl_sched_latency)
2673		schedstat_inc(cfs_rq, nr_spread_over);
2674#endif
2675}
2676
2677static void
2678place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2679{
2680	u64 vruntime = cfs_rq->min_vruntime;
2681
2682	/*
2683	 * The 'current' period is already promised to the current tasks,
2684	 * however the extra weight of the new task will slow them down a
2685	 * little, place the new task so that it fits in the slot that
2686	 * stays open at the end.
2687	 */
2688	if (initial && sched_feat(START_DEBIT))
2689		vruntime += sched_vslice(cfs_rq, se);
2690
2691	/* sleeps up to a single latency don't count. */
2692	if (!initial) {
2693		unsigned long thresh = sysctl_sched_latency;
2694
2695		/*
2696		 * Halve their sleep time's effect, to allow
2697		 * for a gentler effect of sleepers:
2698		 */
2699		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2700			thresh >>= 1;
2701
2702		vruntime -= thresh;
2703	}
2704
2705	/* ensure we never gain time by being placed backwards. */
2706	se->vruntime = max_vruntime(se->vruntime, vruntime);
2707}
2708
2709static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711static void
2712enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2713{
2714	/*
2715	 * Update the normalized vruntime before updating min_vruntime
2716	 * through calling update_curr().
2717	 */
2718	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2719		se->vruntime += cfs_rq->min_vruntime;
2720
2721	/*
2722	 * Update run-time statistics of the 'current'.
2723	 */
2724	update_curr(cfs_rq);
2725	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2726	account_entity_enqueue(cfs_rq, se);
2727	update_cfs_shares(cfs_rq);
2728
2729	if (flags & ENQUEUE_WAKEUP) {
2730		place_entity(cfs_rq, se, 0);
2731		enqueue_sleeper(cfs_rq, se);
 
2732	}
2733
2734	update_stats_enqueue(cfs_rq, se);
2735	check_spread(cfs_rq, se);
 
 
 
2736	if (se != cfs_rq->curr)
2737		__enqueue_entity(cfs_rq, se);
2738	se->on_rq = 1;
2739
2740	if (cfs_rq->nr_running == 1) {
2741		list_add_leaf_cfs_rq(cfs_rq);
2742		check_enqueue_throttle(cfs_rq);
2743	}
2744}
2745
2746static void __clear_buddies_last(struct sched_entity *se)
2747{
2748	for_each_sched_entity(se) {
2749		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2750		if (cfs_rq->last != se)
2751			break;
2752
2753		cfs_rq->last = NULL;
2754	}
2755}
2756
2757static void __clear_buddies_next(struct sched_entity *se)
2758{
2759	for_each_sched_entity(se) {
2760		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2761		if (cfs_rq->next != se)
2762			break;
2763
2764		cfs_rq->next = NULL;
2765	}
2766}
2767
2768static void __clear_buddies_skip(struct sched_entity *se)
2769{
2770	for_each_sched_entity(se) {
2771		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2772		if (cfs_rq->skip != se)
2773			break;
2774
2775		cfs_rq->skip = NULL;
2776	}
2777}
2778
2779static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2780{
2781	if (cfs_rq->last == se)
2782		__clear_buddies_last(se);
2783
2784	if (cfs_rq->next == se)
2785		__clear_buddies_next(se);
2786
2787	if (cfs_rq->skip == se)
2788		__clear_buddies_skip(se);
2789}
2790
2791static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792
2793static void
2794dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795{
2796	/*
2797	 * Update run-time statistics of the 'current'.
2798	 */
2799	update_curr(cfs_rq);
2800	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2801
2802	update_stats_dequeue(cfs_rq, se);
2803	if (flags & DEQUEUE_SLEEP) {
2804#ifdef CONFIG_SCHEDSTATS
2805		if (entity_is_task(se)) {
2806			struct task_struct *tsk = task_of(se);
2807
2808			if (tsk->state & TASK_INTERRUPTIBLE)
2809				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2810			if (tsk->state & TASK_UNINTERRUPTIBLE)
2811				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2812		}
2813#endif
2814	}
2815
2816	clear_buddies(cfs_rq, se);
2817
2818	if (se != cfs_rq->curr)
2819		__dequeue_entity(cfs_rq, se);
2820	se->on_rq = 0;
2821	account_entity_dequeue(cfs_rq, se);
2822
2823	/*
2824	 * Normalize the entity after updating the min_vruntime because the
2825	 * update can refer to the ->curr item and we need to reflect this
2826	 * movement in our normalized position.
2827	 */
2828	if (!(flags & DEQUEUE_SLEEP))
2829		se->vruntime -= cfs_rq->min_vruntime;
2830
2831	/* return excess runtime on last dequeue */
2832	return_cfs_rq_runtime(cfs_rq);
2833
2834	update_min_vruntime(cfs_rq);
2835	update_cfs_shares(cfs_rq);
2836}
2837
2838/*
2839 * Preempt the current task with a newly woken task if needed:
2840 */
2841static void
2842check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2843{
2844	unsigned long ideal_runtime, delta_exec;
2845	struct sched_entity *se;
2846	s64 delta;
2847
2848	ideal_runtime = sched_slice(cfs_rq, curr);
2849	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2850	if (delta_exec > ideal_runtime) {
2851		resched_task(rq_of(cfs_rq)->curr);
2852		/*
2853		 * The current task ran long enough, ensure it doesn't get
2854		 * re-elected due to buddy favours.
2855		 */
2856		clear_buddies(cfs_rq, curr);
2857		return;
2858	}
2859
2860	/*
2861	 * Ensure that a task that missed wakeup preemption by a
2862	 * narrow margin doesn't have to wait for a full slice.
2863	 * This also mitigates buddy induced latencies under load.
2864	 */
2865	if (delta_exec < sysctl_sched_min_granularity)
2866		return;
2867
2868	se = __pick_first_entity(cfs_rq);
2869	delta = curr->vruntime - se->vruntime;
2870
2871	if (delta < 0)
2872		return;
2873
2874	if (delta > ideal_runtime)
2875		resched_task(rq_of(cfs_rq)->curr);
2876}
2877
2878static void
2879set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2880{
2881	/* 'current' is not kept within the tree. */
2882	if (se->on_rq) {
2883		/*
2884		 * Any task has to be enqueued before it get to execute on
2885		 * a CPU. So account for the time it spent waiting on the
2886		 * runqueue.
2887		 */
2888		update_stats_wait_end(cfs_rq, se);
 
2889		__dequeue_entity(cfs_rq, se);
 
2890	}
2891
2892	update_stats_curr_start(cfs_rq, se);
2893	cfs_rq->curr = se;
2894#ifdef CONFIG_SCHEDSTATS
2895	/*
2896	 * Track our maximum slice length, if the CPU's load is at
2897	 * least twice that of our own weight (i.e. dont track it
2898	 * when there are only lesser-weight tasks around):
2899	 */
2900	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2901		se->statistics.slice_max = max(se->statistics.slice_max,
2902			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2903	}
2904#endif
2905	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2906}
2907
2908static int
2909wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2910
2911/*
2912 * Pick the next process, keeping these things in mind, in this order:
2913 * 1) keep things fair between processes/task groups
2914 * 2) pick the "next" process, since someone really wants that to run
2915 * 3) pick the "last" process, for cache locality
2916 * 4) do not run the "skip" process, if something else is available
2917 */
2918static struct sched_entity *
2919pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2920{
2921	struct sched_entity *left = __pick_first_entity(cfs_rq);
2922	struct sched_entity *se;
2923
2924	/*
2925	 * If curr is set we have to see if its left of the leftmost entity
2926	 * still in the tree, provided there was anything in the tree at all.
2927	 */
2928	if (!left || (curr && entity_before(curr, left)))
2929		left = curr;
2930
2931	se = left; /* ideally we run the leftmost entity */
2932
2933	/*
2934	 * Avoid running the skip buddy, if running something else can
2935	 * be done without getting too unfair.
2936	 */
2937	if (cfs_rq->skip == se) {
2938		struct sched_entity *second;
2939
2940		if (se == curr) {
2941			second = __pick_first_entity(cfs_rq);
2942		} else {
2943			second = __pick_next_entity(se);
2944			if (!second || (curr && entity_before(curr, second)))
2945				second = curr;
2946		}
2947
2948		if (second && wakeup_preempt_entity(second, left) < 1)
2949			se = second;
2950	}
2951
2952	/*
2953	 * Prefer last buddy, try to return the CPU to a preempted task.
2954	 */
2955	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2956		se = cfs_rq->last;
2957
2958	/*
2959	 * Someone really wants this to run. If it's not unfair, run it.
2960	 */
2961	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2962		se = cfs_rq->next;
2963
2964	clear_buddies(cfs_rq, se);
2965
2966	return se;
2967}
2968
2969static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2970
2971static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2972{
2973	/*
2974	 * If still on the runqueue then deactivate_task()
2975	 * was not called and update_curr() has to be done:
2976	 */
2977	if (prev->on_rq)
2978		update_curr(cfs_rq);
2979
2980	/* throttle cfs_rqs exceeding runtime */
2981	check_cfs_rq_runtime(cfs_rq);
2982
2983	check_spread(cfs_rq, prev);
 
 
 
 
 
2984	if (prev->on_rq) {
2985		update_stats_wait_start(cfs_rq, prev);
2986		/* Put 'current' back into the tree. */
2987		__enqueue_entity(cfs_rq, prev);
2988		/* in !on_rq case, update occurred at dequeue */
2989		update_entity_load_avg(prev, 1);
2990	}
2991	cfs_rq->curr = NULL;
2992}
2993
2994static void
2995entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2996{
2997	/*
2998	 * Update run-time statistics of the 'current'.
2999	 */
3000	update_curr(cfs_rq);
3001
3002	/*
3003	 * Ensure that runnable average is periodically updated.
3004	 */
3005	update_entity_load_avg(curr, 1);
3006	update_cfs_rq_blocked_load(cfs_rq, 1);
3007	update_cfs_shares(cfs_rq);
3008
3009#ifdef CONFIG_SCHED_HRTICK
3010	/*
3011	 * queued ticks are scheduled to match the slice, so don't bother
3012	 * validating it and just reschedule.
3013	 */
3014	if (queued) {
3015		resched_task(rq_of(cfs_rq)->curr);
3016		return;
3017	}
3018	/*
3019	 * don't let the period tick interfere with the hrtick preemption
3020	 */
3021	if (!sched_feat(DOUBLE_TICK) &&
3022			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3023		return;
3024#endif
3025
3026	if (cfs_rq->nr_running > 1)
3027		check_preempt_tick(cfs_rq, curr);
3028}
3029
3030
3031/**************************************************
3032 * CFS bandwidth control machinery
3033 */
3034
3035#ifdef CONFIG_CFS_BANDWIDTH
3036
3037#ifdef HAVE_JUMP_LABEL
3038static struct static_key __cfs_bandwidth_used;
3039
3040static inline bool cfs_bandwidth_used(void)
3041{
3042	return static_key_false(&__cfs_bandwidth_used);
3043}
3044
3045void cfs_bandwidth_usage_inc(void)
3046{
3047	static_key_slow_inc(&__cfs_bandwidth_used);
3048}
3049
3050void cfs_bandwidth_usage_dec(void)
3051{
3052	static_key_slow_dec(&__cfs_bandwidth_used);
3053}
3054#else /* HAVE_JUMP_LABEL */
3055static bool cfs_bandwidth_used(void)
3056{
3057	return true;
3058}
3059
3060void cfs_bandwidth_usage_inc(void) {}
3061void cfs_bandwidth_usage_dec(void) {}
3062#endif /* HAVE_JUMP_LABEL */
3063
3064/*
3065 * default period for cfs group bandwidth.
3066 * default: 0.1s, units: nanoseconds
3067 */
3068static inline u64 default_cfs_period(void)
3069{
3070	return 100000000ULL;
3071}
3072
3073static inline u64 sched_cfs_bandwidth_slice(void)
3074{
3075	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3076}
3077
3078/*
3079 * Replenish runtime according to assigned quota and update expiration time.
3080 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3081 * additional synchronization around rq->lock.
3082 *
3083 * requires cfs_b->lock
3084 */
3085void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3086{
3087	u64 now;
3088
3089	if (cfs_b->quota == RUNTIME_INF)
3090		return;
3091
3092	now = sched_clock_cpu(smp_processor_id());
3093	cfs_b->runtime = cfs_b->quota;
3094	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3095}
3096
3097static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3098{
3099	return &tg->cfs_bandwidth;
3100}
3101
3102/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3103static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3104{
3105	if (unlikely(cfs_rq->throttle_count))
3106		return cfs_rq->throttled_clock_task;
3107
3108	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3109}
3110
3111/* returns 0 on failure to allocate runtime */
3112static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113{
3114	struct task_group *tg = cfs_rq->tg;
3115	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3116	u64 amount = 0, min_amount, expires;
3117
3118	/* note: this is a positive sum as runtime_remaining <= 0 */
3119	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3120
3121	raw_spin_lock(&cfs_b->lock);
3122	if (cfs_b->quota == RUNTIME_INF)
3123		amount = min_amount;
3124	else {
3125		/*
3126		 * If the bandwidth pool has become inactive, then at least one
3127		 * period must have elapsed since the last consumption.
3128		 * Refresh the global state and ensure bandwidth timer becomes
3129		 * active.
3130		 */
3131		if (!cfs_b->timer_active) {
3132			__refill_cfs_bandwidth_runtime(cfs_b);
3133			__start_cfs_bandwidth(cfs_b, false);
3134		}
3135
3136		if (cfs_b->runtime > 0) {
3137			amount = min(cfs_b->runtime, min_amount);
3138			cfs_b->runtime -= amount;
3139			cfs_b->idle = 0;
3140		}
3141	}
3142	expires = cfs_b->runtime_expires;
3143	raw_spin_unlock(&cfs_b->lock);
3144
3145	cfs_rq->runtime_remaining += amount;
3146	/*
3147	 * we may have advanced our local expiration to account for allowed
3148	 * spread between our sched_clock and the one on which runtime was
3149	 * issued.
3150	 */
3151	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3152		cfs_rq->runtime_expires = expires;
3153
3154	return cfs_rq->runtime_remaining > 0;
3155}
3156
3157/*
3158 * Note: This depends on the synchronization provided by sched_clock and the
3159 * fact that rq->clock snapshots this value.
3160 */
3161static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162{
3163	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3164
3165	/* if the deadline is ahead of our clock, nothing to do */
3166	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3167		return;
3168
3169	if (cfs_rq->runtime_remaining < 0)
3170		return;
3171
3172	/*
3173	 * If the local deadline has passed we have to consider the
3174	 * possibility that our sched_clock is 'fast' and the global deadline
3175	 * has not truly expired.
3176	 *
3177	 * Fortunately we can check determine whether this the case by checking
3178	 * whether the global deadline has advanced.
 
 
3179	 */
3180
3181	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3182		/* extend local deadline, drift is bounded above by 2 ticks */
3183		cfs_rq->runtime_expires += TICK_NSEC;
3184	} else {
3185		/* global deadline is ahead, expiration has passed */
3186		cfs_rq->runtime_remaining = 0;
3187	}
3188}
3189
3190static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3191{
3192	/* dock delta_exec before expiring quota (as it could span periods) */
3193	cfs_rq->runtime_remaining -= delta_exec;
3194	expire_cfs_rq_runtime(cfs_rq);
3195
3196	if (likely(cfs_rq->runtime_remaining > 0))
3197		return;
3198
3199	/*
3200	 * if we're unable to extend our runtime we resched so that the active
3201	 * hierarchy can be throttled
3202	 */
3203	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3204		resched_task(rq_of(cfs_rq)->curr);
3205}
3206
3207static __always_inline
3208void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3209{
3210	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3211		return;
3212
3213	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3214}
3215
3216static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3217{
3218	return cfs_bandwidth_used() && cfs_rq->throttled;
3219}
3220
3221/* check whether cfs_rq, or any parent, is throttled */
3222static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3223{
3224	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3225}
3226
3227/*
3228 * Ensure that neither of the group entities corresponding to src_cpu or
3229 * dest_cpu are members of a throttled hierarchy when performing group
3230 * load-balance operations.
3231 */
3232static inline int throttled_lb_pair(struct task_group *tg,
3233				    int src_cpu, int dest_cpu)
3234{
3235	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3236
3237	src_cfs_rq = tg->cfs_rq[src_cpu];
3238	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3239
3240	return throttled_hierarchy(src_cfs_rq) ||
3241	       throttled_hierarchy(dest_cfs_rq);
3242}
3243
3244/* updated child weight may affect parent so we have to do this bottom up */
3245static int tg_unthrottle_up(struct task_group *tg, void *data)
3246{
3247	struct rq *rq = data;
3248	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3249
3250	cfs_rq->throttle_count--;
3251#ifdef CONFIG_SMP
3252	if (!cfs_rq->throttle_count) {
3253		/* adjust cfs_rq_clock_task() */
3254		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3255					     cfs_rq->throttled_clock_task;
3256	}
3257#endif
3258
3259	return 0;
3260}
3261
3262static int tg_throttle_down(struct task_group *tg, void *data)
3263{
3264	struct rq *rq = data;
3265	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3266
3267	/* group is entering throttled state, stop time */
3268	if (!cfs_rq->throttle_count)
3269		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3270	cfs_rq->throttle_count++;
3271
3272	return 0;
3273}
3274
3275static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3276{
3277	struct rq *rq = rq_of(cfs_rq);
3278	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3279	struct sched_entity *se;
3280	long task_delta, dequeue = 1;
 
3281
3282	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3283
3284	/* freeze hierarchy runnable averages while throttled */
3285	rcu_read_lock();
3286	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3287	rcu_read_unlock();
3288
3289	task_delta = cfs_rq->h_nr_running;
3290	for_each_sched_entity(se) {
3291		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3292		/* throttled entity or throttle-on-deactivate */
3293		if (!se->on_rq)
3294			break;
3295
3296		if (dequeue)
3297			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3298		qcfs_rq->h_nr_running -= task_delta;
3299
3300		if (qcfs_rq->load.weight)
3301			dequeue = 0;
3302	}
3303
3304	if (!se)
3305		rq->nr_running -= task_delta;
3306
3307	cfs_rq->throttled = 1;
3308	cfs_rq->throttled_clock = rq_clock(rq);
3309	raw_spin_lock(&cfs_b->lock);
3310	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3311	if (!cfs_b->timer_active)
3312		__start_cfs_bandwidth(cfs_b, false);
 
 
 
 
 
 
 
 
 
 
 
 
3313	raw_spin_unlock(&cfs_b->lock);
3314}
3315
3316void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3317{
3318	struct rq *rq = rq_of(cfs_rq);
3319	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3320	struct sched_entity *se;
3321	int enqueue = 1;
3322	long task_delta;
3323
3324	se = cfs_rq->tg->se[cpu_of(rq)];
3325
3326	cfs_rq->throttled = 0;
3327
3328	update_rq_clock(rq);
3329
3330	raw_spin_lock(&cfs_b->lock);
3331	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3332	list_del_rcu(&cfs_rq->throttled_list);
3333	raw_spin_unlock(&cfs_b->lock);
3334
3335	/* update hierarchical throttle state */
3336	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3337
3338	if (!cfs_rq->load.weight)
3339		return;
3340
3341	task_delta = cfs_rq->h_nr_running;
3342	for_each_sched_entity(se) {
3343		if (se->on_rq)
3344			enqueue = 0;
3345
3346		cfs_rq = cfs_rq_of(se);
3347		if (enqueue)
3348			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3349		cfs_rq->h_nr_running += task_delta;
3350
3351		if (cfs_rq_throttled(cfs_rq))
3352			break;
3353	}
3354
3355	if (!se)
3356		rq->nr_running += task_delta;
3357
3358	/* determine whether we need to wake up potentially idle cpu */
3359	if (rq->curr == rq->idle && rq->cfs.nr_running)
3360		resched_task(rq->curr);
3361}
3362
3363static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3364		u64 remaining, u64 expires)
3365{
3366	struct cfs_rq *cfs_rq;
3367	u64 runtime = remaining;
 
3368
3369	rcu_read_lock();
3370	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3371				throttled_list) {
3372		struct rq *rq = rq_of(cfs_rq);
3373
3374		raw_spin_lock(&rq->lock);
3375		if (!cfs_rq_throttled(cfs_rq))
3376			goto next;
3377
3378		runtime = -cfs_rq->runtime_remaining + 1;
3379		if (runtime > remaining)
3380			runtime = remaining;
3381		remaining -= runtime;
3382
3383		cfs_rq->runtime_remaining += runtime;
3384		cfs_rq->runtime_expires = expires;
3385
3386		/* we check whether we're throttled above */
3387		if (cfs_rq->runtime_remaining > 0)
3388			unthrottle_cfs_rq(cfs_rq);
3389
3390next:
3391		raw_spin_unlock(&rq->lock);
3392
3393		if (!remaining)
3394			break;
3395	}
3396	rcu_read_unlock();
3397
3398	return remaining;
3399}
3400
3401/*
3402 * Responsible for refilling a task_group's bandwidth and unthrottling its
3403 * cfs_rqs as appropriate. If there has been no activity within the last
3404 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3405 * used to track this state.
3406 */
3407static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3408{
3409	u64 runtime, runtime_expires;
3410	int idle = 1, throttled;
3411
3412	raw_spin_lock(&cfs_b->lock);
3413	/* no need to continue the timer with no bandwidth constraint */
3414	if (cfs_b->quota == RUNTIME_INF)
3415		goto out_unlock;
3416
3417	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3418	/* idle depends on !throttled (for the case of a large deficit) */
3419	idle = cfs_b->idle && !throttled;
3420	cfs_b->nr_periods += overrun;
3421
3422	/* if we're going inactive then everything else can be deferred */
3423	if (idle)
3424		goto out_unlock;
3425
3426	/*
3427	 * if we have relooped after returning idle once, we need to update our
3428	 * status as actually running, so that other cpus doing
3429	 * __start_cfs_bandwidth will stop trying to cancel us.
3430	 */
3431	cfs_b->timer_active = 1;
 
3432
3433	__refill_cfs_bandwidth_runtime(cfs_b);
3434
3435	if (!throttled) {
3436		/* mark as potentially idle for the upcoming period */
3437		cfs_b->idle = 1;
3438		goto out_unlock;
3439	}
3440
3441	/* account preceding periods in which throttling occurred */
3442	cfs_b->nr_throttled += overrun;
3443
3444	/*
3445	 * There are throttled entities so we must first use the new bandwidth
3446	 * to unthrottle them before making it generally available.  This
3447	 * ensures that all existing debts will be paid before a new cfs_rq is
3448	 * allowed to run.
3449	 */
3450	runtime = cfs_b->runtime;
3451	runtime_expires = cfs_b->runtime_expires;
3452	cfs_b->runtime = 0;
3453
3454	/*
3455	 * This check is repeated as we are holding onto the new bandwidth
3456	 * while we unthrottle.  This can potentially race with an unthrottled
3457	 * group trying to acquire new bandwidth from the global pool.
 
 
3458	 */
3459	while (throttled && runtime > 0) {
 
3460		raw_spin_unlock(&cfs_b->lock);
3461		/* we can't nest cfs_b->lock while distributing bandwidth */
3462		runtime = distribute_cfs_runtime(cfs_b, runtime,
3463						 runtime_expires);
3464		raw_spin_lock(&cfs_b->lock);
3465
3466		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 
 
3467	}
3468
3469	/* return (any) remaining runtime */
3470	cfs_b->runtime = runtime;
3471	/*
3472	 * While we are ensured activity in the period following an
3473	 * unthrottle, this also covers the case in which the new bandwidth is
3474	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3475	 * timer to remain active while there are any throttled entities.)
3476	 */
3477	cfs_b->idle = 0;
3478out_unlock:
3479	if (idle)
3480		cfs_b->timer_active = 0;
3481	raw_spin_unlock(&cfs_b->lock);
3482
3483	return idle;
 
 
 
3484}
3485
3486/* a cfs_rq won't donate quota below this amount */
3487static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3488/* minimum remaining period time to redistribute slack quota */
3489static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3490/* how long we wait to gather additional slack before distributing */
3491static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3492
3493/*
3494 * Are we near the end of the current quota period?
3495 *
3496 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3497 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3498 * migrate_hrtimers, base is never cleared, so we are fine.
3499 */
3500static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3501{
3502	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3503	u64 remaining;
3504
3505	/* if the call-back is running a quota refresh is already occurring */
3506	if (hrtimer_callback_running(refresh_timer))
3507		return 1;
3508
3509	/* is a quota refresh about to occur? */
3510	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3511	if (remaining < min_expire)
3512		return 1;
3513
3514	return 0;
3515}
3516
3517static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3518{
3519	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3520
3521	/* if there's a quota refresh soon don't bother with slack */
3522	if (runtime_refresh_within(cfs_b, min_left))
3523		return;
3524
3525	start_bandwidth_timer(&cfs_b->slack_timer,
3526				ns_to_ktime(cfs_bandwidth_slack_period));
 
3527}
3528
3529/* we know any runtime found here is valid as update_curr() precedes return */
3530static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3531{
3532	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3534
3535	if (slack_runtime <= 0)
3536		return;
3537
3538	raw_spin_lock(&cfs_b->lock);
3539	if (cfs_b->quota != RUNTIME_INF &&
3540	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3541		cfs_b->runtime += slack_runtime;
3542
3543		/* we are under rq->lock, defer unthrottling using a timer */
3544		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3545		    !list_empty(&cfs_b->throttled_cfs_rq))
3546			start_cfs_slack_bandwidth(cfs_b);
3547	}
3548	raw_spin_unlock(&cfs_b->lock);
3549
3550	/* even if it's not valid for return we don't want to try again */
3551	cfs_rq->runtime_remaining -= slack_runtime;
3552}
3553
3554static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3555{
3556	if (!cfs_bandwidth_used())
3557		return;
3558
3559	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3560		return;
3561
3562	__return_cfs_rq_runtime(cfs_rq);
3563}
3564
3565/*
3566 * This is done with a timer (instead of inline with bandwidth return) since
3567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3568 */
3569static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3570{
3571	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3572	u64 expires;
3573
3574	/* confirm we're still not at a refresh boundary */
3575	raw_spin_lock(&cfs_b->lock);
3576	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3577		raw_spin_unlock(&cfs_b->lock);
3578		return;
3579	}
3580
3581	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3582		runtime = cfs_b->runtime;
3583		cfs_b->runtime = 0;
3584	}
3585	expires = cfs_b->runtime_expires;
3586	raw_spin_unlock(&cfs_b->lock);
3587
3588	if (!runtime)
3589		return;
3590
3591	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3592
3593	raw_spin_lock(&cfs_b->lock);
3594	if (expires == cfs_b->runtime_expires)
3595		cfs_b->runtime = runtime;
3596	raw_spin_unlock(&cfs_b->lock);
3597}
3598
3599/*
3600 * When a group wakes up we want to make sure that its quota is not already
3601 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3602 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3603 */
3604static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3605{
3606	if (!cfs_bandwidth_used())
3607		return;
3608
3609	/* an active group must be handled by the update_curr()->put() path */
3610	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3611		return;
3612
3613	/* ensure the group is not already throttled */
3614	if (cfs_rq_throttled(cfs_rq))
3615		return;
3616
3617	/* update runtime allocation */
3618	account_cfs_rq_runtime(cfs_rq, 0);
3619	if (cfs_rq->runtime_remaining <= 0)
3620		throttle_cfs_rq(cfs_rq);
3621}
3622
3623/* conditionally throttle active cfs_rq's from put_prev_entity() */
3624static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3625{
3626	if (!cfs_bandwidth_used())
3627		return false;
3628
3629	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3630		return false;
3631
3632	/*
3633	 * it's possible for a throttled entity to be forced into a running
3634	 * state (e.g. set_curr_task), in this case we're finished.
3635	 */
3636	if (cfs_rq_throttled(cfs_rq))
3637		return true;
3638
3639	throttle_cfs_rq(cfs_rq);
3640	return true;
3641}
3642
3643static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3644{
3645	struct cfs_bandwidth *cfs_b =
3646		container_of(timer, struct cfs_bandwidth, slack_timer);
 
3647	do_sched_cfs_slack_timer(cfs_b);
3648
3649	return HRTIMER_NORESTART;
3650}
3651
3652static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3653{
3654	struct cfs_bandwidth *cfs_b =
3655		container_of(timer, struct cfs_bandwidth, period_timer);
3656	ktime_t now;
3657	int overrun;
3658	int idle = 0;
3659
 
3660	for (;;) {
3661		now = hrtimer_cb_get_time(timer);
3662		overrun = hrtimer_forward(timer, now, cfs_b->period);
3663
3664		if (!overrun)
3665			break;
3666
3667		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3668	}
 
 
 
3669
3670	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3671}
3672
3673void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3674{
3675	raw_spin_lock_init(&cfs_b->lock);
3676	cfs_b->runtime = 0;
3677	cfs_b->quota = RUNTIME_INF;
3678	cfs_b->period = ns_to_ktime(default_cfs_period());
3679
3680	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3681	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682	cfs_b->period_timer.function = sched_cfs_period_timer;
3683	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3684	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3685}
3686
3687static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3688{
3689	cfs_rq->runtime_enabled = 0;
3690	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3691}
3692
3693/* requires cfs_b->lock, may release to reprogram timer */
3694void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3695{
3696	/*
3697	 * The timer may be active because we're trying to set a new bandwidth
3698	 * period or because we're racing with the tear-down path
3699	 * (timer_active==0 becomes visible before the hrtimer call-back
3700	 * terminates).  In either case we ensure that it's re-programmed
3701	 */
3702	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3703	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3704		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3705		raw_spin_unlock(&cfs_b->lock);
3706		cpu_relax();
3707		raw_spin_lock(&cfs_b->lock);
3708		/* if someone else restarted the timer then we're done */
3709		if (!force && cfs_b->timer_active)
3710			return;
3711	}
3712
3713	cfs_b->timer_active = 1;
3714	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
 
 
 
3715}
3716
3717static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3718{
 
 
 
 
3719	hrtimer_cancel(&cfs_b->period_timer);
3720	hrtimer_cancel(&cfs_b->slack_timer);
3721}
3722
3723static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3724{
3725	struct cfs_rq *cfs_rq;
3726
3727	for_each_leaf_cfs_rq(rq, cfs_rq) {
3728		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3729
 
 
 
 
 
 
 
 
 
 
 
3730		if (!cfs_rq->runtime_enabled)
3731			continue;
3732
3733		/*
3734		 * clock_task is not advancing so we just need to make sure
3735		 * there's some valid quota amount
3736		 */
3737		cfs_rq->runtime_remaining = cfs_b->quota;
 
 
 
 
 
 
3738		if (cfs_rq_throttled(cfs_rq))
3739			unthrottle_cfs_rq(cfs_rq);
3740	}
3741}
3742
3743#else /* CONFIG_CFS_BANDWIDTH */
3744static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3745{
3746	return rq_clock_task(rq_of(cfs_rq));
3747}
3748
3749static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3750static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3751static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3752static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3753
3754static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3755{
3756	return 0;
3757}
3758
3759static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760{
3761	return 0;
3762}
3763
3764static inline int throttled_lb_pair(struct task_group *tg,
3765				    int src_cpu, int dest_cpu)
3766{
3767	return 0;
3768}
3769
3770void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3771
3772#ifdef CONFIG_FAIR_GROUP_SCHED
3773static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3774#endif
3775
3776static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3777{
3778	return NULL;
3779}
3780static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 
3781static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3782
3783#endif /* CONFIG_CFS_BANDWIDTH */
3784
3785/**************************************************
3786 * CFS operations on tasks:
3787 */
3788
3789#ifdef CONFIG_SCHED_HRTICK
3790static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3791{
3792	struct sched_entity *se = &p->se;
3793	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3794
3795	WARN_ON(task_rq(p) != rq);
3796
3797	if (cfs_rq->nr_running > 1) {
3798		u64 slice = sched_slice(cfs_rq, se);
3799		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3800		s64 delta = slice - ran;
3801
3802		if (delta < 0) {
3803			if (rq->curr == p)
3804				resched_task(p);
3805			return;
3806		}
3807
3808		/*
3809		 * Don't schedule slices shorter than 10000ns, that just
3810		 * doesn't make sense. Rely on vruntime for fairness.
3811		 */
3812		if (rq->curr != p)
3813			delta = max_t(s64, 10000LL, delta);
3814
3815		hrtick_start(rq, delta);
3816	}
3817}
3818
3819/*
3820 * called from enqueue/dequeue and updates the hrtick when the
3821 * current task is from our class and nr_running is low enough
3822 * to matter.
3823 */
3824static void hrtick_update(struct rq *rq)
3825{
3826	struct task_struct *curr = rq->curr;
3827
3828	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3829		return;
3830
3831	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3832		hrtick_start_fair(rq, curr);
3833}
3834#else /* !CONFIG_SCHED_HRTICK */
3835static inline void
3836hrtick_start_fair(struct rq *rq, struct task_struct *p)
3837{
3838}
3839
3840static inline void hrtick_update(struct rq *rq)
3841{
3842}
3843#endif
3844
3845/*
3846 * The enqueue_task method is called before nr_running is
3847 * increased. Here we update the fair scheduling stats and
3848 * then put the task into the rbtree:
3849 */
3850static void
3851enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3852{
3853	struct cfs_rq *cfs_rq;
3854	struct sched_entity *se = &p->se;
3855
3856	for_each_sched_entity(se) {
3857		if (se->on_rq)
3858			break;
3859		cfs_rq = cfs_rq_of(se);
3860		enqueue_entity(cfs_rq, se, flags);
3861
3862		/*
3863		 * end evaluation on encountering a throttled cfs_rq
3864		 *
3865		 * note: in the case of encountering a throttled cfs_rq we will
3866		 * post the final h_nr_running increment below.
3867		*/
3868		if (cfs_rq_throttled(cfs_rq))
3869			break;
3870		cfs_rq->h_nr_running++;
3871
3872		flags = ENQUEUE_WAKEUP;
3873	}
3874
3875	for_each_sched_entity(se) {
3876		cfs_rq = cfs_rq_of(se);
3877		cfs_rq->h_nr_running++;
3878
3879		if (cfs_rq_throttled(cfs_rq))
3880			break;
3881
 
3882		update_cfs_shares(cfs_rq);
3883		update_entity_load_avg(se, 1);
3884	}
3885
3886	if (!se) {
3887		update_rq_runnable_avg(rq, rq->nr_running);
3888		inc_nr_running(rq);
3889	}
3890	hrtick_update(rq);
3891}
3892
3893static void set_next_buddy(struct sched_entity *se);
3894
3895/*
3896 * The dequeue_task method is called before nr_running is
3897 * decreased. We remove the task from the rbtree and
3898 * update the fair scheduling stats:
3899 */
3900static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901{
3902	struct cfs_rq *cfs_rq;
3903	struct sched_entity *se = &p->se;
3904	int task_sleep = flags & DEQUEUE_SLEEP;
3905
3906	for_each_sched_entity(se) {
3907		cfs_rq = cfs_rq_of(se);
3908		dequeue_entity(cfs_rq, se, flags);
3909
3910		/*
3911		 * end evaluation on encountering a throttled cfs_rq
3912		 *
3913		 * note: in the case of encountering a throttled cfs_rq we will
3914		 * post the final h_nr_running decrement below.
3915		*/
3916		if (cfs_rq_throttled(cfs_rq))
3917			break;
3918		cfs_rq->h_nr_running--;
3919
3920		/* Don't dequeue parent if it has other entities besides us */
3921		if (cfs_rq->load.weight) {
3922			/*
3923			 * Bias pick_next to pick a task from this cfs_rq, as
3924			 * p is sleeping when it is within its sched_slice.
3925			 */
3926			if (task_sleep && parent_entity(se))
3927				set_next_buddy(parent_entity(se));
3928
3929			/* avoid re-evaluating load for this entity */
3930			se = parent_entity(se);
3931			break;
3932		}
3933		flags |= DEQUEUE_SLEEP;
3934	}
3935
3936	for_each_sched_entity(se) {
3937		cfs_rq = cfs_rq_of(se);
3938		cfs_rq->h_nr_running--;
3939
3940		if (cfs_rq_throttled(cfs_rq))
3941			break;
3942
 
3943		update_cfs_shares(cfs_rq);
3944		update_entity_load_avg(se, 1);
3945	}
3946
3947	if (!se) {
3948		dec_nr_running(rq);
3949		update_rq_runnable_avg(rq, 1);
3950	}
3951	hrtick_update(rq);
3952}
3953
3954#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3955/* Used instead of source_load when we know the type == 0 */
3956static unsigned long weighted_cpuload(const int cpu)
3957{
3958	return cpu_rq(cpu)->cfs.runnable_load_avg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3959}
3960
3961/*
3962 * Return a low guess at the load of a migration-source cpu weighted
3963 * according to the scheduling class and "nice" value.
3964 *
3965 * We want to under-estimate the load of migration sources, to
3966 * balance conservatively.
3967 */
3968static unsigned long source_load(int cpu, int type)
3969{
3970	struct rq *rq = cpu_rq(cpu);
3971	unsigned long total = weighted_cpuload(cpu);
3972
3973	if (type == 0 || !sched_feat(LB_BIAS))
3974		return total;
3975
3976	return min(rq->cpu_load[type-1], total);
3977}
3978
3979/*
3980 * Return a high guess at the load of a migration-target cpu weighted
3981 * according to the scheduling class and "nice" value.
3982 */
3983static unsigned long target_load(int cpu, int type)
3984{
3985	struct rq *rq = cpu_rq(cpu);
3986	unsigned long total = weighted_cpuload(cpu);
3987
3988	if (type == 0 || !sched_feat(LB_BIAS))
3989		return total;
3990
3991	return max(rq->cpu_load[type-1], total);
3992}
3993
3994static unsigned long power_of(int cpu)
 
 
 
 
 
3995{
3996	return cpu_rq(cpu)->cpu_power;
3997}
3998
3999static unsigned long cpu_avg_load_per_task(int cpu)
4000{
4001	struct rq *rq = cpu_rq(cpu);
4002	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4003	unsigned long load_avg = rq->cfs.runnable_load_avg;
4004
4005	if (nr_running)
4006		return load_avg / nr_running;
4007
4008	return 0;
4009}
4010
4011static void record_wakee(struct task_struct *p)
4012{
4013	/*
4014	 * Rough decay (wiping) for cost saving, don't worry
4015	 * about the boundary, really active task won't care
4016	 * about the loss.
4017	 */
4018	if (jiffies > current->wakee_flip_decay_ts + HZ) {
4019		current->wakee_flips = 0;
4020		current->wakee_flip_decay_ts = jiffies;
4021	}
4022
4023	if (current->last_wakee != p) {
4024		current->last_wakee = p;
4025		current->wakee_flips++;
4026	}
4027}
4028
4029static void task_waking_fair(struct task_struct *p)
4030{
4031	struct sched_entity *se = &p->se;
4032	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4033	u64 min_vruntime;
4034
4035#ifndef CONFIG_64BIT
4036	u64 min_vruntime_copy;
4037
4038	do {
4039		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4040		smp_rmb();
4041		min_vruntime = cfs_rq->min_vruntime;
4042	} while (min_vruntime != min_vruntime_copy);
4043#else
4044	min_vruntime = cfs_rq->min_vruntime;
4045#endif
4046
4047	se->vruntime -= min_vruntime;
4048	record_wakee(p);
4049}
4050
4051#ifdef CONFIG_FAIR_GROUP_SCHED
4052/*
4053 * effective_load() calculates the load change as seen from the root_task_group
4054 *
4055 * Adding load to a group doesn't make a group heavier, but can cause movement
4056 * of group shares between cpus. Assuming the shares were perfectly aligned one
4057 * can calculate the shift in shares.
4058 *
4059 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4060 * on this @cpu and results in a total addition (subtraction) of @wg to the
4061 * total group weight.
4062 *
4063 * Given a runqueue weight distribution (rw_i) we can compute a shares
4064 * distribution (s_i) using:
4065 *
4066 *   s_i = rw_i / \Sum rw_j						(1)
4067 *
4068 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4069 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4070 * shares distribution (s_i):
4071 *
4072 *   rw_i = {   2,   4,   1,   0 }
4073 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4074 *
4075 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4076 * task used to run on and the CPU the waker is running on), we need to
4077 * compute the effect of waking a task on either CPU and, in case of a sync
4078 * wakeup, compute the effect of the current task going to sleep.
4079 *
4080 * So for a change of @wl to the local @cpu with an overall group weight change
4081 * of @wl we can compute the new shares distribution (s'_i) using:
4082 *
4083 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4084 *
4085 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4086 * differences in waking a task to CPU 0. The additional task changes the
4087 * weight and shares distributions like:
4088 *
4089 *   rw'_i = {   3,   4,   1,   0 }
4090 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4091 *
4092 * We can then compute the difference in effective weight by using:
4093 *
4094 *   dw_i = S * (s'_i - s_i)						(3)
4095 *
4096 * Where 'S' is the group weight as seen by its parent.
4097 *
4098 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4099 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4100 * 4/7) times the weight of the group.
4101 */
4102static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4103{
4104	struct sched_entity *se = tg->se[cpu];
4105
4106	if (!tg->parent)	/* the trivial, non-cgroup case */
4107		return wl;
4108
4109	for_each_sched_entity(se) {
4110		long w, W;
4111
4112		tg = se->my_q->tg;
4113
4114		/*
4115		 * W = @wg + \Sum rw_j
4116		 */
4117		W = wg + calc_tg_weight(tg, se->my_q);
4118
4119		/*
4120		 * w = rw_i + @wl
4121		 */
4122		w = se->my_q->load.weight + wl;
4123
4124		/*
4125		 * wl = S * s'_i; see (2)
4126		 */
4127		if (W > 0 && w < W)
4128			wl = (w * tg->shares) / W;
4129		else
4130			wl = tg->shares;
4131
4132		/*
4133		 * Per the above, wl is the new se->load.weight value; since
4134		 * those are clipped to [MIN_SHARES, ...) do so now. See
4135		 * calc_cfs_shares().
4136		 */
4137		if (wl < MIN_SHARES)
4138			wl = MIN_SHARES;
4139
4140		/*
4141		 * wl = dw_i = S * (s'_i - s_i); see (3)
4142		 */
4143		wl -= se->load.weight;
4144
4145		/*
4146		 * Recursively apply this logic to all parent groups to compute
4147		 * the final effective load change on the root group. Since
4148		 * only the @tg group gets extra weight, all parent groups can
4149		 * only redistribute existing shares. @wl is the shift in shares
4150		 * resulting from this level per the above.
4151		 */
4152		wg = 0;
4153	}
4154
4155	return wl;
4156}
4157#else
4158
4159static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4160{
4161	return wl;
4162}
4163
4164#endif
4165
 
 
 
 
 
 
 
 
 
 
 
 
4166static int wake_wide(struct task_struct *p)
4167{
 
 
4168	int factor = this_cpu_read(sd_llc_size);
4169
4170	/*
4171	 * Yeah, it's the switching-frequency, could means many wakee or
4172	 * rapidly switch, use factor here will just help to automatically
4173	 * adjust the loose-degree, so bigger node will lead to more pull.
4174	 */
4175	if (p->wakee_flips > factor) {
4176		/*
4177		 * wakee is somewhat hot, it needs certain amount of cpu
4178		 * resource, so if waker is far more hot, prefer to leave
4179		 * it alone.
4180		 */
4181		if (current->wakee_flips > (factor * p->wakee_flips))
4182			return 1;
4183	}
4184
4185	return 0;
4186}
4187
4188static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4189{
4190	s64 this_load, load;
 
4191	int idx, this_cpu, prev_cpu;
4192	unsigned long tl_per_task;
4193	struct task_group *tg;
4194	unsigned long weight;
4195	int balanced;
4196
4197	/*
4198	 * If we wake multiple tasks be careful to not bounce
4199	 * ourselves around too much.
4200	 */
4201	if (wake_wide(p))
4202		return 0;
4203
4204	idx	  = sd->wake_idx;
4205	this_cpu  = smp_processor_id();
4206	prev_cpu  = task_cpu(p);
4207	load	  = source_load(prev_cpu, idx);
4208	this_load = target_load(this_cpu, idx);
4209
4210	/*
4211	 * If sync wakeup then subtract the (maximum possible)
4212	 * effect of the currently running task from the load
4213	 * of the current CPU:
4214	 */
4215	if (sync) {
4216		tg = task_group(current);
4217		weight = current->se.load.weight;
4218
4219		this_load += effective_load(tg, this_cpu, -weight, -weight);
4220		load += effective_load(tg, prev_cpu, 0, -weight);
4221	}
4222
4223	tg = task_group(p);
4224	weight = p->se.load.weight;
4225
4226	/*
4227	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4228	 * due to the sync cause above having dropped this_load to 0, we'll
4229	 * always have an imbalance, but there's really nothing you can do
4230	 * about that, so that's good too.
4231	 *
4232	 * Otherwise check if either cpus are near enough in load to allow this
4233	 * task to be woken on this_cpu.
4234	 */
4235	if (this_load > 0) {
4236		s64 this_eff_load, prev_eff_load;
 
 
 
4237
4238		this_eff_load = 100;
4239		this_eff_load *= power_of(prev_cpu);
4240		this_eff_load *= this_load +
4241			effective_load(tg, this_cpu, weight, weight);
4242
4243		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4244		prev_eff_load *= power_of(this_cpu);
4245		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
 
4246
4247		balanced = this_eff_load <= prev_eff_load;
4248	} else
4249		balanced = true;
4250
4251	/*
4252	 * If the currently running task will sleep within
4253	 * a reasonable amount of time then attract this newly
4254	 * woken task:
4255	 */
4256	if (sync && balanced)
4257		return 1;
4258
4259	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4260	tl_per_task = cpu_avg_load_per_task(this_cpu);
4261
4262	if (balanced ||
4263	    (this_load <= load &&
4264	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4265		/*
4266		 * This domain has SD_WAKE_AFFINE and
4267		 * p is cache cold in this domain, and
4268		 * there is no bad imbalance.
4269		 */
4270		schedstat_inc(sd, ttwu_move_affine);
4271		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4272
4273		return 1;
4274	}
4275	return 0;
 
4276}
4277
4278/*
4279 * find_idlest_group finds and returns the least busy CPU group within the
4280 * domain.
4281 */
4282static struct sched_group *
4283find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4284		  int this_cpu, int sd_flag)
4285{
4286	struct sched_group *idlest = NULL, *group = sd->groups;
4287	unsigned long min_load = ULONG_MAX, this_load = 0;
4288	int load_idx = sd->forkexec_idx;
4289	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4290
4291	if (sd_flag & SD_BALANCE_WAKE)
4292		load_idx = sd->wake_idx;
4293
4294	do {
4295		unsigned long load, avg_load;
4296		int local_group;
4297		int i;
4298
4299		/* Skip over this group if it has no CPUs allowed */
4300		if (!cpumask_intersects(sched_group_cpus(group),
4301					tsk_cpus_allowed(p)))
4302			continue;
4303
4304		local_group = cpumask_test_cpu(this_cpu,
4305					       sched_group_cpus(group));
4306
4307		/* Tally up the load of all CPUs in the group */
4308		avg_load = 0;
4309
4310		for_each_cpu(i, sched_group_cpus(group)) {
4311			/* Bias balancing toward cpus of our domain */
4312			if (local_group)
4313				load = source_load(i, load_idx);
4314			else
4315				load = target_load(i, load_idx);
4316
4317			avg_load += load;
4318		}
4319
4320		/* Adjust by relative CPU power of the group */
4321		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4322
4323		if (local_group) {
4324			this_load = avg_load;
4325		} else if (avg_load < min_load) {
4326			min_load = avg_load;
4327			idlest = group;
4328		}
4329	} while (group = group->next, group != sd->groups);
4330
4331	if (!idlest || 100*this_load < imbalance*min_load)
4332		return NULL;
4333	return idlest;
4334}
4335
4336/*
4337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4338 */
4339static int
4340find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4341{
4342	unsigned long load, min_load = ULONG_MAX;
4343	int idlest = -1;
 
 
 
4344	int i;
4345
4346	/* Traverse only the allowed CPUs */
4347	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4348		load = weighted_cpuload(i);
4349
4350		if (load < min_load || (load == min_load && i == this_cpu)) {
4351			min_load = load;
4352			idlest = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4353		}
4354	}
4355
4356	return idlest;
4357}
4358
4359/*
4360 * Try and locate an idle CPU in the sched_domain.
4361 */
4362static int select_idle_sibling(struct task_struct *p, int target)
4363{
4364	struct sched_domain *sd;
4365	struct sched_group *sg;
4366	int i = task_cpu(p);
4367
4368	if (idle_cpu(target))
4369		return target;
4370
4371	/*
4372	 * If the prevous cpu is cache affine and idle, don't be stupid.
4373	 */
4374	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4375		return i;
4376
4377	/*
4378	 * Otherwise, iterate the domains and find an elegible idle cpu.
 
