Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
 
  31
  32#include <asm/uaccess.h>
  33#include <asm/mmu_context.h>
  34#include <asm/pgtable.h>
  35#include <asm/tlbflush.h>
  36#include <asm/io.h>
  37
  38#include "power.h"
  39
  40static int swsusp_page_is_free(struct page *);
  41static void swsusp_set_page_forbidden(struct page *);
  42static void swsusp_unset_page_forbidden(struct page *);
  43
  44/*
  45 * Number of bytes to reserve for memory allocations made by device drivers
  46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  47 * cause image creation to fail (tunable via /sys/power/reserved_size).
  48 */
  49unsigned long reserved_size;
  50
  51void __init hibernate_reserved_size_init(void)
  52{
  53	reserved_size = SPARE_PAGES * PAGE_SIZE;
  54}
  55
  56/*
  57 * Preferred image size in bytes (tunable via /sys/power/image_size).
  58 * When it is set to N, swsusp will do its best to ensure the image
  59 * size will not exceed N bytes, but if that is impossible, it will
  60 * try to create the smallest image possible.
  61 */
  62unsigned long image_size;
  63
  64void __init hibernate_image_size_init(void)
  65{
  66	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  67}
  68
  69/* List of PBEs needed for restoring the pages that were allocated before
  70 * the suspend and included in the suspend image, but have also been
  71 * allocated by the "resume" kernel, so their contents cannot be written
  72 * directly to their "original" page frames.
  73 */
  74struct pbe *restore_pblist;
  75
  76/* Pointer to an auxiliary buffer (1 page) */
  77static void *buffer;
  78
  79/**
  80 *	@safe_needed - on resume, for storing the PBE list and the image,
  81 *	we can only use memory pages that do not conflict with the pages
  82 *	used before suspend.  The unsafe pages have PageNosaveFree set
  83 *	and we count them using unsafe_pages.
  84 *
  85 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  86 *	so that swsusp_free() can release it.
  87 */
  88
  89#define PG_ANY		0
  90#define PG_SAFE		1
  91#define PG_UNSAFE_CLEAR	1
  92#define PG_UNSAFE_KEEP	0
  93
  94static unsigned int allocated_unsafe_pages;
  95
  96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  97{
  98	void *res;
  99
 100	res = (void *)get_zeroed_page(gfp_mask);
 101	if (safe_needed)
 102		while (res && swsusp_page_is_free(virt_to_page(res))) {
 103			/* The page is unsafe, mark it for swsusp_free() */
 104			swsusp_set_page_forbidden(virt_to_page(res));
 105			allocated_unsafe_pages++;
 106			res = (void *)get_zeroed_page(gfp_mask);
 107		}
 108	if (res) {
 109		swsusp_set_page_forbidden(virt_to_page(res));
 110		swsusp_set_page_free(virt_to_page(res));
 111	}
 112	return res;
 113}
 114
 115unsigned long get_safe_page(gfp_t gfp_mask)
 116{
 117	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 118}
 119
 120static struct page *alloc_image_page(gfp_t gfp_mask)
 121{
 122	struct page *page;
 123
 124	page = alloc_page(gfp_mask);
 125	if (page) {
 126		swsusp_set_page_forbidden(page);
 127		swsusp_set_page_free(page);
 128	}
 129	return page;
 130}
 131
 132/**
 133 *	free_image_page - free page represented by @addr, allocated with
 134 *	get_image_page (page flags set by it must be cleared)
 135 */
 136
 137static inline void free_image_page(void *addr, int clear_nosave_free)
 138{
 139	struct page *page;
 140
 141	BUG_ON(!virt_addr_valid(addr));
 142
 143	page = virt_to_page(addr);
 144
 145	swsusp_unset_page_forbidden(page);
 146	if (clear_nosave_free)
 147		swsusp_unset_page_free(page);
 148
 149	__free_page(page);
 150}
 151
 152/* struct linked_page is used to build chains of pages */
 153
 154#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 155
 156struct linked_page {
 157	struct linked_page *next;
 158	char data[LINKED_PAGE_DATA_SIZE];
 159} __packed;
 160
 161static inline void
 162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 163{
 164	while (list) {
 165		struct linked_page *lp = list->next;
 166
 167		free_image_page(list, clear_page_nosave);
 168		list = lp;
 169	}
 170}
 171
 172/**
 173  *	struct chain_allocator is used for allocating small objects out of
 174  *	a linked list of pages called 'the chain'.
 175  *
 176  *	The chain grows each time when there is no room for a new object in
 177  *	the current page.  The allocated objects cannot be freed individually.
 178  *	It is only possible to free them all at once, by freeing the entire
 179  *	chain.
 180  *
 181  *	NOTE: The chain allocator may be inefficient if the allocated objects
 182  *	are not much smaller than PAGE_SIZE.
 183  */
 184
 185struct chain_allocator {
 186	struct linked_page *chain;	/* the chain */
 187	unsigned int used_space;	/* total size of objects allocated out
 188					 * of the current page
 189					 */
 190	gfp_t gfp_mask;		/* mask for allocating pages */
 191	int safe_needed;	/* if set, only "safe" pages are allocated */
 192};
 193
 194static void
 195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 196{
 197	ca->chain = NULL;
 198	ca->used_space = LINKED_PAGE_DATA_SIZE;
 199	ca->gfp_mask = gfp_mask;
 200	ca->safe_needed = safe_needed;
 201}
 202
 203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 204{
 205	void *ret;
 206
 207	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 208		struct linked_page *lp;
 209
 210		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 211		if (!lp)
 212			return NULL;
 213
 214		lp->next = ca->chain;
 215		ca->chain = lp;
 216		ca->used_space = 0;
 217	}
 218	ret = ca->chain->data + ca->used_space;
 219	ca->used_space += size;
 220	return ret;
 221}
 222
 223/**
 224 *	Data types related to memory bitmaps.
 225 *
 226 *	Memory bitmap is a structure consiting of many linked lists of
 227 *	objects.  The main list's elements are of type struct zone_bitmap
 228 *	and each of them corresonds to one zone.  For each zone bitmap
 229 *	object there is a list of objects of type struct bm_block that
 230 *	represent each blocks of bitmap in which information is stored.
 231 *
 232 *	struct memory_bitmap contains a pointer to the main list of zone
 233 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 234 *	and a pointer to the list of pages used for allocating all of the
 235 *	zone bitmap objects and bitmap block objects.
 236 *
 237 *	NOTE: It has to be possible to lay out the bitmap in memory
 238 *	using only allocations of order 0.  Additionally, the bitmap is
 239 *	designed to work with arbitrary number of zones (this is over the
 240 *	top for now, but let's avoid making unnecessary assumptions ;-).
 241 *
 242 *	struct zone_bitmap contains a pointer to a list of bitmap block
 243 *	objects and a pointer to the bitmap block object that has been
 244 *	most recently used for setting bits.  Additionally, it contains the
 245 *	pfns that correspond to the start and end of the represented zone.
 246 *
 247 *	struct bm_block contains a pointer to the memory page in which
 248 *	information is stored (in the form of a block of bitmap)
 249 *	It also contains the pfns that correspond to the start and end of
 250 *	the represented memory area.
 
 
 
 
 
 
 
 
 
 
 
 251 */
 252
 253#define BM_END_OF_MAP	(~0UL)
 254
 255#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 
 
 256
 257struct bm_block {
 258	struct list_head hook;	/* hook into a list of bitmap blocks */
 259	unsigned long start_pfn;	/* pfn represented by the first bit */
 260	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
 261	unsigned long *data;	/* bitmap representing pages */
 
 
 
 262};
 263
 264static inline unsigned long bm_block_bits(struct bm_block *bb)
 265{
 266	return bb->end_pfn - bb->start_pfn;
 267}
 
 
 
 
 
 
 
 
 
 
 268
 269/* strcut bm_position is used for browsing memory bitmaps */
 270
 271struct bm_position {
 272	struct bm_block *block;
 273	int bit;
 
 
 274};
 275
 276struct memory_bitmap {
 277	struct list_head blocks;	/* list of bitmap blocks */
 278	struct linked_page *p_list;	/* list of pages used to store zone
 279					 * bitmap objects and bitmap block
 280					 * objects
 281					 */
 282	struct bm_position cur;	/* most recently used bit position */
 283};
 284
 285/* Functions that operate on memory bitmaps */
 286
 287static void memory_bm_position_reset(struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288{
 289	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
 290	bm->cur.bit = 0;
 291}
 292
 293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 
 
 294
 295/**
 296 *	create_bm_block_list - create a list of block bitmap objects
 297 *	@pages - number of pages to track
 298 *	@list - list to put the allocated blocks into
 299 *	@ca - chain allocator to be used for allocating memory
 300 */
 301static int create_bm_block_list(unsigned long pages,
 302				struct list_head *list,
 303				struct chain_allocator *ca)
 
 
 
 
 
 
 
 
 
 304{
 305	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 
 
 
 
 
 306
 307	while (nr_blocks-- > 0) {
 308		struct bm_block *bb;
 
 
 
 309
 310		bb = chain_alloc(ca, sizeof(struct bm_block));
 311		if (!bb)
 
 
 
 312			return -ENOMEM;
 313		list_add(&bb->hook, list);
 
 
 
 314	}
 315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316	return 0;
 317}
 318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319struct mem_extent {
 320	struct list_head hook;
 321	unsigned long start;
 322	unsigned long end;
 323};
 324
 325/**
 326 *	free_mem_extents - free a list of memory extents
 327 *	@list - list of extents to empty
 328 */
 329static void free_mem_extents(struct list_head *list)
 330{
 331	struct mem_extent *ext, *aux;
 332
 333	list_for_each_entry_safe(ext, aux, list, hook) {
 334		list_del(&ext->hook);
 335		kfree(ext);
 336	}
 337}
 338
 339/**
 340 *	create_mem_extents - create a list of memory extents representing
 341 *	                     contiguous ranges of PFNs
 342 *	@list - list to put the extents into
 343 *	@gfp_mask - mask to use for memory allocations
 344 */
 345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 346{
 347	struct zone *zone;
 348
 349	INIT_LIST_HEAD(list);
 350
 351	for_each_populated_zone(zone) {
 352		unsigned long zone_start, zone_end;
 353		struct mem_extent *ext, *cur, *aux;
 354
 355		zone_start = zone->zone_start_pfn;
 356		zone_end = zone_end_pfn(zone);
 357
 358		list_for_each_entry(ext, list, hook)
 359			if (zone_start <= ext->end)
 360				break;
 361
 362		if (&ext->hook == list || zone_end < ext->start) {
 363			/* New extent is necessary */
 364			struct mem_extent *new_ext;
 365
 366			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 367			if (!new_ext) {
 368				free_mem_extents(list);
 369				return -ENOMEM;
 370			}
 371			new_ext->start = zone_start;
 372			new_ext->end = zone_end;
 373			list_add_tail(&new_ext->hook, &ext->hook);
 374			continue;
 375		}
 376
 377		/* Merge this zone's range of PFNs with the existing one */
 378		if (zone_start < ext->start)
 379			ext->start = zone_start;
 380		if (zone_end > ext->end)
 381			ext->end = zone_end;
 382
 383		/* More merging may be possible */
 384		cur = ext;
 385		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 386			if (zone_end < cur->start)
 387				break;
 388			if (zone_end < cur->end)
 389				ext->end = cur->end;
 390			list_del(&cur->hook);
 391			kfree(cur);
 392		}
 393	}
 394
 395	return 0;
 396}
 397
 398/**
 399  *	memory_bm_create - allocate memory for a memory bitmap
 400  */
 401static int
 402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 403{
 404	struct chain_allocator ca;
 405	struct list_head mem_extents;
 406	struct mem_extent *ext;
 407	int error;
 408
 409	chain_init(&ca, gfp_mask, safe_needed);
 410	INIT_LIST_HEAD(&bm->blocks);
 411
 412	error = create_mem_extents(&mem_extents, gfp_mask);
 413	if (error)
 414		return error;
 415
 416	list_for_each_entry(ext, &mem_extents, hook) {
 417		struct bm_block *bb;
 418		unsigned long pfn = ext->start;
 419		unsigned long pages = ext->end - ext->start;
 420
 421		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
 422
 423		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
 424		if (error)
 
 
 425			goto Error;
 426
 427		list_for_each_entry_continue(bb, &bm->blocks, hook) {
 428			bb->data = get_image_page(gfp_mask, safe_needed);
 429			if (!bb->data) {
 430				error = -ENOMEM;
 431				goto Error;
 432			}
 433
 434			bb->start_pfn = pfn;
 435			if (pages >= BM_BITS_PER_BLOCK) {
 436				pfn += BM_BITS_PER_BLOCK;
 437				pages -= BM_BITS_PER_BLOCK;
 438			} else {
 439				/* This is executed only once in the loop */
 440				pfn += pages;
 441			}
 442			bb->end_pfn = pfn;
 443		}
 
 444	}
 445
 446	bm->p_list = ca.chain;
 447	memory_bm_position_reset(bm);
 448 Exit:
 449	free_mem_extents(&mem_extents);
 450	return error;
 451
 452 Error:
 453	bm->p_list = ca.chain;
 454	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 455	goto Exit;
 456}
 457
 458/**
 459  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 460  */
 461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 462{
 463	struct bm_block *bb;
 464
 465	list_for_each_entry(bb, &bm->blocks, hook)
 466		if (bb->data)
 467			free_image_page(bb->data, clear_nosave_free);
 468
 469	free_list_of_pages(bm->p_list, clear_nosave_free);
 470
 471	INIT_LIST_HEAD(&bm->blocks);
 472}
 473
 474/**
 475 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
 476 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 477 *	of @bm->cur_zone_bm are updated.
 
 
 
 
 
 478 */
 479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 480				void **addr, unsigned int *bit_nr)
 481{
 482	struct bm_block *bb;
 
 
 483
 484	/*
 485	 * Check if the pfn corresponds to the current bitmap block and find
 486	 * the block where it fits if this is not the case.
 487	 */
 488	bb = bm->cur.block;
 489	if (pfn < bb->start_pfn)
 490		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
 491			if (pfn >= bb->start_pfn)
 492				break;
 493
 494	if (pfn >= bb->end_pfn)
 495		list_for_each_entry_continue(bb, &bm->blocks, hook)
 496			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
 497				break;
 
 
 
 
 
 
 
 
 498
 499	if (&bb->hook == &bm->blocks)
 500		return -EFAULT;
 501
 502	/* The block has been found */
 503	bm->cur.block = bb;
 504	pfn -= bb->start_pfn;
 505	bm->cur.bit = pfn + 1;
 506	*bit_nr = pfn;
 507	*addr = bb->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508	return 0;
 509}
 510
 511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 512{
 513	void *addr;
 514	unsigned int bit;
 515	int error;
 516
 517	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 518	BUG_ON(error);
 519	set_bit(bit, addr);
 520}
 521
 522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 523{
 524	void *addr;
 525	unsigned int bit;
 526	int error;
 527
 528	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 529	if (!error)
 530		set_bit(bit, addr);
 
 531	return error;
 532}
 533
 534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 535{
 536	void *addr;
 537	unsigned int bit;
 538	int error;
 539
 540	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 541	BUG_ON(error);
 542	clear_bit(bit, addr);
 543}
 544
 
 
 
 
 
 
 
 
 545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 546{
 547	void *addr;
 548	unsigned int bit;
 549	int error;
 550
 551	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 552	BUG_ON(error);
 553	return test_bit(bit, addr);
 554}
 555
 556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 557{
 558	void *addr;
 559	unsigned int bit;
 560
 561	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 562}
 563
 564/**
 565 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 566 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 567 *	returned.
 
