Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/aio.h>
  36#include <linux/syscalls.h>
  37#include <linux/kexec.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
  43#include <linux/notifier.h>
  44#include <linux/rculist.h>
  45#include <linux/poll.h>
  46#include <linux/irq_work.h>
  47#include <linux/utsname.h>
 
 
  48
  49#include <asm/uaccess.h>
 
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/printk.h>
  53
  54#include "console_cmdline.h"
  55#include "braille.h"
  56
  57/* printk's without a loglevel use this.. */
  58#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
  59
  60/* We show everything that is MORE important than this.. */
  61#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
  62#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
  63
  64int console_printk[4] = {
  65	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
  66	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
  67	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
  68	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
  69};
  70
  71/*
  72 * Low level drivers may need that to know if they can schedule in
  73 * their unblank() callback or not. So let's export it.
  74 */
  75int oops_in_progress;
  76EXPORT_SYMBOL(oops_in_progress);
  77
  78/*
  79 * console_sem protects the console_drivers list, and also
  80 * provides serialisation for access to the entire console
  81 * driver system.
  82 */
  83static DEFINE_SEMAPHORE(console_sem);
  84struct console *console_drivers;
  85EXPORT_SYMBOL_GPL(console_drivers);
  86
  87#ifdef CONFIG_LOCKDEP
  88static struct lockdep_map console_lock_dep_map = {
  89	.name = "console_lock"
  90};
  91#endif
  92
  93/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94 * This is used for debugging the mess that is the VT code by
  95 * keeping track if we have the console semaphore held. It's
  96 * definitely not the perfect debug tool (we don't know if _WE_
  97 * hold it are racing, but it helps tracking those weird code
  98 * path in the console code where we end up in places I want
  99 * locked without the console sempahore held
 100 */
 101static int console_locked, console_suspended;
 102
 103/*
 104 * If exclusive_console is non-NULL then only this console is to be printed to.
 105 */
 106static struct console *exclusive_console;
 107
 108/*
 109 *	Array of consoles built from command line options (console=)
 110 */
 111
 112#define MAX_CMDLINECONSOLES 8
 113
 114static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 115
 116static int selected_console = -1;
 117static int preferred_console = -1;
 118int console_set_on_cmdline;
 119EXPORT_SYMBOL(console_set_on_cmdline);
 120
 121/* Flag: console code may call schedule() */
 122static int console_may_schedule;
 123
 124/*
 125 * The printk log buffer consists of a chain of concatenated variable
 126 * length records. Every record starts with a record header, containing
 127 * the overall length of the record.
 128 *
 129 * The heads to the first and last entry in the buffer, as well as the
 130 * sequence numbers of these both entries are maintained when messages
 131 * are stored..
 132 *
 133 * If the heads indicate available messages, the length in the header
 134 * tells the start next message. A length == 0 for the next message
 135 * indicates a wrap-around to the beginning of the buffer.
 136 *
 137 * Every record carries the monotonic timestamp in microseconds, as well as
 138 * the standard userspace syslog level and syslog facility. The usual
 139 * kernel messages use LOG_KERN; userspace-injected messages always carry
 140 * a matching syslog facility, by default LOG_USER. The origin of every
 141 * message can be reliably determined that way.
 142 *
 143 * The human readable log message directly follows the message header. The
 144 * length of the message text is stored in the header, the stored message
 145 * is not terminated.
 146 *
 147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 148 * to provide userspace with a machine-readable message context.
 149 *
 150 * Examples for well-defined, commonly used property names are:
 151 *   DEVICE=b12:8               device identifier
 152 *                                b12:8         block dev_t
 153 *                                c127:3        char dev_t
 154 *                                n8            netdev ifindex
 155 *                                +sound:card0  subsystem:devname
 156 *   SUBSYSTEM=pci              driver-core subsystem name
 157 *
 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 159 * follows directly after a '=' character. Every property is terminated by
 160 * a '\0' character. The last property is not terminated.
 161 *
 162 * Example of a message structure:
 163 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 164 *   0008  34 00                        record is 52 bytes long
 165 *   000a        0b 00                  text is 11 bytes long
 166 *   000c              1f 00            dictionary is 23 bytes long
 167 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 168 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 169 *         69 6e 65                     "ine"
 170 *   001b           44 45 56 49 43      "DEVIC"
 171 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 172 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 173 *         67                           "g"
 174 *   0032     00 00 00                  padding to next message header
 175 *
 176 * The 'struct printk_log' buffer header must never be directly exported to
 177 * userspace, it is a kernel-private implementation detail that might
 178 * need to be changed in the future, when the requirements change.
 179 *
 180 * /dev/kmsg exports the structured data in the following line format:
 181 *   "level,sequnum,timestamp;<message text>\n"
 
 
 
 182 *
 183 * The optional key/value pairs are attached as continuation lines starting
 184 * with a space character and terminated by a newline. All possible
 185 * non-prinatable characters are escaped in the "\xff" notation.
 186 *
 187 * Users of the export format should ignore possible additional values
 188 * separated by ',', and find the message after the ';' character.
 189 */
 190
 191enum log_flags {
 192	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 193	LOG_NEWLINE	= 2,	/* text ended with a newline */
 194	LOG_PREFIX	= 4,	/* text started with a prefix */
 195	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 196};
 197
 198struct printk_log {
 199	u64 ts_nsec;		/* timestamp in nanoseconds */
 200	u16 len;		/* length of entire record */
 201	u16 text_len;		/* length of text buffer */
 202	u16 dict_len;		/* length of dictionary buffer */
 203	u8 facility;		/* syslog facility */
 204	u8 flags:5;		/* internal record flags */
 205	u8 level:3;		/* syslog level */
 206};
 
 
 
 
 207
 208/*
 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
 210 * used in interesting ways to provide interlocking in console_unlock();
 
 211 */
 212static DEFINE_RAW_SPINLOCK(logbuf_lock);
 213
 214#ifdef CONFIG_PRINTK
 215DECLARE_WAIT_QUEUE_HEAD(log_wait);
 216/* the next printk record to read by syslog(READ) or /proc/kmsg */
 217static u64 syslog_seq;
 218static u32 syslog_idx;
 219static enum log_flags syslog_prev;
 220static size_t syslog_partial;
 221
 222/* index and sequence number of the first record stored in the buffer */
 223static u64 log_first_seq;
 224static u32 log_first_idx;
 225
 226/* index and sequence number of the next record to store in the buffer */
 227static u64 log_next_seq;
 228static u32 log_next_idx;
 229
 230/* the next printk record to write to the console */
 231static u64 console_seq;
 232static u32 console_idx;
 233static enum log_flags console_prev;
 234
 235/* the next printk record to read after the last 'clear' command */
 236static u64 clear_seq;
 237static u32 clear_idx;
 238
 239#define PREFIX_MAX		32
 240#define LOG_LINE_MAX		1024 - PREFIX_MAX
 
 
 
 241
 242/* record buffer */
 243#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 244#define LOG_ALIGN 4
 245#else
 246#define LOG_ALIGN __alignof__(struct printk_log)
 247#endif
 248#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 249static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 250static char *log_buf = __log_buf;
 251static u32 log_buf_len = __LOG_BUF_LEN;
 252
 253/* cpu currently holding logbuf_lock */
 254static volatile unsigned int logbuf_cpu = UINT_MAX;
 
 
 
 
 
 
 
 
 
 255
 256/* human readable text of the record */
 257static char *log_text(const struct printk_log *msg)
 258{
 259	return (char *)msg + sizeof(struct printk_log);
 260}
 261
 262/* optional key/value pair dictionary attached to the record */
 263static char *log_dict(const struct printk_log *msg)
 264{
 265	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 266}
 267
 268/* get record by index; idx must point to valid msg */
 269static struct printk_log *log_from_idx(u32 idx)
 270{
 271	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 272
 273	/*
 274	 * A length == 0 record is the end of buffer marker. Wrap around and
 275	 * read the message at the start of the buffer.
 276	 */
 277	if (!msg->len)
 278		return (struct printk_log *)log_buf;
 279	return msg;
 280}
 281
 282/* get next record; idx must point to valid msg */
 283static u32 log_next(u32 idx)
 284{
 285	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 286
 287	/* length == 0 indicates the end of the buffer; wrap */
 288	/*
 289	 * A length == 0 record is the end of buffer marker. Wrap around and
 290	 * read the message at the start of the buffer as *this* one, and
 291	 * return the one after that.
 292	 */
 293	if (!msg->len) {
 294		msg = (struct printk_log *)log_buf;
 295		return msg->len;
 296	}
 297	return idx + msg->len;
 298}
 299
 300/* insert record into the buffer, discard old ones, update heads */
 301static void log_store(int facility, int level,
 302		      enum log_flags flags, u64 ts_nsec,
 303		      const char *dict, u16 dict_len,
 304		      const char *text, u16 text_len)
 
 
 
 
 
 305{
 306	struct printk_log *msg;
 307	u32 size, pad_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308
 309	/* number of '\0' padding bytes to next message */
 310	size = sizeof(struct printk_log) + text_len + dict_len;
 311	pad_len = (-size) & (LOG_ALIGN - 1);
 312	size += pad_len;
 313
 314	while (log_first_seq < log_next_seq) {
 315		u32 free;
 316
 317		if (log_next_idx > log_first_idx)
 318			free = max(log_buf_len - log_next_idx, log_first_idx);
 319		else
 320			free = log_first_idx - log_next_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322		if (free >= size + sizeof(struct printk_log))
 323			break;
 
 
 
 
 
 
 
 324
 325		/* drop old messages until we have enough contiuous space */
 326		log_first_idx = log_next(log_first_idx);
 327		log_first_seq++;
 
 
 
 
 
 
 
 328	}
 329
 330	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 331		/*
 332		 * This message + an additional empty header does not fit
 333		 * at the end of the buffer. Add an empty header with len == 0
 334		 * to signify a wrap around.
 335		 */
 336		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 337		log_next_idx = 0;
 338	}
 339
 340	/* fill message */
 341	msg = (struct printk_log *)(log_buf + log_next_idx);
 342	memcpy(log_text(msg), text, text_len);
 343	msg->text_len = text_len;
 
 
 
 
 344	memcpy(log_dict(msg), dict, dict_len);
 345	msg->dict_len = dict_len;
 346	msg->facility = facility;
 347	msg->level = level & 7;
 348	msg->flags = flags & 0x1f;
 349	if (ts_nsec > 0)
 350		msg->ts_nsec = ts_nsec;
 351	else
 352		msg->ts_nsec = local_clock();
 353	memset(log_dict(msg) + dict_len, 0, pad_len);
 354	msg->len = size;
 355
 356	/* insert message */
 357	log_next_idx += msg->len;
 358	log_next_seq++;
 
 
 359}
 360
 361#ifdef CONFIG_SECURITY_DMESG_RESTRICT
 362int dmesg_restrict = 1;
 363#else
 364int dmesg_restrict;
 365#endif
 366
 367static int syslog_action_restricted(int type)
 368{
 369	if (dmesg_restrict)
 370		return 1;
 371	/*
 372	 * Unless restricted, we allow "read all" and "get buffer size"
 373	 * for everybody.
 374	 */
 375	return type != SYSLOG_ACTION_READ_ALL &&
 376	       type != SYSLOG_ACTION_SIZE_BUFFER;
 377}
 378
 379static int check_syslog_permissions(int type, bool from_file)
 380{
 381	/*
 382	 * If this is from /proc/kmsg and we've already opened it, then we've
 383	 * already done the capabilities checks at open time.
 384	 */
 385	if (from_file && type != SYSLOG_ACTION_OPEN)
 386		return 0;
 387
 388	if (syslog_action_restricted(type)) {
 389		if (capable(CAP_SYSLOG))
 390			return 0;
 391		/*
 392		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 393		 * a warning.
 394		 */
 395		if (capable(CAP_SYS_ADMIN)) {
 396			pr_warn_once("%s (%d): Attempt to access syslog with "
 397				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 398				     "(deprecated).\n",
 399				 current->comm, task_pid_nr(current));
 400			return 0;
 401		}
 402		return -EPERM;
 403	}
 
 404	return security_syslog(type);
 405}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 
 
 407
 408/* /dev/kmsg - userspace message inject/listen interface */
 409struct devkmsg_user {
 410	u64 seq;
 411	u32 idx;
 412	enum log_flags prev;
 413	struct mutex lock;
 414	char buf[8192];
 415};
 416
 417static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
 418			      unsigned long count, loff_t pos)
 419{
 420	char *buf, *line;
 421	int i;
 422	int level = default_message_loglevel;
 423	int facility = 1;	/* LOG_USER */
 424	size_t len = iov_length(iv, count);
 425	ssize_t ret = len;
 426
 427	if (len > LOG_LINE_MAX)
 428		return -EINVAL;
 429	buf = kmalloc(len+1, GFP_KERNEL);
 430	if (buf == NULL)
 431		return -ENOMEM;
 432
 433	line = buf;
 434	for (i = 0; i < count; i++) {
 435		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
 436			ret = -EFAULT;
 437			goto out;
 438		}
 439		line += iv[i].iov_len;
 440	}
 441
 442	/*
 443	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 444	 * the decimal value represents 32bit, the lower 3 bit are the log
 445	 * level, the rest are the log facility.
 446	 *
 447	 * If no prefix or no userspace facility is specified, we
 448	 * enforce LOG_USER, to be able to reliably distinguish
 449	 * kernel-generated messages from userspace-injected ones.
 450	 */
 451	line = buf;
 452	if (line[0] == '<') {
 453		char *endp = NULL;
 
 454
 455		i = simple_strtoul(line+1, &endp, 10);
 456		if (endp && endp[0] == '>') {
 457			level = i & 7;
 458			if (i >> 3)
 459				facility = i >> 3;
 460			endp++;
 461			len -= endp - line;
 462			line = endp;
 463		}
 464	}
 465	line[len] = '\0';
 466
 467	printk_emit(facility, level, NULL, 0, "%s", line);
 468out:
 469	kfree(buf);
 470	return ret;
 471}
 472
 473static ssize_t devkmsg_read(struct file *file, char __user *buf,
 474			    size_t count, loff_t *ppos)
 475{
 476	struct devkmsg_user *user = file->private_data;
 477	struct printk_log *msg;
 478	u64 ts_usec;
 479	size_t i;
 480	char cont = '-';
 481	size_t len;
 482	ssize_t ret;
 483
 484	if (!user)
 485		return -EBADF;
 486
 487	ret = mutex_lock_interruptible(&user->lock);
 488	if (ret)
 489		return ret;
 490	raw_spin_lock_irq(&logbuf_lock);
 491	while (user->seq == log_next_seq) {
 492		if (file->f_flags & O_NONBLOCK) {
 493			ret = -EAGAIN;
 494			raw_spin_unlock_irq(&logbuf_lock);
 495			goto out;
 496		}
 497
 498		raw_spin_unlock_irq(&logbuf_lock);
 499		ret = wait_event_interruptible(log_wait,
 500					       user->seq != log_next_seq);
 501		if (ret)
 502			goto out;
 503		raw_spin_lock_irq(&logbuf_lock);
 504	}
 505
 506	if (user->seq < log_first_seq) {
 507		/* our last seen message is gone, return error and reset */
 508		user->idx = log_first_idx;
 509		user->seq = log_first_seq;
 510		ret = -EPIPE;
 511		raw_spin_unlock_irq(&logbuf_lock);
 512		goto out;
 513	}
 514
 515	msg = log_from_idx(user->idx);
 516	ts_usec = msg->ts_nsec;
 517	do_div(ts_usec, 1000);
 518
 519	/*
 520	 * If we couldn't merge continuation line fragments during the print,
 521	 * export the stored flags to allow an optional external merge of the
 522	 * records. Merging the records isn't always neccessarily correct, like
 523	 * when we hit a race during printing. In most cases though, it produces
 524	 * better readable output. 'c' in the record flags mark the first
 525	 * fragment of a line, '+' the following.
 526	 */
 527	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
 528		cont = 'c';
 529	else if ((msg->flags & LOG_CONT) ||
 530		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 531		cont = '+';
 532
 533	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
 534		      (msg->facility << 3) | msg->level,
 535		      user->seq, ts_usec, cont);
 536	user->prev = msg->flags;
 537
 538	/* escape non-printable characters */
 539	for (i = 0; i < msg->text_len; i++) {
 540		unsigned char c = log_text(msg)[i];
 541
 542		if (c < ' ' || c >= 127 || c == '\\')
 543			len += sprintf(user->buf + len, "\\x%02x", c);
 544		else
 545			user->buf[len++] = c;
 546	}
 547	user->buf[len++] = '\n';
 548
 549	if (msg->dict_len) {
 550		bool line = true;
 551
 552		for (i = 0; i < msg->dict_len; i++) {
 553			unsigned char c = log_dict(msg)[i];
 554
 555			if (line) {
 556				user->buf[len++] = ' ';
 557				line = false;
 558			}
 559
 560			if (c == '\0') {
 561				user->buf[len++] = '\n';
 562				line = true;
 563				continue;
 564			}
 565
 566			if (c < ' ' || c >= 127 || c == '\\') {
 567				len += sprintf(user->buf + len, "\\x%02x", c);
 568				continue;
 569			}
 570
 571			user->buf[len++] = c;
 572		}
 573		user->buf[len++] = '\n';
 574	}
 575
 576	user->idx = log_next(user->idx);
 577	user->seq++;
 578	raw_spin_unlock_irq(&logbuf_lock);
 579
 580	if (len > count) {
 581		ret = -EINVAL;
 582		goto out;
 583	}
 584
 585	if (copy_to_user(buf, user->buf, len)) {
 586		ret = -EFAULT;
 587		goto out;
 588	}
 589	ret = len;
 590out:
 591	mutex_unlock(&user->lock);
 592	return ret;
 593}
 594
 595static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 596{
 597	struct devkmsg_user *user = file->private_data;
 598	loff_t ret = 0;
 599
 600	if (!user)
 601		return -EBADF;
 602	if (offset)
 603		return -ESPIPE;
 604
 605	raw_spin_lock_irq(&logbuf_lock);
 606	switch (whence) {
 607	case SEEK_SET:
 608		/* the first record */
 609		user->idx = log_first_idx;
 610		user->seq = log_first_seq;
 611		break;
 612	case SEEK_DATA:
 613		/*
 614		 * The first record after the last SYSLOG_ACTION_CLEAR,
 615		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 616		 * changes no global state, and does not clear anything.
 617		 */
 618		user->idx = clear_idx;
 619		user->seq = clear_seq;
 620		break;
 621	case SEEK_END:
 622		/* after the last record */
 623		user->idx = log_next_idx;
 624		user->seq = log_next_seq;
 625		break;
 626	default:
 627		ret = -EINVAL;
 628	}
 629	raw_spin_unlock_irq(&logbuf_lock);
 630	return ret;
 631}
 632
 633static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 634{
 635	struct devkmsg_user *user = file->private_data;
 636	int ret = 0;
 637
 638	if (!user)
 639		return POLLERR|POLLNVAL;
 640
 641	poll_wait(file, &log_wait, wait);
 642
 643	raw_spin_lock_irq(&logbuf_lock);
 644	if (user->seq < log_next_seq) {
 645		/* return error when data has vanished underneath us */
 646		if (user->seq < log_first_seq)
 647			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 648		else
 649			ret = POLLIN|POLLRDNORM;
 650	}
 651	raw_spin_unlock_irq(&logbuf_lock);
 652
 653	return ret;
 654}
 655
 656static int devkmsg_open(struct inode *inode, struct file *file)
 657{
 658	struct devkmsg_user *user;
 659	int err;
 660
 661	/* write-only does not need any file context */
 662	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 663		return 0;
 664
 665	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 666				       SYSLOG_FROM_READER);
 667	if (err)
 668		return err;
 669
 670	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 671	if (!user)
 672		return -ENOMEM;
 673
 674	mutex_init(&user->lock);
 675
 676	raw_spin_lock_irq(&logbuf_lock);
 677	user->idx = log_first_idx;
 678	user->seq = log_first_seq;
 679	raw_spin_unlock_irq(&logbuf_lock);
 680
 681	file->private_data = user;
 682	return 0;
 683}
 684
 685static int devkmsg_release(struct inode *inode, struct file *file)
 686{
 687	struct devkmsg_user *user = file->private_data;
 688
 689	if (!user)
 690		return 0;
 691
 692	mutex_destroy(&user->lock);
 693	kfree(user);
 694	return 0;
 695}
 696
 697const struct file_operations kmsg_fops = {
 698	.open = devkmsg_open,
 699	.read = devkmsg_read,
 700	.aio_write = devkmsg_writev,
 701	.llseek = devkmsg_llseek,
 702	.poll = devkmsg_poll,
 703	.release = devkmsg_release,
 704};
 705
 706#ifdef CONFIG_KEXEC
 707/*
 708 * This appends the listed symbols to /proc/vmcore
 709 *
 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 711 * obtain access to symbols that are otherwise very difficult to locate.  These
 712 * symbols are specifically used so that utilities can access and extract the
 713 * dmesg log from a vmcore file after a crash.
 714 */
 715void log_buf_kexec_setup(void)
 716{
 717	VMCOREINFO_SYMBOL(log_buf);
 718	VMCOREINFO_SYMBOL(log_buf_len);
 719	VMCOREINFO_SYMBOL(log_first_idx);
 