 
 
 
 
 
 
 
 
 
 
 
4379	 */
4380	sd = rcu_dereference(per_cpu(sd_llc, target));
4381	for_each_lower_domain(sd) {
4382		sg = sd->groups;
4383		do {
4384			if (!cpumask_intersects(sched_group_cpus(sg),
4385						tsk_cpus_allowed(p)))
4386				goto next;
4387
 
4388			for_each_cpu(i, sched_group_cpus(sg)) {
4389				if (i == target || !idle_cpu(i))
4390					goto next;
4391			}
4392
 
 
 
 
4393			target = cpumask_first_and(sched_group_cpus(sg),
4394					tsk_cpus_allowed(p));
4395			goto done;
4396next:
4397			sg = sg->next;
4398		} while (sg != sd->groups);
4399	}
4400done:
4401	return target;
4402}
4403
4404/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4405 * select_task_rq_fair: Select target runqueue for the waking task in domains
4406 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4407 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4408 *
4409 * Balances load by selecting the idlest cpu in the idlest group, or under
4410 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4411 *
4412 * Returns the target cpu number.
4413 *
4414 * preempt must be disabled.
4415 */
4416static int
4417select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4418{
4419	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4420	int cpu = smp_processor_id();
4421	int new_cpu = cpu;
4422	int want_affine = 0;
4423	int sync = wake_flags & WF_SYNC;
4424
4425	if (p->nr_cpus_allowed == 1)
4426		return prev_cpu;
4427
4428	if (sd_flag & SD_BALANCE_WAKE) {
4429		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4430			want_affine = 1;
4431		new_cpu = prev_cpu;
4432	}
4433
4434	rcu_read_lock();
4435	for_each_domain(cpu, tmp) {
4436		if (!(tmp->flags & SD_LOAD_BALANCE))
4437			continue;
4438
4439		/*
4440		 * If both cpu and prev_cpu are part of this domain,
4441		 * cpu is a valid SD_WAKE_AFFINE target.
4442		 */
4443		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4444		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4445			affine_sd = tmp;
4446			break;
4447		}
4448
4449		if (tmp->flags & sd_flag)
4450			sd = tmp;
 
 
4451	}
4452
4453	if (affine_sd) {
 
4454		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4455			prev_cpu = cpu;
4456
4457		new_cpu = select_idle_sibling(p, prev_cpu);
4458		goto unlock;
4459	}
4460
4461	while (sd) {
 
 
 
 
4462		struct sched_group *group;
4463		int weight;
4464
4465		if (!(sd->flags & sd_flag)) {
4466			sd = sd->child;
4467			continue;
4468		}
4469
4470		group = find_idlest_group(sd, p, cpu, sd_flag);
4471		if (!group) {
4472			sd = sd->child;
4473			continue;
4474		}
4475
4476		new_cpu = find_idlest_cpu(group, p, cpu);
4477		if (new_cpu == -1 || new_cpu == cpu) {
4478			/* Now try balancing at a lower domain level of cpu */
4479			sd = sd->child;
4480			continue;
4481		}
4482
4483		/* Now try balancing at a lower domain level of new_cpu */
4484		cpu = new_cpu;
4485		weight = sd->span_weight;
4486		sd = NULL;
4487		for_each_domain(cpu, tmp) {
4488			if (weight <= tmp->span_weight)
4489				break;
4490			if (tmp->flags & sd_flag)
4491				sd = tmp;
4492		}
4493		/* while loop will break here if sd == NULL */
4494	}
4495unlock:
4496	rcu_read_unlock();
4497
4498	return new_cpu;
4499}
4500
4501/*
4502 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4503 * cfs_rq_of(p) references at time of call are still valid and identify the
4504 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4505 * other assumptions, including the state of rq->lock, should be made.
4506 */
4507static void
4508migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4509{
4510	struct sched_entity *se = &p->se;
4511	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4512
4513	/*
4514	 * Load tracking: accumulate removed load so that it can be processed
4515	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4516	 * to blocked load iff they have a positive decay-count.  It can never
4517	 * be negative here since on-rq tasks have decay-count == 0.
4518	 */
4519	if (se->avg.decay_count) {
4520		se->avg.decay_count = -__synchronize_entity_decay(se);
4521		atomic_long_add(se->avg.load_avg_contrib,
4522						&cfs_rq->removed_load);
4523	}
 
 
 
 
 
 
 
 
4524}
4525#endif /* CONFIG_SMP */
4526
4527static unsigned long
4528wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4529{
4530	unsigned long gran = sysctl_sched_wakeup_granularity;
4531
4532	/*
4533	 * Since its curr running now, convert the gran from real-time
4534	 * to virtual-time in his units.
4535	 *
4536	 * By using 'se' instead of 'curr' we penalize light tasks, so
4537	 * they get preempted easier. That is, if 'se' < 'curr' then
4538	 * the resulting gran will be larger, therefore penalizing the
4539	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4540	 * be smaller, again penalizing the lighter task.
4541	 *
4542	 * This is especially important for buddies when the leftmost
4543	 * task is higher priority than the buddy.
4544	 */
4545	return calc_delta_fair(gran, se);
4546}
4547
4548/*
4549 * Should 'se' preempt 'curr'.
4550 *
4551 *             |s1
4552 *        |s2
4553 *   |s3
4554 *         g
4555 *      |<--->|c
4556 *
4557 *  w(c, s1) = -1
4558 *  w(c, s2) =  0
4559 *  w(c, s3) =  1
4560 *
4561 */
4562static int
4563wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4564{
4565	s64 gran, vdiff = curr->vruntime - se->vruntime;
4566
4567	if (vdiff <= 0)
4568		return -1;
4569
4570	gran = wakeup_gran(curr, se);
4571	if (vdiff > gran)
4572		return 1;
4573
4574	return 0;
4575}
4576
4577static void set_last_buddy(struct sched_entity *se)
4578{
4579	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4580		return;
4581
4582	for_each_sched_entity(se)
4583		cfs_rq_of(se)->last = se;
4584}
4585
4586static void set_next_buddy(struct sched_entity *se)
4587{
4588	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4589		return;
4590
4591	for_each_sched_entity(se)
4592		cfs_rq_of(se)->next = se;
4593}
4594
4595static void set_skip_buddy(struct sched_entity *se)
4596{
4597	for_each_sched_entity(se)
4598		cfs_rq_of(se)->skip = se;
4599}
4600
4601/*
4602 * Preempt the current task with a newly woken task if needed:
4603 */
4604static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4605{
4606	struct task_struct *curr = rq->curr;
4607	struct sched_entity *se = &curr->se, *pse = &p->se;
4608	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4609	int scale = cfs_rq->nr_running >= sched_nr_latency;
4610	int next_buddy_marked = 0;
4611
4612	if (unlikely(se == pse))
4613		return;
4614
4615	/*
4616	 * This is possible from callers such as move_task(), in which we
4617	 * unconditionally check_prempt_curr() after an enqueue (which may have
4618	 * lead to a throttle).  This both saves work and prevents false
4619	 * next-buddy nomination below.
4620	 */
4621	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4622		return;
4623
4624	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4625		set_next_buddy(pse);
4626		next_buddy_marked = 1;
4627	}
4628
4629	/*
4630	 * We can come here with TIF_NEED_RESCHED already set from new task
4631	 * wake up path.
4632	 *
4633	 * Note: this also catches the edge-case of curr being in a throttled
4634	 * group (e.g. via set_curr_task), since update_curr() (in the
4635	 * enqueue of curr) will have resulted in resched being set.  This
4636	 * prevents us from potentially nominating it as a false LAST_BUDDY
4637	 * below.
4638	 */
4639	if (test_tsk_need_resched(curr))
4640		return;
4641
4642	/* Idle tasks are by definition preempted by non-idle tasks. */
4643	if (unlikely(curr->policy == SCHED_IDLE) &&
4644	    likely(p->policy != SCHED_IDLE))
4645		goto preempt;
4646
4647	/*
4648	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4649	 * is driven by the tick):
4650	 */
4651	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4652		return;
4653
4654	find_matching_se(&se, &pse);
4655	update_curr(cfs_rq_of(se));
4656	BUG_ON(!pse);
4657	if (wakeup_preempt_entity(se, pse) == 1) {
4658		/*
4659		 * Bias pick_next to pick the sched entity that is
4660		 * triggering this preemption.
4661		 */
4662		if (!next_buddy_marked)
4663			set_next_buddy(pse);
4664		goto preempt;
4665	}
4666
4667	return;
4668
4669preempt:
4670	resched_task(curr);
4671	/*
4672	 * Only set the backward buddy when the current task is still
4673	 * on the rq. This can happen when a wakeup gets interleaved
4674	 * with schedule on the ->pre_schedule() or idle_balance()
4675	 * point, either of which can * drop the rq lock.
4676	 *
4677	 * Also, during early boot the idle thread is in the fair class,
4678	 * for obvious reasons its a bad idea to schedule back to it.
4679	 */
4680	if (unlikely(!se->on_rq || curr == rq->idle))
4681		return;
4682
4683	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4684		set_last_buddy(se);
4685}
4686
4687static struct task_struct *
4688pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4689{
4690	struct cfs_rq *cfs_rq = &rq->cfs;
4691	struct sched_entity *se;
4692	struct task_struct *p;
4693	int new_tasks;
4694
4695again:
4696#ifdef CONFIG_FAIR_GROUP_SCHED
4697	if (!cfs_rq->nr_running)
4698		goto idle;
4699
4700	if (prev->sched_class != &fair_sched_class)
4701		goto simple;
4702
4703	/*
4704	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4705	 * likely that a next task is from the same cgroup as the current.
4706	 *
4707	 * Therefore attempt to avoid putting and setting the entire cgroup
4708	 * hierarchy, only change the part that actually changes.
4709	 */
4710
4711	do {
4712		struct sched_entity *curr = cfs_rq->curr;
4713
4714		/*
4715		 * Since we got here without doing put_prev_entity() we also
4716		 * have to consider cfs_rq->curr. If it is still a runnable
4717		 * entity, update_curr() will update its vruntime, otherwise
4718		 * forget we've ever seen it.
4719		 */
4720		if (curr && curr->on_rq)
4721			update_curr(cfs_rq);
4722		else
4723			curr = NULL;
 
4724
4725		/*
4726		 * This call to check_cfs_rq_runtime() will do the throttle and
4727		 * dequeue its entity in the parent(s). Therefore the 'simple'
4728		 * nr_running test will indeed be correct.
4729		 */
4730		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4731			goto simple;
 
 
4732
4733		se = pick_next_entity(cfs_rq, curr);
4734		cfs_rq = group_cfs_rq(se);
4735	} while (cfs_rq);
4736
4737	p = task_of(se);
4738
4739	/*
4740	 * Since we haven't yet done put_prev_entity and if the selected task
4741	 * is a different task than we started out with, try and touch the
4742	 * least amount of cfs_rqs.
4743	 */
4744	if (prev != p) {
4745		struct sched_entity *pse = &prev->se;
4746
4747		while (!(cfs_rq = is_same_group(se, pse))) {
4748			int se_depth = se->depth;
4749			int pse_depth = pse->depth;
4750
4751			if (se_depth <= pse_depth) {
4752				put_prev_entity(cfs_rq_of(pse), pse);
4753				pse = parent_entity(pse);
4754			}
4755			if (se_depth >= pse_depth) {
4756				set_next_entity(cfs_rq_of(se), se);
4757				se = parent_entity(se);
4758			}
4759		}
4760
4761		put_prev_entity(cfs_rq, pse);
4762		set_next_entity(cfs_rq, se);
4763	}
4764
4765	if (hrtick_enabled(rq))
4766		hrtick_start_fair(rq, p);
4767
4768	return p;
4769simple:
4770	cfs_rq = &rq->cfs;
4771#endif
4772
4773	if (!cfs_rq->nr_running)
4774		goto idle;
4775
4776	put_prev_task(rq, prev);
4777
4778	do {
4779		se = pick_next_entity(cfs_rq, NULL);
4780		set_next_entity(cfs_rq, se);
4781		cfs_rq = group_cfs_rq(se);
4782	} while (cfs_rq);
4783
4784	p = task_of(se);
4785
4786	if (hrtick_enabled(rq))
4787		hrtick_start_fair(rq, p);
4788
4789	return p;
4790
4791idle:
 
 
 
 
 
 
 
4792	new_tasks = idle_balance(rq);
 
4793	/*
4794	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4795	 * possible for any higher priority task to appear. In that case we
4796	 * must re-start the pick_next_entity() loop.
4797	 */
4798	if (new_tasks < 0)
4799		return RETRY_TASK;
4800
4801	if (new_tasks > 0)
4802		goto again;
4803
4804	return NULL;
4805}
4806
4807/*
4808 * Account for a descheduled task:
4809 */
4810static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4811{
4812	struct sched_entity *se = &prev->se;
4813	struct cfs_rq *cfs_rq;
4814
4815	for_each_sched_entity(se) {
4816		cfs_rq = cfs_rq_of(se);
4817		put_prev_entity(cfs_rq, se);
4818	}
4819}
4820
4821/*
4822 * sched_yield() is very simple
4823 *
4824 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4825 */
4826static void yield_task_fair(struct rq *rq)
4827{
4828	struct task_struct *curr = rq->curr;
4829	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4830	struct sched_entity *se = &curr->se;
4831
4832	/*
4833	 * Are we the only task in the tree?
4834	 */
4835	if (unlikely(rq->nr_running == 1))
4836		return;
4837
4838	clear_buddies(cfs_rq, se);
4839
4840	if (curr->policy != SCHED_BATCH) {
4841		update_rq_clock(rq);
4842		/*
4843		 * Update run-time statistics of the 'current'.
4844		 */
4845		update_curr(cfs_rq);
4846		/*
4847		 * Tell update_rq_clock() that we've just updated,
4848		 * so we don't do microscopic update in schedule()
4849		 * and double the fastpath cost.
4850		 */
4851		 rq->skip_clock_update = 1;
4852	}
4853
4854	set_skip_buddy(se);
4855}
4856
4857static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4858{
4859	struct sched_entity *se = &p->se;
4860
4861	/* throttled hierarchies are not runnable */
4862	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4863		return false;
4864
4865	/* Tell the scheduler that we'd really like pse to run next. */
4866	set_next_buddy(se);
4867
4868	yield_task_fair(rq);
4869
4870	return true;
4871}
4872
4873#ifdef CONFIG_SMP
4874/**************************************************
4875 * Fair scheduling class load-balancing methods.
4876 *
4877 * BASICS
4878 *
4879 * The purpose of load-balancing is to achieve the same basic fairness the
4880 * per-cpu scheduler provides, namely provide a proportional amount of compute
4881 * time to each task. This is expressed in the following equation:
4882 *
4883 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4884 *
4885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4886 * W_i,0 is defined as:
4887 *
4888 *   W_i,0 = \Sum_j w_i,j                                             (2)
4889 *
4890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4891 * is derived from the nice value as per prio_to_weight[].
4892 *
4893 * The weight average is an exponential decay average of the instantaneous
4894 * weight:
4895 *
4896 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4897 *
4898 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4900 * can also include other factors [XXX].
4901 *
4902 * To achieve this balance we define a measure of imbalance which follows
4903 * directly from (1):
4904 *
4905 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
4906 *
4907 * We them move tasks around to minimize the imbalance. In the continuous
4908 * function space it is obvious this converges, in the discrete case we get
4909 * a few fun cases generally called infeasible weight scenarios.
4910 *
4911 * [XXX expand on:
4912 *     - infeasible weights;
4913 *     - local vs global optima in the discrete case. ]
4914 *
4915 *
4916 * SCHED DOMAINS
4917 *
4918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4919 * for all i,j solution, we create a tree of cpus that follows the hardware
4920 * topology where each level pairs two lower groups (or better). This results
4921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4922 * tree to only the first of the previous level and we decrease the frequency
4923 * of load-balance at each level inv. proportional to the number of cpus in
4924 * the groups.
4925 *
4926 * This yields:
4927 *
4928 *     log_2 n     1     n
4929 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
4930 *     i = 0      2^i   2^i
4931 *                               `- size of each group
4932 *         |         |     `- number of cpus doing load-balance
4933 *         |         `- freq
4934 *         `- sum over all levels
4935 *
4936 * Coupled with a limit on how many tasks we can migrate every balance pass,
4937 * this makes (5) the runtime complexity of the balancer.
4938 *
4939 * An important property here is that each CPU is still (indirectly) connected
4940 * to every other cpu in at most O(log n) steps:
4941 *
4942 * The adjacency matrix of the resulting graph is given by:
4943 *
4944 *             log_2 n     
4945 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
4946 *             k = 0
4947 *
4948 * And you'll find that:
4949 *
4950 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
4951 *
4952 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4953 * The task movement gives a factor of O(m), giving a convergence complexity
4954 * of:
4955 *
4956 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
4957 *
4958 *
4959 * WORK CONSERVING
4960 *
4961 * In order to avoid CPUs going idle while there's still work to do, new idle
4962 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4963 * tree itself instead of relying on other CPUs to bring it work.
4964 *
4965 * This adds some complexity to both (5) and (8) but it reduces the total idle
4966 * time.
4967 *
4968 * [XXX more?]
4969 *
4970 *
4971 * CGROUPS
4972 *
4973 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4974 *
4975 *                                s_k,i
4976 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
4977 *                                 S_k
4978 *
4979 * Where
4980 *
4981 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
4982 *
4983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4984 *
4985 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4986 * property.
4987 *
4988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4989 *      rewrite all of this once again.]
4990 */ 
4991
4992static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4993
4994enum fbq_type { regular, remote, all };
4995
4996#define LBF_ALL_PINNED	0x01
4997#define LBF_NEED_BREAK	0x02
4998#define LBF_DST_PINNED  0x04
4999#define LBF_SOME_PINNED	0x08
5000
5001struct lb_env {
5002	struct sched_domain	*sd;
5003
5004	struct rq		*src_rq;
5005	int			src_cpu;
5006
5007	int			dst_cpu;
5008	struct rq		*dst_rq;
5009
5010	struct cpumask		*dst_grpmask;
5011	int			new_dst_cpu;
5012	enum cpu_idle_type	idle;
5013	long			imbalance;
5014	/* The set of CPUs under consideration for load-balancing */
5015	struct cpumask		*cpus;
5016
5017	unsigned int		flags;
5018
5019	unsigned int		loop;
5020	unsigned int		loop_break;
5021	unsigned int		loop_max;
5022
5023	enum fbq_type		fbq_type;
 
5024};
5025
5026/*
5027 * move_task - move a task from one runqueue to another runqueue.
5028 * Both runqueues must be locked.
5029 */
5030static void move_task(struct task_struct *p, struct lb_env *env)
5031{
5032	deactivate_task(env->src_rq, p, 0);
5033	set_task_cpu(p, env->dst_cpu);
5034	activate_task(env->dst_rq, p, 0);
5035	check_preempt_curr(env->dst_rq, p, 0);
5036}
5037
5038/*
5039 * Is this task likely cache-hot:
5040 */
5041static int
5042task_hot(struct task_struct *p, u64 now)
5043{
5044	s64 delta;
5045
 
 
5046	if (p->sched_class != &fair_sched_class)
5047		return 0;
5048
5049	if (unlikely(p->policy == SCHED_IDLE))
5050		return 0;
5051
5052	/*
5053	 * Buddy candidates are cache hot:
5054	 */
5055	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5056			(&p->se == cfs_rq_of(&p->se)->next ||
5057			 &p->se == cfs_rq_of(&p->se)->last))
5058		return 1;
5059
5060	if (sysctl_sched_migration_cost == -1)
5061		return 1;
5062	if (sysctl_sched_migration_cost == 0)
5063		return 0;
5064
5065	delta = now - p->se.exec_start;
5066
5067	return delta < (s64)sysctl_sched_migration_cost;
5068}
5069
5070#ifdef CONFIG_NUMA_BALANCING
5071/* Returns true if the destination node has incurred more faults */
5072static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5073{
5074	int src_nid, dst_nid;
5075
5076	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5077	    !(env->sd->flags & SD_NUMA)) {
5078		return false;
5079	}
5080
5081	src_nid = cpu_to_node(env->src_cpu);
5082	dst_nid = cpu_to_node(env->dst_cpu);
5083
5084	if (src_nid == dst_nid)
5085		return false;
5086
5087	/* Always encourage migration to the preferred node. */
5088	if (dst_nid == p->numa_preferred_nid)
5089		return true;
5090
5091	/* If both task and group weight improve, this move is a winner. */
5092	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5093	    group_weight(p, dst_nid) > group_weight(p, src_nid))
5094		return true;
5095
5096	return false;
5097}
5098
5099
5100static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5101{
 
 
5102	int src_nid, dst_nid;
5103
5104	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5105		return false;
5106
5107	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5108		return false;
5109
5110	src_nid = cpu_to_node(env->src_cpu);
5111	dst_nid = cpu_to_node(env->dst_cpu);
5112
5113	if (src_nid == dst_nid)
5114		return false;
5115
5116	/* Migrating away from the preferred node is always bad. */
5117	if (src_nid == p->numa_preferred_nid)
5118		return true;
 
 
 
 
5119
5120	/* If either task or group weight get worse, don't do it. */
5121	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5122	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5123		return true;
5124
5125	return false;
5126}
 
 
 
 
 
5127
5128#else
5129static inline bool migrate_improves_locality(struct task_struct *p,
5130					     struct lb_env *env)
5131{
5132	return false;
5133}
5134
5135static inline bool migrate_degrades_locality(struct task_struct *p,
 
5136					     struct lb_env *env)
5137{
5138	return false;
5139}
5140#endif
5141
5142/*
5143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5144 */
5145static
5146int can_migrate_task(struct task_struct *p, struct lb_env *env)
5147{
5148	int tsk_cache_hot = 0;
 
 
 
5149	/*
5150	 * We do not migrate tasks that are:
5151	 * 1) throttled_lb_pair, or
5152	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5153	 * 3) running (obviously), or
5154	 * 4) are cache-hot on their current CPU.
5155	 */
5156	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5157		return 0;
5158
5159	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5160		int cpu;
5161
5162		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5163
5164		env->flags |= LBF_SOME_PINNED;
5165
5166		/*
5167		 * Remember if this task can be migrated to any other cpu in
5168		 * our sched_group. We may want to revisit it if we couldn't
5169		 * meet load balance goals by pulling other tasks on src_cpu.
5170		 *
5171		 * Also avoid computing new_dst_cpu if we have already computed
5172		 * one in current iteration.
5173		 */
5174		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5175			return 0;
5176
5177		/* Prevent to re-select dst_cpu via env's cpus */
5178		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5179			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5180				env->flags |= LBF_DST_PINNED;
5181				env->new_dst_cpu = cpu;
5182				break;
5183			}
5184		}
5185
5186		return 0;
5187	}
5188
5189	/* Record that we found atleast one task that could run on dst_cpu */
5190	env->flags &= ~LBF_ALL_PINNED;
5191
5192	if (task_running(env->src_rq, p)) {
5193		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5194		return 0;
5195	}
5196
5197	/*
5198	 * Aggressive migration if:
5199	 * 1) destination numa is preferred
5200	 * 2) task is cache cold, or
5201	 * 3) too many balance attempts have failed.
5202	 */
5203	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5204	if (!tsk_cache_hot)
5205		tsk_cache_hot = migrate_degrades_locality(p, env);
5206
5207	if (migrate_improves_locality(p, env)) {
5208#ifdef CONFIG_SCHEDSTATS
5209		if (tsk_cache_hot) {
5210			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5211			schedstat_inc(p, se.statistics.nr_forced_migrations);
5212		}
5213#endif
5214		return 1;
5215	}
5216
5217	if (!tsk_cache_hot ||
5218		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5219
5220		if (tsk_cache_hot) {
5221			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5222			schedstat_inc(p, se.statistics.nr_forced_migrations);
5223		}
5224
5225		return 1;
5226	}
5227
5228	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5229	return 0;
5230}
5231
5232/*
5233 * move_one_task tries to move exactly one task from busiest to this_rq, as
 
 
 
 
 
 
 
 
 
 
 
 
5234 * part of active balancing operations within "domain".
5235 * Returns 1 if successful and 0 otherwise.
5236 *
5237 * Called with both runqueues locked.
5238 */
5239static int move_one_task(struct lb_env *env)
5240{
5241	struct task_struct *p, *n;
5242
 
 
5243	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5244		if (!can_migrate_task(p, env))
5245			continue;
5246
5247		move_task(p, env);
 
5248		/*
5249		 * Right now, this is only the second place move_task()
5250		 * is called, so we can safely collect move_task()
5251		 * stats here rather than inside move_task().
 
5252		 */
5253		schedstat_inc(env->sd, lb_gained[env->idle]);
5254		return 1;
5255	}
5256	return 0;
5257}
5258
5259static const unsigned int sched_nr_migrate_break = 32;
5260
5261/*
5262 * move_tasks tries to move up to imbalance weighted load from busiest to
5263 * this_rq, as part of a balancing operation within domain "sd".
5264 * Returns 1 if successful and 0 otherwise.
5265 *
5266 * Called with both runqueues locked.
5267 */
5268static int move_tasks(struct lb_env *env)
5269{
5270	struct list_head *tasks = &env->src_rq->cfs_tasks;
5271	struct task_struct *p;
5272	unsigned long load;
5273	int pulled = 0;
 
 
5274
5275	if (env->imbalance <= 0)
5276		return 0;
5277
5278	while (!list_empty(tasks)) {
 
 
 
 
 
 
 
5279		p = list_first_entry(tasks, struct task_struct, se.group_node);
5280
5281		env->loop++;
5282		/* We've more or less seen every task there is, call it quits */
5283		if (env->loop > env->loop_max)
5284			break;
5285
5286		/* take a breather every nr_migrate tasks */
5287		if (env->loop > env->loop_break) {
5288			env->loop_break += sched_nr_migrate_break;
5289			env->flags |= LBF_NEED_BREAK;
5290			break;
5291		}
5292
5293		if (!can_migrate_task(p, env))
5294			goto next;
5295
5296		load = task_h_load(p);
5297
5298		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5299			goto next;
5300
5301		if ((load / 2) > env->imbalance)
5302			goto next;
5303
5304		move_task(p, env);
5305		pulled++;
 
 
5306		env->imbalance -= load;
5307
5308#ifdef CONFIG_PREEMPT
5309		/*
5310		 * NEWIDLE balancing is a source of latency, so preemptible
5311		 * kernels will stop after the first task is pulled to minimize
5312		 * the critical section.
5313		 */
5314		if (env->idle == CPU_NEWLY_IDLE)
5315			break;
5316#endif
5317
5318		/*
5319		 * We only want to steal up to the prescribed amount of
5320		 * weighted load.
5321		 */
5322		if (env->imbalance <= 0)
5323			break;
5324
5325		continue;
5326next:
5327		list_move_tail(&p->se.group_node, tasks);
5328	}
5329
5330	/*
5331	 * Right now, this is one of only two places move_task() is called,
5332	 * so we can safely collect move_task() stats here rather than
5333	 * inside move_task().
5334	 */
5335	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5336
5337	return pulled;
5338}
5339
5340#ifdef CONFIG_FAIR_GROUP_SCHED
5341/*
5342 * update tg->load_weight by folding this cpu's load_avg
5343 */
5344static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5345{
5346	struct sched_entity *se = tg->se[cpu];
5347	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5348
5349	/* throttled entities do not contribute to load */
5350	if (throttled_hierarchy(cfs_rq))
5351		return;
 
 
5352
5353	update_cfs_rq_blocked_load(cfs_rq, 1);
 
 
 
 
 
 
 
 
 
5354
5355	if (se) {
5356		update_entity_load_avg(se, 1);
5357		/*
5358		 * We pivot on our runnable average having decayed to zero for
5359		 * list removal.  This generally implies that all our children
5360		 * have also been removed (modulo rounding error or bandwidth
5361		 * control); however, such cases are rare and we can fix these
5362		 * at enqueue.
5363		 *
5364		 * TODO: fix up out-of-order children on enqueue.
5365		 */
5366		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5367			list_del_leaf_cfs_rq(cfs_rq);
5368	} else {
5369		struct rq *rq = rq_of(cfs_rq);
5370		update_rq_runnable_avg(rq, rq->nr_running);
5371	}
 
 
5372}
5373
 
5374static void update_blocked_averages(int cpu)
5375{
5376	struct rq *rq = cpu_rq(cpu);
5377	struct cfs_rq *cfs_rq;
5378	unsigned long flags;
5379
5380	raw_spin_lock_irqsave(&rq->lock, flags);
5381	update_rq_clock(rq);
 
5382	/*
5383	 * Iterates the task_group tree in a bottom up fashion, see
5384	 * list_add_leaf_cfs_rq() for details.
5385	 */
5386	for_each_leaf_cfs_rq(rq, cfs_rq) {
5387		/*
5388		 * Note: We may want to consider periodically releasing
5389		 * rq->lock about these updates so that creating many task
5390		 * groups does not result in continually extending hold time.
5391		 */
5392		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5393	}
5394
 
 
 
5395	raw_spin_unlock_irqrestore(&rq->lock, flags);
5396}
5397
5398/*
5399 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5400 * This needs to be done in a top-down fashion because the load of a child
5401 * group is a fraction of its parents load.
5402 */
5403static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5404{
5405	struct rq *rq = rq_of(cfs_rq);
5406	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5407	unsigned long now = jiffies;
5408	unsigned long load;
5409
5410	if (cfs_rq->last_h_load_update == now)
5411		return;
5412
5413	cfs_rq->h_load_next = NULL;
5414	for_each_sched_entity(se) {
5415		cfs_rq = cfs_rq_of(se);
5416		cfs_rq->h_load_next = se;
5417		if (cfs_rq->last_h_load_update == now)
5418			break;
5419	}
5420
5421	if (!se) {
5422		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5423		cfs_rq->last_h_load_update = now;
5424	}
5425
5426	while ((se = cfs_rq->h_load_next) != NULL) {
5427		load = cfs_rq->h_load;
5428		load = div64_ul(load * se->avg.load_avg_contrib,
5429				cfs_rq->runnable_load_avg + 1);
5430		cfs_rq = group_cfs_rq(se);
5431		cfs_rq->h_load = load;
5432		cfs_rq->last_h_load_update = now;
5433	}
5434}
5435
5436static unsigned long task_h_load(struct task_struct *p)
5437{
5438	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5439
5440	update_cfs_rq_h_load(cfs_rq);
5441	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5442			cfs_rq->runnable_load_avg + 1);
5443}
5444#else
5445static inline void update_blocked_averages(int cpu)
5446{
 
 
 
 
 
 
 
 
5447}
5448
5449static unsigned long task_h_load(struct task_struct *p)
5450{
5451	return p->se.avg.load_avg_contrib;
5452}
5453#endif
5454
5455/********** Helpers for find_busiest_group ************************/
 
 
 
 
 
 
 
5456/*
5457 * sg_lb_stats - stats of a sched_group required for load_balancing
5458 */
5459struct sg_lb_stats {
5460	unsigned long avg_load; /*Avg load across the CPUs of the group */
5461	unsigned long group_load; /* Total load over the CPUs of the group */
5462	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5463	unsigned long load_per_task;
5464	unsigned long group_power;
 
5465	unsigned int sum_nr_running; /* Nr tasks running in the group */
5466	unsigned int group_capacity;
5467	unsigned int idle_cpus;
5468	unsigned int group_weight;
5469	int group_imb; /* Is there an imbalance in the group ? */
5470	int group_has_capacity; /* Is there extra capacity in the group? */
5471#ifdef CONFIG_NUMA_BALANCING
5472	unsigned int nr_numa_running;
5473	unsigned int nr_preferred_running;
5474#endif
5475};
5476
5477/*
5478 * sd_lb_stats - Structure to store the statistics of a sched_domain
5479 *		 during load balancing.
5480 */
5481struct sd_lb_stats {
5482	struct sched_group *busiest;	/* Busiest group in this sd */
5483	struct sched_group *local;	/* Local group in this sd */
5484	unsigned long total_load;	/* Total load of all groups in sd */
5485	unsigned long total_pwr;	/* Total power of all groups in sd */
5486	unsigned long avg_load;	/* Average load across all groups in sd */
5487
5488	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5489	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5490};
5491
5492static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5493{
5494	/*
5495	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5496	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5497	 * We must however clear busiest_stat::avg_load because
5498	 * update_sd_pick_busiest() reads this before assignment.
5499	 */
5500	*sds = (struct sd_lb_stats){
5501		.busiest = NULL,
5502		.local = NULL,
5503		.total_load = 0UL,
5504		.total_pwr = 0UL,
5505		.busiest_stat = {
5506			.avg_load = 0UL,
 
 
5507		},
5508	};
5509}
5510
5511/**
5512 * get_sd_load_idx - Obtain the load index for a given sched domain.
5513 * @sd: The sched_domain whose load_idx is to be obtained.
5514 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5515 *
5516 * Return: The load index.
5517 */
5518static inline int get_sd_load_idx(struct sched_domain *sd,
5519					enum cpu_idle_type idle)
5520{
5521	int load_idx;
5522
5523	switch (idle) {
5524	case CPU_NOT_IDLE:
5525		load_idx = sd->busy_idx;
5526		break;
5527
5528	case CPU_NEWLY_IDLE:
5529		load_idx = sd->newidle_idx;
5530		break;
5531	default:
5532		load_idx = sd->idle_idx;
5533		break;
5534	}
5535
5536	return load_idx;
5537}
5538
5539static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5540{
5541	return SCHED_POWER_SCALE;
5542}
5543
5544unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5545{
5546	return default_scale_freq_power(sd, cpu);
5547}
5548
5549static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5550{
5551	unsigned long weight = sd->span_weight;
5552	unsigned long smt_gain = sd->smt_gain;
5553
5554	smt_gain /= weight;
5555
5556	return smt_gain;
5557}
5558
5559unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5560{
5561	return default_scale_smt_power(sd, cpu);
5562}
5563
5564static unsigned long scale_rt_power(int cpu)
5565{
5566	struct rq *rq = cpu_rq(cpu);
5567	u64 total, available, age_stamp, avg;
 
5568
5569	/*
5570	 * Since we're reading these variables without serialization make sure
5571	 * we read them once before doing sanity checks on them.
5572	 */
5573	age_stamp = ACCESS_ONCE(rq->age_stamp);
5574	avg = ACCESS_ONCE(rq->rt_avg);
 
5575
5576	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
 
5577
5578	if (unlikely(total < avg)) {
5579		/* Ensures that power won't end up being negative */
5580		available = 0;
5581	} else {
5582		available = total - avg;
5583	}
5584
5585	if (unlikely((s64)total < SCHED_POWER_SCALE))
5586		total = SCHED_POWER_SCALE;
5587
5588	total >>= SCHED_POWER_SHIFT;
 
5589
5590	return div_u64(available, total);
5591}
5592
5593static void update_cpu_power(struct sched_domain *sd, int cpu)
5594{
5595	unsigned long weight = sd->span_weight;
5596	unsigned long power = SCHED_POWER_SCALE;
5597	struct sched_group *sdg = sd->groups;
5598
5599	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5600		if (sched_feat(ARCH_POWER))
5601			power *= arch_scale_smt_power(sd, cpu);
5602		else
5603			power *= default_scale_smt_power(sd, cpu);
5604
5605		power >>= SCHED_POWER_SHIFT;
5606	}
5607
5608	sdg->sgp->power_orig = power;
5609
5610	if (sched_feat(ARCH_POWER))
5611		power *= arch_scale_freq_power(sd, cpu);
5612	else
5613		power *= default_scale_freq_power(sd, cpu);
5614
5615	power >>= SCHED_POWER_SHIFT;
5616
5617	power *= scale_rt_power(cpu);
5618	power >>= SCHED_POWER_SHIFT;
5619
5620	if (!power)
5621		power = 1;
5622
5623	cpu_rq(cpu)->cpu_power = power;
5624	sdg->sgp->power = power;
5625}
5626
5627void update_group_power(struct sched_domain *sd, int cpu)
5628{
5629	struct sched_domain *child = sd->child;
5630	struct sched_group *group, *sdg = sd->groups;
5631	unsigned long power, power_orig;
5632	unsigned long interval;
5633
5634	interval = msecs_to_jiffies(sd->balance_interval);
5635	interval = clamp(interval, 1UL, max_load_balance_interval);
5636	sdg->sgp->next_update = jiffies + interval;
5637
5638	if (!child) {
5639		update_cpu_power(sd, cpu);
5640		return;
5641	}
5642
5643	power_orig = power = 0;
5644
5645	if (child->flags & SD_OVERLAP) {
5646		/*
5647		 * SD_OVERLAP domains cannot assume that child groups
5648		 * span the current group.
5649		 */
5650
5651		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5652			struct sched_group_power *sgp;
5653			struct rq *rq = cpu_rq(cpu);
5654
5655			/*
5656			 * build_sched_domains() -> init_sched_groups_power()
5657			 * gets here before we've attached the domains to the
5658			 * runqueues.
5659			 *
5660			 * Use power_of(), which is set irrespective of domains
5661			 * in update_cpu_power().
5662			 *
5663			 * This avoids power/power_orig from being 0 and
5664			 * causing divide-by-zero issues on boot.
5665			 *
5666			 * Runtime updates will correct power_orig.
5667			 */
5668			if (unlikely(!rq->sd)) {
5669				power_orig += power_of(cpu);
5670				power += power_of(cpu);
5671				continue;
5672			}
5673
5674			sgp = rq->sd->groups->sgp;
5675			power_orig += sgp->power_orig;
5676			power += sgp->power;
5677		}
5678	} else  {
5679		/*
5680		 * !SD_OVERLAP domains can assume that child groups
5681		 * span the current group.
5682		 */ 
5683
5684		group = child->groups;
5685		do {
5686			power_orig += group->sgp->power_orig;
5687			power += group->sgp->power;
5688			group = group->next;
5689		} while (group != child->groups);
5690	}
5691
5692	sdg->sgp->power_orig = power_orig;
5693	sdg->sgp->power = power;
5694}
5695
5696/*
5697 * Try and fix up capacity for tiny siblings, this is needed when
5698 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5699 * which on its own isn't powerful enough.
5700 *
5701 * See update_sd_pick_busiest() and check_asym_packing().
5702 */
5703static inline int
5704fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5705{
5706	/*
5707	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5708	 */
5709	if (!(sd->flags & SD_SHARE_CPUPOWER))
5710		return 0;
5711
5712	/*
5713	 * If ~90% of the cpu_power is still there, we're good.
5714	 */
5715	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5716		return 1;
5717
5718	return 0;
5719}
5720
5721/*
5722 * Group imbalance indicates (and tries to solve) the problem where balancing
5723 * groups is inadequate due to tsk_cpus_allowed() constraints.
5724 *
5725 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5726 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5727 * Something like:
5728 *
5729 * 	{ 0 1 2 3 } { 4 5 6 7 }
5730 * 	        *     * * *
5731 *
5732 * If we were to balance group-wise we'd place two tasks in the first group and
5733 * two tasks in the second group. Clearly this is undesired as it will overload
5734 * cpu 3 and leave one of the cpus in the second group unused.
5735 *
5736 * The current solution to this issue is detecting the skew in the first group
5737 * by noticing the lower domain failed to reach balance and had difficulty
5738 * moving tasks due to affinity constraints.
5739 *
5740 * When this is so detected; this group becomes a candidate for busiest; see
5741 * update_sd_pick_busiest(). And calculate_imbalance() and
5742 * find_busiest_group() avoid some of the usual balance conditions to allow it
5743 * to create an effective group imbalance.
5744 *
5745 * This is a somewhat tricky proposition since the next run might not find the
5746 * group imbalance and decide the groups need to be balanced again. A most
5747 * subtle and fragile situation.
5748 */
5749
5750static inline int sg_imbalanced(struct sched_group *group)
5751{
5752	return group->sgp->imbalance;
5753}
5754
5755/*
5756 * Compute the group capacity.
5757 *
5758 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5759 * first dividing out the smt factor and computing the actual number of cores
5760 * and limit power unit capacity with that.
 
 
 
 
 
5761 */
5762static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
 
5763{
5764	unsigned int capacity, smt, cpus;
5765	unsigned int power, power_orig;
5766
5767	power = group->sgp->power;
5768	power_orig = group->sgp->power_orig;
5769	cpus = group->group_weight;
5770
5771	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5772	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5773	capacity = cpus / smt; /* cores */
5774
5775	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5776	if (!capacity)
5777		capacity = fix_small_capacity(env->sd, group);
 
 
 
 
 
 
 
 
 
 
5778
5779	return capacity;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5780}
5781
5782/**
5783 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5784 * @env: The load balancing environment.
5785 * @group: sched_group whose statistics are to be updated.
5786 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5787 * @local_group: Does group contain this_cpu.
5788 * @sgs: variable to hold the statistics for this group.
 
5789 */
5790static inline void update_sg_lb_stats(struct lb_env *env,
5791			struct sched_group *group, int load_idx,
5792			int local_group, struct sg_lb_stats *sgs)
 
5793{
5794	unsigned long load;
5795	int i;
5796
5797	memset(sgs, 0, sizeof(*sgs));
5798
5799	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5800		struct rq *rq = cpu_rq(i);
5801
5802		/* Bias balancing toward cpus of our domain */
5803		if (local_group)
5804			load = target_load(i, load_idx);
5805		else
5806			load = source_load(i, load_idx);
5807
5808		sgs->group_load += load;
5809		sgs->sum_nr_running += rq->nr_running;
 
 
 
 
 
 
5810#ifdef CONFIG_NUMA_BALANCING
5811		sgs->nr_numa_running += rq->nr_numa_running;
5812		sgs->nr_preferred_running += rq->nr_preferred_running;
5813#endif
5814		sgs->sum_weighted_load += weighted_cpuload(i);
5815		if (idle_cpu(i))
 
 
 
5816			sgs->idle_cpus++;
5817	}
5818
5819	/* Adjust by relative CPU power of the group */
5820	sgs->group_power = group->sgp->power;
5821	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5822
5823	if (sgs->sum_nr_running)
5824		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5825
5826	sgs->group_weight = group->group_weight;
5827
5828	sgs->group_imb = sg_imbalanced(group);
5829	sgs->group_capacity = sg_capacity(env, group);
5830
5831	if (sgs->group_capacity > sgs->sum_nr_running)
5832		sgs->group_has_capacity = 1;
5833}
5834
5835/**
5836 * update_sd_pick_busiest - return 1 on busiest group
5837 * @env: The load balancing environment.
5838 * @sds: sched_domain statistics
5839 * @sg: sched_group candidate to be checked for being the busiest
5840 * @sgs: sched_group statistics
5841 *
5842 * Determine if @sg is a busier group than the previously selected
5843 * busiest group.
5844 *
5845 * Return: %true if @sg is a busier group than the previously selected
5846 * busiest group. %false otherwise.
5847 */
5848static bool update_sd_pick_busiest(struct lb_env *env,
5849				   struct sd_lb_stats *sds,
5850				   struct sched_group *sg,
5851				   struct sg_lb_stats *sgs)
5852{
5853	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5854		return false;
5855
5856	if (sgs->sum_nr_running > sgs->group_capacity)
5857		return true;
5858
5859	if (sgs->group_imb)
 
 
 
 
 
 
 
5860		return true;
5861
5862	/*
5863	 * ASYM_PACKING needs to move all the work to the lowest
5864	 * numbered CPUs in the group, therefore mark all groups
5865	 * higher than ourself as busy.
5866	 */
5867	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5868	    env->dst_cpu < group_first_cpu(sg)) {
5869		if (!sds->busiest)
5870			return true;
5871
5872		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5873			return true;
5874	}
5875
5876	return false;
5877}
5878
5879#ifdef CONFIG_NUMA_BALANCING
5880static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5881{
5882	if (sgs->sum_nr_running > sgs->nr_numa_running)
5883		return regular;
5884	if (sgs->sum_nr_running > sgs->nr_preferred_running)
5885		return remote;
5886	return all;
5887}
5888
5889static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5890{
5891	if (rq->nr_running > rq->nr_numa_running)
5892		return regular;
5893	if (rq->nr_running > rq->nr_preferred_running)
5894		return remote;
5895	return all;
5896}
5897#else
5898static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5899{
5900	return all;
5901}
5902
5903static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5904{
5905	return regular;
5906}
5907#endif /* CONFIG_NUMA_BALANCING */
5908
5909/**
5910 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5911 * @env: The load balancing environment.
5912 * @sds: variable to hold the statistics for this sched_domain.
5913 */
5914static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5915{
5916	struct sched_domain *child = env->sd->child;
5917	struct sched_group *sg = env->sd->groups;
5918	struct sg_lb_stats tmp_sgs;
5919	int load_idx, prefer_sibling = 0;
 
5920
5921	if (child && child->flags & SD_PREFER_SIBLING)
5922		prefer_sibling = 1;
5923
5924	load_idx = get_sd_load_idx(env->sd, env->idle);
5925
5926	do {
5927		struct sg_lb_stats *sgs = &tmp_sgs;
5928		int local_group;
5929
5930		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5931		if (local_group) {
5932			sds->local = sg;
5933			sgs = &sds->local_stat;
5934
5935			if (env->idle != CPU_NEWLY_IDLE ||
5936			    time_after_eq(jiffies, sg->sgp->next_update))
5937				update_group_power(env->sd, env->dst_cpu);
5938		}
5939
5940		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
 
5941
5942		if (local_group)
5943			goto next_group;
5944
5945		/*
5946		 * In case the child domain prefers tasks go to siblings
5947		 * first, lower the sg capacity to one so that we'll try
5948		 * and move all the excess tasks away. We lower the capacity
5949		 * of a group only if the local group has the capacity to fit
5950		 * these excess tasks, i.e. nr_running < group_capacity. The
5951		 * extra check prevents the case where you always pull from the
5952		 * heaviest group when it is already under-utilized (possible
5953		 * with a large weight task outweighs the tasks on the system).
5954		 */
5955		if (prefer_sibling && sds->local &&
5956		    sds->local_stat.group_has_capacity)
5957			sgs->group_capacity = min(sgs->group_capacity, 1U);
 
 
 
5958
5959		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5960			sds->busiest = sg;
5961			sds->busiest_stat = *sgs;
5962		}
5963
5964next_group:
5965		/* Now, start updating sd_lb_stats */
5966		sds->total_load += sgs->group_load;
5967		sds->total_pwr += sgs->group_power;
5968
5969		sg = sg->next;
5970	} while (sg != env->sd->groups);
5971
5972	if (env->sd->flags & SD_NUMA)
5973		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 
 
 
 
 
 
 
5974}
5975
5976/**
5977 * check_asym_packing - Check to see if the group is packed into the
5978 *			sched doman.
5979 *
5980 * This is primarily intended to used at the sibling level.  Some
5981 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
5982 * case of POWER7, it can move to lower SMT modes only when higher
5983 * threads are idle.  When in lower SMT modes, the threads will
5984 * perform better since they share less core resources.  Hence when we
5985 * have idle threads, we want them to be the higher ones.
5986 *
5987 * This packing function is run on idle threads.  It checks to see if
5988 * the busiest CPU in this domain (core in the P7 case) has a higher
5989 * CPU number than the packing function is being run on.  Here we are
5990 * assuming lower CPU number will be equivalent to lower a SMT thread
5991 * number.
5992 *
5993 * Return: 1 when packing is required and a task should be moved to
5994 * this CPU.  The amount of the imbalance is returned in *imbalance.
5995 *
5996 * @env: The load balancing environment.
5997 * @sds: Statistics of the sched_domain which is to be packed
5998 */
5999static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6000{
6001	int busiest_cpu;
6002
6003	if (!(env->sd->flags & SD_ASYM_PACKING))
6004		return 0;
6005
6006	if (!sds->busiest)
6007		return 0;
6008
6009	busiest_cpu = group_first_cpu(sds->busiest);
6010	if (env->dst_cpu > busiest_cpu)
6011		return 0;
6012
6013	env->imbalance = DIV_ROUND_CLOSEST(
6014		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6015		SCHED_POWER_SCALE);
6016
6017	return 1;
6018}
6019
6020/**
6021 * fix_small_imbalance - Calculate the minor imbalance that exists
6022 *			amongst the groups of a sched_domain, during
6023 *			load balancing.
6024 * @env: The load balancing environment.
6025 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6026 */
6027static inline
6028void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6029{
6030	unsigned long tmp, pwr_now = 0, pwr_move = 0;
6031	unsigned int imbn = 2;
6032	unsigned long scaled_busy_load_per_task;
6033	struct sg_lb_stats *local, *busiest;
6034
6035	local = &sds->local_stat;
6036	busiest = &sds->busiest_stat;
6037
6038	if (!local->sum_nr_running)
6039		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6040	else if (busiest->load_per_task > local->load_per_task)
6041		imbn = 1;
6042
6043	scaled_busy_load_per_task =
6044		(busiest->load_per_task * SCHED_POWER_SCALE) /
6045		busiest->group_power;
6046
6047	if (busiest->avg_load + scaled_busy_load_per_task >=
6048	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6049		env->imbalance = busiest->load_per_task;
6050		return;
6051	}
6052
6053	/*
6054	 * OK, we don't have enough imbalance to justify moving tasks,
6055	 * however we may be able to increase total CPU power used by
6056	 * moving them.
6057	 */
6058
6059	pwr_now += busiest->group_power *
6060			min(busiest->load_per_task, busiest->avg_load);
6061	pwr_now += local->group_power *
6062			min(local->load_per_task, local->avg_load);
6063	pwr_now /= SCHED_POWER_SCALE;
6064
6065	/* Amount of load we'd subtract */
6066	if (busiest->avg_load > scaled_busy_load_per_task) {
6067		pwr_move += busiest->group_power *
6068			    min(busiest->load_per_task,
6069				busiest->avg_load - scaled_busy_load_per_task);
6070	}
6071
6072	/* Amount of load we'd add */
6073	if (busiest->avg_load * busiest->group_power <
6074	    busiest->load_per_task * SCHED_POWER_SCALE) {
6075		tmp = (busiest->avg_load * busiest->group_power) /
6076		      local->group_power;
6077	} else {
6078		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079		      local->group_power;
6080	}
6081	pwr_move += local->group_power *
6082		    min(local->load_per_task, local->avg_load + tmp);
6083	pwr_move /= SCHED_POWER_SCALE;
6084
6085	/* Move if we gain throughput */
6086	if (pwr_move > pwr_now)
6087		env->imbalance = busiest->load_per_task;
6088}
6089
6090/**
6091 * calculate_imbalance - Calculate the amount of imbalance present within the
6092 *			 groups of a given sched_domain during load balance.
6093 * @env: load balance environment
6094 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6095 */
6096static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6097{
6098	unsigned long max_pull, load_above_capacity = ~0UL;
6099	struct sg_lb_stats *local, *busiest;
6100
6101	local = &sds->local_stat;
6102	busiest = &sds->busiest_stat;
6103
6104	if (busiest->group_imb) {
6105		/*
6106		 * In the group_imb case we cannot rely on group-wide averages
6107		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6108		 */
6109		busiest->load_per_task =
6110			min(busiest->load_per_task, sds->avg_load);
6111	}
6112
6113	/*
6114	 * In the presence of smp nice balancing, certain scenarios can have
6115	 * max load less than avg load(as we skip the groups at or below
6116	 * its cpu_power, while calculating max_load..)
6117	 */
6118	if (busiest->avg_load <= sds->avg_load ||
6119	    local->avg_load >= sds->avg_load) {
6120		env->imbalance = 0;
6121		return fix_small_imbalance(env, sds);
6122	}
6123
6124	if (!busiest->group_imb) {
6125		/*
6126		 * Don't want to pull so many tasks that a group would go idle.
6127		 * Except of course for the group_imb case, since then we might
6128		 * have to drop below capacity to reach cpu-load equilibrium.
6129		 */
6130		load_above_capacity =
6131			(busiest->sum_nr_running - busiest->group_capacity);
6132
6133		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6134		load_above_capacity /= busiest->group_power;
6135	}
6136
6137	/*
6138	 * We're trying to get all the cpus to the average_load, so we don't
6139	 * want to push ourselves above the average load, nor do we wish to
6140	 * reduce the max loaded cpu below the average load. At the same time,
6141	 * we also don't want to reduce the group load below the group capacity
6142	 * (so that we can implement power-savings policies etc). Thus we look
6143	 * for the minimum possible imbalance.
6144	 */
6145	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6146
6147	/* How much load to actually move to equalise the imbalance */
6148	env->imbalance = min(
6149		max_pull * busiest->group_power,
6150		(sds->avg_load - local->avg_load) * local->group_power
6151	) / SCHED_POWER_SCALE;
6152
6153	/*
6154	 * if *imbalance is less than the average load per runnable task
6155	 * there is no guarantee that any tasks will be moved so we'll have
6156	 * a think about bumping its value to force at least one task to be
6157	 * moved
6158	 */
6159	if (env->imbalance < busiest->load_per_task)
6160		return fix_small_imbalance(env, sds);
6161}
6162
6163/******* find_busiest_group() helpers end here *********************/
6164
6165/**
6166 * find_busiest_group - Returns the busiest group within the sched_domain
6167 * if there is an imbalance. If there isn't an imbalance, and
6168 * the user has opted for power-savings, it returns a group whose
6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6170 * such a group exists.
6171 *
6172 * Also calculates the amount of weighted load which should be moved
6173 * to restore balance.
6174 *
6175 * @env: The load balancing environment.
6176 *
6177 * Return:	- The busiest group if imbalance exists.
6178 *		- If no imbalance and user has opted for power-savings balance,
6179 *		   return the least loaded group whose CPUs can be
6180 *		   put to idle by rebalancing its tasks onto our group.
6181 */
6182static struct sched_group *find_busiest_group(struct lb_env *env)
6183{
6184	struct sg_lb_stats *local, *busiest;
6185	struct sd_lb_stats sds;
6186
6187	init_sd_lb_stats(&sds);
6188
6189	/*
6190	 * Compute the various statistics relavent for load balancing at
6191	 * this level.
6192	 */
6193	update_sd_lb_stats(env, &sds);
6194	local = &sds.local_stat;
6195	busiest = &sds.busiest_stat;
6196
 
6197	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6198	    check_asym_packing(env, &sds))
6199		return sds.busiest;
6200
6201	/* There is no busy sibling group to pull tasks from */
6202	if (!sds.busiest || busiest->sum_nr_running == 0)
6203		goto out_balanced;
6204
6205	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
 
6206
6207	/*
6208	 * If the busiest group is imbalanced the below checks don't
6209	 * work because they assume all things are equal, which typically
6210	 * isn't true due to cpus_allowed constraints and the like.
6211	 */
6212	if (busiest->group_imb)
6213		goto force_balance;
6214
6215	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6216	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6217	    !busiest->group_has_capacity)
6218		goto force_balance;
6219
6220	/*
6221	 * If the local group is more busy than the selected busiest group
6222	 * don't try and pull any tasks.
6223	 */
6224	if (local->avg_load >= busiest->avg_load)
6225		goto out_balanced;
6226
6227	/*
6228	 * Don't pull any tasks if this group is already above the domain
6229	 * average load.
6230	 */
6231	if (local->avg_load >= sds.avg_load)
6232		goto out_balanced;
6233
6234	if (env->idle == CPU_IDLE) {
6235		/*
6236		 * This cpu is idle. If the busiest group load doesn't
6237		 * have more tasks than the number of available cpu's and
6238		 * there is no imbalance between this and busiest group
6239		 * wrt to idle cpu's, it is balanced.
 
