Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
 
 
 
  8
  9
 10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 11
 12/*
 13 * There are no locks covering percpu hardirq/softirq time.
 14 * They are only modified in vtime_account, on corresponding CPU
 15 * with interrupts disabled. So, writes are safe.
 16 * They are read and saved off onto struct rq in update_rq_clock().
 17 * This may result in other CPU reading this CPU's irq time and can
 18 * race with irq/vtime_account on this CPU. We would either get old
 19 * or new value with a side effect of accounting a slice of irq time to wrong
 20 * task when irq is in progress while we read rq->clock. That is a worthy
 21 * compromise in place of having locks on each irq in account_system_time.
 22 */
 23DEFINE_PER_CPU(u64, cpu_hardirq_time);
 24DEFINE_PER_CPU(u64, cpu_softirq_time);
 25
 26static DEFINE_PER_CPU(u64, irq_start_time);
 27static int sched_clock_irqtime;
 28
 29void enable_sched_clock_irqtime(void)
 30{
 31	sched_clock_irqtime = 1;
 32}
 33
 34void disable_sched_clock_irqtime(void)
 35{
 36	sched_clock_irqtime = 0;
 37}
 38
 39#ifndef CONFIG_64BIT
 40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 41#endif /* CONFIG_64BIT */
 42
 43/*
 44 * Called before incrementing preempt_count on {soft,}irq_enter
 45 * and before decrementing preempt_count on {soft,}irq_exit.
 46 */
 47void irqtime_account_irq(struct task_struct *curr)
 48{
 49	unsigned long flags;
 50	s64 delta;
 51	int cpu;
 52
 53	if (!sched_clock_irqtime)
 54		return;
 55
 56	local_irq_save(flags);
 57
 58	cpu = smp_processor_id();
 59	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 60	__this_cpu_add(irq_start_time, delta);
 61
 62	irq_time_write_begin();
 63	/*
 64	 * We do not account for softirq time from ksoftirqd here.
 65	 * We want to continue accounting softirq time to ksoftirqd thread
 66	 * in that case, so as not to confuse scheduler with a special task
 67	 * that do not consume any time, but still wants to run.
 68	 */
 69	if (hardirq_count())
 70		__this_cpu_add(cpu_hardirq_time, delta);
 71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 72		__this_cpu_add(cpu_softirq_time, delta);
 73
 74	irq_time_write_end();
 75	local_irq_restore(flags);
 76}
 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
 78
 79static int irqtime_account_hi_update(void)
 80{
 81	u64 *cpustat = kcpustat_this_cpu->cpustat;
 82	unsigned long flags;
 83	u64 latest_ns;
 84	int ret = 0;
 85
 86	local_irq_save(flags);
 87	latest_ns = this_cpu_read(cpu_hardirq_time);
 88	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 89		ret = 1;
 90	local_irq_restore(flags);
 91	return ret;
 92}
 93
 94static int irqtime_account_si_update(void)
 95{
 96	u64 *cpustat = kcpustat_this_cpu->cpustat;
 97	unsigned long flags;
 98	u64 latest_ns;
 99	int ret = 0;
100
101	local_irq_save(flags);
102	latest_ns = this_cpu_read(cpu_softirq_time);
103	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104		ret = 1;
105	local_irq_restore(flags);
106	return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime	(0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116					    u64 tmp)
117{
118	/*
119	 * Since all updates are sure to touch the root cgroup, we
120	 * get ourselves ahead and touch it first. If the root cgroup
121	 * is the only cgroup, then nothing else should be necessary.
122	 *
123	 */
124	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126	cpuacct_account_field(p, index, tmp);
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136		       cputime_t cputime_scaled)
137{
138	int index;
139
140	/* Add user time to process. */
141	p->utime += cputime;
142	p->utimescaled += cputime_scaled;
143	account_group_user_time(p, cputime);
144
145	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147	/* Add user time to cpustat. */
148	task_group_account_field(p, index, (__force u64) cputime);
149
150	/* Account for user time used */
151	acct_account_cputime(p);
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161			       cputime_t cputime_scaled)
162{
163	u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165	/* Add guest time to process. */
166	p->utime += cputime;
167	p->utimescaled += cputime_scaled;
168	account_group_user_time(p, cputime);
169	p->gtime += cputime;
170
171	/* Add guest time to cpustat. */
172	if (task_nice(p) > 0) {
173		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175	} else {
176		cpustat[CPUTIME_USER] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178	}
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190			cputime_t cputime_scaled, int index)
191{
192	/* Add system time to process. */
193	p->stime += cputime;
194	p->stimescaled += cputime_scaled;
195	account_group_system_time(p, cputime);
196
197	/* Add system time to cpustat. */
198	task_group_account_field(p, index, (__force u64) cputime);
199
200	/* Account for system time used */
201	acct_account_cputime(p);
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212			 cputime_t cputime, cputime_t cputime_scaled)
213{
214	int index;
215
216	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217		account_guest_time(p, cputime, cputime_scaled);
218		return;
219	}
220
221	if (hardirq_count() - hardirq_offset)
222		index = CPUTIME_IRQ;
223	else if (in_serving_softirq())
224		index = CPUTIME_SOFTIRQ;
225	else
226		index = CPUTIME_SYSTEM;
227
228	__account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237	u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248	u64 *cpustat = kcpustat_this_cpu->cpustat;
249	struct rq *rq = this_rq();
250
251	if (atomic_read(&rq->nr_iowait) > 0)
252		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253	else
254		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260	if (static_key_false(&paravirt_steal_enabled)) {
261		u64 steal;
262		cputime_t steal_ct;
263
264		steal = paravirt_steal_clock(smp_processor_id());
265		steal -= this_rq()->prev_steal_time;
266
267		/*
268		 * cputime_t may be less precise than nsecs (eg: if it's
269		 * based on jiffies). Lets cast the result to cputime
270		 * granularity and account the rest on the next rounds.
271		 */
272		steal_ct = nsecs_to_cputime(steal);
273		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275		account_steal_time(steal_ct);
276		return steal_ct;
277	}
278#endif
279	return false;
280}
281
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288	struct signal_struct *sig = tsk->signal;
289	cputime_t utime, stime;
290	struct task_struct *t;
291
292	times->utime = sig->utime;
293	times->stime = sig->stime;
294	times->sum_exec_runtime = sig->sum_sched_runtime;
295
296	rcu_read_lock();
297	/* make sure we can trust tsk->thread_group list */
298	if (!likely(pid_alive(tsk)))
299		goto out;
300
301	t = tsk;
302	do {
303		task_cputime(t, &utime, &stime);
304		times->utime += utime;
305		times->stime += stime;
306		times->sum_exec_runtime += task_sched_runtime(t);
307	} while_each_thread(tsk, t);
308out:
 