 720	VMCOREINFO_SYMBOL(log_next_idx);
 721	/*
 722	 * Export struct printk_log size and field offsets. User space tools can
 723	 * parse it and detect any changes to structure down the line.
 724	 */
 725	VMCOREINFO_STRUCT_SIZE(printk_log);
 726	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 727	VMCOREINFO_OFFSET(printk_log, len);
 728	VMCOREINFO_OFFSET(printk_log, text_len);
 729	VMCOREINFO_OFFSET(printk_log, dict_len);
 730}
 731#endif
 732
 733/* requested log_buf_len from kernel cmdline */
 734static unsigned long __initdata new_log_buf_len;
 735
 736/* save requested log_buf_len since it's too early to process it */
 737static int __init log_buf_len_setup(char *str)
 738{
 739	unsigned size = memparse(str, &str);
 740
 741	if (size)
 742		size = roundup_pow_of_two(size);
 743	if (size > log_buf_len)
 744		new_log_buf_len = size;
 
 
 
 
 
 
 
 
 745
 746	return 0;
 747}
 748early_param("log_buf_len", log_buf_len_setup);
 749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750void __init setup_log_buf(int early)
 751{
 752	unsigned long flags;
 753	char *new_log_buf;
 754	int free;
 755
 
 
 
 
 
 
 756	if (!new_log_buf_len)
 757		return;
 758
 759	if (early) {
 760		new_log_buf =
 761			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
 762	} else {
 763		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
 
 764	}
 765
 766	if (unlikely(!new_log_buf)) {
 767		pr_err("log_buf_len: %ld bytes not available\n",
 768			new_log_buf_len);
 769		return;
 770	}
 771
 772	raw_spin_lock_irqsave(&logbuf_lock, flags);
 773	log_buf_len = new_log_buf_len;
 774	log_buf = new_log_buf;
 775	new_log_buf_len = 0;
 776	free = __LOG_BUF_LEN - log_next_idx;
 777	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 778	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 779
 780	pr_info("log_buf_len: %d\n", log_buf_len);
 781	pr_info("early log buf free: %d(%d%%)\n",
 782		free, (free * 100) / __LOG_BUF_LEN);
 783}
 784
 785static bool __read_mostly ignore_loglevel;
 786
 787static int __init ignore_loglevel_setup(char *str)
 788{
 789	ignore_loglevel = 1;
 790	pr_info("debug: ignoring loglevel setting.\n");
 791
 792	return 0;
 793}
 794
 795early_param("ignore_loglevel", ignore_loglevel_setup);
 796module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 797MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
 798	"print all kernel messages to the console.");
 799
 800#ifdef CONFIG_BOOT_PRINTK_DELAY
 801
 802static int boot_delay; /* msecs delay after each printk during bootup */
 803static unsigned long long loops_per_msec;	/* based on boot_delay */
 804
 805static int __init boot_delay_setup(char *str)
 806{
 807	unsigned long lpj;
 808
 809	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 810	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 811
 812	get_option(&str, &boot_delay);
 813	if (boot_delay > 10 * 1000)
 814		boot_delay = 0;
 815
 816	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
 817		"HZ: %d, loops_per_msec: %llu\n",
 818		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
 819	return 0;
 820}
 821early_param("boot_delay", boot_delay_setup);
 822
 823static void boot_delay_msec(int level)
 824{
 825	unsigned long long k;
 826	unsigned long timeout;
 827
 828	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
 829		|| (level >= console_loglevel && !ignore_loglevel)) {
 830		return;
 831	}
 832
 833	k = (unsigned long long)loops_per_msec * boot_delay;
 834
 835	timeout = jiffies + msecs_to_jiffies(boot_delay);
 836	while (k) {
 837		k--;
 838		cpu_relax();
 839		/*
 840		 * use (volatile) jiffies to prevent
 841		 * compiler reduction; loop termination via jiffies
 842		 * is secondary and may or may not happen.
 843		 */
 844		if (time_after(jiffies, timeout))
 845			break;
 846		touch_nmi_watchdog();
 847	}
 848}
 849#else
 850static inline void boot_delay_msec(int level)
 851{
 852}
 853#endif
 854
 855#if defined(CONFIG_PRINTK_TIME)
 856static bool printk_time = 1;
 857#else
 858static bool printk_time;
 859#endif
 860module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
 861
 862static size_t print_time(u64 ts, char *buf)
 863{
 864	unsigned long rem_nsec;
 865
 866	if (!printk_time)
 867		return 0;
 868
 869	rem_nsec = do_div(ts, 1000000000);
 870
 871	if (!buf)
 872		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 873
 874	return sprintf(buf, "[%5lu.%06lu] ",
 875		       (unsigned long)ts, rem_nsec / 1000);
 876}
 877
 878static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 879{
 880	size_t len = 0;
 881	unsigned int prefix = (msg->facility << 3) | msg->level;
 882
 883	if (syslog) {
 884		if (buf) {
 885			len += sprintf(buf, "<%u>", prefix);
 886		} else {
 887			len += 3;
 888			if (prefix > 999)
 889				len += 3;
 890			else if (prefix > 99)
 891				len += 2;
 892			else if (prefix > 9)
 893				len++;
 894		}
 895	}
 896
 897	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
 898	return len;
 899}
 900
 901static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
 902			     bool syslog, char *buf, size_t size)
 903{
 904	const char *text = log_text(msg);
 905	size_t text_size = msg->text_len;
 906	bool prefix = true;
 907	bool newline = true;
 908	size_t len = 0;
 909
 910	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
 911		prefix = false;
 912
 913	if (msg->flags & LOG_CONT) {
 914		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
 915			prefix = false;
 916
 917		if (!(msg->flags & LOG_NEWLINE))
 918			newline = false;
 919	}
 920
 921	do {
 922		const char *next = memchr(text, '\n', text_size);
 923		size_t text_len;
 924
 925		if (next) {
 926			text_len = next - text;
 927			next++;
 928			text_size -= next - text;
 929		} else {
 930			text_len = text_size;
 931		}
 932
 933		if (buf) {
 934			if (print_prefix(msg, syslog, NULL) +
 935			    text_len + 1 >= size - len)
 936				break;
 937
 938			if (prefix)
 939				len += print_prefix(msg, syslog, buf + len);
 940			memcpy(buf + len, text, text_len);
 941			len += text_len;
 942			if (next || newline)
 943				buf[len++] = '\n';
 944		} else {
 945			/* SYSLOG_ACTION_* buffer size only calculation */
 946			if (prefix)
 947				len += print_prefix(msg, syslog, NULL);
 948			len += text_len;
 949			if (next || newline)
 950				len++;
 951		}
 952
 953		prefix = true;
 954		text = next;
 955	} while (text);
 956
 957	return len;
 958}
 959
 960static int syslog_print(char __user *buf, int size)
 961{
 962	char *text;
 963	struct printk_log *msg;
 964	int len = 0;
 965
 966	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
 967	if (!text)
 968		return -ENOMEM;
 969
 970	while (size > 0) {
 971		size_t n;
 972		size_t skip;
 973
 974		raw_spin_lock_irq(&logbuf_lock);
 975		if (syslog_seq < log_first_seq) {
 976			/* messages are gone, move to first one */
 977			syslog_seq = log_first_seq;
 978			syslog_idx = log_first_idx;
 979			syslog_prev = 0;
 980			syslog_partial = 0;
 981		}
 982		if (syslog_seq == log_next_seq) {
 983			raw_spin_unlock_irq(&logbuf_lock);
 984			break;
 985		}
 986
 987		skip = syslog_partial;
 988		msg = log_from_idx(syslog_idx);
 989		n = msg_print_text(msg, syslog_prev, true, text,
 990				   LOG_LINE_MAX + PREFIX_MAX);
 991		if (n - syslog_partial <= size) {
 992			/* message fits into buffer, move forward */
 993			syslog_idx = log_next(syslog_idx);
 994			syslog_seq++;
 995			syslog_prev = msg->flags;
 996			n -= syslog_partial;
 997			syslog_partial = 0;
 998		} else if (!len){
 999			/* partial read(), remember position */
1000			n = size;
1001			syslog_partial += n;
1002		} else
1003			n = 0;
1004		raw_spin_unlock_irq(&logbuf_lock);
1005
1006		if (!n)
1007			break;
1008
1009		if (copy_to_user(buf, text + skip, n)) {
1010			if (!len)
1011				len = -EFAULT;
1012			break;
1013		}
1014
1015		len += n;
1016		size -= n;
1017		buf += n;
1018	}
1019
1020	kfree(text);
1021	return len;
1022}
1023
1024static int syslog_print_all(char __user *buf, int size, bool clear)
1025{
1026	char *text;
1027	int len = 0;
1028
1029	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030	if (!text)
1031		return -ENOMEM;
1032
1033	raw_spin_lock_irq(&logbuf_lock);
1034	if (buf) {
1035		u64 next_seq;
1036		u64 seq;
1037		u32 idx;
1038		enum log_flags prev;
1039
1040		if (clear_seq < log_first_seq) {
1041			/* messages are gone, move to first available one */
1042			clear_seq = log_first_seq;
1043			clear_idx = log_first_idx;
1044		}
1045
1046		/*
1047		 * Find first record that fits, including all following records,
1048		 * into the user-provided buffer for this dump.
1049		 */
1050		seq = clear_seq;
1051		idx = clear_idx;
1052		prev = 0;
1053		while (seq < log_next_seq) {
1054			struct printk_log *msg = log_from_idx(idx);
1055
1056			len += msg_print_text(msg, prev, true, NULL, 0);
1057			prev = msg->flags;
1058			idx = log_next(idx);
1059			seq++;
1060		}
1061
1062		/* move first record forward until length fits into the buffer */
1063		seq = clear_seq;
1064		idx = clear_idx;
1065		prev = 0;
1066		while (len > size && seq < log_next_seq) {
1067			struct printk_log *msg = log_from_idx(idx);
1068
1069			len -= msg_print_text(msg, prev, true, NULL, 0);
1070			prev = msg->flags;
1071			idx = log_next(idx);
1072			seq++;
1073		}
1074
1075		/* last message fitting into this dump */
1076		next_seq = log_next_seq;
1077
1078		len = 0;
1079		while (len >= 0 && seq < next_seq) {
1080			struct printk_log *msg = log_from_idx(idx);
1081			int textlen;
1082
1083			textlen = msg_print_text(msg, prev, true, text,
1084						 LOG_LINE_MAX + PREFIX_MAX);
1085			if (textlen < 0) {
1086				len = textlen;
1087				break;
1088			}
1089			idx = log_next(idx);
1090			seq++;
1091			prev = msg->flags;
1092
1093			raw_spin_unlock_irq(&logbuf_lock);
1094			if (copy_to_user(buf + len, text, textlen))
1095				len = -EFAULT;
1096			else
1097				len += textlen;
1098			raw_spin_lock_irq(&logbuf_lock);
1099
1100			if (seq < log_first_seq) {
1101				/* messages are gone, move to next one */
1102				seq = log_first_seq;
1103				idx = log_first_idx;
1104				prev = 0;
1105			}
1106		}
1107	}
1108
1109	if (clear) {
1110		clear_seq = log_next_seq;
1111		clear_idx = log_next_idx;
1112	}
1113	raw_spin_unlock_irq(&logbuf_lock);
1114
1115	kfree(text);
1116	return len;
1117}
1118
1119int do_syslog(int type, char __user *buf, int len, bool from_file)
1120{
1121	bool clear = false;
1122	static int saved_console_loglevel = -1;
1123	int error;
1124
1125	error = check_syslog_permissions(type, from_file);
1126	if (error)
1127		goto out;
1128
1129	error = security_syslog(type);
1130	if (error)
1131		return error;
1132
1133	switch (type) {
1134	case SYSLOG_ACTION_CLOSE:	/* Close log */
1135		break;
1136	case SYSLOG_ACTION_OPEN:	/* Open log */
1137		break;
1138	case SYSLOG_ACTION_READ:	/* Read from log */
1139		error = -EINVAL;
1140		if (!buf || len < 0)
1141			goto out;
1142		error = 0;
1143		if (!len)
1144			goto out;
1145		if (!access_ok(VERIFY_WRITE, buf, len)) {
1146			error = -EFAULT;
1147			goto out;
1148		}
1149		error = wait_event_interruptible(log_wait,
1150						 syslog_seq != log_next_seq);
1151		if (error)
1152			goto out;
1153		error = syslog_print(buf, len);
1154		break;
1155	/* Read/clear last kernel messages */
1156	case SYSLOG_ACTION_READ_CLEAR:
1157		clear = true;
1158		/* FALL THRU */
1159	/* Read last kernel messages */
1160	case SYSLOG_ACTION_READ_ALL:
1161		error = -EINVAL;
1162		if (!buf || len < 0)
1163			goto out;
1164		error = 0;
1165		if (!len)
1166			goto out;
1167		if (!access_ok(VERIFY_WRITE, buf, len)) {
1168			error = -EFAULT;
1169			goto out;
1170		}
1171		error = syslog_print_all(buf, len, clear);
1172		break;
1173	/* Clear ring buffer */
1174	case SYSLOG_ACTION_CLEAR:
1175		syslog_print_all(NULL, 0, true);
1176		break;
1177	/* Disable logging to console */
1178	case SYSLOG_ACTION_CONSOLE_OFF:
1179		if (saved_console_loglevel == -1)
1180			saved_console_loglevel = console_loglevel;
1181		console_loglevel = minimum_console_loglevel;
1182		break;
1183	/* Enable logging to console */
1184	case SYSLOG_ACTION_CONSOLE_ON:
1185		if (saved_console_loglevel != -1) {
1186			console_loglevel = saved_console_loglevel;
1187			saved_console_loglevel = -1;
1188		}
1189		break;
1190	/* Set level of messages printed to console */
1191	case SYSLOG_ACTION_CONSOLE_LEVEL:
1192		error = -EINVAL;
1193		if (len < 1 || len > 8)
1194			goto out;
1195		if (len < minimum_console_loglevel)
1196			len = minimum_console_loglevel;
1197		console_loglevel = len;
1198		/* Implicitly re-enable logging to console */
1199		saved_console_loglevel = -1;
1200		error = 0;
1201		break;
1202	/* Number of chars in the log buffer */
1203	case SYSLOG_ACTION_SIZE_UNREAD:
1204		raw_spin_lock_irq(&logbuf_lock);
1205		if (syslog_seq < log_first_seq) {
1206			/* messages are gone, move to first one */
1207			syslog_seq = log_first_seq;
1208			syslog_idx = log_first_idx;
1209			syslog_prev = 0;
1210			syslog_partial = 0;
1211		}
1212		if (from_file) {
1213			/*
1214			 * Short-cut for poll(/"proc/kmsg") which simply checks
1215			 * for pending data, not the size; return the count of
1216			 * records, not the length.
1217			 */
1218			error = log_next_idx - syslog_idx;
1219		} else {
1220			u64 seq = syslog_seq;
1221			u32 idx = syslog_idx;
1222			enum log_flags prev = syslog_prev;
1223
1224			error = 0;
1225			while (seq < log_next_seq) {
1226				struct printk_log *msg = log_from_idx(idx);
1227
1228				error += msg_print_text(msg, prev, true, NULL, 0);
1229				idx = log_next(idx);
1230				seq++;
1231				prev = msg->flags;
1232			}
1233			error -= syslog_partial;
1234		}
1235		raw_spin_unlock_irq(&logbuf_lock);
1236		break;
1237	/* Size of the log buffer */
1238	case SYSLOG_ACTION_SIZE_BUFFER:
1239		error = log_buf_len;
1240		break;
1241	default:
1242		error = -EINVAL;
1243		break;
1244	}
1245out:
1246	return error;
1247}
1248
1249SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250{
1251	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252}
1253
1254/*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259static void call_console_drivers(int level, const char *text, size_t len)
 
 
1260{
1261	struct console *con;
1262
1263	trace_console(text, len);
1264
1265	if (level >= console_loglevel && !ignore_loglevel)
1266		return;
1267	if (!console_drivers)
1268		return;
1269
1270	for_each_console(con) {
1271		if (exclusive_console && con != exclusive_console)
1272			continue;
1273		if (!(con->flags & CON_ENABLED))
1274			continue;
1275		if (!con->write)
1276			continue;
1277		if (!cpu_online(smp_processor_id()) &&
1278		    !(con->flags & CON_ANYTIME))
1279			continue;
1280		con->write(con, text, len);
 
 
 
1281	}
1282}
1283
1284/*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
1288 */
1289static void zap_locks(void)
1290{
1291	static unsigned long oops_timestamp;
1292
1293	if (time_after_eq(jiffies, oops_timestamp) &&
1294			!time_after(jiffies, oops_timestamp + 30 * HZ))
1295		return;
1296
1297	oops_timestamp = jiffies;
1298
1299	debug_locks_off();
1300	/* If a crash is occurring, make sure we can't deadlock */
1301	raw_spin_lock_init(&logbuf_lock);
1302	/* And make sure that we print immediately */
1303	sema_init(&console_sem, 1);
1304}
1305
1306/* Check if we have any console registered that can be called early in boot. */
1307static int have_callable_console(void)
1308{
1309	struct console *con;
1310
1311	for_each_console(con)
1312		if (con->flags & CON_ANYTIME)
1313			return 1;
1314
1315	return 0;
1316}
1317
1318/*
1319 * Can we actually use the console at this time on this cpu?
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326static inline int can_use_console(unsigned int cpu)
1327{
1328	return cpu_online(cpu) || have_callable_console();
1329}
1330
1331/*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341static int console_trylock_for_printk(unsigned int cpu)
1342	__releases(&logbuf_lock)
1343{
1344	int retval = 0, wake = 0;
1345
1346	if (console_trylock()) {
1347		retval = 1;
1348
1349		/*
1350		 * If we can't use the console, we need to release
1351		 * the console semaphore by hand to avoid flushing
1352		 * the buffer. We need to hold the console semaphore
1353		 * in order to do this test safely.
1354		 */
1355		if (!can_use_console(cpu)) {
1356			console_locked = 0;
1357			wake = 1;
1358			retval = 0;
1359		}
1360	}
1361	logbuf_cpu = UINT_MAX;
1362	raw_spin_unlock(&logbuf_lock);
1363	if (wake)
1364		up(&console_sem);
1365	return retval;
1366}
1367
1368int printk_delay_msec __read_mostly;
1369
1370static inline void printk_delay(void)
1371{
1372	if (unlikely(printk_delay_msec)) {
1373		int m = printk_delay_msec;
1374
1375		while (m--) {
1376			mdelay(1);
1377			touch_nmi_watchdog();
1378		}
1379	}
1380}
1381
1382/*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388static struct cont {
1389	char buf[LOG_LINE_MAX];
1390	size_t len;			/* length == 0 means unused buffer */
1391	size_t cons;			/* bytes written to console */
1392	struct task_struct *owner;	/* task of first print*/
1393	u64 ts_nsec;			/* time of first print */
1394	u8 level;			/* log level of first message */
1395	u8 facility;			/* log level of first message */
1396	enum log_flags flags;		/* prefix, newline flags */
1397	bool flushed:1;			/* buffer sealed and committed */
1398} cont;
1399
1400static void cont_flush(enum log_flags flags)
1401{
1402	if (cont.flushed)
1403		return;
1404	if (cont.len == 0)
1405		return;
1406
1407	if (cont.cons) {
1408		/*
1409		 * If a fragment of this line was directly flushed to the
1410		 * console; wait for the console to pick up the rest of the
1411		 * line. LOG_NOCONS suppresses a duplicated output.
1412		 */
1413		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415		cont.flags = flags;
1416		cont.flushed = true;
1417	} else {
1418		/*
1419		 * If no fragment of this line ever reached the console,
1420		 * just submit it to the store and free the buffer.
1421		 */
1422		log_store(cont.facility, cont.level, flags, 0,
1423			  NULL, 0, cont.buf, cont.len);
1424		cont.len = 0;
1425	}
1426}
1427
1428static bool cont_add(int facility, int level, const char *text, size_t len)
1429{
1430	if (cont.len && cont.flushed)
1431		return false;
1432
1433	if (cont.len + len > sizeof(cont.buf)) {
1434		/* the line gets too long, split it up in separate records */
 