6240		 */
6241		if ((local->idle_cpus < busiest->idle_cpus) &&
6242		    busiest->sum_nr_running <= busiest->group_weight)
6243			goto out_balanced;
6244	} else {
6245		/*
6246		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6247		 * imbalance_pct to be conservative.
6248		 */
6249		if (100 * busiest->avg_load <=
6250				env->sd->imbalance_pct * local->avg_load)
6251			goto out_balanced;
6252	}
6253
6254force_balance:
6255	/* Looks like there is an imbalance. Compute it */
6256	calculate_imbalance(env, &sds);
6257	return sds.busiest;
6258
6259out_balanced:
6260	env->imbalance = 0;
6261	return NULL;
6262}
6263
6264/*
6265 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6266 */
6267static struct rq *find_busiest_queue(struct lb_env *env,
6268				     struct sched_group *group)
6269{
6270	struct rq *busiest = NULL, *rq;
6271	unsigned long busiest_load = 0, busiest_power = 1;
6272	int i;
6273
6274	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6275		unsigned long power, capacity, wl;
6276		enum fbq_type rt;
6277
6278		rq = cpu_rq(i);
6279		rt = fbq_classify_rq(rq);
6280
6281		/*
6282		 * We classify groups/runqueues into three groups:
6283		 *  - regular: there are !numa tasks
6284		 *  - remote:  there are numa tasks that run on the 'wrong' node
6285		 *  - all:     there is no distinction
6286		 *
6287		 * In order to avoid migrating ideally placed numa tasks,
6288		 * ignore those when there's better options.
6289		 *
6290		 * If we ignore the actual busiest queue to migrate another
6291		 * task, the next balance pass can still reduce the busiest
6292		 * queue by moving tasks around inside the node.
6293		 *
6294		 * If we cannot move enough load due to this classification
6295		 * the next pass will adjust the group classification and
6296		 * allow migration of more tasks.
6297		 *
6298		 * Both cases only affect the total convergence complexity.
6299		 */
6300		if (rt > env->fbq_type)
6301			continue;
6302
6303		power = power_of(i);
6304		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6305		if (!capacity)
6306			capacity = fix_small_capacity(env->sd, group);
6307
6308		wl = weighted_cpuload(i);
6309
6310		/*
6311		 * When comparing with imbalance, use weighted_cpuload()
6312		 * which is not scaled with the cpu power.
6313		 */
6314		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
 
 
6315			continue;
6316
6317		/*
6318		 * For the load comparisons with the other cpu's, consider
6319		 * the weighted_cpuload() scaled with the cpu power, so that
6320		 * the load can be moved away from the cpu that is potentially
6321		 * running at a lower capacity.
6322		 *
6323		 * Thus we're looking for max(wl_i / power_i), crosswise
6324		 * multiplication to rid ourselves of the division works out
6325		 * to: wl_i * power_j > wl_j * power_i;  where j is our
6326		 * previous maximum.
6327		 */
6328		if (wl * busiest_power > busiest_load * power) {
6329			busiest_load = wl;
6330			busiest_power = power;
6331			busiest = rq;
6332		}
6333	}
6334
6335	return busiest;
6336}
6337
6338/*
6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6340 * so long as it is large enough.
6341 */
6342#define MAX_PINNED_INTERVAL	512
6343
6344/* Working cpumask for load_balance and load_balance_newidle. */
6345DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6346
6347static int need_active_balance(struct lb_env *env)
6348{
6349	struct sched_domain *sd = env->sd;
6350
6351	if (env->idle == CPU_NEWLY_IDLE) {
6352
6353		/*
6354		 * ASYM_PACKING needs to force migrate tasks from busy but
6355		 * higher numbered CPUs in order to pack all tasks in the
6356		 * lowest numbered CPUs.
6357		 */
6358		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6359			return 1;
6360	}
6361
 
 
 
 
 
 
 
 
 
 
 
 
 
6362	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6363}
6364
6365static int active_load_balance_cpu_stop(void *data);
6366
6367static int should_we_balance(struct lb_env *env)
6368{
6369	struct sched_group *sg = env->sd->groups;
6370	struct cpumask *sg_cpus, *sg_mask;
6371	int cpu, balance_cpu = -1;
6372
6373	/*
6374	 * In the newly idle case, we will allow all the cpu's
6375	 * to do the newly idle load balance.
6376	 */
6377	if (env->idle == CPU_NEWLY_IDLE)
6378		return 1;
6379
6380	sg_cpus = sched_group_cpus(sg);
6381	sg_mask = sched_group_mask(sg);
6382	/* Try to find first idle cpu */
6383	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6384		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6385			continue;
6386
6387		balance_cpu = cpu;
6388		break;
6389	}
6390
6391	if (balance_cpu == -1)
6392		balance_cpu = group_balance_cpu(sg);
6393
6394	/*
6395	 * First idle cpu or the first cpu(busiest) in this sched group
6396	 * is eligible for doing load balancing at this and above domains.
6397	 */
6398	return balance_cpu == env->dst_cpu;
6399}
6400
6401/*
6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6403 * tasks if there is an imbalance.
6404 */
6405static int load_balance(int this_cpu, struct rq *this_rq,
6406			struct sched_domain *sd, enum cpu_idle_type idle,
6407			int *continue_balancing)
6408{
6409	int ld_moved, cur_ld_moved, active_balance = 0;
6410	struct sched_domain *sd_parent = sd->parent;
6411	struct sched_group *group;
6412	struct rq *busiest;
6413	unsigned long flags;
6414	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6415
6416	struct lb_env env = {
6417		.sd		= sd,
6418		.dst_cpu	= this_cpu,
6419		.dst_rq		= this_rq,
6420		.dst_grpmask    = sched_group_cpus(sd->groups),
6421		.idle		= idle,
6422		.loop_break	= sched_nr_migrate_break,
6423		.cpus		= cpus,
6424		.fbq_type	= all,
 
6425	};
6426
6427	/*
6428	 * For NEWLY_IDLE load_balancing, we don't need to consider
6429	 * other cpus in our group
6430	 */
6431	if (idle == CPU_NEWLY_IDLE)
6432		env.dst_grpmask = NULL;
6433
6434	cpumask_copy(cpus, cpu_active_mask);
6435
6436	schedstat_inc(sd, lb_count[idle]);
6437
6438redo:
6439	if (!should_we_balance(&env)) {
6440		*continue_balancing = 0;
6441		goto out_balanced;
6442	}
6443
6444	group = find_busiest_group(&env);
6445	if (!group) {
6446		schedstat_inc(sd, lb_nobusyg[idle]);
6447		goto out_balanced;
6448	}
6449
6450	busiest = find_busiest_queue(&env, group);
6451	if (!busiest) {
6452		schedstat_inc(sd, lb_nobusyq[idle]);
6453		goto out_balanced;
6454	}
6455
6456	BUG_ON(busiest == env.dst_rq);
6457
6458	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6459
 
 
 
6460	ld_moved = 0;
6461	if (busiest->nr_running > 1) {
6462		/*
6463		 * Attempt to move tasks. If find_busiest_group has found
6464		 * an imbalance but busiest->nr_running <= 1, the group is
6465		 * still unbalanced. ld_moved simply stays zero, so it is
6466		 * correctly treated as an imbalance.
6467		 */
6468		env.flags |= LBF_ALL_PINNED;
6469		env.src_cpu   = busiest->cpu;
6470		env.src_rq    = busiest;
6471		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472
6473more_balance:
6474		local_irq_save(flags);
6475		double_rq_lock(env.dst_rq, busiest);
6476
6477		/*
6478		 * cur_ld_moved - load moved in current iteration
6479		 * ld_moved     - cumulative load moved across iterations
6480		 */
6481		cur_ld_moved = move_tasks(&env);
6482		ld_moved += cur_ld_moved;
6483		double_rq_unlock(env.dst_rq, busiest);
6484		local_irq_restore(flags);
6485
6486		/*
6487		 * some other cpu did the load balance for us.
 
 
 
 
6488		 */
6489		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6490			resched_cpu(env.dst_cpu);
 
 
 
 
 
 
 
6491
6492		if (env.flags & LBF_NEED_BREAK) {
6493			env.flags &= ~LBF_NEED_BREAK;
6494			goto more_balance;
6495		}
6496
6497		/*
6498		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6499		 * us and move them to an alternate dst_cpu in our sched_group
6500		 * where they can run. The upper limit on how many times we
6501		 * iterate on same src_cpu is dependent on number of cpus in our
6502		 * sched_group.
6503		 *
6504		 * This changes load balance semantics a bit on who can move
6505		 * load to a given_cpu. In addition to the given_cpu itself
6506		 * (or a ilb_cpu acting on its behalf where given_cpu is
6507		 * nohz-idle), we now have balance_cpu in a position to move
6508		 * load to given_cpu. In rare situations, this may cause
6509		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6510		 * _independently_ and at _same_ time to move some load to
6511		 * given_cpu) causing exceess load to be moved to given_cpu.
6512		 * This however should not happen so much in practice and
6513		 * moreover subsequent load balance cycles should correct the
6514		 * excess load moved.
6515		 */
6516		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6517
6518			/* Prevent to re-select dst_cpu via env's cpus */
6519			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6520
6521			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6522			env.dst_cpu	 = env.new_dst_cpu;
6523			env.flags	&= ~LBF_DST_PINNED;
6524			env.loop	 = 0;
6525			env.loop_break	 = sched_nr_migrate_break;
6526
6527			/*
6528			 * Go back to "more_balance" rather than "redo" since we
6529			 * need to continue with same src_cpu.
6530			 */
6531			goto more_balance;
6532		}
6533
6534		/*
6535		 * We failed to reach balance because of affinity.
6536		 */
6537		if (sd_parent) {
6538			int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6539
6540			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6541				*group_imbalance = 1;
6542			} else if (*group_imbalance)
6543				*group_imbalance = 0;
6544		}
6545
6546		/* All tasks on this runqueue were pinned by CPU affinity */
6547		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6548			cpumask_clear_cpu(cpu_of(busiest), cpus);
6549			if (!cpumask_empty(cpus)) {
6550				env.loop = 0;
6551				env.loop_break = sched_nr_migrate_break;
6552				goto redo;
6553			}
6554			goto out_balanced;
6555		}
6556	}
6557
6558	if (!ld_moved) {
6559		schedstat_inc(sd, lb_failed[idle]);
6560		/*
6561		 * Increment the failure counter only on periodic balance.
6562		 * We do not want newidle balance, which can be very
6563		 * frequent, pollute the failure counter causing
6564		 * excessive cache_hot migrations and active balances.
6565		 */
6566		if (idle != CPU_NEWLY_IDLE)
6567			sd->nr_balance_failed++;
6568
6569		if (need_active_balance(&env)) {
6570			raw_spin_lock_irqsave(&busiest->lock, flags);
6571
6572			/* don't kick the active_load_balance_cpu_stop,
6573			 * if the curr task on busiest cpu can't be
6574			 * moved to this_cpu
6575			 */
6576			if (!cpumask_test_cpu(this_cpu,
6577					tsk_cpus_allowed(busiest->curr))) {
6578				raw_spin_unlock_irqrestore(&busiest->lock,
6579							    flags);
6580				env.flags |= LBF_ALL_PINNED;
6581				goto out_one_pinned;
6582			}
6583
6584			/*
6585			 * ->active_balance synchronizes accesses to
6586			 * ->active_balance_work.  Once set, it's cleared
6587			 * only after active load balance is finished.
6588			 */
6589			if (!busiest->active_balance) {
6590				busiest->active_balance = 1;
6591				busiest->push_cpu = this_cpu;
6592				active_balance = 1;
6593			}
6594			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6595
6596			if (active_balance) {
6597				stop_one_cpu_nowait(cpu_of(busiest),
6598					active_load_balance_cpu_stop, busiest,
6599					&busiest->active_balance_work);
6600			}
6601
6602			/*
6603			 * We've kicked active balancing, reset the failure
6604			 * counter.
6605			 */
6606			sd->nr_balance_failed = sd->cache_nice_tries+1;
6607		}
6608	} else
6609		sd->nr_balance_failed = 0;
6610
6611	if (likely(!active_balance)) {
6612		/* We were unbalanced, so reset the balancing interval */
6613		sd->balance_interval = sd->min_interval;
6614	} else {
6615		/*
6616		 * If we've begun active balancing, start to back off. This
6617		 * case may not be covered by the all_pinned logic if there
6618		 * is only 1 task on the busy runqueue (because we don't call
6619		 * move_tasks).
6620		 */
6621		if (sd->balance_interval < sd->max_interval)
6622			sd->balance_interval *= 2;
6623	}
6624
6625	goto out;
6626
6627out_balanced:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6628	schedstat_inc(sd, lb_balanced[idle]);
6629
6630	sd->nr_balance_failed = 0;
6631
6632out_one_pinned:
6633	/* tune up the balancing interval */
6634	if (((env.flags & LBF_ALL_PINNED) &&
6635			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6636			(sd->balance_interval < sd->max_interval))
6637		sd->balance_interval *= 2;
6638
6639	ld_moved = 0;
6640out:
6641	return ld_moved;
6642}
6643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6644/*
6645 * idle_balance is called by schedule() if this_cpu is about to become
6646 * idle. Attempts to pull tasks from other CPUs.
6647 */
6648static int idle_balance(struct rq *this_rq)
6649{
 
 
6650	struct sched_domain *sd;
6651	int pulled_task = 0;
6652	unsigned long next_balance = jiffies + HZ;
6653	u64 curr_cost = 0;
6654	int this_cpu = this_rq->cpu;
6655
6656	idle_enter_fair(this_rq);
6657
6658	/*
6659	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6660	 * measure the duration of idle_balance() as idle time.
6661	 */
6662	this_rq->idle_stamp = rq_clock(this_rq);
6663
6664	if (this_rq->avg_idle < sysctl_sched_migration_cost)
 
 
 
 
 
 
 
6665		goto out;
 
6666
6667	/*
6668	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6669	 */
6670	raw_spin_unlock(&this_rq->lock);
6671
6672	update_blocked_averages(this_cpu);
6673	rcu_read_lock();
6674	for_each_domain(this_cpu, sd) {
6675		unsigned long interval;
6676		int continue_balancing = 1;
6677		u64 t0, domain_cost;
6678
6679		if (!(sd->flags & SD_LOAD_BALANCE))
6680			continue;
6681
6682		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
 
6683			break;
 
6684
6685		if (sd->flags & SD_BALANCE_NEWIDLE) {
6686			t0 = sched_clock_cpu(this_cpu);
6687
6688			/* If we've pulled tasks over stop searching: */
6689			pulled_task = load_balance(this_cpu, this_rq,
6690						   sd, CPU_NEWLY_IDLE,
6691						   &continue_balancing);
6692
6693			domain_cost = sched_clock_cpu(this_cpu) - t0;
6694			if (domain_cost > sd->max_newidle_lb_cost)
6695				sd->max_newidle_lb_cost = domain_cost;
6696
6697			curr_cost += domain_cost;
6698		}
6699
6700		interval = msecs_to_jiffies(sd->balance_interval);
6701		if (time_after(next_balance, sd->last_balance + interval))
6702			next_balance = sd->last_balance + interval;
6703		if (pulled_task)
 
 
 
6704			break;
6705	}
6706	rcu_read_unlock();
6707
6708	raw_spin_lock(&this_rq->lock);
6709
6710	if (curr_cost > this_rq->max_idle_balance_cost)
6711		this_rq->max_idle_balance_cost = curr_cost;
6712
6713	/*
6714	 * While browsing the domains, we released the rq lock, a task could
6715	 * have been enqueued in the meantime. Since we're not going idle,
6716	 * pretend we pulled a task.
6717	 */
6718	if (this_rq->cfs.h_nr_running && !pulled_task)
6719		pulled_task = 1;
6720
6721	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6722		/*
6723		 * We are going idle. next_balance may be set based on
6724		 * a busy processor. So reset next_balance.
6725		 */
6726		this_rq->next_balance = next_balance;
6727	}
6728
6729out:
6730	/* Is there a task of a high priority class? */
6731	if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6732	    ((this_rq->stop && this_rq->stop->on_rq) ||
6733	     this_rq->dl.dl_nr_running ||
6734	     (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6735		pulled_task = -1;
6736
6737	if (pulled_task) {
6738		idle_exit_fair(this_rq);
6739		this_rq->idle_stamp = 0;
6740	}
6741
6742	return pulled_task;
6743}
6744
6745/*
6746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6747 * running tasks off the busiest CPU onto idle CPUs. It requires at
6748 * least 1 task to be running on each physical CPU where possible, and
6749 * avoids physical / logical imbalances.
6750 */
6751static int active_load_balance_cpu_stop(void *data)
6752{
6753	struct rq *busiest_rq = data;
6754	int busiest_cpu = cpu_of(busiest_rq);
6755	int target_cpu = busiest_rq->push_cpu;
6756	struct rq *target_rq = cpu_rq(target_cpu);
6757	struct sched_domain *sd;
 
6758
6759	raw_spin_lock_irq(&busiest_rq->lock);
6760
6761	/* make sure the requested cpu hasn't gone down in the meantime */
6762	if (unlikely(busiest_cpu != smp_processor_id() ||
6763		     !busiest_rq->active_balance))
6764		goto out_unlock;
6765
6766	/* Is there any task to move? */
6767	if (busiest_rq->nr_running <= 1)
6768		goto out_unlock;
6769
6770	/*
6771	 * This condition is "impossible", if it occurs
6772	 * we need to fix it. Originally reported by
6773	 * Bjorn Helgaas on a 128-cpu setup.
6774	 */
6775	BUG_ON(busiest_rq == target_rq);
6776
6777	/* move a task from busiest_rq to target_rq */
6778	double_lock_balance(busiest_rq, target_rq);
6779
6780	/* Search for an sd spanning us and the target CPU. */
6781	rcu_read_lock();
6782	for_each_domain(target_cpu, sd) {
6783		if ((sd->flags & SD_LOAD_BALANCE) &&
6784		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6785				break;
6786	}
6787
6788	if (likely(sd)) {
6789		struct lb_env env = {
6790			.sd		= sd,
6791			.dst_cpu	= target_cpu,
6792			.dst_rq		= target_rq,
6793			.src_cpu	= busiest_rq->cpu,
6794			.src_rq		= busiest_rq,
6795			.idle		= CPU_IDLE,
6796		};
6797
6798		schedstat_inc(sd, alb_count);
6799
6800		if (move_one_task(&env))
 
6801			schedstat_inc(sd, alb_pushed);
6802		else
6803			schedstat_inc(sd, alb_failed);
6804	}
6805	rcu_read_unlock();
6806	double_unlock_balance(busiest_rq, target_rq);
6807out_unlock:
6808	busiest_rq->active_balance = 0;
6809	raw_spin_unlock_irq(&busiest_rq->lock);
 
 
 
 
 
 
6810	return 0;
6811}
6812
6813static inline int on_null_domain(struct rq *rq)
6814{
6815	return unlikely(!rcu_dereference_sched(rq->sd));
6816}
6817
6818#ifdef CONFIG_NO_HZ_COMMON
6819/*
6820 * idle load balancing details
6821 * - When one of the busy CPUs notice that there may be an idle rebalancing
6822 *   needed, they will kick the idle load balancer, which then does idle
6823 *   load balancing for all the idle CPUs.
6824 */
6825static struct {
6826	cpumask_var_t idle_cpus_mask;
6827	atomic_t nr_cpus;
6828	unsigned long next_balance;     /* in jiffy units */
6829} nohz ____cacheline_aligned;
6830
6831static inline int find_new_ilb(void)
6832{
6833	int ilb = cpumask_first(nohz.idle_cpus_mask);
6834
6835	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6836		return ilb;
6837
6838	return nr_cpu_ids;
6839}
6840
6841/*
6842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6844 * CPU (if there is one).
6845 */
6846static void nohz_balancer_kick(void)
6847{
6848	int ilb_cpu;
6849
6850	nohz.next_balance++;
6851
6852	ilb_cpu = find_new_ilb();
6853
6854	if (ilb_cpu >= nr_cpu_ids)
6855		return;
6856
6857	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6858		return;
6859	/*
6860	 * Use smp_send_reschedule() instead of resched_cpu().
6861	 * This way we generate a sched IPI on the target cpu which
6862	 * is idle. And the softirq performing nohz idle load balance
6863	 * will be run before returning from the IPI.
6864	 */
6865	smp_send_reschedule(ilb_cpu);
6866	return;
6867}
6868
6869static inline void nohz_balance_exit_idle(int cpu)
6870{
6871	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6872		/*
6873		 * Completely isolated CPUs don't ever set, so we must test.
6874		 */
6875		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6876			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6877			atomic_dec(&nohz.nr_cpus);
6878		}
6879		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6880	}
6881}
6882
6883static inline void set_cpu_sd_state_busy(void)
6884{
6885	struct sched_domain *sd;
6886	int cpu = smp_processor_id();
6887
6888	rcu_read_lock();
6889	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6890
6891	if (!sd || !sd->nohz_idle)
6892		goto unlock;
6893	sd->nohz_idle = 0;
6894
6895	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6896unlock:
6897	rcu_read_unlock();
6898}
6899
6900void set_cpu_sd_state_idle(void)
6901{
6902	struct sched_domain *sd;
6903	int cpu = smp_processor_id();
6904
6905	rcu_read_lock();
6906	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6907
6908	if (!sd || sd->nohz_idle)
6909		goto unlock;
6910	sd->nohz_idle = 1;
6911
6912	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6913unlock:
6914	rcu_read_unlock();
6915}
6916
6917/*
6918 * This routine will record that the cpu is going idle with tick stopped.
6919 * This info will be used in performing idle load balancing in the future.
6920 */
6921void nohz_balance_enter_idle(int cpu)
6922{
6923	/*
6924	 * If this cpu is going down, then nothing needs to be done.
6925	 */
6926	if (!cpu_active(cpu))
6927		return;
6928
6929	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6930		return;
6931
6932	/*
6933	 * If we're a completely isolated CPU, we don't play.
6934	 */
6935	if (on_null_domain(cpu_rq(cpu)))
6936		return;
6937
6938	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6939	atomic_inc(&nohz.nr_cpus);
6940	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6941}
6942
6943static int sched_ilb_notifier(struct notifier_block *nfb,
6944					unsigned long action, void *hcpu)
6945{
6946	switch (action & ~CPU_TASKS_FROZEN) {
6947	case CPU_DYING:
6948		nohz_balance_exit_idle(smp_processor_id());
6949		return NOTIFY_OK;
6950	default:
6951		return NOTIFY_DONE;
6952	}
6953}
6954#endif
6955
6956static DEFINE_SPINLOCK(balancing);
6957
6958/*
6959 * Scale the max load_balance interval with the number of CPUs in the system.
6960 * This trades load-balance latency on larger machines for less cross talk.
6961 */
6962void update_max_interval(void)
6963{
6964	max_load_balance_interval = HZ*num_online_cpus()/10;
6965}
6966
6967/*
6968 * It checks each scheduling domain to see if it is due to be balanced,
6969 * and initiates a balancing operation if so.
6970 *
6971 * Balancing parameters are set up in init_sched_domains.
6972 */
6973static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6974{
6975	int continue_balancing = 1;
6976	int cpu = rq->cpu;
6977	unsigned long interval;
6978	struct sched_domain *sd;
6979	/* Earliest time when we have to do rebalance again */
6980	unsigned long next_balance = jiffies + 60*HZ;
6981	int update_next_balance = 0;
6982	int need_serialize, need_decay = 0;
6983	u64 max_cost = 0;
6984
6985	update_blocked_averages(cpu);
6986
6987	rcu_read_lock();
6988	for_each_domain(cpu, sd) {
6989		/*
6990		 * Decay the newidle max times here because this is a regular
6991		 * visit to all the domains. Decay ~1% per second.
6992		 */
6993		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6994			sd->max_newidle_lb_cost =
6995				(sd->max_newidle_lb_cost * 253) / 256;
6996			sd->next_decay_max_lb_cost = jiffies + HZ;
6997			need_decay = 1;
6998		}
6999		max_cost += sd->max_newidle_lb_cost;
7000
7001		if (!(sd->flags & SD_LOAD_BALANCE))
7002			continue;
7003
7004		/*
7005		 * Stop the load balance at this level. There is another
7006		 * CPU in our sched group which is doing load balancing more
7007		 * actively.
7008		 */
7009		if (!continue_balancing) {
7010			if (need_decay)
7011				continue;
7012			break;
7013		}
7014
7015		interval = sd->balance_interval;
7016		if (idle != CPU_IDLE)
7017			interval *= sd->busy_factor;
7018
7019		/* scale ms to jiffies */
7020		interval = msecs_to_jiffies(interval);
7021		interval = clamp(interval, 1UL, max_load_balance_interval);
7022
7023		need_serialize = sd->flags & SD_SERIALIZE;
7024
7025		if (need_serialize) {
7026			if (!spin_trylock(&balancing))
7027				goto out;
7028		}
7029
7030		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7031			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7032				/*
7033				 * The LBF_DST_PINNED logic could have changed
7034				 * env->dst_cpu, so we can't know our idle
7035				 * state even if we migrated tasks. Update it.
7036				 */
7037				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7038			}
7039			sd->last_balance = jiffies;
 
7040		}
7041		if (need_serialize)
7042			spin_unlock(&balancing);
7043out:
7044		if (time_after(next_balance, sd->last_balance + interval)) {
7045			next_balance = sd->last_balance + interval;
7046			update_next_balance = 1;
7047		}
7048	}
7049	if (need_decay) {
7050		/*
7051		 * Ensure the rq-wide value also decays but keep it at a
7052		 * reasonable floor to avoid funnies with rq->avg_idle.
7053		 */
7054		rq->max_idle_balance_cost =
7055			max((u64)sysctl_sched_migration_cost, max_cost);
7056	}
7057	rcu_read_unlock();
7058
7059	/*
7060	 * next_balance will be updated only when there is a need.
7061	 * When the cpu is attached to null domain for ex, it will not be
7062	 * updated.
7063	 */
7064	if (likely(update_next_balance))
7065		rq->next_balance = next_balance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7066}
7067
7068#ifdef CONFIG_NO_HZ_COMMON
7069/*
7070 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7071 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7072 */
7073static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7074{
7075	int this_cpu = this_rq->cpu;
7076	struct rq *rq;
7077	int balance_cpu;
 
 
 
7078
7079	if (idle != CPU_IDLE ||
7080	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7081		goto end;
7082
7083	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7084		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7085			continue;
7086
7087		/*
7088		 * If this cpu gets work to do, stop the load balancing
7089		 * work being done for other cpus. Next load
7090		 * balancing owner will pick it up.
7091		 */
7092		if (need_resched())
7093			break;
7094
7095		rq = cpu_rq(balance_cpu);
7096
7097		raw_spin_lock_irq(&rq->lock);
7098		update_rq_clock(rq);
7099		update_idle_cpu_load(rq);
7100		raw_spin_unlock_irq(&rq->lock);
7101
7102		rebalance_domains(rq, CPU_IDLE);
 
 
 
 
 
7103
7104		if (time_after(this_rq->next_balance, rq->next_balance))
7105			this_rq->next_balance = rq->next_balance;
 
 
7106	}
7107	nohz.next_balance = this_rq->next_balance;
 
 
 
 
 
 
 
7108end:
7109	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7110}
7111
7112/*
7113 * Current heuristic for kicking the idle load balancer in the presence
7114 * of an idle cpu is the system.
7115 *   - This rq has more than one task.
7116 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7117 *     busy cpu's exceeding the group's power.
 
 
7118 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7119 *     domain span are idle.
7120 */
7121static inline int nohz_kick_needed(struct rq *rq)
7122{
7123	unsigned long now = jiffies;
7124	struct sched_domain *sd;
7125	struct sched_group_power *sgp;
7126	int nr_busy, cpu = rq->cpu;
 
7127
7128	if (unlikely(rq->idle_balance))
7129		return 0;
7130
7131       /*
7132	* We may be recently in ticked or tickless idle mode. At the first
7133	* busy tick after returning from idle, we will update the busy stats.
7134	*/
7135	set_cpu_sd_state_busy();
7136	nohz_balance_exit_idle(cpu);
7137
7138	/*
7139	 * None are in tickless mode and hence no need for NOHZ idle load
7140	 * balancing.
7141	 */
7142	if (likely(!atomic_read(&nohz.nr_cpus)))
7143		return 0;
7144
7145	if (time_before(now, nohz.next_balance))
7146		return 0;
7147
7148	if (rq->nr_running >= 2)
7149		goto need_kick;
7150
7151	rcu_read_lock();
7152	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7153
7154	if (sd) {
7155		sgp = sd->groups->sgp;
7156		nr_busy = atomic_read(&sgp->nr_busy_cpus);
 
 
 
 
 
7157
7158		if (nr_busy > 1)
7159			goto need_kick_unlock;
7160	}
7161
7162	sd = rcu_dereference(per_cpu(sd_asym, cpu));
 
 
 
 
 
 
 
7163
 
7164	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7165				  sched_domain_span(sd)) < cpu))
7166		goto need_kick_unlock;
7167
7168	rcu_read_unlock();
7169	return 0;
7170
7171need_kick_unlock:
7172	rcu_read_unlock();
7173need_kick:
7174	return 1;
7175}
7176#else
7177static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7178#endif
7179
7180/*
7181 * run_rebalance_domains is triggered when needed from the scheduler tick.
7182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7183 */
7184static void run_rebalance_domains(struct softirq_action *h)
7185{
7186	struct rq *this_rq = this_rq();
7187	enum cpu_idle_type idle = this_rq->idle_balance ?
7188						CPU_IDLE : CPU_NOT_IDLE;
7189
7190	rebalance_domains(this_rq, idle);
7191
7192	/*
7193	 * If this cpu has a pending nohz_balance_kick, then do the
7194	 * balancing on behalf of the other idle cpus whose ticks are
7195	 * stopped.
 
 
 
7196	 */
7197	nohz_idle_balance(this_rq, idle);
 
7198}
7199
7200/*
7201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7202 */
7203void trigger_load_balance(struct rq *rq)
7204{
7205	/* Don't need to rebalance while attached to NULL domain */
7206	if (unlikely(on_null_domain(rq)))
7207		return;
7208
7209	if (time_after_eq(jiffies, rq->next_balance))
7210		raise_softirq(SCHED_SOFTIRQ);
7211#ifdef CONFIG_NO_HZ_COMMON
7212	if (nohz_kick_needed(rq))
7213		nohz_balancer_kick();
7214#endif
7215}
7216
7217static void rq_online_fair(struct rq *rq)
7218{
7219	update_sysctl();
 
 
7220}
7221
7222static void rq_offline_fair(struct rq *rq)
7223{
7224	update_sysctl();
7225
7226	/* Ensure any throttled groups are reachable by pick_next_task */
7227	unthrottle_offline_cfs_rqs(rq);
7228}
7229
7230#endif /* CONFIG_SMP */
7231
7232/*
7233 * scheduler tick hitting a task of our scheduling class:
7234 */
7235static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7236{
7237	struct cfs_rq *cfs_rq;
7238	struct sched_entity *se = &curr->se;
7239
7240	for_each_sched_entity(se) {
7241		cfs_rq = cfs_rq_of(se);
7242		entity_tick(cfs_rq, se, queued);
7243	}
7244
7245	if (numabalancing_enabled)
7246		task_tick_numa(rq, curr);
7247
7248	update_rq_runnable_avg(rq, 1);
7249}
7250
7251/*
7252 * called on fork with the child task as argument from the parent's context
7253 *  - child not yet on the tasklist
7254 *  - preemption disabled
7255 */
7256static void task_fork_fair(struct task_struct *p)
7257{
7258	struct cfs_rq *cfs_rq;
7259	struct sched_entity *se = &p->se, *curr;
7260	int this_cpu = smp_processor_id();
7261	struct rq *rq = this_rq();
7262	unsigned long flags;
7263
7264	raw_spin_lock_irqsave(&rq->lock, flags);
7265
7266	update_rq_clock(rq);
7267
7268	cfs_rq = task_cfs_rq(current);
7269	curr = cfs_rq->curr;
7270
7271	/*
7272	 * Not only the cpu but also the task_group of the parent might have
7273	 * been changed after parent->se.parent,cfs_rq were copied to
7274	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7275	 * of child point to valid ones.
7276	 */
7277	rcu_read_lock();
7278	__set_task_cpu(p, this_cpu);
7279	rcu_read_unlock();
7280
7281	update_curr(cfs_rq);
7282
7283	if (curr)
7284		se->vruntime = curr->vruntime;
7285	place_entity(cfs_rq, se, 1);
7286
7287	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7288		/*
7289		 * Upon rescheduling, sched_class::put_prev_task() will place
7290		 * 'current' within the tree based on its new key value.
7291		 */
7292		swap(curr->vruntime, se->vruntime);
7293		resched_task(rq->curr);
7294	}
7295
7296	se->vruntime -= cfs_rq->min_vruntime;
7297
7298	raw_spin_unlock_irqrestore(&rq->lock, flags);
7299}
7300
7301/*
7302 * Priority of the task has changed. Check to see if we preempt
7303 * the current task.
7304 */
7305static void
7306prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7307{
7308	if (!p->se.on_rq)
7309		return;
7310
7311	/*
7312	 * Reschedule if we are currently running on this runqueue and
7313	 * our priority decreased, or if we are not currently running on
7314	 * this runqueue and our priority is higher than the current's
7315	 */
7316	if (rq->curr == p) {
7317		if (p->prio > oldprio)
7318			resched_task(rq->curr);
7319	} else
7320		check_preempt_curr(rq, p, 0);
7321}
7322
7323static void switched_from_fair(struct rq *rq, struct task_struct *p)
7324{
7325	struct sched_entity *se = &p->se;
7326	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7327
7328	/*
7329	 * Ensure the task's vruntime is normalized, so that when it's
7330	 * switched back to the fair class the enqueue_entity(.flags=0) will
7331	 * do the right thing.
 
 
 
 
 
 
 
7332	 *
7333	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7334	 * have normalized the vruntime, if it's !on_rq, then only when
7335	 * the task is sleeping will it still have non-normalized vruntime.
 
7336	 */
7337	if (!p->on_rq && p->state != TASK_RUNNING) {
 
 
 
 
 
 
 
 
 
 
 
7338		/*
7339		 * Fix up our vruntime so that the current sleep doesn't
7340		 * cause 'unlimited' sleep bonus.
7341		 */
7342		place_entity(cfs_rq, se, 0);
7343		se->vruntime -= cfs_rq->min_vruntime;
7344	}
7345
7346#ifdef CONFIG_SMP
7347	/*
7348	* Remove our load from contribution when we leave sched_fair
7349	* and ensure we don't carry in an old decay_count if we
7350	* switch back.
7351	*/
7352	if (se->avg.decay_count) {
7353		__synchronize_entity_decay(se);
7354		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7355	}
7356#endif
7357}
7358
7359/*
7360 * We switched to the sched_fair class.
7361 */
7362static void switched_to_fair(struct rq *rq, struct task_struct *p)
7363{
7364	struct sched_entity *se = &p->se;
 
 
7365#ifdef CONFIG_FAIR_GROUP_SCHED
7366	/*
7367	 * Since the real-depth could have been changed (only FAIR
7368	 * class maintain depth value), reset depth properly.
7369	 */
7370	se->depth = se->parent ? se->parent->depth + 1 : 0;
7371#endif
7372	if (!se->on_rq)
7373		return;
7374
7375	/*
7376	 * We were most likely switched from sched_rt, so
7377	 * kick off the schedule if running, otherwise just see
7378	 * if we can still preempt the current task.
7379	 */
7380	if (rq->curr == p)
7381		resched_task(rq->curr);
7382	else
7383		check_preempt_curr(rq, p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7384}
7385
7386/* Account for a task changing its policy or group.
7387 *
7388 * This routine is mostly called to set cfs_rq->curr field when a task
7389 * migrates between groups/classes.
7390 */
7391static void set_curr_task_fair(struct rq *rq)
7392{
7393	struct sched_entity *se = &rq->curr->se;
7394
7395	for_each_sched_entity(se) {
7396		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7397
7398		set_next_entity(cfs_rq, se);
7399		/* ensure bandwidth has been allocated on our new cfs_rq */
7400		account_cfs_rq_runtime(cfs_rq, 0);
7401	}
7402}
7403
7404void init_cfs_rq(struct cfs_rq *cfs_rq)
7405{
7406	cfs_rq->tasks_timeline = RB_ROOT;
7407	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7408#ifndef CONFIG_64BIT
7409	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7410#endif
7411#ifdef CONFIG_SMP
7412	atomic64_set(&cfs_rq->decay_counter, 1);
7413	atomic_long_set(&cfs_rq->removed_load, 0);
7414#endif
7415}
7416
7417#ifdef CONFIG_FAIR_GROUP_SCHED
7418static void task_move_group_fair(struct task_struct *p, int on_rq)
7419{
7420	struct sched_entity *se = &p->se;
7421	struct cfs_rq *cfs_rq;
7422
7423	/*
7424	 * If the task was not on the rq at the time of this cgroup movement
7425	 * it must have been asleep, sleeping tasks keep their ->vruntime
7426	 * absolute on their old rq until wakeup (needed for the fair sleeper
7427	 * bonus in place_entity()).
7428	 *
7429	 * If it was on the rq, we've just 'preempted' it, which does convert
7430	 * ->vruntime to a relative base.
7431	 *
7432	 * Make sure both cases convert their relative position when migrating
7433	 * to another cgroup's rq. This does somewhat interfere with the
7434	 * fair sleeper stuff for the first placement, but who cares.
7435	 */
7436	/*
7437	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7438	 * But there are some cases where it has already been normalized:
7439	 *
7440	 * - Moving a forked child which is waiting for being woken up by
7441	 *   wake_up_new_task().
7442	 * - Moving a task which has been woken up by try_to_wake_up() and
7443	 *   waiting for actually being woken up by sched_ttwu_pending().
7444	 *
7445	 * To prevent boost or penalty in the new cfs_rq caused by delta
7446	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7447	 */
7448	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7449		on_rq = 1;
7450
7451	if (!on_rq)
7452		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7453	set_task_rq(p, task_cpu(p));
7454	se->depth = se->parent ? se->parent->depth + 1 : 0;
7455	if (!on_rq) {
7456		cfs_rq = cfs_rq_of(se);
7457		se->vruntime += cfs_rq->min_vruntime;
7458#ifdef CONFIG_SMP
7459		/*
7460		 * migrate_task_rq_fair() will have removed our previous
7461		 * contribution, but we must synchronize for ongoing future
7462		 * decay.
7463		 */
7464		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7465		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7466#endif
7467	}
7468}
7469
7470void free_fair_sched_group(struct task_group *tg)
7471{
7472	int i;
7473
7474	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7475
7476	for_each_possible_cpu(i) {
7477		if (tg->cfs_rq)
7478			kfree(tg->cfs_rq[i]);
7479		if (tg->se)
7480			kfree(tg->se[i]);
7481	}
7482
7483	kfree(tg->cfs_rq);
7484	kfree(tg->se);
7485}
7486
7487int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7488{
7489	struct cfs_rq *cfs_rq;
7490	struct sched_entity *se;
7491	int i;
7492
7493	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7494	if (!tg->cfs_rq)
7495		goto err;
7496	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7497	if (!tg->se)
7498		goto err;
7499
7500	tg->shares = NICE_0_LOAD;
7501
7502	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7503
7504	for_each_possible_cpu(i) {
7505		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7506				      GFP_KERNEL, cpu_to_node(i));
7507		if (!cfs_rq)
7508			goto err;
7509
7510		se = kzalloc_node(sizeof(struct sched_entity),
7511				  GFP_KERNEL, cpu_to_node(i));
7512		if (!se)
7513			goto err_free_rq;
7514
7515		init_cfs_rq(cfs_rq);
7516		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 
7517	}
7518
7519	return 1;
7520
7521err_free_rq:
7522	kfree(cfs_rq);
7523err:
7524	return 0;
7525}
7526
7527void unregister_fair_sched_group(struct task_group *tg, int cpu)
7528{
7529	struct rq *rq = cpu_rq(cpu);
7530	unsigned long flags;
 
 
7531
7532	/*
7533	* Only empty task groups can be destroyed; so we can speculatively
7534	* check on_list without danger of it being re-added.
7535	*/
7536	if (!tg->cfs_rq[cpu]->on_list)
7537		return;
7538
7539	raw_spin_lock_irqsave(&rq->lock, flags);
7540	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7541	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
 
 
 
 
 
 
 
 
7542}
7543
7544void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7545			struct sched_entity *se, int cpu,
7546			struct sched_entity *parent)
7547{
7548	struct rq *rq = cpu_rq(cpu);
7549
7550	cfs_rq->tg = tg;
7551	cfs_rq->rq = rq;
7552	init_cfs_rq_runtime(cfs_rq);
7553
7554	tg->cfs_rq[cpu] = cfs_rq;
7555	tg->se[cpu] = se;
7556
7557	/* se could be NULL for root_task_group */
7558	if (!se)
7559		return;
7560
7561	if (!parent) {
7562		se->cfs_rq = &rq->cfs;
7563		se->depth = 0;
7564	} else {
7565		se->cfs_rq = parent->my_q;
7566		se->depth = parent->depth + 1;
7567	}
7568
7569	se->my_q = cfs_rq;
7570	/* guarantee group entities always have weight */
7571	update_load_set(&se->load, NICE_0_LOAD);
7572	se->parent = parent;
7573}
7574
7575static DEFINE_MUTEX(shares_mutex);
7576
7577int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7578{
7579	int i;
7580	unsigned long flags;
7581
7582	/*
7583	 * We can't change the weight of the root cgroup.
7584	 */
7585	if (!tg->se[0])
7586		return -EINVAL;
7587
7588	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7589
7590	mutex_lock(&shares_mutex);
7591	if (tg->shares == shares)
7592		goto done;
7593
7594	tg->shares = shares;
7595	for_each_possible_cpu(i) {
7596		struct rq *rq = cpu_rq(i);
7597		struct sched_entity *se;
7598
7599		se = tg->se[i];
7600		/* Propagate contribution to hierarchy */
7601		raw_spin_lock_irqsave(&rq->lock, flags);
7602
7603		/* Possible calls to update_curr() need rq clock */
7604		update_rq_clock(rq);
7605		for_each_sched_entity(se)
7606			update_cfs_shares(group_cfs_rq(se));
7607		raw_spin_unlock_irqrestore(&rq->lock, flags);
7608	}
7609
7610done:
7611	mutex_unlock(&shares_mutex);
7612	return 0;
7613}
7614#else /* CONFIG_FAIR_GROUP_SCHED */
7615
7616void free_fair_sched_group(struct task_group *tg) { }
7617
7618int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7619{
7620	return 1;
7621}
7622
7623void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7624
7625#endif /* CONFIG_FAIR_GROUP_SCHED */
7626
7627
7628static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7629{
7630	struct sched_entity *se = &task->se;
7631	unsigned int rr_interval = 0;
7632
7633	/*
7634	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7635	 * idle runqueue:
7636	 */
7637	if (rq->cfs.load.weight)
7638		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7639
7640	return rr_interval;
7641}
7642
7643/*
7644 * All the scheduling class methods:
7645 */
7646const struct sched_class fair_sched_class = {
7647	.next			= &idle_sched_class,
7648	.enqueue_task		= enqueue_task_fair,
7649	.dequeue_task		= dequeue_task_fair,
7650	.yield_task		= yield_task_fair,
7651	.yield_to_task		= yield_to_task_fair,
7652
7653	.check_preempt_curr	= check_preempt_wakeup,
7654
7655	.pick_next_task		= pick_next_task_fair,
7656	.put_prev_task		= put_prev_task_fair,
7657
7658#ifdef CONFIG_SMP
7659	.select_task_rq		= select_task_rq_fair,
7660	.migrate_task_rq	= migrate_task_rq_fair,
7661
7662	.rq_online		= rq_online_fair,
7663	.rq_offline		= rq_offline_fair,
7664
7665	.task_waking		= task_waking_fair,
 