 
 
 
 
 
 
 
 
 
309	rcu_read_unlock();
310}
311
312#ifdef CONFIG_IRQ_TIME_ACCOUNTING
313/*
314 * Account a tick to a process and cpustat
315 * @p: the process that the cpu time gets accounted to
316 * @user_tick: is the tick from userspace
317 * @rq: the pointer to rq
318 *
319 * Tick demultiplexing follows the order
320 * - pending hardirq update
321 * - pending softirq update
322 * - user_time
323 * - idle_time
324 * - system time
325 *   - check for guest_time
326 *   - else account as system_time
327 *
328 * Check for hardirq is done both for system and user time as there is
329 * no timer going off while we are on hardirq and hence we may never get an
330 * opportunity to update it solely in system time.
331 * p->stime and friends are only updated on system time and not on irq
332 * softirq as those do not count in task exec_runtime any more.
333 */
334static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
335					 struct rq *rq, int ticks)
336{
337	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
338	u64 cputime = (__force u64) cputime_one_jiffy;
339	u64 *cpustat = kcpustat_this_cpu->cpustat;
340
341	if (steal_account_process_tick())
342		return;
343
344	cputime *= ticks;
345	scaled *= ticks;
346
347	if (irqtime_account_hi_update()) {
348		cpustat[CPUTIME_IRQ] += cputime;
349	} else if (irqtime_account_si_update()) {
350		cpustat[CPUTIME_SOFTIRQ] += cputime;
351	} else if (this_cpu_ksoftirqd() == p) {
352		/*
353		 * ksoftirqd time do not get accounted in cpu_softirq_time.
354		 * So, we have to handle it separately here.
355		 * Also, p->stime needs to be updated for ksoftirqd.
356		 */
357		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
358	} else if (user_tick) {
359		account_user_time(p, cputime, scaled);
360	} else if (p == rq->idle) {
361		account_idle_time(cputime);
362	} else if (p->flags & PF_VCPU) { /* System time or guest time */
363		account_guest_time(p, cputime, scaled);
364	} else {
365		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
366	}
367}
368
369static void irqtime_account_idle_ticks(int ticks)
370{
371	struct rq *rq = this_rq();
372
373	irqtime_account_process_tick(current, 0, rq, ticks);
374}
375#else /* CONFIG_IRQ_TIME_ACCOUNTING */
376static inline void irqtime_account_idle_ticks(int ticks) {}
377static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
378						struct rq *rq, int nr_ticks) {}
379#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
380
381/*
382 * Use precise platform statistics if available:
383 */
384#ifdef CONFIG_VIRT_CPU_ACCOUNTING
385
386#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
387void vtime_common_task_switch(struct task_struct *prev)
388{
389	if (is_idle_task(prev))
390		vtime_account_idle(prev);
391	else
392		vtime_account_system(prev);
393
394#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
395	vtime_account_user(prev);
396#endif
397	arch_vtime_task_switch(prev);
398}
399#endif
400
401/*
402 * Archs that account the whole time spent in the idle task
403 * (outside irq) as idle time can rely on this and just implement
404 * vtime_account_system() and vtime_account_idle(). Archs that
405 * have other meaning of the idle time (s390 only includes the
406 * time spent by the CPU when it's in low power mode) must override
407 * vtime_account().
408 */
409#ifndef __ARCH_HAS_VTIME_ACCOUNT
410void vtime_common_account_irq_enter(struct task_struct *tsk)
411{
412	if (!in_interrupt()) {
413		/*
414		 * If we interrupted user, context_tracking_in_user()
415		 * is 1 because the context tracking don't hook
416		 * on irq entry/exit. This way we know if
417		 * we need to flush user time on kernel entry.
418		 */
419		if (context_tracking_in_user()) {
420			vtime_account_user(tsk);
421			return;
422		}
423
424		if (is_idle_task(tsk)) {
425			vtime_account_idle(tsk);
426			return;
427		}
428	}
429	vtime_account_system(tsk);
430}
431EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439	*ut = p->utime;
440	*st = p->stime;
441}
 
442
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445	struct task_cputime cputime;
446
447	thread_group_cputime(p, &cputime);
448
449	*ut = cputime.utime;
450	*st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
459{
460	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461	struct rq *rq = this_rq();
462
463	if (vtime_accounting_enabled())
464		return;
465
466	if (sched_clock_irqtime) {
467		irqtime_account_process_tick(p, user_tick, rq, 1);
468		return;
469	}
470
471	if (steal_account_process_tick())
472		return;
473
474	if (user_tick)
475		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478				    one_jiffy_scaled);
479	else
480		account_idle_time(cputime_one_jiffy);
481}
482
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490	account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
499
500	if (sched_clock_irqtime) {
501		irqtime_account_idle_ticks(ticks);
502		return;
503	}
504
505	account_idle_time(jiffies_to_cputime(ticks));
506}
507
508/*
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513{
514	u64 scaled;
515
516	for (;;) {
517		/* Make sure "rtime" is the bigger of stime/rtime */
518		if (stime > rtime)
519			swap(rtime, stime);
520
521		/* Make sure 'total' fits in 32 bits */
522		if (total >> 32)
523			goto drop_precision;
524
525		/* Does rtime (and thus stime) fit in 32 bits? */
526		if (!(rtime >> 32))
527			break;
528
529		/* Can we just balance rtime/stime rather than dropping bits? */
530		if (stime >> 31)
531			goto drop_precision;
532
533		/* We can grow stime and shrink rtime and try to make them both fit */
534		stime <<= 1;
535		rtime >>= 1;
536		continue;
537
538drop_precision:
539		/* We drop from rtime, it has more bits than stime */
540		rtime >>= 1;
541		total >>= 1;
542	}
543
544	/*
545	 * Make sure gcc understands that this is a 32x32->64 multiply,
546	 * followed by a 64/32->64 divide.
547	 */
548	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549	return (__force cputime_t) scaled;
550}
551
552/*
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555 */
556static void cputime_adjust(struct task_cputime *curr,
557			   struct cputime *prev,
558			   cputime_t *ut, cputime_t *st)
559{
560	cputime_t rtime, stime, utime;
 