 
 
 
1435		cont_flush(LOG_CONT);
1436		return false;
1437	}
1438
1439	if (!cont.len) {
1440		cont.facility = facility;
1441		cont.level = level;
1442		cont.owner = current;
1443		cont.ts_nsec = local_clock();
1444		cont.flags = 0;
1445		cont.cons = 0;
1446		cont.flushed = false;
1447	}
1448
1449	memcpy(cont.buf + cont.len, text, len);
1450	cont.len += len;
1451
1452	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453		cont_flush(LOG_CONT);
1454
1455	return true;
1456}
1457
1458static size_t cont_print_text(char *text, size_t size)
1459{
1460	size_t textlen = 0;
1461	size_t len;
1462
1463	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464		textlen += print_time(cont.ts_nsec, text);
1465		size -= textlen;
1466	}
1467
1468	len = cont.len - cont.cons;
1469	if (len > 0) {
1470		if (len+1 > size)
1471			len = size-1;
1472		memcpy(text + textlen, cont.buf + cont.cons, len);
1473		textlen += len;
1474		cont.cons = cont.len;
1475	}
1476
1477	if (cont.flushed) {
1478		if (cont.flags & LOG_NEWLINE)
1479			text[textlen++] = '\n';
1480		/* got everything, release buffer */
1481		cont.len = 0;
1482	}
1483	return textlen;
1484}
1485
1486asmlinkage int vprintk_emit(int facility, int level,
1487			    const char *dict, size_t dictlen,
1488			    const char *fmt, va_list args)
1489{
1490	static int recursion_bug;
1491	static char textbuf[LOG_LINE_MAX];
1492	char *text = textbuf;
1493	size_t text_len;
1494	enum log_flags lflags = 0;
1495	unsigned long flags;
1496	int this_cpu;
1497	int printed_len = 0;
 
 
 
 
 
 
 
 
1498
1499	boot_delay_msec(level);
1500	printk_delay();
1501
1502	/* This stops the holder of console_sem just where we want him */
1503	local_irq_save(flags);
1504	this_cpu = smp_processor_id();
1505
1506	/*
1507	 * Ouch, printk recursed into itself!
1508	 */
1509	if (unlikely(logbuf_cpu == this_cpu)) {
1510		/*
1511		 * If a crash is occurring during printk() on this CPU,
1512		 * then try to get the crash message out but make sure
1513		 * we can't deadlock. Otherwise just return to avoid the
1514		 * recursion and return - but flag the recursion so that
1515		 * it can be printed at the next appropriate moment:
1516		 */
1517		if (!oops_in_progress && !lockdep_recursing(current)) {
1518			recursion_bug = 1;
1519			goto out_restore_irqs;
 
1520		}
1521		zap_locks();
1522	}
1523
1524	lockdep_off();
 
1525	raw_spin_lock(&logbuf_lock);
1526	logbuf_cpu = this_cpu;
1527
1528	if (recursion_bug) {
1529		static const char recursion_msg[] =
1530			"BUG: recent printk recursion!";
1531
1532		recursion_bug = 0;
1533		printed_len += strlen(recursion_msg);
1534		/* emit KERN_CRIT message */
1535		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536			  NULL, 0, recursion_msg, printed_len);
 
1537	}
1538
1539	/*
1540	 * The printf needs to come first; we need the syslog
1541	 * prefix which might be passed-in as a parameter.
1542	 */
1543	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1544
1545	/* mark and strip a trailing newline */
1546	if (text_len && text[text_len-1] == '\n') {
1547		text_len--;
1548		lflags |= LOG_NEWLINE;
1549	}
1550
1551	/* strip kernel syslog prefix and extract log level or control flags */
1552	if (facility == 0) {
1553		int kern_level = printk_get_level(text);
1554
1555		if (kern_level) {
1556			const char *end_of_header = printk_skip_level(text);
1557			switch (kern_level) {
1558			case '0' ... '7':
1559				if (level == -1)
1560					level = kern_level - '0';
 
1561			case 'd':	/* KERN_DEFAULT */
1562				lflags |= LOG_PREFIX;
1563			}
1564			/*
1565			 * No need to check length here because vscnprintf
1566			 * put '\0' at the end of the string. Only valid and
1567			 * newly printed level is detected.
1568			 */
1569			text_len -= end_of_header - text;
1570			text = (char *)end_of_header;
1571		}
1572	}
1573
1574	if (level == -1)
1575		level = default_message_loglevel;
1576
1577	if (dict)
1578		lflags |= LOG_PREFIX|LOG_NEWLINE;
1579
1580	if (!(lflags & LOG_NEWLINE)) {
1581		/*
1582		 * Flush the conflicting buffer. An earlier newline was missing,
1583		 * or another task also prints continuation lines.
1584		 */
1585		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1586			cont_flush(LOG_NEWLINE);
1587
1588		/* buffer line if possible, otherwise store it right away */
1589		if (!cont_add(facility, level, text, text_len))
1590			log_store(facility, level, lflags | LOG_CONT, 0,
1591				  dict, dictlen, text, text_len);
 
 
 
1592	} else {
1593		bool stored = false;
1594
1595		/*
1596		 * If an earlier newline was missing and it was the same task,
1597		 * either merge it with the current buffer and flush, or if
1598		 * there was a race with interrupts (prefix == true) then just
1599		 * flush it out and store this line separately.
1600		 * If the preceding printk was from a different task and missed
1601		 * a newline, flush and append the newline.
1602		 */
1603		if (cont.len) {
1604			if (cont.owner == current && !(lflags & LOG_PREFIX))
1605				stored = cont_add(facility, level, text,
1606						  text_len);
1607			cont_flush(LOG_NEWLINE);
1608		}
1609
1610		if (!stored)
1611			log_store(facility, level, lflags, 0,
1612				  dict, dictlen, text, text_len);
 
 
1613	}
1614	printed_len += text_len;
1615
1616	/*
1617	 * Try to acquire and then immediately release the console semaphore.
1618	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1619	 * users.
1620	 *
1621	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1622	 * regardless of whether it actually gets the console semaphore or not.
1623	 */
1624	if (console_trylock_for_printk(this_cpu))
1625		console_unlock();
1626
 
 
1627	lockdep_on();
1628out_restore_irqs:
1629	local_irq_restore(flags);
1630
 
 
 
 
 
 
 
 
 
 
 
 
 
1631	return printed_len;
1632}
1633EXPORT_SYMBOL(vprintk_emit);
1634
1635asmlinkage int vprintk(const char *fmt, va_list args)
1636{
1637	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1638}
1639EXPORT_SYMBOL(vprintk);
1640
1641asmlinkage int printk_emit(int facility, int level,
1642			   const char *dict, size_t dictlen,
1643			   const char *fmt, ...)
1644{
1645	va_list args;
1646	int r;
1647
1648	va_start(args, fmt);
1649	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1650	va_end(args);
1651
1652	return r;
1653}
1654EXPORT_SYMBOL(printk_emit);
1655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656/**
1657 * printk - print a kernel message
1658 * @fmt: format string
1659 *
1660 * This is printk(). It can be called from any context. We want it to work.
1661 *
1662 * We try to grab the console_lock. If we succeed, it's easy - we log the
1663 * output and call the console drivers.  If we fail to get the semaphore, we
1664 * place the output into the log buffer and return. The current holder of
1665 * the console_sem will notice the new output in console_unlock(); and will
1666 * send it to the consoles before releasing the lock.
1667 *
1668 * One effect of this deferred printing is that code which calls printk() and
1669 * then changes console_loglevel may break. This is because console_loglevel
1670 * is inspected when the actual printing occurs.
1671 *
1672 * See also:
1673 * printf(3)
1674 *
1675 * See the vsnprintf() documentation for format string extensions over C99.
1676 */
1677asmlinkage __visible int printk(const char *fmt, ...)
1678{
 
1679	va_list args;
1680	int r;
1681
1682#ifdef CONFIG_KGDB_KDB
1683	if (unlikely(kdb_trap_printk)) {
1684		va_start(args, fmt);
1685		r = vkdb_printf(fmt, args);
1686		va_end(args);
1687		return r;
1688	}
1689#endif
1690	va_start(args, fmt);
1691	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
 
 
 
 
 
 
 
 
 
1692	va_end(args);
1693
1694	return r;
1695}
1696EXPORT_SYMBOL(printk);
1697
1698#else /* CONFIG_PRINTK */
1699
1700#define LOG_LINE_MAX		0
1701#define PREFIX_MAX		0
1702#define LOG_LINE_MAX 0
1703static u64 syslog_seq;
1704static u32 syslog_idx;
1705static u64 console_seq;
1706static u32 console_idx;
1707static enum log_flags syslog_prev;
1708static u64 log_first_seq;
1709static u32 log_first_idx;
1710static u64 log_next_seq;
1711static enum log_flags console_prev;
1712static struct cont {
1713	size_t len;
1714	size_t cons;
1715	u8 level;
1716	bool flushed:1;
1717} cont;
 
 
1718static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1719static u32 log_next(u32 idx) { return 0; }
1720static void call_console_drivers(int level, const char *text, size_t len) {}
 
 
 
 
 
 
 
 
1721static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1722			     bool syslog, char *buf, size_t size) { return 0; }
1723static size_t cont_print_text(char *text, size_t size) { return 0; }
1724
 
 
 
1725#endif /* CONFIG_PRINTK */
1726
1727#ifdef CONFIG_EARLY_PRINTK
1728struct console *early_console;
1729
1730void early_vprintk(const char *fmt, va_list ap)
1731{
1732	if (early_console) {
1733		char buf[512];
1734		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1735
1736		early_console->write(early_console, buf, n);
1737	}
1738}
1739
1740asmlinkage __visible void early_printk(const char *fmt, ...)
1741{
1742	va_list ap;
 
 
 
 
 
1743
1744	va_start(ap, fmt);
1745	early_vprintk(fmt, ap);
1746	va_end(ap);
 
 
1747}
1748#endif
1749
1750static int __add_preferred_console(char *name, int idx, char *options,
1751				   char *brl_options)
1752{
1753	struct console_cmdline *c;
1754	int i;
1755
1756	/*
1757	 *	See if this tty is not yet registered, and
1758	 *	if we have a slot free.
1759	 */
1760	for (i = 0, c = console_cmdline;
1761	     i < MAX_CMDLINECONSOLES && c->name[0];
1762	     i++, c++) {
1763		if (strcmp(c->name, name) == 0 && c->index == idx) {
1764			if (!brl_options)
1765				selected_console = i;
1766			return 0;
1767		}
1768	}
1769	if (i == MAX_CMDLINECONSOLES)
1770		return -E2BIG;
1771	if (!brl_options)
1772		selected_console = i;
1773	strlcpy(c->name, name, sizeof(c->name));
1774	c->options = options;
1775	braille_set_options(c, brl_options);
1776
1777	c->index = idx;
1778	return 0;
1779}
1780/*
1781 * Set up a list of consoles.  Called from init/main.c
 
1782 */
1783static int __init console_setup(char *str)
1784{
1785	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1786	char *s, *options, *brl_options = NULL;
1787	int idx;
1788
1789	if (_braille_console_setup(&str, &brl_options))
1790		return 1;
1791
1792	/*
1793	 * Decode str into name, index, options.
1794	 */
1795	if (str[0] >= '0' && str[0] <= '9') {
1796		strcpy(buf, "ttyS");
1797		strncpy(buf + 4, str, sizeof(buf) - 5);
1798	} else {
1799		strncpy(buf, str, sizeof(buf) - 1);
1800	}
1801	buf[sizeof(buf) - 1] = 0;
1802	if ((options = strchr(str, ',')) != NULL)
 
1803		*(options++) = 0;
1804#ifdef __sparc__
1805	if (!strcmp(str, "ttya"))
1806		strcpy(buf, "ttyS0");
1807	if (!strcmp(str, "ttyb"))
1808		strcpy(buf, "ttyS1");
1809#endif
1810	for (s = buf; *s; s++)
1811		if ((*s >= '0' && *s <= '9') || *s == ',')
1812			break;
1813	idx = simple_strtoul(s, NULL, 10);
1814	*s = 0;
1815
1816	__add_preferred_console(buf, idx, options, brl_options);
1817	console_set_on_cmdline = 1;
1818	return 1;
1819}
1820__setup("console=", console_setup);
1821
1822/**
1823 * add_preferred_console - add a device to the list of preferred consoles.
1824 * @name: device name
1825 * @idx: device index
1826 * @options: options for this console
1827 *
1828 * The last preferred console added will be used for kernel messages
1829 * and stdin/out/err for init.  Normally this is used by console_setup
1830 * above to handle user-supplied console arguments; however it can also
1831 * be used by arch-specific code either to override the user or more
1832 * commonly to provide a default console (ie from PROM variables) when
1833 * the user has not supplied one.
1834 */
1835int add_preferred_console(char *name, int idx, char *options)
1836{
1837	return __add_preferred_console(name, idx, options, NULL);
1838}
1839
1840int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1841{
1842	struct console_cmdline *c;
1843	int i;
1844
1845	for (i = 0, c = console_cmdline;
1846	     i < MAX_CMDLINECONSOLES && c->name[0];
1847	     i++, c++)
1848		if (strcmp(c->name, name) == 0 && c->index == idx) {
1849			strlcpy(c->name, name_new, sizeof(c->name));
1850			c->name[sizeof(c->name) - 1] = 0;
1851			c->options = options;
1852			c->index = idx_new;
1853			return i;
1854		}
1855	/* not found */
1856	return -1;
1857}
1858
1859bool console_suspend_enabled = 1;
1860EXPORT_SYMBOL(console_suspend_enabled);
1861
1862static int __init console_suspend_disable(char *str)
1863{
1864	console_suspend_enabled = 0;
1865	return 1;
1866}
1867__setup("no_console_suspend", console_suspend_disable);
1868module_param_named(console_suspend, console_suspend_enabled,
1869		bool, S_IRUGO | S_IWUSR);
1870MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1871	" and hibernate operations");
1872
1873/**
1874 * suspend_console - suspend the console subsystem
1875 *
1876 * This disables printk() while we go into suspend states
1877 */
1878void suspend_console(void)
1879{
1880	if (!console_suspend_enabled)
1881		return;
1882	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1883	console_lock();
1884	console_suspended = 1;
1885	up(&console_sem);
1886	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
1887}
1888
1889void resume_console(void)
1890{
1891	if (!console_suspend_enabled)
1892		return;
1893	down(&console_sem);
1894	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1895	console_suspended = 0;
1896	console_unlock();
1897}
1898
1899/**
1900 * console_cpu_notify - print deferred console messages after CPU hotplug
1901 * @self: notifier struct
1902 * @action: CPU hotplug event
1903 * @hcpu: unused
1904 *
1905 * If printk() is called from a CPU that is not online yet, the messages
1906 * will be spooled but will not show up on the console.  This function is
1907 * called when a new CPU comes online (or fails to come up), and ensures
1908 * that any such output gets printed.
1909 */
1910static int console_cpu_notify(struct notifier_block *self,
1911	unsigned long action, void *hcpu)
1912{
1913	switch (action) {
1914	case CPU_ONLINE:
1915	case CPU_DEAD:
1916	case CPU_DOWN_FAILED:
1917	case CPU_UP_CANCELED:
1918		console_lock();
1919		console_unlock();
1920	}
1921	return NOTIFY_OK;
1922}
1923
1924/**
1925 * console_lock - lock the console system for exclusive use.
1926 *
1927 * Acquires a lock which guarantees that the caller has
1928 * exclusive access to the console system and the console_drivers list.
1929 *
1930 * Can sleep, returns nothing.
1931 */
1932void console_lock(void)
1933{
1934	might_sleep();
1935
1936	down(&console_sem);
1937	if (console_suspended)
1938		return;
1939	console_locked = 1;
1940	console_may_schedule = 1;
1941	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1942}
1943EXPORT_SYMBOL(console_lock);
1944
1945/**
1946 * console_trylock - try to lock the console system for exclusive use.
1947 *
1948 * Tried to acquire a lock which guarantees that the caller has
1949 * exclusive access to the console system and the console_drivers list.
1950 *
1951 * returns 1 on success, and 0 on failure to acquire the lock.
1952 */
1953int console_trylock(void)
1954{
1955	if (down_trylock(&console_sem))
1956		return 0;
1957	if (console_suspended) {
1958		up(&console_sem);
1959		return 0;
1960	}
1961	console_locked = 1;
1962	console_may_schedule = 0;
1963	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
1964	return 1;
1965}
1966EXPORT_SYMBOL(console_trylock);
1967
1968int is_console_locked(void)
1969{
1970	return console_locked;
1971}
1972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1973static void console_cont_flush(char *text, size_t size)
1974{
1975	unsigned long flags;
1976	size_t len;
1977
1978	raw_spin_lock_irqsave(&logbuf_lock, flags);
1979
1980	if (!cont.len)
1981		goto out;
1982
1983	/*
1984	 * We still queue earlier records, likely because the console was
1985	 * busy. The earlier ones need to be printed before this one, we
1986	 * did not flush any fragment so far, so just let it queue up.
1987	 */
1988	if (console_seq < log_next_seq && !cont.cons)
1989		goto out;
1990
1991	len = cont_print_text(text, size);
1992	raw_spin_unlock(&logbuf_lock);
1993	stop_critical_timings();
1994	call_console_drivers(cont.level, text, len);
1995	start_critical_timings();
1996	local_irq_restore(flags);
1997	return;
1998out:
1999	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2000}
2001
2002/**
2003 * console_unlock - unlock the console system
2004 *
2005 * Releases the console_lock which the caller holds on the console system
2006 * and the console driver list.
2007 *
2008 * While the console_lock was held, console output may have been buffered
2009 * by printk().  If this is the case, console_unlock(); emits
2010 * the output prior to releasing the lock.
2011 *
2012 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2013 *
2014 * console_unlock(); may be called from any context.
2015 */
2016void console_unlock(void)
2017{
 
2018	static char text[LOG_LINE_MAX + PREFIX_MAX];
2019	static u64 seen_seq;
2020	unsigned long flags;
2021	bool wake_klogd = false;
2022	bool retry;
2023
2024	if (console_suspended) {
2025		up(&console_sem);
2026		return;
2027	}
2028
 
 
 
 
 
 
 
 
 
 
 
2029	console_may_schedule = 0;
2030
 
 
 
 
 
 
 
 
 
 
 
 
2031	/* flush buffered message fragment immediately to console */
2032	console_cont_flush(text, sizeof(text));
2033again:
2034	for (;;) {
2035		struct printk_log *msg;
 
2036		size_t len;
2037		int level;
2038
2039		raw_spin_lock_irqsave(&logbuf_lock, flags);
2040		if (seen_seq != log_next_seq) {
2041			wake_klogd = true;
2042			seen_seq = log_next_seq;
2043		}
2044
2045		if (console_seq < log_first_seq) {
 
 
 
2046			/* messages are gone, move to first one */
2047			console_seq = log_first_seq;
2048			console_idx = log_first_idx;
2049			console_prev = 0;
 
 
2050		}
2051skip:
2052		if (console_seq == log_next_seq)
2053			break;
2054
2055		msg = log_from_idx(console_idx);
2056		if (msg->flags & LOG_NOCONS) {
2057			/*
2058			 * Skip record we have buffered and already printed
2059			 * directly to the console when we received it.
2060			 */
2061			console_idx = log_next(console_idx);
2062			console_seq++;
2063			/*
2064			 * We will get here again when we register a new
2065			 * CON_PRINTBUFFER console. Clear the flag so we
2066			 * will properly dump everything later.
2067			 */
2068			msg->flags &= ~LOG_NOCONS;
2069			console_prev = msg->flags;
2070			goto skip;
2071		}
2072
2073		level = msg->level;
2074		len = msg_print_text(msg, console_prev, false,
2075				     text, sizeof(text));
 