 
7666#endif
7667
7668	.set_curr_task          = set_curr_task_fair,
7669	.task_tick		= task_tick_fair,
7670	.task_fork		= task_fork_fair,
7671
7672	.prio_changed		= prio_changed_fair,
7673	.switched_from		= switched_from_fair,
7674	.switched_to		= switched_to_fair,
7675
7676	.get_rr_interval	= get_rr_interval_fair,
7677
 
 
7678#ifdef CONFIG_FAIR_GROUP_SCHED
7679	.task_move_group	= task_move_group_fair,
7680#endif
7681};
7682
7683#ifdef CONFIG_SCHED_DEBUG
7684void print_cfs_stats(struct seq_file *m, int cpu)
7685{
7686	struct cfs_rq *cfs_rq;
7687
7688	rcu_read_lock();
7689	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7690		print_cfs_rq(m, cpu, cfs_rq);
7691	rcu_read_unlock();
7692}
7693#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7694
7695__init void init_sched_fair_class(void)
7696{
7697#ifdef CONFIG_SMP
7698	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7699
7700#ifdef CONFIG_NO_HZ_COMMON
7701	nohz.next_balance = jiffies;
7702	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7703	cpu_notifier(sched_ilb_notifier, 0);
7704#endif
7705#endif /* SMP */
7706
7707}
v4.6
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21 */
  22
 
  23#include <linux/sched.h>
  24#include <linux/latencytop.h>
  25#include <linux/cpumask.h>
  26#include <linux/cpuidle.h>
  27#include <linux/slab.h>
  28#include <linux/profile.h>
  29#include <linux/interrupt.h>
  30#include <linux/mempolicy.h>
  31#include <linux/migrate.h>
  32#include <linux/task_work.h>
  33
  34#include <trace/events/sched.h>
  35
  36#include "sched.h"
  37
  38/*
  39 * Targeted preemption latency for CPU-bound tasks:
  40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  41 *
  42 * NOTE: this latency value is not the same as the concept of
  43 * 'timeslice length' - timeslices in CFS are of variable length
  44 * and have no persistent notion like in traditional, time-slice
  45 * based scheduling concepts.
  46 *
  47 * (to see the precise effective timeslice length of your workload,
  48 *  run vmstat and monitor the context-switches (cs) field)
  49 */
  50unsigned int sysctl_sched_latency = 6000000ULL;
  51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  52
  53/*
  54 * The initial- and re-scaling of tunables is configurable
  55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  56 *
  57 * Options are:
  58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  61 */
  62enum sched_tunable_scaling sysctl_sched_tunable_scaling
  63	= SCHED_TUNABLESCALING_LOG;
  64
  65/*
  66 * Minimal preemption granularity for CPU-bound tasks:
  67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68 */
  69unsigned int sysctl_sched_min_granularity = 750000ULL;
  70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  71
  72/*
  73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  74 */
  75static unsigned int sched_nr_latency = 8;
  76
  77/*
  78 * After fork, child runs first. If set to 0 (default) then
  79 * parent will (try to) run first.
  80 */
  81unsigned int sysctl_sched_child_runs_first __read_mostly;
  82
  83/*
  84 * SCHED_OTHER wake-up granularity.
  85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  86 *
  87 * This option delays the preemption effects of decoupled workloads
  88 * and reduces their over-scheduling. Synchronous workloads will still
  89 * have immediate wakeup/sleep latencies.
  90 */
  91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  93
  94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  95
  96/*
  97 * The exponential sliding  window over which load is averaged for shares
  98 * distribution.
  99 * (default: 10msec)
 100 */
 101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 102
 103#ifdef CONFIG_CFS_BANDWIDTH
 104/*
 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 106 * each time a cfs_rq requests quota.
 107 *
 108 * Note: in the case that the slice exceeds the runtime remaining (either due
 109 * to consumption or the quota being specified to be smaller than the slice)
 110 * we will always only issue the remaining available time.
 111 *
 112 * default: 5 msec, units: microseconds
 113  */
 114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 115#endif
 116
 117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 118{
 119	lw->weight += inc;
 120	lw->inv_weight = 0;
 121}
 122
 123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 124{
 125	lw->weight -= dec;
 126	lw->inv_weight = 0;
 127}
 128
 129static inline void update_load_set(struct load_weight *lw, unsigned long w)
 130{
 131	lw->weight = w;
 132	lw->inv_weight = 0;
 133}
 134
 135/*
 136 * Increase the granularity value when there are more CPUs,
 137 * because with more CPUs the 'effective latency' as visible
 138 * to users decreases. But the relationship is not linear,
 139 * so pick a second-best guess by going with the log2 of the
 140 * number of CPUs.
 141 *
 142 * This idea comes from the SD scheduler of Con Kolivas:
 143 */
 144static unsigned int get_update_sysctl_factor(void)
 145{
 146	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 147	unsigned int factor;
 148
 149	switch (sysctl_sched_tunable_scaling) {
 150	case SCHED_TUNABLESCALING_NONE:
 151		factor = 1;
 152		break;
 153	case SCHED_TUNABLESCALING_LINEAR:
 154		factor = cpus;
 155		break;
 156	case SCHED_TUNABLESCALING_LOG:
 157	default:
 158		factor = 1 + ilog2(cpus);
 159		break;
 160	}
 161
 162	return factor;
 163}
 164
 165static void update_sysctl(void)
 166{
 167	unsigned int factor = get_update_sysctl_factor();
 168
 169#define SET_SYSCTL(name) \
 170	(sysctl_##name = (factor) * normalized_sysctl_##name)
 171	SET_SYSCTL(sched_min_granularity);
 172	SET_SYSCTL(sched_latency);
 173	SET_SYSCTL(sched_wakeup_granularity);
 174#undef SET_SYSCTL
 175}
 176
 177void sched_init_granularity(void)
 178{
 179	update_sysctl();
 180}
 181
 182#define WMULT_CONST	(~0U)
 183#define WMULT_SHIFT	32
 184
 185static void __update_inv_weight(struct load_weight *lw)
 186{
 187	unsigned long w;
 188
 189	if (likely(lw->inv_weight))
 190		return;
 191
 192	w = scale_load_down(lw->weight);
 193
 194	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 195		lw->inv_weight = 1;
 196	else if (unlikely(!w))
 197		lw->inv_weight = WMULT_CONST;
 198	else
 199		lw->inv_weight = WMULT_CONST / w;
 200}
 201
 202/*
 203 * delta_exec * weight / lw.weight
 204 *   OR
 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 206 *
 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 210 *
 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 213 */
 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 215{
 216	u64 fact = scale_load_down(weight);
 217	int shift = WMULT_SHIFT;
 218
 219	__update_inv_weight(lw);
 220
 221	if (unlikely(fact >> 32)) {
 222		while (fact >> 32) {
 223			fact >>= 1;
 224			shift--;
 225		}
 226	}
 227
 228	/* hint to use a 32x32->64 mul */
 229	fact = (u64)(u32)fact * lw->inv_weight;
 230
 231	while (fact >> 32) {
 232		fact >>= 1;
 233		shift--;
 234	}
 235
 236	return mul_u64_u32_shr(delta_exec, fact, shift);
 237}
 238
 239
 240const struct sched_class fair_sched_class;
 241
 242/**************************************************************
 243 * CFS operations on generic schedulable entities:
 244 */
 245
 246#ifdef CONFIG_FAIR_GROUP_SCHED
 247
 248/* cpu runqueue to which this cfs_rq is attached */
 249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 250{
 251	return cfs_rq->rq;
 252}
 253
 254/* An entity is a task if it doesn't "own" a runqueue */
 255#define entity_is_task(se)	(!se->my_q)
 256
 257static inline struct task_struct *task_of(struct sched_entity *se)
 258{
 259#ifdef CONFIG_SCHED_DEBUG
 260	WARN_ON_ONCE(!entity_is_task(se));
 261#endif
 262	return container_of(se, struct task_struct, se);
 263}
 264
 265/* Walk up scheduling entities hierarchy */
 266#define for_each_sched_entity(se) \
 267		for (; se; se = se->parent)
 268
 269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 270{
 271	return p->se.cfs_rq;
 272}
 273
 274/* runqueue on which this entity is (to be) queued */
 275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 276{
 277	return se->cfs_rq;
 278}
 279
 280/* runqueue "owned" by this group */
 281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 282{
 283	return grp->my_q;
 284}
 285
 
 
 
 286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 287{
 288	if (!cfs_rq->on_list) {
 289		/*
 290		 * Ensure we either appear before our parent (if already
 291		 * enqueued) or force our parent to appear after us when it is
 292		 * enqueued.  The fact that we always enqueue bottom-up
 293		 * reduces this to two cases.
 294		 */
 295		if (cfs_rq->tg->parent &&
 296		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 297			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 298				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 299		} else {
 300			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 301				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 302		}
 303
 304		cfs_rq->on_list = 1;
 
 
 305	}
 306}
 307
 308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 309{
 310	if (cfs_rq->on_list) {
 311		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 312		cfs_rq->on_list = 0;
 313	}
 314}
 315
 316/* Iterate thr' all leaf cfs_rq's on a runqueue */
 317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 318	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 319
 320/* Do the two (enqueued) entities belong to the same group ? */
 321static inline struct cfs_rq *
 322is_same_group(struct sched_entity *se, struct sched_entity *pse)
 323{
 324	if (se->cfs_rq == pse->cfs_rq)
 325		return se->cfs_rq;
 326
 327	return NULL;
 328}
 329
 330static inline struct sched_entity *parent_entity(struct sched_entity *se)
 331{
 332	return se->parent;
 333}
 334
 335static void
 336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 337{
 338	int se_depth, pse_depth;
 339
 340	/*
 341	 * preemption test can be made between sibling entities who are in the
 342	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 343	 * both tasks until we find their ancestors who are siblings of common
 344	 * parent.
 345	 */
 346
 347	/* First walk up until both entities are at same depth */
 348	se_depth = (*se)->depth;
 349	pse_depth = (*pse)->depth;
 350
 351	while (se_depth > pse_depth) {
 352		se_depth--;
 353		*se = parent_entity(*se);
 354	}
 355
 356	while (pse_depth > se_depth) {
 357		pse_depth--;
 358		*pse = parent_entity(*pse);
 359	}
 360
 361	while (!is_same_group(*se, *pse)) {
 362		*se = parent_entity(*se);
 363		*pse = parent_entity(*pse);
 364	}
 365}
 366
 367#else	/* !CONFIG_FAIR_GROUP_SCHED */
 368
 369static inline struct task_struct *task_of(struct sched_entity *se)
 370{
 371	return container_of(se, struct task_struct, se);
 372}
 373
 374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 375{
 376	return container_of(cfs_rq, struct rq, cfs);
 377}
 378
 379#define entity_is_task(se)	1
 380
 381#define for_each_sched_entity(se) \
 382		for (; se; se = NULL)
 383
 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 385{
 386	return &task_rq(p)->cfs;
 387}
 388
 389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 390{
 391	struct task_struct *p = task_of(se);
 392	struct rq *rq = task_rq(p);
 393
 394	return &rq->cfs;
 395}
 396
 397/* runqueue "owned" by this group */
 398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 399{
 400	return NULL;
 401}
 402
 403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 404{
 405}
 406
 407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 408{
 409}
 410
 411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 412		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 413
 414static inline struct sched_entity *parent_entity(struct sched_entity *se)
 415{
 416	return NULL;
 417}
 418
 419static inline void
 420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 421{
 422}
 423
 424#endif	/* CONFIG_FAIR_GROUP_SCHED */
 425
 426static __always_inline
 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 428
 429/**************************************************************
 430 * Scheduling class tree data structure manipulation methods:
 431 */
 432
 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 434{
 435	s64 delta = (s64)(vruntime - max_vruntime);
 436	if (delta > 0)
 437		max_vruntime = vruntime;
 438
 439	return max_vruntime;
 440}
 441
 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 443{
 444	s64 delta = (s64)(vruntime - min_vruntime);
 445	if (delta < 0)
 446		min_vruntime = vruntime;
 447
 448	return min_vruntime;
 449}
 450
 451static inline int entity_before(struct sched_entity *a,
 452				struct sched_entity *b)
 453{
 454	return (s64)(a->vruntime - b->vruntime) < 0;
 455}
 456
 457static void update_min_vruntime(struct cfs_rq *cfs_rq)
 458{
 459	u64 vruntime = cfs_rq->min_vruntime;
 460
 461	if (cfs_rq->curr)
 462		vruntime = cfs_rq->curr->vruntime;
 463
 464	if (cfs_rq->rb_leftmost) {
 465		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 466						   struct sched_entity,
 467						   run_node);
 468
 469		if (!cfs_rq->curr)
 470			vruntime = se->vruntime;
 471		else
 472			vruntime = min_vruntime(vruntime, se->vruntime);
 473	}
 474
 475	/* ensure we never gain time by being placed backwards. */
 476	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 477#ifndef CONFIG_64BIT
 478	smp_wmb();
 479	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 480#endif
 481}
 482
 483/*
 484 * Enqueue an entity into the rb-tree:
 485 */
 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 487{
 488	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 489	struct rb_node *parent = NULL;
 490	struct sched_entity *entry;
 491	int leftmost = 1;
 492
 493	/*
 494	 * Find the right place in the rbtree:
 495	 */
 496	while (*link) {
 497		parent = *link;
 498		entry = rb_entry(parent, struct sched_entity, run_node);
 499		/*
 500		 * We dont care about collisions. Nodes with
 501		 * the same key stay together.
 502		 */
 503		if (entity_before(se, entry)) {
 504			link = &parent->rb_left;
 505		} else {
 506			link = &parent->rb_right;
 507			leftmost = 0;
 508		}
 509	}
 510
 511	/*
 512	 * Maintain a cache of leftmost tree entries (it is frequently
 513	 * used):
 514	 */
 515	if (leftmost)
 516		cfs_rq->rb_leftmost = &se->run_node;
 517
 518	rb_link_node(&se->run_node, parent, link);
 519	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 520}
 521
 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 523{
 524	if (cfs_rq->rb_leftmost == &se->run_node) {
 525		struct rb_node *next_node;
 526
 527		next_node = rb_next(&se->run_node);
 528		cfs_rq->rb_leftmost = next_node;
 529	}
 530
 531	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 532}
 533
 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 535{
 536	struct rb_node *left = cfs_rq->rb_leftmost;
 537
 538	if (!left)
 539		return NULL;
 540
 541	return rb_entry(left, struct sched_entity, run_node);
 542}
 543
 544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 545{
 546	struct rb_node *next = rb_next(&se->run_node);
 547
 548	if (!next)
 549		return NULL;
 550
 551	return rb_entry(next, struct sched_entity, run_node);
 552}
 553
 554#ifdef CONFIG_SCHED_DEBUG
 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 556{
 557	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 558
 559	if (!last)
 560		return NULL;
 561
 562	return rb_entry(last, struct sched_entity, run_node);
 563}
 564
 565/**************************************************************
 566 * Scheduling class statistics methods:
 567 */
 568
 569int sched_proc_update_handler(struct ctl_table *table, int write,
 570		void __user *buffer, size_t *lenp,
 571		loff_t *ppos)
 572{
 573	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 574	unsigned int factor = get_update_sysctl_factor();
 575
 576	if (ret || !write)
 577		return ret;
 578
 579	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 580					sysctl_sched_min_granularity);
 581
 582#define WRT_SYSCTL(name) \
 583	(normalized_sysctl_##name = sysctl_##name / (factor))
 584	WRT_SYSCTL(sched_min_granularity);
 585	WRT_SYSCTL(sched_latency);
 586	WRT_SYSCTL(sched_wakeup_granularity);
 587#undef WRT_SYSCTL
 588
 589	return 0;
 590}
 591#endif
 592
 593/*
 594 * delta /= w
 595 */
 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 597{
 598	if (unlikely(se->load.weight != NICE_0_LOAD))
 599		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 600
 601	return delta;
 602}
 603
 604/*
 605 * The idea is to set a period in which each task runs once.
 606 *
 607 * When there are too many tasks (sched_nr_latency) we have to stretch
 608 * this period because otherwise the slices get too small.
 609 *
 610 * p = (nr <= nl) ? l : l*nr/nl
 611 */
 612static u64 __sched_period(unsigned long nr_running)
 613{
 614	if (unlikely(nr_running > sched_nr_latency))
 615		return nr_running * sysctl_sched_min_granularity;
 616	else
 617		return sysctl_sched_latency;
 
 
 
 
 
 618}
 619
 620/*
 621 * We calculate the wall-time slice from the period by taking a part
 622 * proportional to the weight.
 623 *
 624 * s = p*P[w/rw]
 625 */
 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 627{
 628	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 629
 630	for_each_sched_entity(se) {
 631		struct load_weight *load;
 632		struct load_weight lw;
 633
 634		cfs_rq = cfs_rq_of(se);
 635		load = &cfs_rq->load;
 636
 637		if (unlikely(!se->on_rq)) {
 638			lw = cfs_rq->load;
 639
 640			update_load_add(&lw, se->load.weight);
 641			load = &lw;
 642		}
 643		slice = __calc_delta(slice, se->load.weight, load);
 644	}
 645	return slice;
 646}
 647
 648/*
 649 * We calculate the vruntime slice of a to-be-inserted task.
 650 *
 651 * vs = s/w
 652 */
 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 654{
 655	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 656}
 657
 658#ifdef CONFIG_SMP
 659static int select_idle_sibling(struct task_struct *p, int cpu);
 660static unsigned long task_h_load(struct task_struct *p);
 661
 662/*
 663 * We choose a half-life close to 1 scheduling period.
 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 665 * dependent on this value.
 666 */
 667#define LOAD_AVG_PERIOD 32
 668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
 670
 671/* Give new sched_entity start runnable values to heavy its load in infant time */
 672void init_entity_runnable_average(struct sched_entity *se)
 673{
 674	struct sched_avg *sa = &se->avg;
 675
 676	sa->last_update_time = 0;
 677	/*
 678	 * sched_avg's period_contrib should be strictly less then 1024, so
 679	 * we give it 1023 to make sure it is almost a period (1024us), and
 680	 * will definitely be update (after enqueue).
 681	 */
 682	sa->period_contrib = 1023;
 683	sa->load_avg = scale_load_down(se->load.weight);
 684	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
 685	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
 686	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
 687	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 688}
 689
 690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
 691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
 692#else
 693void init_entity_runnable_average(struct sched_entity *se)
 694{
 695}
 696#endif
 697
 698/*
 699 * Update the current task's runtime statistics.
 700 */
 701static void update_curr(struct cfs_rq *cfs_rq)
 702{
 703	struct sched_entity *curr = cfs_rq->curr;
 704	u64 now = rq_clock_task(rq_of(cfs_rq));
 705	u64 delta_exec;
 706
 707	if (unlikely(!curr))
 708		return;
 709
 710	delta_exec = now - curr->exec_start;
 711	if (unlikely((s64)delta_exec <= 0))
 712		return;
 713
 714	curr->exec_start = now;
 715
 716	schedstat_set(curr->statistics.exec_max,
 717		      max(delta_exec, curr->statistics.exec_max));
 718
 719	curr->sum_exec_runtime += delta_exec;
 720	schedstat_add(cfs_rq, exec_clock, delta_exec);
 721
 722	curr->vruntime += calc_delta_fair(delta_exec, curr);
 723	update_min_vruntime(cfs_rq);
 724
 725	if (entity_is_task(curr)) {
 726		struct task_struct *curtask = task_of(curr);
 727
 728		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 729		cpuacct_charge(curtask, delta_exec);
 730		account_group_exec_runtime(curtask, delta_exec);
 731	}
 732
 733	account_cfs_rq_runtime(cfs_rq, delta_exec);
 734}
 735
 736static void update_curr_fair(struct rq *rq)
 737{
 738	update_curr(cfs_rq_of(&rq->curr->se));
 739}
 740
 741#ifdef CONFIG_SCHEDSTATS
 742static inline void
 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 744{
 745	u64 wait_start = rq_clock(rq_of(cfs_rq));
 746
 747	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 748	    likely(wait_start > se->statistics.wait_start))
 749		wait_start -= se->statistics.wait_start;
 750
 751	se->statistics.wait_start = wait_start;
 752}
 753
 754static void
 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 756{
 757	struct task_struct *p;
 758	u64 delta;
 759
 760	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
 761
 762	if (entity_is_task(se)) {
 763		p = task_of(se);
 764		if (task_on_rq_migrating(p)) {
 765			/*
 766			 * Preserve migrating task's wait time so wait_start
 767			 * time stamp can be adjusted to accumulate wait time
 768			 * prior to migration.
 769			 */
 770			se->statistics.wait_start = delta;
 771			return;
 772		}
 773		trace_sched_stat_wait(p, delta);
 774	}
 775
 776	se->statistics.wait_max = max(se->statistics.wait_max, delta);
 777	se->statistics.wait_count++;
 778	se->statistics.wait_sum += delta;
 779	se->statistics.wait_start = 0;
 780}
 781
 782/*
 783 * Task is being enqueued - update stats:
 784 */
 785static inline void
 786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 787{
 788	/*
 789	 * Are we enqueueing a waiting task? (for current tasks
 790	 * a dequeue/enqueue event is a NOP)
 791	 */
 792	if (se != cfs_rq->curr)
 793		update_stats_wait_start(cfs_rq, se);
 794}
 795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796static inline void
 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 798{
 799	/*
 800	 * Mark the end of the wait period if dequeueing a
 801	 * waiting task:
 802	 */
 803	if (se != cfs_rq->curr)
 804		update_stats_wait_end(cfs_rq, se);
 805
 806	if (flags & DEQUEUE_SLEEP) {
 807		if (entity_is_task(se)) {
 808			struct task_struct *tsk = task_of(se);
 809
 810			if (tsk->state & TASK_INTERRUPTIBLE)
 811				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
 812			if (tsk->state & TASK_UNINTERRUPTIBLE)
 813				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
 814		}
 815	}
 816
 817}
 818#else
 819static inline void
 820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 821{
 822}
 823
 824static inline void
 825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 826{
 827}
 828
 829static inline void
 830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 831{
 832}
 833
 834static inline void
 835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 836{
 837}
 838#endif
 839
 840/*
 841 * We are picking a new current task - update its stats:
 842 */
 843static inline void
 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 845{
 846	/*
 847	 * We are starting a new run period:
 848	 */
 849	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 850}
 851
 852/**************************************************
 853 * Scheduling class queueing methods:
 854 */
 855
 856#ifdef CONFIG_NUMA_BALANCING
 857/*
 858 * Approximate time to scan a full NUMA task in ms. The task scan period is
 859 * calculated based on the tasks virtual memory size and
 860 * numa_balancing_scan_size.
 861 */
 862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 864
 865/* Portion of address space to scan in MB */
 866unsigned int sysctl_numa_balancing_scan_size = 256;
 867
 868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 869unsigned int sysctl_numa_balancing_scan_delay = 1000;
 870
 871static unsigned int task_nr_scan_windows(struct task_struct *p)
 872{
 873	unsigned long rss = 0;
 874	unsigned long nr_scan_pages;
 875
 876	/*
 877	 * Calculations based on RSS as non-present and empty pages are skipped
 878	 * by the PTE scanner and NUMA hinting faults should be trapped based
 879	 * on resident pages
 880	 */
 881	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 882	rss = get_mm_rss(p->mm);
 883	if (!rss)
 884		rss = nr_scan_pages;
 885
 886	rss = round_up(rss, nr_scan_pages);
 887	return rss / nr_scan_pages;
 888}
 889
 890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 891#define MAX_SCAN_WINDOW 2560
 892
 893static unsigned int task_scan_min(struct task_struct *p)
 894{
 895	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 896	unsigned int scan, floor;
 897	unsigned int windows = 1;
 898
 899	if (scan_size < MAX_SCAN_WINDOW)
 900		windows = MAX_SCAN_WINDOW / scan_size;
 901	floor = 1000 / windows;
 902
 903	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 904	return max_t(unsigned int, floor, scan);
 905}
 906
 907static unsigned int task_scan_max(struct task_struct *p)
 908{
 909	unsigned int smin = task_scan_min(p);
 910	unsigned int smax;
 911
 912	/* Watch for min being lower than max due to floor calculations */
 913	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 914	return max(smin, smax);
 915}
 916
 917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 918{
 919	rq->nr_numa_running += (p->numa_preferred_nid != -1);
 920	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 921}
 922
 923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 924{
 925	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 926	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 927}
 928
 929struct numa_group {
 930	atomic_t refcount;
 931
 932	spinlock_t lock; /* nr_tasks, tasks */
 933	int nr_tasks;
 934	pid_t gid;
 935	int active_nodes;
 936
 937	struct rcu_head rcu;
 
 938	unsigned long total_faults;
 939	unsigned long max_faults_cpu;
 940	/*
 941	 * Faults_cpu is used to decide whether memory should move
 942	 * towards the CPU. As a consequence, these stats are weighted
 943	 * more by CPU use than by memory faults.
 944	 */
 945	unsigned long *faults_cpu;
 946	unsigned long faults[0];
 947};
 948
 949/* Shared or private faults. */
 950#define NR_NUMA_HINT_FAULT_TYPES 2
 951
 952/* Memory and CPU locality */
 953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 954
 955/* Averaged statistics, and temporary buffers. */
 956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 957
 958pid_t task_numa_group_id(struct task_struct *p)
 959{
 960	return p->numa_group ? p->numa_group->gid : 0;
 961}
 962
 963/*
 964 * The averaged statistics, shared & private, memory & cpu,
 965 * occupy the first half of the array. The second half of the
 966 * array is for current counters, which are averaged into the
 967 * first set by task_numa_placement.
 968 */
 969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 970{
 971	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 972}
 973
 974static inline unsigned long task_faults(struct task_struct *p, int nid)
 975{
 976	if (!p->numa_faults)
 977		return 0;
 978
 979	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 980		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 981}
 982
 983static inline unsigned long group_faults(struct task_struct *p, int nid)
 984{
 985	if (!p->numa_group)
 986		return 0;
 987
 988	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 989		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 990}
 991
 992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 993{
 994	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 995		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 996}
 997
 998/*
 999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012					int maxdist, bool task)
1013{
1014	unsigned long score = 0;
1015	int node;
1016
1017	/*
1018	 * All nodes are directly connected, and the same distance
1019	 * from each other. No need for fancy placement algorithms.
1020	 */
1021	if (sched_numa_topology_type == NUMA_DIRECT)
1022		return 0;
1023
1024	/*
1025	 * This code is called for each node, introducing N^2 complexity,
1026	 * which should be ok given the number of nodes rarely exceeds 8.
1027	 */
1028	for_each_online_node(node) {
1029		unsigned long faults;
1030		int dist = node_distance(nid, node);
1031
1032		/*
1033		 * The furthest away nodes in the system are not interesting
1034		 * for placement; nid was already counted.
1035		 */
1036		if (dist == sched_max_numa_distance || node == nid)
1037			continue;
1038
1039		/*
1040		 * On systems with a backplane NUMA topology, compare groups
1041		 * of nodes, and move tasks towards the group with the most
1042		 * memory accesses. When comparing two nodes at distance
1043		 * "hoplimit", only nodes closer by than "hoplimit" are part
1044		 * of each group. Skip other nodes.
1045		 */
1046		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047					dist > maxdist)
1048			continue;
1049
1050		/* Add up the faults from nearby nodes. */
1051		if (task)
1052			faults = task_faults(p, node);
1053		else
1054			faults = group_faults(p, node);
1055
1056		/*
1057		 * On systems with a glueless mesh NUMA topology, there are
1058		 * no fixed "groups of nodes". Instead, nodes that are not
1059		 * directly connected bounce traffic through intermediate
1060		 * nodes; a numa_group can occupy any set of nodes.
1061		 * The further away a node is, the less the faults count.
1062		 * This seems to result in good task placement.
1063		 */
1064		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065			faults *= (sched_max_numa_distance - dist);
1066			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067		}
1068
1069		score += faults;
1070	}
1071
1072	return score;
1073}
1074
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node.  The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082					int dist)
1083{
1084	unsigned long faults, total_faults;
1085
1086	if (!p->numa_faults)
1087		return 0;
1088
1089	total_faults = p->total_numa_faults;
1090
1091	if (!total_faults)
1092		return 0;
1093
1094	faults = task_faults(p, nid);
1095	faults += score_nearby_nodes(p, nid, dist, true);
1096
1097	return 1000 * faults / total_faults;
1098}
1099
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101					 int dist)
1102{
1103	unsigned long faults, total_faults;
1104
1105	if (!p->numa_group)
1106		return 0;
1107
1108	total_faults = p->numa_group->total_faults;
1109
1110	if (!total_faults)
1111		return 0;
1112
1113	faults = group_faults(p, nid);
1114	faults += score_nearby_nodes(p, nid, dist, false);
1115
1116	return 1000 * faults / total_faults;
1117}
1118
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120				int src_nid, int dst_cpu)
1121{
1122	struct numa_group *ng = p->numa_group;
1123	int dst_nid = cpu_to_node(dst_cpu);
1124	int last_cpupid, this_cpupid;
1125
1126	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128	/*
1129	 * Multi-stage node selection is used in conjunction with a periodic
1130	 * migration fault to build a temporal task<->page relation. By using
1131	 * a two-stage filter we remove short/unlikely relations.
1132	 *
1133	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134	 * a task's usage of a particular page (n_p) per total usage of this
1135	 * page (n_t) (in a given time-span) to a probability.
1136	 *
1137	 * Our periodic faults will sample this probability and getting the
1138	 * same result twice in a row, given these samples are fully
1139	 * independent, is then given by P(n)^2, provided our sample period
1140	 * is sufficiently short compared to the usage pattern.
1141	 *
1142	 * This quadric squishes small probabilities, making it less likely we
1143	 * act on an unlikely task<->page relation.
1144	 */
1145	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146	if (!cpupid_pid_unset(last_cpupid) &&
1147				cpupid_to_nid(last_cpupid) != dst_nid)
1148		return false;
1149
1150	/* Always allow migrate on private faults */
1151	if (cpupid_match_pid(p, last_cpupid))
1152		return true;
1153
1154	/* A shared fault, but p->numa_group has not been set up yet. */
1155	if (!ng)
1156		return true;
1157
1158	/*
1159	 * Destination node is much more heavily used than the source
1160	 * node? Allow migration.
 
 
 
 
 
 
 
1161	 */
1162	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163					ACTIVE_NODE_FRACTION)
1164		return true;
1165
1166	/*
1167	 * Distribute memory according to CPU & memory use on each node,
1168	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169	 *
1170	 * faults_cpu(dst)   3   faults_cpu(src)
1171	 * --------------- * - > ---------------
1172	 * faults_mem(dst)   4   faults_mem(src)
1173	 */
1174	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176}
1177
1178static unsigned long weighted_cpuload(const int cpu);
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
1181static unsigned long capacity_of(int cpu);
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184/* Cached statistics for all CPUs within a node */
1185struct numa_stats {
1186	unsigned long nr_running;
1187	unsigned long load;
1188
1189	/* Total compute capacity of CPUs on a node */
1190	unsigned long compute_capacity;
1191
1192	/* Approximate capacity in terms of runnable tasks on a node */
1193	unsigned long task_capacity;
1194	int has_free_capacity;
1195};
1196
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
1202	int smt, cpu, cpus = 0;
1203	unsigned long capacity;
1204
1205	memset(ns, 0, sizeof(*ns));
1206	for_each_cpu(cpu, cpumask_of_node(nid)) {
1207		struct rq *rq = cpu_rq(cpu);
1208
1209		ns->nr_running += rq->nr_running;
1210		ns->load += weighted_cpuload(cpu);
1211		ns->compute_capacity += capacity_of(cpu);
1212
1213		cpus++;
1214	}
1215
1216	/*
1217	 * If we raced with hotplug and there are no CPUs left in our mask
1218	 * the @ns structure is NULL'ed and task_numa_compare() will
1219	 * not find this node attractive.
1220	 *
1221	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222	 * imbalance and bail there.
1223	 */
1224	if (!cpus)
1225		return;
1226
1227	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229	capacity = cpus / smt; /* cores */
1230
1231	ns->task_capacity = min_t(unsigned, capacity,
1232		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234}
1235
1236struct task_numa_env {
1237	struct task_struct *p;
1238
1239	int src_cpu, src_nid;
1240	int dst_cpu, dst_nid;
1241
1242	struct numa_stats src_stats, dst_stats;
1243
1244	int imbalance_pct;
1245	int dist;
1246
1247	struct task_struct *best_task;
1248	long best_imp;
1249	int best_cpu;
1250};
1251
1252static void task_numa_assign(struct task_numa_env *env,
1253			     struct task_struct *p, long imp)
1254{
1255	if (env->best_task)
1256		put_task_struct(env->best_task);
 
 
1257
1258	env->best_task = p;
1259	env->best_imp = imp;
1260	env->best_cpu = env->dst_cpu;
1261}
1262
1263static bool load_too_imbalanced(long src_load, long dst_load,
1264				struct task_numa_env *env)
1265{
1266	long imb, old_imb;
1267	long orig_src_load, orig_dst_load;
1268	long src_capacity, dst_capacity;
1269
1270	/*
1271	 * The load is corrected for the CPU capacity available on each node.
1272	 *
1273	 * src_load        dst_load
1274	 * ------------ vs ---------
1275	 * src_capacity    dst_capacity
1276	 */
1277	src_capacity = env->src_stats.compute_capacity;
1278	dst_capacity = env->dst_stats.compute_capacity;
1279
1280	/* We care about the slope of the imbalance, not the direction. */
1281	if (dst_load < src_load)
1282		swap(dst_load, src_load);
1283
1284	/* Is the difference below the threshold? */
1285	imb = dst_load * src_capacity * 100 -
1286	      src_load * dst_capacity * env->imbalance_pct;
1287	if (imb <= 0)
1288		return false;
1289
1290	/*
1291	 * The imbalance is above the allowed threshold.
1292	 * Compare it with the old imbalance.
1293	 */
1294	orig_src_load = env->src_stats.load;
1295	orig_dst_load = env->dst_stats.load;
1296
1297	if (orig_dst_load < orig_src_load)
1298		swap(orig_dst_load, orig_src_load);
1299
1300	old_imb = orig_dst_load * src_capacity * 100 -
1301		  orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303	/* Would this change make things worse? */
1304	return (imb > old_imb);
1305}
1306
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313static void task_numa_compare(struct task_numa_env *env,
1314			      long taskimp, long groupimp)
1315{
1316	struct rq *src_rq = cpu_rq(env->src_cpu);
1317	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318	struct task_struct *cur;
1319	long src_load, dst_load;
1320	long load;
1321	long imp = env->p->numa_group ? groupimp : taskimp;
1322	long moveimp = imp;
1323	int dist = env->dist;
1324	bool assigned = false;
1325
1326	rcu_read_lock();
1327
1328	raw_spin_lock_irq(&dst_rq->lock);
1329	cur = dst_rq->curr;
1330	/*
1331	 * No need to move the exiting task or idle task.
1332	 */
1333	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334		cur = NULL;
1335	else {
1336		/*
1337		 * The task_struct must be protected here to protect the
1338		 * p->numa_faults access in the task_weight since the
1339		 * numa_faults could already be freed in the following path:
1340		 * finish_task_switch()
1341		 *     --> put_task_struct()
1342		 *         --> __put_task_struct()
1343		 *             --> task_numa_free()
1344		 */
1345		get_task_struct(cur);
1346	}
1347
1348	raw_spin_unlock_irq(&dst_rq->lock);
1349
1350	/*
1351	 * Because we have preemption enabled we can get migrated around and
1352	 * end try selecting ourselves (current == env->p) as a swap candidate.
1353	 */
1354	if (cur == env->p)
1355		goto unlock;
1356
1357	/*
1358	 * "imp" is the fault differential for the source task between the
1359	 * source and destination node. Calculate the total differential for
1360	 * the source task and potential destination task. The more negative
1361	 * the value is, the more rmeote accesses that would be expected to
1362	 * be incurred if the tasks were swapped.
1363	 */
1364	if (cur) {
1365		/* Skip this swap candidate if cannot move to the source cpu */
1366		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367			goto unlock;
1368
1369		/*
1370		 * If dst and source tasks are in the same NUMA group, or not
1371		 * in any group then look only at task weights.
1372		 */
1373		if (cur->numa_group == env->p->numa_group) {
1374			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375			      task_weight(cur, env->dst_nid, dist);
1376			/*
1377			 * Add some hysteresis to prevent swapping the
1378			 * tasks within a group over tiny differences.
1379			 */
1380			if (cur->numa_group)
1381				imp -= imp/16;
1382		} else {
1383			/*
1384			 * Compare the group weights. If a task is all by
1385			 * itself (not part of a group), use the task weight
1386			 * instead.
1387			 */
 
 
 
 
 
1388			if (cur->numa_group)
1389				imp += group_weight(cur, env->src_nid, dist) -
1390				       group_weight(cur, env->dst_nid, dist);
1391			else
1392				imp += task_weight(cur, env->src_nid, dist) -
1393				       task_weight(cur, env->dst_nid, dist);
1394		}
1395	}
1396
1397	if (imp <= env->best_imp && moveimp <= env->best_imp)
1398		goto unlock;
1399
1400	if (!cur) {
1401		/* Is there capacity at our destination? */
1402		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403		    !env->dst_stats.has_free_capacity)
1404			goto unlock;
1405
1406		goto balance;
1407	}
1408
1409	/* Balance doesn't matter much if we're running a task per cpu */
1410	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411			dst_rq->nr_running == 1)
1412		goto assign;
1413
1414	/*
1415	 * In the overloaded case, try and keep the load balanced.
1416	 */
1417balance:
 
 
 
 
1418	load = task_h_load(env->p);
1419	dst_load = env->dst_stats.load + load;
1420	src_load = env->src_stats.load - load;
1421
1422	if (moveimp > imp && moveimp > env->best_imp) {
1423		/*
1424		 * If the improvement from just moving env->p direction is
1425		 * better than swapping tasks around, check if a move is
1426		 * possible. Store a slightly smaller score than moveimp,
1427		 * so an actually idle CPU will win.
1428		 */
1429		if (!load_too_imbalanced(src_load, dst_load, env)) {
1430			imp = moveimp - 1;
1431			put_task_struct(cur);
1432			cur = NULL;
1433			goto assign;
1434		}
1435	}
1436
1437	if (imp <= env->best_imp)
1438		goto unlock;
1439
1440	if (cur) {
1441		load = task_h_load(cur);
1442		dst_load -= load;
1443		src_load += load;
1444	}
1445
1446	if (load_too_imbalanced(src_load, dst_load, env))
 
 
 
 
1447		goto unlock;
1448
1449	/*
1450	 * One idle CPU per node is evaluated for a task numa move.
1451	 * Call select_idle_sibling to maybe find a better one.
1452	 */
1453	if (!cur)
1454		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456assign:
1457	assigned = true;
1458	task_numa_assign(env, cur, imp);
1459unlock:
1460	rcu_read_unlock();
1461	/*
1462	 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463	 * finished.
1464	 */
1465	if (cur && !assigned)
1466		put_task_struct(cur);
1467}
1468
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470				long taskimp, long groupimp)
1471{
1472	int cpu;
1473
1474	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475		/* Skip this CPU if the source task cannot migrate */
1476		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477			continue;
1478
1479		env->dst_cpu = cpu;
1480		task_numa_compare(env, taskimp, groupimp);
1481	}
1482}
1483
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487	struct numa_stats *src = &env->src_stats;
1488	struct numa_stats *dst = &env->dst_stats;
1489
1490	if (src->has_free_capacity && !dst->has_free_capacity)
1491		return false;
1492
1493	/*
1494	 * Only consider a task move if the source has a higher load
1495	 * than the destination, corrected for CPU capacity on each node.
1496	 *
1497	 *      src->load                dst->load
1498	 * --------------------- vs ---------------------
1499	 * src->compute_capacity    dst->compute_capacity
1500	 */
1501	if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503	    dst->load * src->compute_capacity * 100)
1504		return true;
1505
1506	return false;
1507}
1508
1509static int task_numa_migrate(struct task_struct *p)
1510{
1511	struct task_numa_env env = {
1512		.p = p,
1513
1514		.src_cpu = task_cpu(p),
1515		.src_nid = task_node(p),
1516
1517		.imbalance_pct = 112,
1518
1519		.best_task = NULL,
1520		.best_imp = 0,
1521		.best_cpu = -1,
1522	};
1523	struct sched_domain *sd;
1524	unsigned long taskweight, groupweight;
1525	int nid, ret, dist;
1526	long taskimp, groupimp;
1527
1528	/*
1529	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530	 * imbalance and would be the first to start moving tasks about.
1531	 *
1532	 * And we want to avoid any moving of tasks about, as that would create
1533	 * random movement of tasks -- counter the numa conditions we're trying
1534	 * to satisfy here.
1535	 */
1536	rcu_read_lock();
1537	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538	if (sd)
1539		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540	rcu_read_unlock();
1541
1542	/*
1543	 * Cpusets can break the scheduler domain tree into smaller
1544	 * balance domains, some of which do not cross NUMA boundaries.
1545	 * Tasks that are "trapped" in such domains cannot be migrated
1546	 * elsewhere, so there is no point in (re)trying.
1547	 */
1548	if (unlikely(!sd)) {
1549		p->numa_preferred_nid = task_node(p);
1550		return -EINVAL;
1551	}
1552
 
 
 
1553	env.dst_nid = p->numa_preferred_nid;
1554	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555	taskweight = task_weight(p, env.src_nid, dist);
1556	groupweight = group_weight(p, env.src_nid, dist);
1557	update_numa_stats(&env.src_stats, env.src_nid);
1558	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560	update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562	/* Try to find a spot on the preferred nid. */
1563	if (numa_has_capacity(&env))
1564		task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566	/*
1567	 * Look at other nodes in these cases:
1568	 * - there is no space available on the preferred_nid
1569	 * - the task is part of a numa_group that is interleaved across
1570	 *   multiple NUMA nodes; in order to better consolidate the group,
1571	 *   we need to check other locations.
1572	 */
1573	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574		for_each_online_node(nid) {
1575			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576				continue;
1577
1578			dist = node_distance(env.src_nid, env.dst_nid);
1579			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580						dist != env.dist) {
1581				taskweight = task_weight(p, env.src_nid, dist);
1582				groupweight = group_weight(p, env.src_nid, dist);
1583			}
1584
1585			/* Only consider nodes where both task and groups benefit */
1586			taskimp = task_weight(p, nid, dist) - taskweight;
1587			groupimp = group_weight(p, nid, dist) - groupweight;
1588			if (taskimp < 0 && groupimp < 0)
1589				continue;
1590
1591			env.dist = dist;
1592			env.dst_nid = nid;
1593			update_numa_stats(&env.dst_stats, env.dst_nid);
1594			if (numa_has_capacity(&env))
1595				task_numa_find_cpu(&env, taskimp, groupimp);
1596		}
1597	}
1598
1599	/*
1600	 * If the task is part of a workload that spans multiple NUMA nodes,
1601	 * and is migrating into one of the workload's active nodes, remember
1602	 * this node as the task's preferred numa node, so the workload can
1603	 * settle down.
1604	 * A task that migrated to a second choice node will be better off
1605	 * trying for a better one later. Do not set the preferred node here.
1606	 */
1607	if (p->numa_group) {
1608		struct numa_group *ng = p->numa_group;
1609
1610		if (env.best_cpu == -1)
1611			nid = env.src_nid;
1612		else
1613			nid = env.dst_nid;
1614
1615		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616			sched_setnuma(p, env.dst_nid);
1617	}
1618
1619	/* No better CPU than the current one was found. */
1620	if (env.best_cpu == -1)
1621		return -EAGAIN;
1622
 
 
1623	/*
1624	 * Reset the scan period if the task is being rescheduled on an
1625	 * alternative node to recheck if the tasks is now properly placed.
1626	 */
1627	p->numa_scan_period = task_scan_min(p);
1628
1629	if (env.best_task == NULL) {
1630		ret = migrate_task_to(p, env.best_cpu);
1631		if (ret != 0)
1632			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633		return ret;
1634	}
1635
1636	ret = migrate_swap(p, env.best_task);
1637	if (ret != 0)
1638		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639	put_task_struct(env.best_task);
1640	return ret;
1641}
1642
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
1646	unsigned long interval = HZ;
1647
1648	/* This task has no NUMA fault statistics yet */
1649	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650		return;
1651
1652	/* Periodically retry migrating the task to the preferred node */
1653	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654	p->numa_migrate_retry = jiffies + interval;
1655
1656	/* Success if task is already running on preferred CPU */
1657	if (task_node(p) == p->numa_preferred_nid)
1658		return;
1659
1660	/* Otherwise, try migrate to a CPU on the preferred node */
1661	task_numa_migrate(p);
1662}
1663
1664/*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
 
 
 
 
 
1669 */
1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671{
1672	unsigned long faults, max_faults = 0;
1673	int nid, active_nodes = 0;
1674
1675	for_each_online_node(nid) {
1676		faults = group_faults_cpu(numa_group, nid);
1677		if (faults > max_faults)
1678			max_faults = faults;
1679	}
1680
1681	for_each_online_node(nid) {
1682		faults = group_faults_cpu(numa_group, nid);
1683		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684			active_nodes++;
 
 
 
