Loading...
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
19#include <linux/slab.h>
20
21struct dl_bandwidth def_dl_bandwidth;
22
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
60extern unsigned long to_ratio(u64 period, u64 runtime);
61
62void init_dl_bw(struct dl_bw *dl_b)
63{
64 raw_spin_lock_init(&dl_b->lock);
65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 if (global_rt_runtime() == RUNTIME_INF)
67 dl_b->bw = -1;
68 else
69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 dl_b->total_bw = 0;
72}
73
74void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75{
76 dl_rq->rb_root = RB_ROOT;
77
78#ifdef CONFIG_SMP
79 /* zero means no -deadline tasks */
80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81
82 dl_rq->dl_nr_migratory = 0;
83 dl_rq->overloaded = 0;
84 dl_rq->pushable_dl_tasks_root = RB_ROOT;
85#else
86 init_dl_bw(&dl_rq->dl_bw);
87#endif
88}
89
90#ifdef CONFIG_SMP
91
92static inline int dl_overloaded(struct rq *rq)
93{
94 return atomic_read(&rq->rd->dlo_count);
95}
96
97static inline void dl_set_overload(struct rq *rq)
98{
99 if (!rq->online)
100 return;
101
102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 /*
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
106 *
107 * Matched by the barrier in pull_dl_task().
108 */
109 smp_wmb();
110 atomic_inc(&rq->rd->dlo_count);
111}
112
113static inline void dl_clear_overload(struct rq *rq)
114{
115 if (!rq->online)
116 return;
117
118 atomic_dec(&rq->rd->dlo_count);
119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120}
121
122static void update_dl_migration(struct dl_rq *dl_rq)
123{
124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 if (!dl_rq->overloaded) {
126 dl_set_overload(rq_of_dl_rq(dl_rq));
127 dl_rq->overloaded = 1;
128 }
129 } else if (dl_rq->overloaded) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq));
131 dl_rq->overloaded = 0;
132 }
133}
134
135static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136{
137 struct task_struct *p = dl_task_of(dl_se);
138
139 if (p->nr_cpus_allowed > 1)
140 dl_rq->dl_nr_migratory++;
141
142 update_dl_migration(dl_rq);
143}
144
145static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146{
147 struct task_struct *p = dl_task_of(dl_se);
148
149 if (p->nr_cpus_allowed > 1)
150 dl_rq->dl_nr_migratory--;
151
152 update_dl_migration(dl_rq);
153}
154
155/*
156 * The list of pushable -deadline task is not a plist, like in
157 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
158 */
159static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
160{
161 struct dl_rq *dl_rq = &rq->dl;
162 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
163 struct rb_node *parent = NULL;
164 struct task_struct *entry;
165 int leftmost = 1;
166
167 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
168
169 while (*link) {
170 parent = *link;
171 entry = rb_entry(parent, struct task_struct,
172 pushable_dl_tasks);
173 if (dl_entity_preempt(&p->dl, &entry->dl))
174 link = &parent->rb_left;
175 else {
176 link = &parent->rb_right;
177 leftmost = 0;
178 }
179 }
180
181 if (leftmost)
182 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186}
187
188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189{
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 }
201
202 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
203 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204}
205
206static inline int has_pushable_dl_tasks(struct rq *rq)
207{
208 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209}
210
211static int push_dl_task(struct rq *rq);
212
213static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
214{
215 return dl_task(prev);
216}
217
218static inline void set_post_schedule(struct rq *rq)
219{
220 rq->post_schedule = has_pushable_dl_tasks(rq);
221}
222
223#else
224
225static inline
226void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
227{
228}
229
230static inline
231void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
232{
233}
234
235static inline
236void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
237{
238}
239
240static inline
241void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
242{
243}
244
245static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
246{
247 return false;
248}
249
250static inline int pull_dl_task(struct rq *rq)
251{
252 return 0;
253}
254
255static inline void set_post_schedule(struct rq *rq)
256{
257}
258#endif /* CONFIG_SMP */
259
260static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
261static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
262static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
263 int flags);
264
265/*
266 * We are being explicitly informed that a new instance is starting,
267 * and this means that:
268 * - the absolute deadline of the entity has to be placed at
269 * current time + relative deadline;
270 * - the runtime of the entity has to be set to the maximum value.
271 *
272 * The capability of specifying such event is useful whenever a -deadline
273 * entity wants to (try to!) synchronize its behaviour with the scheduler's
274 * one, and to (try to!) reconcile itself with its own scheduling
275 * parameters.
276 */
277static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
278 struct sched_dl_entity *pi_se)
279{
280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
281 struct rq *rq = rq_of_dl_rq(dl_rq);
282
283 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
284
285 /*
286 * We use the regular wall clock time to set deadlines in the
287 * future; in fact, we must consider execution overheads (time
288 * spent on hardirq context, etc.).
289 */
290 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
291 dl_se->runtime = pi_se->dl_runtime;
292 dl_se->dl_new = 0;
293}
294
295/*
296 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
297 * possibility of a entity lasting more than what it declared, and thus
298 * exhausting its runtime.
299 *
300 * Here we are interested in making runtime overrun possible, but we do
301 * not want a entity which is misbehaving to affect the scheduling of all
302 * other entities.
303 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
304 * is used, in order to confine each entity within its own bandwidth.
305 *
306 * This function deals exactly with that, and ensures that when the runtime
307 * of a entity is replenished, its deadline is also postponed. That ensures
308 * the overrunning entity can't interfere with other entity in the system and
309 * can't make them miss their deadlines. Reasons why this kind of overruns
310 * could happen are, typically, a entity voluntarily trying to overcome its
311 * runtime, or it just underestimated it during sched_setscheduler_ex().
312 */
313static void replenish_dl_entity(struct sched_dl_entity *dl_se,
314 struct sched_dl_entity *pi_se)
315{
316 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
317 struct rq *rq = rq_of_dl_rq(dl_rq);
318
319 BUG_ON(pi_se->dl_runtime <= 0);
320
321 /*
322 * This could be the case for a !-dl task that is boosted.
323 * Just go with full inherited parameters.
324 */
325 if (dl_se->dl_deadline == 0) {
326 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
327 dl_se->runtime = pi_se->dl_runtime;
328 }
329
330 /*
331 * We keep moving the deadline away until we get some
332 * available runtime for the entity. This ensures correct
333 * handling of situations where the runtime overrun is
334 * arbitrary large.
335 */
336 while (dl_se->runtime <= 0) {
337 dl_se->deadline += pi_se->dl_period;
338 dl_se->runtime += pi_se->dl_runtime;
339 }
340
341 /*
342 * At this point, the deadline really should be "in
343 * the future" with respect to rq->clock. If it's
344 * not, we are, for some reason, lagging too much!
345 * Anyway, after having warn userspace abut that,
346 * we still try to keep the things running by
347 * resetting the deadline and the budget of the
348 * entity.
349 */
350 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
351 static bool lag_once = false;
352
353 if (!lag_once) {
354 lag_once = true;
355 printk_sched("sched: DL replenish lagged to much\n");
356 }
357 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
358 dl_se->runtime = pi_se->dl_runtime;
359 }
360}
361
362/*
363 * Here we check if --at time t-- an entity (which is probably being
364 * [re]activated or, in general, enqueued) can use its remaining runtime
365 * and its current deadline _without_ exceeding the bandwidth it is
366 * assigned (function returns true if it can't). We are in fact applying
367 * one of the CBS rules: when a task wakes up, if the residual runtime
368 * over residual deadline fits within the allocated bandwidth, then we
369 * can keep the current (absolute) deadline and residual budget without
370 * disrupting the schedulability of the system. Otherwise, we should
371 * refill the runtime and set the deadline a period in the future,
372 * because keeping the current (absolute) deadline of the task would
373 * result in breaking guarantees promised to other tasks (refer to
374 * Documentation/scheduler/sched-deadline.txt for more informations).
375 *
376 * This function returns true if:
377 *
378 * runtime / (deadline - t) > dl_runtime / dl_period ,
379 *
380 * IOW we can't recycle current parameters.
381 *
382 * Notice that the bandwidth check is done against the period. For
383 * task with deadline equal to period this is the same of using
384 * dl_deadline instead of dl_period in the equation above.
385 */
386static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
387 struct sched_dl_entity *pi_se, u64 t)
388{
389 u64 left, right;
390
391 /*
392 * left and right are the two sides of the equation above,
393 * after a bit of shuffling to use multiplications instead
394 * of divisions.
395 *
396 * Note that none of the time values involved in the two
397 * multiplications are absolute: dl_deadline and dl_runtime
398 * are the relative deadline and the maximum runtime of each
399 * instance, runtime is the runtime left for the last instance
400 * and (deadline - t), since t is rq->clock, is the time left
401 * to the (absolute) deadline. Even if overflowing the u64 type
402 * is very unlikely to occur in both cases, here we scale down
403 * as we want to avoid that risk at all. Scaling down by 10
404 * means that we reduce granularity to 1us. We are fine with it,
405 * since this is only a true/false check and, anyway, thinking
406 * of anything below microseconds resolution is actually fiction
407 * (but still we want to give the user that illusion >;).
408 */
409 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
410 right = ((dl_se->deadline - t) >> DL_SCALE) *
411 (pi_se->dl_runtime >> DL_SCALE);
412
413 return dl_time_before(right, left);
414}
415
416/*
417 * When a -deadline entity is queued back on the runqueue, its runtime and
418 * deadline might need updating.
419 *
420 * The policy here is that we update the deadline of the entity only if:
421 * - the current deadline is in the past,
422 * - using the remaining runtime with the current deadline would make
423 * the entity exceed its bandwidth.
424 */
425static void update_dl_entity(struct sched_dl_entity *dl_se,
426 struct sched_dl_entity *pi_se)
427{
428 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
429 struct rq *rq = rq_of_dl_rq(dl_rq);
430
431 /*
432 * The arrival of a new instance needs special treatment, i.e.,
433 * the actual scheduling parameters have to be "renewed".
434 */
435 if (dl_se->dl_new) {
436 setup_new_dl_entity(dl_se, pi_se);
437 return;
438 }
439
440 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
441 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
442 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
443 dl_se->runtime = pi_se->dl_runtime;
444 }
445}
446
447/*
448 * If the entity depleted all its runtime, and if we want it to sleep
449 * while waiting for some new execution time to become available, we
450 * set the bandwidth enforcement timer to the replenishment instant
451 * and try to activate it.
452 *
453 * Notice that it is important for the caller to know if the timer
454 * actually started or not (i.e., the replenishment instant is in
455 * the future or in the past).
456 */
457static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
458{
459 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
460 struct rq *rq = rq_of_dl_rq(dl_rq);
461 ktime_t now, act;
462 ktime_t soft, hard;
463 unsigned long range;
464 s64 delta;
465
466 if (boosted)
467 return 0;
468 /*
469 * We want the timer to fire at the deadline, but considering
470 * that it is actually coming from rq->clock and not from
471 * hrtimer's time base reading.
472 */
473 act = ns_to_ktime(dl_se->deadline);
474 now = hrtimer_cb_get_time(&dl_se->dl_timer);
475 delta = ktime_to_ns(now) - rq_clock(rq);
476 act = ktime_add_ns(act, delta);
477
478 /*
479 * If the expiry time already passed, e.g., because the value
480 * chosen as the deadline is too small, don't even try to
481 * start the timer in the past!