 
 
 
 
 
 
 
 
2076		console_idx = log_next(console_idx);
2077		console_seq++;
2078		console_prev = msg->flags;
2079		raw_spin_unlock(&logbuf_lock);
2080
2081		stop_critical_timings();	/* don't trace print latency */
2082		call_console_drivers(level, text, len);
2083		start_critical_timings();
2084		local_irq_restore(flags);
 
 
 
2085	}
2086	console_locked = 0;
2087	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2088
2089	/* Release the exclusive_console once it is used */
2090	if (unlikely(exclusive_console))
2091		exclusive_console = NULL;
2092
2093	raw_spin_unlock(&logbuf_lock);
2094
2095	up(&console_sem);
2096
2097	/*
2098	 * Someone could have filled up the buffer again, so re-check if there's
2099	 * something to flush. In case we cannot trylock the console_sem again,
2100	 * there's a new owner and the console_unlock() from them will do the
2101	 * flush, no worries.
2102	 */
2103	raw_spin_lock(&logbuf_lock);
2104	retry = console_seq != log_next_seq;
2105	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2106
2107	if (retry && console_trylock())
2108		goto again;
2109
2110	if (wake_klogd)
2111		wake_up_klogd();
2112}
2113EXPORT_SYMBOL(console_unlock);
2114
2115/**
2116 * console_conditional_schedule - yield the CPU if required
2117 *
2118 * If the console code is currently allowed to sleep, and
2119 * if this CPU should yield the CPU to another task, do
2120 * so here.
2121 *
2122 * Must be called within console_lock();.
2123 */
2124void __sched console_conditional_schedule(void)
2125{
2126	if (console_may_schedule)
2127		cond_resched();
2128}
2129EXPORT_SYMBOL(console_conditional_schedule);
2130
2131void console_unblank(void)
2132{
2133	struct console *c;
2134
2135	/*
2136	 * console_unblank can no longer be called in interrupt context unless
2137	 * oops_in_progress is set to 1..
2138	 */
2139	if (oops_in_progress) {
2140		if (down_trylock(&console_sem) != 0)
2141			return;
2142	} else
2143		console_lock();
2144
2145	console_locked = 1;
2146	console_may_schedule = 0;
2147	for_each_console(c)
2148		if ((c->flags & CON_ENABLED) && c->unblank)
2149			c->unblank();
2150	console_unlock();
2151}
2152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153/*
2154 * Return the console tty driver structure and its associated index
2155 */
2156struct tty_driver *console_device(int *index)
2157{
2158	struct console *c;
2159	struct tty_driver *driver = NULL;
2160
2161	console_lock();
2162	for_each_console(c) {
2163		if (!c->device)
2164			continue;
2165		driver = c->device(c, index);
2166		if (driver)
2167			break;
2168	}
2169	console_unlock();
2170	return driver;
2171}
2172
2173/*
2174 * Prevent further output on the passed console device so that (for example)
2175 * serial drivers can disable console output before suspending a port, and can
2176 * re-enable output afterwards.
2177 */
2178void console_stop(struct console *console)
2179{
2180	console_lock();
2181	console->flags &= ~CON_ENABLED;
2182	console_unlock();
2183}
2184EXPORT_SYMBOL(console_stop);
2185
2186void console_start(struct console *console)
2187{
2188	console_lock();
2189	console->flags |= CON_ENABLED;
2190	console_unlock();
2191}
2192EXPORT_SYMBOL(console_start);
2193
2194static int __read_mostly keep_bootcon;
2195
2196static int __init keep_bootcon_setup(char *str)
2197{
2198	keep_bootcon = 1;
2199	pr_info("debug: skip boot console de-registration.\n");
2200
2201	return 0;
2202}
2203
2204early_param("keep_bootcon", keep_bootcon_setup);
2205
2206/*
2207 * The console driver calls this routine during kernel initialization
2208 * to register the console printing procedure with printk() and to
2209 * print any messages that were printed by the kernel before the
2210 * console driver was initialized.
2211 *
2212 * This can happen pretty early during the boot process (because of
2213 * early_printk) - sometimes before setup_arch() completes - be careful
2214 * of what kernel features are used - they may not be initialised yet.
2215 *
2216 * There are two types of consoles - bootconsoles (early_printk) and
2217 * "real" consoles (everything which is not a bootconsole) which are
2218 * handled differently.
2219 *  - Any number of bootconsoles can be registered at any time.
2220 *  - As soon as a "real" console is registered, all bootconsoles
2221 *    will be unregistered automatically.
2222 *  - Once a "real" console is registered, any attempt to register a
2223 *    bootconsoles will be rejected
2224 */
2225void register_console(struct console *newcon)
2226{
2227	int i;
2228	unsigned long flags;
2229	struct console *bcon = NULL;
2230	struct console_cmdline *c;
2231
2232	if (console_drivers)
2233		for_each_console(bcon)
2234			if (WARN(bcon == newcon,
2235					"console '%s%d' already registered\n",
2236					bcon->name, bcon->index))
2237				return;
2238
2239	/*
2240	 * before we register a new CON_BOOT console, make sure we don't
2241	 * already have a valid console
2242	 */
2243	if (console_drivers && newcon->flags & CON_BOOT) {
2244		/* find the last or real console */
2245		for_each_console(bcon) {
2246			if (!(bcon->flags & CON_BOOT)) {
2247				pr_info("Too late to register bootconsole %s%d\n",
2248					newcon->name, newcon->index);
2249				return;
2250			}
2251		}
2252	}
2253
2254	if (console_drivers && console_drivers->flags & CON_BOOT)
2255		bcon = console_drivers;
2256
2257	if (preferred_console < 0 || bcon || !console_drivers)
2258		preferred_console = selected_console;
2259
2260	if (newcon->early_setup)
2261		newcon->early_setup();
2262
2263	/*
2264	 *	See if we want to use this console driver. If we
2265	 *	didn't select a console we take the first one
2266	 *	that registers here.
2267	 */
2268	if (preferred_console < 0) {
2269		if (newcon->index < 0)
2270			newcon->index = 0;
2271		if (newcon->setup == NULL ||
2272		    newcon->setup(newcon, NULL) == 0) {
2273			newcon->flags |= CON_ENABLED;
2274			if (newcon->device) {
2275				newcon->flags |= CON_CONSDEV;
2276				preferred_console = 0;
2277			}
2278		}
2279	}
2280
2281	/*
2282	 *	See if this console matches one we selected on
2283	 *	the command line.
2284	 */
2285	for (i = 0, c = console_cmdline;
2286	     i < MAX_CMDLINECONSOLES && c->name[0];
2287	     i++, c++) {
2288		if (strcmp(c->name, newcon->name) != 0)
2289			continue;
2290		if (newcon->index >= 0 &&
2291		    newcon->index != c->index)
2292			continue;
2293		if (newcon->index < 0)
2294			newcon->index = c->index;
 
 
 
 
2295
2296		if (_braille_register_console(newcon, c))
2297			return;
 
 
 
 
 
2298
2299		if (newcon->setup &&
2300		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2301			break;
2302		newcon->flags |= CON_ENABLED;
2303		newcon->index = c->index;
2304		if (i == selected_console) {
2305			newcon->flags |= CON_CONSDEV;
2306			preferred_console = selected_console;
2307		}
2308		break;
2309	}
2310
2311	if (!(newcon->flags & CON_ENABLED))
2312		return;
2313
2314	/*
2315	 * If we have a bootconsole, and are switching to a real console,
2316	 * don't print everything out again, since when the boot console, and
2317	 * the real console are the same physical device, it's annoying to
2318	 * see the beginning boot messages twice
2319	 */
2320	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2321		newcon->flags &= ~CON_PRINTBUFFER;
2322
2323	/*
2324	 *	Put this console in the list - keep the
2325	 *	preferred driver at the head of the list.
2326	 */
2327	console_lock();
2328	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2329		newcon->next = console_drivers;
2330		console_drivers = newcon;
2331		if (newcon->next)
2332			newcon->next->flags &= ~CON_CONSDEV;
2333	} else {
2334		newcon->next = console_drivers->next;
2335		console_drivers->next = newcon;
2336	}
 
 
 
 
 
2337	if (newcon->flags & CON_PRINTBUFFER) {
2338		/*
2339		 * console_unlock(); will print out the buffered messages
2340		 * for us.
2341		 */
2342		raw_spin_lock_irqsave(&logbuf_lock, flags);
2343		console_seq = syslog_seq;
2344		console_idx = syslog_idx;
2345		console_prev = syslog_prev;
2346		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2347		/*
2348		 * We're about to replay the log buffer.  Only do this to the
2349		 * just-registered console to avoid excessive message spam to
2350		 * the already-registered consoles.
2351		 */
2352		exclusive_console = newcon;
2353	}
2354	console_unlock();
2355	console_sysfs_notify();
2356
2357	/*
2358	 * By unregistering the bootconsoles after we enable the real console
2359	 * we get the "console xxx enabled" message on all the consoles -
2360	 * boot consoles, real consoles, etc - this is to ensure that end
2361	 * users know there might be something in the kernel's log buffer that
2362	 * went to the bootconsole (that they do not see on the real console)
2363	 */
2364	pr_info("%sconsole [%s%d] enabled\n",
2365		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2366		newcon->name, newcon->index);
2367	if (bcon &&
2368	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2369	    !keep_bootcon) {
2370		/* We need to iterate through all boot consoles, to make
2371		 * sure we print everything out, before we unregister them.
2372		 */
2373		for_each_console(bcon)
2374			if (bcon->flags & CON_BOOT)
2375				unregister_console(bcon);
2376	}
2377}
2378EXPORT_SYMBOL(register_console);
2379
2380int unregister_console(struct console *console)
2381{
2382        struct console *a, *b;
2383	int res;
2384
2385	pr_info("%sconsole [%s%d] disabled\n",
2386		(console->flags & CON_BOOT) ? "boot" : "" ,
2387		console->name, console->index);
2388
2389	res = _braille_unregister_console(console);
2390	if (res)
2391		return res;
2392
2393	res = 1;
2394	console_lock();
2395	if (console_drivers == console) {
2396		console_drivers=console->next;
2397		res = 0;
2398	} else if (console_drivers) {
2399		for (a=console_drivers->next, b=console_drivers ;
2400		     a; b=a, a=b->next) {
2401			if (a == console) {
2402				b->next = a->next;
2403				res = 0;
2404				break;
2405			}
2406		}
2407	}
2408
 
 
 
2409	/*
2410	 * If this isn't the last console and it has CON_CONSDEV set, we
2411	 * need to set it on the next preferred console.
2412	 */
2413	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2414		console_drivers->flags |= CON_CONSDEV;
2415
 
2416	console_unlock();
2417	console_sysfs_notify();
2418	return res;
2419}
2420EXPORT_SYMBOL(unregister_console);
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422static int __init printk_late_init(void)
2423{
2424	struct console *con;
2425
2426	for_each_console(con) {
2427		if (!keep_bootcon && con->flags & CON_BOOT) {
2428			unregister_console(con);
 
 
 
 
 
 
 
 
2429		}
2430	}
2431	hotcpu_notifier(console_cpu_notify, 0);
2432	return 0;
2433}
2434late_initcall(printk_late_init);
2435
2436#if defined CONFIG_PRINTK
2437/*
2438 * Delayed printk version, for scheduler-internal messages:
2439 */
2440#define PRINTK_BUF_SIZE		512
2441
2442#define PRINTK_PENDING_WAKEUP	0x01
2443#define PRINTK_PENDING_SCHED	0x02
2444
2445static DEFINE_PER_CPU(int, printk_pending);
2446static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2447
2448static void wake_up_klogd_work_func(struct irq_work *irq_work)
2449{
2450	int pending = __this_cpu_xchg(printk_pending, 0);
2451
2452	if (pending & PRINTK_PENDING_SCHED) {
2453		char *buf = __get_cpu_var(printk_sched_buf);
2454		pr_warn("[sched_delayed] %s", buf);
 
2455	}
2456
2457	if (pending & PRINTK_PENDING_WAKEUP)
2458		wake_up_interruptible(&log_wait);
2459}
2460
2461static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2462	.func = wake_up_klogd_work_func,
2463	.flags = IRQ_WORK_LAZY,
2464};
2465
2466void wake_up_klogd(void)
2467{
2468	preempt_disable();
2469	if (waitqueue_active(&log_wait)) {
2470		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2471		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2472	}
2473	preempt_enable();
2474}
2475
2476int printk_sched(const char *fmt, ...)
2477{
2478	unsigned long flags;
2479	va_list args;
2480	char *buf;
2481	int r;
2482
2483	local_irq_save(flags);
2484	buf = __get_cpu_var(printk_sched_buf);
2485
2486	va_start(args, fmt);
2487	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2488	va_end(args);
2489
2490	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2491	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492	local_irq_restore(flags);
2493
2494	return r;
2495}
2496
2497/*
2498 * printk rate limiting, lifted from the networking subsystem.
2499 *
2500 * This enforces a rate limit: not more than 10 kernel messages
2501 * every 5s to make a denial-of-service attack impossible.
2502 */
2503DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2504
2505int __printk_ratelimit(const char *func)
2506{
2507	return ___ratelimit(&printk_ratelimit_state, func);
2508}
2509EXPORT_SYMBOL(__printk_ratelimit);
2510
2511/**
2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2513 * @caller_jiffies: pointer to caller's state
2514 * @interval_msecs: minimum interval between prints
2515 *
2516 * printk_timed_ratelimit() returns true if more than @interval_msecs
2517 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2518 * returned true.
2519 */
2520bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2521			unsigned int interval_msecs)
2522{
2523	if (*caller_jiffies == 0
2524			|| !time_in_range(jiffies, *caller_jiffies,
2525					*caller_jiffies
2526					+ msecs_to_jiffies(interval_msecs))) {
2527		*caller_jiffies = jiffies;
2528		return true;
2529	}
2530	return false;
2531}
2532EXPORT_SYMBOL(printk_timed_ratelimit);
2533
2534static DEFINE_SPINLOCK(dump_list_lock);
2535static LIST_HEAD(dump_list);
2536
2537/**
2538 * kmsg_dump_register - register a kernel log dumper.
2539 * @dumper: pointer to the kmsg_dumper structure
2540 *
2541 * Adds a kernel log dumper to the system. The dump callback in the
2542 * structure will be called when the kernel oopses or panics and must be
2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2544 */
2545int kmsg_dump_register(struct kmsg_dumper *dumper)
2546{
2547	unsigned long flags;
2548	int err = -EBUSY;
2549
2550	/* The dump callback needs to be set */
2551	if (!dumper->dump)
2552		return -EINVAL;
2553
2554	spin_lock_irqsave(&dump_list_lock, flags);
2555	/* Don't allow registering multiple times */
2556	if (!dumper->registered) {
2557		dumper->registered = 1;
2558		list_add_tail_rcu(&dumper->list, &dump_list);
2559		err = 0;
2560	}
2561	spin_unlock_irqrestore(&dump_list_lock, flags);
2562
2563	return err;
2564}
2565EXPORT_SYMBOL_GPL(kmsg_dump_register);
2566
2567/**
2568 * kmsg_dump_unregister - unregister a kmsg dumper.
2569 * @dumper: pointer to the kmsg_dumper structure
2570 *
2571 * Removes a dump device from the system. Returns zero on success and
2572 * %-EINVAL otherwise.
2573 */
2574int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2575{
2576	unsigned long flags;
2577	int err = -EINVAL;
2578
2579	spin_lock_irqsave(&dump_list_lock, flags);
2580	if (dumper->registered) {
2581		dumper->registered = 0;
2582		list_del_rcu(&dumper->list);
2583		err = 0;
2584	}
2585	spin_unlock_irqrestore(&dump_list_lock, flags);
2586	synchronize_rcu();
2587
2588	return err;
2589}
2590EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2591
2592static bool always_kmsg_dump;
2593module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2594
2595/**
2596 * kmsg_dump - dump kernel log to kernel message dumpers.
2597 * @reason: the reason (oops, panic etc) for dumping
2598 *
2599 * Call each of the registered dumper's dump() callback, which can
2600 * retrieve the kmsg records with kmsg_dump_get_line() or
2601 * kmsg_dump_get_buffer().
2602 */
2603void kmsg_dump(enum kmsg_dump_reason reason)
2604{
2605	struct kmsg_dumper *dumper;
2606	unsigned long flags;
2607
2608	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2609		return;
2610
2611	rcu_read_lock();
2612	list_for_each_entry_rcu(dumper, &dump_list, list) {
2613		if (dumper->max_reason && reason > dumper->max_reason)
2614			continue;
2615
2616		/* initialize iterator with data about the stored records */
2617		dumper->active = true;
2618
2619		raw_spin_lock_irqsave(&logbuf_lock, flags);
2620		dumper->cur_seq = clear_seq;
2621		dumper->cur_idx = clear_idx;
2622		dumper->next_seq = log_next_seq;
2623		dumper->next_idx = log_next_idx;
2624		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2625
2626		/* invoke dumper which will iterate over records */
2627		dumper->dump(dumper, reason);
2628
2629		/* reset iterator */
2630		dumper->active = false;
2631	}
2632	rcu_read_unlock();
2633}
2634
2635/**
2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2637 * @dumper: registered kmsg dumper
2638 * @syslog: include the "<4>" prefixes
2639 * @line: buffer to copy the line to
2640 * @size: maximum size of the buffer
2641 * @len: length of line placed into buffer
2642 *
2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2644 * record, and copy one record into the provided buffer.
2645 *
2646 * Consecutive calls will return the next available record moving
2647 * towards the end of the buffer with the youngest messages.
2648 *
2649 * A return value of FALSE indicates that there are no more records to
2650 * read.
2651 *
2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2653 */
2654bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2655			       char *line, size_t size, size_t *len)
2656{
2657	struct printk_log *msg;
2658	size_t l = 0;
2659	bool ret = false;
2660
2661	if (!dumper->active)
2662		goto out;
2663
2664	if (dumper->cur_seq < log_first_seq) {
2665		/* messages are gone, move to first available one */
2666		dumper->cur_seq = log_first_seq;
2667		dumper->cur_idx = log_first_idx;
2668	}
2669
2670	/* last entry */
2671	if (dumper->cur_seq >= log_next_seq)
2672		goto out;
2673
2674	msg = log_from_idx(dumper->cur_idx);
2675	l = msg_print_text(msg, 0, syslog, line, size);
2676
2677	dumper->cur_idx = log_next(dumper->cur_idx);
2678	dumper->cur_seq++;
2679	ret = true;
2680out:
2681	if (len)
2682		*len = l;
2683	return ret;
2684}
2685
2686/**
2687 * kmsg_dump_get_line - retrieve one kmsg log line
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @line: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2695 * record, and copy one record into the provided buffer.
2696 *
2697 * Consecutive calls will return the next available record moving
2698 * towards the end of the buffer with the youngest messages.
2699 *
2700 * A return value of FALSE indicates that there are no more records to
2701 * read.
2702 */
2703bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2704			char *line, size_t size, size_t *len)
2705{
2706	unsigned long flags;
2707	bool ret;
2708
2709	raw_spin_lock_irqsave(&logbuf_lock, flags);
2710	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2711	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2716
2717/**
2718 * kmsg_dump_get_buffer - copy kmsg log lines
2719 * @dumper: registered kmsg dumper
2720 * @syslog: include the "<4>" prefixes
2721 * @buf: buffer to copy the line to
2722 * @size: maximum size of the buffer
2723 * @len: length of line placed into buffer
2724 *
2725 * Start at the end of the kmsg buffer and fill the provided buffer
2726 * with as many of the the *youngest* kmsg records that fit into it.
2727 * If the buffer is large enough, all available kmsg records will be
2728 * copied with a single call.
2729 *
2730 * Consecutive calls will fill the buffer with the next block of
2731 * available older records, not including the earlier retrieved ones.
2732 *
2733 * A return value of FALSE indicates that there are no more records to
2734 * read.
2735 */
2736bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2737			  char *buf, size_t size, size_t *len)
2738{
2739	unsigned long flags;
2740	u64 seq;
2741	u32 idx;
2742	u64 next_seq;
2743	u32 next_idx;
2744	enum log_flags prev;
2745	size_t l = 0;
2746	bool ret = false;
2747
2748	if (!dumper->active)
2749		goto out;
2750
2751	raw_spin_lock_irqsave(&logbuf_lock, flags);
2752	if (dumper->cur_seq < log_first_seq) {
2753		/* messages are gone, move to first available one */
2754		dumper->cur_seq = log_first_seq;
2755		dumper->cur_idx = log_first_idx;
2756	}
2757
2758	/* last entry */
2759	if (dumper->cur_seq >= dumper->next_seq) {
2760		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2761		goto out;
2762	}
2763
2764	/* calculate length of entire buffer */
2765	seq = dumper->cur_seq;
2766	idx = dumper->cur_idx;
2767	prev = 0;
2768	while (seq < dumper->next_seq) {
2769		struct printk_log *msg = log_from_idx(idx);
2770
2771		l += msg_print_text(msg, prev, true, NULL, 0);
2772		idx = log_next(idx);
2773		seq++;
2774		prev = msg->flags;
2775	}
2776
2777	/* move first record forward until length fits into the buffer */
2778	seq = dumper->cur_seq;
2779	idx = dumper->cur_idx;
2780	prev = 0;
2781	while (l > size && seq < dumper->next_seq) {
2782		struct printk_log *msg = log_from_idx(idx);
2783
2784		l -= msg_print_text(msg, prev, true, NULL, 0);
2785		idx = log_next(idx);
2786		seq++;
2787		prev = msg->flags;
2788	}
2789
2790	/* last message in next interation */
2791	next_seq = seq;
2792	next_idx = idx;
2793
2794	l = 0;
2795	while (seq < dumper->next_seq) {
2796		struct printk_log *msg = log_from_idx(idx);
2797
2798		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2799		idx = log_next(idx);
2800		seq++;
2801		prev = msg->flags;
2802	}
2803
2804	dumper->next_seq = next_seq;
2805	dumper->next_idx = next_idx;
2806	ret = true;
2807	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2808out:
2809	if (len)
2810		*len = l;
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2814
2815/**
2816 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2817 * @dumper: registered kmsg dumper
2818 *
2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2820 * kmsg_dump_get_buffer() can be called again and used multiple
2821 * times within the same dumper.dump() callback.
2822 *
2823 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2824 */
2825void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2826{
2827	dumper->cur_seq = clear_seq;
2828	dumper->cur_idx = clear_idx;
2829	dumper->next_seq = log_next_seq;
2830	dumper->next_idx = log_next_idx;
2831}
2832
2833/**
2834 * kmsg_dump_rewind - reset the interator
2835 * @dumper: registered kmsg dumper
2836 *
2837 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2838 * kmsg_dump_get_buffer() can be called again and used multiple
2839 * times within the same dumper.dump() callback.
2840 */
2841void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2842{
2843	unsigned long flags;
2844
2845	raw_spin_lock_irqsave(&logbuf_lock, flags);
2846	kmsg_dump_rewind_nolock(dumper);
2847	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2848}
2849EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2850
2851static char dump_stack_arch_desc_str[128];
2852
2853/**
2854 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2855 * @fmt: printf-style format string
2856 * @...: arguments for the format string
2857 *
2858 * The configured string will be printed right after utsname during task
2859 * dumps.  Usually used to add arch-specific system identifiers.  If an
2860 * arch wants to make use of such an ID string, it should initialize this
2861 * as soon as possible during boot.
2862 */
2863void __init dump_stack_set_arch_desc(const char *fmt, ...)
2864{
2865	va_list args;
2866
2867	va_start(args, fmt);
2868	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2869		  fmt, args);
2870	va_end(args);
2871}
2872
2873/**
2874 * dump_stack_print_info - print generic debug info for dump_stack()
2875 * @log_lvl: log level
2876 *
2877 * Arch-specific dump_stack() implementations can use this function to
2878 * print out the same debug information as the generic dump_stack().
2879 */
2880void dump_stack_print_info(const char *log_lvl)
2881{
2882	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2883	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2884	       print_tainted(), init_utsname()->release,
2885	       (int)strcspn(init_utsname()->version, " "),
2886	       init_utsname()->version);
2887
2888	if (dump_stack_arch_desc_str[0] != '\0')
2889		printk("%sHardware name: %s\n",
2890		       log_lvl, dump_stack_arch_desc_str);
2891
2892	print_worker_info(log_lvl, current);
2893}
2894
2895/**
2896 * show_regs_print_info - print generic debug info for show_regs()
2897 * @log_lvl: log level
2898 *
2899 * show_regs() implementations can use this function to print out generic
2900 * debug information.
2901 */
2902void show_regs_print_info(const char *log_lvl)
2903{
2904	dump_stack_print_info(log_lvl);
2905
2906	printk("%stask: %p ti: %p task.ti: %p\n",
2907	       log_lvl, current, current_thread_info(),
2908	       task_thread_info(current));
2909}
2910
2911#endif
v4.6
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
 