 
 
 568 *
 569 *	It is required to run memory_bm_position_reset() before the first call to
 570 *	this function.
 571 */
 
 
 
 
 
 
 
 
 
 
 572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 574{
 575	struct bm_block *bb;
 576	int bit;
 577
 578	bb = bm->cur.block;
 579	do {
 580		bit = bm->cur.bit;
 581		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
 582		if (bit < bm_block_bits(bb))
 583			goto Return_pfn;
 584
 585		bb = list_entry(bb->hook.next, struct bm_block, hook);
 586		bm->cur.block = bb;
 587		bm->cur.bit = 0;
 588	} while (&bb->hook != &bm->blocks);
 
 589
 590	memory_bm_position_reset(bm);
 591	return BM_END_OF_MAP;
 592
 593 Return_pfn:
 594	bm->cur.bit = bit + 1;
 595	return bb->start_pfn + bit;
 596}
 597
 598/**
 599 *	This structure represents a range of page frames the contents of which
 600 *	should not be saved during the suspend.
 601 */
 602
 603struct nosave_region {
 604	struct list_head list;
 605	unsigned long start_pfn;
 606	unsigned long end_pfn;
 607};
 608
 609static LIST_HEAD(nosave_regions);
 610
 611/**
 612 *	register_nosave_region - register a range of page frames the contents
 613 *	of which should not be saved during the suspend (to be used in the early
 614 *	initialization code)
 615 */
 616
 617void __init
 618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 619			 int use_kmalloc)
 620{
 621	struct nosave_region *region;
 622
 623	if (start_pfn >= end_pfn)
 624		return;
 625
 626	if (!list_empty(&nosave_regions)) {
 627		/* Try to extend the previous region (they should be sorted) */
 628		region = list_entry(nosave_regions.prev,
 629					struct nosave_region, list);
 630		if (region->end_pfn == start_pfn) {
 631			region->end_pfn = end_pfn;
 632			goto Report;
 633		}
 634	}
 635	if (use_kmalloc) {
 636		/* during init, this shouldn't fail */
 637		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 638		BUG_ON(!region);
 639	} else
 640		/* This allocation cannot fail */
 641		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 642	region->start_pfn = start_pfn;
 643	region->end_pfn = end_pfn;
 644	list_add_tail(&region->list, &nosave_regions);
 645 Report:
 646	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 647		(unsigned long long) start_pfn << PAGE_SHIFT,
 648		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 649}
 650
 651/*
 652 * Set bits in this map correspond to the page frames the contents of which
 653 * should not be saved during the suspend.
 654 */
 655static struct memory_bitmap *forbidden_pages_map;
 656
 657/* Set bits in this map correspond to free page frames. */
 658static struct memory_bitmap *free_pages_map;
 659
 660/*
 661 * Each page frame allocated for creating the image is marked by setting the
 662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 663 */
 664
 665void swsusp_set_page_free(struct page *page)
 666{
 667	if (free_pages_map)
 668		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 669}
 670
 671static int swsusp_page_is_free(struct page *page)
 672{
 673	return free_pages_map ?
 674		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 675}
 676
 677void swsusp_unset_page_free(struct page *page)
 678{
 679	if (free_pages_map)
 680		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 681}
 682
 683static void swsusp_set_page_forbidden(struct page *page)
 684{
 685	if (forbidden_pages_map)
 686		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 687}
 688
 689int swsusp_page_is_forbidden(struct page *page)
 690{
 691	return forbidden_pages_map ?
 692		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 693}
 694
 695static void swsusp_unset_page_forbidden(struct page *page)
 696{
 697	if (forbidden_pages_map)
 698		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 699}
 700
 701/**
 702 *	mark_nosave_pages - set bits corresponding to the page frames the
 703 *	contents of which should not be saved in a given bitmap.
 704 */
 705
 706static void mark_nosave_pages(struct memory_bitmap *bm)
 707{
 708	struct nosave_region *region;
 709
 710	if (list_empty(&nosave_regions))
 711		return;
 712
 713	list_for_each_entry(region, &nosave_regions, list) {
 714		unsigned long pfn;
 715
 716		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 717			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 718			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 719				- 1);
 720
 721		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 722			if (pfn_valid(pfn)) {
 723				/*
 724				 * It is safe to ignore the result of
 725				 * mem_bm_set_bit_check() here, since we won't
 726				 * touch the PFNs for which the error is
 727				 * returned anyway.
 728				 */
 729				mem_bm_set_bit_check(bm, pfn);
 730			}
 731	}
 732}
 733
 734/**
 735 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 736 *	frames that should not be saved and free page frames.  The pointers
 737 *	forbidden_pages_map and free_pages_map are only modified if everything
 738 *	goes well, because we don't want the bits to be used before both bitmaps
 739 *	are set up.
 740 */
 741
 742int create_basic_memory_bitmaps(void)
 743{
 744	struct memory_bitmap *bm1, *bm2;
 745	int error = 0;
 746
 747	if (forbidden_pages_map && free_pages_map)
 748		return 0;
 749	else
 750		BUG_ON(forbidden_pages_map || free_pages_map);
 751
 752	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 753	if (!bm1)
 754		return -ENOMEM;
 755
 756	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 757	if (error)
 758		goto Free_first_object;
 759
 760	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 761	if (!bm2)
 762		goto Free_first_bitmap;
 763
 764	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 765	if (error)
 766		goto Free_second_object;
 767
 768	forbidden_pages_map = bm1;
 769	free_pages_map = bm2;
 770	mark_nosave_pages(forbidden_pages_map);
 771
 772	pr_debug("PM: Basic memory bitmaps created\n");
 773
 774	return 0;
 775
 776 Free_second_object:
 777	kfree(bm2);
 778 Free_first_bitmap:
 779 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 780 Free_first_object:
 781	kfree(bm1);
 782	return -ENOMEM;
 783}
 784
 785/**
 786 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 787 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 788 *	so that the bitmaps themselves are not referred to while they are being
 789 *	freed.
 790 */
 791
 792void free_basic_memory_bitmaps(void)
 793{
 794	struct memory_bitmap *bm1, *bm2;
 795
 796	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
 797		return;
 798
 799	bm1 = forbidden_pages_map;
 800	bm2 = free_pages_map;
 801	forbidden_pages_map = NULL;
 802	free_pages_map = NULL;
 803	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 804	kfree(bm1);
 805	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 806	kfree(bm2);
 807
 808	pr_debug("PM: Basic memory bitmaps freed\n");
 809}
 810
 811/**
 812 *	snapshot_additional_pages - estimate the number of additional pages
 813 *	be needed for setting up the suspend image data structures for given
 814 *	zone (usually the returned value is greater than the exact number)
 815 */
 816
 817unsigned int snapshot_additional_pages(struct zone *zone)
 818{
 819	unsigned int res;
 
 
 
 
 
 
 
 
 820
 821	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 822	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
 823			    LINKED_PAGE_DATA_SIZE);
 824	return 2 * res;
 825}
 826
 827#ifdef CONFIG_HIGHMEM
 828/**
 829 *	count_free_highmem_pages - compute the total number of free highmem
 830 *	pages, system-wide.
 831 */
 832
 833static unsigned int count_free_highmem_pages(void)
 834{
 835	struct zone *zone;
 836	unsigned int cnt = 0;
 837
 838	for_each_populated_zone(zone)
 839		if (is_highmem(zone))
 840			cnt += zone_page_state(zone, NR_FREE_PAGES);
 841
 842	return cnt;
 843}
 844
 845/**
 846 *	saveable_highmem_page - Determine whether a highmem page should be
 847 *	included in the suspend image.
 848 *
 849 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 850 *	and it isn't a part of a free chunk of pages.
 851 */
 852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 853{
 854	struct page *page;
 855
 856	if (!pfn_valid(pfn))
 857		return NULL;
 858
 859	page = pfn_to_page(pfn);
 860	if (page_zone(page) != zone)
 861		return NULL;
 862
 863	BUG_ON(!PageHighMem(page));
 864
 865	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 866	    PageReserved(page))
 867		return NULL;
 868
 869	if (page_is_guard(page))
 870		return NULL;
 871
 872	return page;
 873}
 874
 875/**
 876 *	count_highmem_pages - compute the total number of saveable highmem
 877 *	pages.
 878 */
 879
 880static unsigned int count_highmem_pages(void)
 881{
 882	struct zone *zone;
 883	unsigned int n = 0;
 884
 885	for_each_populated_zone(zone) {
 886		unsigned long pfn, max_zone_pfn;
 887
 888		if (!is_highmem(zone))
 889			continue;
 890
 891		mark_free_pages(zone);
 892		max_zone_pfn = zone_end_pfn(zone);
 893		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 894			if (saveable_highmem_page(zone, pfn))
 895				n++;
 896	}
 897	return n;
 898}
 899#else
 900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 901{
 902	return NULL;
 903}
 904#endif /* CONFIG_HIGHMEM */
 905
 906/**
 907 *	saveable_page - Determine whether a non-highmem page should be included
 908 *	in the suspend image.
 909 *
 910 *	We should save the page if it isn't Nosave, and is not in the range
 911 *	of pages statically defined as 'unsaveable', and it isn't a part of
 912 *	a free chunk of pages.
 913 */
 914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 915{
 916	struct page *page;
 917
 918	if (!pfn_valid(pfn))
 919		return NULL;
 920
 921	page = pfn_to_page(pfn);
 922	if (page_zone(page) != zone)
 923		return NULL;
 924
 925	BUG_ON(PageHighMem(page));
 926
 927	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 928		return NULL;
 929
 930	if (PageReserved(page)
 931	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 932		return NULL;
 933
 934	if (page_is_guard(page))
 935		return NULL;
 936
 937	return page;
 938}
 939
 940/**
 941 *	count_data_pages - compute the total number of saveable non-highmem
 942 *	pages.
 943 */
 944
 945static unsigned int count_data_pages(void)
 946{
 947	struct zone *zone;
 948	unsigned long pfn, max_zone_pfn;
 949	unsigned int n = 0;
 950
 951	for_each_populated_zone(zone) {
 952		if (is_highmem(zone))
 953			continue;
 954
 955		mark_free_pages(zone);
 956		max_zone_pfn = zone_end_pfn(zone);
 957		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 958			if (saveable_page(zone, pfn))
 959				n++;
 960	}
 961	return n;
 962}
 963
 964/* This is needed, because copy_page and memcpy are not usable for copying
 965 * task structs.
 966 */
 967static inline void do_copy_page(long *dst, long *src)
 968{
 969	int n;
 970
 971	for (n = PAGE_SIZE / sizeof(long); n; n--)
 972		*dst++ = *src++;
 973}
 974
 975
 976/**
 977 *	safe_copy_page - check if the page we are going to copy is marked as
 978 *		present in the kernel page tables (this always is the case if
 979 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 980 *		kernel_page_present() always returns 'true').
 981 */
 982static void safe_copy_page(void *dst, struct page *s_page)
 983{
 984	if (kernel_page_present(s_page)) {
 985		do_copy_page(dst, page_address(s_page));
 986	} else {
 987		kernel_map_pages(s_page, 1, 1);
 988		do_copy_page(dst, page_address(s_page));
 989		kernel_map_pages(s_page, 1, 0);
 990	}
 991}
 992
 993
 994#ifdef CONFIG_HIGHMEM
 995static inline struct page *
 996page_is_saveable(struct zone *zone, unsigned long pfn)
 997{
 998	return is_highmem(zone) ?
 999		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000}
1001
1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003{
1004	struct page *s_page, *d_page;
1005	void *src, *dst;
1006
1007	s_page = pfn_to_page(src_pfn);
1008	d_page = pfn_to_page(dst_pfn);
1009	if (PageHighMem(s_page)) {
1010		src = kmap_atomic(s_page);
1011		dst = kmap_atomic(d_page);
1012		do_copy_page(dst, src);
1013		kunmap_atomic(dst);
1014		kunmap_atomic(src);
1015	} else {
1016		if (PageHighMem(d_page)) {
1017			/* Page pointed to by src may contain some kernel
1018			 * data modified by kmap_atomic()
1019			 */
1020			safe_copy_page(buffer, s_page);
1021			dst = kmap_atomic(d_page);
1022			copy_page(dst, buffer);
1023			kunmap_atomic(dst);
1024		} else {
1025			safe_copy_page(page_address(d_page), s_page);
1026		}
1027	}
1028}
1029#else
1030#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1031
1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033{
1034	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035				pfn_to_page(src_pfn));
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041{
1042	struct zone *zone;
1043	unsigned long pfn;
1044
1045	for_each_populated_zone(zone) {
1046		unsigned long max_zone_pfn;
1047
1048		mark_free_pages(zone);
1049		max_zone_pfn = zone_end_pfn(zone);
1050		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051			if (page_is_saveable(zone, pfn))
1052				memory_bm_set_bit(orig_bm, pfn);
1053	}
1054	memory_bm_position_reset(orig_bm);
1055	memory_bm_position_reset(copy_bm);
1056	for(;;) {
1057		pfn = memory_bm_next_pfn(orig_bm);
1058		if (unlikely(pfn == BM_END_OF_MAP))
1059			break;
1060		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061	}
1062}
1063
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages.  During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
1087
1088/**
1089 *	swsusp_free - free pages allocated for the suspend.
1090 *
1091 *	Suspend pages are alocated before the atomic copy is made, so we
1092 *	need to release them after the resume.
1093 */
1094
1095void swsusp_free(void)
1096{
1097	struct zone *zone;
1098	unsigned long pfn, max_zone_pfn;
1099
1100	for_each_populated_zone(zone) {
1101		max_zone_pfn = zone_end_pfn(zone);
1102		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103			if (pfn_valid(pfn)) {
1104				struct page *page = pfn_to_page(pfn);
1105
1106				if (swsusp_page_is_forbidden(page) &&
1107				    swsusp_page_is_free(page)) {
1108					swsusp_unset_page_forbidden(page);
1109					swsusp_unset_page_free(page);
1110					__free_page(page);
1111				}
1112			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113	}
 
 
1114	nr_copy_pages = 0;
1115	nr_meta_pages = 0;
1116	restore_pblist = NULL;
1117	buffer = NULL;
1118	alloc_normal = 0;
1119	alloc_highmem = 0;
1120}
1121
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1125
1126/**
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1130 *
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135	unsigned long nr_alloc = 0;
1136
1137	while (nr_pages > 0) {
1138		struct page *page;
1139
1140		page = alloc_image_page(mask);
1141		if (!page)
1142			break;
1143		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1144		if (PageHighMem(page))
1145			alloc_highmem++;
1146		else
1147			alloc_normal++;
1148		nr_pages--;
1149		nr_alloc++;
1150	}
1151
1152	return nr_alloc;
1153}
1154
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156					      unsigned long avail_normal)
1157{
1158	unsigned long alloc;
1159
1160	if (avail_normal <= alloc_normal)
1161		return 0;
1162
1163	alloc = avail_normal - alloc_normal;
1164	if (nr_pages < alloc)
1165		alloc = nr_pages;
1166
1167	return preallocate_image_pages(alloc, GFP_IMAGE);
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1178 */
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181	x *= multiplier;
1182	do_div(x, base);
1183	return (unsigned long)x;
1184}
1185
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187						unsigned long highmem,
1188						unsigned long total)
1189{
1190	unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193}
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197	return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201						unsigned long highmem,
1202						unsigned long total)
1203{
1204	return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
1207
1208/**
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
1213	unsigned long save, to_free_normal, to_free_highmem;
1214
1215	save = count_data_pages();
1216	if (alloc_normal >= save) {
1217		to_free_normal = alloc_normal - save;
1218		save = 0;
1219	} else {
1220		to_free_normal = 0;
1221		save -= alloc_normal;
1222	}
1223	save += count_highmem_pages();
1224	if (alloc_highmem >= save) {
1225		to_free_highmem = alloc_highmem - save;
1226	} else {
1227		to_free_highmem = 0;
1228		save -= alloc_highmem;
1229		if (to_free_normal > save)
1230			to_free_normal -= save;
1231		else
1232			to_free_normal = 0;
1233	}
 
1234
1235	memory_bm_position_reset(&copy_bm);
1236
1237	while (to_free_normal > 0 || to_free_highmem > 0) {
1238		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1239		struct page *page = pfn_to_page(pfn);
1240
1241		if (PageHighMem(page)) {
1242			if (!to_free_highmem)
1243				continue;
1244			to_free_highmem--;
1245			alloc_highmem--;
1246		} else {
1247			if (!to_free_normal)
1248				continue;
1249			to_free_normal--;
1250			alloc_normal--;
1251		}
1252		memory_bm_clear_bit(&copy_bm, pfn);
1253		swsusp_unset_page_forbidden(page);
1254		swsusp_unset_page_free(page);
1255		__free_page(page);
1256	}
 