1685	}
1686
1687	numa_group->max_faults_cpu = max_faults;
1688	numa_group->active_nodes = active_nodes;
1689}
1690
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698#define NUMA_PERIOD_SLOTS 10
1699#define NUMA_PERIOD_THRESHOLD 7
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708			unsigned long shared, unsigned long private)
1709{
1710	unsigned int period_slot;
1711	int ratio;
1712	int diff;
1713
1714	unsigned long remote = p->numa_faults_locality[0];
1715	unsigned long local = p->numa_faults_locality[1];
1716
1717	/*
1718	 * If there were no record hinting faults then either the task is
1719	 * completely idle or all activity is areas that are not of interest
1720	 * to automatic numa balancing. Related to that, if there were failed
1721	 * migration then it implies we are migrating too quickly or the local
1722	 * node is overloaded. In either case, scan slower
1723	 */
1724	if (local + shared == 0 || p->numa_faults_locality[2]) {
1725		p->numa_scan_period = min(p->numa_scan_period_max,
1726			p->numa_scan_period << 1);
1727
1728		p->mm->numa_next_scan = jiffies +
1729			msecs_to_jiffies(p->numa_scan_period);
1730
1731		return;
1732	}
1733
1734	/*
1735	 * Prepare to scale scan period relative to the current period.
1736	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1737	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739	 */
1740	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744		if (!slot)
1745			slot = 1;
1746		diff = slot * period_slot;
1747	} else {
1748		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750		/*
1751		 * Scale scan rate increases based on sharing. There is an
1752		 * inverse relationship between the degree of sharing and
1753		 * the adjustment made to the scanning period. Broadly
1754		 * speaking the intent is that there is little point
1755		 * scanning faster if shared accesses dominate as it may
1756		 * simply bounce migrations uselessly
1757		 */
1758		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760	}
1761
1762	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763			task_scan_min(p), task_scan_max(p));
1764	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776	u64 runtime, delta, now;
1777	/* Use the start of this time slice to avoid calculations. */
1778	now = p->se.exec_start;
1779	runtime = p->se.sum_exec_runtime;
1780
1781	if (p->last_task_numa_placement) {
1782		delta = runtime - p->last_sum_exec_runtime;
1783		*period = now - p->last_task_numa_placement;
1784	} else {
1785		delta = p->se.avg.load_sum / p->se.load.weight;
1786		*period = LOAD_AVG_MAX;
1787	}
1788
1789	p->last_sum_exec_runtime = runtime;
1790	p->last_task_numa_placement = now;
1791
1792	return delta;
1793}
1794
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802	nodemask_t nodes;
1803	int dist;
1804
1805	/* Direct connections between all NUMA nodes. */
1806	if (sched_numa_topology_type == NUMA_DIRECT)
1807		return nid;
1808
1809	/*
1810	 * On a system with glueless mesh NUMA topology, group_weight
1811	 * scores nodes according to the number of NUMA hinting faults on
1812	 * both the node itself, and on nearby nodes.
1813	 */
1814	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815		unsigned long score, max_score = 0;
1816		int node, max_node = nid;
1817
1818		dist = sched_max_numa_distance;
1819
1820		for_each_online_node(node) {
1821			score = group_weight(p, node, dist);
1822			if (score > max_score) {
1823				max_score = score;
1824				max_node = node;
1825			}
1826		}
1827		return max_node;
1828	}
1829
1830	/*
1831	 * Finding the preferred nid in a system with NUMA backplane
1832	 * interconnect topology is more involved. The goal is to locate
1833	 * tasks from numa_groups near each other in the system, and
1834	 * untangle workloads from different sides of the system. This requires
1835	 * searching down the hierarchy of node groups, recursively searching
1836	 * inside the highest scoring group of nodes. The nodemask tricks
1837	 * keep the complexity of the search down.
1838	 */
1839	nodes = node_online_map;
1840	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841		unsigned long max_faults = 0;
1842		nodemask_t max_group = NODE_MASK_NONE;
1843		int a, b;
1844
1845		/* Are there nodes at this distance from each other? */
1846		if (!find_numa_distance(dist))
1847			continue;
1848
1849		for_each_node_mask(a, nodes) {
1850			unsigned long faults = 0;
1851			nodemask_t this_group;
1852			nodes_clear(this_group);
1853
1854			/* Sum group's NUMA faults; includes a==b case. */
1855			for_each_node_mask(b, nodes) {
1856				if (node_distance(a, b) < dist) {
1857					faults += group_faults(p, b);
1858					node_set(b, this_group);
1859					node_clear(b, nodes);
1860				}
1861			}
1862
1863			/* Remember the top group. */
1864			if (faults > max_faults) {
1865				max_faults = faults;
1866				max_group = this_group;
1867				/*
1868				 * subtle: at the smallest distance there is
1869				 * just one node left in each "group", the
1870				 * winner is the preferred nid.
1871				 */
1872				nid = a;
1873			}
1874		}
1875		/* Next round, evaluate the nodes within max_group. */
1876		if (!max_faults)
1877			break;
1878		nodes = max_group;
1879	}
1880	return nid;
1881}
1882
1883static void task_numa_placement(struct task_struct *p)
1884{
1885	int seq, nid, max_nid = -1, max_group_nid = -1;
1886	unsigned long max_faults = 0, max_group_faults = 0;
1887	unsigned long fault_types[2] = { 0, 0 };
1888	unsigned long total_faults;
1889	u64 runtime, period;
1890	spinlock_t *group_lock = NULL;
1891
1892	/*
1893	 * The p->mm->numa_scan_seq field gets updated without
1894	 * exclusive access. Use READ_ONCE() here to ensure
1895	 * that the field is read in a single access:
1896	 */
1897	seq = READ_ONCE(p->mm->numa_scan_seq);
1898	if (p->numa_scan_seq == seq)
1899		return;
1900	p->numa_scan_seq = seq;
1901	p->numa_scan_period_max = task_scan_max(p);
1902
1903	total_faults = p->numa_faults_locality[0] +
1904		       p->numa_faults_locality[1];
1905	runtime = numa_get_avg_runtime(p, &period);
1906
1907	/* If the task is part of a group prevent parallel updates to group stats */
1908	if (p->numa_group) {
1909		group_lock = &p->numa_group->lock;
1910		spin_lock_irq(group_lock);
1911	}
1912
1913	/* Find the node with the highest number of faults */
1914	for_each_online_node(nid) {
1915		/* Keep track of the offsets in numa_faults array */
1916		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917		unsigned long faults = 0, group_faults = 0;
1918		int priv;
1919
1920		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921			long diff, f_diff, f_weight;
1922
1923			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928			/* Decay existing window, copy faults since last scan */
1929			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930			fault_types[priv] += p->numa_faults[membuf_idx];
1931			p->numa_faults[membuf_idx] = 0;
1932
1933			/*
1934			 * Normalize the faults_from, so all tasks in a group
1935			 * count according to CPU use, instead of by the raw
1936			 * number of faults. Tasks with little runtime have
1937			 * little over-all impact on throughput, and thus their
1938			 * faults are less important.
1939			 */
1940			f_weight = div64_u64(runtime << 16, period + 1);
1941			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942				   (total_faults + 1);
1943			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944			p->numa_faults[cpubuf_idx] = 0;
1945
1946			p->numa_faults[mem_idx] += diff;
1947			p->numa_faults[cpu_idx] += f_diff;
1948			faults += p->numa_faults[mem_idx];
1949			p->total_numa_faults += diff;
1950			if (p->numa_group) {
1951				/*
1952				 * safe because we can only change our own group
1953				 *
1954				 * mem_idx represents the offset for a given
1955				 * nid and priv in a specific region because it
1956				 * is at the beginning of the numa_faults array.
1957				 */
1958				p->numa_group->faults[mem_idx] += diff;
1959				p->numa_group->faults_cpu[mem_idx] += f_diff;
1960				p->numa_group->total_faults += diff;
1961				group_faults += p->numa_group->faults[mem_idx];
1962			}
1963		}
1964
1965		if (faults > max_faults) {
1966			max_faults = faults;
1967			max_nid = nid;
1968		}
1969
1970		if (group_faults > max_group_faults) {
1971			max_group_faults = group_faults;
1972			max_group_nid = nid;
1973		}
1974	}
1975
1976	update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978	if (p->numa_group) {
1979		numa_group_count_active_nodes(p->numa_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980		spin_unlock_irq(group_lock);
1981		max_nid = preferred_group_nid(p, max_group_nid);
1982	}
1983
1984	if (max_faults) {
1985		/* Set the new preferred node */
1986		if (max_nid != p->numa_preferred_nid)
1987			sched_setnuma(p, max_nid);
1988
1989		if (task_node(p) != p->numa_preferred_nid)
1990			numa_migrate_preferred(p);
1991	}
1992}
1993
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996	return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001	if (atomic_dec_and_test(&grp->refcount))
2002		kfree_rcu(grp, rcu);
2003}
2004
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006			int *priv)
2007{
2008	struct numa_group *grp, *my_grp;
2009	struct task_struct *tsk;
2010	bool join = false;
2011	int cpu = cpupid_to_cpu(cpupid);
2012	int i;
2013
2014	if (unlikely(!p->numa_group)) {
2015		unsigned int size = sizeof(struct numa_group) +
2016				    4*nr_node_ids*sizeof(unsigned long);
2017
2018		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019		if (!grp)
2020			return;
2021
2022		atomic_set(&grp->refcount, 1);
2023		grp->active_nodes = 1;
2024		grp->max_faults_cpu = 0;
2025		spin_lock_init(&grp->lock);
 
2026		grp->gid = p->pid;
2027		/* Second half of the array tracks nids where faults happen */
2028		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029						nr_node_ids;
2030
 
 
2031		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032			grp->faults[i] = p->numa_faults[i];
2033
2034		grp->total_faults = p->total_numa_faults;
2035
 
2036		grp->nr_tasks++;
2037		rcu_assign_pointer(p->numa_group, grp);
2038	}
2039
2040	rcu_read_lock();
2041	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043	if (!cpupid_match_pid(tsk, cpupid))
2044		goto no_join;
2045
2046	grp = rcu_dereference(tsk->numa_group);
2047	if (!grp)
2048		goto no_join;
2049
2050	my_grp = p->numa_group;
2051	if (grp == my_grp)
2052		goto no_join;
2053
2054	/*
2055	 * Only join the other group if its bigger; if we're the bigger group,
2056	 * the other task will join us.
2057	 */
2058	if (my_grp->nr_tasks > grp->nr_tasks)
2059		goto no_join;
2060
2061	/*
2062	 * Tie-break on the grp address.
2063	 */
2064	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065		goto no_join;
2066
2067	/* Always join threads in the same process. */
2068	if (tsk->mm == current->mm)
2069		join = true;
2070
2071	/* Simple filter to avoid false positives due to PID collisions */
2072	if (flags & TNF_SHARED)
2073		join = true;
2074
2075	/* Update priv based on whether false sharing was detected */
2076	*priv = !join;
2077
2078	if (join && !get_numa_group(grp))
2079		goto no_join;
2080
2081	rcu_read_unlock();
2082
2083	if (!join)
2084		return;
2085
2086	BUG_ON(irqs_disabled());
2087	double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090		my_grp->faults[i] -= p->numa_faults[i];
2091		grp->faults[i] += p->numa_faults[i];
2092	}
2093	my_grp->total_faults -= p->total_numa_faults;
2094	grp->total_faults += p->total_numa_faults;
2095
 
2096	my_grp->nr_tasks--;
2097	grp->nr_tasks++;
2098
2099	spin_unlock(&my_grp->lock);
2100	spin_unlock_irq(&grp->lock);
2101
2102	rcu_assign_pointer(p->numa_group, grp);
2103
2104	put_numa_group(my_grp);
2105	return;
2106
2107no_join:
2108	rcu_read_unlock();
2109	return;
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114	struct numa_group *grp = p->numa_group;
2115	void *numa_faults = p->numa_faults;
2116	unsigned long flags;
2117	int i;
2118
2119	if (grp) {
2120		spin_lock_irqsave(&grp->lock, flags);
2121		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122			grp->faults[i] -= p->numa_faults[i];
2123		grp->total_faults -= p->total_numa_faults;
2124
 
2125		grp->nr_tasks--;
2126		spin_unlock_irqrestore(&grp->lock, flags);
2127		RCU_INIT_POINTER(p->numa_group, NULL);
2128		put_numa_group(grp);
2129	}
2130
2131	p->numa_faults = NULL;
 
 
 
2132	kfree(numa_faults);
2133}
2134
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139{
2140	struct task_struct *p = current;
2141	bool migrated = flags & TNF_MIGRATED;
2142	int cpu_node = task_node(current);
2143	int local = !!(flags & TNF_FAULT_LOCAL);
2144	struct numa_group *ng;
2145	int priv;
2146
2147	if (!static_branch_likely(&sched_numa_balancing))
2148		return;
2149
2150	/* for example, ksmd faulting in a user's mm */
2151	if (!p->mm)
2152		return;
2153
 
 
 
 
2154	/* Allocate buffer to track faults on a per-node basis */
2155	if (unlikely(!p->numa_faults)) {
2156		int size = sizeof(*p->numa_faults) *
2157			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160		if (!p->numa_faults)
2161			return;
2162
 
 
 
 
 
 
 
 
 
 
2163		p->total_numa_faults = 0;
2164		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165	}
2166
2167	/*
2168	 * First accesses are treated as private, otherwise consider accesses
2169	 * to be private if the accessing pid has not changed
2170	 */
2171	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172		priv = 1;
2173	} else {
2174		priv = cpupid_match_pid(p, last_cpupid);
2175		if (!priv && !(flags & TNF_NO_GROUP))
2176			task_numa_group(p, last_cpupid, flags, &priv);
2177	}
2178
2179	/*
2180	 * If a workload spans multiple NUMA nodes, a shared fault that
2181	 * occurs wholly within the set of nodes that the workload is
2182	 * actively using should be counted as local. This allows the
2183	 * scan rate to slow down when a workload has settled down.
2184	 */
2185	ng = p->numa_group;
2186	if (!priv && !local && ng && ng->active_nodes > 1 &&
2187				numa_is_active_node(cpu_node, ng) &&
2188				numa_is_active_node(mem_node, ng))
2189		local = 1;
2190
2191	task_numa_placement(p);
2192
2193	/*
2194	 * Retry task to preferred node migration periodically, in case it
2195	 * case it previously failed, or the scheduler moved us.
2196	 */
2197	if (time_after(jiffies, p->numa_migrate_retry))
2198		numa_migrate_preferred(p);
2199
2200	if (migrated)
2201		p->numa_pages_migrated += pages;
2202	if (flags & TNF_MIGRATE_FAIL)
2203		p->numa_faults_locality[2] += pages;
2204
2205	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207	p->numa_faults_locality[local] += pages;
2208}
2209
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
2212	/*
2213	 * We only did a read acquisition of the mmap sem, so
2214	 * p->mm->numa_scan_seq is written to without exclusive access
2215	 * and the update is not guaranteed to be atomic. That's not
2216	 * much of an issue though, since this is just used for
2217	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218	 * expensive, to avoid any form of compiler optimizations:
2219	 */
2220	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221	p->mm->numa_scan_offset = 0;
2222}
2223
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230	unsigned long migrate, next_scan, now = jiffies;
2231	struct task_struct *p = current;
2232	struct mm_struct *mm = p->mm;
2233	u64 runtime = p->se.sum_exec_runtime;
2234	struct vm_area_struct *vma;
2235	unsigned long start, end;
2236	unsigned long nr_pte_updates = 0;
2237	long pages, virtpages;
2238
2239	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241	work->next = work; /* protect against double add */
2242	/*
2243	 * Who cares about NUMA placement when they're dying.
2244	 *
2245	 * NOTE: make sure not to dereference p->mm before this check,
2246	 * exit_task_work() happens _after_ exit_mm() so we could be called
2247	 * without p->mm even though we still had it when we enqueued this
2248	 * work.
2249	 */
2250	if (p->flags & PF_EXITING)
2251		return;
2252
2253	if (!mm->numa_next_scan) {
2254		mm->numa_next_scan = now +
2255			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256	}
2257
2258	/*
2259	 * Enforce maximal scan/migration frequency..
2260	 */
2261	migrate = mm->numa_next_scan;
2262	if (time_before(now, migrate))
2263		return;
2264
2265	if (p->numa_scan_period == 0) {
2266		p->numa_scan_period_max = task_scan_max(p);
2267		p->numa_scan_period = task_scan_min(p);
2268	}
2269
2270	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272		return;
2273
2274	/*
2275	 * Delay this task enough that another task of this mm will likely win
2276	 * the next time around.
2277	 */
2278	p->node_stamp += 2 * TICK_NSEC;
2279
2280	start = mm->numa_scan_offset;
2281	pages = sysctl_numa_balancing_scan_size;
2282	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2284	if (!pages)
2285		return;
2286
2287
2288	down_read(&mm->mmap_sem);
2289	vma = find_vma(mm, start);
2290	if (!vma) {
2291		reset_ptenuma_scan(p);
2292		start = 0;
2293		vma = mm->mmap;
2294	}
2295	for (; vma; vma = vma->vm_next) {
2296		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298			continue;
2299		}
2300
2301		/*
2302		 * Shared library pages mapped by multiple processes are not
2303		 * migrated as it is expected they are cache replicated. Avoid
2304		 * hinting faults in read-only file-backed mappings or the vdso
2305		 * as migrating the pages will be of marginal benefit.
2306		 */
2307		if (!vma->vm_mm ||
2308		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309			continue;
2310
2311		/*
2312		 * Skip inaccessible VMAs to avoid any confusion between
2313		 * PROT_NONE and NUMA hinting ptes
2314		 */
2315		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316			continue;
2317
2318		do {
2319			start = max(start, vma->vm_start);
2320			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321			end = min(end, vma->vm_end);
2322			nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324			/*
2325			 * Try to scan sysctl_numa_balancing_size worth of
2326			 * hpages that have at least one present PTE that
2327			 * is not already pte-numa. If the VMA contains
2328			 * areas that are unused or already full of prot_numa
2329			 * PTEs, scan up to virtpages, to skip through those
2330			 * areas faster.
2331			 */
2332			if (nr_pte_updates)
2333				pages -= (end - start) >> PAGE_SHIFT;
2334			virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336			start = end;
2337			if (pages <= 0 || virtpages <= 0)
2338				goto out;
2339
2340			cond_resched();
2341		} while (end != vma->vm_end);
2342	}
2343
2344out:
2345	/*
2346	 * It is possible to reach the end of the VMA list but the last few
2347	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348	 * would find the !migratable VMA on the next scan but not reset the
2349	 * scanner to the start so check it now.
2350	 */
2351	if (vma)
2352		mm->numa_scan_offset = start;
2353	else
2354		reset_ptenuma_scan(p);
2355	up_read(&mm->mmap_sem);
2356
2357	/*
2358	 * Make sure tasks use at least 32x as much time to run other code
2359	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360	 * Usually update_task_scan_period slows down scanning enough; on an
2361	 * overloaded system we need to limit overhead on a per task basis.
2362	 */
2363	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364		u64 diff = p->se.sum_exec_runtime - runtime;
2365		p->node_stamp += 32 * diff;
2366	}
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374	struct callback_head *work = &curr->numa_work;
2375	u64 period, now;
2376
2377	/*
2378	 * We don't care about NUMA placement if we don't have memory.
2379	 */
2380	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381		return;
2382
2383	/*
2384	 * Using runtime rather than walltime has the dual advantage that
2385	 * we (mostly) drive the selection from busy threads and that the
2386	 * task needs to have done some actual work before we bother with
2387	 * NUMA placement.
2388	 */
2389	now = curr->se.sum_exec_runtime;
2390	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392	if (now > curr->node_stamp + period) {
2393		if (!curr->node_stamp)
2394			curr->numa_scan_period = task_scan_min(curr);
2395		curr->node_stamp += period;
2396
2397		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399			task_work_add(curr, work, true);
2400		}
2401	}
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
2415#endif /* CONFIG_NUMA_BALANCING */
2416
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420	update_load_add(&cfs_rq->load, se->load.weight);
2421	if (!parent_entity(se))
2422		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423#ifdef CONFIG_SMP
2424	if (entity_is_task(se)) {
2425		struct rq *rq = rq_of(cfs_rq);
2426
2427		account_numa_enqueue(rq, task_of(se));
2428		list_add(&se->group_node, &rq->cfs_tasks);
2429	}
2430#endif
2431	cfs_rq->nr_running++;
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437	update_load_sub(&cfs_rq->load, se->load.weight);
2438	if (!parent_entity(se))
2439		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440	if (entity_is_task(se)) {
2441		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442		list_del_init(&se->group_node);
2443	}
2444	cfs_rq->nr_running--;
2445}
2446
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451	long tg_weight;
2452
2453	/*
2454	 * Use this CPU's real-time load instead of the last load contribution
2455	 * as the updating of the contribution is delayed, and we will use the
2456	 * the real-time load to calc the share. See update_tg_load_avg().
2457	 */
2458	tg_weight = atomic_long_read(&tg->load_avg);
2459	tg_weight -= cfs_rq->tg_load_avg_contrib;
2460	tg_weight += cfs_rq->load.weight;
2461
2462	return tg_weight;
2463}
2464
2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466{
2467	long tg_weight, load, shares;
2468
2469	tg_weight = calc_tg_weight(tg, cfs_rq);
2470	load = cfs_rq->load.weight;
2471
2472	shares = (tg->shares * load);
2473	if (tg_weight)
2474		shares /= tg_weight;
2475
2476	if (shares < MIN_SHARES)
2477		shares = MIN_SHARES;
2478	if (shares > tg->shares)
2479		shares = tg->shares;
2480
2481	return shares;
2482}
2483# else /* CONFIG_SMP */
2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485{
2486	return tg->shares;
2487}
2488# endif /* CONFIG_SMP */
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490			    unsigned long weight)
2491{
2492	if (se->on_rq) {
2493		/* commit outstanding execution time */
2494		if (cfs_rq->curr == se)
2495			update_curr(cfs_rq);
2496		account_entity_dequeue(cfs_rq, se);
2497	}
2498
2499	update_load_set(&se->load, weight);
2500
2501	if (se->on_rq)
2502		account_entity_enqueue(cfs_rq, se);
2503}
2504
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508{
2509	struct task_group *tg;
2510	struct sched_entity *se;
2511	long shares;
2512
2513	tg = cfs_rq->tg;
2514	se = tg->se[cpu_of(rq_of(cfs_rq))];
2515	if (!se || throttled_hierarchy(cfs_rq))
2516		return;
2517#ifndef CONFIG_SMP
2518	if (likely(se->load.weight == tg->shares))
2519		return;
2520#endif
2521	shares = calc_cfs_shares(cfs_rq, tg);
2522
2523	reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539	0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
2552/*
2553 * Approximate:
2554 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
2558	unsigned int local_n;
2559
2560	if (!n)
2561		return val;
2562	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563		return 0;
2564
2565	/* after bounds checking we can collapse to 32-bit */
2566	local_n = n;
2567
2568	/*
2569	 * As y^PERIOD = 1/2, we can combine
2570	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571	 * With a look-up table which covers y^n (n<PERIOD)
2572	 *
2573	 * To achieve constant time decay_load.
2574	 */
2575	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576		val >>= local_n / LOAD_AVG_PERIOD;
2577		local_n %= LOAD_AVG_PERIOD;
2578	}
2579
2580	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581	return val;
 
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593	u32 contrib = 0;
2594
2595	if (likely(n <= LOAD_AVG_PERIOD))
2596		return runnable_avg_yN_sum[n];
2597	else if (unlikely(n >= LOAD_AVG_MAX_N))
2598		return LOAD_AVG_MAX;
2599
2600	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601	do {
2602		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605		n -= LOAD_AVG_PERIOD;
2606	} while (n > LOAD_AVG_PERIOD);
2607
2608	contrib = decay_load(contrib, n);
2609	return contrib + runnable_avg_yN_sum[n];
2610}
2611
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series.  To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 *      p0            p1           p2
2626 *     (now)       (~1ms ago)  (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 *   y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649{
2650	u64 delta, scaled_delta, periods;
2651	u32 contrib;
2652	unsigned int delta_w, scaled_delta_w, decayed = 0;
2653	unsigned long scale_freq, scale_cpu;
2654
2655	delta = now - sa->last_update_time;
2656	/*
2657	 * This should only happen when time goes backwards, which it
2658	 * unfortunately does during sched clock init when we swap over to TSC.
2659	 */
2660	if ((s64)delta < 0) {
2661		sa->last_update_time = now;
2662		return 0;
2663	}
2664
2665	/*
2666	 * Use 1024ns as the unit of measurement since it's a reasonable
2667	 * approximation of 1us and fast to compute.
2668	 */
2669	delta >>= 10;
2670	if (!delta)
2671		return 0;
2672	sa->last_update_time = now;
2673
2674	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677	/* delta_w is the amount already accumulated against our next period */
2678	delta_w = sa->period_contrib;
2679	if (delta + delta_w >= 1024) {
 
2680		decayed = 1;
2681
2682		/* how much left for next period will start over, we don't know yet */
2683		sa->period_contrib = 0;
2684
2685		/*
2686		 * Now that we know we're crossing a period boundary, figure
2687		 * out how much from delta we need to complete the current
2688		 * period and accrue it.
2689		 */
2690		delta_w = 1024 - delta_w;
2691		scaled_delta_w = cap_scale(delta_w, scale_freq);
2692		if (weight) {
2693			sa->load_sum += weight * scaled_delta_w;
2694			if (cfs_rq) {
2695				cfs_rq->runnable_load_sum +=
2696						weight * scaled_delta_w;
2697			}
2698		}
2699		if (running)
2700			sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702		delta -= delta_w;
2703
2704		/* Figure out how many additional periods this update spans */
2705		periods = delta / 1024;
2706		delta %= 1024;
2707
2708		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709		if (cfs_rq) {
2710			cfs_rq->runnable_load_sum =
2711				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712		}
2713		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716		contrib = __compute_runnable_contrib(periods);
2717		contrib = cap_scale(contrib, scale_freq);
2718		if (weight) {
2719			sa->load_sum += weight * contrib;
2720			if (cfs_rq)
2721				cfs_rq->runnable_load_sum += weight * contrib;
2722		}
2723		if (running)
2724			sa->util_sum += contrib * scale_cpu;
2725	}
2726
2727	/* Remainder of delta accrued against u_0` */
2728	scaled_delta = cap_scale(delta, scale_freq);
2729	if (weight) {
2730		sa->load_sum += weight * scaled_delta;
2731		if (cfs_rq)
2732			cfs_rq->runnable_load_sum += weight * scaled_delta;
2733	}
2734	if (running)
2735		sa->util_sum += scaled_delta * scale_cpu;
2736
2737	sa->period_contrib += delta;
2738
2739	if (decayed) {
2740		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741		if (cfs_rq) {
2742			cfs_rq->runnable_load_avg =
2743				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744		}
2745		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746	}
2747
2748	return decayed;
2749}
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751#ifdef CONFIG_FAIR_GROUP_SCHED
2752/*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757{
2758	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
 
2759
2760	/*
2761	 * No need to update load_avg for root_task_group as it is not used.
2762	 */
2763	if (cfs_rq->tg == &root_task_group)
2764		return;
2765
2766	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769	}
2770}
2771
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778		      struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780	if (!sched_feat(ATTACH_AGE_LOAD))
2781		return;
2782
2783	/*
2784	 * We are supposed to update the task to "current" time, then its up to
2785	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786	 * getting what current time is, so simply throw away the out-of-date
2787	 * time. This will result in the wakee task is less decayed, but giving
2788	 * the wakee more load sounds not bad.
2789	 */
2790	if (se->avg.last_update_time && prev) {
2791		u64 p_last_update_time;
2792		u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795		u64 p_last_update_time_copy;
2796		u64 n_last_update_time_copy;
 
 
2797
2798		do {
2799			p_last_update_time_copy = prev->load_last_update_time_copy;
2800			n_last_update_time_copy = next->load_last_update_time_copy;
 
 
2801
2802			smp_rmb();
2803
2804			p_last_update_time = prev->avg.last_update_time;
2805			n_last_update_time = next->avg.last_update_time;
 
2806
2807		} while (p_last_update_time != p_last_update_time_copy ||
2808			 n_last_update_time != n_last_update_time_copy);
2809#else
2810		p_last_update_time = prev->avg.last_update_time;
2811		n_last_update_time = next->avg.last_update_time;
2812#endif
2813		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814				  &se->avg, 0, 0, NULL);
2815		se->avg.last_update_time = n_last_update_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2816	}
2817}
 
 
 
 
 
 
2818#else /* CONFIG_FAIR_GROUP_SCHED */
2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
 
 
 
 
 
2820#endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 
 
 
 
 
 
 
 
2823
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826{
2827	struct sched_avg *sa = &cfs_rq->avg;
2828	int decayed, removed = 0;
2829
2830	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832		sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834		removed = 1;
2835	}
2836
2837	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841	}
2842
2843	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
 
 
 
 
 
 
2845
2846#ifndef CONFIG_64BIT
2847	smp_wmb();
2848	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
2850
2851	return decayed || removed;
2852}
2853
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856{
2857	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858	u64 now = cfs_rq_clock_task(cfs_rq);
2859	struct rq *rq = rq_of(cfs_rq);
2860	int cpu = cpu_of(rq);
2861
2862	/*
2863	 * Track task load average for carrying it to new CPU after migrated, and
2864	 * track group sched_entity load average for task_h_load calc in migration
2865	 */
2866	__update_load_avg(now, cpu, &se->avg,
2867			  se->on_rq * scale_load_down(se->load.weight),
2868			  cfs_rq->curr == se, NULL);
 
 
 
 
2869
2870	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871		update_tg_load_avg(cfs_rq, 0);
2872
2873	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874		unsigned long max = rq->cpu_capacity_orig;
2875
2876		/*
2877		 * There are a few boundary cases this might miss but it should
2878		 * get called often enough that that should (hopefully) not be
2879		 * a real problem -- added to that it only calls on the local
2880		 * CPU, so if we enqueue remotely we'll miss an update, but
2881		 * the next tick/schedule should update.
2882		 *
2883		 * It will not get called when we go idle, because the idle
2884		 * thread is a different class (!fair), nor will the utilization
2885		 * number include things like RT tasks.
2886		 *
2887		 * As is, the util number is not freq-invariant (we'd have to
2888		 * implement arch_scale_freq_capacity() for that).
2889		 *
2890		 * See cpu_util().
2891		 */
2892		cpufreq_update_util(rq_clock(rq),
2893				    min(cfs_rq->avg.util_avg, max), max);
2894	}
2895}
2896
2897static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 
 
 
2898{
2899	if (!sched_feat(ATTACH_AGE_LOAD))
2900		goto skip_aging;
2901
2902	/*
2903	 * If we got migrated (either between CPUs or between cgroups) we'll
2904	 * have aged the average right before clearing @last_update_time.
2905	 */
2906	if (se->avg.last_update_time) {
2907		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908				  &se->avg, 0, 0, NULL);
2909
2910		/*
2911		 * XXX: we could have just aged the entire load away if we've been
2912		 * absent from the fair class for too long.
2913		 */
2914	}
2915
2916skip_aging:
2917	se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918	cfs_rq->avg.load_avg += se->avg.load_avg;
2919	cfs_rq->avg.load_sum += se->avg.load_sum;
2920	cfs_rq->avg.util_avg += se->avg.util_avg;
2921	cfs_rq->avg.util_sum += se->avg.util_sum;
2922}
2923
2924static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925{
2926	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928			  cfs_rq->curr == se, NULL);
2929
2930	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934}
2935
2936/* Add the load generated by se into cfs_rq's load average */
2937static inline void
2938enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
2939{
2940	struct sched_avg *sa = &se->avg;
2941	u64 now = cfs_rq_clock_task(cfs_rq);
2942	int migrated, decayed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2943
2944	migrated = !sa->last_update_time;
2945	if (!migrated) {
2946		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947			se->on_rq * scale_load_down(se->load.weight),
2948			cfs_rq->curr == se, NULL);
2949	}
2950
2951	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952
2953	cfs_rq->runnable_load_avg += sa->load_avg;
2954	cfs_rq->runnable_load_sum += sa->load_sum;
2955
2956	if (migrated)
2957		attach_entity_load_avg(cfs_rq, se);
2958
2959	if (decayed || migrated)
2960		update_tg_load_avg(cfs_rq, 0);
2961}
2962
2963/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964static inline void
2965dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 
 
 
 
2966{
2967	update_load_avg(se, 1);
 
 
2968
2969	cfs_rq->runnable_load_avg =
2970		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971	cfs_rq->runnable_load_sum =
2972		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
 
2973}
2974
2975#ifndef CONFIG_64BIT
2976static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977{
2978	u64 last_update_time_copy;
2979	u64 last_update_time;
2980
2981	do {
2982		last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983		smp_rmb();
2984		last_update_time = cfs_rq->avg.last_update_time;
2985	} while (last_update_time != last_update_time_copy);
2986
2987	return last_update_time;
2988}
2989#else
2990static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991{
2992	return cfs_rq->avg.last_update_time;
2993}
2994#endif
2995
2996/*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
 
2999 */
3000void remove_entity_load_avg(struct sched_entity *se)
3001{
3002	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003	u64 last_update_time;
3004
3005	/*
3006	 * Newly created task or never used group entity should not be removed
3007	 * from its (source) cfs_rq
3008	 */
3009	if (se->avg.last_update_time == 0)
3010		return;
3011
3012	last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
3014	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017}
3018
3019static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020{
3021	return cfs_rq->runnable_load_avg;
3022}
3023
3024static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025{
3026	return cfs_rq->avg.load_avg;
3027}
3028
3029static int idle_balance(struct rq *this_rq);
3030
3031#else /* CONFIG_SMP */
3032
3033static inline void update_load_avg(struct sched_entity *se, int not_used)
3034{
3035	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3036	struct rq *rq = rq_of(cfs_rq);
3037
3038	cpufreq_trigger_update(rq_clock(rq));
3039}
3040
3041static inline void
3042enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3043static inline void
3044dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3045static inline void remove_entity_load_avg(struct sched_entity *se) {}
3046
3047static inline void
3048attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3049static inline void
3050detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3051
3052static inline int idle_balance(struct rq *rq)
3053{
3054	return 0;
3055}
3056
3057#endif /* CONFIG_SMP */
3058
3059static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061#ifdef CONFIG_SCHEDSTATS
3062	struct task_struct *tsk = NULL;
3063
3064	if (entity_is_task(se))
3065		tsk = task_of(se);
3066
3067	if (se->statistics.sleep_start) {
3068		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3069
3070		if ((s64)delta < 0)
3071			delta = 0;
3072
3073		if (unlikely(delta > se->statistics.sleep_max))
3074			se->statistics.sleep_max = delta;
3075
3076		se->statistics.sleep_start = 0;
3077		se->statistics.sum_sleep_runtime += delta;
3078
3079		if (tsk) {
3080			account_scheduler_latency(tsk, delta >> 10, 1);
3081			trace_sched_stat_sleep(tsk, delta);
3082		}
3083	}
3084	if (se->statistics.block_start) {
3085		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3086
3087		if ((s64)delta < 0)
3088			delta = 0;
3089
3090		if (unlikely(delta > se->statistics.block_max))
3091			se->statistics.block_max = delta;
3092
3093		se->statistics.block_start = 0;
3094		se->statistics.sum_sleep_runtime += delta;
3095
3096		if (tsk) {
3097			if (tsk->in_iowait) {
3098				se->statistics.iowait_sum += delta;
3099				se->statistics.iowait_count++;
3100				trace_sched_stat_iowait(tsk, delta);
3101			}
3102
3103			trace_sched_stat_blocked(tsk, delta);
3104
3105			/*
3106			 * Blocking time is in units of nanosecs, so shift by
3107			 * 20 to get a milliseconds-range estimation of the
3108			 * amount of time that the task spent sleeping:
3109			 */
3110			if (unlikely(prof_on == SLEEP_PROFILING)) {
3111				profile_hits(SLEEP_PROFILING,
3112						(void *)get_wchan(tsk),
3113						delta >> 20);
3114			}
3115			account_scheduler_latency(tsk, delta >> 10, 0);
3116		}
3117	}
3118#endif
3119}
3120
3121static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3122{
3123#ifdef CONFIG_SCHED_DEBUG
3124	s64 d = se->vruntime - cfs_rq->min_vruntime;
3125
3126	if (d < 0)
3127		d = -d;
3128
3129	if (d > 3*sysctl_sched_latency)
3130		schedstat_inc(cfs_rq, nr_spread_over);
3131#endif
3132}
3133
3134static void
3135place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3136{
3137	u64 vruntime = cfs_rq->min_vruntime;
3138
3139	/*
3140	 * The 'current' period is already promised to the current tasks,
3141	 * however the extra weight of the new task will slow them down a
3142	 * little, place the new task so that it fits in the slot that
3143	 * stays open at the end.
3144	 */
3145	if (initial && sched_feat(START_DEBIT))
3146		vruntime += sched_vslice(cfs_rq, se);
3147
3148	/* sleeps up to a single latency don't count. */
3149	if (!initial) {
3150		unsigned long thresh = sysctl_sched_latency;
3151
3152		/*
3153		 * Halve their sleep time's effect, to allow
3154		 * for a gentler effect of sleepers:
3155		 */
3156		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3157			thresh >>= 1;
3158
3159		vruntime -= thresh;
3160	}
3161
3162	/* ensure we never gain time by being placed backwards. */
3163	se->vruntime = max_vruntime(se->vruntime, vruntime);
3164}
3165
3166static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3167
3168static inline void check_schedstat_required(void)
3169{
3170#ifdef CONFIG_SCHEDSTATS
3171	if (schedstat_enabled())
3172		return;
3173
3174	/* Force schedstat enabled if a dependent tracepoint is active */
3175	if (trace_sched_stat_wait_enabled()    ||
3176			trace_sched_stat_sleep_enabled()   ||
3177			trace_sched_stat_iowait_enabled()  ||
3178			trace_sched_stat_blocked_enabled() ||
3179			trace_sched_stat_runtime_enabled())  {
3180		pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3181			     "stat_blocked and stat_runtime require the "
3182			     "kernel parameter schedstats=enabled or "
3183			     "kernel.sched_schedstats=1\n");
3184	}
3185#endif
3186}
3187
3188static void
3189enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3190{
3191	/*
3192	 * Update the normalized vruntime before updating min_vruntime
3193	 * through calling update_curr().
3194	 */
3195	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3196		se->vruntime += cfs_rq->min_vruntime;
3197
3198	/*
3199	 * Update run-time statistics of the 'current'.
3200	 */
3201	update_curr(cfs_rq);
3202	enqueue_entity_load_avg(cfs_rq, se);
3203	account_entity_enqueue(cfs_rq, se);
3204	update_cfs_shares(cfs_rq);
3205
3206	if (flags & ENQUEUE_WAKEUP) {
3207		place_entity(cfs_rq, se, 0);
3208		if (schedstat_enabled())
3209			enqueue_sleeper(cfs_rq, se);
3210	}
3211
3212	check_schedstat_required();
3213	if (schedstat_enabled()) {
3214		update_stats_enqueue(cfs_rq, se);
3215		check_spread(cfs_rq, se);
3216	}
3217	if (se != cfs_rq->curr)
3218		__enqueue_entity(cfs_rq, se);
3219	se->on_rq = 1;
3220
3221	if (cfs_rq->nr_running == 1) {
3222		list_add_leaf_cfs_rq(cfs_rq);
3223		check_enqueue_throttle(cfs_rq);
3224	}
3225}
3226
3227static void __clear_buddies_last(struct sched_entity *se)
3228{
3229	for_each_sched_entity(se) {
3230		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3231		if (cfs_rq->last != se)
3232			break;
3233
3234		cfs_rq->last = NULL;
3235	}
3236}
3237
3238static void __clear_buddies_next(struct sched_entity *se)
3239{
3240	for_each_sched_entity(se) {
3241		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3242		if (cfs_rq->next != se)
3243			break;
3244
3245		cfs_rq->next = NULL;
3246	}
3247}
3248
3249static void __clear_buddies_skip(struct sched_entity *se)
3250{
3251	for_each_sched_entity(se) {
3252		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3253		if (cfs_rq->skip != se)
3254			break;
3255
3256		cfs_rq->skip = NULL;
3257	}
3258}
3259
3260static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3261{
3262	if (cfs_rq->last == se)
3263		__clear_buddies_last(se);
3264
3265	if (cfs_rq->next == se)
3266		__clear_buddies_next(se);
3267
3268	if (cfs_rq->skip == se)
3269		__clear_buddies_skip(se);
3270}
3271
3272static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3273
3274static void
3275dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3276{
3277	/*
3278	 * Update run-time statistics of the 'current'.
3279	 */
3280	update_curr(cfs_rq);
3281	dequeue_entity_load_avg(cfs_rq, se);
3282
3283	if (schedstat_enabled())
3284		update_stats_dequeue(cfs_rq, se, flags);
 
 
 
 
 
 
 
 
 
 
 
3285
3286	clear_buddies(cfs_rq, se);
3287
3288	if (se != cfs_rq->curr)
3289		__dequeue_entity(cfs_rq, se);
3290	se->on_rq = 0;
3291	account_entity_dequeue(cfs_rq, se);
3292
3293	/*
3294	 * Normalize the entity after updating the min_vruntime because the
3295	 * update can refer to the ->curr item and we need to reflect this
3296	 * movement in our normalized position.
3297	 */
3298	if (!(flags & DEQUEUE_SLEEP))
3299		se->vruntime -= cfs_rq->min_vruntime;
3300
3301	/* return excess runtime on last dequeue */
3302	return_cfs_rq_runtime(cfs_rq);
3303
3304	update_min_vruntime(cfs_rq);
3305	update_cfs_shares(cfs_rq);
3306}
3307
3308/*
3309 * Preempt the current task with a newly woken task if needed:
3310 */
3311static void
3312check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3313{
3314	unsigned long ideal_runtime, delta_exec;
3315	struct sched_entity *se;
3316	s64 delta;
3317
3318	ideal_runtime = sched_slice(cfs_rq, curr);
3319	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3320	if (delta_exec > ideal_runtime) {
3321		resched_curr(rq_of(cfs_rq));
3322		/*
3323		 * The current task ran long enough, ensure it doesn't get
3324		 * re-elected due to buddy favours.
3325		 */
3326		clear_buddies(cfs_rq, curr);
3327		return;
3328	}
3329
3330	/*
3331	 * Ensure that a task that missed wakeup preemption by a
3332	 * narrow margin doesn't have to wait for a full slice.
3333	 * This also mitigates buddy induced latencies under load.
3334	 */
3335	if (delta_exec < sysctl_sched_min_granularity)
3336		return;
3337
3338	se = __pick_first_entity(cfs_rq);
3339	delta = curr->vruntime - se->vruntime;
3340
3341	if (delta < 0)
3342		return;
3343
3344	if (delta > ideal_runtime)
3345		resched_curr(rq_of(cfs_rq));
3346}
3347
3348static void
3349set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3350{
3351	/* 'current' is not kept within the tree. */
3352	if (se->on_rq) {
3353		/*
3354		 * Any task has to be enqueued before it get to execute on
3355		 * a CPU. So account for the time it spent waiting on the
3356		 * runqueue.
3357		 */
3358		if (schedstat_enabled())
3359			update_stats_wait_end(cfs_rq, se);
3360		__dequeue_entity(cfs_rq, se);
3361		update_load_avg(se, 1);
3362	}
3363
3364	update_stats_curr_start(cfs_rq, se);
3365	cfs_rq->curr = se;
3366#ifdef CONFIG_SCHEDSTATS
3367	/*
3368	 * Track our maximum slice length, if the CPU's load is at
3369	 * least twice that of our own weight (i.e. dont track it
3370	 * when there are only lesser-weight tasks around):
3371	 */
3372	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3373		se->statistics.slice_max = max(se->statistics.slice_max,
3374			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3375	}
3376#endif
3377	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3378}
3379
3380static int
3381wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3382
3383/*
3384 * Pick the next process, keeping these things in mind, in this order:
3385 * 1) keep things fair between processes/task groups
3386 * 2) pick the "next" process, since someone really wants that to run
3387 * 3) pick the "last" process, for cache locality
3388 * 4) do not run the "skip" process, if something else is available
3389 */
3390static struct sched_entity *
3391pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3392{
3393	struct sched_entity *left = __pick_first_entity(cfs_rq);
3394	struct sched_entity *se;
3395
3396	/*
3397	 * If curr is set we have to see if its left of the leftmost entity
3398	 * still in the tree, provided there was anything in the tree at all.
3399	 */
3400	if (!left || (curr && entity_before(curr, left)))
3401		left = curr;
3402
3403	se = left; /* ideally we run the leftmost entity */
3404
3405	/*
3406	 * Avoid running the skip buddy, if running something else can
3407	 * be done without getting too unfair.
3408	 */
3409	if (cfs_rq->skip == se) {
3410		struct sched_entity *second;
3411
3412		if (se == curr) {
3413			second = __pick_first_entity(cfs_rq);
3414		} else {
3415			second = __pick_next_entity(se);
3416			if (!second || (curr && entity_before(curr, second)))
3417				second = curr;
3418		}
3419
3420		if (second && wakeup_preempt_entity(second, left) < 1)
3421			se = second;
3422	}
3423
3424	/*
3425	 * Prefer last buddy, try to return the CPU to a preempted task.
3426	 */
3427	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3428		se = cfs_rq->last;
3429
3430	/*
3431	 * Someone really wants this to run. If it's not unfair, run it.
3432	 */
3433	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3434		se = cfs_rq->next;
3435
3436	clear_buddies(cfs_rq, se);
3437
3438	return se;
3439}
3440
3441static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3442
3443static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3444{
3445	/*
3446	 * If still on the runqueue then deactivate_task()
3447	 * was not called and update_curr() has to be done:
3448	 */
3449	if (prev->on_rq)
3450		update_curr(cfs_rq);
3451
3452	/* throttle cfs_rqs exceeding runtime */
3453	check_cfs_rq_runtime(cfs_rq);
3454
3455	if (schedstat_enabled()) {
3456		check_spread(cfs_rq, prev);
3457		if (prev->on_rq)
3458			update_stats_wait_start(cfs_rq, prev);
3459	}
3460
3461	if (prev->on_rq) {
 
3462		/* Put 'current' back into the tree. */
3463		__enqueue_entity(cfs_rq, prev);
3464		/* in !on_rq case, update occurred at dequeue */
3465		update_load_avg(prev, 0);
3466	}
3467	cfs_rq->curr = NULL;
3468}
3469
3470static void
3471entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3472{
3473	/*
3474	 * Update run-time statistics of the 'current'.
3475	 */
3476	update_curr(cfs_rq);
3477
3478	/*
3479	 * Ensure that runnable average is periodically updated.
3480	 */
3481	update_load_avg(curr, 1);
 
3482	update_cfs_shares(cfs_rq);
3483
3484#ifdef CONFIG_SCHED_HRTICK
3485	/*
3486	 * queued ticks are scheduled to match the slice, so don't bother
3487	 * validating it and just reschedule.
3488	 */
3489	if (queued) {
3490		resched_curr(rq_of(cfs_rq));
3491		return;
3492	}
3493	/*
3494	 * don't let the period tick interfere with the hrtick preemption
3495	 */
3496	if (!sched_feat(DOUBLE_TICK) &&
3497			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3498		return;
3499#endif
3500
3501	if (cfs_rq->nr_running > 1)
3502		check_preempt_tick(cfs_rq, curr);
3503}
3504
3505
3506/**************************************************
3507 * CFS bandwidth control machinery
3508 */
3509
3510#ifdef CONFIG_CFS_BANDWIDTH
3511
3512#ifdef HAVE_JUMP_LABEL
3513static struct static_key __cfs_bandwidth_used;
3514
3515static inline bool cfs_bandwidth_used(void)
3516{
3517	return static_key_false(&__cfs_bandwidth_used);
3518}
3519
3520void cfs_bandwidth_usage_inc(void)
3521{
3522	static_key_slow_inc(&__cfs_bandwidth_used);
3523}
3524
3525void cfs_bandwidth_usage_dec(void)
3526{
3527	static_key_slow_dec(&__cfs_bandwidth_used);
3528}
3529#else /* HAVE_JUMP_LABEL */
3530static bool cfs_bandwidth_used(void)
3531{
3532	return true;
3533}
3534
3535void cfs_bandwidth_usage_inc(void) {}
3536void cfs_bandwidth_usage_dec(void) {}
3537#endif /* HAVE_JUMP_LABEL */
3538
3539/*
3540 * default period for cfs group bandwidth.
3541 * default: 0.1s, units: nanoseconds
3542 */
3543static inline u64 default_cfs_period(void)
3544{
3545	return 100000000ULL;
3546}
3547
3548static inline u64 sched_cfs_bandwidth_slice(void)
3549{
3550	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3551}
3552
3553/*
3554 * Replenish runtime according to assigned quota and update expiration time.
3555 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3556 * additional synchronization around rq->lock.
3557 *
3558 * requires cfs_b->lock
3559 */
3560void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3561{
3562	u64 now;
3563
3564	if (cfs_b->quota == RUNTIME_INF)
3565		return;
3566
3567	now = sched_clock_cpu(smp_processor_id());
3568	cfs_b->runtime = cfs_b->quota;
3569	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3570}
3571
3572static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3573{
3574	return &tg->cfs_bandwidth;
3575}
3576
3577/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3578static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3579{
3580	if (unlikely(cfs_rq->throttle_count))
3581		return cfs_rq->throttled_clock_task;
3582
3583	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3584}
3585
3586/* returns 0 on failure to allocate runtime */
3587static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3588{
3589	struct task_group *tg = cfs_rq->tg;
3590	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3591	u64 amount = 0, min_amount, expires;
3592
3593	/* note: this is a positive sum as runtime_remaining <= 0 */
3594	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3595
3596	raw_spin_lock(&cfs_b->lock);
3597	if (cfs_b->quota == RUNTIME_INF)
3598		amount = min_amount;
3599	else {
3600		start_cfs_bandwidth(cfs_b);
 
 
 
 
 
 
 
 
 