482 */
483 if (ktime_us_delta(act, now) < 0)
484 return 0;
485
486 hrtimer_set_expires(&dl_se->dl_timer, act);
487
488 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
489 hard = hrtimer_get_expires(&dl_se->dl_timer);
490 range = ktime_to_ns(ktime_sub(hard, soft));
491 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
492 range, HRTIMER_MODE_ABS, 0);
493
494 return hrtimer_active(&dl_se->dl_timer);
495}
496
497/*
498 * This is the bandwidth enforcement timer callback. If here, we know
499 * a task is not on its dl_rq, since the fact that the timer was running
500 * means the task is throttled and needs a runtime replenishment.
501 *
502 * However, what we actually do depends on the fact the task is active,
503 * (it is on its rq) or has been removed from there by a call to
504 * dequeue_task_dl(). In the former case we must issue the runtime
505 * replenishment and add the task back to the dl_rq; in the latter, we just
506 * do nothing but clearing dl_throttled, so that runtime and deadline
507 * updating (and the queueing back to dl_rq) will be done by the
508 * next call to enqueue_task_dl().
509 */
510static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
511{
512 struct sched_dl_entity *dl_se = container_of(timer,
513 struct sched_dl_entity,
514 dl_timer);
515 struct task_struct *p = dl_task_of(dl_se);
516 struct rq *rq;
517again:
518 rq = task_rq(p);
519 raw_spin_lock(&rq->lock);
520
521 if (rq != task_rq(p)) {
522 /* Task was moved, retrying. */
523 raw_spin_unlock(&rq->lock);
524 goto again;
525 }
526
527 /*
528 * We need to take care of a possible races here. In fact, the
529 * task might have changed its scheduling policy to something
530 * different from SCHED_DEADLINE or changed its reservation
531 * parameters (through sched_setscheduler()).
532 */
533 if (!dl_task(p) || dl_se->dl_new)
534 goto unlock;
535
536 sched_clock_tick();
537 update_rq_clock(rq);
538 dl_se->dl_throttled = 0;
539 dl_se->dl_yielded = 0;
540 if (p->on_rq) {
541 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
542 if (task_has_dl_policy(rq->curr))
543 check_preempt_curr_dl(rq, p, 0);
544 else
545 resched_task(rq->curr);
546#ifdef CONFIG_SMP
547 /*
548 * Queueing this task back might have overloaded rq,
549 * check if we need to kick someone away.
550 */
551 if (has_pushable_dl_tasks(rq))
552 push_dl_task(rq);
553#endif
554 }
555unlock:
556 raw_spin_unlock(&rq->lock);
557
558 return HRTIMER_NORESTART;
559}
560
561void init_dl_task_timer(struct sched_dl_entity *dl_se)
562{
563 struct hrtimer *timer = &dl_se->dl_timer;
564
565 if (hrtimer_active(timer)) {
566 hrtimer_try_to_cancel(timer);
567 return;
568 }
569
570 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
571 timer->function = dl_task_timer;
572}
573
574static
575int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
576{
577 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
578 int rorun = dl_se->runtime <= 0;
579
580 if (!rorun && !dmiss)
581 return 0;
582
583 /*
584 * If we are beyond our current deadline and we are still
585 * executing, then we have already used some of the runtime of
586 * the next instance. Thus, if we do not account that, we are
587 * stealing bandwidth from the system at each deadline miss!
588 */
589 if (dmiss) {
590 dl_se->runtime = rorun ? dl_se->runtime : 0;
591 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
592 }
593
594 return 1;
595}
596
597extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
598
599/*
600 * Update the current task's runtime statistics (provided it is still
601 * a -deadline task and has not been removed from the dl_rq).
602 */
603static void update_curr_dl(struct rq *rq)
604{
605 struct task_struct *curr = rq->curr;
606 struct sched_dl_entity *dl_se = &curr->dl;
607 u64 delta_exec;
608
609 if (!dl_task(curr) || !on_dl_rq(dl_se))
610 return;
611
612 /*
613 * Consumed budget is computed considering the time as
614 * observed by schedulable tasks (excluding time spent
615 * in hardirq context, etc.). Deadlines are instead
616 * computed using hard walltime. This seems to be the more
617 * natural solution, but the full ramifications of this
618 * approach need further study.
619 */
620 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
621 if (unlikely((s64)delta_exec <= 0))
622 return;
623
624 schedstat_set(curr->se.statistics.exec_max,
625 max(curr->se.statistics.exec_max, delta_exec));
626
627 curr->se.sum_exec_runtime += delta_exec;
628 account_group_exec_runtime(curr, delta_exec);
629
630 curr->se.exec_start = rq_clock_task(rq);
631 cpuacct_charge(curr, delta_exec);
632
633 sched_rt_avg_update(rq, delta_exec);
634
635 dl_se->runtime -= delta_exec;
636 if (dl_runtime_exceeded(rq, dl_se)) {
637 __dequeue_task_dl(rq, curr, 0);
638 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
639 dl_se->dl_throttled = 1;
640 else
641 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
642
643 if (!is_leftmost(curr, &rq->dl))
644 resched_task(curr);
645 }
646
647 /*
648 * Because -- for now -- we share the rt bandwidth, we need to
649 * account our runtime there too, otherwise actual rt tasks
650 * would be able to exceed the shared quota.
651 *
652 * Account to the root rt group for now.
653 *
654 * The solution we're working towards is having the RT groups scheduled
655 * using deadline servers -- however there's a few nasties to figure
656 * out before that can happen.
657 */
658 if (rt_bandwidth_enabled()) {
659 struct rt_rq *rt_rq = &rq->rt;
660
661 raw_spin_lock(&rt_rq->rt_runtime_lock);
662 /*
663 * We'll let actual RT tasks worry about the overflow here, we
664 * have our own CBS to keep us inline; only account when RT
665 * bandwidth is relevant.
666 */
667 if (sched_rt_bandwidth_account(rt_rq))
668 rt_rq->rt_time += delta_exec;
669 raw_spin_unlock(&rt_rq->rt_runtime_lock);
670 }
671}
672
673#ifdef CONFIG_SMP
674
675static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
676
677static inline u64 next_deadline(struct rq *rq)
678{
679 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
680
681 if (next && dl_prio(next->prio))
682 return next->dl.deadline;
683 else
684 return 0;
685}
686
687static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
688{
689 struct rq *rq = rq_of_dl_rq(dl_rq);
690
691 if (dl_rq->earliest_dl.curr == 0 ||
692 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
693 /*
694 * If the dl_rq had no -deadline tasks, or if the new task
695 * has shorter deadline than the current one on dl_rq, we
696 * know that the previous earliest becomes our next earliest,
697 * as the new task becomes the earliest itself.
698 */
699 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
700 dl_rq->earliest_dl.curr = deadline;
701 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
702 } else if (dl_rq->earliest_dl.next == 0 ||
703 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
704 /*
705 * On the other hand, if the new -deadline task has a
706 * a later deadline than the earliest one on dl_rq, but
707 * it is earlier than the next (if any), we must
708 * recompute the next-earliest.
709 */
710 dl_rq->earliest_dl.next = next_deadline(rq);
711 }
712}
713
714static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
715{
716 struct rq *rq = rq_of_dl_rq(dl_rq);
717
718 /*
719 * Since we may have removed our earliest (and/or next earliest)
720 * task we must recompute them.
721 */
722 if (!dl_rq->dl_nr_running) {
723 dl_rq->earliest_dl.curr = 0;
724 dl_rq->earliest_dl.next = 0;
725 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
726 } else {
727 struct rb_node *leftmost = dl_rq->rb_leftmost;
728 struct sched_dl_entity *entry;
729
730 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
731 dl_rq->earliest_dl.curr = entry->deadline;
732 dl_rq->earliest_dl.next = next_deadline(rq);
733 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
734 }
735}
736
737#else
738
739static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
740static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
741
742#endif /* CONFIG_SMP */
743
744static inline
745void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
746{
747 int prio = dl_task_of(dl_se)->prio;
748 u64 deadline = dl_se->deadline;
749
750 WARN_ON(!dl_prio(prio));
751 dl_rq->dl_nr_running++;
752 inc_nr_running(rq_of_dl_rq(dl_rq));
753
754 inc_dl_deadline(dl_rq, deadline);
755 inc_dl_migration(dl_se, dl_rq);
756}
757
758static inline
759void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
760{
761 int prio = dl_task_of(dl_se)->prio;
762
763 WARN_ON(!dl_prio(prio));
764 WARN_ON(!dl_rq->dl_nr_running);
765 dl_rq->dl_nr_running--;
766 dec_nr_running(rq_of_dl_rq(dl_rq));
767
768 dec_dl_deadline(dl_rq, dl_se->deadline);
769 dec_dl_migration(dl_se, dl_rq);
770}
771
772static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
773{
774 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
775 struct rb_node **link = &dl_rq->rb_root.rb_node;
776 struct rb_node *parent = NULL;
777 struct sched_dl_entity *entry;
778 int leftmost = 1;
779
780 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
781
782 while (*link) {
783 parent = *link;
784 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
785 if (dl_time_before(dl_se->deadline, entry->deadline))
786 link = &parent->rb_left;
787 else {
788 link = &parent->rb_right;
789 leftmost = 0;
790 }
791 }
792
793 if (leftmost)
794 dl_rq->rb_leftmost = &dl_se->rb_node;
795
796 rb_link_node(&dl_se->rb_node, parent, link);
797 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
798
799 inc_dl_tasks(dl_se, dl_rq);
800}
801
802static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
803{
804 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805
806 if (RB_EMPTY_NODE(&dl_se->rb_node))
807 return;
808
809 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
810 struct rb_node *next_node;
811
812 next_node = rb_next(&dl_se->rb_node);
813 dl_rq->rb_leftmost = next_node;
814 }
815
816 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
817 RB_CLEAR_NODE(&dl_se->rb_node);
818
819 dec_dl_tasks(dl_se, dl_rq);
820}
821
822static void
823enqueue_dl_entity(struct sched_dl_entity *dl_se,
824 struct sched_dl_entity *pi_se, int flags)
825{
826 BUG_ON(on_dl_rq(dl_se));
827
828 /*
829 * If this is a wakeup or a new instance, the scheduling
830 * parameters of the task might need updating. Otherwise,
831 * we want a replenishment of its runtime.
832 */
833 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
834 replenish_dl_entity(dl_se, pi_se);
835 else
836 update_dl_entity(dl_se, pi_se);
837
838 __enqueue_dl_entity(dl_se);
839}
840
841static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
842{
843 __dequeue_dl_entity(dl_se);
844}
845
846static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
847{
848 struct task_struct *pi_task = rt_mutex_get_top_task(p);
849 struct sched_dl_entity *pi_se = &p->dl;
850
851 /*
852 * Use the scheduling parameters of the top pi-waiter
853 * task if we have one and its (relative) deadline is
854 * smaller than our one... OTW we keep our runtime and
855 * deadline.
856 */
857 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
858 pi_se = &pi_task->dl;
859
860 /*
861 * If p is throttled, we do nothing. In fact, if it exhausted
862 * its budget it needs a replenishment and, since it now is on
863 * its rq, the bandwidth timer callback (which clearly has not
864 * run yet) will take care of this.