 
1257}
1258
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277	unsigned long size;
1278
1279	size = global_page_state(NR_SLAB_RECLAIMABLE)
1280		+ global_page_state(NR_ACTIVE_ANON)
1281		+ global_page_state(NR_INACTIVE_ANON)
1282		+ global_page_state(NR_ACTIVE_FILE)
1283		+ global_page_state(NR_INACTIVE_FILE)
1284		- global_page_state(NR_FILE_MAPPED);
1285
1286	return saveable <= size ? 0 : saveable - size;
1287}
1288
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use.  We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1300 *
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310 */
1311int hibernate_preallocate_memory(void)
1312{
1313	struct zone *zone;
1314	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316	struct timeval start, stop;
1317	int error;
1318
1319	printk(KERN_INFO "PM: Preallocating image memory... ");
1320	do_gettimeofday(&start);
1321
1322	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323	if (error)
1324		goto err_out;
1325
1326	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1327	if (error)
1328		goto err_out;
1329
1330	alloc_normal = 0;
1331	alloc_highmem = 0;
1332
1333	/* Count the number of saveable data pages. */
1334	save_highmem = count_highmem_pages();
1335	saveable = count_data_pages();
1336
1337	/*
1338	 * Compute the total number of page frames we can use (count) and the
1339	 * number of pages needed for image metadata (size).
1340	 */
1341	count = saveable;
1342	saveable += save_highmem;
1343	highmem = save_highmem;
1344	size = 0;
1345	for_each_populated_zone(zone) {
1346		size += snapshot_additional_pages(zone);
1347		if (is_highmem(zone))
1348			highmem += zone_page_state(zone, NR_FREE_PAGES);
1349		else
1350			count += zone_page_state(zone, NR_FREE_PAGES);
1351	}
1352	avail_normal = count;
1353	count += highmem;
1354	count -= totalreserve_pages;
1355
1356	/* Add number of pages required for page keys (s390 only). */
1357	size += page_key_additional_pages(saveable);
1358
1359	/* Compute the maximum number of saveable pages to leave in memory. */
1360	max_size = (count - (size + PAGES_FOR_IO)) / 2
1361			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362	/* Compute the desired number of image pages specified by image_size. */
1363	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364	if (size > max_size)
1365		size = max_size;
1366	/*
1367	 * If the desired number of image pages is at least as large as the
1368	 * current number of saveable pages in memory, allocate page frames for
1369	 * the image and we're done.
1370	 */
1371	if (size >= saveable) {
1372		pages = preallocate_image_highmem(save_highmem);
1373		pages += preallocate_image_memory(saveable - pages, avail_normal);
1374		goto out;
1375	}
1376
1377	/* Estimate the minimum size of the image. */
1378	pages = minimum_image_size(saveable);
1379	/*
1380	 * To avoid excessive pressure on the normal zone, leave room in it to
1381	 * accommodate an image of the minimum size (unless it's already too
1382	 * small, in which case don't preallocate pages from it at all).
1383	 */
1384	if (avail_normal > pages)
1385		avail_normal -= pages;
1386	else
1387		avail_normal = 0;
1388	if (size < pages)
1389		size = min_t(unsigned long, pages, max_size);
1390
1391	/*
1392	 * Let the memory management subsystem know that we're going to need a
1393	 * large number of page frames to allocate and make it free some memory.
1394	 * NOTE: If this is not done, performance will be hurt badly in some
1395	 * test cases.
1396	 */
1397	shrink_all_memory(saveable - size);
1398
1399	/*
1400	 * The number of saveable pages in memory was too high, so apply some
1401	 * pressure to decrease it.  First, make room for the largest possible
1402	 * image and fail if that doesn't work.  Next, try to decrease the size
1403	 * of the image as much as indicated by 'size' using allocations from
1404	 * highmem and non-highmem zones separately.
1405	 */
1406	pages_highmem = preallocate_image_highmem(highmem / 2);
1407	alloc = count - max_size;
1408	if (alloc > pages_highmem)
1409		alloc -= pages_highmem;
1410	else
1411		alloc = 0;
1412	pages = preallocate_image_memory(alloc, avail_normal);
1413	if (pages < alloc) {
1414		/* We have exhausted non-highmem pages, try highmem. */
1415		alloc -= pages;
1416		pages += pages_highmem;
1417		pages_highmem = preallocate_image_highmem(alloc);
1418		if (pages_highmem < alloc)
1419			goto err_out;
1420		pages += pages_highmem;
1421		/*
1422		 * size is the desired number of saveable pages to leave in
1423		 * memory, so try to preallocate (all memory - size) pages.
1424		 */
1425		alloc = (count - pages) - size;
1426		pages += preallocate_image_highmem(alloc);
1427	} else {
1428		/*
1429		 * There are approximately max_size saveable pages at this point
1430		 * and we want to reduce this number down to size.
1431		 */
1432		alloc = max_size - size;
1433		size = preallocate_highmem_fraction(alloc, highmem, count);
1434		pages_highmem += size;
1435		alloc -= size;
1436		size = preallocate_image_memory(alloc, avail_normal);
1437		pages_highmem += preallocate_image_highmem(alloc - size);
1438		pages += pages_highmem + size;
1439	}
1440
1441	/*
1442	 * We only need as many page frames for the image as there are saveable
1443	 * pages in memory, but we have allocated more.  Release the excessive
1444	 * ones now.
1445	 */
1446	free_unnecessary_pages();
1447
1448 out:
1449	do_gettimeofday(&stop);
1450	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451	swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453	return 0;
1454
1455 err_out:
1456	printk(KERN_CONT "\n");
1457	swsusp_free();
1458	return -ENOMEM;
1459}
1460
1461#ifdef CONFIG_HIGHMEM
1462/**
1463  *	count_pages_for_highmem - compute the number of non-highmem pages
1464  *	that will be necessary for creating copies of highmem pages.
1465  */
1466
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
1469	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471	if (free_highmem >= nr_highmem)
1472		nr_highmem = 0;
1473	else
1474		nr_highmem -= free_highmem;
1475
1476	return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
1482
1483/**
1484 *	enough_free_mem - Make sure we have enough free memory for the
1485 *	snapshot image.
1486 */
1487
1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489{
1490	struct zone *zone;
1491	unsigned int free = alloc_normal;
1492
1493	for_each_populated_zone(zone)
1494		if (!is_highmem(zone))
1495			free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497	nr_pages += count_pages_for_highmem(nr_highmem);
1498	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499		nr_pages, PAGES_FOR_IO, free);
1500
1501	return free > nr_pages + PAGES_FOR_IO;
1502}
1503
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 *	get_highmem_buffer - if there are some highmem pages in the suspend
1507 *	image, we may need the buffer to copy them and/or load their data.
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513	return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 *	Try to allocate as many pages as needed, but if the number of free
1519 *	highmem pages is lesser than that, allocate them all.
1520 */
1521
1522static inline unsigned int
1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524{
1525	unsigned int to_alloc = count_free_highmem_pages();
1526
1527	if (to_alloc > nr_highmem)
1528		to_alloc = nr_highmem;
1529
1530	nr_highmem -= to_alloc;
1531	while (to_alloc-- > 0) {
1532		struct page *page;
1533
1534		page = alloc_image_page(__GFP_HIGHMEM);
1535		memory_bm_set_bit(bm, page_to_pfn(page));
1536	}
1537	return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 *	swsusp_alloc - allocate memory for the suspend image
1548 *
1549 *	We first try to allocate as many highmem pages as there are
1550 *	saveable highmem pages in the system.  If that fails, we allocate
1551 *	non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 *	In this approach it is likely that the copies of highmem pages will
1554 *	also be located in the high memory, because of the way in which
1555 *	copy_data_pages() works.
1556 */
1557
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560		unsigned int nr_pages, unsigned int nr_highmem)
1561{
1562	if (nr_highmem > 0) {
1563		if (get_highmem_buffer(PG_ANY))
1564			goto err_out;
1565		if (nr_highmem > alloc_highmem) {
1566			nr_highmem -= alloc_highmem;
1567			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568		}
1569	}
1570	if (nr_pages > alloc_normal) {
1571		nr_pages -= alloc_normal;
1572		while (nr_pages-- > 0) {
1573			struct page *page;
1574
1575			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576			if (!page)
1577				goto err_out;
1578			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579		}
1580	}
1581
1582	return 0;
1583
1584 err_out:
1585	swsusp_free();
1586	return -ENOMEM;
1587}
1588
1589asmlinkage __visible int swsusp_save(void)
1590{
1591	unsigned int nr_pages, nr_highmem;
1592
1593	printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595	drain_local_pages(NULL);
1596	nr_pages = count_data_pages();
1597	nr_highmem = count_highmem_pages();
1598	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600	if (!enough_free_mem(nr_pages, nr_highmem)) {
1601		printk(KERN_ERR "PM: Not enough free memory\n");
1602		return -ENOMEM;
1603	}
1604
1605	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1606		printk(KERN_ERR "PM: Memory allocation failed\n");
1607		return -ENOMEM;
1608	}
1609
1610	/* During allocating of suspend pagedir, new cold pages may appear.
1611	 * Kill them.
1612	 */
1613	drain_local_pages(NULL);
1614	copy_data_pages(&copy_bm, &orig_bm);
1615
1616	/*
1617	 * End of critical section. From now on, we can write to memory,
1618	 * but we should not touch disk. This specially means we must _not_
1619	 * touch swap space! Except we must write out our image of course.
1620	 */
1621
1622	nr_pages += nr_highmem;
1623	nr_copy_pages = nr_pages;
1624	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627		nr_pages);
1628
1629	return 0;
1630}
1631
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
1634{
1635	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636	info->version_code = LINUX_VERSION_CODE;
1637	return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642	if (info->version_code != LINUX_VERSION_CODE)
1643		return "kernel version";
1644	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645		return "system type";
1646	if (strcmp(info->uts.release,init_utsname()->release))
1647		return "kernel release";
1648	if (strcmp(info->uts.version,init_utsname()->version))
1649		return "version";
1650	if (strcmp(info->uts.machine,init_utsname()->machine))
1651		return "machine";
1652	return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656unsigned long snapshot_get_image_size(void)
1657{
1658	return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
1661static int init_header(struct swsusp_info *info)
1662{
1663	memset(info, 0, sizeof(struct swsusp_info));
1664	info->num_physpages = get_num_physpages();
1665	info->image_pages = nr_copy_pages;
1666	info->pages = snapshot_get_image_size();
1667	info->size = info->pages;
1668	info->size <<= PAGE_SHIFT;
1669	return init_header_complete(info);
1670}
1671
1672/**
1673 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 *	are stored in the array @buf[] (1 page at a time)
1675 */
1676
1677static inline void
1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679{
1680	int j;
1681
1682	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683		buf[j] = memory_bm_next_pfn(bm);
1684		if (unlikely(buf[j] == BM_END_OF_MAP))
1685			break;
1686		/* Save page key for data page (s390 only). */
1687		page_key_read(buf + j);
1688	}
1689}
1690
1691/**
1692 *	snapshot_read_next - used for reading the system memory snapshot.
1693 *
1694 *	On the first call to it @handle should point to a zeroed
1695 *	snapshot_handle structure.  The structure gets updated and a pointer
1696 *	to it should be passed to this function every next time.
1697 *
1698 *	On success the function returns a positive number.  Then, the caller
1699 *	is allowed to read up to the returned number of bytes from the memory
1700 *	location computed by the data_of() macro.
1701 *
1702 *	The function returns 0 to indicate the end of data stream condition,
1703 *	and a negative number is returned on error.  In such cases the
1704 *	structure pointed to by @handle is not updated and should not be used
1705 *	any more.
1706 */
1707
1708int snapshot_read_next(struct snapshot_handle *handle)
1709{
1710	if (handle->cur > nr_meta_pages + nr_copy_pages)
1711		return 0;
1712
1713	if (!buffer) {
1714		/* This makes the buffer be freed by swsusp_free() */
1715		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716		if (!buffer)
1717			return -ENOMEM;
1718	}
1719	if (!handle->cur) {
1720		int error;
1721
1722		error = init_header((struct swsusp_info *)buffer);
1723		if (error)
1724			return error;
1725		handle->buffer = buffer;
1726		memory_bm_position_reset(&orig_bm);
1727		memory_bm_position_reset(&copy_bm);
1728	} else if (handle->cur <= nr_meta_pages) {
1729		clear_page(buffer);
1730		pack_pfns(buffer, &orig_bm);
1731	} else {
1732		struct page *page;
1733
1734		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1735		if (PageHighMem(page)) {
1736			/* Highmem pages are copied to the buffer,
1737			 * because we can't return with a kmapped
1738			 * highmem page (we may not be called again).
1739			 */
1740			void *kaddr;
1741
1742			kaddr = kmap_atomic(page);
1743			copy_page(buffer, kaddr);
1744			kunmap_atomic(kaddr);
1745			handle->buffer = buffer;
1746		} else {
1747			handle->buffer = page_address(page);
1748		}
1749	}
1750	handle->cur++;
1751	return PAGE_SIZE;
1752}
1753
1754/**
1755 *	mark_unsafe_pages - mark the pages that cannot be used for storing
1756 *	the image during resume, because they conflict with the pages that
1757 *	had been used before suspend
1758 */
1759
1760static int mark_unsafe_pages(struct memory_bitmap *bm)
1761{
1762	struct zone *zone;
1763	unsigned long pfn, max_zone_pfn;
1764
1765	/* Clear page flags */
1766	for_each_populated_zone(zone) {
1767		max_zone_pfn = zone_end_pfn(zone);
1768		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769			if (pfn_valid(pfn))
1770				swsusp_unset_page_free(pfn_to_page(pfn));
1771	}
1772
1773	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1774	memory_bm_position_reset(bm);
1775	do {
1776		pfn = memory_bm_next_pfn(bm);
1777		if (likely(pfn != BM_END_OF_MAP)) {
1778			if (likely(pfn_valid(pfn)))
1779				swsusp_set_page_free(pfn_to_page(pfn));
1780			else
1781				return -EFAULT;
1782		}
1783	} while (pfn != BM_END_OF_MAP);
1784
1785	allocated_unsafe_pages = 0;
1786
1787	return 0;
1788}
1789
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792{
1793	unsigned long pfn;
1794
1795	memory_bm_position_reset(src);
1796	pfn = memory_bm_next_pfn(src);
1797	while (pfn != BM_END_OF_MAP) {
1798		memory_bm_set_bit(dst, pfn);
1799		pfn = memory_bm_next_pfn(src);
1800	}
1801}
1802
1803static int check_header(struct swsusp_info *info)
1804{
1805	char *reason;
1806
1807	reason = check_image_kernel(info);
1808	if (!reason && info->num_physpages != get_num_physpages())
1809		reason = "memory size";
1810	if (reason) {
1811		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812		return -EPERM;
1813	}
1814	return 0;
1815}
1816
1817/**
1818 *	load header - check the image header and copy data from it
1819 */
1820
1821static int
1822load_header(struct swsusp_info *info)
1823{
1824	int error;
1825
1826	restore_pblist = NULL;
1827	error = check_header(info);
1828	if (!error) {
1829		nr_copy_pages = info->image_pages;
1830		nr_meta_pages = info->pages - info->image_pages - 1;
1831	}
1832	return error;
1833}
1834
1835/**
1836 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 *	the corresponding bit in the memory bitmap @bm
1838 */
1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840{
1841	int j;
1842
1843	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844		if (unlikely(buf[j] == BM_END_OF_MAP))
1845			break;
1846
1847		/* Extract and buffer page key for data page (s390 only). */
1848		page_key_memorize(buf + j);
1849
1850		if (memory_bm_pfn_present(bm, buf[j]))
1851			memory_bm_set_bit(bm, buf[j]);
1852		else
1853			return -EFAULT;
1854	}
1855
1856	return 0;
1857}
1858
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870	struct page *copy_page;	/* data is here now */
1871	struct page *orig_page;	/* data was here before the suspend */
1872	struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 *	count_highmem_image_pages - compute the number of highmem pages in the
1884 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1885 *	image pages are assumed to be set.
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890	unsigned long pfn;
1891	unsigned int cnt = 0;
1892
1893	memory_bm_position_reset(bm);
1894	pfn = memory_bm_next_pfn(bm);
1895	while (pfn != BM_END_OF_MAP) {
1896		if (PageHighMem(pfn_to_page(pfn)))
1897			cnt++;
1898
1899		pfn = memory_bm_next_pfn(bm);
1900	}
1901	return cnt;
1902}
1903
1904/**
1905 *	prepare_highmem_image - try to allocate as many highmem pages as
1906 *	there are highmem image pages (@nr_highmem_p points to the variable
1907 *	containing the number of highmem image pages).  The pages that are
1908 *	"safe" (ie. will not be overwritten when the suspend image is
1909 *	restored) have the corresponding bits set in @bm (it must be
1910 *	unitialized).
1911 *
1912 *	NOTE: This function should not be called if there are no highmem
1913 *	image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922{
1923	unsigned int to_alloc;
1924
1925	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926		return -ENOMEM;
1927
1928	if (get_highmem_buffer(PG_SAFE))
1929		return -ENOMEM;
1930
1931	to_alloc = count_free_highmem_pages();
1932	if (to_alloc > *nr_highmem_p)
1933		to_alloc = *nr_highmem_p;
1934	else
1935		*nr_highmem_p = to_alloc;
1936
1937	safe_highmem_pages = 0;
1938	while (to_alloc-- > 0) {
1939		struct page *page;
1940
1941		page = alloc_page(__GFP_HIGHMEM);
1942		if (!swsusp_page_is_free(page)) {
1943			/* The page is "safe", set its bit the bitmap */
1944			memory_bm_set_bit(bm, page_to_pfn(page));
1945			safe_highmem_pages++;
1946		}
1947		/* Mark the page as allocated */
1948		swsusp_set_page_forbidden(page);
1949		swsusp_set_page_free(page);
1950	}
1951	memory_bm_position_reset(bm);
1952	safe_highmem_bm = bm;
1953	return 0;
1954}
1955
1956/**
1957 *	get_highmem_page_buffer - for given highmem image page find the buffer
1958 *	that suspend_write_next() should set for its caller to write to.
1959 *
1960 *	If the page is to be saved to its "original" page frame or a copy of
1961 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1962 *	the copy of the page is to be made in normal memory, so the address of
1963 *	the copy is returned.
1964 *
1965 *	If @buffer is returned, the caller of suspend_write_next() will write
1966 *	the page's contents to @buffer, so they will have to be copied to the
1967 *	right location on the next call to suspend_write_next() and it is done
1968 *	with the help of copy_last_highmem_page().  For this purpose, if
1969 *	@buffer is returned, @last_highmem page is set to the page to which
1970 *	the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978	struct highmem_pbe *pbe;
1979	void *kaddr;
1980
1981	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982		/* We have allocated the "original" page frame and we can
1983		 * use it directly to store the loaded page.
1984		 */
1985		last_highmem_page = page;
1986		return buffer;
1987	}
1988	/* The "original" page frame has not been allocated and we have to
1989	 * use a "safe" page frame to store the loaded page.
1990	 */
1991	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992	if (!pbe) {
1993		swsusp_free();
1994		return ERR_PTR(-ENOMEM);
1995	}
1996	pbe->orig_page = page;
1997	if (safe_highmem_pages > 0) {
1998		struct page *tmp;
1999
2000		/* Copy of the page will be stored in high memory */
2001		kaddr = buffer;
2002		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003		safe_highmem_pages--;
2004		last_highmem_page = tmp;
2005		pbe->copy_page = tmp;
2006	} else {
2007		/* Copy of the page will be stored in normal memory */
2008		kaddr = safe_pages_list;
2009		safe_pages_list = safe_pages_list->next;
2010		pbe->copy_page = virt_to_page(kaddr);
2011	}
2012	pbe->next = highmem_pblist;
2013	highmem_pblist = pbe;
2014	return kaddr;
2015}
2016
2017/**
2018 *	copy_last_highmem_page - copy the contents of a highmem image from
2019 *	@buffer, where the caller of snapshot_write_next() has place them,
2020 *	to the right location represented by @last_highmem_page .
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025	if (last_highmem_page) {
2026		void *dst;
2027
2028		dst = kmap_atomic(last_highmem_page);
2029		copy_page(dst, buffer);
2030		kunmap_atomic(dst);
2031		last_highmem_page = NULL;
2032	}
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037	return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042	if (safe_highmem_bm)
2043		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045	if (buffer)
2046		free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057	return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
2063	return ERR_PTR(-EINVAL);
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
2071/**
2072 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2073 *	be overwritten in the process of restoring the system memory state
2074 *	from the suspend image ("unsafe" pages) and allocate memory for the
2075 *	image.
2076 *
2077 *	The idea is to allocate a new memory bitmap first and then allocate
2078 *	as many pages as needed for the image data, but not to assign these
2079 *	pages to specific tasks initially.  Instead, we just mark them as
2080 *	allocated and create a lists of "safe" pages that will be used
2081 *	later.  On systems with high memory a list of "safe" highmem pages is
2082 *	also created.
2083 */
2084
2085#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089{
2090	unsigned int nr_pages, nr_highmem;
2091	struct linked_page *sp_list, *lp;
2092	int error;
2093
2094	/* If there is no highmem, the buffer will not be necessary */
2095	free_image_page(buffer, PG_UNSAFE_CLEAR);
2096	buffer = NULL;
2097
2098	nr_highmem = count_highmem_image_pages(bm);
2099	error = mark_unsafe_pages(bm);
2100	if (error)
2101		goto Free;
2102
2103	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104	if (error)
2105		goto Free;
2106
2107	duplicate_memory_bitmap(new_bm, bm);
2108	memory_bm_free(bm, PG_UNSAFE_KEEP);
2109	if (nr_highmem > 0) {
2110		error = prepare_highmem_image(bm, &nr_highmem);
2111		if (error)
2112			goto Free;
2113	}
2114	/* Reserve some safe pages for potential later use.
2115	 *
2116	 * NOTE: This way we make sure there will be enough safe pages for the
2117	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2118	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119	 */
2120	sp_list = NULL;
2121	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124	while (nr_pages > 0) {
2125		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126		if (!lp) {
2127			error = -ENOMEM;
2128			goto Free;
2129		}
2130		lp->next = sp_list;
2131		sp_list = lp;
2132		nr_pages--;
2133	}
2134	/* Preallocate memory for the image */
2135	safe_pages_list = NULL;
2136	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137	while (nr_pages > 0) {
2138		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139		if (!lp) {
2140			error = -ENOMEM;
2141			goto Free;
2142		}
2143		if (!swsusp_page_is_free(virt_to_page(lp))) {
2144			/* The page is "safe", add it to the list */
2145			lp->next = safe_pages_list;
2146			safe_pages_list = lp;
2147		}
2148		/* Mark the page as allocated */
2149		swsusp_set_page_forbidden(virt_to_page(lp));
2150		swsusp_set_page_free(virt_to_page(lp));
2151		nr_pages--;
2152	}
2153	/* Free the reserved safe pages so that chain_alloc() can use them */
2154	while (sp_list) {
2155		lp = sp_list->next;
2156		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157		sp_list = lp;
2158	}
2159	return 0;
2160
2161 Free:
2162	swsusp_free();
2163	return error;
2164}
2165
2166/**
2167 *	get_buffer - compute the address that snapshot_write_next() should
2168 *	set for its caller to write to.
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172{
2173	struct pbe *pbe;
2174	struct page *page;
2175	unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177	if (pfn == BM_END_OF_MAP)
2178		return ERR_PTR(-EFAULT);
2179
2180	page = pfn_to_page(pfn);
2181	if (PageHighMem(page))
2182		return get_highmem_page_buffer(page, ca);
2183
2184	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185		/* We have allocated the "original" page frame and we can
2186		 * use it directly to store the loaded page.
2187		 */
2188		return page_address(page);
2189
2190	/* The "original" page frame has not been allocated and we have to
2191	 * use a "safe" page frame to store the loaded page.
2192	 */
2193	pbe = chain_alloc(ca, sizeof(struct pbe));
2194	if (!pbe) {
2195		swsusp_free();
2196		return ERR_PTR(-ENOMEM);
2197	}
2198	pbe->orig_address = page_address(page);
2199	pbe->address = safe_pages_list;
2200	safe_pages_list = safe_pages_list->next;
2201	pbe->next = restore_pblist;
2202	restore_pblist = pbe;
2203	return pbe->address;
2204}
2205
2206/**
2207 *	snapshot_write_next - used for writing the system memory snapshot.
2208 *
2209 *	On the first call to it @handle should point to a zeroed
2210 *	snapshot_handle structure.  The structure gets updated and a pointer
2211 *	to it should be passed to this function every next time.
2212 *
2213 *	On success the function returns a positive number.  Then, the caller
2214 *	is allowed to write up to the returned number of bytes to the memory
2215 *	location computed by the data_of() macro.
2216 *
2217 *	The function returns 0 to indicate the "end of file" condition,
2218 *	and a negative number is returned on error.  In such cases the
2219 *	structure pointed to by @handle is not updated and should not be used
2220 *	any more.
2221 */
2222
2223int snapshot_write_next(struct snapshot_handle *handle)
2224{
2225	static struct chain_allocator ca;
2226	int error = 0;
2227
2228	/* Check if we have already loaded the entire image */
2229	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230		return 0;
2231
2232	handle->sync_read = 1;
2233
2234	if (!handle->cur) {
2235		if (!buffer)
2236			/* This makes the buffer be freed by swsusp_free() */
2237			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239		if (!buffer)
2240			return -ENOMEM;
2241
2242		handle->buffer = buffer;
2243	} else if (handle->cur == 1) {
2244		error = load_header(buffer);
2245		if (error)
2246			return error;
2247
2248		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2249		if (error)
2250			return error;
2251
2252		/* Allocate buffer for page keys. */
2253		error = page_key_alloc(nr_copy_pages);
2254		if (error)
2255			return error;
2256
2257	} else if (handle->cur <= nr_meta_pages + 1) {
2258		error = unpack_orig_pfns(buffer, &copy_bm);
2259		if (error)
2260			return error;
2261
2262		if (handle->cur == nr_meta_pages + 1) {
2263			error = prepare_image(&orig_bm, &copy_bm);
2264			if (error)
2265				return error;
2266
2267			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268			memory_bm_position_reset(&orig_bm);
2269			restore_pblist = NULL;
2270			handle->buffer = get_buffer(&orig_bm, &ca);
2271			handle->sync_read = 0;
2272			if (IS_ERR(handle->buffer))
2273				return PTR_ERR(handle->buffer);
2274		}
2275	} else {
2276		copy_last_highmem_page();
2277		/* Restore page key for data page (s390 only). */
2278		page_key_write(handle->buffer);
2279		handle->buffer = get_buffer(&orig_bm, &ca);
2280		if (IS_ERR(handle->buffer))
2281			return PTR_ERR(handle->buffer);
2282		if (handle->buffer != buffer)
2283			handle->sync_read = 0;
2284	}
2285	handle->cur++;
2286	return PAGE_SIZE;
2287}
2288
2289/**
2290 *	snapshot_write_finalize - must be called after the last call to
2291 *	snapshot_write_next() in case the last page in the image happens
2292 *	to be a highmem page and its contents should be stored in the
2293 *	highmem.  Additionally, it releases the memory that will not be
2294 *	used any more.
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299	copy_last_highmem_page();
2300	/* Restore page key for data page (s390 only). */
2301	page_key_write(handle->buffer);
2302	page_key_free();
2303	/* Free only if we have loaded the image entirely */
2304	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306		free_highmem_data();
2307	}
2308}
2309
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
2312	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313			handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320{
2321	void *kaddr1, *kaddr2;
2322
2323	kaddr1 = kmap_atomic(p1);
2324	kaddr2 = kmap_atomic(p2);
2325	copy_page(buf, kaddr1);
2326	copy_page(kaddr1, kaddr2);
2327	copy_page(kaddr2, buf);
2328	kunmap_atomic(kaddr2);
2329	kunmap_atomic(kaddr1);
2330}
2331
2332/**
2333 *	restore_highmem - for each highmem page that was allocated before
2334 *	the suspend and included in the suspend image, and also has been
2335 *	allocated by the "resume" kernel swap its current (ie. "before
2336 *	resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 *	If the resume eventually fails, we can call this function once
2339 *	again and restore the "before resume" highmem state.
2340 */
2341
2342int restore_highmem(void)
2343{
2344	struct highmem_pbe *pbe = highmem_pblist;
2345	void *buf;
2346
2347	if (!pbe)
2348		return 0;
2349
2350	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351	if (!buf)
2352		return -ENOMEM;
2353
2354	while (pbe) {
2355		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356		pbe = pbe->next;
2357	}
2358	free_image_page(buf, PG_UNSAFE_CLEAR);
2359	return 0;
2360}
2361#endif /* CONFIG_HIGHMEM */
v4.6
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31#include <linux/ktime.h>
  32
  33#include <asm/uaccess.h>
  34#include <asm/mmu_context.h>
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <asm/io.h>
  38
  39#include "power.h"
  40
  41static int swsusp_page_is_free(struct page *);
  42static void swsusp_set_page_forbidden(struct page *);
  43static void swsusp_unset_page_forbidden(struct page *);
  44
  45/*
  46 * Number of bytes to reserve for memory allocations made by device drivers
  47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  48 * cause image creation to fail (tunable via /sys/power/reserved_size).
  49 */
  50unsigned long reserved_size;
  51
  52void __init hibernate_reserved_size_init(void)
  53{
  54	reserved_size = SPARE_PAGES * PAGE_SIZE;
  55}
  56
  57/*
  58 * Preferred image size in bytes (tunable via /sys/power/image_size).
  59 * When it is set to N, swsusp will do its best to ensure the image
  60 * size will not exceed N bytes, but if that is impossible, it will
  61 * try to create the smallest image possible.
  62 */
  63unsigned long image_size;
  64
  65void __init hibernate_image_size_init(void)
  66{
  67	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  68}
  69
  70/* List of PBEs needed for restoring the pages that were allocated before
  71 * the suspend and included in the suspend image, but have also been
  72 * allocated by the "resume" kernel, so their contents cannot be written
  73 * directly to their "original" page frames.
  74 */
  75struct pbe *restore_pblist;
  76
  77/* Pointer to an auxiliary buffer (1 page) */
  78static void *buffer;
  79
  80/**
  81 *	@safe_needed - on resume, for storing the PBE list and the image,
  82 *	we can only use memory pages that do not conflict with the pages
  83 *	used before suspend.  The unsafe pages have PageNosaveFree set
  84 *	and we count them using unsafe_pages.
  85 *
  86 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  87 *	so that swsusp_free() can release it.
  88 */
  89
  90#define PG_ANY		0
  91#define PG_SAFE		1
  92#define PG_UNSAFE_CLEAR	1
  93#define PG_UNSAFE_KEEP	0
  94
  95static unsigned int allocated_unsafe_pages;
  96
  97static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  98{
  99	void *res;
 100
 101	res = (void *)get_zeroed_page(gfp_mask);
 102	if (safe_needed)
 103		while (res && swsusp_page_is_free(virt_to_page(res))) {
 104			/* The page is unsafe, mark it for swsusp_free() */
 105			swsusp_set_page_forbidden(virt_to_page(res));
 106			allocated_unsafe_pages++;
 107			res = (void *)get_zeroed_page(gfp_mask);
 108		}
 109	if (res) {
 110		swsusp_set_page_forbidden(virt_to_page(res));
 111		swsusp_set_page_free(virt_to_page(res));
 112	}
 113	return res;
 114}
 115
 116unsigned long get_safe_page(gfp_t gfp_mask)
 117{
 118	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 119}
 120
 121static struct page *alloc_image_page(gfp_t gfp_mask)
 122{
 123	struct page *page;
 124
 125	page = alloc_page(gfp_mask);
 126	if (page) {
 127		swsusp_set_page_forbidden(page);
 128		swsusp_set_page_free(page);
 129	}
 130	return page;
 131}
 132
 133/**
 134 *	free_image_page - free page represented by @addr, allocated with
 135 *	get_image_page (page flags set by it must be cleared)
 136 */
 137
 138static inline void free_image_page(void *addr, int clear_nosave_free)
 139{
 140	struct page *page;
 141
 142	BUG_ON(!virt_addr_valid(addr));
 143
 144	page = virt_to_page(addr);
 145
 146	swsusp_unset_page_forbidden(page);
 147	if (clear_nosave_free)
 148		swsusp_unset_page_free(page);
 149
 150	__free_page(page);
 151}
 152
 153/* struct linked_page is used to build chains of pages */
 154
 155#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 156
 157struct linked_page {
 158	struct linked_page *next;
 159	char data[LINKED_PAGE_DATA_SIZE];
 160} __packed;
 161
 162static inline void
 163free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 164{
 165	while (list) {
 166		struct linked_page *lp = list->next;
 167
 168		free_image_page(list, clear_page_nosave);
 169		list = lp;
 170	}
 171}
 172
 173/**
 174  *	struct chain_allocator is used for allocating small objects out of
 175  *	a linked list of pages called 'the chain'.
 176  *
 177  *	The chain grows each time when there is no room for a new object in
 178  *	the current page.  The allocated objects cannot be freed individually.
 179  *	It is only possible to free them all at once, by freeing the entire
 180  *	chain.
 181  *
 182  *	NOTE: The chain allocator may be inefficient if the allocated objects
 183  *	are not much smaller than PAGE_SIZE.
 184  */
 185
 186struct chain_allocator {
 187	struct linked_page *chain;	/* the chain */
 188	unsigned int used_space;	/* total size of objects allocated out
 189					 * of the current page
 190					 */
 191	gfp_t gfp_mask;		/* mask for allocating pages */
 192	int safe_needed;	/* if set, only "safe" pages are allocated */
 193};
 194
 195static void
 196chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 197{
 198	ca->chain = NULL;
 199	ca->used_space = LINKED_PAGE_DATA_SIZE;
 200	ca->gfp_mask = gfp_mask;
 201	ca->safe_needed = safe_needed;
 202}
 203
 204static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 205{
 206	void *ret;
 207
 208	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 209		struct linked_page *lp;
 210
 211		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 212		if (!lp)
 213			return NULL;
 214
 215		lp->next = ca->chain;
 216		ca->chain = lp;
 217		ca->used_space = 0;
 218	}
 219	ret = ca->chain->data + ca->used_space;
 220	ca->used_space += size;
 221	return ret;
 222}
 223
 224/**
 225 *	Data types related to memory bitmaps.
 226 *
 227 *	Memory bitmap is a structure consiting of many linked lists of
 228 *	objects.  The main list's elements are of type struct zone_bitmap
 229 *	and each of them corresonds to one zone.  For each zone bitmap
 230 *	object there is a list of objects of type struct bm_block that
 231 *	represent each blocks of bitmap in which information is stored.
 232 *
 233 *	struct memory_bitmap contains a pointer to the main list of zone
 234 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 235 *	and a pointer to the list of pages used for allocating all of the
 236 *	zone bitmap objects and bitmap block objects.
 237 *
 238 *	NOTE: It has to be possible to lay out the bitmap in memory
 239 *	using only allocations of order 0.  Additionally, the bitmap is
 240 *	designed to work with arbitrary number of zones (this is over the
 241 *	top for now, but let's avoid making unnecessary assumptions ;-).
 242 *
 243 *	struct zone_bitmap contains a pointer to a list of bitmap block
 244 *	objects and a pointer to the bitmap block object that has been
 245 *	most recently used for setting bits.  Additionally, it contains the
 246 *	pfns that correspond to the start and end of the represented zone.
 247 *
 248 *	struct bm_block contains a pointer to the memory page in which
 249 *	information is stored (in the form of a block of bitmap)
 250 *	It also contains the pfns that correspond to the start and end of
 251 *	the represented memory area.
 252 *
 253 *	The memory bitmap is organized as a radix tree to guarantee fast random
 254 *	access to the bits. There is one radix tree for each zone (as returned
 255 *	from create_mem_extents).
 256 *
 257 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 258 *	two linked lists for the nodes of the tree, one for the inner nodes and
 259 *	one for the leave nodes. The linked leave nodes are used for fast linear
 260 *	access of the memory bitmap.
 261 *
 262 *	The struct rtree_node represents one node of the radix tree.
 263 */
 264
 265#define BM_END_OF_MAP	(~0UL)
 266
 267#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 268#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 269#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 270
 271/*
 272 * struct rtree_node is a wrapper struct to link the nodes
 273 * of the rtree together for easy linear iteration over
 274 * bits and easy freeing
 275 */
 276struct rtree_node {
 277	struct list_head list;
 278	unsigned long *data;
 279};
 280
 281/*
 282 * struct mem_zone_bm_rtree represents a bitmap used for one
 283 * populated memory zone.
 284 */
 285struct mem_zone_bm_rtree {
 286	struct list_head list;		/* Link Zones together         */
 287	struct list_head nodes;		/* Radix Tree inner nodes      */
 288	struct list_head leaves;	/* Radix Tree leaves           */
 289	unsigned long start_pfn;	/* Zone start page frame       */
 290	unsigned long end_pfn;		/* Zone end page frame + 1     */
 291	struct rtree_node *rtree;	/* Radix Tree Root             */
 292	int levels;			/* Number of Radix Tree Levels */
 293	unsigned int blocks;		/* Number of Bitmap Blocks     */
 294};
 295
 296/* strcut bm_position is used for browsing memory bitmaps */
 297
 298struct bm_position {
 299	struct mem_zone_bm_rtree *zone;
 300	struct rtree_node *node;
 301	unsigned long node_pfn;
 302	int node_bit;
 303};
 304
 305struct memory_bitmap {
 306	struct list_head zones;
 307	struct linked_page *p_list;	/* list of pages used to store zone
 308					 * bitmap objects and bitmap block
 309					 * objects
 310					 */
 311	struct bm_position cur;	/* most recently used bit position */
 312};
 313
 314/* Functions that operate on memory bitmaps */
 315
 316#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 317#if BITS_PER_LONG == 32
 318#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 319#else
 320#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 321#endif
 322#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 323
 324/*
 325 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 326 *
 327 *	This function is used to allocate inner nodes as well as the
 328 *	leave nodes of the radix tree. It also adds the node to the
 329 *	corresponding linked list passed in by the *list parameter.
 330 */
 331static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 332					   struct chain_allocator *ca,
 333					   struct list_head *list)
 334{
 335	struct rtree_node *node;
 