3601
3602		if (cfs_b->runtime > 0) {
3603			amount = min(cfs_b->runtime, min_amount);
3604			cfs_b->runtime -= amount;
3605			cfs_b->idle = 0;
3606		}
3607	}
3608	expires = cfs_b->runtime_expires;
3609	raw_spin_unlock(&cfs_b->lock);
3610
3611	cfs_rq->runtime_remaining += amount;
3612	/*
3613	 * we may have advanced our local expiration to account for allowed
3614	 * spread between our sched_clock and the one on which runtime was
3615	 * issued.
3616	 */
3617	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3618		cfs_rq->runtime_expires = expires;
3619
3620	return cfs_rq->runtime_remaining > 0;
3621}
3622
3623/*
3624 * Note: This depends on the synchronization provided by sched_clock and the
3625 * fact that rq->clock snapshots this value.
3626 */
3627static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3628{
3629	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3630
3631	/* if the deadline is ahead of our clock, nothing to do */
3632	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3633		return;
3634
3635	if (cfs_rq->runtime_remaining < 0)
3636		return;
3637
3638	/*
3639	 * If the local deadline has passed we have to consider the
3640	 * possibility that our sched_clock is 'fast' and the global deadline
3641	 * has not truly expired.
3642	 *
3643	 * Fortunately we can check determine whether this the case by checking
3644	 * whether the global deadline has advanced. It is valid to compare
3645	 * cfs_b->runtime_expires without any locks since we only care about
3646	 * exact equality, so a partial write will still work.
3647	 */
3648
3649	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3650		/* extend local deadline, drift is bounded above by 2 ticks */
3651		cfs_rq->runtime_expires += TICK_NSEC;
3652	} else {
3653		/* global deadline is ahead, expiration has passed */
3654		cfs_rq->runtime_remaining = 0;
3655	}
3656}
3657
3658static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3659{
3660	/* dock delta_exec before expiring quota (as it could span periods) */
3661	cfs_rq->runtime_remaining -= delta_exec;
3662	expire_cfs_rq_runtime(cfs_rq);
3663
3664	if (likely(cfs_rq->runtime_remaining > 0))
3665		return;
3666
3667	/*
3668	 * if we're unable to extend our runtime we resched so that the active
3669	 * hierarchy can be throttled
3670	 */
3671	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3672		resched_curr(rq_of(cfs_rq));
3673}
3674
3675static __always_inline
3676void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3677{
3678	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3679		return;
3680
3681	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3682}
3683
3684static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3685{
3686	return cfs_bandwidth_used() && cfs_rq->throttled;
3687}
3688
3689/* check whether cfs_rq, or any parent, is throttled */
3690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3691{
3692	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3693}
3694
3695/*
3696 * Ensure that neither of the group entities corresponding to src_cpu or
3697 * dest_cpu are members of a throttled hierarchy when performing group
3698 * load-balance operations.
3699 */
3700static inline int throttled_lb_pair(struct task_group *tg,
3701				    int src_cpu, int dest_cpu)
3702{
3703	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3704
3705	src_cfs_rq = tg->cfs_rq[src_cpu];
3706	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3707
3708	return throttled_hierarchy(src_cfs_rq) ||
3709	       throttled_hierarchy(dest_cfs_rq);
3710}
3711
3712/* updated child weight may affect parent so we have to do this bottom up */
3713static int tg_unthrottle_up(struct task_group *tg, void *data)
3714{
3715	struct rq *rq = data;
3716	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3717
3718	cfs_rq->throttle_count--;
3719#ifdef CONFIG_SMP
3720	if (!cfs_rq->throttle_count) {
3721		/* adjust cfs_rq_clock_task() */
3722		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3723					     cfs_rq->throttled_clock_task;
3724	}
3725#endif
3726
3727	return 0;
3728}
3729
3730static int tg_throttle_down(struct task_group *tg, void *data)
3731{
3732	struct rq *rq = data;
3733	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3734
3735	/* group is entering throttled state, stop time */
3736	if (!cfs_rq->throttle_count)
3737		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3738	cfs_rq->throttle_count++;
3739
3740	return 0;
3741}
3742
3743static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3744{
3745	struct rq *rq = rq_of(cfs_rq);
3746	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3747	struct sched_entity *se;
3748	long task_delta, dequeue = 1;
3749	bool empty;
3750
3751	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3752
3753	/* freeze hierarchy runnable averages while throttled */
3754	rcu_read_lock();
3755	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3756	rcu_read_unlock();
3757
3758	task_delta = cfs_rq->h_nr_running;
3759	for_each_sched_entity(se) {
3760		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3761		/* throttled entity or throttle-on-deactivate */
3762		if (!se->on_rq)
3763			break;
3764
3765		if (dequeue)
3766			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3767		qcfs_rq->h_nr_running -= task_delta;
3768
3769		if (qcfs_rq->load.weight)
3770			dequeue = 0;
3771	}
3772
3773	if (!se)
3774		sub_nr_running(rq, task_delta);
3775
3776	cfs_rq->throttled = 1;
3777	cfs_rq->throttled_clock = rq_clock(rq);
3778	raw_spin_lock(&cfs_b->lock);
3779	empty = list_empty(&cfs_b->throttled_cfs_rq);
3780
3781	/*
3782	 * Add to the _head_ of the list, so that an already-started
3783	 * distribute_cfs_runtime will not see us
3784	 */
3785	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3786
3787	/*
3788	 * If we're the first throttled task, make sure the bandwidth
3789	 * timer is running.
3790	 */
3791	if (empty)
3792		start_cfs_bandwidth(cfs_b);
3793
3794	raw_spin_unlock(&cfs_b->lock);
3795}
3796
3797void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3798{
3799	struct rq *rq = rq_of(cfs_rq);
3800	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3801	struct sched_entity *se;
3802	int enqueue = 1;
3803	long task_delta;
3804
3805	se = cfs_rq->tg->se[cpu_of(rq)];
3806
3807	cfs_rq->throttled = 0;
3808
3809	update_rq_clock(rq);
3810
3811	raw_spin_lock(&cfs_b->lock);
3812	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3813	list_del_rcu(&cfs_rq->throttled_list);
3814	raw_spin_unlock(&cfs_b->lock);
3815
3816	/* update hierarchical throttle state */
3817	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3818
3819	if (!cfs_rq->load.weight)
3820		return;
3821
3822	task_delta = cfs_rq->h_nr_running;
3823	for_each_sched_entity(se) {
3824		if (se->on_rq)
3825			enqueue = 0;
3826
3827		cfs_rq = cfs_rq_of(se);
3828		if (enqueue)
3829			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3830		cfs_rq->h_nr_running += task_delta;
3831
3832		if (cfs_rq_throttled(cfs_rq))
3833			break;
3834	}
3835
3836	if (!se)
3837		add_nr_running(rq, task_delta);
3838
3839	/* determine whether we need to wake up potentially idle cpu */
3840	if (rq->curr == rq->idle && rq->cfs.nr_running)
3841		resched_curr(rq);
3842}
3843
3844static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3845		u64 remaining, u64 expires)
3846{
3847	struct cfs_rq *cfs_rq;
3848	u64 runtime;
3849	u64 starting_runtime = remaining;
3850
3851	rcu_read_lock();
3852	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3853				throttled_list) {
3854		struct rq *rq = rq_of(cfs_rq);
3855
3856		raw_spin_lock(&rq->lock);
3857		if (!cfs_rq_throttled(cfs_rq))
3858			goto next;
3859
3860		runtime = -cfs_rq->runtime_remaining + 1;
3861		if (runtime > remaining)
3862			runtime = remaining;
3863		remaining -= runtime;
3864
3865		cfs_rq->runtime_remaining += runtime;
3866		cfs_rq->runtime_expires = expires;
3867
3868		/* we check whether we're throttled above */
3869		if (cfs_rq->runtime_remaining > 0)
3870			unthrottle_cfs_rq(cfs_rq);
3871
3872next:
3873		raw_spin_unlock(&rq->lock);
3874
3875		if (!remaining)
3876			break;
3877	}
3878	rcu_read_unlock();
3879
3880	return starting_runtime - remaining;
3881}
3882
3883/*
3884 * Responsible for refilling a task_group's bandwidth and unthrottling its
3885 * cfs_rqs as appropriate. If there has been no activity within the last
3886 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3887 * used to track this state.
3888 */
3889static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3890{
3891	u64 runtime, runtime_expires;
3892	int throttled;
3893
 
3894	/* no need to continue the timer with no bandwidth constraint */
3895	if (cfs_b->quota == RUNTIME_INF)
3896		goto out_deactivate;
3897
3898	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 
 
3899	cfs_b->nr_periods += overrun;
3900
 
 
 
 
3901	/*
3902	 * idle depends on !throttled (for the case of a large deficit), and if
3903	 * we're going inactive then everything else can be deferred
 
3904	 */
3905	if (cfs_b->idle && !throttled)
3906		goto out_deactivate;
3907
3908	__refill_cfs_bandwidth_runtime(cfs_b);
3909
3910	if (!throttled) {
3911		/* mark as potentially idle for the upcoming period */
3912		cfs_b->idle = 1;
3913		return 0;
3914	}
3915
3916	/* account preceding periods in which throttling occurred */
3917	cfs_b->nr_throttled += overrun;
3918
 
 
 
 
 
 
 
3919	runtime_expires = cfs_b->runtime_expires;
 
3920
3921	/*
3922	 * This check is repeated as we are holding onto the new bandwidth while
3923	 * we unthrottle. This can potentially race with an unthrottled group
3924	 * trying to acquire new bandwidth from the global pool. This can result
3925	 * in us over-using our runtime if it is all used during this loop, but
3926	 * only by limited amounts in that extreme case.
3927	 */
3928	while (throttled && cfs_b->runtime > 0) {
3929		runtime = cfs_b->runtime;
3930		raw_spin_unlock(&cfs_b->lock);
3931		/* we can't nest cfs_b->lock while distributing bandwidth */
3932		runtime = distribute_cfs_runtime(cfs_b, runtime,
3933						 runtime_expires);
3934		raw_spin_lock(&cfs_b->lock);
3935
3936		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3937
3938		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3939	}
3940
 
 
3941	/*
3942	 * While we are ensured activity in the period following an
3943	 * unthrottle, this also covers the case in which the new bandwidth is
3944	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3945	 * timer to remain active while there are any throttled entities.)
3946	 */
3947	cfs_b->idle = 0;
 
 
 
 
3948
3949	return 0;
3950
3951out_deactivate:
3952	return 1;
3953}
3954
3955/* a cfs_rq won't donate quota below this amount */
3956static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3957/* minimum remaining period time to redistribute slack quota */
3958static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3959/* how long we wait to gather additional slack before distributing */
3960static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3961
3962/*
3963 * Are we near the end of the current quota period?
3964 *
3965 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3966 * hrtimer base being cleared by hrtimer_start. In the case of
3967 * migrate_hrtimers, base is never cleared, so we are fine.
3968 */
3969static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3970{
3971	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3972	u64 remaining;
3973
3974	/* if the call-back is running a quota refresh is already occurring */
3975	if (hrtimer_callback_running(refresh_timer))
3976		return 1;
3977
3978	/* is a quota refresh about to occur? */
3979	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3980	if (remaining < min_expire)
3981		return 1;
3982
3983	return 0;
3984}
3985
3986static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3987{
3988	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3989
3990	/* if there's a quota refresh soon don't bother with slack */
3991	if (runtime_refresh_within(cfs_b, min_left))
3992		return;
3993
3994	hrtimer_start(&cfs_b->slack_timer,
3995			ns_to_ktime(cfs_bandwidth_slack_period),
3996			HRTIMER_MODE_REL);
3997}
3998
3999/* we know any runtime found here is valid as update_curr() precedes return */
4000static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4001{
4002	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4003	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4004
4005	if (slack_runtime <= 0)
4006		return;
4007
4008	raw_spin_lock(&cfs_b->lock);
4009	if (cfs_b->quota != RUNTIME_INF &&
4010	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4011		cfs_b->runtime += slack_runtime;
4012
4013		/* we are under rq->lock, defer unthrottling using a timer */
4014		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4015		    !list_empty(&cfs_b->throttled_cfs_rq))
4016			start_cfs_slack_bandwidth(cfs_b);
4017	}
4018	raw_spin_unlock(&cfs_b->lock);
4019
4020	/* even if it's not valid for return we don't want to try again */
4021	cfs_rq->runtime_remaining -= slack_runtime;
4022}
4023
4024static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4025{
4026	if (!cfs_bandwidth_used())
4027		return;
4028
4029	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4030		return;
4031
4032	__return_cfs_rq_runtime(cfs_rq);
4033}
4034
4035/*
4036 * This is done with a timer (instead of inline with bandwidth return) since
4037 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4038 */
4039static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4040{
4041	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4042	u64 expires;
4043
4044	/* confirm we're still not at a refresh boundary */
4045	raw_spin_lock(&cfs_b->lock);
4046	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4047		raw_spin_unlock(&cfs_b->lock);
4048		return;
4049	}
4050
4051	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4052		runtime = cfs_b->runtime;
4053
 
4054	expires = cfs_b->runtime_expires;
4055	raw_spin_unlock(&cfs_b->lock);
4056
4057	if (!runtime)
4058		return;
4059
4060	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4061
4062	raw_spin_lock(&cfs_b->lock);
4063	if (expires == cfs_b->runtime_expires)
4064		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4065	raw_spin_unlock(&cfs_b->lock);
4066}
4067
4068/*
4069 * When a group wakes up we want to make sure that its quota is not already
4070 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4071 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4072 */
4073static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4074{
4075	if (!cfs_bandwidth_used())
4076		return;
4077
4078	/* an active group must be handled by the update_curr()->put() path */
4079	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4080		return;
4081
4082	/* ensure the group is not already throttled */
4083	if (cfs_rq_throttled(cfs_rq))
4084		return;
4085
4086	/* update runtime allocation */
4087	account_cfs_rq_runtime(cfs_rq, 0);
4088	if (cfs_rq->runtime_remaining <= 0)
4089		throttle_cfs_rq(cfs_rq);
4090}
4091
4092/* conditionally throttle active cfs_rq's from put_prev_entity() */
4093static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094{
4095	if (!cfs_bandwidth_used())
4096		return false;
4097
4098	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4099		return false;
4100
4101	/*
4102	 * it's possible for a throttled entity to be forced into a running
4103	 * state (e.g. set_curr_task), in this case we're finished.
4104	 */
4105	if (cfs_rq_throttled(cfs_rq))
4106		return true;
4107
4108	throttle_cfs_rq(cfs_rq);
4109	return true;
4110}
4111
4112static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4113{
4114	struct cfs_bandwidth *cfs_b =
4115		container_of(timer, struct cfs_bandwidth, slack_timer);
4116
4117	do_sched_cfs_slack_timer(cfs_b);
4118
4119	return HRTIMER_NORESTART;
4120}
4121
4122static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4123{
4124	struct cfs_bandwidth *cfs_b =
4125		container_of(timer, struct cfs_bandwidth, period_timer);
 
4126	int overrun;
4127	int idle = 0;
4128
4129	raw_spin_lock(&cfs_b->lock);
4130	for (;;) {
4131		overrun = hrtimer_forward_now(timer, cfs_b->period);
 
 
4132		if (!overrun)
4133			break;
4134
4135		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4136	}
4137	if (idle)
4138		cfs_b->period_active = 0;
4139	raw_spin_unlock(&cfs_b->lock);
4140
4141	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4142}
4143
4144void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145{
4146	raw_spin_lock_init(&cfs_b->lock);
4147	cfs_b->runtime = 0;
4148	cfs_b->quota = RUNTIME_INF;
4149	cfs_b->period = ns_to_ktime(default_cfs_period());
4150
4151	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4152	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4153	cfs_b->period_timer.function = sched_cfs_period_timer;
4154	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4155	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4156}
4157
4158static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4159{
4160	cfs_rq->runtime_enabled = 0;
4161	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4162}
4163
4164void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 
4165{
4166	lockdep_assert_held(&cfs_b->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4167
4168	if (!cfs_b->period_active) {
4169		cfs_b->period_active = 1;
4170		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4171		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4172	}
4173}
4174
4175static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4176{
4177	/* init_cfs_bandwidth() was not called */
4178	if (!cfs_b->throttled_cfs_rq.next)
4179		return;
4180
4181	hrtimer_cancel(&cfs_b->period_timer);
4182	hrtimer_cancel(&cfs_b->slack_timer);
4183}
4184
4185static void __maybe_unused update_runtime_enabled(struct rq *rq)
4186{
4187	struct cfs_rq *cfs_rq;
4188
4189	for_each_leaf_cfs_rq(rq, cfs_rq) {
4190		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4191
4192		raw_spin_lock(&cfs_b->lock);
4193		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4194		raw_spin_unlock(&cfs_b->lock);
4195	}
4196}
4197
4198static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4199{
4200	struct cfs_rq *cfs_rq;
4201
4202	for_each_leaf_cfs_rq(rq, cfs_rq) {
4203		if (!cfs_rq->runtime_enabled)
4204			continue;
4205
4206		/*
4207		 * clock_task is not advancing so we just need to make sure
4208		 * there's some valid quota amount
4209		 */
4210		cfs_rq->runtime_remaining = 1;
4211		/*
4212		 * Offline rq is schedulable till cpu is completely disabled
4213		 * in take_cpu_down(), so we prevent new cfs throttling here.
4214		 */
4215		cfs_rq->runtime_enabled = 0;
4216
4217		if (cfs_rq_throttled(cfs_rq))
4218			unthrottle_cfs_rq(cfs_rq);
4219	}
4220}
4221
4222#else /* CONFIG_CFS_BANDWIDTH */
4223static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4224{
4225	return rq_clock_task(rq_of(cfs_rq));
4226}
4227
4228static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4229static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4230static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4231static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4232
4233static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4234{
4235	return 0;
4236}
4237
4238static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4239{
4240	return 0;
4241}
4242
4243static inline int throttled_lb_pair(struct task_group *tg,
4244				    int src_cpu, int dest_cpu)
4245{
4246	return 0;
4247}
4248
4249void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4250
4251#ifdef CONFIG_FAIR_GROUP_SCHED
4252static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4253#endif
4254
4255static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4256{
4257	return NULL;
4258}
4259static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4260static inline void update_runtime_enabled(struct rq *rq) {}
4261static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4262
4263#endif /* CONFIG_CFS_BANDWIDTH */
4264
4265/**************************************************
4266 * CFS operations on tasks:
4267 */
4268
4269#ifdef CONFIG_SCHED_HRTICK
4270static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4271{
4272	struct sched_entity *se = &p->se;
4273	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274
4275	WARN_ON(task_rq(p) != rq);
4276
4277	if (cfs_rq->nr_running > 1) {
4278		u64 slice = sched_slice(cfs_rq, se);
4279		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4280		s64 delta = slice - ran;
4281
4282		if (delta < 0) {
4283			if (rq->curr == p)
4284				resched_curr(rq);
4285			return;
4286		}
 
 
 
 
 
 
 
 
4287		hrtick_start(rq, delta);
4288	}
4289}
4290
4291/*
4292 * called from enqueue/dequeue and updates the hrtick when the
4293 * current task is from our class and nr_running is low enough
4294 * to matter.
4295 */
4296static void hrtick_update(struct rq *rq)
4297{
4298	struct task_struct *curr = rq->curr;
4299
4300	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4301		return;
4302
4303	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4304		hrtick_start_fair(rq, curr);
4305}
4306#else /* !CONFIG_SCHED_HRTICK */
4307static inline void
4308hrtick_start_fair(struct rq *rq, struct task_struct *p)
4309{
4310}
4311
4312static inline void hrtick_update(struct rq *rq)
4313{
4314}
4315#endif
4316
4317/*
4318 * The enqueue_task method is called before nr_running is
4319 * increased. Here we update the fair scheduling stats and
4320 * then put the task into the rbtree:
4321 */
4322static void
4323enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4324{
4325	struct cfs_rq *cfs_rq;
4326	struct sched_entity *se = &p->se;
4327
4328	for_each_sched_entity(se) {
4329		if (se->on_rq)
4330			break;
4331		cfs_rq = cfs_rq_of(se);
4332		enqueue_entity(cfs_rq, se, flags);
4333
4334		/*
4335		 * end evaluation on encountering a throttled cfs_rq
4336		 *
4337		 * note: in the case of encountering a throttled cfs_rq we will
4338		 * post the final h_nr_running increment below.
4339		*/
4340		if (cfs_rq_throttled(cfs_rq))
4341			break;
4342		cfs_rq->h_nr_running++;
4343
4344		flags = ENQUEUE_WAKEUP;
4345	}
4346
4347	for_each_sched_entity(se) {
4348		cfs_rq = cfs_rq_of(se);
4349		cfs_rq->h_nr_running++;
4350
4351		if (cfs_rq_throttled(cfs_rq))
4352			break;
4353
4354		update_load_avg(se, 1);
4355		update_cfs_shares(cfs_rq);
 
4356	}
4357
4358	if (!se)
4359		add_nr_running(rq, 1);
4360
 
4361	hrtick_update(rq);
4362}
4363
4364static void set_next_buddy(struct sched_entity *se);
4365
4366/*
4367 * The dequeue_task method is called before nr_running is
4368 * decreased. We remove the task from the rbtree and
4369 * update the fair scheduling stats:
4370 */
4371static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4372{
4373	struct cfs_rq *cfs_rq;
4374	struct sched_entity *se = &p->se;
4375	int task_sleep = flags & DEQUEUE_SLEEP;
4376
4377	for_each_sched_entity(se) {
4378		cfs_rq = cfs_rq_of(se);
4379		dequeue_entity(cfs_rq, se, flags);
4380
4381		/*
4382		 * end evaluation on encountering a throttled cfs_rq
4383		 *
4384		 * note: in the case of encountering a throttled cfs_rq we will
4385		 * post the final h_nr_running decrement below.
4386		*/
4387		if (cfs_rq_throttled(cfs_rq))
4388			break;
4389		cfs_rq->h_nr_running--;
4390
4391		/* Don't dequeue parent if it has other entities besides us */
4392		if (cfs_rq->load.weight) {
4393			/*
4394			 * Bias pick_next to pick a task from this cfs_rq, as
4395			 * p is sleeping when it is within its sched_slice.
4396			 */
4397			if (task_sleep && parent_entity(se))
4398				set_next_buddy(parent_entity(se));
4399
4400			/* avoid re-evaluating load for this entity */
4401			se = parent_entity(se);
4402			break;
4403		}
4404		flags |= DEQUEUE_SLEEP;
4405	}
4406
4407	for_each_sched_entity(se) {
4408		cfs_rq = cfs_rq_of(se);
4409		cfs_rq->h_nr_running--;
4410
4411		if (cfs_rq_throttled(cfs_rq))
4412			break;
4413
4414		update_load_avg(se, 1);
4415		update_cfs_shares(cfs_rq);
 
4416	}
4417
4418	if (!se)
4419		sub_nr_running(rq, 1);
4420
 
4421	hrtick_update(rq);
4422}
4423
4424#ifdef CONFIG_SMP
4425
4426/*
4427 * per rq 'load' arrray crap; XXX kill this.
4428 */
4429
4430/*
4431 * The exact cpuload calculated at every tick would be:
4432 *
4433 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4434 *
4435 * If a cpu misses updates for n ticks (as it was idle) and update gets
4436 * called on the n+1-th tick when cpu may be busy, then we have:
4437 *
4438 *   load_n   = (1 - 1/2^i)^n * load_0
4439 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4440 *
4441 * decay_load_missed() below does efficient calculation of
4442 *
4443 *   load' = (1 - 1/2^i)^n * load
4444 *
4445 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4446 * This allows us to precompute the above in said factors, thereby allowing the
4447 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4448 * fixed_power_int())
4449 *
4450 * The calculation is approximated on a 128 point scale.
4451 */
4452#define DEGRADE_SHIFT		7
4453
4454static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4455static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4456	{   0,   0,  0,  0,  0,  0, 0, 0 },
4457	{  64,  32,  8,  0,  0,  0, 0, 0 },
4458	{  96,  72, 40, 12,  1,  0, 0, 0 },
4459	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4460	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4461};
4462
4463/*
4464 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4465 * would be when CPU is idle and so we just decay the old load without
4466 * adding any new load.
4467 */
4468static unsigned long
4469decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4470{
4471	int j = 0;
4472
4473	if (!missed_updates)
4474		return load;
4475
4476	if (missed_updates >= degrade_zero_ticks[idx])
4477		return 0;
4478
4479	if (idx == 1)
4480		return load >> missed_updates;
4481
4482	while (missed_updates) {
4483		if (missed_updates % 2)
4484			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4485
4486		missed_updates >>= 1;
4487		j++;
4488	}
4489	return load;
4490}
4491
4492/**
4493 * __update_cpu_load - update the rq->cpu_load[] statistics
4494 * @this_rq: The rq to update statistics for
4495 * @this_load: The current load
4496 * @pending_updates: The number of missed updates
4497 * @active: !0 for NOHZ_FULL
4498 *
4499 * Update rq->cpu_load[] statistics. This function is usually called every
4500 * scheduler tick (TICK_NSEC).
4501 *
4502 * This function computes a decaying average:
4503 *
4504 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4505 *
4506 * Because of NOHZ it might not get called on every tick which gives need for
4507 * the @pending_updates argument.
4508 *
4509 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4510 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4511 *             = A * (A * load[i]_n-2 + B) + B
4512 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4513 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4514 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4515 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4516 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4517 *
4518 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4519 * any change in load would have resulted in the tick being turned back on.
4520 *
4521 * For regular NOHZ, this reduces to:
4522 *
4523 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4524 *
4525 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4526 * term. See the @active paramter.
4527 */
4528static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4529			      unsigned long pending_updates, int active)
4530{
4531	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4532	int i, scale;
4533
4534	this_rq->nr_load_updates++;
4535
4536	/* Update our load: */
4537	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4538	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4539		unsigned long old_load, new_load;
4540
4541		/* scale is effectively 1 << i now, and >> i divides by scale */
4542
4543		old_load = this_rq->cpu_load[i];
4544		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4545		if (tickless_load) {
4546			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4547			/*
4548			 * old_load can never be a negative value because a
4549			 * decayed tickless_load cannot be greater than the
4550			 * original tickless_load.
4551			 */
4552			old_load += tickless_load;
4553		}
4554		new_load = this_load;
4555		/*
4556		 * Round up the averaging division if load is increasing. This
4557		 * prevents us from getting stuck on 9 if the load is 10, for
4558		 * example.
4559		 */
4560		if (new_load > old_load)
4561			new_load += scale - 1;
4562
4563		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4564	}
4565
4566	sched_avg_update(this_rq);
4567}
4568
4569/* Used instead of source_load when we know the type == 0 */
4570static unsigned long weighted_cpuload(const int cpu)
4571{
4572	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4573}
4574
4575#ifdef CONFIG_NO_HZ_COMMON
4576static void __update_cpu_load_nohz(struct rq *this_rq,
4577				   unsigned long curr_jiffies,
4578				   unsigned long load,
4579				   int active)
4580{
4581	unsigned long pending_updates;
4582
4583	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4584	if (pending_updates) {
4585		this_rq->last_load_update_tick = curr_jiffies;
4586		/*
4587		 * In the regular NOHZ case, we were idle, this means load 0.
4588		 * In the NOHZ_FULL case, we were non-idle, we should consider
4589		 * its weighted load.
4590		 */
4591		__update_cpu_load(this_rq, load, pending_updates, active);
4592	}
4593}
4594
4595/*
4596 * There is no sane way to deal with nohz on smp when using jiffies because the
4597 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4598 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4599 *
4600 * Therefore we cannot use the delta approach from the regular tick since that
4601 * would seriously skew the load calculation. However we'll make do for those
4602 * updates happening while idle (nohz_idle_balance) or coming out of idle
4603 * (tick_nohz_idle_exit).
4604 *
4605 * This means we might still be one tick off for nohz periods.
4606 */
4607
4608/*
4609 * Called from nohz_idle_balance() to update the load ratings before doing the
4610 * idle balance.
4611 */
4612static void update_cpu_load_idle(struct rq *this_rq)
4613{
4614	/*
4615	 * bail if there's load or we're actually up-to-date.
4616	 */
4617	if (weighted_cpuload(cpu_of(this_rq)))
4618		return;
4619
4620	__update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4621}
4622
4623/*
4624 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4625 */
4626void update_cpu_load_nohz(int active)
4627{
4628	struct rq *this_rq = this_rq();
4629	unsigned long curr_jiffies = READ_ONCE(jiffies);
4630	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4631
4632	if (curr_jiffies == this_rq->last_load_update_tick)
4633		return;
4634
4635	raw_spin_lock(&this_rq->lock);
4636	__update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4637	raw_spin_unlock(&this_rq->lock);
4638}
4639#endif /* CONFIG_NO_HZ */
4640
4641/*
4642 * Called from scheduler_tick()
4643 */
4644void update_cpu_load_active(struct rq *this_rq)
4645{
4646	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4647	/*
4648	 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4649	 */
4650	this_rq->last_load_update_tick = jiffies;
4651	__update_cpu_load(this_rq, load, 1, 1);
4652}
4653
4654/*
4655 * Return a low guess at the load of a migration-source cpu weighted
4656 * according to the scheduling class and "nice" value.
4657 *
4658 * We want to under-estimate the load of migration sources, to
4659 * balance conservatively.
4660 */
4661static unsigned long source_load(int cpu, int type)
4662{
4663	struct rq *rq = cpu_rq(cpu);
4664	unsigned long total = weighted_cpuload(cpu);
4665
4666	if (type == 0 || !sched_feat(LB_BIAS))
4667		return total;
4668
4669	return min(rq->cpu_load[type-1], total);
4670}
4671
4672/*
4673 * Return a high guess at the load of a migration-target cpu weighted
4674 * according to the scheduling class and "nice" value.
4675 */
4676static unsigned long target_load(int cpu, int type)
4677{
4678	struct rq *rq = cpu_rq(cpu);
4679	unsigned long total = weighted_cpuload(cpu);
4680
4681	if (type == 0 || !sched_feat(LB_BIAS))
4682		return total;
4683
4684	return max(rq->cpu_load[type-1], total);
4685}
4686
4687static unsigned long capacity_of(int cpu)
4688{
4689	return cpu_rq(cpu)->cpu_capacity;
4690}
4691
4692static unsigned long capacity_orig_of(int cpu)
4693{
4694	return cpu_rq(cpu)->cpu_capacity_orig;
4695}
4696
4697static unsigned long cpu_avg_load_per_task(int cpu)
4698{
4699	struct rq *rq = cpu_rq(cpu);
4700	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4701	unsigned long load_avg = weighted_cpuload(cpu);
4702
4703	if (nr_running)
4704		return load_avg / nr_running;
4705
4706	return 0;
4707}
4708
4709static void record_wakee(struct task_struct *p)
4710{
4711	/*
4712	 * Rough decay (wiping) for cost saving, don't worry
4713	 * about the boundary, really active task won't care
4714	 * about the loss.
4715	 */
4716	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4717		current->wakee_flips >>= 1;
4718		current->wakee_flip_decay_ts = jiffies;
4719	}
4720
4721	if (current->last_wakee != p) {
4722		current->last_wakee = p;
4723		current->wakee_flips++;
4724	}
4725}
4726
4727static void task_waking_fair(struct task_struct *p)
4728{
4729	struct sched_entity *se = &p->se;
4730	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4731	u64 min_vruntime;
4732
4733#ifndef CONFIG_64BIT
4734	u64 min_vruntime_copy;
4735
4736	do {
4737		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4738		smp_rmb();
4739		min_vruntime = cfs_rq->min_vruntime;
4740	} while (min_vruntime != min_vruntime_copy);
4741#else
4742	min_vruntime = cfs_rq->min_vruntime;
4743#endif
4744
4745	se->vruntime -= min_vruntime;
4746	record_wakee(p);
4747}
4748
4749#ifdef CONFIG_FAIR_GROUP_SCHED
4750/*
4751 * effective_load() calculates the load change as seen from the root_task_group
4752 *
4753 * Adding load to a group doesn't make a group heavier, but can cause movement
4754 * of group shares between cpus. Assuming the shares were perfectly aligned one
4755 * can calculate the shift in shares.
4756 *
4757 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4758 * on this @cpu and results in a total addition (subtraction) of @wg to the
4759 * total group weight.
4760 *
4761 * Given a runqueue weight distribution (rw_i) we can compute a shares
4762 * distribution (s_i) using:
4763 *
4764 *   s_i = rw_i / \Sum rw_j						(1)
4765 *
4766 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4767 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4768 * shares distribution (s_i):
4769 *
4770 *   rw_i = {   2,   4,   1,   0 }
4771 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4772 *
4773 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4774 * task used to run on and the CPU the waker is running on), we need to
4775 * compute the effect of waking a task on either CPU and, in case of a sync
4776 * wakeup, compute the effect of the current task going to sleep.
4777 *
4778 * So for a change of @wl to the local @cpu with an overall group weight change
4779 * of @wl we can compute the new shares distribution (s'_i) using:
4780 *
4781 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4782 *
4783 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4784 * differences in waking a task to CPU 0. The additional task changes the
4785 * weight and shares distributions like:
4786 *
4787 *   rw'_i = {   3,   4,   1,   0 }
4788 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4789 *
4790 * We can then compute the difference in effective weight by using:
4791 *
4792 *   dw_i = S * (s'_i - s_i)						(3)
4793 *
4794 * Where 'S' is the group weight as seen by its parent.
4795 *
4796 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4797 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4798 * 4/7) times the weight of the group.
4799 */
4800static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4801{
4802	struct sched_entity *se = tg->se[cpu];
4803
4804	if (!tg->parent)	/* the trivial, non-cgroup case */
4805		return wl;
4806
4807	for_each_sched_entity(se) {
4808		long w, W;
4809
4810		tg = se->my_q->tg;
4811
4812		/*
4813		 * W = @wg + \Sum rw_j
4814		 */
4815		W = wg + calc_tg_weight(tg, se->my_q);
4816
4817		/*
4818		 * w = rw_i + @wl
4819		 */
4820		w = cfs_rq_load_avg(se->my_q) + wl;
4821
4822		/*
4823		 * wl = S * s'_i; see (2)
4824		 */
4825		if (W > 0 && w < W)
4826			wl = (w * (long)tg->shares) / W;
4827		else
4828			wl = tg->shares;
4829
4830		/*
4831		 * Per the above, wl is the new se->load.weight value; since
4832		 * those are clipped to [MIN_SHARES, ...) do so now. See
4833		 * calc_cfs_shares().
4834		 */
4835		if (wl < MIN_SHARES)
4836			wl = MIN_SHARES;
4837
4838		/*
4839		 * wl = dw_i = S * (s'_i - s_i); see (3)
4840		 */
4841		wl -= se->avg.load_avg;
4842
4843		/*
4844		 * Recursively apply this logic to all parent groups to compute
4845		 * the final effective load change on the root group. Since
4846		 * only the @tg group gets extra weight, all parent groups can
4847		 * only redistribute existing shares. @wl is the shift in shares
4848		 * resulting from this level per the above.
4849		 */
4850		wg = 0;
4851	}
4852
4853	return wl;
4854}
4855#else
4856
4857static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4858{
4859	return wl;
4860}
4861
4862#endif
4863
4864/*
4865 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4866 * A waker of many should wake a different task than the one last awakened
4867 * at a frequency roughly N times higher than one of its wakees.  In order
4868 * to determine whether we should let the load spread vs consolodating to
4869 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4870 * partner, and a factor of lls_size higher frequency in the other.  With
4871 * both conditions met, we can be relatively sure that the relationship is
4872 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4873 * being client/server, worker/dispatcher, interrupt source or whatever is
4874 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4875 */
4876static int wake_wide(struct task_struct *p)
4877{
4878	unsigned int master = current->wakee_flips;
4879	unsigned int slave = p->wakee_flips;
4880	int factor = this_cpu_read(sd_llc_size);
4881
4882	if (master < slave)
4883		swap(master, slave);
4884	if (slave < factor || master < slave * factor)
4885		return 0;
4886	return 1;
 
 
 
 
 
 
 
 
 
 
 
4887}
4888
4889static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4890{
4891	s64 this_load, load;
4892	s64 this_eff_load, prev_eff_load;
4893	int idx, this_cpu, prev_cpu;
 
4894	struct task_group *tg;
4895	unsigned long weight;
4896	int balanced;
4897
 
 
 
 
 
 
 
4898	idx	  = sd->wake_idx;
4899	this_cpu  = smp_processor_id();
4900	prev_cpu  = task_cpu(p);
4901	load	  = source_load(prev_cpu, idx);
4902	this_load = target_load(this_cpu, idx);
4903
4904	/*
4905	 * If sync wakeup then subtract the (maximum possible)
4906	 * effect of the currently running task from the load
4907	 * of the current CPU:
4908	 */
4909	if (sync) {
4910		tg = task_group(current);
4911		weight = current->se.avg.load_avg;
4912
4913		this_load += effective_load(tg, this_cpu, -weight, -weight);
4914		load += effective_load(tg, prev_cpu, 0, -weight);
4915	}
4916
4917	tg = task_group(p);
4918	weight = p->se.avg.load_avg;
4919
4920	/*
4921	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4922	 * due to the sync cause above having dropped this_load to 0, we'll
4923	 * always have an imbalance, but there's really nothing you can do
4924	 * about that, so that's good too.
4925	 *
4926	 * Otherwise check if either cpus are near enough in load to allow this
4927	 * task to be woken on this_cpu.
4928	 */
4929	this_eff_load = 100;
4930	this_eff_load *= capacity_of(prev_cpu);
4931
4932	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4933	prev_eff_load *= capacity_of(this_cpu);
4934
4935	if (this_load > 0) {
 
4936		this_eff_load *= this_load +
4937			effective_load(tg, this_cpu, weight, weight);
4938
 
 
4939		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4940	}
4941
4942	balanced = this_eff_load <= prev_eff_load;
 
 
 
 
 
 
 
 
 
 
4943
4944	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
 
4945
4946	if (!balanced)
4947		return 0;
 
 
 
 
 
 
 
 
4948
4949	schedstat_inc(sd, ttwu_move_affine);
4950	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4951
4952	return 1;
4953}
4954
4955/*
4956 * find_idlest_group finds and returns the least busy CPU group within the
4957 * domain.
4958 */
4959static struct sched_group *
4960find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4961		  int this_cpu, int sd_flag)
4962{
4963	struct sched_group *idlest = NULL, *group = sd->groups;
4964	unsigned long min_load = ULONG_MAX, this_load = 0;
4965	int load_idx = sd->forkexec_idx;
4966	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4967
4968	if (sd_flag & SD_BALANCE_WAKE)
4969		load_idx = sd->wake_idx;
4970
4971	do {
4972		unsigned long load, avg_load;
4973		int local_group;
4974		int i;
4975
4976		/* Skip over this group if it has no CPUs allowed */
4977		if (!cpumask_intersects(sched_group_cpus(group),
4978					tsk_cpus_allowed(p)))
4979			continue;
4980
4981		local_group = cpumask_test_cpu(this_cpu,
4982					       sched_group_cpus(group));
4983
4984		/* Tally up the load of all CPUs in the group */
4985		avg_load = 0;
4986
4987		for_each_cpu(i, sched_group_cpus(group)) {
4988			/* Bias balancing toward cpus of our domain */
4989			if (local_group)
4990				load = source_load(i, load_idx);
4991			else
4992				load = target_load(i, load_idx);
4993
4994			avg_load += load;
4995		}
4996
4997		/* Adjust by relative CPU capacity of the group */
4998		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4999
5000		if (local_group) {
5001			this_load = avg_load;
5002		} else if (avg_load < min_load) {
5003			min_load = avg_load;
5004			idlest = group;
5005		}
5006	} while (group = group->next, group != sd->groups);
5007
5008	if (!idlest || 100*this_load < imbalance*min_load)
5009		return NULL;
5010	return idlest;
5011}
5012
5013/*
5014 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5015 */
5016static int
5017find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5018{
5019	unsigned long load, min_load = ULONG_MAX;
5020	unsigned int min_exit_latency = UINT_MAX;
5021	u64 latest_idle_timestamp = 0;
5022	int least_loaded_cpu = this_cpu;
5023	int shallowest_idle_cpu = -1;
5024	int i;
5025
5026	/* Traverse only the allowed CPUs */
5027	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5028		if (idle_cpu(i)) {
5029			struct rq *rq = cpu_rq(i);
5030			struct cpuidle_state *idle = idle_get_state(rq);
5031			if (idle && idle->exit_latency < min_exit_latency) {
5032				/*
5033				 * We give priority to a CPU whose idle state
5034				 * has the smallest exit latency irrespective
5035				 * of any idle timestamp.
5036				 */
5037				min_exit_latency = idle->exit_latency;
5038				latest_idle_timestamp = rq->idle_stamp;
5039				shallowest_idle_cpu = i;
5040			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5041				   rq->idle_stamp > latest_idle_timestamp) {
5042				/*
5043				 * If equal or no active idle state, then
5044				 * the most recently idled CPU might have
5045				 * a warmer cache.
5046				 */
5047				latest_idle_timestamp = rq->idle_stamp;
5048				shallowest_idle_cpu = i;
5049			}
5050		} else if (shallowest_idle_cpu == -1) {
5051			load = weighted_cpuload(i);
5052			if (load < min_load || (load == min_load && i == this_cpu)) {
5053				min_load = load;
5054				least_loaded_cpu = i;
5055			}
5056		}
5057	}
5058
5059	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5060}
5061
5062/*
5063 * Try and locate an idle CPU in the sched_domain.
5064 */
5065static int select_idle_sibling(struct task_struct *p, int target)
5066{
5067	struct sched_domain *sd;
5068	struct sched_group *sg;
5069	int i = task_cpu(p);
5070
5071	if (idle_cpu(target))
5072		return target;
5073
5074	/*
5075	 * If the prevous cpu is cache affine and idle, don't be stupid.
5076	 */
5077	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5078		return i;
5079
5080	/*
5081	 * Otherwise, iterate the domains and find an eligible idle cpu.
5082	 *
5083	 * A completely idle sched group at higher domains is more
5084	 * desirable than an idle group at a lower level, because lower
5085	 * domains have smaller groups and usually share hardware
5086	 * resources which causes tasks to contend on them, e.g. x86
5087	 * hyperthread siblings in the lowest domain (SMT) can contend
5088	 * on the shared cpu pipeline.
5089	 *
5090	 * However, while we prefer idle groups at higher domains
5091	 * finding an idle cpu at the lowest domain is still better than
5092	 * returning 'target', which we've already established, isn't
5093	 * idle.
5094	 */
5095	sd = rcu_dereference(per_cpu(sd_llc, target));
5096	for_each_lower_domain(sd) {
5097		sg = sd->groups;
5098		do {
5099			if (!cpumask_intersects(sched_group_cpus(sg),
5100						tsk_cpus_allowed(p)))
5101				goto next;
5102
5103			/* Ensure the entire group is idle */
5104			for_each_cpu(i, sched_group_cpus(sg)) {
5105				if (i == target || !idle_cpu(i))
5106					goto next;
5107			}
5108
5109			/*
5110			 * It doesn't matter which cpu we pick, the
5111			 * whole group is idle.
5112			 */
5113			target = cpumask_first_and(sched_group_cpus(sg),
5114					tsk_cpus_allowed(p));
5115			goto done;
5116next:
5117			sg = sg->next;
5118		} while (sg != sd->groups);
5119	}
5120done:
5121	return target;
5122}
5123
5124/*
5125 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5126 * tasks. The unit of the return value must be the one of capacity so we can
5127 * compare the utilization with the capacity of the CPU that is available for
5128 * CFS task (ie cpu_capacity).
5129 *
5130 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5131 * recent utilization of currently non-runnable tasks on a CPU. It represents
5132 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5133 * capacity_orig is the cpu_capacity available at the highest frequency
5134 * (arch_scale_freq_capacity()).
5135 * The utilization of a CPU converges towards a sum equal to or less than the
5136 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5137 * the running time on this CPU scaled by capacity_curr.
5138 *
5139 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5140 * higher than capacity_orig because of unfortunate rounding in
5141 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5142 * the average stabilizes with the new running time. We need to check that the
5143 * utilization stays within the range of [0..capacity_orig] and cap it if
5144 * necessary. Without utilization capping, a group could be seen as overloaded
5145 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5146 * available capacity. We allow utilization to overshoot capacity_curr (but not
5147 * capacity_orig) as it useful for predicting the capacity required after task
5148 * migrations (scheduler-driven DVFS).
5149 */
5150static int cpu_util(int cpu)
5151{
5152	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5153	unsigned long capacity = capacity_orig_of(cpu);
5154
5155	return (util >= capacity) ? capacity : util;
5156}
5157
5158/*
5159 * select_task_rq_fair: Select target runqueue for the waking task in domains
5160 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5161 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5162 *
5163 * Balances load by selecting the idlest cpu in the idlest group, or under
5164 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5165 *
5166 * Returns the target cpu number.
5167 *
5168 * preempt must be disabled.
5169 */
5170static int
5171select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5172{
5173	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5174	int cpu = smp_processor_id();
5175	int new_cpu = prev_cpu;
5176	int want_affine = 0;
5177	int sync = wake_flags & WF_SYNC;
5178
5179	if (sd_flag & SD_BALANCE_WAKE)
5180		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
 
 
 
 
 
 
5181
5182	rcu_read_lock();
5183	for_each_domain(cpu, tmp) {
5184		if (!(tmp->flags & SD_LOAD_BALANCE))
5185			break;
5186
5187		/*
5188		 * If both cpu and prev_cpu are part of this domain,
5189		 * cpu is a valid SD_WAKE_AFFINE target.
5190		 */
5191		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5192		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5193			affine_sd = tmp;
5194			break;
5195		}
5196
5197		if (tmp->flags & sd_flag)
5198			sd = tmp;
5199		else if (!want_affine)
5200			break;
5201	}
5202
5203	if (affine_sd) {
5204		sd = NULL; /* Prefer wake_affine over balance flags */
5205		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5206			new_cpu = cpu;
 
 
 
5207	}
5208
5209	if (!sd) {
5210		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5211			new_cpu = select_idle_sibling(p, new_cpu);
5212
5213	} else while (sd) {
5214		struct sched_group *group;
5215		int weight;
5216
5217		if (!(sd->flags & sd_flag)) {
5218			sd = sd->child;
5219			continue;
5220		}
5221
5222		group = find_idlest_group(sd, p, cpu, sd_flag);
5223		if (!group) {
5224			sd = sd->child;
5225			continue;
5226		}
5227
5228		new_cpu = find_idlest_cpu(group, p, cpu);
5229		if (new_cpu == -1 || new_cpu == cpu) {
5230			/* Now try balancing at a lower domain level of cpu */
5231			sd = sd->child;
5232			continue;
5233		}
5234
5235		/* Now try balancing at a lower domain level of new_cpu */
5236		cpu = new_cpu;
5237		weight = sd->span_weight;
5238		sd = NULL;
5239		for_each_domain(cpu, tmp) {
5240			if (weight <= tmp->span_weight)
5241				break;
5242			if (tmp->flags & sd_flag)
5243				sd = tmp;
5244		}
5245		/* while loop will break here if sd == NULL */
5246	}
 
5247	rcu_read_unlock();
5248
5249	return new_cpu;
5250}
5251
5252/*
5253 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5254 * cfs_rq_of(p) references at time of call are still valid and identify the
5255 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
 
5256 */
5257static void migrate_task_rq_fair(struct task_struct *p)
 
5258{
 
 
 