865 */
866 if (p->dl.dl_throttled)
867 return;
868
869 enqueue_dl_entity(&p->dl, pi_se, flags);
870
871 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
872 enqueue_pushable_dl_task(rq, p);
873}
874
875static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
876{
877 dequeue_dl_entity(&p->dl);
878 dequeue_pushable_dl_task(rq, p);
879}
880
881static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
882{
883 update_curr_dl(rq);
884 __dequeue_task_dl(rq, p, flags);
885}
886
887/*
888 * Yield task semantic for -deadline tasks is:
889 *
890 * get off from the CPU until our next instance, with
891 * a new runtime. This is of little use now, since we
892 * don't have a bandwidth reclaiming mechanism. Anyway,
893 * bandwidth reclaiming is planned for the future, and
894 * yield_task_dl will indicate that some spare budget
895 * is available for other task instances to use it.
896 */
897static void yield_task_dl(struct rq *rq)
898{
899 struct task_struct *p = rq->curr;
900
901 /*
902 * We make the task go to sleep until its current deadline by
903 * forcing its runtime to zero. This way, update_curr_dl() stops
904 * it and the bandwidth timer will wake it up and will give it
905 * new scheduling parameters (thanks to dl_yielded=1).
906 */
907 if (p->dl.runtime > 0) {
908 rq->curr->dl.dl_yielded = 1;
909 p->dl.runtime = 0;
910 }
911 update_curr_dl(rq);
912}
913
914#ifdef CONFIG_SMP
915
916static int find_later_rq(struct task_struct *task);
917
918static int
919select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
920{
921 struct task_struct *curr;
922 struct rq *rq;
923
924 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
925 goto out;
926
927 rq = cpu_rq(cpu);
928
929 rcu_read_lock();
930 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
931
932 /*
933 * If we are dealing with a -deadline task, we must
934 * decide where to wake it up.
935 * If it has a later deadline and the current task
936 * on this rq can't move (provided the waking task
937 * can!) we prefer to send it somewhere else. On the
938 * other hand, if it has a shorter deadline, we
939 * try to make it stay here, it might be important.
940 */
941 if (unlikely(dl_task(curr)) &&
942 (curr->nr_cpus_allowed < 2 ||
943 !dl_entity_preempt(&p->dl, &curr->dl)) &&
944 (p->nr_cpus_allowed > 1)) {
945 int target = find_later_rq(p);
946
947 if (target != -1)
948 cpu = target;
949 }
950 rcu_read_unlock();
951
952out:
953 return cpu;
954}
955
956static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
957{
958 /*
959 * Current can't be migrated, useless to reschedule,
960 * let's hope p can move out.
961 */
962 if (rq->curr->nr_cpus_allowed == 1 ||
963 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
964 return;
965
966 /*
967 * p is migratable, so let's not schedule it and
968 * see if it is pushed or pulled somewhere else.
969 */
970 if (p->nr_cpus_allowed != 1 &&
971 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
972 return;
973
974 resched_task(rq->curr);
975}
976
977static int pull_dl_task(struct rq *this_rq);
978
979#endif /* CONFIG_SMP */
980
981/*
982 * Only called when both the current and waking task are -deadline
983 * tasks.
984 */
985static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
986 int flags)
987{
988 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
989 resched_task(rq->curr);
990 return;
991 }
992
993#ifdef CONFIG_SMP
994 /*
995 * In the unlikely case current and p have the same deadline
996 * let us try to decide what's the best thing to do...
997 */
998 if ((p->dl.deadline == rq->curr->dl.deadline) &&
999 !test_tsk_need_resched(rq->curr))
1000 check_preempt_equal_dl(rq, p);
1001#endif /* CONFIG_SMP */
1002}
1003
1004#ifdef CONFIG_SCHED_HRTICK
1005static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1006{
1007 s64 delta = p->dl.dl_runtime - p->dl.runtime;
1008
1009 if (delta > 10000)
1010 hrtick_start(rq, p->dl.runtime);
1011}
1012#endif
1013
1014static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1015 struct dl_rq *dl_rq)
1016{
1017 struct rb_node *left = dl_rq->rb_leftmost;
1018
1019 if (!left)
1020 return NULL;
1021
1022 return rb_entry(left, struct sched_dl_entity, rb_node);
1023}
1024
1025struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1026{
1027 struct sched_dl_entity *dl_se;
1028 struct task_struct *p;
1029 struct dl_rq *dl_rq;
1030
1031 dl_rq = &rq->dl;
1032
1033 if (need_pull_dl_task(rq, prev)) {
1034 pull_dl_task(rq);
1035 /*
1036 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1037 * means a stop task can slip in, in which case we need to
1038 * re-start task selection.
1039 */
1040 if (rq->stop && rq->stop->on_rq)
1041 return RETRY_TASK;
1042 }
1043
1044 /*
1045 * When prev is DL, we may throttle it in put_prev_task().
1046 * So, we update time before we check for dl_nr_running.
1047 */
1048 if (prev->sched_class == &dl_sched_class)
1049 update_curr_dl(rq);
1050
1051 if (unlikely(!dl_rq->dl_nr_running))
1052 return NULL;
1053
1054 put_prev_task(rq, prev);
1055
1056 dl_se = pick_next_dl_entity(rq, dl_rq);
1057 BUG_ON(!dl_se);
1058
1059 p = dl_task_of(dl_se);
1060 p->se.exec_start = rq_clock_task(rq);
1061
1062 /* Running task will never be pushed. */
1063 dequeue_pushable_dl_task(rq, p);
1064
1065#ifdef CONFIG_SCHED_HRTICK
1066 if (hrtick_enabled(rq))
1067 start_hrtick_dl(rq, p);
1068#endif
1069
1070 set_post_schedule(rq);
1071
1072 return p;
1073}
1074
1075static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1076{
1077 update_curr_dl(rq);
1078
1079 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1080 enqueue_pushable_dl_task(rq, p);
1081}
1082
1083static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1084{
1085 update_curr_dl(rq);
1086
1087#ifdef CONFIG_SCHED_HRTICK
1088 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1089 start_hrtick_dl(rq, p);
1090#endif
1091}
1092
1093static void task_fork_dl(struct task_struct *p)
1094{
1095 /*
1096 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1097 * sched_fork()
1098 */
1099}
1100
1101static void task_dead_dl(struct task_struct *p)
1102{
1103 struct hrtimer *timer = &p->dl.dl_timer;
1104 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1105
1106 /*
1107 * Since we are TASK_DEAD we won't slip out of the domain!
1108 */
1109 raw_spin_lock_irq(&dl_b->lock);
1110 dl_b->total_bw -= p->dl.dl_bw;
1111 raw_spin_unlock_irq(&dl_b->lock);
1112
1113 hrtimer_cancel(timer);
1114}
1115
1116static void set_curr_task_dl(struct rq *rq)
1117{
1118 struct task_struct *p = rq->curr;
1119
1120 p->se.exec_start = rq_clock_task(rq);
1121
1122 /* You can't push away the running task */
1123 dequeue_pushable_dl_task(rq, p);
1124}
1125
1126#ifdef CONFIG_SMP
1127
1128/* Only try algorithms three times */
1129#define DL_MAX_TRIES 3
1130
1131static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1132{
1133 if (!task_running(rq, p) &&
1134 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1135 (p->nr_cpus_allowed > 1))
1136 return 1;
1137
1138 return 0;
1139}
1140
1141/* Returns the second earliest -deadline task, NULL otherwise */
1142static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1143{
1144 struct rb_node *next_node = rq->dl.rb_leftmost;
1145 struct sched_dl_entity *dl_se;
1146 struct task_struct *p = NULL;
1147
1148next_node:
1149 next_node = rb_next(next_node);
1150 if (next_node) {
1151 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1152 p = dl_task_of(dl_se);
1153
1154 if (pick_dl_task(rq, p, cpu))
1155 return p;
1156
1157 goto next_node;
1158 }
1159
1160 return NULL;
1161}
1162
1163static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1164
1165static int find_later_rq(struct task_struct *task)
1166{
1167 struct sched_domain *sd;
1168 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1169 int this_cpu = smp_processor_id();
1170 int best_cpu, cpu = task_cpu(task);
1171
1172 /* Make sure the mask is initialized first */
1173 if (unlikely(!later_mask))
1174 return -1;
1175
1176 if (task->nr_cpus_allowed == 1)
1177 return -1;
1178
1179 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1180 task, later_mask);
1181 if (best_cpu == -1)
1182 return -1;
1183
1184 /*
1185 * If we are here, some target has been found,
1186 * the most suitable of which is cached in best_cpu.
1187 * This is, among the runqueues where the current tasks
1188 * have later deadlines than the task's one, the rq
1189 * with the latest possible one.
1190 *
1191 * Now we check how well this matches with task's
1192 * affinity and system topology.
1193 *
1194 * The last cpu where the task run is our first
1195 * guess, since it is most likely cache-hot there.
1196 */
1197 if (cpumask_test_cpu(cpu, later_mask))
1198 return cpu;
1199 /*
1200 * Check if this_cpu is to be skipped (i.e., it is
1201 * not in the mask) or not.
1202 */
1203 if (!cpumask_test_cpu(this_cpu, later_mask))
1204 this_cpu = -1;
1205
1206 rcu_read_lock();
1207 for_each_domain(cpu, sd) {
1208 if (sd->flags & SD_WAKE_AFFINE) {
1209
1210 /*
1211 * If possible, preempting this_cpu is
1212 * cheaper than migrating.
1213 */
1214 if (this_cpu != -1 &&
1215 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1216 rcu_read_unlock();
1217 return this_cpu;
1218 }
1219
1220 /*
1221 * Last chance: if best_cpu is valid and is
1222 * in the mask, that becomes our choice.
1223 */
1224 if (best_cpu < nr_cpu_ids &&
1225 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1226 rcu_read_unlock();
1227 return best_cpu;
1228 }
1229 }
1230 }
1231 rcu_read_unlock();
1232
1233 /*
1234 * At this point, all our guesses failed, we just return
1235 * 'something', and let the caller sort the things out.
1236 */
1237 if (this_cpu != -1)
1238 return this_cpu;
1239
1240 cpu = cpumask_any(later_mask);
1241 if (cpu < nr_cpu_ids)
1242 return cpu;
1243
1244 return -1;
1245}
1246
1247/* Locks the rq it finds */
1248static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1249{
1250 struct rq *later_rq = NULL;
1251 int tries;
1252 int cpu;
1253
1254 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1255 cpu = find_later_rq(task);
1256
1257 if ((cpu == -1) || (cpu == rq->cpu))
1258 break;
1259
1260 later_rq = cpu_rq(cpu);
1261
1262 /* Retry if something changed. */
1263 if (double_lock_balance(rq, later_rq)) {
1264 if (unlikely(task_rq(task) != rq ||
1265 !cpumask_test_cpu(later_rq->cpu,
1266 &task->cpus_allowed) ||
1267 task_running(rq, task) || !task->on_rq)) {
1268 double_unlock_balance(rq, later_rq);
1269 later_rq = NULL;
1270 break;
1271 }
1272 }
1273
1274 /*
1275 * If the rq we found has no -deadline task, or
1276 * its earliest one has a later deadline than our
1277 * task, the rq is a good one.