561
562	/*
563	 * Tick based cputime accounting depend on random scheduling
564	 * timeslices of a task to be interrupted or not by the timer.
565	 * Depending on these circumstances, the number of these interrupts
566	 * may be over or under-optimistic, matching the real user and system
567	 * cputime with a variable precision.
568	 *
569	 * Fix this by scaling these tick based values against the total
570	 * runtime accounted by the CFS scheduler.
571	 */
572	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
573
574	/*
575	 * Update userspace visible utime/stime values only if actual execution
576	 * time is bigger than already exported. Note that can happen, that we
577	 * provided bigger values due to scaling inaccuracy on big numbers.
 
 
 
578	 */
579	if (prev->stime + prev->utime >= rtime)
580		goto out;
581
582	stime = curr->stime;
583	utime = curr->utime;
584
585	if (utime == 0) {
586		stime = rtime;
587	} else if (stime == 0) {
588		utime = rtime;
589	} else {
590		cputime_t total = stime + utime;
591
592		stime = scale_stime((__force u64)stime,
593				    (__force u64)rtime, (__force u64)total);
594		utime = rtime - stime;
595	}
596
 
 
 
597	/*
598	 * If the tick based count grows faster than the scheduler one,
599	 * the result of the scaling may go backward.
600	 * Let's enforce monotonicity.
 
 
 
 
 
 
 
 
 
 
 
 
601	 */
602	prev->stime = max(prev->stime, stime);
603	prev->utime = max(prev->utime, utime);
 
 
604
 
 
 
605out:
606	*ut = prev->utime;
607	*st = prev->stime;
 
608}
609
610void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
611{
612	struct task_cputime cputime = {
613		.sum_exec_runtime = p->se.sum_exec_runtime,
614	};
615
616	task_cputime(p, &cputime.utime, &cputime.stime);
617	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
618}
 
619
620/*
621 * Must be called with siglock held.
622 */
623void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
624{
625	struct task_cputime cputime;
626
627	thread_group_cputime(p, &cputime);
628	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
629}
630#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
631
632#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
633static unsigned long long vtime_delta(struct task_struct *tsk)
634{
635	unsigned long long clock;
636
637	clock = local_clock();
638	if (clock < tsk->vtime_snap)
639		return 0;
640
641	return clock - tsk->vtime_snap;
642}
643
644static cputime_t get_vtime_delta(struct task_struct *tsk)
645{
646	unsigned long long delta = vtime_delta(tsk);
 
647
648	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
649	tsk->vtime_snap += delta;
650
651	/* CHECKME: always safe to convert nsecs to cputime? */
652	return nsecs_to_cputime(delta);
653}
654
655static void __vtime_account_system(struct task_struct *tsk)
656{
657	cputime_t delta_cpu = get_vtime_delta(tsk);
658
659	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
660}
661
662void vtime_account_system(struct task_struct *tsk)
663{
664	write_seqlock(&tsk->vtime_seqlock);
 
 
 
665	__vtime_account_system(tsk);
666	write_sequnlock(&tsk->vtime_seqlock);
667}
668
669void vtime_gen_account_irq_exit(struct task_struct *tsk)
670{
671	write_seqlock(&tsk->vtime_seqlock);
672	__vtime_account_system(tsk);
 
673	if (context_tracking_in_user())
674		tsk->vtime_snap_whence = VTIME_USER;
675	write_sequnlock(&tsk->vtime_seqlock);
676}
677
678void vtime_account_user(struct task_struct *tsk)
679{
680	cputime_t delta_cpu;
681
682	write_seqlock(&tsk->vtime_seqlock);
683	delta_cpu = get_vtime_delta(tsk);
684	tsk->vtime_snap_whence = VTIME_SYS;
685	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
686	write_sequnlock(&tsk->vtime_seqlock);
 
 
 
687}
688
689void vtime_user_enter(struct task_struct *tsk)
690{
691	write_seqlock(&tsk->vtime_seqlock);
692	__vtime_account_system(tsk);
 
693	tsk->vtime_snap_whence = VTIME_USER;
694	write_sequnlock(&tsk->vtime_seqlock);
695}
696
697void vtime_guest_enter(struct task_struct *tsk)
698{
699	/*
700	 * The flags must be updated under the lock with
701	 * the vtime_snap flush and update.
702	 * That enforces a right ordering and update sequence
703	 * synchronization against the reader (task_gtime())
704	 * that can thus safely catch up with a tickless delta.
705	 */
706	write_seqlock(&tsk->vtime_seqlock);
707	__vtime_account_system(tsk);
 