  35#include <linux/syscalls.h>
  36#include <linux/kexec.h>
  37#include <linux/kdb.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/notifier.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/utsname.h>
  47#include <linux/ctype.h>
  48#include <linux/uio.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm-generic/sections.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/printk.h>
  55
  56#include "console_cmdline.h"
  57#include "braille.h"
  58
 
 
 
 
 
 
 
  59int console_printk[4] = {
  60	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  61	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  62	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  64};
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84	.name = "console_lock"
  85};
  86#endif
  87
  88/*
  89 * Number of registered extended console drivers.
  90 *
  91 * If extended consoles are present, in-kernel cont reassembly is disabled
  92 * and each fragment is stored as a separate log entry with proper
  93 * continuation flag so that every emitted message has full metadata.  This
  94 * doesn't change the result for regular consoles or /proc/kmsg.  For
  95 * /dev/kmsg, as long as the reader concatenates messages according to
  96 * consecutive continuation flags, the end result should be the same too.
  97 */
  98static int nr_ext_console_drivers;
  99
 100/*
 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 102 * macros instead of functions so that _RET_IP_ contains useful information.
 103 */
 104#define down_console_sem() do { \
 105	down(&console_sem);\
 106	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 107} while (0)
 108
 109static int __down_trylock_console_sem(unsigned long ip)
 110{
 111	if (down_trylock(&console_sem))
 112		return 1;
 113	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 114	return 0;
 115}
 116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 117
 118#define up_console_sem() do { \
 119	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 120	up(&console_sem);\
 121} while (0)
 122
 123/*
 124 * This is used for debugging the mess that is the VT code by
 125 * keeping track if we have the console semaphore held. It's
 126 * definitely not the perfect debug tool (we don't know if _WE_
 127 * hold it and are racing, but it helps tracking those weird code
 128 * paths in the console code where we end up in places I want
 129 * locked without the console sempahore held).
 130 */
 131static int console_locked, console_suspended;
 132
 133/*
 134 * If exclusive_console is non-NULL then only this console is to be printed to.
 135 */
 136static struct console *exclusive_console;
 137
 138/*
 139 *	Array of consoles built from command line options (console=)
 140 */
 141
 142#define MAX_CMDLINECONSOLES 8
 143
 144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 145
 146static int selected_console = -1;
 147static int preferred_console = -1;
 148int console_set_on_cmdline;
 149EXPORT_SYMBOL(console_set_on_cmdline);
 150
 151/* Flag: console code may call schedule() */
 152static int console_may_schedule;
 153
 154/*
 155 * The printk log buffer consists of a chain of concatenated variable
 156 * length records. Every record starts with a record header, containing
 157 * the overall length of the record.
 158 *
 159 * The heads to the first and last entry in the buffer, as well as the
 160 * sequence numbers of these entries are maintained when messages are
 161 * stored.
 162 *
 163 * If the heads indicate available messages, the length in the header
 164 * tells the start next message. A length == 0 for the next message
 165 * indicates a wrap-around to the beginning of the buffer.
 166 *
 167 * Every record carries the monotonic timestamp in microseconds, as well as
 168 * the standard userspace syslog level and syslog facility. The usual
 169 * kernel messages use LOG_KERN; userspace-injected messages always carry
 170 * a matching syslog facility, by default LOG_USER. The origin of every
 171 * message can be reliably determined that way.
 172 *
 173 * The human readable log message directly follows the message header. The
 174 * length of the message text is stored in the header, the stored message
 175 * is not terminated.
 176 *
 177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 178 * to provide userspace with a machine-readable message context.
 179 *
 180 * Examples for well-defined, commonly used property names are:
 181 *   DEVICE=b12:8               device identifier
 182 *                                b12:8         block dev_t
 183 *                                c127:3        char dev_t
 184 *                                n8            netdev ifindex
 185 *                                +sound:card0  subsystem:devname
 186 *   SUBSYSTEM=pci              driver-core subsystem name
 187 *
 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 189 * follows directly after a '=' character. Every property is terminated by
 190 * a '\0' character. The last property is not terminated.
 191 *
 192 * Example of a message structure:
 193 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 194 *   0008  34 00                        record is 52 bytes long
 195 *   000a        0b 00                  text is 11 bytes long
 196 *   000c              1f 00            dictionary is 23 bytes long
 197 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 198 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 199 *         69 6e 65                     "ine"
 200 *   001b           44 45 56 49 43      "DEVIC"
 201 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 202 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 203 *         67                           "g"
 204 *   0032     00 00 00                  padding to next message header
 205 *
 206 * The 'struct printk_log' buffer header must never be directly exported to
 207 * userspace, it is a kernel-private implementation detail that might
 208 * need to be changed in the future, when the requirements change.
 209 *
 210 * /dev/kmsg exports the structured data in the following line format:
 211 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 212 *
 213 * Users of the export format should ignore possible additional values
 214 * separated by ',', and find the message after the ';' character.
 215 *
 216 * The optional key/value pairs are attached as continuation lines starting
 217 * with a space character and terminated by a newline. All possible
 218 * non-prinatable characters are escaped in the "\xff" notation.
 
 
 
 219 */
 220
 221enum log_flags {
 222	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 223	LOG_NEWLINE	= 2,	/* text ended with a newline */
 224	LOG_PREFIX	= 4,	/* text started with a prefix */
 225	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 226};
 227
 228struct printk_log {
 229	u64 ts_nsec;		/* timestamp in nanoseconds */
 230	u16 len;		/* length of entire record */
 231	u16 text_len;		/* length of text buffer */
 232	u16 dict_len;		/* length of dictionary buffer */
 233	u8 facility;		/* syslog facility */
 234	u8 flags:5;		/* internal record flags */
 235	u8 level:3;		/* syslog level */
 236}
 237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 238__packed __aligned(4)
 239#endif
 240;
 241
 242/*
 243 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 244 * within the scheduler's rq lock. It must be released before calling
 245 * console_unlock() or anything else that might wake up a process.
 246 */
 247static DEFINE_RAW_SPINLOCK(logbuf_lock);
 248
 249#ifdef CONFIG_PRINTK
 250DECLARE_WAIT_QUEUE_HEAD(log_wait);
 251/* the next printk record to read by syslog(READ) or /proc/kmsg */
 252static u64 syslog_seq;
 253static u32 syslog_idx;
 254static enum log_flags syslog_prev;
 255static size_t syslog_partial;
 256
 257/* index and sequence number of the first record stored in the buffer */
 258static u64 log_first_seq;
 259static u32 log_first_idx;
 260
 261/* index and sequence number of the next record to store in the buffer */
 262static u64 log_next_seq;
 263static u32 log_next_idx;
 264
 265/* the next printk record to write to the console */
 266static u64 console_seq;
 267static u32 console_idx;
 268static enum log_flags console_prev;
 269
 270/* the next printk record to read after the last 'clear' command */
 271static u64 clear_seq;
 272static u32 clear_idx;
 273
 274#define PREFIX_MAX		32
 275#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 276
 277#define LOG_LEVEL(v)		((v) & 0x07)
 278#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 279
 280/* record buffer */
 
 
 
 281#define LOG_ALIGN __alignof__(struct printk_log)
 
 282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 284static char *log_buf = __log_buf;
 285static u32 log_buf_len = __LOG_BUF_LEN;
 286
 287/* Return log buffer address */
 288char *log_buf_addr_get(void)
 289{
 290	return log_buf;
 291}
 292
 293/* Return log buffer size */
 294u32 log_buf_len_get(void)
 295{
 296	return log_buf_len;
 297}
 298
 299/* human readable text of the record */
 300static char *log_text(const struct printk_log *msg)
 301{
 302	return (char *)msg + sizeof(struct printk_log);
 303}
 304
 305/* optional key/value pair dictionary attached to the record */
 306static char *log_dict(const struct printk_log *msg)
 307{
 308	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 309}
 310
 311/* get record by index; idx must point to valid msg */
 312static struct printk_log *log_from_idx(u32 idx)
 313{
 314	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 315
 316	/*
 317	 * A length == 0 record is the end of buffer marker. Wrap around and
 318	 * read the message at the start of the buffer.
 319	 */
 320	if (!msg->len)
 321		return (struct printk_log *)log_buf;
 322	return msg;
 323}
 324
 325/* get next record; idx must point to valid msg */
 326static u32 log_next(u32 idx)
 327{
 328	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 329
 330	/* length == 0 indicates the end of the buffer; wrap */
 331	/*
 332	 * A length == 0 record is the end of buffer marker. Wrap around and
 333	 * read the message at the start of the buffer as *this* one, and
 334	 * return the one after that.
 335	 */
 336	if (!msg->len) {
 337		msg = (struct printk_log *)log_buf;
 338		return msg->len;
 339	}
 340	return idx + msg->len;
 341}
 342
 343/*
 344 * Check whether there is enough free space for the given message.
 345 *
 346 * The same values of first_idx and next_idx mean that the buffer
 347 * is either empty or full.
 348 *
 349 * If the buffer is empty, we must respect the position of the indexes.
 350 * They cannot be reset to the beginning of the buffer.
 351 */
 352static int logbuf_has_space(u32 msg_size, bool empty)
 353{
 354	u32 free;
 355
 356	if (log_next_idx > log_first_idx || empty)
 357		free = max(log_buf_len - log_next_idx, log_first_idx);
 358	else
 359		free = log_first_idx - log_next_idx;
 360
 361	/*
 362	 * We need space also for an empty header that signalizes wrapping
 363	 * of the buffer.
 364	 */
 365	return free >= msg_size + sizeof(struct printk_log);
 366}
 367
 368static int log_make_free_space(u32 msg_size)
 369{
 370	while (log_first_seq < log_next_seq &&
 371	       !logbuf_has_space(msg_size, false)) {
 372		/* drop old messages until we have enough contiguous space */
 373		log_first_idx = log_next(log_first_idx);
 374		log_first_seq++;
 375	}
 376
 377	if (clear_seq < log_first_seq) {
 378		clear_seq = log_first_seq;
 379		clear_idx = log_first_idx;
 380	}
 381
 382	/* sequence numbers are equal, so the log buffer is empty */
 383	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 384		return 0;
 385
 386	return -ENOMEM;
 387}
 388
 389/* compute the message size including the padding bytes */
 390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 391{
 392	u32 size;
 393
 
 394	size = sizeof(struct printk_log) + text_len + dict_len;
 395	*pad_len = (-size) & (LOG_ALIGN - 1);
 396	size += *pad_len;
 397
 398	return size;
 399}
 400
 401/*
 402 * Define how much of the log buffer we could take at maximum. The value
 403 * must be greater than two. Note that only half of the buffer is available
 404 * when the index points to the middle.
 405 */
 406#define MAX_LOG_TAKE_PART 4
 407static const char trunc_msg[] = "<truncated>";
 408
 409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 410			u16 *dict_len, u32 *pad_len)
 411{
 412	/*
 413	 * The message should not take the whole buffer. Otherwise, it might
 414	 * get removed too soon.
 415	 */
 416	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 417	if (*text_len > max_text_len)
 418		*text_len = max_text_len;
 419	/* enable the warning message */
 420	*trunc_msg_len = strlen(trunc_msg);
 421	/* disable the "dict" completely */
 422	*dict_len = 0;
 423	/* compute the size again, count also the warning message */
 424	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 425}
 426
 427/* insert record into the buffer, discard old ones, update heads */
 428static int log_store(int facility, int level,
 429		     enum log_flags flags, u64 ts_nsec,
 430		     const char *dict, u16 dict_len,
 431		     const char *text, u16 text_len)
 432{
 433	struct printk_log *msg;
 434	u32 size, pad_len;
 435	u16 trunc_msg_len = 0;
 436
 437	/* number of '\0' padding bytes to next message */
 438	size = msg_used_size(text_len, dict_len, &pad_len);
 439
 440	if (log_make_free_space(size)) {
 441		/* truncate the message if it is too long for empty buffer */
 442		size = truncate_msg(&text_len, &trunc_msg_len,
 443				    &dict_len, &pad_len);
 444		/* survive when the log buffer is too small for trunc_msg */
 445		if (log_make_free_space(size))
 446			return 0;
 447	}
 448
 449	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 450		/*
 451		 * This message + an additional empty header does not fit
 452		 * at the end of the buffer. Add an empty header with len == 0
 453		 * to signify a wrap around.
 454		 */
 455		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 456		log_next_idx = 0;
 457	}
 458
 459	/* fill message */
 460	msg = (struct printk_log *)(log_buf + log_next_idx);
 461	memcpy(log_text(msg), text, text_len);
 462	msg->text_len = text_len;
 463	if (trunc_msg_len) {
 464		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 465		msg->text_len += trunc_msg_len;
 466	}
 467	memcpy(log_dict(msg), dict, dict_len);
 468	msg->dict_len = dict_len;
 469	msg->facility = facility;
 470	msg->level = level & 7;
 471	msg->flags = flags & 0x1f;
 472	if (ts_nsec > 0)
 473		msg->ts_nsec = ts_nsec;
 474	else
 475		msg->ts_nsec = local_clock();
 476	memset(log_dict(msg) + dict_len, 0, pad_len);
 477	msg->len = size;
 478
 479	/* insert message */
 480	log_next_idx += msg->len;
 481	log_next_seq++;
 482
 483	return msg->text_len;
 484}
 485
 486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 
 
 
 
 487
 488static int syslog_action_restricted(int type)
 489{
 490	if (dmesg_restrict)
 491		return 1;
 492	/*
 493	 * Unless restricted, we allow "read all" and "get buffer size"
 494	 * for everybody.
 495	 */
 496	return type != SYSLOG_ACTION_READ_ALL &&
 497	       type != SYSLOG_ACTION_SIZE_BUFFER;
 498}
 499
 500int check_syslog_permissions(int type, int source)
 501{
 502	/*
 503	 * If this is from /proc/kmsg and we've already opened it, then we've
 504	 * already done the capabilities checks at open time.
 505	 */
 506	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 507		goto ok;
 508
 509	if (syslog_action_restricted(type)) {
 510		if (capable(CAP_SYSLOG))
 511			goto ok;
 512		/*
 513		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 514		 * a warning.
 515		 */
 516		if (capable(CAP_SYS_ADMIN)) {
 517			pr_warn_once("%s (%d): Attempt to access syslog with "
 518				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 519				     "(deprecated).\n",
 520				 current->comm, task_pid_nr(current));
 521			goto ok;
 522		}
 523		return -EPERM;
 524	}
 525ok:
 526	return security_syslog(type);
 527}
 528EXPORT_SYMBOL_GPL(check_syslog_permissions);
 529
 530static void append_char(char **pp, char *e, char c)
 531{
 532	if (*pp < e)
 533		*(*pp)++ = c;
 534}
 535
 536static ssize_t msg_print_ext_header(char *buf, size_t size,
 537				    struct printk_log *msg, u64 seq,
 538				    enum log_flags prev_flags)
 539{
 540	u64 ts_usec = msg->ts_nsec;
 541	char cont = '-';
 542
 543	do_div(ts_usec, 1000);
 544
 545	/*
 546	 * If we couldn't merge continuation line fragments during the print,
 547	 * export the stored flags to allow an optional external merge of the
 548	 * records. Merging the records isn't always neccessarily correct, like
 549	 * when we hit a race during printing. In most cases though, it produces
 550	 * better readable output. 'c' in the record flags mark the first
 551	 * fragment of a line, '+' the following.
 552	 */
 553	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 554		cont = 'c';
 555	else if ((msg->flags & LOG_CONT) ||
 556		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 557		cont = '+';
 558
 559	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 560		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 561}
 562
 563static ssize_t msg_print_ext_body(char *buf, size_t size,
 564				  char *dict, size_t dict_len,
 565				  char *text, size_t text_len)
 566{
 567	char *p = buf, *e = buf + size;
 568	size_t i;
 569
 570	/* escape non-printable characters */
 571	for (i = 0; i < text_len; i++) {
 572		unsigned char c = text[i];
 573
 574		if (c < ' ' || c >= 127 || c == '\\')
 575			p += scnprintf(p, e - p, "\\x%02x", c);
 576		else
 577			append_char(&p, e, c);
 578	}
 579	append_char(&p, e, '\n');
 580
 581	if (dict_len) {
 582		bool line = true;
 583
 584		for (i = 0; i < dict_len; i++) {
 585			unsigned char c = dict[i];
 586
 587			if (line) {
 588				append_char(&p, e, ' ');
 589				line = false;
 590			}
 591
 592			if (c == '\0') {
 593				append_char(&p, e, '\n');
 594				line = true;
 595				continue;
 596			}
 597
 598			if (c < ' ' || c >= 127 || c == '\\') {
 599				p += scnprintf(p, e - p, "\\x%02x", c);
 600				continue;
 601			}
 602
 603			append_char(&p, e, c);
 604		}
 605		append_char(&p, e, '\n');
 606	}
 607
 608	return p - buf;
 609}
 610
 611/* /dev/kmsg - userspace message inject/listen interface */
 612struct devkmsg_user {
 613	u64 seq;
 614	u32 idx;
 615	enum log_flags prev;
 616	struct mutex lock;
 617	char buf[CONSOLE_EXT_LOG_MAX];
 618};
 619
 620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 
 621{
 622	char *buf, *line;
 