 
 336
 337	node = chain_alloc(ca, sizeof(struct rtree_node));
 338	if (!node)
 339		return NULL;
 340
 341	node->data = get_image_page(gfp_mask, safe_needed);
 342	if (!node->data)
 343		return NULL;
 344
 345	list_add_tail(&node->list, list);
 346
 347	return node;
 348}
 349
 350/*
 351 *	add_rtree_block - Add a new leave node to the radix tree
 352 *
 353 *	The leave nodes need to be allocated in order to keep the leaves
 354 *	linked list in order. This is guaranteed by the zone->blocks
 355 *	counter.
 356 */
 357static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 358			   int safe_needed, struct chain_allocator *ca)
 359{
 360	struct rtree_node *node, *block, **dst;
 361	unsigned int levels_needed, block_nr;
 362	int i;
 363
 364	block_nr = zone->blocks;
 365	levels_needed = 0;
 366
 367	/* How many levels do we need for this block nr? */
 368	while (block_nr) {
 369		levels_needed += 1;
 370		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 371	}
 372
 373	/* Make sure the rtree has enough levels */
 374	for (i = zone->levels; i < levels_needed; i++) {
 375		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 376					&zone->nodes);
 377		if (!node)
 378			return -ENOMEM;
 379
 380		node->data[0] = (unsigned long)zone->rtree;
 381		zone->rtree = node;
 382		zone->levels += 1;
 383	}
 384
 385	/* Allocate new block */
 386	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 387	if (!block)
 388		return -ENOMEM;
 389
 390	/* Now walk the rtree to insert the block */
 391	node = zone->rtree;
 392	dst = &zone->rtree;
 393	block_nr = zone->blocks;
 394	for (i = zone->levels; i > 0; i--) {
 395		int index;
 396
 397		if (!node) {
 398			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 399						&zone->nodes);
 400			if (!node)
 401				return -ENOMEM;
 402			*dst = node;
 403		}
 404
 405		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 406		index &= BM_RTREE_LEVEL_MASK;
 407		dst = (struct rtree_node **)&((*dst)->data[index]);
 408		node = *dst;
 409	}
 410
 411	zone->blocks += 1;
 412	*dst = block;
 413
 414	return 0;
 415}
 416
 417static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 418			       int clear_nosave_free);
 419
 420/*
 421 *	create_zone_bm_rtree - create a radix tree for one zone
 422 *
 423 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 424 *	This function also allocated and builds the radix tree for the
 425 *	zone.
 426 */
 427static struct mem_zone_bm_rtree *
 428create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
 429		     struct chain_allocator *ca,
 430		     unsigned long start, unsigned long end)
 431{
 432	struct mem_zone_bm_rtree *zone;
 433	unsigned int i, nr_blocks;
 434	unsigned long pages;
 435
 436	pages = end - start;
 437	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 438	if (!zone)
 439		return NULL;
 440
 441	INIT_LIST_HEAD(&zone->nodes);
 442	INIT_LIST_HEAD(&zone->leaves);
 443	zone->start_pfn = start;
 444	zone->end_pfn = end;
 445	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 446
 447	for (i = 0; i < nr_blocks; i++) {
 448		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 449			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 450			return NULL;
 451		}
 452	}
 453
 454	return zone;
 455}
 456
 457/*
 458 *	free_zone_bm_rtree - Free the memory of the radix tree
 459 *
 460 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 461 *	structure itself is not freed here nor are the rtree_node
 462 *	structs.
 463 */
 464static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 465			       int clear_nosave_free)
 466{
 467	struct rtree_node *node;
 468
 469	list_for_each_entry(node, &zone->nodes, list)
 470		free_image_page(node->data, clear_nosave_free);
 471
 472	list_for_each_entry(node, &zone->leaves, list)
 473		free_image_page(node->data, clear_nosave_free);
 474}
 475
 476static void memory_bm_position_reset(struct memory_bitmap *bm)
 477{
 478	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 479				  list);
 480	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 481				  struct rtree_node, list);
 482	bm->cur.node_pfn = 0;
 483	bm->cur.node_bit = 0;
 484}
 485
 486static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 487
 488struct mem_extent {
 489	struct list_head hook;
 490	unsigned long start;
 491	unsigned long end;
 492};
 493
 494/**
 495 *	free_mem_extents - free a list of memory extents
 496 *	@list - list of extents to empty
 497 */
 498static void free_mem_extents(struct list_head *list)
 499{
 500	struct mem_extent *ext, *aux;
 501
 502	list_for_each_entry_safe(ext, aux, list, hook) {
 503		list_del(&ext->hook);
 504		kfree(ext);
 505	}
 506}
 507
 508/**
 509 *	create_mem_extents - create a list of memory extents representing
 510 *	                     contiguous ranges of PFNs
 511 *	@list - list to put the extents into
 512 *	@gfp_mask - mask to use for memory allocations
 513 */
 514static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 515{
 516	struct zone *zone;
 517
 518	INIT_LIST_HEAD(list);
 519
 520	for_each_populated_zone(zone) {
 521		unsigned long zone_start, zone_end;
 522		struct mem_extent *ext, *cur, *aux;
 523
 524		zone_start = zone->zone_start_pfn;
 525		zone_end = zone_end_pfn(zone);
 526
 527		list_for_each_entry(ext, list, hook)
 528			if (zone_start <= ext->end)
 529				break;
 530
 531		if (&ext->hook == list || zone_end < ext->start) {
 532			/* New extent is necessary */
 533			struct mem_extent *new_ext;
 534
 535			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 536			if (!new_ext) {
 537				free_mem_extents(list);
 538				return -ENOMEM;
 539			}
 540			new_ext->start = zone_start;
 541			new_ext->end = zone_end;
 542			list_add_tail(&new_ext->hook, &ext->hook);
 543			continue;
 544		}
 545
 546		/* Merge this zone's range of PFNs with the existing one */
 547		if (zone_start < ext->start)
 548			ext->start = zone_start;
 549		if (zone_end > ext->end)
 550			ext->end = zone_end;
 551
 552		/* More merging may be possible */
 553		cur = ext;
 554		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 555			if (zone_end < cur->start)
 556				break;
 557			if (zone_end < cur->end)
 558				ext->end = cur->end;
 559			list_del(&cur->hook);
 560			kfree(cur);
 561		}
 562	}
 563
 564	return 0;
 565}
 566
 567/**
 568  *	memory_bm_create - allocate memory for a memory bitmap
 569  */
 570static int
 571memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 572{
 573	struct chain_allocator ca;
 574	struct list_head mem_extents;
 575	struct mem_extent *ext;
 576	int error;
 577
 578	chain_init(&ca, gfp_mask, safe_needed);
 579	INIT_LIST_HEAD(&bm->zones);
 580
 581	error = create_mem_extents(&mem_extents, gfp_mask);
 582	if (error)
 583		return error;
 584
 585	list_for_each_entry(ext, &mem_extents, hook) {
 586		struct mem_zone_bm_rtree *zone;
 