708	current->flags |= PF_VCPU;
709	write_sequnlock(&tsk->vtime_seqlock);
710}
711EXPORT_SYMBOL_GPL(vtime_guest_enter);
712
713void vtime_guest_exit(struct task_struct *tsk)
714{
715	write_seqlock(&tsk->vtime_seqlock);
716	__vtime_account_system(tsk);
717	current->flags &= ~PF_VCPU;
718	write_sequnlock(&tsk->vtime_seqlock);
719}
720EXPORT_SYMBOL_GPL(vtime_guest_exit);
721
722void vtime_account_idle(struct task_struct *tsk)
723{
724	cputime_t delta_cpu = get_vtime_delta(tsk);
725
726	account_idle_time(delta_cpu);
727}
728
729void arch_vtime_task_switch(struct task_struct *prev)
730{
731	write_seqlock(&prev->vtime_seqlock);
732	prev->vtime_snap_whence = VTIME_SLEEPING;
733	write_sequnlock(&prev->vtime_seqlock);
734
735	write_seqlock(&current->vtime_seqlock);
736	current->vtime_snap_whence = VTIME_SYS;
737	current->vtime_snap = sched_clock_cpu(smp_processor_id());
738	write_sequnlock(&current->vtime_seqlock);
739}
740
741void vtime_init_idle(struct task_struct *t, int cpu)
742{
743	unsigned long flags;
744
745	write_seqlock_irqsave(&t->vtime_seqlock, flags);
 
746	t->vtime_snap_whence = VTIME_SYS;
747	t->vtime_snap = sched_clock_cpu(cpu);
748	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
 
749}
750
751cputime_t task_gtime(struct task_struct *t)
752{
753	unsigned int seq;
754	cputime_t gtime;
755
 
 
 
756	do {
757		seq = read_seqbegin(&t->vtime_seqlock);
758
759		gtime = t->gtime;
760		if (t->flags & PF_VCPU)
761			gtime += vtime_delta(t);
762
763	} while (read_seqretry(&t->vtime_seqlock, seq));
764
765	return gtime;
766}
767
768/*
769 * Fetch cputime raw values from fields of task_struct and
770 * add up the pending nohz execution time since the last
771 * cputime snapshot.
772 */
773static void
774fetch_task_cputime(struct task_struct *t,
775		   cputime_t *u_dst, cputime_t *s_dst,
776		   cputime_t *u_src, cputime_t *s_src,
777		   cputime_t *udelta, cputime_t *sdelta)
778{
779	unsigned int seq;
780	unsigned long long delta;
781
782	do {
783		*udelta = 0;
784		*sdelta = 0;
785
786		seq = read_seqbegin(&t->vtime_seqlock);
787
788		if (u_dst)
789			*u_dst = *u_src;
790		if (s_dst)
791			*s_dst = *s_src;
792
793		/* Task is sleeping, nothing to add */
794		if (t->vtime_snap_whence == VTIME_SLEEPING ||
795		    is_idle_task(t))
796			continue;
797
798		delta = vtime_delta(t);
799
800		/*
801		 * Task runs either in user or kernel space, add pending nohz time to
802		 * the right place.
803		 */
804		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
805			*udelta = delta;
806		} else {
807			if (t->vtime_snap_whence == VTIME_SYS)
808				*sdelta = delta;
809		}
810	} while (read_seqretry(&t->vtime_seqlock, seq));
811}
812
813
814void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
815{
816	cputime_t udelta, sdelta;
817
 
 
 
 
 
 
 
 
818	fetch_task_cputime(t, utime, stime, &t->utime,
819			   &t->stime, &udelta, &sdelta);
820	if (utime)
821		*utime += udelta;
822	if (stime)
823		*stime += sdelta;
824}
825
826void task_cputime_scaled(struct task_struct *t,
827			 cputime_t *utimescaled, cputime_t *stimescaled)
828{
829	cputime_t udelta, sdelta;
 
 
 
 
 
 
 