 623	int level = default_message_loglevel;
 624	int facility = 1;	/* LOG_USER */
 625	size_t len = iov_iter_count(from);
 626	ssize_t ret = len;
 627
 628	if (len > LOG_LINE_MAX)
 629		return -EINVAL;
 630	buf = kmalloc(len+1, GFP_KERNEL);
 631	if (buf == NULL)
 632		return -ENOMEM;
 633
 634	buf[len] = '\0';
 635	if (copy_from_iter(buf, len, from) != len) {
 636		kfree(buf);
 637		return -EFAULT;
 
 
 
 638	}
 639
 640	/*
 641	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 642	 * the decimal value represents 32bit, the lower 3 bit are the log
 643	 * level, the rest are the log facility.
 644	 *
 645	 * If no prefix or no userspace facility is specified, we
 646	 * enforce LOG_USER, to be able to reliably distinguish
 647	 * kernel-generated messages from userspace-injected ones.
 648	 */
 649	line = buf;
 650	if (line[0] == '<') {
 651		char *endp = NULL;
 652		unsigned int u;
 653
 654		u = simple_strtoul(line + 1, &endp, 10);
 655		if (endp && endp[0] == '>') {
 656			level = LOG_LEVEL(u);
 657			if (LOG_FACILITY(u) != 0)
 658				facility = LOG_FACILITY(u);
 659			endp++;
 660			len -= endp - line;
 661			line = endp;
 662		}
 663	}
 
 664
 665	printk_emit(facility, level, NULL, 0, "%s", line);
 
 666	kfree(buf);
 667	return ret;
 668}
 669
 670static ssize_t devkmsg_read(struct file *file, char __user *buf,
 671			    size_t count, loff_t *ppos)
 672{
 673	struct devkmsg_user *user = file->private_data;
 674	struct printk_log *msg;
 
 
 
 675	size_t len;
 676	ssize_t ret;
 677
 678	if (!user)
 679		return -EBADF;
 680
 681	ret = mutex_lock_interruptible(&user->lock);
 682	if (ret)
 683		return ret;
 684	raw_spin_lock_irq(&logbuf_lock);
 685	while (user->seq == log_next_seq) {
 686		if (file->f_flags & O_NONBLOCK) {
 687			ret = -EAGAIN;
 688			raw_spin_unlock_irq(&logbuf_lock);
 689			goto out;
 690		}
 691
 692		raw_spin_unlock_irq(&logbuf_lock);
 693		ret = wait_event_interruptible(log_wait,
 694					       user->seq != log_next_seq);
 695		if (ret)
 696			goto out;
 697		raw_spin_lock_irq(&logbuf_lock);
 698	}
 699
 700	if (user->seq < log_first_seq) {
 701		/* our last seen message is gone, return error and reset */
 702		user->idx = log_first_idx;
 703		user->seq = log_first_seq;
 704		ret = -EPIPE;
 705		raw_spin_unlock_irq(&logbuf_lock);
 706		goto out;
 707	}
 708
 709	msg = log_from_idx(user->idx);
 710	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 711				   msg, user->seq, user->prev);
 712	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 713				  log_dict(msg), msg->dict_len,
 714				  log_text(msg), msg->text_len);
 
 
 
 
 
 
 
 
 
 
 
 715
 
 
 
 716	user->prev = msg->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717	user->idx = log_next(user->idx);
 718	user->seq++;
 719	raw_spin_unlock_irq(&logbuf_lock);
 720
 721	if (len > count) {
 722		ret = -EINVAL;
 723		goto out;
 724	}
 725
 726	if (copy_to_user(buf, user->buf, len)) {
 727		ret = -EFAULT;
 728		goto out;
 729	}
 730	ret = len;
 731out:
 732	mutex_unlock(&user->lock);
 733	return ret;
 734}
 735
 736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 737{
 738	struct devkmsg_user *user = file->private_data;
 739	loff_t ret = 0;
 740
 741	if (!user)
 742		return -EBADF;
 743	if (offset)
 744		return -ESPIPE;
 745
 746	raw_spin_lock_irq(&logbuf_lock);
 747	switch (whence) {
 748	case SEEK_SET:
 749		/* the first record */
 750		user->idx = log_first_idx;
 751		user->seq = log_first_seq;
 752		break;
 753	case SEEK_DATA:
 754		/*
 755		 * The first record after the last SYSLOG_ACTION_CLEAR,
 756		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 757		 * changes no global state, and does not clear anything.
 758		 */
 759		user->idx = clear_idx;
 760		user->seq = clear_seq;
 761		break;
 762	case SEEK_END:
 763		/* after the last record */
 764		user->idx = log_next_idx;
 765		user->seq = log_next_seq;
 766		break;
 767	default:
 768		ret = -EINVAL;
 769	}
 770	raw_spin_unlock_irq(&logbuf_lock);
 771	return ret;
 772}
 773
 774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 775{
 776	struct devkmsg_user *user = file->private_data;
 777	int ret = 0;
 778
 779	if (!user)
 780		return POLLERR|POLLNVAL;
 781
 782	poll_wait(file, &log_wait, wait);
 783
 784	raw_spin_lock_irq(&logbuf_lock);
 785	if (user->seq < log_next_seq) {
 786		/* return error when data has vanished underneath us */
 787		if (user->seq < log_first_seq)
 788			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 789		else
 790			ret = POLLIN|POLLRDNORM;
 791	}
 792	raw_spin_unlock_irq(&logbuf_lock);
 793
 794	return ret;
 795}
 796
 797static int devkmsg_open(struct inode *inode, struct file *file)
 798{
 799	struct devkmsg_user *user;
 800	int err;
 801
 802	/* write-only does not need any file context */
 803	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 804		return 0;
 805
 806	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 807				       SYSLOG_FROM_READER);
 808	if (err)
 809		return err;
 810
 811	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 812	if (!user)
 813		return -ENOMEM;
 814
 815	mutex_init(&user->lock);
 816
 817	raw_spin_lock_irq(&logbuf_lock);
 818	user->idx = log_first_idx;
 819	user->seq = log_first_seq;
 820	raw_spin_unlock_irq(&logbuf_lock);
 821
 822	file->private_data = user;
 823	return 0;
 824}
 825
 826static int devkmsg_release(struct inode *inode, struct file *file)
 827{
 828	struct devkmsg_user *user = file->private_data;
 829
 830	if (!user)
 831		return 0;
 832
 833	mutex_destroy(&user->lock);
 834	kfree(user);
 835	return 0;
 836}
 837
 838const struct file_operations kmsg_fops = {
 839	.open = devkmsg_open,
 840	.read = devkmsg_read,
 841	.write_iter = devkmsg_write,
 842	.llseek = devkmsg_llseek,
 843	.poll = devkmsg_poll,
 844	.release = devkmsg_release,
 845};
 846
 847#ifdef CONFIG_KEXEC_CORE
 848/*
 849 * This appends the listed symbols to /proc/vmcore
 850 *
 851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 852 * obtain access to symbols that are otherwise very difficult to locate.  These
 853 * symbols are specifically used so that utilities can access and extract the
 854 * dmesg log from a vmcore file after a crash.
 855 */
 856void log_buf_kexec_setup(void)
 857{
 858	VMCOREINFO_SYMBOL(log_buf);
 859	VMCOREINFO_SYMBOL(log_buf_len);
 860	VMCOREINFO_SYMBOL(log_first_idx);
 861	VMCOREINFO_SYMBOL(clear_idx);
 862	VMCOREINFO_SYMBOL(log_next_idx);
 863	/*
 864	 * Export struct printk_log size and field offsets. User space tools can
 865	 * parse it and detect any changes to structure down the line.
 866	 */
 867	VMCOREINFO_STRUCT_SIZE(printk_log);
 868	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 869	VMCOREINFO_OFFSET(printk_log, len);
 870	VMCOREINFO_OFFSET(printk_log, text_len);
 871	VMCOREINFO_OFFSET(printk_log, dict_len);
 872}
 873#endif
 874
 875/* requested log_buf_len from kernel cmdline */
 876static unsigned long __initdata new_log_buf_len;
 877
 878/* we practice scaling the ring buffer by powers of 2 */
 879static void __init log_buf_len_update(unsigned size)
 880{
 
 
 881	if (size)
 882		size = roundup_pow_of_two(size);
 883	if (size > log_buf_len)
 884		new_log_buf_len = size;
 885}
 886
 887/* save requested log_buf_len since it's too early to process it */
 888static int __init log_buf_len_setup(char *str)
 889{
 890	unsigned size = memparse(str, &str);
 891
 892	log_buf_len_update(size);
 893
 894	return 0;
 895}
 896early_param("log_buf_len", log_buf_len_setup);
 897
 898#ifdef CONFIG_SMP
 899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
 900
 901static void __init log_buf_add_cpu(void)
 902{
 903	unsigned int cpu_extra;
 904
 905	/*
 906	 * archs should set up cpu_possible_bits properly with
 907	 * set_cpu_possible() after setup_arch() but just in
 908	 * case lets ensure this is valid.
 909	 */
 910	if (num_possible_cpus() == 1)
 911		return;
 912
 913	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
 914
 915	/* by default this will only continue through for large > 64 CPUs */
 916	if (cpu_extra <= __LOG_BUF_LEN / 2)
 917		return;
 918
 919	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
 920		__LOG_CPU_MAX_BUF_LEN);
 921	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
 922		cpu_extra);
 923	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
 924
 925	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
 926}
 927#else /* !CONFIG_SMP */
 928static inline void log_buf_add_cpu(void) {}
 929#endif /* CONFIG_SMP */
 930
 931void __init setup_log_buf(int early)
 932{
 933	unsigned long flags;
 934	char *new_log_buf;
 935	int free;
 936
 937	if (log_buf != __log_buf)
 938		return;
 939
 940	if (!early && !new_log_buf_len)
 941		log_buf_add_cpu();
 942
 943	if (!new_log_buf_len)
 944		return;
 945
 946	if (early) {
 947		new_log_buf =
 948			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
 949	} else {
 950		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
 951							  LOG_ALIGN);
 952	}
 953
 954	if (unlikely(!new_log_buf)) {
 955		pr_err("log_buf_len: %ld bytes not available\n",
 956			new_log_buf_len);
 957		return;
 958	}
 959
 960	raw_spin_lock_irqsave(&logbuf_lock, flags);
 961	log_buf_len = new_log_buf_len;
 962	log_buf = new_log_buf;
 963	new_log_buf_len = 0;
 964	free = __LOG_BUF_LEN - log_next_idx;
 965	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 966	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 967
 968	pr_info("log_buf_len: %d bytes\n", log_buf_len);
 969	pr_info("early log buf free: %d(%d%%)\n",
 970		free, (free * 100) / __LOG_BUF_LEN);
 971}
 972
 973static bool __read_mostly ignore_loglevel;
 974
 975static int __init ignore_loglevel_setup(char *str)
 976{
 977	ignore_loglevel = true;
 978	pr_info("debug: ignoring loglevel setting.\n");
 979
 980	return 0;
 981}
 982
 983early_param("ignore_loglevel", ignore_loglevel_setup);
 984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 985MODULE_PARM_DESC(ignore_loglevel,
 986		 "ignore loglevel setting (prints all kernel messages to the console)");
 987
 988#ifdef CONFIG_BOOT_PRINTK_DELAY
 989
 990static int boot_delay; /* msecs delay after each printk during bootup */
 991static unsigned long long loops_per_msec;	/* based on boot_delay */
 992
 993static int __init boot_delay_setup(char *str)
 994{
 995	unsigned long lpj;
 996
 997	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 998	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 999
1000	get_option(&str, &boot_delay);
1001	if (boot_delay > 10 * 1000)
1002		boot_delay = 0;
1003
1004	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005		"HZ: %d, loops_per_msec: %llu\n",
1006		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007	return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013	unsigned long long k;
1014	unsigned long timeout;
1015
1016	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017		|| (level >= console_loglevel && !ignore_loglevel)) {
1018		return;
1019	}
1020
1021	k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023	timeout = jiffies + msecs_to_jiffies(boot_delay);
1024	while (k) {
1025		k--;
1026		cpu_relax();
1027		/*
1028		 * use (volatile) jiffies to prevent
1029		 * compiler reduction; loop termination via jiffies
1030		 * is secondary and may or may not happen.
1031		 */
1032		if (time_after(jiffies, timeout))
1033			break;
1034		touch_nmi_watchdog();
1035	}
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
 
 
 
 
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048	unsigned long rem_nsec;
1049
1050	if (!printk_time)
1051		return 0;
1052
1053	rem_nsec = do_div(ts, 1000000000);
1054
1055	if (!buf)
1056		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1057
1058	return sprintf(buf, "[%5lu.%06lu] ",
1059		       (unsigned long)ts, rem_nsec / 1000);
1060}
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1063{
1064	size_t len = 0;
1065	unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067	if (syslog) {
1068		if (buf) {
1069			len += sprintf(buf, "<%u>", prefix);
1070		} else {
1071			len += 3;
1072			if (prefix > 999)
1073				len += 3;
1074			else if (prefix > 99)
1075				len += 2;
1076			else if (prefix > 9)
1077				len++;
1078		}
1079	}
1080
1081	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082	return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086			     bool syslog, char *buf, size_t size)
1087{
1088	const char *text = log_text(msg);
1089	size_t text_size = msg->text_len;
1090	bool prefix = true;
1091	bool newline = true;
1092	size_t len = 0;
1093
1094	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095		prefix = false;
1096
1097	if (msg->flags & LOG_CONT) {
1098		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099			prefix = false;
1100
1101		if (!(msg->flags & LOG_NEWLINE))
1102			newline = false;
1103	}
1104
1105	do {
1106		const char *next = memchr(text, '\n', text_size);
1107		size_t text_len;
1108
1109		if (next) {
1110			text_len = next - text;
1111			next++;
1112			text_size -= next - text;
1113		} else {
1114			text_len = text_size;
1115		}
1116
1117		if (buf) {
1118			if (print_prefix(msg, syslog, NULL) +
1119			    text_len + 1 >= size - len)
1120				break;
1121
1122			if (prefix)
1123				len += print_prefix(msg, syslog, buf + len);
1124			memcpy(buf + len, text, text_len);
1125			len += text_len;
1126			if (next || newline)
1127				buf[len++] = '\n';
1128		} else {
1129			/* SYSLOG_ACTION_* buffer size only calculation */
1130			if (prefix)
1131				len += print_prefix(msg, syslog, NULL);
1132			len += text_len;
1133			if (next || newline)
1134				len++;
1135		}
1136
1137		prefix = true;
1138		text = next;
1139	} while (text);
1140
1141	return len;
1142}
1143
1144static int syslog_print(char __user *buf, int size)
1145{
1146	char *text;
1147	struct printk_log *msg;
1148	int len = 0;
1149
1150	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151	if (!text)
1152		return -ENOMEM;
1153
1154	while (size > 0) {
1155		size_t n;
1156		size_t skip;
1157
1158		raw_spin_lock_irq(&logbuf_lock);
1159		if (syslog_seq < log_first_seq) {
1160			/* messages are gone, move to first one */
1161			syslog_seq = log_first_seq;
1162			syslog_idx = log_first_idx;
1163			syslog_prev = 0;
1164			syslog_partial = 0;
1165		}
1166		if (syslog_seq == log_next_seq) {
1167			raw_spin_unlock_irq(&logbuf_lock);
1168			break;
1169		}
1170
1171		skip = syslog_partial;
1172		msg = log_from_idx(syslog_idx);
1173		n = msg_print_text(msg, syslog_prev, true, text,
1174				   LOG_LINE_MAX + PREFIX_MAX);
1175		if (n - syslog_partial <= size) {
1176			/* message fits into buffer, move forward */
1177			syslog_idx = log_next(syslog_idx);
1178			syslog_seq++;
1179			syslog_prev = msg->flags;
1180			n -= syslog_partial;
1181			syslog_partial = 0;
1182		} else if (!len){
1183			/* partial read(), remember position */
1184			n = size;
1185			syslog_partial += n;
1186		} else
1187			n = 0;
1188		raw_spin_unlock_irq(&logbuf_lock);
1189
1190		if (!n)
1191			break;
1192
1193		if (copy_to_user(buf, text + skip, n)) {
1194			if (!len)
1195				len = -EFAULT;
1196			break;
1197		}
1198
1199		len += n;
1200		size -= n;
1201		buf += n;
1202	}
1203
1204	kfree(text);
1205	return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
1210	char *text;
1211	int len = 0;
1212
1213	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214	if (!text)
1215		return -ENOMEM;
1216
1217	raw_spin_lock_irq(&logbuf_lock);
1218	if (buf) {
1219		u64 next_seq;
1220		u64 seq;
1221		u32 idx;
1222		enum log_flags prev;
1223
 
 
 
 
 
 
1224		/*
1225		 * Find first record that fits, including all following records,
1226		 * into the user-provided buffer for this dump.
1227		 */
1228		seq = clear_seq;
1229		idx = clear_idx;
1230		prev = 0;
1231		while (seq < log_next_seq) {
1232			struct printk_log *msg = log_from_idx(idx);
1233
1234			len += msg_print_text(msg, prev, true, NULL, 0);
1235			prev = msg->flags;
1236			idx = log_next(idx);
1237			seq++;
1238		}
1239
1240		/* move first record forward until length fits into the buffer */
1241		seq = clear_seq;
1242		idx = clear_idx;
1243		prev = 0;
1244		while (len > size && seq < log_next_seq) {
1245			struct printk_log *msg = log_from_idx(idx);
1246
1247			len -= msg_print_text(msg, prev, true, NULL, 0);
1248			prev = msg->flags;
1249			idx = log_next(idx);
1250			seq++;
1251		}
1252
1253		/* last message fitting into this dump */
1254		next_seq = log_next_seq;
1255
1256		len = 0;
1257		while (len >= 0 && seq < next_seq) {
1258			struct printk_log *msg = log_from_idx(idx);
1259			int textlen;
1260
1261			textlen = msg_print_text(msg, prev, true, text,
1262						 LOG_LINE_MAX + PREFIX_MAX);
1263			if (textlen < 0) {
1264				len = textlen;
1265				break;
1266			}
1267			idx = log_next(idx);
1268			seq++;
1269			prev = msg->flags;
1270
1271			raw_spin_unlock_irq(&logbuf_lock);
1272			if (copy_to_user(buf + len, text, textlen))
1273				len = -EFAULT;
1274			else
1275				len += textlen;
1276			raw_spin_lock_irq(&logbuf_lock);
1277
1278			if (seq < log_first_seq) {
1279				/* messages are gone, move to next one */
1280				seq = log_first_seq;
1281				idx = log_first_idx;
1282				prev = 0;
1283			}
1284		}
1285	}
1286
1287	if (clear) {
1288		clear_seq = log_next_seq;
1289		clear_idx = log_next_idx;
1290	}
1291	raw_spin_unlock_irq(&logbuf_lock);
1292
1293	kfree(text);
1294	return len;
1295}
1296
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
1299	bool clear = false;
1300	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301	int error;
1302
1303	error = check_syslog_permissions(type, source);
1304	if (error)
1305		goto out;
1306
 