 
 
 
 587
 588		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 589					    ext->start, ext->end);
 590		if (!zone) {
 591			error = -ENOMEM;
 592			goto Error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593		}
 594		list_add_tail(&zone->list, &bm->zones);
 595	}
 596
 597	bm->p_list = ca.chain;
 598	memory_bm_position_reset(bm);
 599 Exit:
 600	free_mem_extents(&mem_extents);
 601	return error;
 602
 603 Error:
 604	bm->p_list = ca.chain;
 605	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 606	goto Exit;
 607}
 608
 609/**
 610  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 611  */
 612static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 613{
 614	struct mem_zone_bm_rtree *zone;
 615
 616	list_for_each_entry(zone, &bm->zones, list)
 617		free_zone_bm_rtree(zone, clear_nosave_free);
 
 618
 619	free_list_of_pages(bm->p_list, clear_nosave_free);
 620
 621	INIT_LIST_HEAD(&bm->zones);
 622}
 623
 624/**
 625 *	memory_bm_find_bit - Find the bit for pfn in the memory
 626 *			     bitmap
 627 *
 628 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 629 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 630 *	updated.
 631 *	It walks the radix tree to find the page which contains the bit for
 632 *	pfn and returns the bit position in **addr and *bit_nr.
 633 */
 634static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 635			      void **addr, unsigned int *bit_nr)
 636{
 637	struct mem_zone_bm_rtree *curr, *zone;
 638	struct rtree_node *node;
 639	int i, block_nr;
 640
 641	zone = bm->cur.zone;
 
 
 
 
 
 
 
 
 642
 643	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 644		goto zone_found;
 645
 646	zone = NULL;
 647
 648	/* Find the right zone */
 649	list_for_each_entry(curr, &bm->zones, list) {
 650		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 651			zone = curr;
 652			break;
 653		}
 654	}
 655
 656	if (!zone)
 657		return -EFAULT;
 658
 659zone_found:
 660	/*
 661	 * We have a zone. Now walk the radix tree to find the leave
 662	 * node for our pfn.
 663	 */
 664
 665	node = bm->cur.node;
 666	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 667		goto node_found;
 668
 669	node      = zone->rtree;
 670	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 671
 672	for (i = zone->levels; i > 0; i--) {
 673		int index;
 674
 675		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 676		index &= BM_RTREE_LEVEL_MASK;
 677		BUG_ON(node->data[index] == 0);
 678		node = (struct rtree_node *)node->data[index];
 679	}
 680
 681node_found:
 682	/* Update last position */
 683	bm->cur.zone = zone;
 684	bm->cur.node = node;
 685	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 686
 687	/* Set return values */
 688	*addr = node->data;
 689	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 690
 691	return 0;
 692}
 693
 694static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 695{
 696	void *addr;
 697	unsigned int bit;
 698	int error;
 699
 700	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 701	BUG_ON(error);
 702	set_bit(bit, addr);
 703}
 704
 705static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 706{
 707	void *addr;
 708	unsigned int bit;
 709	int error;
 710
 711	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 712	if (!error)
 713		set_bit(bit, addr);
 714
 715	return error;
 716}
 717
 718static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 719{
 720	void *addr;
 721	unsigned int bit;
 722	int error;
 723
 724	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 725	BUG_ON(error);
 726	clear_bit(bit, addr);
 727}
 728
 729static void memory_bm_clear_current(struct memory_bitmap *bm)
 730{
 731	int bit;
 732
 733	bit = max(bm->cur.node_bit - 1, 0);
 734	clear_bit(bit, bm->cur.node->data);
 735}
 736
 737static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 738{
 739	void *addr;
 740	unsigned int bit;
 741	int error;
 742
 743	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 744	BUG_ON(error);
 745	return test_bit(bit, addr);
 746}
 747
 748static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 749{
 750	void *addr;
 751	unsigned int bit;
 752
 753	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 754}
 755
 756/*
 757 *	rtree_next_node - Jumps to the next leave node
 758 *
 759 *	Sets the position to the beginning of the next node in the
 760 *	memory bitmap. This is either the next node in the current
 761 *	zone's radix tree or the first node in the radix tree of the
 762 *	next zone.
 763 *
 764 *	Returns true if there is a next node, false otherwise.
 
 765 */
 766static bool rtree_next_node(struct memory_bitmap *bm)
 767{
 768	bm->cur.node = list_entry(bm->cur.node->list.next,
 769				  struct rtree_node, list);
 770	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
 771		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 772		bm->cur.node_bit  = 0;
 773		touch_softlockup_watchdog();
 774		return true;
 775	}
 776
 777	/* No more nodes, goto next zone */
 778	bm->cur.zone = list_entry(bm->cur.zone->list.next,
 779				  struct mem_zone_bm_rtree, list);
 780	if (&bm->cur.zone->list != &bm->zones) {
 781		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 782					  struct rtree_node, list);
 783		bm->cur.node_pfn = 0;
 784		bm->cur.node_bit = 0;
 785		return true;
 786	}
 787
 788	/* No more zones */
 789	return false;
 790}
 791
 792/**
 793 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
 794 *
 795 *	Starting from the last returned position this function searches
 796 *	for the next set bit in the memory bitmap and returns its
 797 *	number. If no more bit is set BM_END_OF_MAP is returned.
 798 *
 799 *	It is required to run memory_bm_position_reset() before the
 800 *	first call to this function.
 801 */
 802static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 803{
 804	unsigned long bits, pfn, pages;
 805	int bit;
 806
 
 807	do {
 808		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 809		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 810		bit	  = find_next_bit(bm->cur.node->data, bits,
 811					  bm->cur.node_bit);
 812		if (bit < bits) {
 813			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 814			bm->cur.node_bit = bit + 1;
 815			return pfn;
 816		}
 817	} while (rtree_next_node(bm));
 818
 
 819	return BM_END_OF_MAP;
 
 
 