1278 */
1279 if (!later_rq->dl.dl_nr_running ||
1280 dl_time_before(task->dl.deadline,
1281 later_rq->dl.earliest_dl.curr))
1282 break;
1283
1284 /* Otherwise we try again. */
1285 double_unlock_balance(rq, later_rq);
1286 later_rq = NULL;
1287 }
1288
1289 return later_rq;
1290}
1291
1292static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1293{
1294 struct task_struct *p;
1295
1296 if (!has_pushable_dl_tasks(rq))
1297 return NULL;
1298
1299 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1300 struct task_struct, pushable_dl_tasks);
1301
1302 BUG_ON(rq->cpu != task_cpu(p));
1303 BUG_ON(task_current(rq, p));
1304 BUG_ON(p->nr_cpus_allowed <= 1);
1305
1306 BUG_ON(!p->on_rq);
1307 BUG_ON(!dl_task(p));
1308
1309 return p;
1310}
1311
1312/*
1313 * See if the non running -deadline tasks on this rq
1314 * can be sent to some other CPU where they can preempt
1315 * and start executing.
1316 */
1317static int push_dl_task(struct rq *rq)
1318{
1319 struct task_struct *next_task;
1320 struct rq *later_rq;
1321
1322 if (!rq->dl.overloaded)
1323 return 0;
1324
1325 next_task = pick_next_pushable_dl_task(rq);
1326 if (!next_task)
1327 return 0;
1328
1329retry:
1330 if (unlikely(next_task == rq->curr)) {
1331 WARN_ON(1);
1332 return 0;
1333 }
1334
1335 /*
1336 * If next_task preempts rq->curr, and rq->curr
1337 * can move away, it makes sense to just reschedule
1338 * without going further in pushing next_task.
1339 */
1340 if (dl_task(rq->curr) &&
1341 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1342 rq->curr->nr_cpus_allowed > 1) {
1343 resched_task(rq->curr);
1344 return 0;
1345 }
1346
1347 /* We might release rq lock */
1348 get_task_struct(next_task);
1349
1350 /* Will lock the rq it'll find */
1351 later_rq = find_lock_later_rq(next_task, rq);
1352 if (!later_rq) {
1353 struct task_struct *task;
1354
1355 /*
1356 * We must check all this again, since
1357 * find_lock_later_rq releases rq->lock and it is
1358 * then possible that next_task has migrated.
1359 */
1360 task = pick_next_pushable_dl_task(rq);
1361 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1362 /*
1363 * The task is still there. We don't try
1364 * again, some other cpu will pull it when ready.
1365 */
1366 dequeue_pushable_dl_task(rq, next_task);
1367 goto out;
1368 }
1369
1370 if (!task)
1371 /* No more tasks */
1372 goto out;
1373
1374 put_task_struct(next_task);
1375 next_task = task;
1376 goto retry;
1377 }
1378
1379 deactivate_task(rq, next_task, 0);
1380 set_task_cpu(next_task, later_rq->cpu);
1381 activate_task(later_rq, next_task, 0);
1382
1383 resched_task(later_rq->curr);
1384
1385 double_unlock_balance(rq, later_rq);
1386
1387out:
1388 put_task_struct(next_task);
1389
1390 return 1;
1391}
1392
1393static void push_dl_tasks(struct rq *rq)
1394{
1395 /* Terminates as it moves a -deadline task */
1396 while (push_dl_task(rq))
1397 ;
1398}
1399
1400static int pull_dl_task(struct rq *this_rq)
1401{
1402 int this_cpu = this_rq->cpu, ret = 0, cpu;
1403 struct task_struct *p;
1404 struct rq *src_rq;
1405 u64 dmin = LONG_MAX;
1406
1407 if (likely(!dl_overloaded(this_rq)))
1408 return 0;
1409
1410 /*
1411 * Match the barrier from dl_set_overloaded; this guarantees that if we
1412 * see overloaded we must also see the dlo_mask bit.
1413 */
1414 smp_rmb();
1415
1416 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1417 if (this_cpu == cpu)
1418 continue;
1419
1420 src_rq = cpu_rq(cpu);
1421
1422 /*
1423 * It looks racy, abd it is! However, as in sched_rt.c,
1424 * we are fine with this.
1425 */
1426 if (this_rq->dl.dl_nr_running &&
1427 dl_time_before(this_rq->dl.earliest_dl.curr,
1428 src_rq->dl.earliest_dl.next))
1429 continue;
1430
1431 /* Might drop this_rq->lock */
1432 double_lock_balance(this_rq, src_rq);
1433
1434 /*
1435 * If there are no more pullable tasks on the
1436 * rq, we're done with it.
1437 */
1438 if (src_rq->dl.dl_nr_running <= 1)
1439 goto skip;
1440
1441 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1442
1443 /*
1444 * We found a task to be pulled if:
1445 * - it preempts our current (if there's one),
1446 * - it will preempt the last one we pulled (if any).
1447 */
1448 if (p && dl_time_before(p->dl.deadline, dmin) &&
1449 (!this_rq->dl.dl_nr_running ||
1450 dl_time_before(p->dl.deadline,
1451 this_rq->dl.earliest_dl.curr))) {
1452 WARN_ON(p == src_rq->curr);
1453 WARN_ON(!p->on_rq);
1454
1455 /*
1456 * Then we pull iff p has actually an earlier
1457 * deadline than the current task of its runqueue.
1458 */
1459 if (dl_time_before(p->dl.deadline,
1460 src_rq->curr->dl.deadline))
1461 goto skip;
1462
1463 ret = 1;
1464
1465 deactivate_task(src_rq, p, 0);
1466 set_task_cpu(p, this_cpu);
1467 activate_task(this_rq, p, 0);
1468 dmin = p->dl.deadline;
1469
1470 /* Is there any other task even earlier? */
1471 }
1472skip:
1473 double_unlock_balance(this_rq, src_rq);
1474 }
1475
1476 return ret;
1477}
1478
1479static void post_schedule_dl(struct rq *rq)
1480{
1481 push_dl_tasks(rq);
1482}
1483
1484/*
1485 * Since the task is not running and a reschedule is not going to happen
1486 * anytime soon on its runqueue, we try pushing it away now.
1487 */
1488static void task_woken_dl(struct rq *rq, struct task_struct *p)
1489{
1490 if (!task_running(rq, p) &&
1491 !test_tsk_need_resched(rq->curr) &&
1492 has_pushable_dl_tasks(rq) &&
1493 p->nr_cpus_allowed > 1 &&
1494 dl_task(rq->curr) &&
1495 (rq->curr->nr_cpus_allowed < 2 ||
1496 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1497 push_dl_tasks(rq);
1498 }
1499}
1500
1501static void set_cpus_allowed_dl(struct task_struct *p,
1502 const struct cpumask *new_mask)
1503{
1504 struct rq *rq;
1505 int weight;
1506
1507 BUG_ON(!dl_task(p));
1508
1509 /*
1510 * Update only if the task is actually running (i.e.,
1511 * it is on the rq AND it is not throttled).
1512 */
1513 if (!on_dl_rq(&p->dl))
1514 return;
1515
1516 weight = cpumask_weight(new_mask);
1517
1518 /*
1519 * Only update if the process changes its state from whether it
1520 * can migrate or not.
1521 */
1522 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1523 return;
1524
1525 rq = task_rq(p);
1526
1527 /*
1528 * The process used to be able to migrate OR it can now migrate
1529 */
1530 if (weight <= 1) {
1531 if (!task_current(rq, p))
1532 dequeue_pushable_dl_task(rq, p);
1533 BUG_ON(!rq->dl.dl_nr_migratory);
1534 rq->dl.dl_nr_migratory--;
1535 } else {
1536 if (!task_current(rq, p))
1537 enqueue_pushable_dl_task(rq, p);
1538 rq->dl.dl_nr_migratory++;
1539 }
1540
1541 update_dl_migration(&rq->dl);
1542}
1543
1544/* Assumes rq->lock is held */
1545static void rq_online_dl(struct rq *rq)
1546{
1547 if (rq->dl.overloaded)
1548 dl_set_overload(rq);
1549
1550 if (rq->dl.dl_nr_running > 0)
1551 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1552}
1553
1554/* Assumes rq->lock is held */
1555static void rq_offline_dl(struct rq *rq)
1556{
1557 if (rq->dl.overloaded)
1558 dl_clear_overload(rq);
1559
1560 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1561}
1562
1563void init_sched_dl_class(void)
1564{
1565 unsigned int i;
1566
1567 for_each_possible_cpu(i)
1568 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1569 GFP_KERNEL, cpu_to_node(i));
1570}
1571
1572#endif /* CONFIG_SMP */
1573
1574static void switched_from_dl(struct rq *rq, struct task_struct *p)
1575{
1576 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1577 hrtimer_try_to_cancel(&p->dl.dl_timer);
1578
1579#ifdef CONFIG_SMP
1580 /*
1581 * Since this might be the only -deadline task on the rq,
1582 * this is the right place to try to pull some other one
1583 * from an overloaded cpu, if any.
1584 */
1585 if (!rq->dl.dl_nr_running)
1586 pull_dl_task(rq);
1587#endif
1588}
1589
1590/*
1591 * When switching to -deadline, we may overload the rq, then
1592 * we try to push someone off, if possible.
1593 */
1594static void switched_to_dl(struct rq *rq, struct task_struct *p)
1595{
1596 int check_resched = 1;
1597
1598 /*
1599 * If p is throttled, don't consider the possibility
1600 * of preempting rq->curr, the check will be done right
1601 * after its runtime will get replenished.
1602 */
1603 if (unlikely(p->dl.dl_throttled))
1604 return;
1605
1606 if (p->on_rq && rq->curr != p) {
1607#ifdef CONFIG_SMP
1608 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1609 /* Only reschedule if pushing failed */
1610 check_resched = 0;
1611#endif /* CONFIG_SMP */
1612 if (check_resched && task_has_dl_policy(rq->curr))
1613 check_preempt_curr_dl(rq, p, 0);
1614 }
1615}
1616
1617/*
1618 * If the scheduling parameters of a -deadline task changed,
1619 * a push or pull operation might be needed.
1620 */
1621static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1622 int oldprio)
1623{
1624 if (p->on_rq || rq->curr == p) {
1625#ifdef CONFIG_SMP
1626 /*
1627 * This might be too much, but unfortunately
1628 * we don't have the old deadline value, and
1629 * we can't argue if the task is increasing
1630 * or lowering its prio, so...
1631 */
1632 if (!rq->dl.overloaded)
1633 pull_dl_task(rq);
1634
1635 /*
1636 * If we now have a earlier deadline task than p,
1637 * then reschedule, provided p is still on this
1638 * runqueue.
1639 */
1640 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1641 rq->curr == p)
1642 resched_task(p);
1643#else
1644 /*
1645 * Again, we don't know if p has a earlier
1646 * or later deadline, so let's blindly set a
1647 * (maybe not needed) rescheduling point.