 
 
 
1307	switch (type) {
1308	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309		break;
1310	case SYSLOG_ACTION_OPEN:	/* Open log */
1311		break;
1312	case SYSLOG_ACTION_READ:	/* Read from log */
1313		error = -EINVAL;
1314		if (!buf || len < 0)
1315			goto out;
1316		error = 0;
1317		if (!len)
1318			goto out;
1319		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320			error = -EFAULT;
1321			goto out;
1322		}
1323		error = wait_event_interruptible(log_wait,
1324						 syslog_seq != log_next_seq);
1325		if (error)
1326			goto out;
1327		error = syslog_print(buf, len);
1328		break;
1329	/* Read/clear last kernel messages */
1330	case SYSLOG_ACTION_READ_CLEAR:
1331		clear = true;
1332		/* FALL THRU */
1333	/* Read last kernel messages */
1334	case SYSLOG_ACTION_READ_ALL:
1335		error = -EINVAL;
1336		if (!buf || len < 0)
1337			goto out;
1338		error = 0;
1339		if (!len)
1340			goto out;
1341		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342			error = -EFAULT;
1343			goto out;
1344		}
1345		error = syslog_print_all(buf, len, clear);
1346		break;
1347	/* Clear ring buffer */
1348	case SYSLOG_ACTION_CLEAR:
1349		syslog_print_all(NULL, 0, true);
1350		break;
1351	/* Disable logging to console */
1352	case SYSLOG_ACTION_CONSOLE_OFF:
1353		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354			saved_console_loglevel = console_loglevel;
1355		console_loglevel = minimum_console_loglevel;
1356		break;
1357	/* Enable logging to console */
1358	case SYSLOG_ACTION_CONSOLE_ON:
1359		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360			console_loglevel = saved_console_loglevel;
1361			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362		}
1363		break;
1364	/* Set level of messages printed to console */
1365	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366		error = -EINVAL;
1367		if (len < 1 || len > 8)
1368			goto out;
1369		if (len < minimum_console_loglevel)
1370			len = minimum_console_loglevel;
1371		console_loglevel = len;
1372		/* Implicitly re-enable logging to console */
1373		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374		error = 0;
1375		break;
1376	/* Number of chars in the log buffer */
1377	case SYSLOG_ACTION_SIZE_UNREAD:
1378		raw_spin_lock_irq(&logbuf_lock);
1379		if (syslog_seq < log_first_seq) {
1380			/* messages are gone, move to first one */
1381			syslog_seq = log_first_seq;
1382			syslog_idx = log_first_idx;
1383			syslog_prev = 0;
1384			syslog_partial = 0;
1385		}
1386		if (source == SYSLOG_FROM_PROC) {
1387			/*
1388			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389			 * for pending data, not the size; return the count of
1390			 * records, not the length.
1391			 */
1392			error = log_next_seq - syslog_seq;
1393		} else {
1394			u64 seq = syslog_seq;
1395			u32 idx = syslog_idx;
1396			enum log_flags prev = syslog_prev;
1397
1398			error = 0;
1399			while (seq < log_next_seq) {
1400				struct printk_log *msg = log_from_idx(idx);
1401
1402				error += msg_print_text(msg, prev, true, NULL, 0);
1403				idx = log_next(idx);
1404				seq++;
1405				prev = msg->flags;
1406			}
1407			error -= syslog_partial;
1408		}
1409		raw_spin_unlock_irq(&logbuf_lock);
1410		break;
1411	/* Size of the log buffer */
1412	case SYSLOG_ACTION_SIZE_BUFFER:
1413		error = log_buf_len;
1414		break;
1415	default:
1416		error = -EINVAL;
1417		break;
1418	}
1419out:
1420	return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434				 const char *ext_text, size_t ext_len,
1435				 const char *text, size_t len)
1436{
1437	struct console *con;
1438
1439	trace_console(text, len);
1440
1441	if (level >= console_loglevel && !ignore_loglevel)
1442		return;
1443	if (!console_drivers)
1444		return;
1445
1446	for_each_console(con) {
1447		if (exclusive_console && con != exclusive_console)
1448			continue;
1449		if (!(con->flags & CON_ENABLED))
1450			continue;
1451		if (!con->write)
1452			continue;
1453		if (!cpu_online(smp_processor_id()) &&
1454		    !(con->flags & CON_ANYTIME))
1455			continue;
1456		if (con->flags & CON_EXTENDED)
1457			con->write(con, ext_text, ext_len);
1458		else
1459			con->write(con, text, len);
1460	}
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468static void zap_locks(void)
1469{
1470	static unsigned long oops_timestamp;
1471
1472	if (time_after_eq(jiffies, oops_timestamp) &&
1473	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474		return;
1475
1476	oops_timestamp = jiffies;
1477
1478	debug_locks_off();
1479	/* If a crash is occurring, make sure we can't deadlock */
1480	raw_spin_lock_init(&logbuf_lock);
1481	/* And make sure that we print immediately */
1482	sema_init(&console_sem, 1);
1483}
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
1489	if (unlikely(printk_delay_msec)) {
1490		int m = printk_delay_msec;
1491
1492		while (m--) {
1493			mdelay(1);
1494			touch_nmi_watchdog();
1495		}
1496	}
1497}
1498
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506	char buf[LOG_LINE_MAX];
1507	size_t len;			/* length == 0 means unused buffer */
1508	size_t cons;			/* bytes written to console */
1509	struct task_struct *owner;	/* task of first print*/
1510	u64 ts_nsec;			/* time of first print */
1511	u8 level;			/* log level of first message */
1512	u8 facility;			/* log facility of first message */
1513	enum log_flags flags;		/* prefix, newline flags */
1514	bool flushed:1;			/* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
1518{
1519	if (cont.flushed)
1520		return;
1521	if (cont.len == 0)
1522		return;
1523
1524	if (cont.cons) {
1525		/*
1526		 * If a fragment of this line was directly flushed to the
1527		 * console; wait for the console to pick up the rest of the
1528		 * line. LOG_NOCONS suppresses a duplicated output.
1529		 */
1530		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532		cont.flags = flags;
1533		cont.flushed = true;
1534	} else {
1535		/*
1536		 * If no fragment of this line ever reached the console,
1537		 * just submit it to the store and free the buffer.
1538		 */
1539		log_store(cont.facility, cont.level, flags, 0,
1540			  NULL, 0, cont.buf, cont.len);
1541		cont.len = 0;
1542	}
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
1546{
1547	if (cont.len && cont.flushed)
1548		return false;
1549
1550	/*
1551	 * If ext consoles are present, flush and skip in-kernel
1552	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1553	 * the line gets too long, split it up in separate records.
1554	 */
1555	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556		cont_flush(LOG_CONT);
1557		return false;
1558	}
1559
1560	if (!cont.len) {
1561		cont.facility = facility;
1562		cont.level = level;
1563		cont.owner = current;
1564		cont.ts_nsec = local_clock();
1565		cont.flags = 0;
1566		cont.cons = 0;
1567		cont.flushed = false;
1568	}
1569
1570	memcpy(cont.buf + cont.len, text, len);
1571	cont.len += len;
1572
1573	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574		cont_flush(LOG_CONT);
1575
1576	return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581	size_t textlen = 0;
1582	size_t len;
1583
1584	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585		textlen += print_time(cont.ts_nsec, text);
1586		size -= textlen;
1587	}
1588
1589	len = cont.len - cont.cons;
1590	if (len > 0) {
1591		if (len+1 > size)
1592			len = size-1;
1593		memcpy(text + textlen, cont.buf + cont.cons, len);
1594		textlen += len;
1595		cont.cons = cont.len;
1596	}
1597
1598	if (cont.flushed) {
1599		if (cont.flags & LOG_NEWLINE)
1600			text[textlen++] = '\n';
1601		/* got everything, release buffer */
1602		cont.len = 0;
1603	}
1604	return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608			    const char *dict, size_t dictlen,
1609			    const char *fmt, va_list args)
1610{
1611	static bool recursion_bug;
1612	static char textbuf[LOG_LINE_MAX];
1613	char *text = textbuf;
1614	size_t text_len = 0;
1615	enum log_flags lflags = 0;
1616	unsigned long flags;
1617	int this_cpu;
1618	int printed_len = 0;
1619	bool in_sched = false;
1620	/* cpu currently holding logbuf_lock in this function */
1621	static unsigned int logbuf_cpu = UINT_MAX;
1622
1623	if (level == LOGLEVEL_SCHED) {
1624		level = LOGLEVEL_DEFAULT;
1625		in_sched = true;
1626	}
1627
1628	boot_delay_msec(level);
1629	printk_delay();
1630
 
1631	local_irq_save(flags);
1632	this_cpu = smp_processor_id();
1633
1634	/*
1635	 * Ouch, printk recursed into itself!
1636	 */
1637	if (unlikely(logbuf_cpu == this_cpu)) {
1638		/*
1639		 * If a crash is occurring during printk() on this CPU,
1640		 * then try to get the crash message out but make sure
1641		 * we can't deadlock. Otherwise just return to avoid the
1642		 * recursion and return - but flag the recursion so that
1643		 * it can be printed at the next appropriate moment:
1644		 */
1645		if (!oops_in_progress && !lockdep_recursing(current)) {
1646			recursion_bug = true;
1647			local_irq_restore(flags);
1648			return 0;
1649		}
1650		zap_locks();
1651	}
1652
1653	lockdep_off();
1654	/* This stops the holder of console_sem just where we want him */
1655	raw_spin_lock(&logbuf_lock);
1656	logbuf_cpu = this_cpu;
1657
1658	if (unlikely(recursion_bug)) {
1659		static const char recursion_msg[] =
1660			"BUG: recent printk recursion!";
1661
1662		recursion_bug = false;
 
1663		/* emit KERN_CRIT message */
1664		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665					 NULL, 0, recursion_msg,
1666					 strlen(recursion_msg));
1667	}
1668
1669	/*
1670	 * The printf needs to come first; we need the syslog
1671	 * prefix which might be passed-in as a parameter.
1672	 */
1673	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675	/* mark and strip a trailing newline */
1676	if (text_len && text[text_len-1] == '\n') {
1677		text_len--;
1678		lflags |= LOG_NEWLINE;
1679	}
1680
1681	/* strip kernel syslog prefix and extract log level or control flags */
1682	if (facility == 0) {
1683		int kern_level = printk_get_level(text);
1684
1685		if (kern_level) {
1686			const char *end_of_header = printk_skip_level(text);
1687			switch (kern_level) {
1688			case '0' ... '7':
1689				if (level == LOGLEVEL_DEFAULT)
1690					level = kern_level - '0';
1691				/* fallthrough */
1692			case 'd':	/* KERN_DEFAULT */
1693				lflags |= LOG_PREFIX;
1694			}
1695			/*
1696			 * No need to check length here because vscnprintf
1697			 * put '\0' at the end of the string. Only valid and
1698			 * newly printed level is detected.
1699			 */
1700			text_len -= end_of_header - text;
1701			text = (char *)end_of_header;
1702		}
1703	}
1704
1705	if (level == LOGLEVEL_DEFAULT)
1706		level = default_message_loglevel;
1707
1708	if (dict)
1709		lflags |= LOG_PREFIX|LOG_NEWLINE;
1710
1711	if (!(lflags & LOG_NEWLINE)) {
1712		/*
1713		 * Flush the conflicting buffer. An earlier newline was missing,
1714		 * or another task also prints continuation lines.
1715		 */
1716		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717			cont_flush(LOG_NEWLINE);
1718
1719		/* buffer line if possible, otherwise store it right away */
1720		if (cont_add(facility, level, text, text_len))
1721			printed_len += text_len;
1722		else
1723			printed_len += log_store(facility, level,
1724						 lflags | LOG_CONT, 0,
1725						 dict, dictlen, text, text_len);
1726	} else {
1727		bool stored = false;
1728
1729		/*
1730		 * If an earlier newline was missing and it was the same task,
1731		 * either merge it with the current buffer and flush, or if
1732		 * there was a race with interrupts (prefix == true) then just
1733		 * flush it out and store this line separately.
1734		 * If the preceding printk was from a different task and missed
1735		 * a newline, flush and append the newline.
1736		 */
1737		if (cont.len) {
1738			if (cont.owner == current && !(lflags & LOG_PREFIX))
1739				stored = cont_add(facility, level, text,
1740						  text_len);
1741			cont_flush(LOG_NEWLINE);
1742		}
1743
1744		if (stored)
1745			printed_len += text_len;
1746		else
1747			printed_len += log_store(facility, level, lflags, 0,
1748						 dict, dictlen, text, text_len);
1749	}
 
 
 
 
 
 
 
 
 
 
 
 
1750
1751	logbuf_cpu = UINT_MAX;
1752	raw_spin_unlock(&logbuf_lock);
1753	lockdep_on();
 
1754	local_irq_restore(flags);
1755
1756	/* If called from the scheduler, we can not call up(). */
1757	if (!in_sched) {
1758		lockdep_off();
1759		/*
1760		 * Try to acquire and then immediately release the console
1761		 * semaphore.  The release will print out buffers and wake up
1762		 * /dev/kmsg and syslog() users.
1763		 */
1764		if (console_trylock())
1765			console_unlock();
1766		lockdep_on();
1767	}
1768
1769	return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780			   const char *dict, size_t dictlen,
1781			   const char *fmt, ...)
1782{
1783	va_list args;
1784	int r;
1785
1786	va_start(args, fmt);
1787	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788	va_end(args);
1789
1790	return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796	int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799	if (unlikely(kdb_trap_printk)) {
1800		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801		return r;
1802	}
1803#endif
1804	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806	return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers.  If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841	printk_func_t vprintk_func;
1842	va_list args;
1843	int r;
1844
 
 
 
 
 
 
 
 
1845	va_start(args, fmt);
1846
1847	/*
1848	 * If a caller overrides the per_cpu printk_func, then it needs
1849	 * to disable preemption when calling printk(). Otherwise
1850	 * the printk_func should be set to the default. No need to
1851	 * disable preemption here.
1852	 */
1853	vprintk_func = this_cpu_read(printk_func);
1854	r = vprintk_func(fmt, args);
1855
1856	va_end(args);
1857
1858	return r;
1859}
1860EXPORT_SYMBOL(printk);
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX		0
1865#define PREFIX_MAX		0
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877	size_t len;
1878	size_t cons;
1879	u8 level;
1880	bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887				    struct printk_log *msg, u64 seq,
1888				    enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890				  char *dict, size_t dict_len,
1891				  char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893				 const char *ext_text, size_t ext_len,
1894				 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896			     bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
 
 
 
 
 
 
 
 
 
 
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909	va_list ap;
1910	char buf[512];
1911	int n;
1912
1913	if (!early_console)
1914		return;
1915
1916	va_start(ap, fmt);
1917	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918	va_end(ap);
1919
1920	early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925				   char *brl_options)
1926{
1927	struct console_cmdline *c;
1928	int i;
1929
1930	/*
1931	 *	See if this tty is not yet registered, and
1932	 *	if we have a slot free.
1933	 */
1934	for (i = 0, c = console_cmdline;
1935	     i < MAX_CMDLINECONSOLES && c->name[0];
1936	     i++, c++) {
1937		if (strcmp(c->name, name) == 0 && c->index == idx) {
1938			if (!brl_options)
1939				selected_console = i;
1940			return 0;
1941		}
1942	}
1943	if (i == MAX_CMDLINECONSOLES)
1944		return -E2BIG;
1945	if (!brl_options)
1946		selected_console = i;
1947	strlcpy(c->name, name, sizeof(c->name));
1948	c->options = options;
1949	braille_set_options(c, brl_options);
1950
1951	c->index = idx;
1952	return 0;
1953}
1954/*
1955 * Set up a console.  Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961	char *s, *options, *brl_options = NULL;
1962	int idx;
1963
1964	if (_braille_console_setup(&str, &brl_options))
1965		return 1;
1966
1967	/*
1968	 * Decode str into name, index, options.
1969	 */
1970	if (str[0] >= '0' && str[0] <= '9') {
1971		strcpy(buf, "ttyS");
1972		strncpy(buf + 4, str, sizeof(buf) - 5);
1973	} else {
1974		strncpy(buf, str, sizeof(buf) - 1);
1975	}
1976	buf[sizeof(buf) - 1] = 0;
1977	options = strchr(str, ',');
1978	if (options)
1979		*(options++) = 0;
1980#ifdef __sparc__
1981	if (!strcmp(str, "ttya"))
1982		strcpy(buf, "ttyS0");
1983	if (!strcmp(str, "ttyb"))
1984		strcpy(buf, "ttyS1");
1985#endif
1986	for (s = buf; *s; s++)
1987		if (isdigit(*s) || *s == ',')
1988			break;
1989	idx = simple_strtoul(s, NULL, 10);
1990	*s = 0;
1991
1992	__add_preferred_console(buf, idx, options, brl_options);
1993	console_set_on_cmdline = 1;
1994	return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init.  Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013	return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021	console_suspend_enabled = false;
2022	return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026		bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028	" and hibernate operations");
2029
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
2037	if (!console_suspend_enabled)
2038		return;
2039	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040	console_lock();
2041	console_suspended = 1;
2042	up_console_sem();
 
2043}
2044
2045void resume_console(void)
2046{
2047	if (!console_suspend_enabled)
2048		return;
2049	down_console_sem();
 
2050	console_suspended = 0;
2051	console_unlock();
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console.  This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066	unsigned long action, void *hcpu)
2067{
2068	switch (action) {
2069	case CPU_ONLINE:
2070	case CPU_DEAD:
2071	case CPU_DOWN_FAILED:
2072	case CPU_UP_CANCELED:
2073		console_lock();
2074		console_unlock();
2075	}
2076	return NOTIFY_OK;
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089	might_sleep();
2090
2091	down_console_sem();
2092	if (console_suspended)
2093		return;
2094	console_locked = 1;
2095	console_may_schedule = 1;
 