5259	/*
5260	 * We are supposed to update the task to "current" time, then its up to date
5261	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5262	 * what current time is, so simply throw away the out-of-date time. This
5263	 * will result in the wakee task is less decayed, but giving the wakee more
5264	 * load sounds not bad.
5265	 */
5266	remove_entity_load_avg(&p->se);
5267
5268	/* Tell new CPU we are migrated */
5269	p->se.avg.last_update_time = 0;
5270
5271	/* We have migrated, no longer consider this task hot */
5272	p->se.exec_start = 0;
5273}
5274
5275static void task_dead_fair(struct task_struct *p)
5276{
5277	remove_entity_load_avg(&p->se);
5278}
5279#endif /* CONFIG_SMP */
5280
5281static unsigned long
5282wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5283{
5284	unsigned long gran = sysctl_sched_wakeup_granularity;
5285
5286	/*
5287	 * Since its curr running now, convert the gran from real-time
5288	 * to virtual-time in his units.
5289	 *
5290	 * By using 'se' instead of 'curr' we penalize light tasks, so
5291	 * they get preempted easier. That is, if 'se' < 'curr' then
5292	 * the resulting gran will be larger, therefore penalizing the
5293	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5294	 * be smaller, again penalizing the lighter task.
5295	 *
5296	 * This is especially important for buddies when the leftmost
5297	 * task is higher priority than the buddy.
5298	 */
5299	return calc_delta_fair(gran, se);
5300}
5301
5302/*
5303 * Should 'se' preempt 'curr'.
5304 *
5305 *             |s1
5306 *        |s2
5307 *   |s3
5308 *         g
5309 *      |<--->|c
5310 *
5311 *  w(c, s1) = -1
5312 *  w(c, s2) =  0
5313 *  w(c, s3) =  1
5314 *
5315 */
5316static int
5317wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5318{
5319	s64 gran, vdiff = curr->vruntime - se->vruntime;
5320
5321	if (vdiff <= 0)
5322		return -1;
5323
5324	gran = wakeup_gran(curr, se);
5325	if (vdiff > gran)
5326		return 1;
5327
5328	return 0;
5329}
5330
5331static void set_last_buddy(struct sched_entity *se)
5332{
5333	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5334		return;
5335
5336	for_each_sched_entity(se)
5337		cfs_rq_of(se)->last = se;
5338}
5339
5340static void set_next_buddy(struct sched_entity *se)
5341{
5342	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5343		return;
5344
5345	for_each_sched_entity(se)
5346		cfs_rq_of(se)->next = se;
5347}
5348
5349static void set_skip_buddy(struct sched_entity *se)
5350{
5351	for_each_sched_entity(se)
5352		cfs_rq_of(se)->skip = se;
5353}
5354
5355/*
5356 * Preempt the current task with a newly woken task if needed:
5357 */
5358static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5359{
5360	struct task_struct *curr = rq->curr;
5361	struct sched_entity *se = &curr->se, *pse = &p->se;
5362	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5363	int scale = cfs_rq->nr_running >= sched_nr_latency;
5364	int next_buddy_marked = 0;
5365
5366	if (unlikely(se == pse))
5367		return;
5368
5369	/*
5370	 * This is possible from callers such as attach_tasks(), in which we
5371	 * unconditionally check_prempt_curr() after an enqueue (which may have
5372	 * lead to a throttle).  This both saves work and prevents false
5373	 * next-buddy nomination below.
5374	 */
5375	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5376		return;
5377
5378	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5379		set_next_buddy(pse);
5380		next_buddy_marked = 1;
5381	}
5382
5383	/*
5384	 * We can come here with TIF_NEED_RESCHED already set from new task
5385	 * wake up path.
5386	 *
5387	 * Note: this also catches the edge-case of curr being in a throttled
5388	 * group (e.g. via set_curr_task), since update_curr() (in the
5389	 * enqueue of curr) will have resulted in resched being set.  This
5390	 * prevents us from potentially nominating it as a false LAST_BUDDY
5391	 * below.
5392	 */
5393	if (test_tsk_need_resched(curr))
5394		return;
5395
5396	/* Idle tasks are by definition preempted by non-idle tasks. */
5397	if (unlikely(curr->policy == SCHED_IDLE) &&
5398	    likely(p->policy != SCHED_IDLE))
5399		goto preempt;
5400
5401	/*
5402	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5403	 * is driven by the tick):
5404	 */
5405	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5406		return;
5407
5408	find_matching_se(&se, &pse);
5409	update_curr(cfs_rq_of(se));
5410	BUG_ON(!pse);
5411	if (wakeup_preempt_entity(se, pse) == 1) {
5412		/*
5413		 * Bias pick_next to pick the sched entity that is
5414		 * triggering this preemption.
5415		 */
5416		if (!next_buddy_marked)
5417			set_next_buddy(pse);
5418		goto preempt;
5419	}
5420
5421	return;
5422
5423preempt:
5424	resched_curr(rq);
5425	/*
5426	 * Only set the backward buddy when the current task is still
5427	 * on the rq. This can happen when a wakeup gets interleaved
5428	 * with schedule on the ->pre_schedule() or idle_balance()
5429	 * point, either of which can * drop the rq lock.
5430	 *
5431	 * Also, during early boot the idle thread is in the fair class,
5432	 * for obvious reasons its a bad idea to schedule back to it.
5433	 */
5434	if (unlikely(!se->on_rq || curr == rq->idle))
5435		return;
5436
5437	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5438		set_last_buddy(se);
5439}
5440
5441static struct task_struct *
5442pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5443{
5444	struct cfs_rq *cfs_rq = &rq->cfs;
5445	struct sched_entity *se;
5446	struct task_struct *p;
5447	int new_tasks;
5448
5449again:
5450#ifdef CONFIG_FAIR_GROUP_SCHED
5451	if (!cfs_rq->nr_running)
5452		goto idle;
5453
5454	if (prev->sched_class != &fair_sched_class)
5455		goto simple;
5456
5457	/*
5458	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5459	 * likely that a next task is from the same cgroup as the current.
5460	 *
5461	 * Therefore attempt to avoid putting and setting the entire cgroup
5462	 * hierarchy, only change the part that actually changes.
5463	 */
5464
5465	do {
5466		struct sched_entity *curr = cfs_rq->curr;
5467
5468		/*
5469		 * Since we got here without doing put_prev_entity() we also
5470		 * have to consider cfs_rq->curr. If it is still a runnable
5471		 * entity, update_curr() will update its vruntime, otherwise
5472		 * forget we've ever seen it.
5473		 */
5474		if (curr) {
5475			if (curr->on_rq)
5476				update_curr(cfs_rq);
5477			else
5478				curr = NULL;
5479
5480			/*
5481			 * This call to check_cfs_rq_runtime() will do the
5482			 * throttle and dequeue its entity in the parent(s).
5483			 * Therefore the 'simple' nr_running test will indeed
5484			 * be correct.
5485			 */
5486			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5487				goto simple;
5488		}
5489
5490		se = pick_next_entity(cfs_rq, curr);
5491		cfs_rq = group_cfs_rq(se);
5492	} while (cfs_rq);
5493
5494	p = task_of(se);
5495
5496	/*
5497	 * Since we haven't yet done put_prev_entity and if the selected task
5498	 * is a different task than we started out with, try and touch the
5499	 * least amount of cfs_rqs.
5500	 */
5501	if (prev != p) {
5502		struct sched_entity *pse = &prev->se;
5503
5504		while (!(cfs_rq = is_same_group(se, pse))) {
5505			int se_depth = se->depth;
5506			int pse_depth = pse->depth;
5507
5508			if (se_depth <= pse_depth) {
5509				put_prev_entity(cfs_rq_of(pse), pse);
5510				pse = parent_entity(pse);
5511			}
5512			if (se_depth >= pse_depth) {
5513				set_next_entity(cfs_rq_of(se), se);
5514				se = parent_entity(se);
5515			}
5516		}
5517
5518		put_prev_entity(cfs_rq, pse);
5519		set_next_entity(cfs_rq, se);
5520	}
5521
5522	if (hrtick_enabled(rq))
5523		hrtick_start_fair(rq, p);
5524
5525	return p;
5526simple:
5527	cfs_rq = &rq->cfs;
5528#endif
5529
5530	if (!cfs_rq->nr_running)
5531		goto idle;
5532
5533	put_prev_task(rq, prev);
5534
5535	do {
5536		se = pick_next_entity(cfs_rq, NULL);
5537		set_next_entity(cfs_rq, se);
5538		cfs_rq = group_cfs_rq(se);
5539	} while (cfs_rq);
5540
5541	p = task_of(se);
5542
5543	if (hrtick_enabled(rq))
5544		hrtick_start_fair(rq, p);
5545
5546	return p;
5547
5548idle:
5549	/*
5550	 * This is OK, because current is on_cpu, which avoids it being picked
5551	 * for load-balance and preemption/IRQs are still disabled avoiding
5552	 * further scheduler activity on it and we're being very careful to
5553	 * re-start the picking loop.
5554	 */
5555	lockdep_unpin_lock(&rq->lock);
5556	new_tasks = idle_balance(rq);
5557	lockdep_pin_lock(&rq->lock);
5558	/*
5559	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5560	 * possible for any higher priority task to appear. In that case we
5561	 * must re-start the pick_next_entity() loop.
5562	 */
5563	if (new_tasks < 0)
5564		return RETRY_TASK;
5565
5566	if (new_tasks > 0)
5567		goto again;
5568
5569	return NULL;
5570}
5571
5572/*
5573 * Account for a descheduled task:
5574 */
5575static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5576{
5577	struct sched_entity *se = &prev->se;
5578	struct cfs_rq *cfs_rq;
5579
5580	for_each_sched_entity(se) {
5581		cfs_rq = cfs_rq_of(se);
5582		put_prev_entity(cfs_rq, se);
5583	}
5584}
5585
5586/*
5587 * sched_yield() is very simple
5588 *
5589 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5590 */
5591static void yield_task_fair(struct rq *rq)
5592{
5593	struct task_struct *curr = rq->curr;
5594	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5595	struct sched_entity *se = &curr->se;
5596
5597	/*
5598	 * Are we the only task in the tree?
5599	 */
5600	if (unlikely(rq->nr_running == 1))
5601		return;
5602
5603	clear_buddies(cfs_rq, se);
5604
5605	if (curr->policy != SCHED_BATCH) {
5606		update_rq_clock(rq);
5607		/*
5608		 * Update run-time statistics of the 'current'.
5609		 */
5610		update_curr(cfs_rq);
5611		/*
5612		 * Tell update_rq_clock() that we've just updated,
5613		 * so we don't do microscopic update in schedule()
5614		 * and double the fastpath cost.
5615		 */
5616		rq_clock_skip_update(rq, true);
5617	}
5618
5619	set_skip_buddy(se);
5620}
5621
5622static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5623{
5624	struct sched_entity *se = &p->se;
5625
5626	/* throttled hierarchies are not runnable */
5627	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5628		return false;
5629
5630	/* Tell the scheduler that we'd really like pse to run next. */
5631	set_next_buddy(se);
5632
5633	yield_task_fair(rq);
5634
5635	return true;
5636}
5637
5638#ifdef CONFIG_SMP
5639/**************************************************
5640 * Fair scheduling class load-balancing methods.
5641 *
5642 * BASICS
5643 *
5644 * The purpose of load-balancing is to achieve the same basic fairness the
5645 * per-cpu scheduler provides, namely provide a proportional amount of compute
5646 * time to each task. This is expressed in the following equation:
5647 *
5648 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5649 *
5650 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5651 * W_i,0 is defined as:
5652 *
5653 *   W_i,0 = \Sum_j w_i,j                                             (2)
5654 *
5655 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5656 * is derived from the nice value as per prio_to_weight[].
5657 *
5658 * The weight average is an exponential decay average of the instantaneous
5659 * weight:
5660 *
5661 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5662 *
5663 * C_i is the compute capacity of cpu i, typically it is the
5664 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5665 * can also include other factors [XXX].
5666 *
5667 * To achieve this balance we define a measure of imbalance which follows
5668 * directly from (1):
5669 *
5670 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5671 *
5672 * We them move tasks around to minimize the imbalance. In the continuous
5673 * function space it is obvious this converges, in the discrete case we get
5674 * a few fun cases generally called infeasible weight scenarios.
5675 *
5676 * [XXX expand on:
5677 *     - infeasible weights;
5678 *     - local vs global optima in the discrete case. ]
5679 *
5680 *
5681 * SCHED DOMAINS
5682 *
5683 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5684 * for all i,j solution, we create a tree of cpus that follows the hardware
5685 * topology where each level pairs two lower groups (or better). This results
5686 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5687 * tree to only the first of the previous level and we decrease the frequency
5688 * of load-balance at each level inv. proportional to the number of cpus in
5689 * the groups.
5690 *
5691 * This yields:
5692 *
5693 *     log_2 n     1     n
5694 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5695 *     i = 0      2^i   2^i
5696 *                               `- size of each group
5697 *         |         |     `- number of cpus doing load-balance
5698 *         |         `- freq
5699 *         `- sum over all levels
5700 *
5701 * Coupled with a limit on how many tasks we can migrate every balance pass,
5702 * this makes (5) the runtime complexity of the balancer.
5703 *
5704 * An important property here is that each CPU is still (indirectly) connected
5705 * to every other cpu in at most O(log n) steps:
5706 *
5707 * The adjacency matrix of the resulting graph is given by:
5708 *
5709 *             log_2 n     
5710 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5711 *             k = 0
5712 *
5713 * And you'll find that:
5714 *
5715 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5716 *
5717 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5718 * The task movement gives a factor of O(m), giving a convergence complexity
5719 * of:
5720 *
5721 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5722 *
5723 *
5724 * WORK CONSERVING
5725 *
5726 * In order to avoid CPUs going idle while there's still work to do, new idle
5727 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5728 * tree itself instead of relying on other CPUs to bring it work.
5729 *
5730 * This adds some complexity to both (5) and (8) but it reduces the total idle
5731 * time.
5732 *
5733 * [XXX more?]
5734 *
5735 *
5736 * CGROUPS
5737 *
5738 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5739 *
5740 *                                s_k,i
5741 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5742 *                                 S_k
5743 *
5744 * Where
5745 *
5746 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5747 *
5748 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5749 *
5750 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5751 * property.
5752 *
5753 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5754 *      rewrite all of this once again.]
5755 */ 
5756
5757static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5758
5759enum fbq_type { regular, remote, all };
5760
5761#define LBF_ALL_PINNED	0x01
5762#define LBF_NEED_BREAK	0x02
5763#define LBF_DST_PINNED  0x04
5764#define LBF_SOME_PINNED	0x08
5765
5766struct lb_env {
5767	struct sched_domain	*sd;
5768
5769	struct rq		*src_rq;
5770	int			src_cpu;
5771
5772	int			dst_cpu;
5773	struct rq		*dst_rq;
5774
5775	struct cpumask		*dst_grpmask;
5776	int			new_dst_cpu;
5777	enum cpu_idle_type	idle;
5778	long			imbalance;
5779	/* The set of CPUs under consideration for load-balancing */
5780	struct cpumask		*cpus;
5781
5782	unsigned int		flags;
5783
5784	unsigned int		loop;
5785	unsigned int		loop_break;
5786	unsigned int		loop_max;
5787
5788	enum fbq_type		fbq_type;
5789	struct list_head	tasks;
5790};
5791
5792/*
 
 
 
 
 
 
 
 
 
 
 
 
5793 * Is this task likely cache-hot:
5794 */
5795static int task_hot(struct task_struct *p, struct lb_env *env)
 
5796{
5797	s64 delta;
5798
5799	lockdep_assert_held(&env->src_rq->lock);
5800
5801	if (p->sched_class != &fair_sched_class)
5802		return 0;
5803
5804	if (unlikely(p->policy == SCHED_IDLE))
5805		return 0;
5806
5807	/*
5808	 * Buddy candidates are cache hot:
5809	 */
5810	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5811			(&p->se == cfs_rq_of(&p->se)->next ||
5812			 &p->se == cfs_rq_of(&p->se)->last))
5813		return 1;
5814
5815	if (sysctl_sched_migration_cost == -1)
5816		return 1;
5817	if (sysctl_sched_migration_cost == 0)
5818		return 0;
5819
5820	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5821
5822	return delta < (s64)sysctl_sched_migration_cost;
5823}
5824
5825#ifdef CONFIG_NUMA_BALANCING
5826/*
5827 * Returns 1, if task migration degrades locality
5828 * Returns 0, if task migration improves locality i.e migration preferred.
5829 * Returns -1, if task migration is not affected by locality.
5830 */
5831static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5832{
5833	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5834	unsigned long src_faults, dst_faults;
5835	int src_nid, dst_nid;
5836
5837	if (!static_branch_likely(&sched_numa_balancing))
5838		return -1;
5839
5840	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5841		return -1;
5842
5843	src_nid = cpu_to_node(env->src_cpu);
5844	dst_nid = cpu_to_node(env->dst_cpu);
5845
5846	if (src_nid == dst_nid)
5847		return -1;
5848
5849	/* Migrating away from the preferred node is always bad. */
5850	if (src_nid == p->numa_preferred_nid) {
5851		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5852			return 1;
5853		else
5854			return -1;
5855	}
5856
5857	/* Encourage migration to the preferred node. */
5858	if (dst_nid == p->numa_preferred_nid)
5859		return 0;
 
5860
5861	if (numa_group) {
5862		src_faults = group_faults(p, src_nid);
5863		dst_faults = group_faults(p, dst_nid);
5864	} else {
5865		src_faults = task_faults(p, src_nid);
5866		dst_faults = task_faults(p, dst_nid);
5867	}
5868
5869	return dst_faults < src_faults;
 
 
 
 
5870}
5871
5872#else
5873static inline int migrate_degrades_locality(struct task_struct *p,
5874					     struct lb_env *env)
5875{
5876	return -1;
5877}
5878#endif
5879
5880/*
5881 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5882 */
5883static
5884int can_migrate_task(struct task_struct *p, struct lb_env *env)
5885{
5886	int tsk_cache_hot;
5887
5888	lockdep_assert_held(&env->src_rq->lock);
5889
5890	/*
5891	 * We do not migrate tasks that are:
5892	 * 1) throttled_lb_pair, or
5893	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5894	 * 3) running (obviously), or
5895	 * 4) are cache-hot on their current CPU.
5896	 */
5897	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5898		return 0;
5899
5900	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5901		int cpu;
5902
5903		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5904
5905		env->flags |= LBF_SOME_PINNED;
5906
5907		/*
5908		 * Remember if this task can be migrated to any other cpu in
5909		 * our sched_group. We may want to revisit it if we couldn't
5910		 * meet load balance goals by pulling other tasks on src_cpu.
5911		 *
5912		 * Also avoid computing new_dst_cpu if we have already computed
5913		 * one in current iteration.
5914		 */
5915		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5916			return 0;
5917
5918		/* Prevent to re-select dst_cpu via env's cpus */
5919		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5920			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5921				env->flags |= LBF_DST_PINNED;
5922				env->new_dst_cpu = cpu;
5923				break;
5924			}
5925		}
5926
5927		return 0;
5928	}
5929
5930	/* Record that we found atleast one task that could run on dst_cpu */
5931	env->flags &= ~LBF_ALL_PINNED;
5932
5933	if (task_running(env->src_rq, p)) {
5934		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5935		return 0;
5936	}
5937
5938	/*
5939	 * Aggressive migration if:
5940	 * 1) destination numa is preferred
5941	 * 2) task is cache cold, or
5942	 * 3) too many balance attempts have failed.
5943	 */
5944	tsk_cache_hot = migrate_degrades_locality(p, env);
5945	if (tsk_cache_hot == -1)
5946		tsk_cache_hot = task_hot(p, env);
5947
5948	if (tsk_cache_hot <= 0 ||
5949	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5950		if (tsk_cache_hot == 1) {
5951			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5952			schedstat_inc(p, se.statistics.nr_forced_migrations);
5953		}
 
 
 
 
 
 
 
 
 
 
 
 
5954		return 1;
5955	}
5956
5957	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5958	return 0;
5959}
5960
5961/*
5962 * detach_task() -- detach the task for the migration specified in env
5963 */
5964static void detach_task(struct task_struct *p, struct lb_env *env)
5965{
5966	lockdep_assert_held(&env->src_rq->lock);
5967
5968	p->on_rq = TASK_ON_RQ_MIGRATING;
5969	deactivate_task(env->src_rq, p, 0);
5970	set_task_cpu(p, env->dst_cpu);
5971}
5972
5973/*
5974 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5975 * part of active balancing operations within "domain".
 
5976 *
5977 * Returns a task if successful and NULL otherwise.
5978 */
5979static struct task_struct *detach_one_task(struct lb_env *env)
5980{
5981	struct task_struct *p, *n;
5982
5983	lockdep_assert_held(&env->src_rq->lock);
5984
5985	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5986		if (!can_migrate_task(p, env))
5987			continue;
5988
5989		detach_task(p, env);
5990
5991		/*
5992		 * Right now, this is only the second place where
5993		 * lb_gained[env->idle] is updated (other is detach_tasks)
5994		 * so we can safely collect stats here rather than
5995		 * inside detach_tasks().
5996		 */
5997		schedstat_inc(env->sd, lb_gained[env->idle]);
5998		return p;
5999	}
6000	return NULL;
6001}
6002
6003static const unsigned int sched_nr_migrate_break = 32;
6004
6005/*
6006 * detach_tasks() -- tries to detach up to imbalance weighted load from
6007 * busiest_rq, as part of a balancing operation within domain "sd".
 
6008 *
6009 * Returns number of detached tasks if successful and 0 otherwise.
6010 */
6011static int detach_tasks(struct lb_env *env)
6012{
6013	struct list_head *tasks = &env->src_rq->cfs_tasks;
6014	struct task_struct *p;
6015	unsigned long load;
6016	int detached = 0;
6017
6018	lockdep_assert_held(&env->src_rq->lock);
6019
6020	if (env->imbalance <= 0)
6021		return 0;
6022
6023	while (!list_empty(tasks)) {
6024		/*
6025		 * We don't want to steal all, otherwise we may be treated likewise,
6026		 * which could at worst lead to a livelock crash.
6027		 */
6028		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6029			break;
6030
6031		p = list_first_entry(tasks, struct task_struct, se.group_node);
6032
6033		env->loop++;
6034		/* We've more or less seen every task there is, call it quits */
6035		if (env->loop > env->loop_max)
6036			break;
6037
6038		/* take a breather every nr_migrate tasks */
6039		if (env->loop > env->loop_break) {
6040			env->loop_break += sched_nr_migrate_break;
6041			env->flags |= LBF_NEED_BREAK;
6042			break;
6043		}
6044
6045		if (!can_migrate_task(p, env))
6046			goto next;
6047
6048		load = task_h_load(p);
6049
6050		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6051			goto next;
6052
6053		if ((load / 2) > env->imbalance)
6054			goto next;
6055
6056		detach_task(p, env);
6057		list_add(&p->se.group_node, &env->tasks);
6058
6059		detached++;
6060		env->imbalance -= load;
6061
6062#ifdef CONFIG_PREEMPT
6063		/*
6064		 * NEWIDLE balancing is a source of latency, so preemptible
6065		 * kernels will stop after the first task is detached to minimize
6066		 * the critical section.
6067		 */
6068		if (env->idle == CPU_NEWLY_IDLE)
6069			break;
6070#endif
6071
6072		/*
6073		 * We only want to steal up to the prescribed amount of
6074		 * weighted load.
6075		 */
6076		if (env->imbalance <= 0)
6077			break;
6078
6079		continue;
6080next:
6081		list_move_tail(&p->se.group_node, tasks);
6082	}
6083
6084	/*
6085	 * Right now, this is one of only two places we collect this stat
6086	 * so we can safely collect detach_one_task() stats here rather
6087	 * than inside detach_one_task().
6088	 */
6089	schedstat_add(env->sd, lb_gained[env->idle], detached);
6090
6091	return detached;
6092}
6093
 
6094/*
6095 * attach_task() -- attach the task detached by detach_task() to its new rq.
6096 */
6097static void attach_task(struct rq *rq, struct task_struct *p)
6098{
6099	lockdep_assert_held(&rq->lock);
 
6100
6101	BUG_ON(task_rq(p) != rq);
6102	activate_task(rq, p, 0);
6103	p->on_rq = TASK_ON_RQ_QUEUED;
6104	check_preempt_curr(rq, p, 0);
6105}
6106
6107/*
6108 * attach_one_task() -- attaches the task returned from detach_one_task() to
6109 * its new rq.
6110 */
6111static void attach_one_task(struct rq *rq, struct task_struct *p)
6112{
6113	raw_spin_lock(&rq->lock);
6114	attach_task(rq, p);
6115	raw_spin_unlock(&rq->lock);
6116}
6117
6118/*
6119 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6120 * new rq.
6121 */
6122static void attach_tasks(struct lb_env *env)
6123{
6124	struct list_head *tasks = &env->tasks;
6125	struct task_struct *p;
6126
6127	raw_spin_lock(&env->dst_rq->lock);
6128
6129	while (!list_empty(tasks)) {
6130		p = list_first_entry(tasks, struct task_struct, se.group_node);
6131		list_del_init(&p->se.group_node);
6132
6133		attach_task(env->dst_rq, p);
6134	}
6135
6136	raw_spin_unlock(&env->dst_rq->lock);
6137}
6138
6139#ifdef CONFIG_FAIR_GROUP_SCHED
6140static void update_blocked_averages(int cpu)
6141{
6142	struct rq *rq = cpu_rq(cpu);
6143	struct cfs_rq *cfs_rq;
6144	unsigned long flags;
6145
6146	raw_spin_lock_irqsave(&rq->lock, flags);
6147	update_rq_clock(rq);
6148
6149	/*
6150	 * Iterates the task_group tree in a bottom up fashion, see
6151	 * list_add_leaf_cfs_rq() for details.
6152	 */
6153	for_each_leaf_cfs_rq(rq, cfs_rq) {
6154		/* throttled entities do not contribute to load */
6155		if (throttled_hierarchy(cfs_rq))
6156			continue;
 
 
 
 
6157
6158		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6159			update_tg_load_avg(cfs_rq, 0);
6160	}
6161	raw_spin_unlock_irqrestore(&rq->lock, flags);
6162}
6163
6164/*
6165 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6166 * This needs to be done in a top-down fashion because the load of a child
6167 * group is a fraction of its parents load.
6168 */
6169static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6170{
6171	struct rq *rq = rq_of(cfs_rq);
6172	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6173	unsigned long now = jiffies;
6174	unsigned long load;
6175
6176	if (cfs_rq->last_h_load_update == now)
6177		return;
6178
6179	cfs_rq->h_load_next = NULL;
6180	for_each_sched_entity(se) {
6181		cfs_rq = cfs_rq_of(se);
6182		cfs_rq->h_load_next = se;
6183		if (cfs_rq->last_h_load_update == now)
6184			break;
6185	}
6186
6187	if (!se) {
6188		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6189		cfs_rq->last_h_load_update = now;
6190	}
6191
6192	while ((se = cfs_rq->h_load_next) != NULL) {
6193		load = cfs_rq->h_load;
6194		load = div64_ul(load * se->avg.load_avg,
6195			cfs_rq_load_avg(cfs_rq) + 1);
6196		cfs_rq = group_cfs_rq(se);
6197		cfs_rq->h_load = load;
6198		cfs_rq->last_h_load_update = now;
6199	}
6200}
6201
6202static unsigned long task_h_load(struct task_struct *p)
6203{
6204	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6205
6206	update_cfs_rq_h_load(cfs_rq);
6207	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6208			cfs_rq_load_avg(cfs_rq) + 1);
6209}
6210#else
6211static inline void update_blocked_averages(int cpu)
6212{
6213	struct rq *rq = cpu_rq(cpu);
6214	struct cfs_rq *cfs_rq = &rq->cfs;
6215	unsigned long flags;
6216
6217	raw_spin_lock_irqsave(&rq->lock, flags);
6218	update_rq_clock(rq);
6219	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6220	raw_spin_unlock_irqrestore(&rq->lock, flags);
6221}
6222
6223static unsigned long task_h_load(struct task_struct *p)
6224{
6225	return p->se.avg.load_avg;
6226}
6227#endif
6228
6229/********** Helpers for find_busiest_group ************************/
6230
6231enum group_type {
6232	group_other = 0,
6233	group_imbalanced,
6234	group_overloaded,
6235};
6236
6237/*
6238 * sg_lb_stats - stats of a sched_group required for load_balancing
6239 */
6240struct sg_lb_stats {
6241	unsigned long avg_load; /*Avg load across the CPUs of the group */
6242	unsigned long group_load; /* Total load over the CPUs of the group */
6243	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6244	unsigned long load_per_task;
6245	unsigned long group_capacity;
6246	unsigned long group_util; /* Total utilization of the group */
6247	unsigned int sum_nr_running; /* Nr tasks running in the group */
 
6248	unsigned int idle_cpus;
6249	unsigned int group_weight;
6250	enum group_type group_type;
6251	int group_no_capacity;
6252#ifdef CONFIG_NUMA_BALANCING
6253	unsigned int nr_numa_running;
6254	unsigned int nr_preferred_running;
6255#endif
6256};
6257
6258/*
6259 * sd_lb_stats - Structure to store the statistics of a sched_domain
6260 *		 during load balancing.
6261 */
6262struct sd_lb_stats {
6263	struct sched_group *busiest;	/* Busiest group in this sd */
6264	struct sched_group *local;	/* Local group in this sd */
6265	unsigned long total_load;	/* Total load of all groups in sd */
6266	unsigned long total_capacity;	/* Total capacity of all groups in sd */
6267	unsigned long avg_load;	/* Average load across all groups in sd */
6268
6269	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6270	struct sg_lb_stats local_stat;	/* Statistics of the local group */
6271};
6272
6273static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6274{
6275	/*
6276	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6277	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6278	 * We must however clear busiest_stat::avg_load because
6279	 * update_sd_pick_busiest() reads this before assignment.
6280	 */
6281	*sds = (struct sd_lb_stats){
6282		.busiest = NULL,
6283		.local = NULL,
6284		.total_load = 0UL,
6285		.total_capacity = 0UL,
6286		.busiest_stat = {
6287			.avg_load = 0UL,
6288			.sum_nr_running = 0,
6289			.group_type = group_other,
6290		},
6291	};
6292}
6293
6294/**
6295 * get_sd_load_idx - Obtain the load index for a given sched domain.
6296 * @sd: The sched_domain whose load_idx is to be obtained.
6297 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6298 *
6299 * Return: The load index.
6300 */
6301static inline int get_sd_load_idx(struct sched_domain *sd,
6302					enum cpu_idle_type idle)
6303{
6304	int load_idx;
6305
6306	switch (idle) {
6307	case CPU_NOT_IDLE:
6308		load_idx = sd->busy_idx;
6309		break;
6310
6311	case CPU_NEWLY_IDLE:
6312		load_idx = sd->newidle_idx;
6313		break;
6314	default:
6315		load_idx = sd->idle_idx;
6316		break;
6317	}
6318
6319	return load_idx;
6320}
6321
6322static unsigned long scale_rt_capacity(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6323{
6324	struct rq *rq = cpu_rq(cpu);
6325	u64 total, used, age_stamp, avg;
6326	s64 delta;
6327
6328	/*
6329	 * Since we're reading these variables without serialization make sure
6330	 * we read them once before doing sanity checks on them.
6331	 */
6332	age_stamp = READ_ONCE(rq->age_stamp);
6333	avg = READ_ONCE(rq->rt_avg);
6334	delta = __rq_clock_broken(rq) - age_stamp;
6335
6336	if (unlikely(delta < 0))
6337		delta = 0;
6338
6339	total = sched_avg_period() + delta;
 
 
 
 
 
6340
6341	used = div_u64(avg, total);
 
6342
6343	if (likely(used < SCHED_CAPACITY_SCALE))
6344		return SCHED_CAPACITY_SCALE - used;
6345
6346	return 1;
6347}
6348
6349static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6350{
6351	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
 
6352	struct sched_group *sdg = sd->groups;
6353
6354	cpu_rq(cpu)->cpu_capacity_orig = capacity;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6355
6356	capacity *= scale_rt_capacity(cpu);
6357	capacity >>= SCHED_CAPACITY_SHIFT;
6358
6359	if (!capacity)
6360		capacity = 1;
6361
6362	cpu_rq(cpu)->cpu_capacity = capacity;
6363	sdg->sgc->capacity = capacity;
6364}
6365
6366void update_group_capacity(struct sched_domain *sd, int cpu)
6367{
6368	struct sched_domain *child = sd->child;
6369	struct sched_group *group, *sdg = sd->groups;
6370	unsigned long capacity;
6371	unsigned long interval;
6372
6373	interval = msecs_to_jiffies(sd->balance_interval);
6374	interval = clamp(interval, 1UL, max_load_balance_interval);
6375	sdg->sgc->next_update = jiffies + interval;
6376
6377	if (!child) {
6378		update_cpu_capacity(sd, cpu);
6379		return;
6380	}
6381
6382	capacity = 0;
6383
6384	if (child->flags & SD_OVERLAP) {
6385		/*
6386		 * SD_OVERLAP domains cannot assume that child groups
6387		 * span the current group.
6388		 */
6389
6390		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6391			struct sched_group_capacity *sgc;
6392			struct rq *rq = cpu_rq(cpu);
6393
6394			/*
6395			 * build_sched_domains() -> init_sched_groups_capacity()
6396			 * gets here before we've attached the domains to the
6397			 * runqueues.
6398			 *
6399			 * Use capacity_of(), which is set irrespective of domains
6400			 * in update_cpu_capacity().
6401			 *
6402			 * This avoids capacity from being 0 and
6403			 * causing divide-by-zero issues on boot.
 
 
6404			 */
6405			if (unlikely(!rq->sd)) {
6406				capacity += capacity_of(cpu);
 
6407				continue;
6408			}
6409
6410			sgc = rq->sd->groups->sgc;
6411			capacity += sgc->capacity;
 
6412		}
6413	} else  {
6414		/*
6415		 * !SD_OVERLAP domains can assume that child groups
6416		 * span the current group.
6417		 */ 
6418
6419		group = child->groups;
6420		do {
6421			capacity += group->sgc->capacity;
 
6422			group = group->next;
6423		} while (group != child->groups);
6424	}
6425
6426	sdg->sgc->capacity = capacity;
 
6427}
6428
6429/*
6430 * Check whether the capacity of the rq has been noticeably reduced by side
6431 * activity. The imbalance_pct is used for the threshold.
6432 * Return true is the capacity is reduced
 
 
6433 */
6434static inline int
6435check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6436{
6437	return ((rq->cpu_capacity * sd->imbalance_pct) <
6438				(rq->cpu_capacity_orig * 100));
 
 
 
 
 
 
 
 
 
 
 
6439}
6440
6441/*
6442 * Group imbalance indicates (and tries to solve) the problem where balancing
6443 * groups is inadequate due to tsk_cpus_allowed() constraints.
6444 *
6445 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6446 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6447 * Something like:
6448 *
6449 * 	{ 0 1 2 3 } { 4 5 6 7 }
6450 * 	        *     * * *
6451 *
6452 * If we were to balance group-wise we'd place two tasks in the first group and
6453 * two tasks in the second group. Clearly this is undesired as it will overload
6454 * cpu 3 and leave one of the cpus in the second group unused.
6455 *
6456 * The current solution to this issue is detecting the skew in the first group
6457 * by noticing the lower domain failed to reach balance and had difficulty
6458 * moving tasks due to affinity constraints.
6459 *
6460 * When this is so detected; this group becomes a candidate for busiest; see
6461 * update_sd_pick_busiest(). And calculate_imbalance() and
6462 * find_busiest_group() avoid some of the usual balance conditions to allow it
6463 * to create an effective group imbalance.
6464 *
6465 * This is a somewhat tricky proposition since the next run might not find the
6466 * group imbalance and decide the groups need to be balanced again. A most
6467 * subtle and fragile situation.
6468 */
6469
6470static inline int sg_imbalanced(struct sched_group *group)
6471{
6472	return group->sgc->imbalance;
6473}
6474
6475/*
6476 * group_has_capacity returns true if the group has spare capacity that could
6477 * be used by some tasks.
6478 * We consider that a group has spare capacity if the  * number of task is
6479 * smaller than the number of CPUs or if the utilization is lower than the
6480 * available capacity for CFS tasks.
6481 * For the latter, we use a threshold to stabilize the state, to take into
6482 * account the variance of the tasks' load and to return true if the available
6483 * capacity in meaningful for the load balancer.
6484 * As an example, an available capacity of 1% can appear but it doesn't make
6485 * any benefit for the load balance.
6486 */
6487static inline bool
6488group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6489{
6490	if (sgs->sum_nr_running < sgs->group_weight)
6491		return true;
6492
6493	if ((sgs->group_capacity * 100) >
6494			(sgs->group_util * env->sd->imbalance_pct))
6495		return true;
6496
6497	return false;
6498}
 
6499
6500/*
6501 *  group_is_overloaded returns true if the group has more tasks than it can
6502 *  handle.
6503 *  group_is_overloaded is not equals to !group_has_capacity because a group
6504 *  with the exact right number of tasks, has no more spare capacity but is not
6505 *  overloaded so both group_has_capacity and group_is_overloaded return
6506 *  false.
6507 */
6508static inline bool
6509group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6510{
6511	if (sgs->sum_nr_running <= sgs->group_weight)
6512		return false;
6513
6514	if ((sgs->group_capacity * 100) <
6515			(sgs->group_util * env->sd->imbalance_pct))
6516		return true;
6517
6518	return false;
6519}
6520
6521static inline enum
6522group_type group_classify(struct sched_group *group,
6523			  struct sg_lb_stats *sgs)
6524{
6525	if (sgs->group_no_capacity)
6526		return group_overloaded;
6527
6528	if (sg_imbalanced(group))
6529		return group_imbalanced;
6530
6531	return group_other;
6532}
6533
6534/**
6535 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6536 * @env: The load balancing environment.
6537 * @group: sched_group whose statistics are to be updated.
6538 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6539 * @local_group: Does group contain this_cpu.
6540 * @sgs: variable to hold the statistics for this group.
6541 * @overload: Indicate more than one runnable task for any CPU.
6542 */
6543static inline void update_sg_lb_stats(struct lb_env *env,
6544			struct sched_group *group, int load_idx,
6545			int local_group, struct sg_lb_stats *sgs,
6546			bool *overload)
6547{
6548	unsigned long load;
6549	int i, nr_running;
6550
6551	memset(sgs, 0, sizeof(*sgs));
6552
6553	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6554		struct rq *rq = cpu_rq(i);
6555
6556		/* Bias balancing toward cpus of our domain */
6557		if (local_group)
6558			load = target_load(i, load_idx);
6559		else
6560			load = source_load(i, load_idx);
6561
6562		sgs->group_load += load;
6563		sgs->group_util += cpu_util(i);
6564		sgs->sum_nr_running += rq->cfs.h_nr_running;
6565
6566		nr_running = rq->nr_running;
6567		if (nr_running > 1)
6568			*overload = true;
6569
6570#ifdef CONFIG_NUMA_BALANCING
6571		sgs->nr_numa_running += rq->nr_numa_running;
6572		sgs->nr_preferred_running += rq->nr_preferred_running;
6573#endif
6574		sgs->sum_weighted_load += weighted_cpuload(i);
6575		/*
6576		 * No need to call idle_cpu() if nr_running is not 0
6577		 */
6578		if (!nr_running && idle_cpu(i))
6579			sgs->idle_cpus++;
6580	}
6581
6582	/* Adjust by relative CPU capacity of the group */
6583	sgs->group_capacity = group->sgc->capacity;
6584	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6585
6586	if (sgs->sum_nr_running)
6587		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6588
6589	sgs->group_weight = group->group_weight;
6590
6591	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6592	sgs->group_type = group_classify(group, sgs);
 
 
 
6593}
6594
6595/**
6596 * update_sd_pick_busiest - return 1 on busiest group
6597 * @env: The load balancing environment.
6598 * @sds: sched_domain statistics
6599 * @sg: sched_group candidate to be checked for being the busiest
6600 * @sgs: sched_group statistics
6601 *
6602 * Determine if @sg is a busier group than the previously selected
6603 * busiest group.
6604 *
6605 * Return: %true if @sg is a busier group than the previously selected
6606 * busiest group. %false otherwise.
6607 */
6608static bool update_sd_pick_busiest(struct lb_env *env,
6609				   struct sd_lb_stats *sds,
6610				   struct sched_group *sg,
6611				   struct sg_lb_stats *sgs)
6612{
6613	struct sg_lb_stats *busiest = &sds->busiest_stat;
 
6614
6615	if (sgs->group_type > busiest->group_type)
6616		return true;
6617
6618	if (sgs->group_type < busiest->group_type)
6619		return false;
6620
6621	if (sgs->avg_load <= busiest->avg_load)
6622		return false;
6623
6624	/* This is the busiest node in its class. */
6625	if (!(env->sd->flags & SD_ASYM_PACKING))
6626		return true;
6627
6628	/*
6629	 * ASYM_PACKING needs to move all the work to the lowest
6630	 * numbered CPUs in the group, therefore mark all groups
6631	 * higher than ourself as busy.
6632	 */
6633	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
 
6634		if (!sds->busiest)
6635			return true;
6636
6637		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6638			return true;
6639	}
6640
6641	return false;
6642}
6643
6644#ifdef CONFIG_NUMA_BALANCING
6645static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6646{
6647	if (sgs->sum_nr_running > sgs->nr_numa_running)
6648		return regular;
6649	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6650		return remote;
6651	return all;
6652}
6653
6654static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6655{
6656	if (rq->nr_running > rq->nr_numa_running)
6657		return regular;
6658	if (rq->nr_running > rq->nr_preferred_running)
6659		return remote;
6660	return all;
6661}
6662#else
6663static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6664{
6665	return all;
6666}
6667
6668static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6669{
6670	return regular;
6671}
6672#endif /* CONFIG_NUMA_BALANCING */
6673
6674/**
6675 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6676 * @env: The load balancing environment.
6677 * @sds: variable to hold the statistics for this sched_domain.
6678 */
6679static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6680{
6681	struct sched_domain *child = env->sd->child;
6682	struct sched_group *sg = env->sd->groups;
6683	struct sg_lb_stats tmp_sgs;
6684	int load_idx, prefer_sibling = 0;
6685	bool overload = false;
6686
6687	if (child && child->flags & SD_PREFER_SIBLING)
6688		prefer_sibling = 1;
6689
6690	load_idx = get_sd_load_idx(env->sd, env->idle);
6691
6692	do {
6693		struct sg_lb_stats *sgs = &tmp_sgs;
6694		int local_group;
6695
6696		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6697		if (local_group) {
6698			sds->local = sg;
6699			sgs = &sds->local_stat;
6700
6701			if (env->idle != CPU_NEWLY_IDLE ||
6702			    time_after_eq(jiffies, sg->sgc->next_update))
6703				update_group_capacity(env->sd, env->dst_cpu);
6704		}
6705
6706		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6707						&overload);
6708
6709		if (local_group)
6710			goto next_group;
6711
6712		/*
6713		 * In case the child domain prefers tasks go to siblings
6714		 * first, lower the sg capacity so that we'll try
6715		 * and move all the excess tasks away. We lower the capacity
6716		 * of a group only if the local group has the capacity to fit
6717		 * these excess tasks. The extra check prevents the case where
6718		 * you always pull from the heaviest group when it is already
6719		 * under-utilized (possible with a large weight task outweighs
6720		 * the tasks on the system).
6721		 */
6722		if (prefer_sibling && sds->local &&
6723		    group_has_capacity(env, &sds->local_stat) &&
6724		    (sgs->sum_nr_running > 1)) {
6725			sgs->group_no_capacity = 1;
6726			sgs->group_type = group_classify(sg, sgs);
6727		}
6728
6729		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6730			sds->busiest = sg;
6731			sds->busiest_stat = *sgs;
6732		}
6733
6734next_group:
6735		/* Now, start updating sd_lb_stats */
6736		sds->total_load += sgs->group_load;
6737		sds->total_capacity += sgs->group_capacity;
6738
6739		sg = sg->next;
6740	} while (sg != env->sd->groups);
6741
6742	if (env->sd->flags & SD_NUMA)
6743		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6744
6745	if (!env->sd->parent) {
6746		/* update overload indicator if we are at root domain */
6747		if (env->dst_rq->rd->overload != overload)
6748			env->dst_rq->rd->overload = overload;
6749	}
6750
6751}
6752
6753/**
6754 * check_asym_packing - Check to see if the group is packed into the
6755 *			sched doman.
6756 *
6757 * This is primarily intended to used at the sibling level.  Some
6758 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6759 * case of POWER7, it can move to lower SMT modes only when higher
6760 * threads are idle.  When in lower SMT modes, the threads will
6761 * perform better since they share less core resources.  Hence when we
6762 * have idle threads, we want them to be the higher ones.
6763 *
6764 * This packing function is run on idle threads.  It checks to see if
6765 * the busiest CPU in this domain (core in the P7 case) has a higher
6766 * CPU number than the packing function is being run on.  Here we are
6767 * assuming lower CPU number will be equivalent to lower a SMT thread
6768 * number.
6769 *
6770 * Return: 1 when packing is required and a task should be moved to
6771 * this CPU.  The amount of the imbalance is returned in *imbalance.
6772 *
6773 * @env: The load balancing environment.
6774 * @sds: Statistics of the sched_domain which is to be packed
6775 */
6776static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6777{
6778	int busiest_cpu;
6779
6780	if (!(env->sd->flags & SD_ASYM_PACKING))
6781		return 0;
6782
6783	if (!sds->busiest)
6784		return 0;
6785
6786	busiest_cpu = group_first_cpu(sds->busiest);
6787	if (env->dst_cpu > busiest_cpu)
6788		return 0;
6789
6790	env->imbalance = DIV_ROUND_CLOSEST(
6791		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6792		SCHED_CAPACITY_SCALE);
6793
6794	return 1;
6795}
6796
6797/**
6798 * fix_small_imbalance - Calculate the minor imbalance that exists
6799 *			amongst the groups of a sched_domain, during
6800 *			load balancing.
6801 * @env: The load balancing environment.
6802 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6803 */
6804static inline
6805void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6806{
6807	unsigned long tmp, capa_now = 0, capa_move = 0;
6808	unsigned int imbn = 2;
6809	unsigned long scaled_busy_load_per_task;
6810	struct sg_lb_stats *local, *busiest;
6811
6812	local = &sds->local_stat;
6813	busiest = &sds->busiest_stat;
6814
6815	if (!local->sum_nr_running)
6816		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6817	else if (busiest->load_per_task > local->load_per_task)
6818		imbn = 1;
6819
6820	scaled_busy_load_per_task =
6821		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6822		busiest->group_capacity;
6823
6824	if (busiest->avg_load + scaled_busy_load_per_task >=
6825	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6826		env->imbalance = busiest->load_per_task;
6827		return;
6828	}
6829
6830	/*
6831	 * OK, we don't have enough imbalance to justify moving tasks,
6832	 * however we may be able to increase total CPU capacity used by
6833	 * moving them.
6834	 */
6835
6836	capa_now += busiest->group_capacity *
6837			min(busiest->load_per_task, busiest->avg_load);
6838	capa_now += local->group_capacity *
6839			min(local->load_per_task, local->avg_load);
6840	capa_now /= SCHED_CAPACITY_SCALE;
6841
6842	/* Amount of load we'd subtract */
6843	if (busiest->avg_load > scaled_busy_load_per_task) {
6844		capa_move += busiest->group_capacity *
6845			    min(busiest->load_per_task,
6846				busiest->avg_load - scaled_busy_load_per_task);
6847	}
6848
6849	/* Amount of load we'd add */
6850	if (busiest->avg_load * busiest->group_capacity <
6851	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6852		tmp = (busiest->avg_load * busiest->group_capacity) /
6853		      local->group_capacity;
6854	} else {
6855		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6856		      local->group_capacity;
6857	}
6858	capa_move += local->group_capacity *
6859		    min(local->load_per_task, local->avg_load + tmp);
6860	capa_move /= SCHED_CAPACITY_SCALE;
6861
6862	/* Move if we gain throughput */
6863	if (capa_move > capa_now)
6864		env->imbalance = busiest->load_per_task;
6865}
6866
6867/**
6868 * calculate_imbalance - Calculate the amount of imbalance present within the
6869 *			 groups of a given sched_domain during load balance.
6870 * @env: load balance environment
6871 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6872 */
6873static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6874{
6875	unsigned long max_pull, load_above_capacity = ~0UL;
6876	struct sg_lb_stats *local, *busiest;
6877
6878	local = &sds->local_stat;
6879	busiest = &sds->busiest_stat;
6880
6881	if (busiest->group_type == group_imbalanced) {
6882		/*
6883		 * In the group_imb case we cannot rely on group-wide averages
6884		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6885		 */
6886		busiest->load_per_task =
6887			min(busiest->load_per_task, sds->avg_load);
6888	}
6889
6890	/*
6891	 * In the presence of smp nice balancing, certain scenarios can have
6892	 * max load less than avg load(as we skip the groups at or below
6893	 * its cpu_capacity, while calculating max_load..)
6894	 */
6895	if (busiest->avg_load <= sds->avg_load ||
6896	    local->avg_load >= sds->avg_load) {
6897		env->imbalance = 0;
6898		return fix_small_imbalance(env, sds);
6899	}
6900
6901	/*
6902	 * If there aren't any idle cpus, avoid creating some.
6903	 */
6904	if (busiest->group_type == group_overloaded &&
6905	    local->group_type   == group_overloaded) {
6906		load_above_capacity = busiest->sum_nr_running *
6907					SCHED_LOAD_SCALE;
6908		if (load_above_capacity > busiest->group_capacity)
6909			load_above_capacity -= busiest->group_capacity;
6910		else
6911			load_above_capacity = ~0UL;
6912	}
6913
6914	/*
6915	 * We're trying to get all the cpus to the average_load, so we don't
6916	 * want to push ourselves above the average load, nor do we wish to
6917	 * reduce the max loaded cpu below the average load. At the same time,
6918	 * we also don't want to reduce the group load below the group capacity
6919	 * (so that we can implement power-savings policies etc). Thus we look
6920	 * for the minimum possible imbalance.
6921	 */
6922	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6923
6924	/* How much load to actually move to equalise the imbalance */
6925	env->imbalance = min(
6926		max_pull * busiest->group_capacity,
6927		(sds->avg_load - local->avg_load) * local->group_capacity
6928	) / SCHED_CAPACITY_SCALE;
6929
6930	/*
6931	 * if *imbalance is less than the average load per runnable task
6932	 * there is no guarantee that any tasks will be moved so we'll have
6933	 * a think about bumping its value to force at least one task to be
6934	 * moved
6935	 */
6936	if (env->imbalance < busiest->load_per_task)
6937		return fix_small_imbalance(env, sds);
6938}
6939
6940/******* find_busiest_group() helpers end here *********************/
6941
6942/**
6943 * find_busiest_group - Returns the busiest group within the sched_domain
6944 * if there is an imbalance. If there isn't an imbalance, and
6945 * the user has opted for power-savings, it returns a group whose
6946 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6947 * such a group exists.
6948 *
6949 * Also calculates the amount of weighted load which should be moved
6950 * to restore balance.
6951 *
6952 * @env: The load balancing environment.
6953 *
6954 * Return:	- The busiest group if imbalance exists.
6955 *		- If no imbalance and user has opted for power-savings balance,
6956 *		   return the least loaded group whose CPUs can be
6957 *		   put to idle by rebalancing its tasks onto our group.
6958 */
6959static struct sched_group *find_busiest_group(struct lb_env *env)
6960{
6961	struct sg_lb_stats *local, *busiest;
6962	struct sd_lb_stats sds;
6963
6964	init_sd_lb_stats(&sds);
6965
6966	/*
6967	 * Compute the various statistics relavent for load balancing at
6968	 * this level.
6969	 */
6970	update_sd_lb_stats(env, &sds);
6971	local = &sds.local_stat;
6972	busiest = &sds.busiest_stat;
6973
6974	/* ASYM feature bypasses nice load balance check */
6975	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6976	    check_asym_packing(env, &sds))
6977		return sds.busiest;
6978
6979	/* There is no busy sibling group to pull tasks from */
6980	if (!sds.busiest || busiest->sum_nr_running == 0)
6981		goto out_balanced;
6982
6983	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6984						/ sds.total_capacity;
6985
6986	/*
6987	 * If the busiest group is imbalanced the below checks don't
6988	 * work because they assume all things are equal, which typically
6989	 * isn't true due to cpus_allowed constraints and the like.
6990	 */
6991	if (busiest->group_type == group_imbalanced)
6992		goto force_balance;
6993
6994	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6995	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6996	    busiest->group_no_capacity)
6997		goto force_balance;
6998
6999	/*
7000	 * If the local group is busier than the selected busiest group
7001	 * don't try and pull any tasks.
7002	 */
7003	if (local->avg_load >= busiest->avg_load)
7004		goto out_balanced;
7005
7006	/*
7007	 * Don't pull any tasks if this group is already above the domain
7008	 * average load.
7009	 */
7010	if (local->avg_load >= sds.avg_load)
7011		goto out_balanced;
7012
7013	if (env->idle == CPU_IDLE) {
7014		/*
7015		 * This cpu is idle. If the busiest group is not overloaded
7016		 * and there is no imbalance between this and busiest group
7017		 * wrt idle cpus, it is balanced. The imbalance becomes
7018		 * significant if the diff is greater than 1 otherwise we
7019		 * might end up to just move the imbalance on another group
7020		 */
7021		if ((busiest->group_type != group_overloaded) &&
7022				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7023			goto out_balanced;
7024	} else {
7025		/*
7026		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7027		 * imbalance_pct to be conservative.
7028		 */
7029		if (100 * busiest->avg_load <=
7030				env->sd->imbalance_pct * local->avg_load)
7031			goto out_balanced;
7032	}
7033
7034force_balance:
7035	/* Looks like there is an imbalance. Compute it */
7036	calculate_imbalance(env, &sds);
7037	return sds.busiest;
7038
7039out_balanced:
7040	env->imbalance = 0;
7041	return NULL;
7042}
7043
7044/*
7045 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7046 */
7047static struct rq *find_busiest_queue(struct lb_env *env,
7048				     struct sched_group *group)
7049{
7050	struct rq *busiest = NULL, *rq;
7051	unsigned long busiest_load = 0, busiest_capacity = 1;
7052	int i;
7053
7054	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7055		unsigned long capacity, wl;
7056		enum fbq_type rt;
7057
7058		rq = cpu_rq(i);
7059		rt = fbq_classify_rq(rq);
7060
7061		/*
7062		 * We classify groups/runqueues into three groups:
7063		 *  - regular: there are !numa tasks
7064		 *  - remote:  there are numa tasks that run on the 'wrong' node
7065		 *  - all:     there is no distinction
7066		 *
7067		 * In order to avoid migrating ideally placed numa tasks,
7068		 * ignore those when there's better options.
7069		 *
7070		 * If we ignore the actual busiest queue to migrate another
7071		 * task, the next balance pass can still reduce the busiest
7072		 * queue by moving tasks around inside the node.
7073		 *
7074		 * If we cannot move enough load due to this classification
7075		 * the next pass will adjust the group classification and
7076		 * allow migration of more tasks.
7077		 *
7078		 * Both cases only affect the total convergence complexity.
7079		 */
7080		if (rt > env->fbq_type)
7081			continue;
7082
7083		capacity = capacity_of(i);
 