1648 */
1649 resched_task(p);
1650#endif /* CONFIG_SMP */
1651 } else
1652 switched_to_dl(rq, p);
1653}
1654
1655const struct sched_class dl_sched_class = {
1656 .next = &rt_sched_class,
1657 .enqueue_task = enqueue_task_dl,
1658 .dequeue_task = dequeue_task_dl,
1659 .yield_task = yield_task_dl,
1660
1661 .check_preempt_curr = check_preempt_curr_dl,
1662
1663 .pick_next_task = pick_next_task_dl,
1664 .put_prev_task = put_prev_task_dl,
1665
1666#ifdef CONFIG_SMP
1667 .select_task_rq = select_task_rq_dl,
1668 .set_cpus_allowed = set_cpus_allowed_dl,
1669 .rq_online = rq_online_dl,
1670 .rq_offline = rq_offline_dl,
1671 .post_schedule = post_schedule_dl,
1672 .task_woken = task_woken_dl,
1673#endif
1674
1675 .set_curr_task = set_curr_task_dl,
1676 .task_tick = task_tick_dl,
1677 .task_fork = task_fork_dl,
1678 .task_dead = task_dead_dl,
1679
1680 .prio_changed = prio_changed_dl,
1681 .switched_from = switched_from_dl,
1682 .switched_to = switched_to_dl,
1683};
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
19#include <linux/slab.h>
20
21struct dl_bandwidth def_dl_bandwidth;
22
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
72void init_dl_rq(struct dl_rq *dl_rq)
73{
74 dl_rq->rb_root = RB_ROOT;
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83#else
84 init_dl_bw(&dl_rq->dl_bw);
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
136
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
146
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost) {
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
182 }
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186}
187
188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189{
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
203 }
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208}
209
210static inline int has_pushable_dl_tasks(struct rq *rq)
211{
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213}
214
215static int push_dl_task(struct rq *rq);
216
217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218{
219 return dl_task(prev);
220}
221
222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224
225static void push_dl_tasks(struct rq *);
226static void pull_dl_task(struct rq *);
227
228static inline void queue_push_tasks(struct rq *rq)
229{
230 if (!has_pushable_dl_tasks(rq))
231 return;
232
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234}
235
236static inline void queue_pull_task(struct rq *rq)
237{
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239}
240
241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242
243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244{
245 struct rq *later_rq = NULL;
246 bool fallback = false;
247
248 later_rq = find_lock_later_rq(p, rq);
249
250 if (!later_rq) {
251 int cpu;
252
253 /*
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
256 */
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
260 /*
261 * Fail to find any suitable cpu.
262 * The task will never come back!
263 */
264 BUG_ON(dl_bandwidth_enabled());
265
266 /*
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
270 */
271 cpu = cpumask_any(cpu_active_mask);
272 }
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
275 }
276
277 /*
278 * By now the task is replenished and enqueued; migrate it.
279 */
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
282 activate_task(later_rq, p, 0);
283
284 if (!fallback)
285 resched_curr(later_rq);
286
287 double_unlock_balance(later_rq, rq);
288
289 return later_rq;
290}
291
292#else
293
294static inline
295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296{
297}
298
299static inline
300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301{
302}
303
304static inline
305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306{
307}
308
309static inline
310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311{
312}
313
314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315{
316 return false;
317}
318
319static inline void pull_dl_task(struct rq *rq)
320{
321}
322
323static inline void queue_push_tasks(struct rq *rq)
324{
325}
326
327static inline void queue_pull_task(struct rq *rq)
328{
329}
330#endif /* CONFIG_SMP */
331
332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
336
337/*
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
343 *
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
348 */
349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
351{
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
354
355 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356
357 /*
358 * We are racing with the deadline timer. So, do nothing because
359 * the deadline timer handler will take care of properly recharging
360 * the runtime and postponing the deadline
361 */
362 if (dl_se->dl_throttled)
363 return;
364
365 /*
366 * We use the regular wall clock time to set deadlines in the
367 * future; in fact, we must consider execution overheads (time
368 * spent on hardirq context, etc.).
369 */
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
372}
373
374/*
375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376 * possibility of a entity lasting more than what it declared, and thus
377 * exhausting its runtime.
378 *
379 * Here we are interested in making runtime overrun possible, but we do
380 * not want a entity which is misbehaving to affect the scheduling of all
381 * other entities.
382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383 * is used, in order to confine each entity within its own bandwidth.
384 *
385 * This function deals exactly with that, and ensures that when the runtime
386 * of a entity is replenished, its deadline is also postponed. That ensures
387 * the overrunning entity can't interfere with other entity in the system and
388 * can't make them miss their deadlines. Reasons why this kind of overruns
389 * could happen are, typically, a entity voluntarily trying to overcome its
390 * runtime, or it just underestimated it during sched_setattr().
391 */
392static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 struct sched_dl_entity *pi_se)
394{
395 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 struct rq *rq = rq_of_dl_rq(dl_rq);
397
398 BUG_ON(pi_se->dl_runtime <= 0);
399
400 /*
401 * This could be the case for a !-dl task that is boosted.
402 * Just go with full inherited parameters.
403 */
404 if (dl_se->dl_deadline == 0) {
405 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 dl_se->runtime = pi_se->dl_runtime;
407 }
408
409 if (dl_se->dl_yielded && dl_se->runtime > 0)
410 dl_se->runtime = 0;
411
412 /*
413 * We keep moving the deadline away until we get some
414 * available runtime for the entity. This ensures correct
415 * handling of situations where the runtime overrun is
416 * arbitrary large.
417 */
418 while (dl_se->runtime <= 0) {
419 dl_se->deadline += pi_se->dl_period;
420 dl_se->runtime += pi_se->dl_runtime;
421 }
422
423 /*
424 * At this point, the deadline really should be "in
425 * the future" with respect to rq->clock. If it's
426 * not, we are, for some reason, lagging too much!
427 * Anyway, after having warn userspace abut that,
428 * we still try to keep the things running by
429 * resetting the deadline and the budget of the
430 * entity.
431 */
432 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
433 printk_deferred_once("sched: DL replenish lagged too much\n");
434 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 dl_se->runtime = pi_se->dl_runtime;
436 }
437
438 if (dl_se->dl_yielded)
439 dl_se->dl_yielded = 0;
440 if (dl_se->dl_throttled)
441 dl_se->dl_throttled = 0;
442}
443
444/*
445 * Here we check if --at time t-- an entity (which is probably being
446 * [re]activated or, in general, enqueued) can use its remaining runtime
447 * and its current deadline _without_ exceeding the bandwidth it is
448 * assigned (function returns true if it can't). We are in fact applying
449 * one of the CBS rules: when a task wakes up, if the residual runtime
450 * over residual deadline fits within the allocated bandwidth, then we
451 * can keep the current (absolute) deadline and residual budget without
452 * disrupting the schedulability of the system. Otherwise, we should
453 * refill the runtime and set the deadline a period in the future,
454 * because keeping the current (absolute) deadline of the task would
455 * result in breaking guarantees promised to other tasks (refer to
456 * Documentation/scheduler/sched-deadline.txt for more informations).
457 *
458 * This function returns true if:
459 *
460 * runtime / (deadline - t) > dl_runtime / dl_period ,
461 *
462 * IOW we can't recycle current parameters.
463 *
464 * Notice that the bandwidth check is done against the period. For
465 * task with deadline equal to period this is the same of using
466 * dl_deadline instead of dl_period in the equation above.
467 */
468static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 struct sched_dl_entity *pi_se, u64 t)
470{
471 u64 left, right;
472
473 /*
474 * left and right are the two sides of the equation above,
475 * after a bit of shuffling to use multiplications instead
476 * of divisions.
477 *
478 * Note that none of the time values involved in the two
479 * multiplications are absolute: dl_deadline and dl_runtime
480 * are the relative deadline and the maximum runtime of each
481 * instance, runtime is the runtime left for the last instance
482 * and (deadline - t), since t is rq->clock, is the time left
483 * to the (absolute) deadline. Even if overflowing the u64 type
484 * is very unlikely to occur in both cases, here we scale down
485 * as we want to avoid that risk at all. Scaling down by 10
486 * means that we reduce granularity to 1us. We are fine with it,
487 * since this is only a true/false check and, anyway, thinking
488 * of anything below microseconds resolution is actually fiction
489 * (but still we want to give the user that illusion >;).
490 */
491 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 right = ((dl_se->deadline - t) >> DL_SCALE) *
493 (pi_se->dl_runtime >> DL_SCALE);
494
495 return dl_time_before(right, left);
496}
497
498/*
499 * When a -deadline entity is queued back on the runqueue, its runtime and
500 * deadline might need updating.
501 *
502 * The policy here is that we update the deadline of the entity only if:
503 * - the current deadline is in the past,
504 * - using the remaining runtime with the current deadline would make
505 * the entity exceed its bandwidth.
506 */
507static void update_dl_entity(struct sched_dl_entity *dl_se,
508 struct sched_dl_entity *pi_se)
509{
510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 struct rq *rq = rq_of_dl_rq(dl_rq);
512
513 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
514 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 dl_se->runtime = pi_se->dl_runtime;
517 }
518}
519
520/*
521 * If the entity depleted all its runtime, and if we want it to sleep
522 * while waiting for some new execution time to become available, we
523 * set the bandwidth enforcement timer to the replenishment instant
524 * and try to activate it.
525 *
526 * Notice that it is important for the caller to know if the timer
527 * actually started or not (i.e., the replenishment instant is in
528 * the future or in the past).
529 */
530static int start_dl_timer(struct task_struct *p)
531{
532 struct sched_dl_entity *dl_se = &p->dl;
533 struct hrtimer *timer = &dl_se->dl_timer;
534 struct rq *rq = task_rq(p);
535 ktime_t now, act;
536 s64 delta;
537
538 lockdep_assert_held(&rq->lock);
539
540 /*
541 * We want the timer to fire at the deadline, but considering
542 * that it is actually coming from rq->clock and not from
543 * hrtimer's time base reading.
544 */
545 act = ns_to_ktime(dl_se->deadline);
546 now = hrtimer_cb_get_time(timer);
547 delta = ktime_to_ns(now) - rq_clock(rq);
548 act = ktime_add_ns(act, delta);
549
550 /*
551 * If the expiry time already passed, e.g., because the value
552 * chosen as the deadline is too small, don't even try to
553 * start the timer in the past!
554 */
555 if (ktime_us_delta(act, now) < 0)
556 return 0;
557
558 /*
559 * !enqueued will guarantee another callback; even if one is already in
560 * progress. This ensures a balanced {get,put}_task_struct().
561 *
562 * The race against __run_timer() clearing the enqueued state is
563 * harmless because we're holding task_rq()->lock, therefore the timer
564 * expiring after we've done the check will wait on its task_rq_lock()
565 * and observe our state.
566 */
567 if (!hrtimer_is_queued(timer)) {
568 get_task_struct(p);
569 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 }
571
572 return 1;
573}
574
575/*
576 * This is the bandwidth enforcement timer callback. If here, we know
577 * a task is not on its dl_rq, since the fact that the timer was running
578 * means the task is throttled and needs a runtime replenishment.
579 *
580 * However, what we actually do depends on the fact the task is active,
581 * (it is on its rq) or has been removed from there by a call to
582 * dequeue_task_dl(). In the former case we must issue the runtime
583 * replenishment and add the task back to the dl_rq; in the latter, we just
584 * do nothing but clearing dl_throttled, so that runtime and deadline
585 * updating (and the queueing back to dl_rq) will be done by the
586 * next call to enqueue_task_dl().
587 */
588static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589{
590 struct sched_dl_entity *dl_se = container_of(timer,
591 struct sched_dl_entity,
592 dl_timer);
593 struct task_struct *p = dl_task_of(dl_se);
594 unsigned long flags;
595 struct rq *rq;
596
597 rq = task_rq_lock(p, &flags);
598
599 /*
600 * The task might have changed its scheduling policy to something
601 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 */
603 if (!dl_task(p)) {
604 __dl_clear_params(p);
605 goto unlock;
606 }
607
608 /*
609 * The task might have been boosted by someone else and might be in the
610 * boosting/deboosting path, its not throttled.
611 */
612 if (dl_se->dl_boosted)
613 goto unlock;
614
615 /*
616 * Spurious timer due to start_dl_timer() race; or we already received
617 * a replenishment from rt_mutex_setprio().