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109	if (down_trylock_console_sem())
2110		return 0;
2111	if (console_suspended) {
2112		up_console_sem();
2113		return 0;
2114	}
2115	console_locked = 1;
2116	/*
2117	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119	 * because preempt_disable()/preempt_enable() are just barriers there
2120	 * and preempt_count() is always 0.
2121	 *
2122	 * RCU read sections have a separate preemption counter when
2123	 * PREEMPT_RCU enabled thus we must take extra care and check
2124	 * rcu_preempt_depth(), otherwise RCU read sections modify
2125	 * preempt_count().
2126	 */
2127	console_may_schedule = !oops_in_progress &&
2128			preemptible() &&
2129			!rcu_preempt_depth();
2130	return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136	return console_locked;
2137}
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2142 */
2143static int have_callable_console(void)
2144{
2145	struct console *con;
2146
2147	for_each_console(con)
2148		if ((con->flags & CON_ENABLED) &&
2149				(con->flags & CON_ANYTIME))
2150			return 1;
2151
2152	return 0;
2153}
2154
2155/*
2156 * Can we actually use the console at this time on this cpu?
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2161 */
2162static inline int can_use_console(void)
2163{
2164	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
2168{
2169	unsigned long flags;
2170	size_t len;
2171
2172	raw_spin_lock_irqsave(&logbuf_lock, flags);
2173
2174	if (!cont.len)
2175		goto out;
2176
2177	/*
2178	 * We still queue earlier records, likely because the console was
2179	 * busy. The earlier ones need to be printed before this one, we
2180	 * did not flush any fragment so far, so just let it queue up.
2181	 */
2182	if (console_seq < log_next_seq && !cont.cons)
2183		goto out;
2184
2185	len = cont_print_text(text, size);
2186	raw_spin_unlock(&logbuf_lock);
2187	stop_critical_timings();
2188	call_console_drivers(cont.level, NULL, 0, text, len);
2189	start_critical_timings();
2190	local_irq_restore(flags);
2191	return;
2192out:
2193	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk().  If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212	static char ext_text[CONSOLE_EXT_LOG_MAX];
2213	static char text[LOG_LINE_MAX + PREFIX_MAX];
2214	static u64 seen_seq;
2215	unsigned long flags;
2216	bool wake_klogd = false;
2217	bool do_cond_resched, retry;
2218
2219	if (console_suspended) {
2220		up_console_sem();
2221		return;
2222	}
2223
2224	/*
2225	 * Console drivers are called under logbuf_lock, so
2226	 * @console_may_schedule should be cleared before; however, we may
2227	 * end up dumping a lot of lines, for example, if called from
2228	 * console registration path, and should invoke cond_resched()
2229	 * between lines if allowable.  Not doing so can cause a very long
2230	 * scheduling stall on a slow console leading to RCU stall and
2231	 * softlockup warnings which exacerbate the issue with more
2232	 * messages practically incapacitating the system.
2233	 */
2234	do_cond_resched = console_may_schedule;
2235	console_may_schedule = 0;
2236
2237again:
2238	/*
2239	 * We released the console_sem lock, so we need to recheck if
2240	 * cpu is online and (if not) is there at least one CON_ANYTIME
2241	 * console.
2242	 */
2243	if (!can_use_console()) {
2244		console_locked = 0;
2245		up_console_sem();
2246		return;
2247	}
2248
2249	/* flush buffered message fragment immediately to console */
2250	console_cont_flush(text, sizeof(text));
2251
2252	for (;;) {
2253		struct printk_log *msg;
2254		size_t ext_len = 0;
2255		size_t len;
2256		int level;
2257
2258		raw_spin_lock_irqsave(&logbuf_lock, flags);
2259		if (seen_seq != log_next_seq) {
2260			wake_klogd = true;
2261			seen_seq = log_next_seq;
2262		}
2263
2264		if (console_seq < log_first_seq) {
2265			len = sprintf(text, "** %u printk messages dropped ** ",
2266				      (unsigned)(log_first_seq - console_seq));
2267
2268			/* messages are gone, move to first one */
2269			console_seq = log_first_seq;
2270			console_idx = log_first_idx;
2271			console_prev = 0;
2272		} else {
2273			len = 0;
2274		}
2275skip:
2276		if (console_seq == log_next_seq)
2277			break;
2278
2279		msg = log_from_idx(console_idx);
2280		if (msg->flags & LOG_NOCONS) {
2281			/*
2282			 * Skip record we have buffered and already printed
2283			 * directly to the console when we received it.
2284			 */
2285			console_idx = log_next(console_idx);
2286			console_seq++;
2287			/*
2288			 * We will get here again when we register a new
2289			 * CON_PRINTBUFFER console. Clear the flag so we
2290			 * will properly dump everything later.
2291			 */
2292			msg->flags &= ~LOG_NOCONS;
2293			console_prev = msg->flags;
2294			goto skip;
2295		}
2296
2297		level = msg->level;
2298		len += msg_print_text(msg, console_prev, false,
2299				      text + len, sizeof(text) - len);
2300		if (nr_ext_console_drivers) {
2301			ext_len = msg_print_ext_header(ext_text,
2302						sizeof(ext_text),
2303						msg, console_seq, console_prev);
2304			ext_len += msg_print_ext_body(ext_text + ext_len,
2305						sizeof(ext_text) - ext_len,
2306						log_dict(msg), msg->dict_len,
2307						log_text(msg), msg->text_len);
2308		}
2309		console_idx = log_next(console_idx);
2310		console_seq++;
2311		console_prev = msg->flags;
2312		raw_spin_unlock(&logbuf_lock);
2313
2314		stop_critical_timings();	/* don't trace print latency */
2315		call_console_drivers(level, ext_text, ext_len, text, len);
2316		start_critical_timings();
2317		local_irq_restore(flags);
2318
2319		if (do_cond_resched)
2320			cond_resched();
2321	}
2322	console_locked = 0;
 
2323
2324	/* Release the exclusive_console once it is used */
2325	if (unlikely(exclusive_console))
2326		exclusive_console = NULL;
2327
2328	raw_spin_unlock(&logbuf_lock);
2329
2330	up_console_sem();
2331
2332	/*
2333	 * Someone could have filled up the buffer again, so re-check if there's
2334	 * something to flush. In case we cannot trylock the console_sem again,
2335	 * there's a new owner and the console_unlock() from them will do the
2336	 * flush, no worries.
2337	 */
2338	raw_spin_lock(&logbuf_lock);
2339	retry = console_seq != log_next_seq;
2340	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2341
2342	if (retry && console_trylock())
2343		goto again;
2344
2345	if (wake_klogd)
2346		wake_up_klogd();
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361	if (console_may_schedule)
2362		cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
2368	struct console *c;
2369
2370	/*
2371	 * console_unblank can no longer be called in interrupt context unless
2372	 * oops_in_progress is set to 1..
2373	 */
2374	if (oops_in_progress) {
2375		if (down_trylock_console_sem() != 0)
2376			return;
2377	} else
2378		console_lock();
2379
2380	console_locked = 1;
2381	console_may_schedule = 0;
2382	for_each_console(c)
2383		if ((c->flags & CON_ENABLED) && c->unblank)
2384			c->unblank();
2385	console_unlock();
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
2395	/*
2396	 * If someone else is holding the console lock, trylock will fail
2397	 * and may_schedule may be set.  Ignore and proceed to unlock so
2398	 * that messages are flushed out.  As this can be called from any
2399	 * context and we don't want to get preempted while flushing,
2400	 * ensure may_schedule is cleared.
2401	 */
2402	console_trylock();
2403	console_may_schedule = 0;
2404	console_unlock();
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412	struct console *c;
2413	struct tty_driver *driver = NULL;
2414
2415	console_lock();
2416	for_each_console(c) {
2417		if (!c->device)
2418			continue;
2419		driver = c->device(c, index);
2420		if (driver)
2421			break;
2422	}
2423	console_unlock();
2424	return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434	console_lock();
2435	console->flags &= ~CON_ENABLED;
2436	console_unlock();
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442	console_lock();
2443	console->flags |= CON_ENABLED;
2444	console_unlock();
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452	keep_bootcon = 1;
2453	pr_info("debug: skip boot console de-registration.\n");
2454
2455	return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 *  - Any number of bootconsoles can be registered at any time.
2474 *  - As soon as a "real" console is registered, all bootconsoles
2475 *    will be unregistered automatically.
2476 *  - Once a "real" console is registered, any attempt to register a
2477 *    bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481	int i;
2482	unsigned long flags;
2483	struct console *bcon = NULL;
2484	struct console_cmdline *c;
2485
2486	if (console_drivers)
2487		for_each_console(bcon)
2488			if (WARN(bcon == newcon,
2489					"console '%s%d' already registered\n",
2490					bcon->name, bcon->index))
2491				return;
2492
2493	/*
2494	 * before we register a new CON_BOOT console, make sure we don't
2495	 * already have a valid console
2496	 */
2497	if (console_drivers && newcon->flags & CON_BOOT) {
2498		/* find the last or real console */
2499		for_each_console(bcon) {
2500			if (!(bcon->flags & CON_BOOT)) {
2501				pr_info("Too late to register bootconsole %s%d\n",
2502					newcon->name, newcon->index);
2503				return;
2504			}
2505		}
2506	}
2507
2508	if (console_drivers && console_drivers->flags & CON_BOOT)
2509		bcon = console_drivers;
2510
2511	if (preferred_console < 0 || bcon || !console_drivers)
2512		preferred_console = selected_console;
2513
 
 
 
2514	/*
2515	 *	See if we want to use this console driver. If we
2516	 *	didn't select a console we take the first one
2517	 *	that registers here.
2518	 */
2519	if (preferred_console < 0) {
2520		if (newcon->index < 0)
2521			newcon->index = 0;
2522		if (newcon->setup == NULL ||
2523		    newcon->setup(newcon, NULL) == 0) {
2524			newcon->flags |= CON_ENABLED;
2525			if (newcon->device) {
2526				newcon->flags |= CON_CONSDEV;
2527				preferred_console = 0;
2528			}
2529		}
2530	}
2531
2532	/*
2533	 *	See if this console matches one we selected on
2534	 *	the command line.
2535	 */
2536	for (i = 0, c = console_cmdline;
2537	     i < MAX_CMDLINECONSOLES && c->name[0];
2538	     i++, c++) {
2539		if (!newcon->match ||
2540		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541			/* default matching */
2542			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543			if (strcmp(c->name, newcon->name) != 0)
2544				continue;
2545			if (newcon->index >= 0 &&
2546			    newcon->index != c->index)
2547				continue;
2548			if (newcon->index < 0)
2549				newcon->index = c->index;
2550
2551			if (_braille_register_console(newcon, c))
2552				return;
2553
2554			if (newcon->setup &&
2555			    newcon->setup(newcon, c->options) != 0)
2556				break;
2557		}
2558
 
 
 
2559		newcon->flags |= CON_ENABLED;
 
2560		if (i == selected_console) {
2561			newcon->flags |= CON_CONSDEV;
2562			preferred_console = selected_console;
2563		}
2564		break;
2565	}
2566
2567	if (!(newcon->flags & CON_ENABLED))
2568		return;
2569
2570	/*
2571	 * If we have a bootconsole, and are switching to a real console,
2572	 * don't print everything out again, since when the boot console, and
2573	 * the real console are the same physical device, it's annoying to
2574	 * see the beginning boot messages twice
2575	 */
2576	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577		newcon->flags &= ~CON_PRINTBUFFER;
2578
2579	/*
2580	 *	Put this console in the list - keep the
2581	 *	preferred driver at the head of the list.
2582	 */
2583	console_lock();
2584	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585		newcon->next = console_drivers;
2586		console_drivers = newcon;
2587		if (newcon->next)
2588			newcon->next->flags &= ~CON_CONSDEV;
2589	} else {
2590		newcon->next = console_drivers->next;
2591		console_drivers->next = newcon;
2592	}
2593
2594	if (newcon->flags & CON_EXTENDED)
2595		if (!nr_ext_console_drivers++)
2596			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597
2598	if (newcon->flags & CON_PRINTBUFFER) {
2599		/*
2600		 * console_unlock(); will print out the buffered messages
2601		 * for us.
2602		 */
2603		raw_spin_lock_irqsave(&logbuf_lock, flags);
2604		console_seq = syslog_seq;
2605		console_idx = syslog_idx;
2606		console_prev = syslog_prev;
2607		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608		/*
2609		 * We're about to replay the log buffer.  Only do this to the
2610		 * just-registered console to avoid excessive message spam to
2611		 * the already-registered consoles.
2612		 */
2613		exclusive_console = newcon;
2614	}
2615	console_unlock();
2616	console_sysfs_notify();
2617
2618	/*
2619	 * By unregistering the bootconsoles after we enable the real console
2620	 * we get the "console xxx enabled" message on all the consoles -
2621	 * boot consoles, real consoles, etc - this is to ensure that end
2622	 * users know there might be something in the kernel's log buffer that
2623	 * went to the bootconsole (that they do not see on the real console)
2624	 */
2625	pr_info("%sconsole [%s%d] enabled\n",
2626		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2627		newcon->name, newcon->index);
2628	if (bcon &&
2629	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630	    !keep_bootcon) {
2631		/* We need to iterate through all boot consoles, to make
2632		 * sure we print everything out, before we unregister them.
2633		 */
2634		for_each_console(bcon)
2635			if (bcon->flags & CON_BOOT)
2636				unregister_console(bcon);
2637	}
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
2642{
2643        struct console *a, *b;
2644	int res;
2645
2646	pr_info("%sconsole [%s%d] disabled\n",
2647		(console->flags & CON_BOOT) ? "boot" : "" ,
2648		console->name, console->index);
2649
2650	res = _braille_unregister_console(console);
2651	if (res)
2652		return res;
2653
2654	res = 1;
2655	console_lock();
2656	if (console_drivers == console) {
2657		console_drivers=console->next;
2658		res = 0;
2659	} else if (console_drivers) {
2660		for (a=console_drivers->next, b=console_drivers ;
2661		     a; b=a, a=b->next) {
2662			if (a == console) {
2663				b->next = a->next;
2664				res = 0;
2665				break;
2666			}
2667		}
2668	}
2669
2670	if (!res && (console->flags & CON_EXTENDED))
2671		nr_ext_console_drivers--;
2672
2673	/*
2674	 * If this isn't the last console and it has CON_CONSDEV set, we
2675	 * need to set it on the next preferred console.
2676	 */
2677	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678		console_drivers->flags |= CON_CONSDEV;
2679
2680	console->flags &= ~CON_ENABLED;
2681	console_unlock();
2682	console_sysfs_notify();
2683	return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
2687/*
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
2704	struct console *con;
2705
2706	for_each_console(con) {
2707		if (!keep_bootcon && con->flags & CON_BOOT) {
2708			/*
2709			 * Make sure to unregister boot consoles whose data
2710			 * resides in the init section before the init section
2711			 * is discarded. Boot consoles whose data will stick
2712			 * around will automatically be unregistered when the
2713			 * proper console replaces them.
2714			 */
2715			if (init_section_intersects(con, sizeof(*con)))
2716				unregister_console(con);
2717		}
2718	}
2719	hotcpu_notifier(console_cpu_notify, 0);
2720	return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
 
 
2728#define PRINTK_PENDING_WAKEUP	0x01
2729#define PRINTK_PENDING_OUTPUT	0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
 
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735	int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737	if (pending & PRINTK_PENDING_OUTPUT) {
2738		/* If trylock fails, someone else is doing the printing */
2739		if (console_trylock())
2740			console_unlock();
2741	}
2742
2743	if (pending & PRINTK_PENDING_WAKEUP)
2744		wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748	.func = wake_up_klogd_work_func,
2749	.flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
2754	preempt_disable();
2755	if (waitqueue_active(&log_wait)) {
2756		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758	}
2759	preempt_enable();
2760}
2761
2762int printk_deferred(const char *fmt, ...)
2763{
 
2764	va_list args;
 
2765	int r;
2766
2767	preempt_disable();
 
 
2768	va_start(args, fmt);
2769	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770	va_end(args);
2771
2772	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774	preempt_enable();
2775
2776	return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789	return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803			unsigned int interval_msecs)
2804{
2805	unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808		return false;
2809
2810	*caller_jiffies = jiffies;
2811	return true;
 
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828	unsigned long flags;
2829	int err = -EBUSY;
2830
2831	/* The dump callback needs to be set */
2832	if (!dumper->dump)
2833		return -EINVAL;
2834
2835	spin_lock_irqsave(&dump_list_lock, flags);
2836	/* Don't allow registering multiple times */
2837	if (!dumper->registered) {
2838		dumper->registered = 1;
2839		list_add_tail_rcu(&dumper->list, &dump_list);
2840		err = 0;
2841	}
2842	spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844	return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857	unsigned long flags;
2858	int err = -EINVAL;
2859
2860	spin_lock_irqsave(&dump_list_lock, flags);
2861	if (dumper->registered) {
2862		dumper->registered = 0;
2863		list_del_rcu(&dumper->list);
2864		err = 0;
2865	}
2866	spin_unlock_irqrestore(&dump_list_lock, flags);
2867	synchronize_rcu();
2868
2869	return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886	struct kmsg_dumper *dumper;
2887	unsigned long flags;
2888
2889	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890		return;
2891
2892	rcu_read_lock();
2893	list_for_each_entry_rcu(dumper, &dump_list, list) {
2894		if (dumper->max_reason && reason > dumper->max_reason)
2895			continue;
2896
2897		/* initialize iterator with data about the stored records */
2898		dumper->active = true;
2899
2900		raw_spin_lock_irqsave(&logbuf_lock, flags);
2901		dumper->cur_seq = clear_seq;
2902		dumper->cur_idx = clear_idx;
2903		dumper->next_seq = log_next_seq;
2904		dumper->next_idx = log_next_idx;
2905		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906
2907		/* invoke dumper which will iterate over records */
2908		dumper->dump(dumper, reason);
2909
2910		/* reset iterator */
2911		dumper->active = false;
2912	}
2913	rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936			       char *line, size_t size, size_t *len)
2937{
2938	struct printk_log *msg;
2939	size_t l = 0;
2940	bool ret = false;
2941
2942	if (!dumper->active)
2943		goto out;
2944
2945	if (dumper->cur_seq < log_first_seq) {
2946		/* messages are gone, move to first available one */
2947		dumper->cur_seq = log_first_seq;
2948		dumper->cur_idx = log_first_idx;
2949	}
2950
2951	/* last entry */
2952	if (dumper->cur_seq >= log_next_seq)
2953		goto out;
2954
2955	msg = log_from_idx(dumper->cur_idx);
2956	l = msg_print_text(msg, 0, syslog, line, size);
2957
2958	dumper->cur_idx = log_next(dumper->cur_idx);
2959	dumper->cur_seq++;
2960	ret = true;
2961out:
2962	if (len)
2963		*len = l;
2964	return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985			char *line, size_t size, size_t *len)
2986{
2987	unsigned long flags;
2988	bool ret;
2989
2990	raw_spin_lock_irqsave(&logbuf_lock, flags);
2991	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994	return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018			  char *buf, size_t size, size_t *len)
3019{
3020	unsigned long flags;
3021	u64 seq;
3022	u32 idx;
3023	u64 next_seq;
3024	u32 next_idx;
3025	enum log_flags prev;
3026	size_t l = 0;
3027	bool ret = false;
3028
3029	if (!dumper->active)
3030		goto out;
3031
3032	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033	if (dumper->cur_seq < log_first_seq) {
3034		/* messages are gone, move to first available one */
3035		dumper->cur_seq = log_first_seq;
3036		dumper->cur_idx = log_first_idx;
3037	}
3038
3039	/* last entry */
3040	if (dumper->cur_seq >= dumper->next_seq) {
3041		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042		goto out;
3043	}
3044
3045	/* calculate length of entire buffer */
3046	seq = dumper->cur_seq;
3047	idx = dumper->cur_idx;
3048	prev = 0;
3049	while (seq < dumper->next_seq) {
3050		struct printk_log *msg = log_from_idx(idx);
3051
3052		l += msg_print_text(msg, prev, true, NULL, 0);
3053		idx = log_next(idx);
3054		seq++;
3055		prev = msg->flags;
3056	}
3057
3058	/* move first record forward until length fits into the buffer */
3059	seq = dumper->cur_seq;
3060	idx = dumper->cur_idx;
3061	prev = 0;
3062	while (l > size && seq < dumper->next_seq) {
3063		struct printk_log *msg = log_from_idx(idx);
3064
3065		l -= msg_print_text(msg, prev, true, NULL, 0);
3066		idx = log_next(idx);
3067		seq++;
3068		prev = msg->flags;
3069	}
3070
3071	/* last message in next interation */
3072	next_seq = seq;
3073	next_idx = idx;
3074
3075	l = 0;
3076	while (seq < dumper->next_seq) {
3077		struct printk_log *msg = log_from_idx(idx);
3078
3079		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080		idx = log_next(idx);
3081		seq++;
3082		prev = msg->flags;
3083	}
3084
3085	dumper->next_seq = next_seq;
3086	dumper->next_idx = next_idx;
3087	ret = true;
3088	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090	if (len)
3091		*len = l;
3092	return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108	dumper->cur_seq = clear_seq;
3109	dumper->cur_idx = clear_idx;
3110	dumper->next_seq = log_next_seq;
3111	dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124	unsigned long flags;
3125
3126	raw_spin_lock_irqsave(&logbuf_lock, flags);
3127	kmsg_dump_rewind_nolock(dumper);
3128	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps.  Usually used to add arch-specific system identifiers.  If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146	va_list args;
3147
3148	va_start(args, fmt);
3149	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150		  fmt, args);
3151	va_end(args);
3152}
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165	       print_tainted(), init_utsname()->release,
3166	       (int)strcspn(init_utsname()->version, " "),
3167	       init_utsname()->version);
3168
3169	if (dump_stack_arch_desc_str[0] != '\0')
3170		printk("%sHardware name: %s\n",
3171		       log_lvl, dump_stack_arch_desc_str);
3172
3173	print_worker_info(log_lvl, current);
3174}
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185	dump_stack_print_info(log_lvl);
3186
3187	printk("%stask: %p ti: %p task.ti: %p\n",
3188	       log_lvl, current, current_thread_info(),
3189	       task_thread_info(current));
3190}
3191
3192#endif