 
 
7084
7085		wl = weighted_cpuload(i);
7086
7087		/*
7088		 * When comparing with imbalance, use weighted_cpuload()
7089		 * which is not scaled with the cpu capacity.
7090		 */
7091
7092		if (rq->nr_running == 1 && wl > env->imbalance &&
7093		    !check_cpu_capacity(rq, env->sd))
7094			continue;
7095
7096		/*
7097		 * For the load comparisons with the other cpu's, consider
7098		 * the weighted_cpuload() scaled with the cpu capacity, so
7099		 * that the load can be moved away from the cpu that is
7100		 * potentially running at a lower capacity.
7101		 *
7102		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7103		 * multiplication to rid ourselves of the division works out
7104		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7105		 * our previous maximum.
7106		 */
7107		if (wl * busiest_capacity > busiest_load * capacity) {
7108			busiest_load = wl;
7109			busiest_capacity = capacity;
7110			busiest = rq;
7111		}
7112	}
7113
7114	return busiest;
7115}
7116
7117/*
7118 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7119 * so long as it is large enough.
7120 */
7121#define MAX_PINNED_INTERVAL	512
7122
7123/* Working cpumask for load_balance and load_balance_newidle. */
7124DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7125
7126static int need_active_balance(struct lb_env *env)
7127{
7128	struct sched_domain *sd = env->sd;
7129
7130	if (env->idle == CPU_NEWLY_IDLE) {
7131
7132		/*
7133		 * ASYM_PACKING needs to force migrate tasks from busy but
7134		 * higher numbered CPUs in order to pack all tasks in the
7135		 * lowest numbered CPUs.
7136		 */
7137		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7138			return 1;
7139	}
7140
7141	/*
7142	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7143	 * It's worth migrating the task if the src_cpu's capacity is reduced
7144	 * because of other sched_class or IRQs if more capacity stays
7145	 * available on dst_cpu.
7146	 */
7147	if ((env->idle != CPU_NOT_IDLE) &&
7148	    (env->src_rq->cfs.h_nr_running == 1)) {
7149		if ((check_cpu_capacity(env->src_rq, sd)) &&
7150		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7151			return 1;
7152	}
7153
7154	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7155}
7156
7157static int active_load_balance_cpu_stop(void *data);
7158
7159static int should_we_balance(struct lb_env *env)
7160{
7161	struct sched_group *sg = env->sd->groups;
7162	struct cpumask *sg_cpus, *sg_mask;
7163	int cpu, balance_cpu = -1;
7164
7165	/*
7166	 * In the newly idle case, we will allow all the cpu's
7167	 * to do the newly idle load balance.
7168	 */
7169	if (env->idle == CPU_NEWLY_IDLE)
7170		return 1;
7171
7172	sg_cpus = sched_group_cpus(sg);
7173	sg_mask = sched_group_mask(sg);
7174	/* Try to find first idle cpu */
7175	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7176		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7177			continue;
7178
7179		balance_cpu = cpu;
7180		break;
7181	}
7182
7183	if (balance_cpu == -1)
7184		balance_cpu = group_balance_cpu(sg);
7185
7186	/*
7187	 * First idle cpu or the first cpu(busiest) in this sched group
7188	 * is eligible for doing load balancing at this and above domains.
7189	 */
7190	return balance_cpu == env->dst_cpu;
7191}
7192
7193/*
7194 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7195 * tasks if there is an imbalance.
7196 */
7197static int load_balance(int this_cpu, struct rq *this_rq,
7198			struct sched_domain *sd, enum cpu_idle_type idle,
7199			int *continue_balancing)
7200{
7201	int ld_moved, cur_ld_moved, active_balance = 0;
7202	struct sched_domain *sd_parent = sd->parent;
7203	struct sched_group *group;
7204	struct rq *busiest;
7205	unsigned long flags;
7206	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7207
7208	struct lb_env env = {
7209		.sd		= sd,
7210		.dst_cpu	= this_cpu,
7211		.dst_rq		= this_rq,
7212		.dst_grpmask    = sched_group_cpus(sd->groups),
7213		.idle		= idle,
7214		.loop_break	= sched_nr_migrate_break,
7215		.cpus		= cpus,
7216		.fbq_type	= all,
7217		.tasks		= LIST_HEAD_INIT(env.tasks),
7218	};
7219
7220	/*
7221	 * For NEWLY_IDLE load_balancing, we don't need to consider
7222	 * other cpus in our group
7223	 */
7224	if (idle == CPU_NEWLY_IDLE)
7225		env.dst_grpmask = NULL;
7226
7227	cpumask_copy(cpus, cpu_active_mask);
7228
7229	schedstat_inc(sd, lb_count[idle]);
7230
7231redo:
7232	if (!should_we_balance(&env)) {
7233		*continue_balancing = 0;
7234		goto out_balanced;
7235	}
7236
7237	group = find_busiest_group(&env);
7238	if (!group) {
7239		schedstat_inc(sd, lb_nobusyg[idle]);
7240		goto out_balanced;
7241	}
7242
7243	busiest = find_busiest_queue(&env, group);
7244	if (!busiest) {
7245		schedstat_inc(sd, lb_nobusyq[idle]);
7246		goto out_balanced;
7247	}
7248
7249	BUG_ON(busiest == env.dst_rq);
7250
7251	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7252
7253	env.src_cpu = busiest->cpu;
7254	env.src_rq = busiest;
7255
7256	ld_moved = 0;
7257	if (busiest->nr_running > 1) {
7258		/*
7259		 * Attempt to move tasks. If find_busiest_group has found
7260		 * an imbalance but busiest->nr_running <= 1, the group is
7261		 * still unbalanced. ld_moved simply stays zero, so it is
7262		 * correctly treated as an imbalance.
7263		 */
7264		env.flags |= LBF_ALL_PINNED;
 
 
7265		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7266
7267more_balance:
7268		raw_spin_lock_irqsave(&busiest->lock, flags);
 
7269
7270		/*
7271		 * cur_ld_moved - load moved in current iteration
7272		 * ld_moved     - cumulative load moved across iterations
7273		 */
7274		cur_ld_moved = detach_tasks(&env);
 
 
 
7275
7276		/*
7277		 * We've detached some tasks from busiest_rq. Every
7278		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7279		 * unlock busiest->lock, and we are able to be sure
7280		 * that nobody can manipulate the tasks in parallel.
7281		 * See task_rq_lock() family for the details.
7282		 */
7283
7284		raw_spin_unlock(&busiest->lock);
7285
7286		if (cur_ld_moved) {
7287			attach_tasks(&env);
7288			ld_moved += cur_ld_moved;
7289		}
7290
7291		local_irq_restore(flags);
7292
7293		if (env.flags & LBF_NEED_BREAK) {
7294			env.flags &= ~LBF_NEED_BREAK;
7295			goto more_balance;
7296		}
7297
7298		/*
7299		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7300		 * us and move them to an alternate dst_cpu in our sched_group
7301		 * where they can run. The upper limit on how many times we
7302		 * iterate on same src_cpu is dependent on number of cpus in our
7303		 * sched_group.
7304		 *
7305		 * This changes load balance semantics a bit on who can move
7306		 * load to a given_cpu. In addition to the given_cpu itself
7307		 * (or a ilb_cpu acting on its behalf where given_cpu is
7308		 * nohz-idle), we now have balance_cpu in a position to move
7309		 * load to given_cpu. In rare situations, this may cause
7310		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7311		 * _independently_ and at _same_ time to move some load to
7312		 * given_cpu) causing exceess load to be moved to given_cpu.
7313		 * This however should not happen so much in practice and
7314		 * moreover subsequent load balance cycles should correct the
7315		 * excess load moved.
7316		 */
7317		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7318
7319			/* Prevent to re-select dst_cpu via env's cpus */
7320			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7321
7322			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7323			env.dst_cpu	 = env.new_dst_cpu;
7324			env.flags	&= ~LBF_DST_PINNED;
7325			env.loop	 = 0;
7326			env.loop_break	 = sched_nr_migrate_break;
7327
7328			/*
7329			 * Go back to "more_balance" rather than "redo" since we
7330			 * need to continue with same src_cpu.
7331			 */
7332			goto more_balance;
7333		}
7334
7335		/*
7336		 * We failed to reach balance because of affinity.
7337		 */
7338		if (sd_parent) {
7339			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7340
7341			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7342				*group_imbalance = 1;
 
 
7343		}
7344
7345		/* All tasks on this runqueue were pinned by CPU affinity */
7346		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7347			cpumask_clear_cpu(cpu_of(busiest), cpus);
7348			if (!cpumask_empty(cpus)) {
7349				env.loop = 0;
7350				env.loop_break = sched_nr_migrate_break;
7351				goto redo;
7352			}
7353			goto out_all_pinned;
7354		}
7355	}
7356
7357	if (!ld_moved) {
7358		schedstat_inc(sd, lb_failed[idle]);
7359		/*
7360		 * Increment the failure counter only on periodic balance.
7361		 * We do not want newidle balance, which can be very
7362		 * frequent, pollute the failure counter causing
7363		 * excessive cache_hot migrations and active balances.
7364		 */
7365		if (idle != CPU_NEWLY_IDLE)
7366			sd->nr_balance_failed++;
7367
7368		if (need_active_balance(&env)) {
7369			raw_spin_lock_irqsave(&busiest->lock, flags);
7370
7371			/* don't kick the active_load_balance_cpu_stop,
7372			 * if the curr task on busiest cpu can't be
7373			 * moved to this_cpu
7374			 */
7375			if (!cpumask_test_cpu(this_cpu,
7376					tsk_cpus_allowed(busiest->curr))) {
7377				raw_spin_unlock_irqrestore(&busiest->lock,
7378							    flags);
7379				env.flags |= LBF_ALL_PINNED;
7380				goto out_one_pinned;
7381			}
7382
7383			/*
7384			 * ->active_balance synchronizes accesses to
7385			 * ->active_balance_work.  Once set, it's cleared
7386			 * only after active load balance is finished.
7387			 */
7388			if (!busiest->active_balance) {
7389				busiest->active_balance = 1;
7390				busiest->push_cpu = this_cpu;
7391				active_balance = 1;
7392			}
7393			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7394
7395			if (active_balance) {
7396				stop_one_cpu_nowait(cpu_of(busiest),
7397					active_load_balance_cpu_stop, busiest,
7398					&busiest->active_balance_work);
7399			}
7400
7401			/*
7402			 * We've kicked active balancing, reset the failure
7403			 * counter.
7404			 */
7405			sd->nr_balance_failed = sd->cache_nice_tries+1;
7406		}
7407	} else
7408		sd->nr_balance_failed = 0;
7409
7410	if (likely(!active_balance)) {
7411		/* We were unbalanced, so reset the balancing interval */
7412		sd->balance_interval = sd->min_interval;
7413	} else {
7414		/*
7415		 * If we've begun active balancing, start to back off. This
7416		 * case may not be covered by the all_pinned logic if there
7417		 * is only 1 task on the busy runqueue (because we don't call
7418		 * detach_tasks).
7419		 */
7420		if (sd->balance_interval < sd->max_interval)
7421			sd->balance_interval *= 2;
7422	}
7423
7424	goto out;
7425
7426out_balanced:
7427	/*
7428	 * We reach balance although we may have faced some affinity
7429	 * constraints. Clear the imbalance flag if it was set.
7430	 */
7431	if (sd_parent) {
7432		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7433
7434		if (*group_imbalance)
7435			*group_imbalance = 0;
7436	}
7437
7438out_all_pinned:
7439	/*
7440	 * We reach balance because all tasks are pinned at this level so
7441	 * we can't migrate them. Let the imbalance flag set so parent level
7442	 * can try to migrate them.
7443	 */
7444	schedstat_inc(sd, lb_balanced[idle]);
7445
7446	sd->nr_balance_failed = 0;
7447
7448out_one_pinned:
7449	/* tune up the balancing interval */
7450	if (((env.flags & LBF_ALL_PINNED) &&
7451			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7452			(sd->balance_interval < sd->max_interval))
7453		sd->balance_interval *= 2;
7454
7455	ld_moved = 0;
7456out:
7457	return ld_moved;
7458}
7459
7460static inline unsigned long
7461get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7462{
7463	unsigned long interval = sd->balance_interval;
7464
7465	if (cpu_busy)
7466		interval *= sd->busy_factor;
7467
7468	/* scale ms to jiffies */
7469	interval = msecs_to_jiffies(interval);
7470	interval = clamp(interval, 1UL, max_load_balance_interval);
7471
7472	return interval;
7473}
7474
7475static inline void
7476update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7477{
7478	unsigned long interval, next;
7479
7480	interval = get_sd_balance_interval(sd, cpu_busy);
7481	next = sd->last_balance + interval;
7482
7483	if (time_after(*next_balance, next))
7484		*next_balance = next;
7485}
7486
7487/*
7488 * idle_balance is called by schedule() if this_cpu is about to become
7489 * idle. Attempts to pull tasks from other CPUs.
7490 */
7491static int idle_balance(struct rq *this_rq)
7492{
7493	unsigned long next_balance = jiffies + HZ;
7494	int this_cpu = this_rq->cpu;
7495	struct sched_domain *sd;
7496	int pulled_task = 0;
 
7497	u64 curr_cost = 0;
 
 
 
7498
7499	/*
7500	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7501	 * measure the duration of idle_balance() as idle time.
7502	 */
7503	this_rq->idle_stamp = rq_clock(this_rq);
7504
7505	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7506	    !this_rq->rd->overload) {
7507		rcu_read_lock();
7508		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7509		if (sd)
7510			update_next_balance(sd, 0, &next_balance);
7511		rcu_read_unlock();
7512
7513		goto out;
7514	}
7515
 
 
 
7516	raw_spin_unlock(&this_rq->lock);
7517
7518	update_blocked_averages(this_cpu);
7519	rcu_read_lock();
7520	for_each_domain(this_cpu, sd) {
 
7521		int continue_balancing = 1;
7522		u64 t0, domain_cost;
7523
7524		if (!(sd->flags & SD_LOAD_BALANCE))
7525			continue;
7526
7527		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7528			update_next_balance(sd, 0, &next_balance);
7529			break;
7530		}
7531
7532		if (sd->flags & SD_BALANCE_NEWIDLE) {
7533			t0 = sched_clock_cpu(this_cpu);
7534
 
7535			pulled_task = load_balance(this_cpu, this_rq,
7536						   sd, CPU_NEWLY_IDLE,
7537						   &continue_balancing);
7538
7539			domain_cost = sched_clock_cpu(this_cpu) - t0;
7540			if (domain_cost > sd->max_newidle_lb_cost)
7541				sd->max_newidle_lb_cost = domain_cost;
7542
7543			curr_cost += domain_cost;
7544		}
7545
7546		update_next_balance(sd, 0, &next_balance);
7547
7548		/*
7549		 * Stop searching for tasks to pull if there are
7550		 * now runnable tasks on this rq.
7551		 */
7552		if (pulled_task || this_rq->nr_running > 0)
7553			break;
7554	}
7555	rcu_read_unlock();
7556
7557	raw_spin_lock(&this_rq->lock);
7558
7559	if (curr_cost > this_rq->max_idle_balance_cost)
7560		this_rq->max_idle_balance_cost = curr_cost;
7561
7562	/*
7563	 * While browsing the domains, we released the rq lock, a task could
7564	 * have been enqueued in the meantime. Since we're not going idle,
7565	 * pretend we pulled a task.
7566	 */
7567	if (this_rq->cfs.h_nr_running && !pulled_task)
7568		pulled_task = 1;
7569
7570out:
7571	/* Move the next balance forward */
7572	if (time_after(this_rq->next_balance, next_balance))
 
 
7573		this_rq->next_balance = next_balance;
 
7574
 
7575	/* Is there a task of a high priority class? */
7576	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
 
 
 
7577		pulled_task = -1;
7578
7579	if (pulled_task)
 
7580		this_rq->idle_stamp = 0;
 
7581
7582	return pulled_task;
7583}
7584
7585/*
7586 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7587 * running tasks off the busiest CPU onto idle CPUs. It requires at
7588 * least 1 task to be running on each physical CPU where possible, and
7589 * avoids physical / logical imbalances.
7590 */
7591static int active_load_balance_cpu_stop(void *data)
7592{
7593	struct rq *busiest_rq = data;
7594	int busiest_cpu = cpu_of(busiest_rq);
7595	int target_cpu = busiest_rq->push_cpu;
7596	struct rq *target_rq = cpu_rq(target_cpu);
7597	struct sched_domain *sd;
7598	struct task_struct *p = NULL;
7599
7600	raw_spin_lock_irq(&busiest_rq->lock);
7601
7602	/* make sure the requested cpu hasn't gone down in the meantime */
7603	if (unlikely(busiest_cpu != smp_processor_id() ||
7604		     !busiest_rq->active_balance))
7605		goto out_unlock;
7606
7607	/* Is there any task to move? */
7608	if (busiest_rq->nr_running <= 1)
7609		goto out_unlock;
7610
7611	/*
7612	 * This condition is "impossible", if it occurs
7613	 * we need to fix it. Originally reported by
7614	 * Bjorn Helgaas on a 128-cpu setup.
7615	 */
7616	BUG_ON(busiest_rq == target_rq);
7617
 
 
 
7618	/* Search for an sd spanning us and the target CPU. */
7619	rcu_read_lock();
7620	for_each_domain(target_cpu, sd) {
7621		if ((sd->flags & SD_LOAD_BALANCE) &&
7622		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7623				break;
7624	}
7625
7626	if (likely(sd)) {
7627		struct lb_env env = {
7628			.sd		= sd,
7629			.dst_cpu	= target_cpu,
7630			.dst_rq		= target_rq,
7631			.src_cpu	= busiest_rq->cpu,
7632			.src_rq		= busiest_rq,
7633			.idle		= CPU_IDLE,
7634		};
7635
7636		schedstat_inc(sd, alb_count);
7637
7638		p = detach_one_task(&env);
7639		if (p)
7640			schedstat_inc(sd, alb_pushed);
7641		else
7642			schedstat_inc(sd, alb_failed);
7643	}
7644	rcu_read_unlock();
 
7645out_unlock:
7646	busiest_rq->active_balance = 0;
7647	raw_spin_unlock(&busiest_rq->lock);
7648
7649	if (p)
7650		attach_one_task(target_rq, p);
7651
7652	local_irq_enable();
7653
7654	return 0;
7655}
7656
7657static inline int on_null_domain(struct rq *rq)
7658{
7659	return unlikely(!rcu_dereference_sched(rq->sd));
7660}
7661
7662#ifdef CONFIG_NO_HZ_COMMON
7663/*
7664 * idle load balancing details
7665 * - When one of the busy CPUs notice that there may be an idle rebalancing
7666 *   needed, they will kick the idle load balancer, which then does idle
7667 *   load balancing for all the idle CPUs.
7668 */
7669static struct {
7670	cpumask_var_t idle_cpus_mask;
7671	atomic_t nr_cpus;
7672	unsigned long next_balance;     /* in jiffy units */
7673} nohz ____cacheline_aligned;
7674
7675static inline int find_new_ilb(void)
7676{
7677	int ilb = cpumask_first(nohz.idle_cpus_mask);
7678
7679	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7680		return ilb;
7681
7682	return nr_cpu_ids;
7683}
7684
7685/*
7686 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7687 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7688 * CPU (if there is one).
7689 */
7690static void nohz_balancer_kick(void)
7691{
7692	int ilb_cpu;
7693
7694	nohz.next_balance++;
7695
7696	ilb_cpu = find_new_ilb();
7697
7698	if (ilb_cpu >= nr_cpu_ids)
7699		return;
7700
7701	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7702		return;
7703	/*
7704	 * Use smp_send_reschedule() instead of resched_cpu().
7705	 * This way we generate a sched IPI on the target cpu which
7706	 * is idle. And the softirq performing nohz idle load balance
7707	 * will be run before returning from the IPI.
7708	 */
7709	smp_send_reschedule(ilb_cpu);
7710	return;
7711}
7712
7713static inline void nohz_balance_exit_idle(int cpu)
7714{
7715	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7716		/*
7717		 * Completely isolated CPUs don't ever set, so we must test.
7718		 */
7719		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7720			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7721			atomic_dec(&nohz.nr_cpus);
7722		}
7723		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7724	}
7725}
7726
7727static inline void set_cpu_sd_state_busy(void)
7728{
7729	struct sched_domain *sd;
7730	int cpu = smp_processor_id();
7731
7732	rcu_read_lock();
7733	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7734
7735	if (!sd || !sd->nohz_idle)
7736		goto unlock;
7737	sd->nohz_idle = 0;
7738
7739	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7740unlock:
7741	rcu_read_unlock();
7742}
7743
7744void set_cpu_sd_state_idle(void)
7745{
7746	struct sched_domain *sd;
7747	int cpu = smp_processor_id();
7748
7749	rcu_read_lock();
7750	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7751
7752	if (!sd || sd->nohz_idle)
7753		goto unlock;
7754	sd->nohz_idle = 1;
7755
7756	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7757unlock:
7758	rcu_read_unlock();
7759}
7760
7761/*
7762 * This routine will record that the cpu is going idle with tick stopped.
7763 * This info will be used in performing idle load balancing in the future.
7764 */
7765void nohz_balance_enter_idle(int cpu)
7766{
7767	/*
7768	 * If this cpu is going down, then nothing needs to be done.
7769	 */
7770	if (!cpu_active(cpu))
7771		return;
7772
7773	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7774		return;
7775
7776	/*
7777	 * If we're a completely isolated CPU, we don't play.
7778	 */
7779	if (on_null_domain(cpu_rq(cpu)))
7780		return;
7781
7782	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7783	atomic_inc(&nohz.nr_cpus);
7784	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7785}
7786
7787static int sched_ilb_notifier(struct notifier_block *nfb,
7788					unsigned long action, void *hcpu)
7789{
7790	switch (action & ~CPU_TASKS_FROZEN) {
7791	case CPU_DYING:
7792		nohz_balance_exit_idle(smp_processor_id());
7793		return NOTIFY_OK;
7794	default:
7795		return NOTIFY_DONE;
7796	}
7797}
7798#endif
7799
7800static DEFINE_SPINLOCK(balancing);
7801
7802/*
7803 * Scale the max load_balance interval with the number of CPUs in the system.
7804 * This trades load-balance latency on larger machines for less cross talk.
7805 */
7806void update_max_interval(void)
7807{
7808	max_load_balance_interval = HZ*num_online_cpus()/10;
7809}
7810
7811/*
7812 * It checks each scheduling domain to see if it is due to be balanced,
7813 * and initiates a balancing operation if so.
7814 *
7815 * Balancing parameters are set up in init_sched_domains.
7816 */
7817static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7818{
7819	int continue_balancing = 1;
7820	int cpu = rq->cpu;
7821	unsigned long interval;
7822	struct sched_domain *sd;
7823	/* Earliest time when we have to do rebalance again */
7824	unsigned long next_balance = jiffies + 60*HZ;
7825	int update_next_balance = 0;
7826	int need_serialize, need_decay = 0;
7827	u64 max_cost = 0;
7828
7829	update_blocked_averages(cpu);
7830
7831	rcu_read_lock();
7832	for_each_domain(cpu, sd) {
7833		/*
7834		 * Decay the newidle max times here because this is a regular
7835		 * visit to all the domains. Decay ~1% per second.
7836		 */
7837		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7838			sd->max_newidle_lb_cost =
7839				(sd->max_newidle_lb_cost * 253) / 256;
7840			sd->next_decay_max_lb_cost = jiffies + HZ;
7841			need_decay = 1;
7842		}
7843		max_cost += sd->max_newidle_lb_cost;
7844
7845		if (!(sd->flags & SD_LOAD_BALANCE))
7846			continue;
7847
7848		/*
7849		 * Stop the load balance at this level. There is another
7850		 * CPU in our sched group which is doing load balancing more
7851		 * actively.
7852		 */
7853		if (!continue_balancing) {
7854			if (need_decay)
7855				continue;
7856			break;
7857		}
7858
7859		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
 
 
 
 
 
 
7860
7861		need_serialize = sd->flags & SD_SERIALIZE;
 
7862		if (need_serialize) {
7863			if (!spin_trylock(&balancing))
7864				goto out;
7865		}
7866
7867		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7868			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7869				/*
7870				 * The LBF_DST_PINNED logic could have changed
7871				 * env->dst_cpu, so we can't know our idle
7872				 * state even if we migrated tasks. Update it.
7873				 */
7874				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7875			}
7876			sd->last_balance = jiffies;
7877			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7878		}
7879		if (need_serialize)
7880			spin_unlock(&balancing);
7881out:
7882		if (time_after(next_balance, sd->last_balance + interval)) {
7883			next_balance = sd->last_balance + interval;
7884			update_next_balance = 1;
7885		}
7886	}
7887	if (need_decay) {
7888		/*
7889		 * Ensure the rq-wide value also decays but keep it at a
7890		 * reasonable floor to avoid funnies with rq->avg_idle.
7891		 */
7892		rq->max_idle_balance_cost =
7893			max((u64)sysctl_sched_migration_cost, max_cost);
7894	}
7895	rcu_read_unlock();
7896
7897	/*
7898	 * next_balance will be updated only when there is a need.
7899	 * When the cpu is attached to null domain for ex, it will not be
7900	 * updated.
7901	 */
7902	if (likely(update_next_balance)) {
7903		rq->next_balance = next_balance;
7904
7905#ifdef CONFIG_NO_HZ_COMMON
7906		/*
7907		 * If this CPU has been elected to perform the nohz idle
7908		 * balance. Other idle CPUs have already rebalanced with
7909		 * nohz_idle_balance() and nohz.next_balance has been
7910		 * updated accordingly. This CPU is now running the idle load
7911		 * balance for itself and we need to update the
7912		 * nohz.next_balance accordingly.
7913		 */
7914		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7915			nohz.next_balance = rq->next_balance;
7916#endif
7917	}
7918}
7919
7920#ifdef CONFIG_NO_HZ_COMMON
7921/*
7922 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7923 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7924 */
7925static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7926{
7927	int this_cpu = this_rq->cpu;
7928	struct rq *rq;
7929	int balance_cpu;
7930	/* Earliest time when we have to do rebalance again */
7931	unsigned long next_balance = jiffies + 60*HZ;
7932	int update_next_balance = 0;
7933
7934	if (idle != CPU_IDLE ||
7935	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7936		goto end;
7937
7938	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7939		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7940			continue;
7941
7942		/*
7943		 * If this cpu gets work to do, stop the load balancing
7944		 * work being done for other cpus. Next load
7945		 * balancing owner will pick it up.
7946		 */
7947		if (need_resched())
7948			break;
7949
7950		rq = cpu_rq(balance_cpu);
7951
7952		/*
7953		 * If time for next balance is due,
7954		 * do the balance.
7955		 */
7956		if (time_after_eq(jiffies, rq->next_balance)) {
7957			raw_spin_lock_irq(&rq->lock);
7958			update_rq_clock(rq);
7959			update_cpu_load_idle(rq);
7960			raw_spin_unlock_irq(&rq->lock);
7961			rebalance_domains(rq, CPU_IDLE);
7962		}
7963
7964		if (time_after(next_balance, rq->next_balance)) {
7965			next_balance = rq->next_balance;
7966			update_next_balance = 1;
7967		}
7968	}
7969
7970	/*
7971	 * next_balance will be updated only when there is a need.
7972	 * When the CPU is attached to null domain for ex, it will not be
7973	 * updated.
7974	 */
7975	if (likely(update_next_balance))
7976		nohz.next_balance = next_balance;
7977end:
7978	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7979}
7980
7981/*
7982 * Current heuristic for kicking the idle load balancer in the presence
7983 * of an idle cpu in the system.
7984 *   - This rq has more than one task.
7985 *   - This rq has at least one CFS task and the capacity of the CPU is
7986 *     significantly reduced because of RT tasks or IRQs.
7987 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7988 *     multiple busy cpu.
7989 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7990 *     domain span are idle.
7991 */
7992static inline bool nohz_kick_needed(struct rq *rq)
7993{
7994	unsigned long now = jiffies;
7995	struct sched_domain *sd;
7996	struct sched_group_capacity *sgc;
7997	int nr_busy, cpu = rq->cpu;
7998	bool kick = false;
7999
8000	if (unlikely(rq->idle_balance))
8001		return false;
8002
8003       /*
8004	* We may be recently in ticked or tickless idle mode. At the first
8005	* busy tick after returning from idle, we will update the busy stats.
8006	*/
8007	set_cpu_sd_state_busy();
8008	nohz_balance_exit_idle(cpu);
8009
8010	/*
8011	 * None are in tickless mode and hence no need for NOHZ idle load
8012	 * balancing.
8013	 */
8014	if (likely(!atomic_read(&nohz.nr_cpus)))
8015		return false;
8016
8017	if (time_before(now, nohz.next_balance))
8018		return false;
8019
8020	if (rq->nr_running >= 2)
8021		return true;
8022
8023	rcu_read_lock();
8024	sd = rcu_dereference(per_cpu(sd_busy, cpu));
 
8025	if (sd) {
8026		sgc = sd->groups->sgc;
8027		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8028
8029		if (nr_busy > 1) {
8030			kick = true;
8031			goto unlock;
8032		}
8033
 
 
8034	}
8035
8036	sd = rcu_dereference(rq->sd);
8037	if (sd) {
8038		if ((rq->cfs.h_nr_running >= 1) &&
8039				check_cpu_capacity(rq, sd)) {
8040			kick = true;
8041			goto unlock;
8042		}
8043	}
8044
8045	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8046	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8047				  sched_domain_span(sd)) < cpu)) {
8048		kick = true;
8049		goto unlock;
8050	}
 
8051
8052unlock:
8053	rcu_read_unlock();
8054	return kick;
 
8055}
8056#else
8057static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8058#endif
8059
8060/*
8061 * run_rebalance_domains is triggered when needed from the scheduler tick.
8062 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8063 */
8064static void run_rebalance_domains(struct softirq_action *h)
8065{
8066	struct rq *this_rq = this_rq();
8067	enum cpu_idle_type idle = this_rq->idle_balance ?
8068						CPU_IDLE : CPU_NOT_IDLE;
8069
 
 
8070	/*
8071	 * If this cpu has a pending nohz_balance_kick, then do the
8072	 * balancing on behalf of the other idle cpus whose ticks are
8073	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8074	 * give the idle cpus a chance to load balance. Else we may
8075	 * load balance only within the local sched_domain hierarchy
8076	 * and abort nohz_idle_balance altogether if we pull some load.
8077	 */
8078	nohz_idle_balance(this_rq, idle);
8079	rebalance_domains(this_rq, idle);
8080}
8081
8082/*
8083 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8084 */
8085void trigger_load_balance(struct rq *rq)
8086{
8087	/* Don't need to rebalance while attached to NULL domain */
8088	if (unlikely(on_null_domain(rq)))
8089		return;
8090
8091	if (time_after_eq(jiffies, rq->next_balance))
8092		raise_softirq(SCHED_SOFTIRQ);
8093#ifdef CONFIG_NO_HZ_COMMON
8094	if (nohz_kick_needed(rq))
8095		nohz_balancer_kick();
8096#endif
8097}
8098
8099static void rq_online_fair(struct rq *rq)
8100{
8101	update_sysctl();
8102
8103	update_runtime_enabled(rq);
8104}
8105
8106static void rq_offline_fair(struct rq *rq)
8107{
8108	update_sysctl();
8109
8110	/* Ensure any throttled groups are reachable by pick_next_task */
8111	unthrottle_offline_cfs_rqs(rq);
8112}
8113
8114#endif /* CONFIG_SMP */
8115
8116/*
8117 * scheduler tick hitting a task of our scheduling class:
8118 */
8119static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8120{
8121	struct cfs_rq *cfs_rq;
8122	struct sched_entity *se = &curr->se;
8123
8124	for_each_sched_entity(se) {
8125		cfs_rq = cfs_rq_of(se);
8126		entity_tick(cfs_rq, se, queued);
8127	}
8128
8129	if (static_branch_unlikely(&sched_numa_balancing))
8130		task_tick_numa(rq, curr);
 
 
8131}
8132
8133/*
8134 * called on fork with the child task as argument from the parent's context
8135 *  - child not yet on the tasklist
8136 *  - preemption disabled
8137 */
8138static void task_fork_fair(struct task_struct *p)
8139{
8140	struct cfs_rq *cfs_rq;
8141	struct sched_entity *se = &p->se, *curr;
8142	int this_cpu = smp_processor_id();
8143	struct rq *rq = this_rq();
8144	unsigned long flags;
8145
8146	raw_spin_lock_irqsave(&rq->lock, flags);
8147
8148	update_rq_clock(rq);
8149
8150	cfs_rq = task_cfs_rq(current);
8151	curr = cfs_rq->curr;
8152
8153	/*
8154	 * Not only the cpu but also the task_group of the parent might have
8155	 * been changed after parent->se.parent,cfs_rq were copied to
8156	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8157	 * of child point to valid ones.
8158	 */
8159	rcu_read_lock();
8160	__set_task_cpu(p, this_cpu);
8161	rcu_read_unlock();
8162
8163	update_curr(cfs_rq);
8164
8165	if (curr)
8166		se->vruntime = curr->vruntime;
8167	place_entity(cfs_rq, se, 1);
8168
8169	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8170		/*
8171		 * Upon rescheduling, sched_class::put_prev_task() will place
8172		 * 'current' within the tree based on its new key value.
8173		 */
8174		swap(curr->vruntime, se->vruntime);
8175		resched_curr(rq);
8176	}
8177
8178	se->vruntime -= cfs_rq->min_vruntime;
8179
8180	raw_spin_unlock_irqrestore(&rq->lock, flags);
8181}
8182
8183/*
8184 * Priority of the task has changed. Check to see if we preempt
8185 * the current task.
8186 */
8187static void
8188prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8189{
8190	if (!task_on_rq_queued(p))
8191		return;
8192
8193	/*
8194	 * Reschedule if we are currently running on this runqueue and
8195	 * our priority decreased, or if we are not currently running on
8196	 * this runqueue and our priority is higher than the current's
8197	 */
8198	if (rq->curr == p) {
8199		if (p->prio > oldprio)
8200			resched_curr(rq);
8201	} else
8202		check_preempt_curr(rq, p, 0);
8203}
8204
8205static inline bool vruntime_normalized(struct task_struct *p)
8206{
8207	struct sched_entity *se = &p->se;
 
8208
8209	/*
8210	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8211	 * the dequeue_entity(.flags=0) will already have normalized the
8212	 * vruntime.
8213	 */
8214	if (p->on_rq)
8215		return true;
8216
8217	/*
8218	 * When !on_rq, vruntime of the task has usually NOT been normalized.
8219	 * But there are some cases where it has already been normalized:
8220	 *
8221	 * - A forked child which is waiting for being woken up by
8222	 *   wake_up_new_task().
8223	 * - A task which has been woken up by try_to_wake_up() and
8224	 *   waiting for actually being woken up by sched_ttwu_pending().
8225	 */
8226	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8227		return true;
8228
8229	return false;
8230}
8231
8232static void detach_task_cfs_rq(struct task_struct *p)
8233{
8234	struct sched_entity *se = &p->se;
8235	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8236
8237	if (!vruntime_normalized(p)) {
8238		/*
8239		 * Fix up our vruntime so that the current sleep doesn't
8240		 * cause 'unlimited' sleep bonus.
8241		 */
8242		place_entity(cfs_rq, se, 0);
8243		se->vruntime -= cfs_rq->min_vruntime;
8244	}
8245
8246	/* Catch up with the cfs_rq and remove our load when we leave */
8247	detach_entity_load_avg(cfs_rq, se);
 
 
 
 
 
 
 
 
 
8248}
8249
8250static void attach_task_cfs_rq(struct task_struct *p)
 
 
 
8251{
8252	struct sched_entity *se = &p->se;
8253	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8254
8255#ifdef CONFIG_FAIR_GROUP_SCHED
8256	/*
8257	 * Since the real-depth could have been changed (only FAIR
8258	 * class maintain depth value), reset depth properly.
8259	 */
8260	se->depth = se->parent ? se->parent->depth + 1 : 0;
8261#endif
 
 
8262
8263	/* Synchronize task with its cfs_rq */
8264	attach_entity_load_avg(cfs_rq, se);
8265
8266	if (!vruntime_normalized(p))
8267		se->vruntime += cfs_rq->min_vruntime;
8268}
8269
8270static void switched_from_fair(struct rq *rq, struct task_struct *p)
8271{
8272	detach_task_cfs_rq(p);
8273}
8274
8275static void switched_to_fair(struct rq *rq, struct task_struct *p)
8276{
8277	attach_task_cfs_rq(p);
8278
8279	if (task_on_rq_queued(p)) {
8280		/*
8281		 * We were most likely switched from sched_rt, so
8282		 * kick off the schedule if running, otherwise just see
8283		 * if we can still preempt the current task.
8284		 */
8285		if (rq->curr == p)
8286			resched_curr(rq);
8287		else
8288			check_preempt_curr(rq, p, 0);
8289	}
8290}
8291
8292/* Account for a task changing its policy or group.
8293 *
8294 * This routine is mostly called to set cfs_rq->curr field when a task
8295 * migrates between groups/classes.
8296 */
8297static void set_curr_task_fair(struct rq *rq)
8298{
8299	struct sched_entity *se = &rq->curr->se;
8300
8301	for_each_sched_entity(se) {
8302		struct cfs_rq *cfs_rq = cfs_rq_of(se);
8303
8304		set_next_entity(cfs_rq, se);
8305		/* ensure bandwidth has been allocated on our new cfs_rq */
8306		account_cfs_rq_runtime(cfs_rq, 0);
8307	}
8308}
8309
8310void init_cfs_rq(struct cfs_rq *cfs_rq)
8311{
8312	cfs_rq->tasks_timeline = RB_ROOT;
8313	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8314#ifndef CONFIG_64BIT
8315	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8316#endif
8317#ifdef CONFIG_SMP
8318	atomic_long_set(&cfs_rq->removed_load_avg, 0);
8319	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8320#endif
8321}
8322
8323#ifdef CONFIG_FAIR_GROUP_SCHED
8324static void task_move_group_fair(struct task_struct *p)
8325{
8326	detach_task_cfs_rq(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8327	set_task_rq(p, task_cpu(p));
8328
 
 
 
8329#ifdef CONFIG_SMP
8330	/* Tell se's cfs_rq has been changed -- migrated */
8331	p->se.avg.last_update_time = 0;
 
 
 
 
 
8332#endif
8333	attach_task_cfs_rq(p);
8334}
8335
8336void free_fair_sched_group(struct task_group *tg)
8337{
8338	int i;
8339
8340	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8341
8342	for_each_possible_cpu(i) {
8343		if (tg->cfs_rq)
8344			kfree(tg->cfs_rq[i]);
8345		if (tg->se)
8346			kfree(tg->se[i]);
8347	}
8348
8349	kfree(tg->cfs_rq);
8350	kfree(tg->se);
8351}
8352
8353int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8354{
8355	struct cfs_rq *cfs_rq;
8356	struct sched_entity *se;
8357	int i;
8358
8359	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8360	if (!tg->cfs_rq)
8361		goto err;
8362	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8363	if (!tg->se)
8364		goto err;
8365
8366	tg->shares = NICE_0_LOAD;
8367
8368	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8369
8370	for_each_possible_cpu(i) {
8371		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8372				      GFP_KERNEL, cpu_to_node(i));
8373		if (!cfs_rq)
8374			goto err;
8375
8376		se = kzalloc_node(sizeof(struct sched_entity),
8377				  GFP_KERNEL, cpu_to_node(i));
8378		if (!se)
8379			goto err_free_rq;
8380
8381		init_cfs_rq(cfs_rq);
8382		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8383		init_entity_runnable_average(se);
8384	}
8385
8386	return 1;
8387
8388err_free_rq:
8389	kfree(cfs_rq);
8390err:
8391	return 0;
8392}
8393
8394void unregister_fair_sched_group(struct task_group *tg)
8395{
 
8396	unsigned long flags;
8397	struct rq *rq;
8398	int cpu;
8399
8400	for_each_possible_cpu(cpu) {
8401		if (tg->se[cpu])
8402			remove_entity_load_avg(tg->se[cpu]);
 
 
 
8403
8404		/*
8405		 * Only empty task groups can be destroyed; so we can speculatively
8406		 * check on_list without danger of it being re-added.
8407		 */
8408		if (!tg->cfs_rq[cpu]->on_list)
8409			continue;
8410
8411		rq = cpu_rq(cpu);
8412
8413		raw_spin_lock_irqsave(&rq->lock, flags);
8414		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8415		raw_spin_unlock_irqrestore(&rq->lock, flags);
8416	}
8417}
8418
8419void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8420			struct sched_entity *se, int cpu,
8421			struct sched_entity *parent)
8422{
8423	struct rq *rq = cpu_rq(cpu);
8424
8425	cfs_rq->tg = tg;
8426	cfs_rq->rq = rq;
8427	init_cfs_rq_runtime(cfs_rq);
8428
8429	tg->cfs_rq[cpu] = cfs_rq;
8430	tg->se[cpu] = se;
8431
8432	/* se could be NULL for root_task_group */
8433	if (!se)
8434		return;
8435
8436	if (!parent) {
8437		se->cfs_rq = &rq->cfs;
8438		se->depth = 0;
8439	} else {
8440		se->cfs_rq = parent->my_q;
8441		se->depth = parent->depth + 1;
8442	}
8443
8444	se->my_q = cfs_rq;
8445	/* guarantee group entities always have weight */
8446	update_load_set(&se->load, NICE_0_LOAD);
8447	se->parent = parent;
8448}
8449
8450static DEFINE_MUTEX(shares_mutex);
8451
8452int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8453{
8454	int i;
8455	unsigned long flags;
8456
8457	/*
8458	 * We can't change the weight of the root cgroup.
8459	 */
8460	if (!tg->se[0])
8461		return -EINVAL;
8462
8463	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8464
8465	mutex_lock(&shares_mutex);
8466	if (tg->shares == shares)
8467		goto done;
8468
8469	tg->shares = shares;
8470	for_each_possible_cpu(i) {
8471		struct rq *rq = cpu_rq(i);
8472		struct sched_entity *se;
8473
8474		se = tg->se[i];
8475		/* Propagate contribution to hierarchy */
8476		raw_spin_lock_irqsave(&rq->lock, flags);
8477
8478		/* Possible calls to update_curr() need rq clock */
8479		update_rq_clock(rq);
8480		for_each_sched_entity(se)
8481			update_cfs_shares(group_cfs_rq(se));
8482		raw_spin_unlock_irqrestore(&rq->lock, flags);
8483	}
8484
8485done:
8486	mutex_unlock(&shares_mutex);
8487	return 0;
8488}
8489#else /* CONFIG_FAIR_GROUP_SCHED */
8490
8491void free_fair_sched_group(struct task_group *tg) { }
8492
8493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8494{
8495	return 1;
8496}
8497
8498void unregister_fair_sched_group(struct task_group *tg) { }
8499
8500#endif /* CONFIG_FAIR_GROUP_SCHED */
8501
8502
8503static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8504{
8505	struct sched_entity *se = &task->se;
8506	unsigned int rr_interval = 0;
8507
8508	/*
8509	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8510	 * idle runqueue:
8511	 */
8512	if (rq->cfs.load.weight)
8513		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8514
8515	return rr_interval;
8516}
8517
8518/*
8519 * All the scheduling class methods:
8520 */
8521const struct sched_class fair_sched_class = {
8522	.next			= &idle_sched_class,
8523	.enqueue_task		= enqueue_task_fair,
8524	.dequeue_task		= dequeue_task_fair,
8525	.yield_task		= yield_task_fair,
8526	.yield_to_task		= yield_to_task_fair,
8527
8528	.check_preempt_curr	= check_preempt_wakeup,
8529
8530	.pick_next_task		= pick_next_task_fair,
8531	.put_prev_task		= put_prev_task_fair,
8532
8533#ifdef CONFIG_SMP
8534	.select_task_rq		= select_task_rq_fair,
8535	.migrate_task_rq	= migrate_task_rq_fair,
8536
8537	.rq_online		= rq_online_fair,
8538	.rq_offline		= rq_offline_fair,
8539
8540	.task_waking		= task_waking_fair,
8541	.task_dead		= task_dead_fair,
8542	.set_cpus_allowed	= set_cpus_allowed_common,
8543#endif
8544
8545	.set_curr_task          = set_curr_task_fair,
8546	.task_tick		= task_tick_fair,
8547	.task_fork		= task_fork_fair,
8548
8549	.prio_changed		= prio_changed_fair,
8550	.switched_from		= switched_from_fair,
8551	.switched_to		= switched_to_fair,
8552
8553	.get_rr_interval	= get_rr_interval_fair,
8554
8555	.update_curr		= update_curr_fair,
8556
8557#ifdef CONFIG_FAIR_GROUP_SCHED
8558	.task_move_group	= task_move_group_fair,
8559#endif
8560};
8561
8562#ifdef CONFIG_SCHED_DEBUG
8563void print_cfs_stats(struct seq_file *m, int cpu)
8564{
8565	struct cfs_rq *cfs_rq;
8566
8567	rcu_read_lock();
8568	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8569		print_cfs_rq(m, cpu, cfs_rq);
8570	rcu_read_unlock();
8571}
8572
8573#ifdef CONFIG_NUMA_BALANCING
8574void show_numa_stats(struct task_struct *p, struct seq_file *m)
8575{
8576	int node;
8577	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8578
8579	for_each_online_node(node) {
8580		if (p->numa_faults) {
8581			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8582			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8583		}
8584		if (p->numa_group) {
8585			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8586			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8587		}
8588		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8589	}
8590}
8591#endif /* CONFIG_NUMA_BALANCING */
8592#endif /* CONFIG_SCHED_DEBUG */
8593
8594__init void init_sched_fair_class(void)
8595{
8596#ifdef CONFIG_SMP
8597	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8598
8599#ifdef CONFIG_NO_HZ_COMMON
8600	nohz.next_balance = jiffies;
8601	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8602	cpu_notifier(sched_ilb_notifier, 0);
8603#endif
8604#endif /* SMP */
8605
8606}