618 */
619 if (!dl_se->dl_throttled)
620 goto unlock;
621
622 sched_clock_tick();
623 update_rq_clock(rq);
624
625 /*
626 * If the throttle happened during sched-out; like:
627 *
628 * schedule()
629 * deactivate_task()
630 * dequeue_task_dl()
631 * update_curr_dl()
632 * start_dl_timer()
633 * __dequeue_task_dl()
634 * prev->on_rq = 0;
635 *
636 * We can be both throttled and !queued. Replenish the counter
637 * but do not enqueue -- wait for our wakeup to do that.
638 */
639 if (!task_on_rq_queued(p)) {
640 replenish_dl_entity(dl_se, dl_se);
641 goto unlock;
642 }
643
644 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 if (dl_task(rq->curr))
646 check_preempt_curr_dl(rq, p, 0);
647 else
648 resched_curr(rq);
649
650#ifdef CONFIG_SMP
651 /*
652 * Perform balancing operations here; after the replenishments. We
653 * cannot drop rq->lock before this, otherwise the assertion in
654 * start_dl_timer() about not missing updates is not true.
655 *
656 * If we find that the rq the task was on is no longer available, we
657 * need to select a new rq.
658 *
659 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 */
661 if (unlikely(!rq->online))
662 rq = dl_task_offline_migration(rq, p);
663
664 /*
665 * Queueing this task back might have overloaded rq, check if we need
666 * to kick someone away.
667 */
668 if (has_pushable_dl_tasks(rq)) {
669 /*
670 * Nothing relies on rq->lock after this, so its safe to drop
671 * rq->lock.
672 */
673 lockdep_unpin_lock(&rq->lock);
674 push_dl_task(rq);
675 lockdep_pin_lock(&rq->lock);
676 }
677#endif
678
679unlock:
680 task_rq_unlock(rq, p, &flags);
681
682 /*
683 * This can free the task_struct, including this hrtimer, do not touch
684 * anything related to that after this.
685 */
686 put_task_struct(p);
687
688 return HRTIMER_NORESTART;
689}
690
691void init_dl_task_timer(struct sched_dl_entity *dl_se)
692{
693 struct hrtimer *timer = &dl_se->dl_timer;
694
695 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
696 timer->function = dl_task_timer;
697}
698
699static
700int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
701{
702 return (dl_se->runtime <= 0);
703}
704
705extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
706
707/*
708 * Update the current task's runtime statistics (provided it is still
709 * a -deadline task and has not been removed from the dl_rq).
710 */
711static void update_curr_dl(struct rq *rq)
712{
713 struct task_struct *curr = rq->curr;
714 struct sched_dl_entity *dl_se = &curr->dl;
715 u64 delta_exec;
716
717 if (!dl_task(curr) || !on_dl_rq(dl_se))
718 return;
719
720 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
721 if (cpu_of(rq) == smp_processor_id())
722 cpufreq_trigger_update(rq_clock(rq));
723
724 /*
725 * Consumed budget is computed considering the time as
726 * observed by schedulable tasks (excluding time spent
727 * in hardirq context, etc.). Deadlines are instead
728 * computed using hard walltime. This seems to be the more
729 * natural solution, but the full ramifications of this
730 * approach need further study.
731 */
732 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
733 if (unlikely((s64)delta_exec <= 0)) {
734 if (unlikely(dl_se->dl_yielded))
735 goto throttle;
736 return;
737 }
738
739 schedstat_set(curr->se.statistics.exec_max,
740 max(curr->se.statistics.exec_max, delta_exec));
741
742 curr->se.sum_exec_runtime += delta_exec;
743 account_group_exec_runtime(curr, delta_exec);
744
745 curr->se.exec_start = rq_clock_task(rq);
746 cpuacct_charge(curr, delta_exec);
747
748 sched_rt_avg_update(rq, delta_exec);
749
750 dl_se->runtime -= delta_exec;
751
752throttle:
753 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
754 dl_se->dl_throttled = 1;
755 __dequeue_task_dl(rq, curr, 0);
756 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
757 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758
759 if (!is_leftmost(curr, &rq->dl))
760 resched_curr(rq);
761 }
762
763 /*
764 * Because -- for now -- we share the rt bandwidth, we need to
765 * account our runtime there too, otherwise actual rt tasks
766 * would be able to exceed the shared quota.
767 *
768 * Account to the root rt group for now.
769 *
770 * The solution we're working towards is having the RT groups scheduled
771 * using deadline servers -- however there's a few nasties to figure
772 * out before that can happen.
773 */
774 if (rt_bandwidth_enabled()) {
775 struct rt_rq *rt_rq = &rq->rt;
776
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
778 /*
779 * We'll let actual RT tasks worry about the overflow here, we
780 * have our own CBS to keep us inline; only account when RT
781 * bandwidth is relevant.
782 */
783 if (sched_rt_bandwidth_account(rt_rq))
784 rt_rq->rt_time += delta_exec;
785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 }
787}
788
789#ifdef CONFIG_SMP
790
791static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792{
793 struct rq *rq = rq_of_dl_rq(dl_rq);
794
795 if (dl_rq->earliest_dl.curr == 0 ||
796 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 dl_rq->earliest_dl.curr = deadline;
798 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
799 }
800}
801
802static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803{
804 struct rq *rq = rq_of_dl_rq(dl_rq);
805
806 /*
807 * Since we may have removed our earliest (and/or next earliest)
808 * task we must recompute them.
809 */
810 if (!dl_rq->dl_nr_running) {
811 dl_rq->earliest_dl.curr = 0;
812 dl_rq->earliest_dl.next = 0;
813 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
814 } else {
815 struct rb_node *leftmost = dl_rq->rb_leftmost;
816 struct sched_dl_entity *entry;
817
818 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 dl_rq->earliest_dl.curr = entry->deadline;
820 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
821 }
822}
823
824#else
825
826static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828
829#endif /* CONFIG_SMP */
830
831static inline
832void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833{
834 int prio = dl_task_of(dl_se)->prio;
835 u64 deadline = dl_se->deadline;
836
837 WARN_ON(!dl_prio(prio));
838 dl_rq->dl_nr_running++;
839 add_nr_running(rq_of_dl_rq(dl_rq), 1);
840
841 inc_dl_deadline(dl_rq, deadline);
842 inc_dl_migration(dl_se, dl_rq);
843}
844
845static inline
846void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847{
848 int prio = dl_task_of(dl_se)->prio;
849
850 WARN_ON(!dl_prio(prio));
851 WARN_ON(!dl_rq->dl_nr_running);
852 dl_rq->dl_nr_running--;
853 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
854
855 dec_dl_deadline(dl_rq, dl_se->deadline);
856 dec_dl_migration(dl_se, dl_rq);
857}
858
859static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860{
861 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 struct rb_node **link = &dl_rq->rb_root.rb_node;
863 struct rb_node *parent = NULL;
864 struct sched_dl_entity *entry;
865 int leftmost = 1;
866
867 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868
869 while (*link) {
870 parent = *link;
871 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 if (dl_time_before(dl_se->deadline, entry->deadline))
873 link = &parent->rb_left;
874 else {
875 link = &parent->rb_right;
876 leftmost = 0;
877 }
878 }
879
880 if (leftmost)
881 dl_rq->rb_leftmost = &dl_se->rb_node;
882
883 rb_link_node(&dl_se->rb_node, parent, link);
884 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885
886 inc_dl_tasks(dl_se, dl_rq);
887}
888
889static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890{
891 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892
893 if (RB_EMPTY_NODE(&dl_se->rb_node))
894 return;
895
896 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 struct rb_node *next_node;
898
899 next_node = rb_next(&dl_se->rb_node);
900 dl_rq->rb_leftmost = next_node;
901 }
902
903 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 RB_CLEAR_NODE(&dl_se->rb_node);
905
906 dec_dl_tasks(dl_se, dl_rq);
907}
908
909static void
910enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 struct sched_dl_entity *pi_se, int flags)
912{
913 BUG_ON(on_dl_rq(dl_se));
914
915 /*
916 * If this is a wakeup or a new instance, the scheduling
917 * parameters of the task might need updating. Otherwise,
918 * we want a replenishment of its runtime.
919 */
920 if (flags & ENQUEUE_WAKEUP)
921 update_dl_entity(dl_se, pi_se);
922 else if (flags & ENQUEUE_REPLENISH)
923 replenish_dl_entity(dl_se, pi_se);
924
925 __enqueue_dl_entity(dl_se);
926}
927
928static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929{
930 __dequeue_dl_entity(dl_se);
931}
932
933static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934{
935 struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 struct sched_dl_entity *pi_se = &p->dl;
937
938 /*
939 * Use the scheduling parameters of the top pi-waiter
940 * task if we have one and its (absolute) deadline is
941 * smaller than our one... OTW we keep our runtime and
942 * deadline.
943 */
944 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
945 pi_se = &pi_task->dl;
946 } else if (!dl_prio(p->normal_prio)) {
947 /*
948 * Special case in which we have a !SCHED_DEADLINE task
949 * that is going to be deboosted, but exceedes its
950 * runtime while doing so. No point in replenishing
951 * it, as it's going to return back to its original
952 * scheduling class after this.
953 */
954 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 return;
956 }
957
958 /*
959 * If p is throttled, we do nothing. In fact, if it exhausted
960 * its budget it needs a replenishment and, since it now is on
961 * its rq, the bandwidth timer callback (which clearly has not
962 * run yet) will take care of this.
963 */
964 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
965 return;
966
967 enqueue_dl_entity(&p->dl, pi_se, flags);
968
969 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 enqueue_pushable_dl_task(rq, p);
971}
972
973static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974{
975 dequeue_dl_entity(&p->dl);
976 dequeue_pushable_dl_task(rq, p);
977}
978
979static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980{
981 update_curr_dl(rq);
982 __dequeue_task_dl(rq, p, flags);
983}
984
985/*
986 * Yield task semantic for -deadline tasks is:
987 *
988 * get off from the CPU until our next instance, with
989 * a new runtime. This is of little use now, since we
990 * don't have a bandwidth reclaiming mechanism. Anyway,
991 * bandwidth reclaiming is planned for the future, and
992 * yield_task_dl will indicate that some spare budget
993 * is available for other task instances to use it.
994 */
995static void yield_task_dl(struct rq *rq)
996{
997 /*
998 * We make the task go to sleep until its current deadline by
999 * forcing its runtime to zero. This way, update_curr_dl() stops
1000 * it and the bandwidth timer will wake it up and will give it
1001 * new scheduling parameters (thanks to dl_yielded=1).
1002 */
1003 rq->curr->dl.dl_yielded = 1;
1004
1005 update_rq_clock(rq);
1006 update_curr_dl(rq);
1007 /*
1008 * Tell update_rq_clock() that we've just updated,
1009 * so we don't do microscopic update in schedule()
1010 * and double the fastpath cost.
1011 */
1012 rq_clock_skip_update(rq, true);
1013}
1014
1015#ifdef CONFIG_SMP
1016
1017static int find_later_rq(struct task_struct *task);
1018
1019static int
1020select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021{
1022 struct task_struct *curr;
1023 struct rq *rq;
1024
1025 if (sd_flag != SD_BALANCE_WAKE)
1026 goto out;
1027
1028 rq = cpu_rq(cpu);
1029
1030 rcu_read_lock();
1031 curr = READ_ONCE(rq->curr); /* unlocked access */
1032
1033 /*
1034 * If we are dealing with a -deadline task, we must
1035 * decide where to wake it up.