 
830
831	fetch_task_cputime(t, utimescaled, stimescaled,
832			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
833	if (utimescaled)
834		*utimescaled += cputime_to_scaled(udelta);
835	if (stimescaled)
836		*stimescaled += cputime_to_scaled(sdelta);
837}
838#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v4.6
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(u64, cpu_hardirq_time);
 27DEFINE_PER_CPU(u64, cpu_softirq_time);
 28
 29static DEFINE_PER_CPU(u64, irq_start_time);
 30static int sched_clock_irqtime;
 31
 32void enable_sched_clock_irqtime(void)
 33{
 34	sched_clock_irqtime = 1;
 35}
 36
 37void disable_sched_clock_irqtime(void)
 38{
 39	sched_clock_irqtime = 0;
 40}
 41
 42#ifndef CONFIG_64BIT
 43DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 44#endif /* CONFIG_64BIT */
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	unsigned long flags;
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 59	local_irq_save(flags);
 60
 61	cpu = smp_processor_id();
 62	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 63	__this_cpu_add(irq_start_time, delta);
 64
 65	irq_time_write_begin();
 66	/*
 67	 * We do not account for softirq time from ksoftirqd here.
 68	 * We want to continue accounting softirq time to ksoftirqd thread
 69	 * in that case, so as not to confuse scheduler with a special task
 70	 * that do not consume any time, but still wants to run.
 71	 */
 72	if (hardirq_count())
 73		__this_cpu_add(cpu_hardirq_time, delta);
 74	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 75		__this_cpu_add(cpu_softirq_time, delta);
 76
 77	irq_time_write_end();
 78	local_irq_restore(flags);
 79}
 80EXPORT_SYMBOL_GPL(irqtime_account_irq);
 81
 82static int irqtime_account_hi_update(void)
 83{
 84	u64 *cpustat = kcpustat_this_cpu->cpustat;
 85	unsigned long flags;
 86	u64 latest_ns;
 87	int ret = 0;
 88
 89	local_irq_save(flags);
 90	latest_ns = this_cpu_read(cpu_hardirq_time);
 91	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 92		ret = 1;
 93	local_irq_restore(flags);
 94	return ret;
 95}
 96
 97static int irqtime_account_si_update(void)
 98{
 99	u64 *cpustat = kcpustat_this_cpu->cpustat;
100	unsigned long flags;
101	u64 latest_ns;
102	int ret = 0;
103
104	local_irq_save(flags);
105	latest_ns = this_cpu_read(cpu_softirq_time);
106	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107		ret = 1;
108	local_irq_restore(flags);
109	return ret;
110}
111
112#else /* CONFIG_IRQ_TIME_ACCOUNTING */
113
114#define sched_clock_irqtime	(0)
115
116#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117
118static inline void task_group_account_field(struct task_struct *p, int index,
119					    u64 tmp)
120{
121	/*
122	 * Since all updates are sure to touch the root cgroup, we
123	 * get ourselves ahead and touch it first. If the root cgroup
124	 * is the only cgroup, then nothing else should be necessary.
125	 *
126	 */
127	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128
129	cpuacct_account_field(p, index, tmp);
130}
131
132/*
133 * Account user cpu time to a process.
134 * @p: the process that the cpu time gets accounted to
135 * @cputime: the cpu time spent in user space since the last update
136 * @cputime_scaled: cputime scaled by cpu frequency
137 */
138void account_user_time(struct task_struct *p, cputime_t cputime,
139		       cputime_t cputime_scaled)
140{
141	int index;
142
143	/* Add user time to process. */
144	p->utime += cputime;
145	p->utimescaled += cputime_scaled;
146	account_group_user_time(p, cputime);
147
148	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149
150	/* Add user time to cpustat. */
151	task_group_account_field(p, index, (__force u64) cputime);
152
153	/* Account for user time used */
154	acct_account_cputime(p);
155}
156
157/*
158 * Account guest cpu time to a process.
159 * @p: the process that the cpu time gets accounted to
160 * @cputime: the cpu time spent in virtual machine since the last update
161 * @cputime_scaled: cputime scaled by cpu frequency
162 */
163static void account_guest_time(struct task_struct *p, cputime_t cputime,
164			       cputime_t cputime_scaled)
165{
166	u64 *cpustat = kcpustat_this_cpu->cpustat;
167
168	/* Add guest time to process. */
169	p->utime += cputime;
170	p->utimescaled += cputime_scaled;
171	account_group_user_time(p, cputime);
172	p->gtime += cputime;
173
174	/* Add guest time to cpustat. */
175	if (task_nice(p) > 0) {
176		cpustat[CPUTIME_NICE] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178	} else {
179		cpustat[CPUTIME_USER] += (__force u64) cputime;
180		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181	}
182}
183
184/*
185 * Account system cpu time to a process and desired cpustat field
186 * @p: the process that the cpu time gets accounted to
187 * @cputime: the cpu time spent in kernel space since the last update
188 * @cputime_scaled: cputime scaled by cpu frequency
189 * @target_cputime64: pointer to cpustat field that has to be updated
190 */
191static inline
192void __account_system_time(struct task_struct *p, cputime_t cputime,
193			cputime_t cputime_scaled, int index)
194{
195	/* Add system time to process. */
196	p->stime += cputime;
197	p->stimescaled += cputime_scaled;
198	account_group_system_time(p, cputime);
199
200	/* Add system time to cpustat. */
201	task_group_account_field(p, index, (__force u64) cputime);
202
203	/* Account for system time used */
204	acct_account_cputime(p);
205}
206
207/*
208 * Account system cpu time to a process.
209 * @p: the process that the cpu time gets accounted to
210 * @hardirq_offset: the offset to subtract from hardirq_count()
211 * @cputime: the cpu time spent in kernel space since the last update
212 * @cputime_scaled: cputime scaled by cpu frequency
213 */
214void account_system_time(struct task_struct *p, int hardirq_offset,
215			 cputime_t cputime, cputime_t cputime_scaled)
216{
217	int index;
218
219	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220		account_guest_time(p, cputime, cputime_scaled);
221		return;
222	}
223
224	if (hardirq_count() - hardirq_offset)
225		index = CPUTIME_IRQ;
226	else if (in_serving_softirq())
227		index = CPUTIME_SOFTIRQ;
228	else
229		index = CPUTIME_SYSTEM;
230
231	__account_system_time(p, cputime, cputime_scaled, index);
232}
233
234/*
235 * Account for involuntary wait time.
236 * @cputime: the cpu time spent in involuntary wait
237 */
238void account_steal_time(cputime_t cputime)
239{
240	u64 *cpustat = kcpustat_this_cpu->cpustat;
241
242	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243}
244
245/*
246 * Account for idle time.
247 * @cputime: the cpu time spent in idle wait
248 */
249void account_idle_time(cputime_t cputime)
250{
251	u64 *cpustat = kcpustat_this_cpu->cpustat;
252	struct rq *rq = this_rq();
253
254	if (atomic_read(&rq->nr_iowait) > 0)
255		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256	else
257		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258}
259
260static __always_inline bool steal_account_process_tick(void)
261{
262#ifdef CONFIG_PARAVIRT
263	if (static_key_false(&paravirt_steal_enabled)) {
264		u64 steal;
265		unsigned long steal_jiffies;
266
267		steal = paravirt_steal_clock(smp_processor_id());
268		steal -= this_rq()->prev_steal_time;
269
270		/*
271		 * steal is in nsecs but our caller is expecting steal
272		 * time in jiffies. Lets cast the result to jiffies
273		 * granularity and account the rest on the next rounds.
274		 */
275		steal_jiffies = nsecs_to_jiffies(steal);
276		this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
277
278		account_steal_time(jiffies_to_cputime(steal_jiffies));
279		return steal_jiffies;
280	}
281#endif
282	return false;
283}
284
285/*
286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287 * tasks (sum on group iteration) belonging to @tsk's group.
288 */
289void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290{
291	struct signal_struct *sig = tsk->signal;
292	cputime_t utime, stime;
293	struct task_struct *t;
294	unsigned int seq, nextseq;
295	unsigned long flags;
 
 
296
297	rcu_read_lock();
298	/* Attempt a lockless read on the first round. */
299	nextseq = 0;
 
 
 