 
 820}
 821
 822/**
 823 *	This structure represents a range of page frames the contents of which
 824 *	should not be saved during the suspend.
 825 */
 826
 827struct nosave_region {
 828	struct list_head list;
 829	unsigned long start_pfn;
 830	unsigned long end_pfn;
 831};
 832
 833static LIST_HEAD(nosave_regions);
 834
 835/**
 836 *	register_nosave_region - register a range of page frames the contents
 837 *	of which should not be saved during the suspend (to be used in the early
 838 *	initialization code)
 839 */
 840
 841void __init
 842__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 843			 int use_kmalloc)
 844{
 845	struct nosave_region *region;
 846
 847	if (start_pfn >= end_pfn)
 848		return;
 849
 850	if (!list_empty(&nosave_regions)) {
 851		/* Try to extend the previous region (they should be sorted) */
 852		region = list_entry(nosave_regions.prev,
 853					struct nosave_region, list);
 854		if (region->end_pfn == start_pfn) {
 855			region->end_pfn = end_pfn;
 856			goto Report;
 857		}
 858	}
 859	if (use_kmalloc) {
 860		/* during init, this shouldn't fail */
 861		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 862		BUG_ON(!region);
 863	} else
 864		/* This allocation cannot fail */
 865		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 866	region->start_pfn = start_pfn;
 867	region->end_pfn = end_pfn;
 868	list_add_tail(&region->list, &nosave_regions);
 869 Report:
 870	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 871		(unsigned long long) start_pfn << PAGE_SHIFT,
 872		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 873}
 874
 875/*
 876 * Set bits in this map correspond to the page frames the contents of which
 877 * should not be saved during the suspend.
 878 */
 879static struct memory_bitmap *forbidden_pages_map;
 880
 881/* Set bits in this map correspond to free page frames. */
 882static struct memory_bitmap *free_pages_map;
 883
 884/*
 885 * Each page frame allocated for creating the image is marked by setting the
 886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 887 */
 888
 889void swsusp_set_page_free(struct page *page)
 890{
 891	if (free_pages_map)
 892		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 893}
 894
 895static int swsusp_page_is_free(struct page *page)
 896{
 897	return free_pages_map ?
 898		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 899}
 900
 901void swsusp_unset_page_free(struct page *page)
 902{
 903	if (free_pages_map)
 904		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 905}
 906
 907static void swsusp_set_page_forbidden(struct page *page)
 908{
 909	if (forbidden_pages_map)
 910		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 911}
 912
 913int swsusp_page_is_forbidden(struct page *page)
 914{
 915	return forbidden_pages_map ?
 916		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 917}
 918
 919static void swsusp_unset_page_forbidden(struct page *page)
 920{
 921	if (forbidden_pages_map)
 922		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 923}
 924
 925/**
 926 *	mark_nosave_pages - set bits corresponding to the page frames the
 927 *	contents of which should not be saved in a given bitmap.
 928 */
 929
 930static void mark_nosave_pages(struct memory_bitmap *bm)
 931{
 932	struct nosave_region *region;
 933
 934	if (list_empty(&nosave_regions))
 935		return;
 936
 937	list_for_each_entry(region, &nosave_regions, list) {
 938		unsigned long pfn;
 939
 940		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 941			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 942			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 943				- 1);
 944
 945		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 946			if (pfn_valid(pfn)) {
 947				/*
 948				 * It is safe to ignore the result of
 949				 * mem_bm_set_bit_check() here, since we won't
 950				 * touch the PFNs for which the error is
 951				 * returned anyway.
 952				 */
 953				mem_bm_set_bit_check(bm, pfn);
 954			}
 955	}
 956}
 957
 958/**
 959 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 960 *	frames that should not be saved and free page frames.  The pointers
 961 *	forbidden_pages_map and free_pages_map are only modified if everything
 962 *	goes well, because we don't want the bits to be used before both bitmaps
 963 *	are set up.
 964 */
 965
 966int create_basic_memory_bitmaps(void)
 967{
 968	struct memory_bitmap *bm1, *bm2;
 969	int error = 0;
 970
 971	if (forbidden_pages_map && free_pages_map)
 972		return 0;
 973	else
 974		BUG_ON(forbidden_pages_map || free_pages_map);
 975
 976	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 977	if (!bm1)
 978		return -ENOMEM;
 979
 980	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 981	if (error)
 982		goto Free_first_object;
 983
 984	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 985	if (!bm2)
 986		goto Free_first_bitmap;
 987
 988	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 989	if (error)
 990		goto Free_second_object;
 991
 992	forbidden_pages_map = bm1;
 993	free_pages_map = bm2;
 994	mark_nosave_pages(forbidden_pages_map);
 995
 996	pr_debug("PM: Basic memory bitmaps created\n");
 997
 998	return 0;
 999
1000 Free_second_object:
1001	kfree(bm2);
1002 Free_first_bitmap:
1003 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1004 Free_first_object:
1005	kfree(bm1);
1006	return -ENOMEM;
1007}
1008
1009/**
1010 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1011 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1012 *	so that the bitmaps themselves are not referred to while they are being
1013 *	freed.
1014 */
1015
1016void free_basic_memory_bitmaps(void)
1017{
1018	struct memory_bitmap *bm1, *bm2;
1019
1020	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1021		return;
1022
1023	bm1 = forbidden_pages_map;
1024	bm2 = free_pages_map;
1025	forbidden_pages_map = NULL;
1026	free_pages_map = NULL;
1027	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1028	kfree(bm1);
1029	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1030	kfree(bm2);
1031
1032	pr_debug("PM: Basic memory bitmaps freed\n");
1033}
1034
1035/**
1036 *	snapshot_additional_pages - estimate the number of additional pages
1037 *	be needed for setting up the suspend image data structures for given
1038 *	zone (usually the returned value is greater than the exact number)
1039 */
1040
1041unsigned int snapshot_additional_pages(struct zone *zone)
1042{
1043	unsigned int rtree, nodes;
1044
1045	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1046	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1047			      LINKED_PAGE_DATA_SIZE);
1048	while (nodes > 1) {
1049		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1050		rtree += nodes;
1051	}
1052
1053	return 2 * rtree;
 
 
 
1054}
1055
1056#ifdef CONFIG_HIGHMEM
1057/**
1058 *	count_free_highmem_pages - compute the total number of free highmem
1059 *	pages, system-wide.
1060 */
1061
1062static unsigned int count_free_highmem_pages(void)
1063{
1064	struct zone *zone;
1065	unsigned int cnt = 0;
1066
1067	for_each_populated_zone(zone)
1068		if (is_highmem(zone))
1069			cnt += zone_page_state(zone, NR_FREE_PAGES);
1070
1071	return cnt;
1072}
1073
1074/**
1075 *	saveable_highmem_page - Determine whether a highmem page should be
1076 *	included in the suspend image.
1077 *
1078 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1079 *	and it isn't a part of a free chunk of pages.
1080 */
1081static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1082{
1083	struct page *page;
1084
1085	if (!pfn_valid(pfn))
1086		return NULL;
1087
1088	page = pfn_to_page(pfn);
1089	if (page_zone(page) != zone)
1090		return NULL;
1091
1092	BUG_ON(!PageHighMem(page));
1093
1094	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1095	    PageReserved(page))
1096		return NULL;
1097
1098	if (page_is_guard(page))
1099		return NULL;
1100
1101	return page;
1102}
1103
1104/**
1105 *	count_highmem_pages - compute the total number of saveable highmem
1106 *	pages.
1107 */
1108
1109static unsigned int count_highmem_pages(void)
1110{
1111	struct zone *zone;
1112	unsigned int n = 0;
1113
1114	for_each_populated_zone(zone) {
1115		unsigned long pfn, max_zone_pfn;
1116
1117		if (!is_highmem(zone))
1118			continue;
1119
1120		mark_free_pages(zone);
1121		max_zone_pfn = zone_end_pfn(zone);
1122		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1123			if (saveable_highmem_page(zone, pfn))
1124				n++;
1125	}
1126	return n;
1127}
1128#else
1129static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1130{
1131	return NULL;
1132}
1133#endif /* CONFIG_HIGHMEM */
1134
1135/**
1136 *	saveable_page - Determine whether a non-highmem page should be included
1137 *	in the suspend image.
1138 *
1139 *	We should save the page if it isn't Nosave, and is not in the range
1140 *	of pages statically defined as 'unsaveable', and it isn't a part of
1141 *	a free chunk of pages.
1142 */
1143static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1144{
1145	struct page *page;
1146
1147	if (!pfn_valid(pfn))
1148		return NULL;
1149
1150	page = pfn_to_page(pfn);
1151	if (page_zone(page) != zone)
1152		return NULL;
1153
1154	BUG_ON(PageHighMem(page));
1155
1156	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1157		return NULL;
1158
1159	if (PageReserved(page)
1160	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1161		return NULL;
1162
1163	if (page_is_guard(page))
1164		return NULL;
1165
1166	return page;
1167}
1168
1169/**
1170 *	count_data_pages - compute the total number of saveable non-highmem
1171 *	pages.
1172 */
1173
1174static unsigned int count_data_pages(void)
1175{
1176	struct zone *zone;
1177	unsigned long pfn, max_zone_pfn;
1178	unsigned int n = 0;
1179
1180	for_each_populated_zone(zone) {
1181		if (is_highmem(zone))
1182			continue;
1183
1184		mark_free_pages(zone);
1185		max_zone_pfn = zone_end_pfn(zone);
1186		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187			if (saveable_page(zone, pfn))
1188				n++;
1189	}
1190	return n;
1191}
1192
1193/* This is needed, because copy_page and memcpy are not usable for copying
1194 * task structs.
1195 */
1196static inline void do_copy_page(long *dst, long *src)
1197{
1198	int n;
1199
1200	for (n = PAGE_SIZE / sizeof(long); n; n--)
1201		*dst++ = *src++;
1202}
1203
1204
1205/**
1206 *	safe_copy_page - check if the page we are going to copy is marked as
1207 *		present in the kernel page tables (this always is the case if
1208 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1209 *		kernel_page_present() always returns 'true').
1210 */
1211static void safe_copy_page(void *dst, struct page *s_page)
1212{
1213	if (kernel_page_present(s_page)) {
1214		do_copy_page(dst, page_address(s_page));
1215	} else {
1216		kernel_map_pages(s_page, 1, 1);
1217		do_copy_page(dst, page_address(s_page));
1218		kernel_map_pages(s_page, 1, 0);
1219	}
1220}
1221
1222
1223#ifdef CONFIG_HIGHMEM
1224static inline struct page *
1225page_is_saveable(struct zone *zone, unsigned long pfn)
1226{
1227	return is_highmem(zone) ?
1228		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1229}
1230
1231static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1232{
1233	struct page *s_page, *d_page;
1234	void *src, *dst;
1235
1236	s_page = pfn_to_page(src_pfn);
1237	d_page = pfn_to_page(dst_pfn);
1238	if (PageHighMem(s_page)) {
1239		src = kmap_atomic(s_page);
1240		dst = kmap_atomic(d_page);
1241		do_copy_page(dst, src);
1242		kunmap_atomic(dst);
1243		kunmap_atomic(src);
1244	} else {
1245		if (PageHighMem(d_page)) {
1246			/* Page pointed to by src may contain some kernel
1247			 * data modified by kmap_atomic()
1248			 */
1249			safe_copy_page(buffer, s_page);
1250			dst = kmap_atomic(d_page);
1251			copy_page(dst, buffer);
1252			kunmap_atomic(dst);
1253		} else {
1254			safe_copy_page(page_address(d_page), s_page);
1255		}
1256	}
1257}
1258#else
1259#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1260
1261static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1262{
1263	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1264				pfn_to_page(src_pfn));
1265}
1266#endif /* CONFIG_HIGHMEM */
1267
1268static void
1269copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1270{
1271	struct zone *zone;
1272	unsigned long pfn;
1273
1274	for_each_populated_zone(zone) {
1275		unsigned long max_zone_pfn;
1276
1277		mark_free_pages(zone);
1278		max_zone_pfn = zone_end_pfn(zone);
1279		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280			if (page_is_saveable(zone, pfn))
1281				memory_bm_set_bit(orig_bm, pfn);
1282	}
1283	memory_bm_position_reset(orig_bm);
1284	memory_bm_position_reset(copy_bm);
1285	for(;;) {
1286		pfn = memory_bm_next_pfn(orig_bm);
1287		if (unlikely(pfn == BM_END_OF_MAP))
1288			break;
1289		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1290	}
1291}
1292
1293/* Total number of image pages */
1294static unsigned int nr_copy_pages;
1295/* Number of pages needed for saving the original pfns of the image pages */
1296static unsigned int nr_meta_pages;
1297/*
1298 * Numbers of normal and highmem page frames allocated for hibernation image
1299 * before suspending devices.
1300 */
1301unsigned int alloc_normal, alloc_highmem;
1302/*
1303 * Memory bitmap used for marking saveable pages (during hibernation) or
1304 * hibernation image pages (during restore)
1305 */
1306static struct memory_bitmap orig_bm;
1307/*
1308 * Memory bitmap used during hibernation for marking allocated page frames that
1309 * will contain copies of saveable pages.  During restore it is initially used
1310 * for marking hibernation image pages, but then the set bits from it are
1311 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1312 * used for marking "safe" highmem pages, but it has to be reinitialized for
1313 * this purpose.
1314 */
1315static struct memory_bitmap copy_bm;
1316
1317/**
1318 *	swsusp_free - free pages allocated for the suspend.
1319 *
1320 *	Suspend pages are alocated before the atomic copy is made, so we
1321 *	need to release them after the resume.
1322 */
1323
1324void swsusp_free(void)
1325{
1326	unsigned long fb_pfn, fr_pfn;
 
1327
1328	if (!forbidden_pages_map || !free_pages_map)
1329		goto out;
 
 
 