1036 * If it has a later deadline and the current task
1037 * on this rq can't move (provided the waking task
1038 * can!) we prefer to send it somewhere else. On the
1039 * other hand, if it has a shorter deadline, we
1040 * try to make it stay here, it might be important.
1041 */
1042 if (unlikely(dl_task(curr)) &&
1043 (curr->nr_cpus_allowed < 2 ||
1044 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1045 (p->nr_cpus_allowed > 1)) {
1046 int target = find_later_rq(p);
1047
1048 if (target != -1 &&
1049 (dl_time_before(p->dl.deadline,
1050 cpu_rq(target)->dl.earliest_dl.curr) ||
1051 (cpu_rq(target)->dl.dl_nr_running == 0)))
1052 cpu = target;
1053 }
1054 rcu_read_unlock();
1055
1056out:
1057 return cpu;
1058}
1059
1060static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061{
1062 /*
1063 * Current can't be migrated, useless to reschedule,
1064 * let's hope p can move out.
1065 */
1066 if (rq->curr->nr_cpus_allowed == 1 ||
1067 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1068 return;
1069
1070 /*
1071 * p is migratable, so let's not schedule it and
1072 * see if it is pushed or pulled somewhere else.
1073 */
1074 if (p->nr_cpus_allowed != 1 &&
1075 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1076 return;
1077
1078 resched_curr(rq);
1079}
1080
1081#endif /* CONFIG_SMP */
1082
1083/*
1084 * Only called when both the current and waking task are -deadline
1085 * tasks.
1086 */
1087static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088 int flags)
1089{
1090 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1091 resched_curr(rq);
1092 return;
1093 }
1094
1095#ifdef CONFIG_SMP
1096 /*
1097 * In the unlikely case current and p have the same deadline
1098 * let us try to decide what's the best thing to do...
1099 */
1100 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101 !test_tsk_need_resched(rq->curr))
1102 check_preempt_equal_dl(rq, p);
1103#endif /* CONFIG_SMP */
1104}
1105
1106#ifdef CONFIG_SCHED_HRTICK
1107static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108{
1109 hrtick_start(rq, p->dl.runtime);
1110}
1111#else /* !CONFIG_SCHED_HRTICK */
1112static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113{
1114}
1115#endif
1116
1117static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118 struct dl_rq *dl_rq)
1119{
1120 struct rb_node *left = dl_rq->rb_leftmost;
1121
1122 if (!left)
1123 return NULL;
1124
1125 return rb_entry(left, struct sched_dl_entity, rb_node);
1126}
1127
1128struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1129{
1130 struct sched_dl_entity *dl_se;
1131 struct task_struct *p;
1132 struct dl_rq *dl_rq;
1133
1134 dl_rq = &rq->dl;
1135
1136 if (need_pull_dl_task(rq, prev)) {
1137 /*
1138 * This is OK, because current is on_cpu, which avoids it being
1139 * picked for load-balance and preemption/IRQs are still
1140 * disabled avoiding further scheduler activity on it and we're
1141 * being very careful to re-start the picking loop.
1142 */
1143 lockdep_unpin_lock(&rq->lock);
1144 pull_dl_task(rq);
1145 lockdep_pin_lock(&rq->lock);
1146 /*
1147 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1148 * means a stop task can slip in, in which case we need to
1149 * re-start task selection.
1150 */
1151 if (rq->stop && task_on_rq_queued(rq->stop))
1152 return RETRY_TASK;
1153 }
1154
1155 /*
1156 * When prev is DL, we may throttle it in put_prev_task().
1157 * So, we update time before we check for dl_nr_running.
1158 */
1159 if (prev->sched_class == &dl_sched_class)
1160 update_curr_dl(rq);
1161
1162 if (unlikely(!dl_rq->dl_nr_running))
1163 return NULL;
1164
1165 put_prev_task(rq, prev);
1166
1167 dl_se = pick_next_dl_entity(rq, dl_rq);
1168 BUG_ON(!dl_se);
1169
1170 p = dl_task_of(dl_se);
1171 p->se.exec_start = rq_clock_task(rq);
1172
1173 /* Running task will never be pushed. */
1174 dequeue_pushable_dl_task(rq, p);
1175
1176 if (hrtick_enabled(rq))
1177 start_hrtick_dl(rq, p);
1178
1179 queue_push_tasks(rq);
1180
1181 return p;
1182}
1183
1184static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1185{
1186 update_curr_dl(rq);
1187
1188 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1189 enqueue_pushable_dl_task(rq, p);
1190}
1191
1192static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1193{
1194 update_curr_dl(rq);
1195
1196 /*
1197 * Even when we have runtime, update_curr_dl() might have resulted in us
1198 * not being the leftmost task anymore. In that case NEED_RESCHED will
1199 * be set and schedule() will start a new hrtick for the next task.
1200 */
1201 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1202 is_leftmost(p, &rq->dl))
1203 start_hrtick_dl(rq, p);
1204}
1205
1206static void task_fork_dl(struct task_struct *p)
1207{
1208 /*
1209 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1210 * sched_fork()
1211 */
1212}
1213
1214static void task_dead_dl(struct task_struct *p)
1215{
1216 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1217
1218 /*
1219 * Since we are TASK_DEAD we won't slip out of the domain!
1220 */
1221 raw_spin_lock_irq(&dl_b->lock);
1222 /* XXX we should retain the bw until 0-lag */
1223 dl_b->total_bw -= p->dl.dl_bw;
1224 raw_spin_unlock_irq(&dl_b->lock);
1225}
1226
1227static void set_curr_task_dl(struct rq *rq)
1228{
1229 struct task_struct *p = rq->curr;
1230
1231 p->se.exec_start = rq_clock_task(rq);
1232
1233 /* You can't push away the running task */
1234 dequeue_pushable_dl_task(rq, p);
1235}
1236
1237#ifdef CONFIG_SMP
1238
1239/* Only try algorithms three times */
1240#define DL_MAX_TRIES 3
1241
1242static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1243{
1244 if (!task_running(rq, p) &&
1245 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1246 return 1;
1247 return 0;
1248}
1249
1250/*
1251 * Return the earliest pushable rq's task, which is suitable to be executed
1252 * on the CPU, NULL otherwise:
1253 */
1254static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1255{
1256 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1257 struct task_struct *p = NULL;
1258
1259 if (!has_pushable_dl_tasks(rq))
1260 return NULL;
1261
1262next_node:
1263 if (next_node) {
1264 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1265
1266 if (pick_dl_task(rq, p, cpu))
1267 return p;
1268
1269 next_node = rb_next(next_node);
1270 goto next_node;
1271 }
1272
1273 return NULL;
1274}
1275
1276static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1277
1278static int find_later_rq(struct task_struct *task)
1279{
1280 struct sched_domain *sd;
1281 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1282 int this_cpu = smp_processor_id();
1283 int best_cpu, cpu = task_cpu(task);
1284
1285 /* Make sure the mask is initialized first */
1286 if (unlikely(!later_mask))
1287 return -1;
1288
1289 if (task->nr_cpus_allowed == 1)
1290 return -1;
1291
1292 /*
1293 * We have to consider system topology and task affinity
1294 * first, then we can look for a suitable cpu.
1295 */
1296 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1297 task, later_mask);
1298 if (best_cpu == -1)
1299 return -1;
1300
1301 /*
1302 * If we are here, some target has been found,
1303 * the most suitable of which is cached in best_cpu.
1304 * This is, among the runqueues where the current tasks
1305 * have later deadlines than the task's one, the rq
1306 * with the latest possible one.
1307 *
1308 * Now we check how well this matches with task's
1309 * affinity and system topology.
1310 *
1311 * The last cpu where the task run is our first
1312 * guess, since it is most likely cache-hot there.
1313 */
1314 if (cpumask_test_cpu(cpu, later_mask))
1315 return cpu;
1316 /*
1317 * Check if this_cpu is to be skipped (i.e., it is
1318 * not in the mask) or not.
1319 */
1320 if (!cpumask_test_cpu(this_cpu, later_mask))
1321 this_cpu = -1;
1322
1323 rcu_read_lock();
1324 for_each_domain(cpu, sd) {
1325 if (sd->flags & SD_WAKE_AFFINE) {
1326
1327 /*
1328 * If possible, preempting this_cpu is
1329 * cheaper than migrating.
1330 */
1331 if (this_cpu != -1 &&
1332 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1333 rcu_read_unlock();
1334 return this_cpu;
1335 }
1336
1337 /*
1338 * Last chance: if best_cpu is valid and is
1339 * in the mask, that becomes our choice.
1340 */
1341 if (best_cpu < nr_cpu_ids &&
1342 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1343 rcu_read_unlock();
1344 return best_cpu;
1345 }
1346 }
1347 }
1348 rcu_read_unlock();
1349
1350 /*
1351 * At this point, all our guesses failed, we just return
1352 * 'something', and let the caller sort the things out.
1353 */
1354 if (this_cpu != -1)
1355 return this_cpu;
1356
1357 cpu = cpumask_any(later_mask);
1358 if (cpu < nr_cpu_ids)
1359 return cpu;
1360
1361 return -1;
1362}
1363
1364/* Locks the rq it finds */
1365static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1366{
1367 struct rq *later_rq = NULL;
1368 int tries;
1369 int cpu;
1370
1371 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1372 cpu = find_later_rq(task);
1373
1374 if ((cpu == -1) || (cpu == rq->cpu))
1375 break;
1376
1377 later_rq = cpu_rq(cpu);
1378
1379 if (later_rq->dl.dl_nr_running &&
1380 !dl_time_before(task->dl.deadline,
1381 later_rq->dl.earliest_dl.curr)) {
1382 /*
1383 * Target rq has tasks of equal or earlier deadline,
1384 * retrying does not release any lock and is unlikely
1385 * to yield a different result.
1386 */
1387 later_rq = NULL;
1388 break;
1389 }
1390
1391 /* Retry if something changed. */
1392 if (double_lock_balance(rq, later_rq)) {
1393 if (unlikely(task_rq(task) != rq ||
1394 !cpumask_test_cpu(later_rq->cpu,
1395 &task->cpus_allowed) ||
1396 task_running(rq, task) ||
1397 !dl_task(task) ||
1398 !task_on_rq_queued(task))) {
1399 double_unlock_balance(rq, later_rq);
1400 later_rq = NULL;
1401 break;
1402 }
1403 }
1404
1405 /*
1406 * If the rq we found has no -deadline task, or
1407 * its earliest one has a later deadline than our
1408 * task, the rq is a good one.
1409 */
1410 if (!later_rq->dl.dl_nr_running ||
1411 dl_time_before(task->dl.deadline,
1412 later_rq->dl.earliest_dl.curr))
1413 break;
1414
1415 /* Otherwise we try again. */
1416 double_unlock_balance(rq, later_rq);
1417 later_rq = NULL;
1418 }
1419
1420 return later_rq;
1421}
1422
1423static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1424{
1425 struct task_struct *p;
1426
1427 if (!has_pushable_dl_tasks(rq))
1428 return NULL;
1429
1430 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1431 struct task_struct, pushable_dl_tasks);
1432
1433 BUG_ON(rq->cpu != task_cpu(p));
1434 BUG_ON(task_current(rq, p));
1435 BUG_ON(p->nr_cpus_allowed <= 1);
1436
1437 BUG_ON(!task_on_rq_queued(p));
1438 BUG_ON(!dl_task(p));
1439
1440 return p;
1441}
1442
1443/*
1444 * See if the non running -deadline tasks on this rq
1445 * can be sent to some other CPU where they can preempt
1446 * and start executing.