300	do {
301		seq = nextseq;
302		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303		times->utime = sig->utime;
304		times->stime = sig->stime;
305		times->sum_exec_runtime = sig->sum_sched_runtime;
306
307		for_each_thread(tsk, t) {
308			task_cputime(t, &utime, &stime);
309			times->utime += utime;
310			times->stime += stime;
311			times->sum_exec_runtime += task_sched_runtime(t);
312		}
313		/* If lockless access failed, take the lock. */
314		nextseq = 1;
315	} while (need_seqretry(&sig->stats_lock, seq));
316	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317	rcu_read_unlock();
318}
319
320#ifdef CONFIG_IRQ_TIME_ACCOUNTING
321/*
322 * Account a tick to a process and cpustat
323 * @p: the process that the cpu time gets accounted to
324 * @user_tick: is the tick from userspace
325 * @rq: the pointer to rq
326 *
327 * Tick demultiplexing follows the order
328 * - pending hardirq update
329 * - pending softirq update
330 * - user_time
331 * - idle_time
332 * - system time
333 *   - check for guest_time
334 *   - else account as system_time
335 *
336 * Check for hardirq is done both for system and user time as there is
337 * no timer going off while we are on hardirq and hence we may never get an
338 * opportunity to update it solely in system time.
339 * p->stime and friends are only updated on system time and not on irq
340 * softirq as those do not count in task exec_runtime any more.
341 */
342static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343					 struct rq *rq, int ticks)
344{
345	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346	u64 cputime = (__force u64) cputime_one_jiffy;
347	u64 *cpustat = kcpustat_this_cpu->cpustat;
348
349	if (steal_account_process_tick())
350		return;
351
352	cputime *= ticks;
353	scaled *= ticks;
354
355	if (irqtime_account_hi_update()) {
356		cpustat[CPUTIME_IRQ] += cputime;
357	} else if (irqtime_account_si_update()) {
358		cpustat[CPUTIME_SOFTIRQ] += cputime;
359	} else if (this_cpu_ksoftirqd() == p) {
360		/*
361		 * ksoftirqd time do not get accounted in cpu_softirq_time.
362		 * So, we have to handle it separately here.
363		 * Also, p->stime needs to be updated for ksoftirqd.
364		 */
365		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366	} else if (user_tick) {
367		account_user_time(p, cputime, scaled);
368	} else if (p == rq->idle) {
369		account_idle_time(cputime);
370	} else if (p->flags & PF_VCPU) { /* System time or guest time */
371		account_guest_time(p, cputime, scaled);
372	} else {
373		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
374	}
375}
376
377static void irqtime_account_idle_ticks(int ticks)
378{
379	struct rq *rq = this_rq();
380
381	irqtime_account_process_tick(current, 0, rq, ticks);
382}
383#else /* CONFIG_IRQ_TIME_ACCOUNTING */
384static inline void irqtime_account_idle_ticks(int ticks) {}
385static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386						struct rq *rq, int nr_ticks) {}
387#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388
389/*
390 * Use precise platform statistics if available:
391 */
392#ifdef CONFIG_VIRT_CPU_ACCOUNTING
393
394#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395void vtime_common_task_switch(struct task_struct *prev)
396{
397	if (is_idle_task(prev))
398		vtime_account_idle(prev);
399	else
400		vtime_account_system(prev);
401
402#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403	vtime_account_user(prev);
404#endif
405	arch_vtime_task_switch(prev);
406}
407#endif
408
409/*
410 * Archs that account the whole time spent in the idle task
411 * (outside irq) as idle time can rely on this and just implement
412 * vtime_account_system() and vtime_account_idle(). Archs that
413 * have other meaning of the idle time (s390 only includes the
414 * time spent by the CPU when it's in low power mode) must override
415 * vtime_account().
416 */
417#ifndef __ARCH_HAS_VTIME_ACCOUNT
418void vtime_common_account_irq_enter(struct task_struct *tsk)
419{
420	if (!in_interrupt()) {
421		/*
422		 * If we interrupted user, context_tracking_in_user()
423		 * is 1 because the context tracking don't hook
424		 * on irq entry/exit. This way we know if
425		 * we need to flush user time on kernel entry.
426		 */
427		if (context_tracking_in_user()) {
428			vtime_account_user(tsk);
429			return;
430		}
431
432		if (is_idle_task(tsk)) {
433			vtime_account_idle(tsk);
434			return;
435		}
436	}
437	vtime_account_system(tsk);
438}
439EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440#endif /* __ARCH_HAS_VTIME_ACCOUNT */
441#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442
443
444#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446{
447	*ut = p->utime;
448	*st = p->stime;
449}
450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451
452void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453{
454	struct task_cputime cputime;
455
456	thread_group_cputime(p, &cputime);
457
458	*ut = cputime.utime;
459	*st = cputime.stime;
460}
461#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462/*
463 * Account a single tick of cpu time.
464 * @p: the process that the cpu time gets accounted to
465 * @user_tick: indicates if the tick is a user or a system tick
466 */
467void account_process_tick(struct task_struct *p, int user_tick)
468{
469	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470	struct rq *rq = this_rq();
471
472	if (vtime_accounting_cpu_enabled())
473		return;
474
475	if (sched_clock_irqtime) {
476		irqtime_account_process_tick(p, user_tick, rq, 1);
477		return;
478	}
479
480	if (steal_account_process_tick())
481		return;
482
483	if (user_tick)
484		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487				    one_jiffy_scaled);
488	else
489		account_idle_time(cputime_one_jiffy);
490}
491
492/*
493 * Account multiple ticks of steal time.
494 * @p: the process from which the cpu time has been stolen
495 * @ticks: number of stolen ticks
496 */
497void account_steal_ticks(unsigned long ticks)
498{
499	account_steal_time(jiffies_to_cputime(ticks));
500}
501
502/*
503 * Account multiple ticks of idle time.
504 * @ticks: number of stolen ticks
505 */
506void account_idle_ticks(unsigned long ticks)
507{
508
509	if (sched_clock_irqtime) {
510		irqtime_account_idle_ticks(ticks);
511		return;
512	}
513
514	account_idle_time(jiffies_to_cputime(ticks));
515}
516
517/*
518 * Perform (stime * rtime) / total, but avoid multiplication overflow by
519 * loosing precision when the numbers are big.
520 */
521static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
522{
523	u64 scaled;
524
525	for (;;) {
526		/* Make sure "rtime" is the bigger of stime/rtime */
527		if (stime > rtime)
528			swap(rtime, stime);
529
530		/* Make sure 'total' fits in 32 bits */
531		if (total >> 32)
532			goto drop_precision;
533
534		/* Does rtime (and thus stime) fit in 32 bits? */
535		if (!(rtime >> 32))
536			break;
537
538		/* Can we just balance rtime/stime rather than dropping bits? */
539		if (stime >> 31)
540			goto drop_precision;
541
542		/* We can grow stime and shrink rtime and try to make them both fit */
543		stime <<= 1;
544		rtime >>= 1;
545		continue;
546
547drop_precision:
548		/* We drop from rtime, it has more bits than stime */
549		rtime >>= 1;
550		total >>= 1;
551	}
552
553	/*
554	 * Make sure gcc understands that this is a 32x32->64 multiply,
555	 * followed by a 64/32->64 divide.
556	 */
557	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
558	return (__force cputime_t) scaled;
559}
560
561/*
562 * Adjust tick based cputime random precision against scheduler runtime
563 * accounting.
564 *
565 * Tick based cputime accounting depend on random scheduling timeslices of a
566 * task to be interrupted or not by the timer.  Depending on these
567 * circumstances, the number of these interrupts may be over or
568 * under-optimistic, matching the real user and system cputime with a variable
569 * precision.
570 *
571 * Fix this by scaling these tick based values against the total runtime
572 * accounted by the CFS scheduler.
573 *
574 * This code provides the following guarantees:
575 *
576 *   stime + utime == rtime
577 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
578 *
579 * Assuming that rtime_i+1 >= rtime_i.
580 */
581static void cputime_adjust(struct task_cputime *curr,
582			   struct prev_cputime *prev,
583			   cputime_t *ut, cputime_t *st)
584{
585	cputime_t rtime, stime, utime;
586	unsigned long flags;
587
588	/* Serialize concurrent callers such that we can honour our guarantees */
589	raw_spin_lock_irqsave(&prev->lock, flags);
 