1330
1331	memory_bm_position_reset(forbidden_pages_map);
1332	memory_bm_position_reset(free_pages_map);
1333
1334loop:
1335	fr_pfn = memory_bm_next_pfn(free_pages_map);
1336	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1337
1338	/*
1339	 * Find the next bit set in both bitmaps. This is guaranteed to
1340	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1341	 */
1342	do {
1343		if (fb_pfn < fr_pfn)
1344			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1345		if (fr_pfn < fb_pfn)
1346			fr_pfn = memory_bm_next_pfn(free_pages_map);
1347	} while (fb_pfn != fr_pfn);
1348
1349	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1350		struct page *page = pfn_to_page(fr_pfn);
1351
1352		memory_bm_clear_current(forbidden_pages_map);
1353		memory_bm_clear_current(free_pages_map);
1354		__free_page(page);
1355		goto loop;
1356	}
1357
1358out:
1359	nr_copy_pages = 0;
1360	nr_meta_pages = 0;
1361	restore_pblist = NULL;
1362	buffer = NULL;
1363	alloc_normal = 0;
1364	alloc_highmem = 0;
1365}
1366
1367/* Helper functions used for the shrinking of memory. */
1368
1369#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1370
1371/**
1372 * preallocate_image_pages - Allocate a number of pages for hibernation image
1373 * @nr_pages: Number of page frames to allocate.
1374 * @mask: GFP flags to use for the allocation.
1375 *
1376 * Return value: Number of page frames actually allocated
1377 */
1378static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1379{
1380	unsigned long nr_alloc = 0;
1381
1382	while (nr_pages > 0) {
1383		struct page *page;
1384
1385		page = alloc_image_page(mask);
1386		if (!page)
1387			break;
1388		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1389		if (PageHighMem(page))
1390			alloc_highmem++;
1391		else
1392			alloc_normal++;
1393		nr_pages--;
1394		nr_alloc++;
1395	}
1396
1397	return nr_alloc;
1398}
1399
1400static unsigned long preallocate_image_memory(unsigned long nr_pages,
1401					      unsigned long avail_normal)
1402{
1403	unsigned long alloc;
1404
1405	if (avail_normal <= alloc_normal)
1406		return 0;
1407
1408	alloc = avail_normal - alloc_normal;
1409	if (nr_pages < alloc)
1410		alloc = nr_pages;
1411
1412	return preallocate_image_pages(alloc, GFP_IMAGE);
1413}
1414
1415#ifdef CONFIG_HIGHMEM
1416static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1417{
1418	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1419}
1420
1421/**
1422 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1423 */
1424static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1425{
1426	x *= multiplier;
1427	do_div(x, base);
1428	return (unsigned long)x;
1429}
1430
1431static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1432						unsigned long highmem,
1433						unsigned long total)
1434{
1435	unsigned long alloc = __fraction(nr_pages, highmem, total);
1436
1437	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1438}
1439#else /* CONFIG_HIGHMEM */
1440static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1441{
1442	return 0;
1443}
1444
1445static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1446						unsigned long highmem,
1447						unsigned long total)
1448{
1449	return 0;
1450}
1451#endif /* CONFIG_HIGHMEM */
1452
1453/**
1454 * free_unnecessary_pages - Release preallocated pages not needed for the image
1455 */
1456static unsigned long free_unnecessary_pages(void)
1457{
1458	unsigned long save, to_free_normal, to_free_highmem, free;
1459
1460	save = count_data_pages();
1461	if (alloc_normal >= save) {
1462		to_free_normal = alloc_normal - save;
1463		save = 0;
1464	} else {
1465		to_free_normal = 0;
1466		save -= alloc_normal;
1467	}
1468	save += count_highmem_pages();
1469	if (alloc_highmem >= save) {
1470		to_free_highmem = alloc_highmem - save;
1471	} else {
1472		to_free_highmem = 0;
1473		save -= alloc_highmem;
1474		if (to_free_normal > save)
1475			to_free_normal -= save;
1476		else
1477			to_free_normal = 0;
1478	}
1479	free = to_free_normal + to_free_highmem;
1480
1481	memory_bm_position_reset(&copy_bm);
1482
1483	while (to_free_normal > 0 || to_free_highmem > 0) {
1484		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1485		struct page *page = pfn_to_page(pfn);
1486
1487		if (PageHighMem(page)) {
1488			if (!to_free_highmem)
1489				continue;
1490			to_free_highmem--;
1491			alloc_highmem--;
1492		} else {
1493			if (!to_free_normal)
1494				continue;
1495			to_free_normal--;
1496			alloc_normal--;
1497		}
1498		memory_bm_clear_bit(&copy_bm, pfn);
1499		swsusp_unset_page_forbidden(page);
1500		swsusp_unset_page_free(page);
1501		__free_page(page);
1502	}
1503
1504	return free;
1505}
1506
1507/**
1508 * minimum_image_size - Estimate the minimum acceptable size of an image
1509 * @saveable: Number of saveable pages in the system.
1510 *
1511 * We want to avoid attempting to free too much memory too hard, so estimate the
1512 * minimum acceptable size of a hibernation image to use as the lower limit for
1513 * preallocating memory.
1514 *
1515 * We assume that the minimum image size should be proportional to
1516 *
1517 * [number of saveable pages] - [number of pages that can be freed in theory]
1518 *
1519 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1520 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1521 * minus mapped file pages.
1522 */
1523static unsigned long minimum_image_size(unsigned long saveable)
1524{
1525	unsigned long size;
1526
1527	size = global_page_state(NR_SLAB_RECLAIMABLE)
1528		+ global_page_state(NR_ACTIVE_ANON)
1529		+ global_page_state(NR_INACTIVE_ANON)
1530		+ global_page_state(NR_ACTIVE_FILE)
1531		+ global_page_state(NR_INACTIVE_FILE)
1532		- global_page_state(NR_FILE_MAPPED);
1533
1534	return saveable <= size ? 0 : saveable - size;
1535}
1536
1537/**
1538 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1539 *
1540 * To create a hibernation image it is necessary to make a copy of every page
1541 * frame in use.  We also need a number of page frames to be free during
1542 * hibernation for allocations made while saving the image and for device
1543 * drivers, in case they need to allocate memory from their hibernation
1544 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1545 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1546 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1547 * total number of available page frames and allocate at least
1548 *
1549 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1550 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1551 *
1552 * of them, which corresponds to the maximum size of a hibernation image.
1553 *
1554 * If image_size is set below the number following from the above formula,
1555 * the preallocation of memory is continued until the total number of saveable
1556 * pages in the system is below the requested image size or the minimum
1557 * acceptable image size returned by minimum_image_size(), whichever is greater.
1558 */
1559int hibernate_preallocate_memory(void)
1560{
1561	struct zone *zone;
1562	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1563	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1564	ktime_t start, stop;
1565	int error;
1566
1567	printk(KERN_INFO "PM: Preallocating image memory... ");
1568	start = ktime_get();
1569
1570	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1571	if (error)
1572		goto err_out;
1573
1574	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1575	if (error)
1576		goto err_out;
1577
1578	alloc_normal = 0;
1579	alloc_highmem = 0;
1580
1581	/* Count the number of saveable data pages. */
1582	save_highmem = count_highmem_pages();
1583	saveable = count_data_pages();
1584
1585	/*
1586	 * Compute the total number of page frames we can use (count) and the
1587	 * number of pages needed for image metadata (size).
1588	 */
1589	count = saveable;
1590	saveable += save_highmem;
1591	highmem = save_highmem;
1592	size = 0;
1593	for_each_populated_zone(zone) {
1594		size += snapshot_additional_pages(zone);
1595		if (is_highmem(zone))
1596			highmem += zone_page_state(zone, NR_FREE_PAGES);
1597		else
1598			count += zone_page_state(zone, NR_FREE_PAGES);
1599	}
1600	avail_normal = count;
1601	count += highmem;
1602	count -= totalreserve_pages;
1603
1604	/* Add number of pages required for page keys (s390 only). */
1605	size += page_key_additional_pages(saveable);
1606
1607	/* Compute the maximum number of saveable pages to leave in memory. */
1608	max_size = (count - (size + PAGES_FOR_IO)) / 2
1609			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1610	/* Compute the desired number of image pages specified by image_size. */
1611	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1612	if (size > max_size)
1613		size = max_size;
1614	/*
1615	 * If the desired number of image pages is at least as large as the
1616	 * current number of saveable pages in memory, allocate page frames for
1617	 * the image and we're done.
1618	 */
1619	if (size >= saveable) {
1620		pages = preallocate_image_highmem(save_highmem);
1621		pages += preallocate_image_memory(saveable - pages, avail_normal);
1622		goto out;
1623	}
1624
1625	/* Estimate the minimum size of the image. */
1626	pages = minimum_image_size(saveable);
1627	/*
1628	 * To avoid excessive pressure on the normal zone, leave room in it to
1629	 * accommodate an image of the minimum size (unless it's already too
1630	 * small, in which case don't preallocate pages from it at all).
1631	 */
1632	if (avail_normal > pages)
1633		avail_normal -= pages;
1634	else
1635		avail_normal = 0;
1636	if (size < pages)
1637		size = min_t(unsigned long, pages, max_size);
1638
1639	/*
1640	 * Let the memory management subsystem know that we're going to need a
1641	 * large number of page frames to allocate and make it free some memory.
1642	 * NOTE: If this is not done, performance will be hurt badly in some
1643	 * test cases.
1644	 */
1645	shrink_all_memory(saveable - size);
1646
1647	/*
1648	 * The number of saveable pages in memory was too high, so apply some
1649	 * pressure to decrease it.  First, make room for the largest possible
1650	 * image and fail if that doesn't work.  Next, try to decrease the size
1651	 * of the image as much as indicated by 'size' using allocations from
1652	 * highmem and non-highmem zones separately.
1653	 */
1654	pages_highmem = preallocate_image_highmem(highmem / 2);
1655	alloc = count - max_size;
1656	if (alloc > pages_highmem)
1657		alloc -= pages_highmem;
1658	else
1659		alloc = 0;
1660	pages = preallocate_image_memory(alloc, avail_normal);
1661	if (pages < alloc) {
1662		/* We have exhausted non-highmem pages, try highmem. */
1663		alloc -= pages;
1664		pages += pages_highmem;
1665		pages_highmem = preallocate_image_highmem(alloc);
1666		if (pages_highmem < alloc)
1667			goto err_out;
1668		pages += pages_highmem;
1669		/*
1670		 * size is the desired number of saveable pages to leave in
1671		 * memory, so try to preallocate (all memory - size) pages.
1672		 */
1673		alloc = (count - pages) - size;
1674		pages += preallocate_image_highmem(alloc);
1675	} else {
1676		/*
1677		 * There are approximately max_size saveable pages at this point
1678		 * and we want to reduce this number down to size.
1679		 */
1680		alloc = max_size - size;
1681		size = preallocate_highmem_fraction(alloc, highmem, count);
1682		pages_highmem += size;
1683		alloc -= size;
1684		size = preallocate_image_memory(alloc, avail_normal);
1685		pages_highmem += preallocate_image_highmem(alloc - size);
1686		pages += pages_highmem + size;
1687	}
1688
1689	/*
1690	 * We only need as many page frames for the image as there are saveable
1691	 * pages in memory, but we have allocated more.  Release the excessive
1692	 * ones now.
1693	 */
1694	pages -= free_unnecessary_pages();
1695
1696 out:
1697	stop = ktime_get();
1698	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1699	swsusp_show_speed(start, stop, pages, "Allocated");
1700
1701	return 0;
1702
1703 err_out:
1704	printk(KERN_CONT "\n");
1705	swsusp_free();
1706	return -ENOMEM;
1707}
1708
1709#ifdef CONFIG_HIGHMEM
1710/**
1711  *	count_pages_for_highmem - compute the number of non-highmem pages
1712  *	that will be necessary for creating copies of highmem pages.
1713  */
1714
1715static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1716{
1717	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1718
1719	if (free_highmem >= nr_highmem)
1720		nr_highmem = 0;
1721	else
1722		nr_highmem -= free_highmem;
1723
1724	return nr_highmem;
1725}
1726#else
1727static unsigned int
1728count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1729#endif /* CONFIG_HIGHMEM */
1730
1731/**
1732 *	enough_free_mem - Make sure we have enough free memory for the
1733 *	snapshot image.
1734 */
1735
1736static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1737{
1738	struct zone *zone;
1739	unsigned int free = alloc_normal;
1740
1741	for_each_populated_zone(zone)
1742		if (!is_highmem(zone))
1743			free += zone_page_state(zone, NR_FREE_PAGES);
1744
1745	nr_pages += count_pages_for_highmem(nr_highmem);
1746	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1747		nr_pages, PAGES_FOR_IO, free);
1748
1749	return free > nr_pages + PAGES_FOR_IO;
1750}
1751
1752#ifdef CONFIG_HIGHMEM
1753/**
1754 *	get_highmem_buffer - if there are some highmem pages in the suspend
1755 *	image, we may need the buffer to copy them and/or load their data.
1756 */
1757
1758static inline int get_highmem_buffer(int safe_needed)
1759{
1760	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1761	return buffer ? 0 : -ENOMEM;
1762}
1763
1764/**
1765 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1766 *	Try to allocate as many pages as needed, but if the number of free
1767 *	highmem pages is lesser than that, allocate them all.
1768 */
1769
1770static inline unsigned int
1771alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1772{
1773	unsigned int to_alloc = count_free_highmem_pages();
1774
1775	if (to_alloc > nr_highmem)
1776		to_alloc = nr_highmem;
1777
1778	nr_highmem -= to_alloc;
1779	while (to_alloc-- > 0) {
1780		struct page *page;
1781
1782		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1783		memory_bm_set_bit(bm, page_to_pfn(page));
1784	}
1785	return nr_highmem;
1786}
1787#else
1788static inline int get_highmem_buffer(int safe_needed) { return 0; }
1789
1790static inline unsigned int
1791alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1792#endif /* CONFIG_HIGHMEM */
1793
1794/**
1795 *	swsusp_alloc - allocate memory for the suspend image
1796 *
1797 *	We first try to allocate as many highmem pages as there are
1798 *	saveable highmem pages in the system.  If that fails, we allocate
1799 *	non-highmem pages for the copies of the remaining highmem ones.
1800 *
1801 *	In this approach it is likely that the copies of highmem pages will
1802 *	also be located in the high memory, because of the way in which
1803 *	copy_data_pages() works.
1804 */
1805
1806static int
1807swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1808		unsigned int nr_pages, unsigned int nr_highmem)
1809{
1810	if (nr_highmem > 0) {
1811		if (get_highmem_buffer(PG_ANY))
1812			goto err_out;
1813		if (nr_highmem > alloc_highmem) {
1814			nr_highmem -= alloc_highmem;
1815			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1816		}
1817	}
1818	if (nr_pages > alloc_normal) {
1819		nr_pages -= alloc_normal;
1820		while (nr_pages-- > 0) {
1821			struct page *page;
1822
1823			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1824			if (!page)
1825				goto err_out;
1826			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1827		}
1828	}
1829
1830	return 0;
1831
1832 err_out:
1833	swsusp_free();
1834	return -ENOMEM;
1835}
1836
1837asmlinkage __visible int swsusp_save(void)
1838{
1839	unsigned int nr_pages, nr_highmem;
1840
1841	printk(KERN_INFO "PM: Creating hibernation image:\n");
1842
1843	drain_local_pages(NULL);
1844	nr_pages = count_data_pages();
1845	nr_highmem = count_highmem_pages();
1846	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1847
1848	if (!enough_free_mem(nr_pages, nr_highmem)) {
1849		printk(KERN_ERR "PM: Not enough free memory\n");
1850		return -ENOMEM;
1851	}
1852
1853	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1854		printk(KERN_ERR "PM: Memory allocation failed\n");
1855		return -ENOMEM;
1856	}
1857
1858	/* During allocating of suspend pagedir, new cold pages may appear.
1859	 * Kill them.
1860	 */
1861	drain_local_pages(NULL);
1862	copy_data_pages(&copy_bm, &orig_bm);
1863
1864	/*
1865	 * End of critical section. From now on, we can write to memory,
1866	 * but we should not touch disk. This specially means we must _not_
1867	 * touch swap space! Except we must write out our image of course.
1868	 */
1869
1870	nr_pages += nr_highmem;
1871	nr_copy_pages = nr_pages;
1872	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1873
1874	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1875		nr_pages);
1876
1877	return 0;
1878}
1879
1880#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1881static int init_header_complete(struct swsusp_info *info)
1882{
1883	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1884	info->version_code = LINUX_VERSION_CODE;
1885	return 0;
1886}
1887
1888static char *check_image_kernel(struct swsusp_info *info)
1889{
1890	if (info->version_code != LINUX_VERSION_CODE)
1891		return "kernel version";
1892	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1893		return "system type";
1894	if (strcmp(info->uts.release,init_utsname()->release))
1895		return "kernel release";
1896	if (strcmp(info->uts.version,init_utsname()->version))
1897		return "version";
1898	if (strcmp(info->uts.machine,init_utsname()->machine))
1899		return "machine";
1900	return NULL;
1901}
1902#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1903
1904unsigned long snapshot_get_image_size(void)
1905{
1906	return nr_copy_pages + nr_meta_pages + 1;
1907}
1908
1909static int init_header(struct swsusp_info *info)
1910{
1911	memset(info, 0, sizeof(struct swsusp_info));
1912	info->num_physpages = get_num_physpages();
1913	info->image_pages = nr_copy_pages;
1914	info->pages = snapshot_get_image_size();
1915	info->size = info->pages;
1916	info->size <<= PAGE_SHIFT;
1917	return init_header_complete(info);
1918}
1919
1920/**
1921 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1922 *	are stored in the array @buf[] (1 page at a time)
1923 */
1924
1925static inline void
1926pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1927{
1928	int j;
1929
1930	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1931		buf[j] = memory_bm_next_pfn(bm);
1932		if (unlikely(buf[j] == BM_END_OF_MAP))
1933			break;
1934		/* Save page key for data page (s390 only). */
1935		page_key_read(buf + j);
1936	}
1937}
1938
1939/**
1940 *	snapshot_read_next - used for reading the system memory snapshot.
1941 *
1942 *	On the first call to it @handle should point to a zeroed
1943 *	snapshot_handle structure.  The structure gets updated and a pointer
1944 *	to it should be passed to this function every next time.
1945 *
1946 *	On success the function returns a positive number.  Then, the caller
1947 *	is allowed to read up to the returned number of bytes from the memory
1948 *	location computed by the data_of() macro.
1949 *
1950 *	The function returns 0 to indicate the end of data stream condition,
1951 *	and a negative number is returned on error.  In such cases the
1952 *	structure pointed to by @handle is not updated and should not be used
1953 *	any more.
1954 */
1955
1956int snapshot_read_next(struct snapshot_handle *handle)
1957{
1958	if (handle->cur > nr_meta_pages + nr_copy_pages)
1959		return 0;
1960
1961	if (!buffer) {
1962		/* This makes the buffer be freed by swsusp_free() */
1963		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1964		if (!buffer)
1965			return -ENOMEM;
1966	}
1967	if (!handle->cur) {
1968		int error;
1969
1970		error = init_header((struct swsusp_info *)buffer);
1971		if (error)
1972			return error;
1973		handle->buffer = buffer;
1974		memory_bm_position_reset(&orig_bm);
1975		memory_bm_position_reset(&copy_bm);
1976	} else if (handle->cur <= nr_meta_pages) {
1977		clear_page(buffer);
1978		pack_pfns(buffer, &orig_bm);
1979	} else {
1980		struct page *page;
1981
1982		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1983		if (PageHighMem(page)) {
1984			/* Highmem pages are copied to the buffer,
1985			 * because we can't return with a kmapped
1986			 * highmem page (we may not be called again).
1987			 */
1988			void *kaddr;
1989
1990			kaddr = kmap_atomic(page);
1991			copy_page(buffer, kaddr);
1992			kunmap_atomic(kaddr);
1993			handle->buffer = buffer;
1994		} else {
1995			handle->buffer = page_address(page);
1996		}
1997	}
1998	handle->cur++;
1999	return PAGE_SIZE;
2000}
2001
2002/**
2003 *	mark_unsafe_pages - mark the pages that cannot be used for storing
2004 *	the image during resume, because they conflict with the pages that
2005 *	had been used before suspend
2006 */
2007
2008static int mark_unsafe_pages(struct memory_bitmap *bm)
2009{
2010	struct zone *zone;
2011	unsigned long pfn, max_zone_pfn;
2012
2013	/* Clear page flags */
2014	for_each_populated_zone(zone) {
2015		max_zone_pfn = zone_end_pfn(zone);
2016		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2017			if (pfn_valid(pfn))
2018				swsusp_unset_page_free(pfn_to_page(pfn));
2019	}
2020
2021	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2022	memory_bm_position_reset(bm);
2023	do {
2024		pfn = memory_bm_next_pfn(bm);
2025		if (likely(pfn != BM_END_OF_MAP)) {
2026			if (likely(pfn_valid(pfn)))
2027				swsusp_set_page_free(pfn_to_page(pfn));
2028			else
2029				return -EFAULT;
2030		}
2031	} while (pfn != BM_END_OF_MAP);
2032
2033	allocated_unsafe_pages = 0;
2034
2035	return 0;
2036}
2037
2038static void
2039duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2040{
2041	unsigned long pfn;
2042
2043	memory_bm_position_reset(src);
2044	pfn = memory_bm_next_pfn(src);
2045	while (pfn != BM_END_OF_MAP) {
2046		memory_bm_set_bit(dst, pfn);
2047		pfn = memory_bm_next_pfn(src);
2048	}
2049}
2050
2051static int check_header(struct swsusp_info *info)
2052{
2053	char *reason;
2054
2055	reason = check_image_kernel(info);
2056	if (!reason && info->num_physpages != get_num_physpages())
2057		reason = "memory size";
2058	if (reason) {
2059		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2060		return -EPERM;
2061	}
2062	return 0;
2063}
2064
2065/**
2066 *	load header - check the image header and copy data from it
2067 */
2068
2069static int
2070load_header(struct swsusp_info *info)
2071{
2072	int error;
2073
2074	restore_pblist = NULL;
2075	error = check_header(info);
2076	if (!error) {
2077		nr_copy_pages = info->image_pages;
2078		nr_meta_pages = info->pages - info->image_pages - 1;
2079	}
2080	return error;
2081}
2082
2083/**
2084 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2085 *	the corresponding bit in the memory bitmap @bm
2086 */
2087static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2088{
2089	int j;
2090
2091	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2092		if (unlikely(buf[j] == BM_END_OF_MAP))
2093			break;
2094
2095		/* Extract and buffer page key for data page (s390 only). */
2096		page_key_memorize(buf + j);
2097
2098		if (memory_bm_pfn_present(bm, buf[j]))
2099			memory_bm_set_bit(bm, buf[j]);
2100		else
2101			return -EFAULT;
2102	}
2103
2104	return 0;
2105}
2106
2107/* List of "safe" pages that may be used to store data loaded from the suspend
2108 * image
2109 */
2110static struct linked_page *safe_pages_list;
2111
2112#ifdef CONFIG_HIGHMEM
2113/* struct highmem_pbe is used for creating the list of highmem pages that
2114 * should be restored atomically during the resume from disk, because the page
2115 * frames they have occupied before the suspend are in use.
2116 */
2117struct highmem_pbe {
2118	struct page *copy_page;	/* data is here now */
2119	struct page *orig_page;	/* data was here before the suspend */
2120	struct highmem_pbe *next;
2121};
2122
2123/* List of highmem PBEs needed for restoring the highmem pages that were
2124 * allocated before the suspend and included in the suspend image, but have
2125 * also been allocated by the "resume" kernel, so their contents cannot be
2126 * written directly to their "original" page frames.
2127 */
2128static struct highmem_pbe *highmem_pblist;
2129
2130/**
2131 *	count_highmem_image_pages - compute the number of highmem pages in the
2132 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2133 *	image pages are assumed to be set.
2134 */
2135
2136static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2137{
2138	unsigned long pfn;
2139	unsigned int cnt = 0;
2140
2141	memory_bm_position_reset(bm);
2142	pfn = memory_bm_next_pfn(bm);
2143	while (pfn != BM_END_OF_MAP) {
2144		if (PageHighMem(pfn_to_page(pfn)))
2145			cnt++;
2146
2147		pfn = memory_bm_next_pfn(bm);
2148	}
2149	return cnt;
2150}
2151
2152/**
2153 *	prepare_highmem_image - try to allocate as many highmem pages as
2154 *	there are highmem image pages (@nr_highmem_p points to the variable
2155 *	containing the number of highmem image pages).  The pages that are
2156 *	"safe" (ie. will not be overwritten when the suspend image is
2157 *	restored) have the corresponding bits set in @bm (it must be
2158 *	unitialized).
2159 *
2160 *	NOTE: This function should not be called if there are no highmem
2161 *	image pages.
2162 */
2163
2164static unsigned int safe_highmem_pages;
2165
2166static struct memory_bitmap *safe_highmem_bm;
2167
2168static int
2169prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2170{
2171	unsigned int to_alloc;
2172
2173	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2174		return -ENOMEM;
2175
2176	if (get_highmem_buffer(PG_SAFE))
2177		return -ENOMEM;
2178
2179	to_alloc = count_free_highmem_pages();
2180	if (to_alloc > *nr_highmem_p)
2181		to_alloc = *nr_highmem_p;
2182	else
2183		*nr_highmem_p = to_alloc;
2184
2185	safe_highmem_pages = 0;
2186	while (to_alloc-- > 0) {
2187		struct page *page;
2188
2189		page = alloc_page(__GFP_HIGHMEM);
2190		if (!swsusp_page_is_free(page)) {
2191			/* The page is "safe", set its bit the bitmap */
2192			memory_bm_set_bit(bm, page_to_pfn(page));
2193			safe_highmem_pages++;
2194		}
2195		/* Mark the page as allocated */
2196		swsusp_set_page_forbidden(page);
2197		swsusp_set_page_free(page);
2198	}
2199	memory_bm_position_reset(bm);
2200	safe_highmem_bm = bm;
2201	return 0;
2202}
2203
2204/**
2205 *	get_highmem_page_buffer - for given highmem image page find the buffer
2206 *	that suspend_write_next() should set for its caller to write to.
2207 *
2208 *	If the page is to be saved to its "original" page frame or a copy of
2209 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2210 *	the copy of the page is to be made in normal memory, so the address of
2211 *	the copy is returned.
2212 *
2213 *	If @buffer is returned, the caller of suspend_write_next() will write
2214 *	the page's contents to @buffer, so they will have to be copied to the
2215 *	right location on the next call to suspend_write_next() and it is done
2216 *	with the help of copy_last_highmem_page().  For this purpose, if
2217 *	@buffer is returned, @last_highmem page is set to the page to which
2218 *	the data will have to be copied from @buffer.
2219 */
2220
2221static struct page *last_highmem_page;
2222
2223static void *
2224get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2225{
2226	struct highmem_pbe *pbe;
2227	void *kaddr;
2228
2229	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2230		/* We have allocated the "original" page frame and we can
2231		 * use it directly to store the loaded page.
2232		 */
2233		last_highmem_page = page;
2234		return buffer;
2235	}
2236	/* The "original" page frame has not been allocated and we have to
2237	 * use a "safe" page frame to store the loaded page.
2238	 */
2239	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2240	if (!pbe) {
2241		swsusp_free();
2242		return ERR_PTR(-ENOMEM);
2243	}
2244	pbe->orig_page = page;
2245	if (safe_highmem_pages > 0) {
2246		struct page *tmp;
2247
2248		/* Copy of the page will be stored in high memory */
2249		kaddr = buffer;
2250		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2251		safe_highmem_pages--;
2252		last_highmem_page = tmp;
2253		pbe->copy_page = tmp;
2254	} else {
2255		/* Copy of the page will be stored in normal memory */
2256		kaddr = safe_pages_list;
2257		safe_pages_list = safe_pages_list->next;
2258		pbe->copy_page = virt_to_page(kaddr);
2259	}
2260	pbe->next = highmem_pblist;
2261	highmem_pblist = pbe;
2262	return kaddr;
2263}
2264
2265/**
2266 *	copy_last_highmem_page - copy the contents of a highmem image from
2267 *	@buffer, where the caller of snapshot_write_next() has place them,
2268 *	to the right location represented by @last_highmem_page .
2269 */
2270
2271static void copy_last_highmem_page(void)
2272{
2273	if (last_highmem_page) {
2274		void *dst;
2275
2276		dst = kmap_atomic(last_highmem_page);
2277		copy_page(dst, buffer);
2278		kunmap_atomic(dst);
2279		last_highmem_page = NULL;
2280	}
2281}
2282
2283static inline int last_highmem_page_copied(void)
2284{
2285	return !last_highmem_page;
2286}
2287
2288static inline void free_highmem_data(void)
2289{
2290	if (safe_highmem_bm)
2291		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2292
2293	if (buffer)
2294		free_image_page(buffer, PG_UNSAFE_CLEAR);
2295}
2296#else
 