1447 */
1448static int push_dl_task(struct rq *rq)
1449{
1450 struct task_struct *next_task;
1451 struct rq *later_rq;
1452 int ret = 0;
1453
1454 if (!rq->dl.overloaded)
1455 return 0;
1456
1457 next_task = pick_next_pushable_dl_task(rq);
1458 if (!next_task)
1459 return 0;
1460
1461retry:
1462 if (unlikely(next_task == rq->curr)) {
1463 WARN_ON(1);
1464 return 0;
1465 }
1466
1467 /*
1468 * If next_task preempts rq->curr, and rq->curr
1469 * can move away, it makes sense to just reschedule
1470 * without going further in pushing next_task.
1471 */
1472 if (dl_task(rq->curr) &&
1473 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1474 rq->curr->nr_cpus_allowed > 1) {
1475 resched_curr(rq);
1476 return 0;
1477 }
1478
1479 /* We might release rq lock */
1480 get_task_struct(next_task);
1481
1482 /* Will lock the rq it'll find */
1483 later_rq = find_lock_later_rq(next_task, rq);
1484 if (!later_rq) {
1485 struct task_struct *task;
1486
1487 /*
1488 * We must check all this again, since
1489 * find_lock_later_rq releases rq->lock and it is
1490 * then possible that next_task has migrated.
1491 */
1492 task = pick_next_pushable_dl_task(rq);
1493 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1494 /*
1495 * The task is still there. We don't try
1496 * again, some other cpu will pull it when ready.
1497 */
1498 goto out;
1499 }
1500
1501 if (!task)
1502 /* No more tasks */
1503 goto out;
1504
1505 put_task_struct(next_task);
1506 next_task = task;
1507 goto retry;
1508 }
1509
1510 deactivate_task(rq, next_task, 0);
1511 set_task_cpu(next_task, later_rq->cpu);
1512 activate_task(later_rq, next_task, 0);
1513 ret = 1;
1514
1515 resched_curr(later_rq);
1516
1517 double_unlock_balance(rq, later_rq);
1518
1519out:
1520 put_task_struct(next_task);
1521
1522 return ret;
1523}
1524
1525static void push_dl_tasks(struct rq *rq)
1526{
1527 /* push_dl_task() will return true if it moved a -deadline task */
1528 while (push_dl_task(rq))
1529 ;
1530}
1531
1532static void pull_dl_task(struct rq *this_rq)
1533{
1534 int this_cpu = this_rq->cpu, cpu;
1535 struct task_struct *p;
1536 bool resched = false;
1537 struct rq *src_rq;
1538 u64 dmin = LONG_MAX;
1539
1540 if (likely(!dl_overloaded(this_rq)))
1541 return;
1542
1543 /*
1544 * Match the barrier from dl_set_overloaded; this guarantees that if we
1545 * see overloaded we must also see the dlo_mask bit.
1546 */
1547 smp_rmb();
1548
1549 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1550 if (this_cpu == cpu)
1551 continue;
1552
1553 src_rq = cpu_rq(cpu);
1554
1555 /*
1556 * It looks racy, abd it is! However, as in sched_rt.c,
1557 * we are fine with this.
1558 */
1559 if (this_rq->dl.dl_nr_running &&
1560 dl_time_before(this_rq->dl.earliest_dl.curr,
1561 src_rq->dl.earliest_dl.next))
1562 continue;
1563
1564 /* Might drop this_rq->lock */
1565 double_lock_balance(this_rq, src_rq);
1566
1567 /*
1568 * If there are no more pullable tasks on the
1569 * rq, we're done with it.
1570 */
1571 if (src_rq->dl.dl_nr_running <= 1)
1572 goto skip;
1573
1574 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1575
1576 /*
1577 * We found a task to be pulled if:
1578 * - it preempts our current (if there's one),
1579 * - it will preempt the last one we pulled (if any).
1580 */
1581 if (p && dl_time_before(p->dl.deadline, dmin) &&
1582 (!this_rq->dl.dl_nr_running ||
1583 dl_time_before(p->dl.deadline,
1584 this_rq->dl.earliest_dl.curr))) {
1585 WARN_ON(p == src_rq->curr);
1586 WARN_ON(!task_on_rq_queued(p));
1587
1588 /*
1589 * Then we pull iff p has actually an earlier
1590 * deadline than the current task of its runqueue.
1591 */
1592 if (dl_time_before(p->dl.deadline,
1593 src_rq->curr->dl.deadline))
1594 goto skip;
1595
1596 resched = true;
1597
1598 deactivate_task(src_rq, p, 0);
1599 set_task_cpu(p, this_cpu);
1600 activate_task(this_rq, p, 0);
1601 dmin = p->dl.deadline;
1602
1603 /* Is there any other task even earlier? */
1604 }
1605skip:
1606 double_unlock_balance(this_rq, src_rq);
1607 }
1608
1609 if (resched)
1610 resched_curr(this_rq);
1611}
1612
1613/*
1614 * Since the task is not running and a reschedule is not going to happen
1615 * anytime soon on its runqueue, we try pushing it away now.
1616 */
1617static void task_woken_dl(struct rq *rq, struct task_struct *p)
1618{
1619 if (!task_running(rq, p) &&
1620 !test_tsk_need_resched(rq->curr) &&
1621 p->nr_cpus_allowed > 1 &&
1622 dl_task(rq->curr) &&
1623 (rq->curr->nr_cpus_allowed < 2 ||
1624 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1625 push_dl_tasks(rq);
1626 }
1627}
1628
1629static void set_cpus_allowed_dl(struct task_struct *p,
1630 const struct cpumask *new_mask)
1631{
1632 struct root_domain *src_rd;
1633 struct rq *rq;
1634
1635 BUG_ON(!dl_task(p));
1636
1637 rq = task_rq(p);
1638 src_rd = rq->rd;
1639 /*
1640 * Migrating a SCHED_DEADLINE task between exclusive
1641 * cpusets (different root_domains) entails a bandwidth
1642 * update. We already made space for us in the destination
1643 * domain (see cpuset_can_attach()).
1644 */
1645 if (!cpumask_intersects(src_rd->span, new_mask)) {
1646 struct dl_bw *src_dl_b;
1647
1648 src_dl_b = dl_bw_of(cpu_of(rq));
1649 /*
1650 * We now free resources of the root_domain we are migrating
1651 * off. In the worst case, sched_setattr() may temporary fail
1652 * until we complete the update.
1653 */
1654 raw_spin_lock(&src_dl_b->lock);
1655 __dl_clear(src_dl_b, p->dl.dl_bw);
1656 raw_spin_unlock(&src_dl_b->lock);
1657 }
1658
1659 set_cpus_allowed_common(p, new_mask);
1660}
1661
1662/* Assumes rq->lock is held */
1663static void rq_online_dl(struct rq *rq)
1664{
1665 if (rq->dl.overloaded)
1666 dl_set_overload(rq);
1667
1668 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1669 if (rq->dl.dl_nr_running > 0)
1670 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1671}
1672
1673/* Assumes rq->lock is held */
1674static void rq_offline_dl(struct rq *rq)
1675{
1676 if (rq->dl.overloaded)
1677 dl_clear_overload(rq);
1678
1679 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1680 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1681}
1682
1683void __init init_sched_dl_class(void)
1684{
1685 unsigned int i;
1686
1687 for_each_possible_cpu(i)
1688 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1689 GFP_KERNEL, cpu_to_node(i));
1690}
1691
1692#endif /* CONFIG_SMP */
1693
1694static void switched_from_dl(struct rq *rq, struct task_struct *p)
1695{
1696 /*
1697 * Start the deadline timer; if we switch back to dl before this we'll
1698 * continue consuming our current CBS slice. If we stay outside of
1699 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1700 * task.
1701 */
1702 if (!start_dl_timer(p))
1703 __dl_clear_params(p);
1704
1705 /*
1706 * Since this might be the only -deadline task on the rq,
1707 * this is the right place to try to pull some other one
1708 * from an overloaded cpu, if any.
1709 */
1710 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1711 return;
1712
1713 queue_pull_task(rq);
1714}
1715
1716/*
1717 * When switching to -deadline, we may overload the rq, then
1718 * we try to push someone off, if possible.
1719 */
1720static void switched_to_dl(struct rq *rq, struct task_struct *p)
1721{
1722 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1723 setup_new_dl_entity(&p->dl, &p->dl);
1724
1725 if (task_on_rq_queued(p) && rq->curr != p) {
1726#ifdef CONFIG_SMP
1727 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1728 queue_push_tasks(rq);
1729#else
1730 if (dl_task(rq->curr))
1731 check_preempt_curr_dl(rq, p, 0);
1732 else
1733 resched_curr(rq);
1734#endif
1735 }
1736}
1737
1738/*
1739 * If the scheduling parameters of a -deadline task changed,
1740 * a push or pull operation might be needed.
1741 */
1742static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1743 int oldprio)
1744{
1745 if (task_on_rq_queued(p) || rq->curr == p) {
1746#ifdef CONFIG_SMP
1747 /*
1748 * This might be too much, but unfortunately
1749 * we don't have the old deadline value, and
1750 * we can't argue if the task is increasing
1751 * or lowering its prio, so...
1752 */
1753 if (!rq->dl.overloaded)
1754 queue_pull_task(rq);
1755
1756 /*
1757 * If we now have a earlier deadline task than p,
1758 * then reschedule, provided p is still on this
1759 * runqueue.
1760 */
1761 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1762 resched_curr(rq);
1763#else
1764 /*
1765 * Again, we don't know if p has a earlier
1766 * or later deadline, so let's blindly set a
1767 * (maybe not needed) rescheduling point.
1768 */
1769 resched_curr(rq);
1770#endif /* CONFIG_SMP */
1771 }
1772}
1773
1774const struct sched_class dl_sched_class = {
1775 .next = &rt_sched_class,
1776 .enqueue_task = enqueue_task_dl,
1777 .dequeue_task = dequeue_task_dl,
1778 .yield_task = yield_task_dl,
1779
1780 .check_preempt_curr = check_preempt_curr_dl,
1781
1782 .pick_next_task = pick_next_task_dl,
1783 .put_prev_task = put_prev_task_dl,
1784
1785#ifdef CONFIG_SMP
1786 .select_task_rq = select_task_rq_dl,
1787 .set_cpus_allowed = set_cpus_allowed_dl,
1788 .rq_online = rq_online_dl,
1789 .rq_offline = rq_offline_dl,
1790 .task_woken = task_woken_dl,
1791#endif
1792
1793 .set_curr_task = set_curr_task_dl,
1794 .task_tick = task_tick_dl,
1795 .task_fork = task_fork_dl,
1796 .task_dead = task_dead_dl,
1797
1798 .prio_changed = prio_changed_dl,
1799 .switched_from = switched_from_dl,
1800 .switched_to = switched_to_dl,
1801
1802 .update_curr = update_curr_dl,
1803};
1804
1805#ifdef CONFIG_SCHED_DEBUG
1806extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1807
1808void print_dl_stats(struct seq_file *m, int cpu)
1809{
1810 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1811}
1812#endif /* CONFIG_SCHED_DEBUG */