 
 
 
 
 
 
 
590	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
591
592	/*
593	 * This is possible under two circumstances:
594	 *  - rtime isn't monotonic after all (a bug);
595	 *  - we got reordered by the lock.
596	 *
597	 * In both cases this acts as a filter such that the rest of the code
598	 * can assume it is monotonic regardless of anything else.
599	 */
600	if (prev->stime + prev->utime >= rtime)
601		goto out;
602
603	stime = curr->stime;
604	utime = curr->utime;
605
606	if (utime == 0) {
607		stime = rtime;
608		goto update;
609	}
 
 
610
611	if (stime == 0) {
612		utime = rtime;
613		goto update;
614	}
615
616	stime = scale_stime((__force u64)stime, (__force u64)rtime,
617			    (__force u64)(stime + utime));
618
619	/*
620	 * Make sure stime doesn't go backwards; this preserves monotonicity
621	 * for utime because rtime is monotonic.
622	 *
623	 *  utime_i+1 = rtime_i+1 - stime_i
624	 *            = rtime_i+1 - (rtime_i - utime_i)
625	 *            = (rtime_i+1 - rtime_i) + utime_i
626	 *            >= utime_i
627	 */
628	if (stime < prev->stime)
629		stime = prev->stime;
630	utime = rtime - stime;
631
632	/*
633	 * Make sure utime doesn't go backwards; this still preserves
634	 * monotonicity for stime, analogous argument to above.
635	 */
636	if (utime < prev->utime) {
637		utime = prev->utime;
638		stime = rtime - utime;
639	}
640
641update:
642	prev->stime = stime;
643	prev->utime = utime;
644out:
645	*ut = prev->utime;
646	*st = prev->stime;
647	raw_spin_unlock_irqrestore(&prev->lock, flags);
648}
649
650void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
651{
652	struct task_cputime cputime = {
653		.sum_exec_runtime = p->se.sum_exec_runtime,
654	};
655
656	task_cputime(p, &cputime.utime, &cputime.stime);
657	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
658}
659EXPORT_SYMBOL_GPL(task_cputime_adjusted);
660
 
 
 
661void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662{
663	struct task_cputime cputime;
664
665	thread_group_cputime(p, &cputime);
666	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
667}
668#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
669
670#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
671static cputime_t vtime_delta(struct task_struct *tsk)
672{
673	unsigned long now = READ_ONCE(jiffies);
674
675	if (time_before(now, (unsigned long)tsk->vtime_snap))
 
676		return 0;
677
678	return jiffies_to_cputime(now - tsk->vtime_snap);
679}
680
681static cputime_t get_vtime_delta(struct task_struct *tsk)
682{
683	unsigned long now = READ_ONCE(jiffies);
684	unsigned long delta = now - tsk->vtime_snap;
685
686	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
687	tsk->vtime_snap = now;
688
689	return jiffies_to_cputime(delta);
 
690}
691
692static void __vtime_account_system(struct task_struct *tsk)
693{
694	cputime_t delta_cpu = get_vtime_delta(tsk);
695
696	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
697}
698
699void vtime_account_system(struct task_struct *tsk)
700{
701	if (!vtime_delta(tsk))
702		return;
703
704	write_seqcount_begin(&tsk->vtime_seqcount);
705	__vtime_account_system(tsk);
706	write_seqcount_end(&tsk->vtime_seqcount);
707}
708
709void vtime_gen_account_irq_exit(struct task_struct *tsk)
710{
711	write_seqcount_begin(&tsk->vtime_seqcount);
712	if (vtime_delta(tsk))
713		__vtime_account_system(tsk);
714	if (context_tracking_in_user())
715		tsk->vtime_snap_whence = VTIME_USER;
716	write_seqcount_end(&tsk->vtime_seqcount);
717}
718
719void vtime_account_user(struct task_struct *tsk)
720{
721	cputime_t delta_cpu;
722
723	write_seqcount_begin(&tsk->vtime_seqcount);
 