 
2297static unsigned int
2298count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2299
2300static inline int
2301prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2302{
2303	return 0;
2304}
2305
2306static inline void *
2307get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2308{
2309	return ERR_PTR(-EINVAL);
2310}
2311
2312static inline void copy_last_highmem_page(void) {}
2313static inline int last_highmem_page_copied(void) { return 1; }
2314static inline void free_highmem_data(void) {}
2315#endif /* CONFIG_HIGHMEM */
2316
2317/**
2318 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2319 *	be overwritten in the process of restoring the system memory state
2320 *	from the suspend image ("unsafe" pages) and allocate memory for the
2321 *	image.
2322 *
2323 *	The idea is to allocate a new memory bitmap first and then allocate
2324 *	as many pages as needed for the image data, but not to assign these
2325 *	pages to specific tasks initially.  Instead, we just mark them as
2326 *	allocated and create a lists of "safe" pages that will be used
2327 *	later.  On systems with high memory a list of "safe" highmem pages is
2328 *	also created.
2329 */
2330
2331#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2332
2333static int
2334prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2335{
2336	unsigned int nr_pages, nr_highmem;
2337	struct linked_page *sp_list, *lp;
2338	int error;
2339
2340	/* If there is no highmem, the buffer will not be necessary */
2341	free_image_page(buffer, PG_UNSAFE_CLEAR);
2342	buffer = NULL;
2343
2344	nr_highmem = count_highmem_image_pages(bm);
2345	error = mark_unsafe_pages(bm);
2346	if (error)
2347		goto Free;
2348
2349	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2350	if (error)
2351		goto Free;
2352
2353	duplicate_memory_bitmap(new_bm, bm);
2354	memory_bm_free(bm, PG_UNSAFE_KEEP);
2355	if (nr_highmem > 0) {
2356		error = prepare_highmem_image(bm, &nr_highmem);
2357		if (error)
2358			goto Free;
2359	}
2360	/* Reserve some safe pages for potential later use.
2361	 *
2362	 * NOTE: This way we make sure there will be enough safe pages for the
2363	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2364	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2365	 */
2366	sp_list = NULL;
2367	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2368	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2369	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2370	while (nr_pages > 0) {
2371		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2372		if (!lp) {
2373			error = -ENOMEM;
2374			goto Free;
2375		}
2376		lp->next = sp_list;
2377		sp_list = lp;
2378		nr_pages--;
2379	}
2380	/* Preallocate memory for the image */
2381	safe_pages_list = NULL;
2382	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2383	while (nr_pages > 0) {
2384		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2385		if (!lp) {
2386			error = -ENOMEM;
2387			goto Free;
2388		}
2389		if (!swsusp_page_is_free(virt_to_page(lp))) {
2390			/* The page is "safe", add it to the list */
2391			lp->next = safe_pages_list;
2392			safe_pages_list = lp;
2393		}
2394		/* Mark the page as allocated */
2395		swsusp_set_page_forbidden(virt_to_page(lp));
2396		swsusp_set_page_free(virt_to_page(lp));
2397		nr_pages--;
2398	}
2399	/* Free the reserved safe pages so that chain_alloc() can use them */
2400	while (sp_list) {
2401		lp = sp_list->next;
2402		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2403		sp_list = lp;
2404	}
2405	return 0;
2406
2407 Free:
2408	swsusp_free();
2409	return error;
2410}
2411
2412/**
2413 *	get_buffer - compute the address that snapshot_write_next() should
2414 *	set for its caller to write to.
2415 */
2416
2417static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2418{
2419	struct pbe *pbe;
2420	struct page *page;
2421	unsigned long pfn = memory_bm_next_pfn(bm);
2422
2423	if (pfn == BM_END_OF_MAP)
2424		return ERR_PTR(-EFAULT);
2425
2426	page = pfn_to_page(pfn);
2427	if (PageHighMem(page))
2428		return get_highmem_page_buffer(page, ca);
2429
2430	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2431		/* We have allocated the "original" page frame and we can
2432		 * use it directly to store the loaded page.
2433		 */
2434		return page_address(page);
2435
2436	/* The "original" page frame has not been allocated and we have to
2437	 * use a "safe" page frame to store the loaded page.
2438	 */
2439	pbe = chain_alloc(ca, sizeof(struct pbe));
2440	if (!pbe) {
2441		swsusp_free();
2442		return ERR_PTR(-ENOMEM);
2443	}
2444	pbe->orig_address = page_address(page);
2445	pbe->address = safe_pages_list;
2446	safe_pages_list = safe_pages_list->next;
2447	pbe->next = restore_pblist;
2448	restore_pblist = pbe;
2449	return pbe->address;
2450}
2451
2452/**
2453 *	snapshot_write_next - used for writing the system memory snapshot.
2454 *
2455 *	On the first call to it @handle should point to a zeroed
2456 *	snapshot_handle structure.  The structure gets updated and a pointer
2457 *	to it should be passed to this function every next time.
2458 *
2459 *	On success the function returns a positive number.  Then, the caller
2460 *	is allowed to write up to the returned number of bytes to the memory
2461 *	location computed by the data_of() macro.
2462 *
2463 *	The function returns 0 to indicate the "end of file" condition,
2464 *	and a negative number is returned on error.  In such cases the
2465 *	structure pointed to by @handle is not updated and should not be used
2466 *	any more.
2467 */
2468
2469int snapshot_write_next(struct snapshot_handle *handle)
2470{
2471	static struct chain_allocator ca;
2472	int error = 0;
2473
2474	/* Check if we have already loaded the entire image */
2475	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2476		return 0;
2477
2478	handle->sync_read = 1;
2479
2480	if (!handle->cur) {
2481		if (!buffer)
2482			/* This makes the buffer be freed by swsusp_free() */
2483			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2484
2485		if (!buffer)
2486			return -ENOMEM;
2487
2488		handle->buffer = buffer;
2489	} else if (handle->cur == 1) {
2490		error = load_header(buffer);
2491		if (error)
2492			return error;
2493
2494		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2495		if (error)
2496			return error;
2497
2498		/* Allocate buffer for page keys. */
2499		error = page_key_alloc(nr_copy_pages);
2500		if (error)
2501			return error;
2502
2503	} else if (handle->cur <= nr_meta_pages + 1) {
2504		error = unpack_orig_pfns(buffer, &copy_bm);
2505		if (error)
2506			return error;
2507
2508		if (handle->cur == nr_meta_pages + 1) {
2509			error = prepare_image(&orig_bm, &copy_bm);
2510			if (error)
2511				return error;
2512
2513			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2514			memory_bm_position_reset(&orig_bm);
2515			restore_pblist = NULL;
2516			handle->buffer = get_buffer(&orig_bm, &ca);
2517			handle->sync_read = 0;
2518			if (IS_ERR(handle->buffer))
2519				return PTR_ERR(handle->buffer);
2520		}
2521	} else {
2522		copy_last_highmem_page();
2523		/* Restore page key for data page (s390 only). */
2524		page_key_write(handle->buffer);
2525		handle->buffer = get_buffer(&orig_bm, &ca);
2526		if (IS_ERR(handle->buffer))
2527			return PTR_ERR(handle->buffer);
2528		if (handle->buffer != buffer)
2529			handle->sync_read = 0;
2530	}
2531	handle->cur++;
2532	return PAGE_SIZE;
2533}
2534
2535/**
2536 *	snapshot_write_finalize - must be called after the last call to
2537 *	snapshot_write_next() in case the last page in the image happens
2538 *	to be a highmem page and its contents should be stored in the
2539 *	highmem.  Additionally, it releases the memory that will not be
2540 *	used any more.
2541 */
2542
2543void snapshot_write_finalize(struct snapshot_handle *handle)
2544{
2545	copy_last_highmem_page();
2546	/* Restore page key for data page (s390 only). */
2547	page_key_write(handle->buffer);
2548	page_key_free();
2549	/* Free only if we have loaded the image entirely */
2550	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2551		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2552		free_highmem_data();
2553	}
2554}
2555
2556int snapshot_image_loaded(struct snapshot_handle *handle)
2557{
2558	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2559			handle->cur <= nr_meta_pages + nr_copy_pages);
2560}
2561
2562#ifdef CONFIG_HIGHMEM
2563/* Assumes that @buf is ready and points to a "safe" page */
2564static inline void
2565swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2566{
2567	void *kaddr1, *kaddr2;
2568
2569	kaddr1 = kmap_atomic(p1);
2570	kaddr2 = kmap_atomic(p2);
2571	copy_page(buf, kaddr1);
2572	copy_page(kaddr1, kaddr2);
2573	copy_page(kaddr2, buf);
2574	kunmap_atomic(kaddr2);
2575	kunmap_atomic(kaddr1);
2576}
2577
2578/**
2579 *	restore_highmem - for each highmem page that was allocated before
2580 *	the suspend and included in the suspend image, and also has been
2581 *	allocated by the "resume" kernel swap its current (ie. "before
2582 *	resume") contents with the previous (ie. "before suspend") one.
2583 *
2584 *	If the resume eventually fails, we can call this function once
2585 *	again and restore the "before resume" highmem state.
2586 */
2587
2588int restore_highmem(void)
2589{
2590	struct highmem_pbe *pbe = highmem_pblist;
2591	void *buf;
2592
2593	if (!pbe)
2594		return 0;
2595
2596	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2597	if (!buf)
2598		return -ENOMEM;
2599
2600	while (pbe) {
2601		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2602		pbe = pbe->next;
2603	}
2604	free_image_page(buf, PG_UNSAFE_CLEAR);
2605	return 0;
2606}
2607#endif /* CONFIG_HIGHMEM */