724	tsk->vtime_snap_whence = VTIME_SYS;
725	if (vtime_delta(tsk)) {
726		delta_cpu = get_vtime_delta(tsk);
727		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
728	}
729	write_seqcount_end(&tsk->vtime_seqcount);
730}
731
732void vtime_user_enter(struct task_struct *tsk)
733{
734	write_seqcount_begin(&tsk->vtime_seqcount);
735	if (vtime_delta(tsk))
736		__vtime_account_system(tsk);
737	tsk->vtime_snap_whence = VTIME_USER;
738	write_seqcount_end(&tsk->vtime_seqcount);
739}
740
741void vtime_guest_enter(struct task_struct *tsk)
742{
743	/*
744	 * The flags must be updated under the lock with
745	 * the vtime_snap flush and update.
746	 * That enforces a right ordering and update sequence
747	 * synchronization against the reader (task_gtime())
748	 * that can thus safely catch up with a tickless delta.
749	 */
750	write_seqcount_begin(&tsk->vtime_seqcount);
751	if (vtime_delta(tsk))
752		__vtime_account_system(tsk);
753	current->flags |= PF_VCPU;
754	write_seqcount_end(&tsk->vtime_seqcount);
755}
756EXPORT_SYMBOL_GPL(vtime_guest_enter);
757
758void vtime_guest_exit(struct task_struct *tsk)
759{
760	write_seqcount_begin(&tsk->vtime_seqcount);
761	__vtime_account_system(tsk);
762	current->flags &= ~PF_VCPU;
763	write_seqcount_end(&tsk->vtime_seqcount);
764}
765EXPORT_SYMBOL_GPL(vtime_guest_exit);
766
767void vtime_account_idle(struct task_struct *tsk)
768{
769	cputime_t delta_cpu = get_vtime_delta(tsk);
770
771	account_idle_time(delta_cpu);
772}
773
774void arch_vtime_task_switch(struct task_struct *prev)
775{
776	write_seqcount_begin(&prev->vtime_seqcount);
777	prev->vtime_snap_whence = VTIME_INACTIVE;
778	write_seqcount_end(&prev->vtime_seqcount);
779
780	write_seqcount_begin(&current->vtime_seqcount);
781	current->vtime_snap_whence = VTIME_SYS;
782	current->vtime_snap = jiffies;
783	write_seqcount_end(&current->vtime_seqcount);
784}
785
786void vtime_init_idle(struct task_struct *t, int cpu)
787{
788	unsigned long flags;
789
790	local_irq_save(flags);
791	write_seqcount_begin(&t->vtime_seqcount);
792	t->vtime_snap_whence = VTIME_SYS;
793	t->vtime_snap = jiffies;
794	write_seqcount_end(&t->vtime_seqcount);
795	local_irq_restore(flags);
796}
797
798cputime_t task_gtime(struct task_struct *t)
799{
800	unsigned int seq;
801	cputime_t gtime;
802
803	if (!vtime_accounting_enabled())
804		return t->gtime;
805
806	do {
807		seq = read_seqcount_begin(&t->vtime_seqcount);
808
809		gtime = t->gtime;
810		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
811			gtime += vtime_delta(t);
812
813	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
814
815	return gtime;
816}
817
818/*
819 * Fetch cputime raw values from fields of task_struct and
820 * add up the pending nohz execution time since the last
821 * cputime snapshot.
822 */
823static void
824fetch_task_cputime(struct task_struct *t,
825		   cputime_t *u_dst, cputime_t *s_dst,
826		   cputime_t *u_src, cputime_t *s_src,
827		   cputime_t *udelta, cputime_t *sdelta)
828{
829	unsigned int seq;
830	unsigned long long delta;
831
832	do {
833		*udelta = 0;
834		*sdelta = 0;
835
836		seq = read_seqcount_begin(&t->vtime_seqcount);
837
838		if (u_dst)
839			*u_dst = *u_src;
840		if (s_dst)
841			*s_dst = *s_src;
842
843		/* Task is sleeping, nothing to add */
844		if (t->vtime_snap_whence == VTIME_INACTIVE ||
845		    is_idle_task(t))
846			continue;
847
848		delta = vtime_delta(t);
849
850		/*
851		 * Task runs either in user or kernel space, add pending nohz time to
852		 * the right place.
853		 */
854		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
855			*udelta = delta;
856		} else {
857			if (t->vtime_snap_whence == VTIME_SYS)
858				*sdelta = delta;
859		}
860	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
861}
862
863
864void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
865{
866	cputime_t udelta, sdelta;
867
868	if (!vtime_accounting_enabled()) {
869		if (utime)
870			*utime = t->utime;
871		if (stime)
872			*stime = t->stime;
873		return;
874	}
875
876	fetch_task_cputime(t, utime, stime, &t->utime,
877			   &t->stime, &udelta, &sdelta);
878	if (utime)
879		*utime += udelta;
880	if (stime)
881		*stime += sdelta;
882}
883
884void task_cputime_scaled(struct task_struct *t,
885			 cputime_t *utimescaled, cputime_t *stimescaled)
886{
887	cputime_t udelta, sdelta;
888
889	if (!vtime_accounting_enabled()) {
890		if (utimescaled)
891			*utimescaled = t->utimescaled;
892		if (stimescaled)
893			*stimescaled = t->stimescaled;
894		return;
895	}
896
897	fetch_task_cputime(t, utimescaled, stimescaled,
898			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
899	if (utimescaled)
900		*utimescaled += cputime_to_scaled(udelta);
901	if (stimescaled)
902		*stimescaled += cputime_to_scaled(sdelta);
903}
904#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */