Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/atomic.h>
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
143#else
144 "PROMPT=kdb> ",
145#endif
146 "MOREPROMPT=more> ",
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = ARRAY_SIZE(__env);
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 if (in_dbg_master()) {
685 kdb_printf("Command only available during kdb_init()\n");
686 return KDB_NOTIMP;
687 }
688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
689 GFP_KDB);
690 if (!defcmd_set)
691 goto fail_defcmd;
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 if (!s->name)
699 goto fail_name;
700 s->usage = kdb_strdup(argv[2], GFP_KDB);
701 if (!s->usage)
702 goto fail_usage;
703 s->help = kdb_strdup(argv[3], GFP_KDB);
704 if (!s->help)
705 goto fail_help;
706 if (s->usage[0] == '"') {
707 strcpy(s->usage, argv[2]+1);
708 s->usage[strlen(s->usage)-1] = '\0';
709 }
710 if (s->help[0] == '"') {
711 strcpy(s->help, argv[3]+1);
712 s->help[strlen(s->help)-1] = '\0';
713 }
714 ++defcmd_set_count;
715 defcmd_in_progress = 1;
716 kfree(save_defcmd_set);
717 return 0;
718fail_help:
719 kfree(s->usage);
720fail_usage:
721 kfree(s->name);
722fail_name:
723 kfree(defcmd_set);
724fail_defcmd:
725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
726 defcmd_set = save_defcmd_set;
727 return KDB_NOTIMP;
728}
729
730/*
731 * kdb_exec_defcmd - Execute the set of commands associated with this
732 * defcmd name.
733 * Inputs:
734 * argc argument count
735 * argv argument vector
736 * Returns:
737 * zero for success, a kdb diagnostic if error
738 */
739static int kdb_exec_defcmd(int argc, const char **argv)
740{
741 int i, ret;
742 struct defcmd_set *s;
743 if (argc != 0)
744 return KDB_ARGCOUNT;
745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
746 if (strcmp(s->name, argv[0]) == 0)
747 break;
748 }
749 if (i == defcmd_set_count) {
750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
751 argv[0]);
752 return KDB_NOTIMP;
753 }
754 for (i = 0; i < s->count; ++i) {
755 /* Recursive use of kdb_parse, do not use argv after
756 * this point */
757 argv = NULL;
758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
759 ret = kdb_parse(s->command[i]);
760 if (ret)
761 return ret;
762 }
763 return 0;
764}
765
766/* Command history */
767#define KDB_CMD_HISTORY_COUNT 32
768#define CMD_BUFLEN 200 /* kdb_printf: max printline
769 * size == 256 */
770static unsigned int cmd_head, cmd_tail;
771static unsigned int cmdptr;
772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
773static char cmd_cur[CMD_BUFLEN];
774
775/*
776 * The "str" argument may point to something like | grep xyz
777 */
778static void parse_grep(const char *str)
779{
780 int len;
781 char *cp = (char *)str, *cp2;
782
783 /* sanity check: we should have been called with the \ first */
784 if (*cp != '|')
785 return;
786 cp++;
787 while (isspace(*cp))
788 cp++;
789 if (strncmp(cp, "grep ", 5)) {
790 kdb_printf("invalid 'pipe', see grephelp\n");
791 return;
792 }
793 cp += 5;
794 while (isspace(*cp))
795 cp++;
796 cp2 = strchr(cp, '\n');
797 if (cp2)
798 *cp2 = '\0'; /* remove the trailing newline */
799 len = strlen(cp);
800 if (len == 0) {
801 kdb_printf("invalid 'pipe', see grephelp\n");
802 return;
803 }
804 /* now cp points to a nonzero length search string */
805 if (*cp == '"') {
806 /* allow it be "x y z" by removing the "'s - there must
807 be two of them */
808 cp++;
809 cp2 = strchr(cp, '"');
810 if (!cp2) {
811 kdb_printf("invalid quoted string, see grephelp\n");
812 return;
813 }
814 *cp2 = '\0'; /* end the string where the 2nd " was */
815 }
816 kdb_grep_leading = 0;
817 if (*cp == '^') {
818 kdb_grep_leading = 1;
819 cp++;
820 }
821 len = strlen(cp);
822 kdb_grep_trailing = 0;
823 if (*(cp+len-1) == '$') {
824 kdb_grep_trailing = 1;
825 *(cp+len-1) = '\0';
826 }
827 len = strlen(cp);
828 if (!len)
829 return;
830 if (len >= GREP_LEN) {
831 kdb_printf("search string too long\n");
832 return;
833 }
834 strcpy(kdb_grep_string, cp);
835 kdb_grepping_flag++;
836 return;
837}
838
839/*
840 * kdb_parse - Parse the command line, search the command table for a
841 * matching command and invoke the command function. This
842 * function may be called recursively, if it is, the second call
843 * will overwrite argv and cbuf. It is the caller's
844 * responsibility to save their argv if they recursively call
845 * kdb_parse().
846 * Parameters:
847 * cmdstr The input command line to be parsed.
848 * regs The registers at the time kdb was entered.
849 * Returns:
850 * Zero for success, a kdb diagnostic if failure.
851 * Remarks:
852 * Limited to 20 tokens.
853 *
854 * Real rudimentary tokenization. Basically only whitespace
855 * is considered a token delimeter (but special consideration
856 * is taken of the '=' sign as used by the 'set' command).
857 *
858 * The algorithm used to tokenize the input string relies on
859 * there being at least one whitespace (or otherwise useless)
860 * character between tokens as the character immediately following
861 * the token is altered in-place to a null-byte to terminate the
862 * token string.
863 */
864
865#define MAXARGC 20
866
867int kdb_parse(const char *cmdstr)
868{
869 static char *argv[MAXARGC];
870 static int argc;
871 static char cbuf[CMD_BUFLEN+2];
872 char *cp;
873 char *cpp, quoted;
874 kdbtab_t *tp;
875 int i, escaped, ignore_errors = 0, check_grep;
876
877 /*
878 * First tokenize the command string.
879 */
880 cp = (char *)cmdstr;
881 kdb_grepping_flag = check_grep = 0;
882
883 if (KDB_FLAG(CMD_INTERRUPT)) {
884 /* Previous command was interrupted, newline must not
885 * repeat the command */
886 KDB_FLAG_CLEAR(CMD_INTERRUPT);
887 KDB_STATE_SET(PAGER);
888 argc = 0; /* no repeat */
889 }
890
891 if (*cp != '\n' && *cp != '\0') {
892 argc = 0;
893 cpp = cbuf;
894 while (*cp) {
895 /* skip whitespace */
896 while (isspace(*cp))
897 cp++;
898 if ((*cp == '\0') || (*cp == '\n') ||
899 (*cp == '#' && !defcmd_in_progress))
900 break;
901 /* special case: check for | grep pattern */
902 if (*cp == '|') {
903 check_grep++;
904 break;
905 }
906 if (cpp >= cbuf + CMD_BUFLEN) {
907 kdb_printf("kdb_parse: command buffer "
908 "overflow, command ignored\n%s\n",
909 cmdstr);
910 return KDB_NOTFOUND;
911 }
912 if (argc >= MAXARGC - 1) {
913 kdb_printf("kdb_parse: too many arguments, "
914 "command ignored\n%s\n", cmdstr);
915 return KDB_NOTFOUND;
916 }
917 argv[argc++] = cpp;
918 escaped = 0;
919 quoted = '\0';
920 /* Copy to next unquoted and unescaped
921 * whitespace or '=' */
922 while (*cp && *cp != '\n' &&
923 (escaped || quoted || !isspace(*cp))) {
924 if (cpp >= cbuf + CMD_BUFLEN)
925 break;
926 if (escaped) {
927 escaped = 0;
928 *cpp++ = *cp++;
929 continue;
930 }
931 if (*cp == '\\') {
932 escaped = 1;
933 ++cp;
934 continue;
935 }
936 if (*cp == quoted)
937 quoted = '\0';
938 else if (*cp == '\'' || *cp == '"')
939 quoted = *cp;
940 *cpp = *cp++;
941 if (*cpp == '=' && !quoted)
942 break;
943 ++cpp;
944 }
945 *cpp++ = '\0'; /* Squash a ws or '=' character */
946 }
947 }
948 if (!argc)
949 return 0;
950 if (check_grep)
951 parse_grep(cp);
952 if (defcmd_in_progress) {
953 int result = kdb_defcmd2(cmdstr, argv[0]);
954 if (!defcmd_in_progress) {
955 argc = 0; /* avoid repeat on endefcmd */
956 *(argv[0]) = '\0';
957 }
958 return result;
959 }
960 if (argv[0][0] == '-' && argv[0][1] &&
961 (argv[0][1] < '0' || argv[0][1] > '9')) {
962 ignore_errors = 1;
963 ++argv[0];
964 }
965
966 for_each_kdbcmd(tp, i) {
967 if (tp->cmd_name) {
968 /*
969 * If this command is allowed to be abbreviated,
970 * check to see if this is it.
971 */
972
973 if (tp->cmd_minlen
974 && (strlen(argv[0]) <= tp->cmd_minlen)) {
975 if (strncmp(argv[0],
976 tp->cmd_name,
977 tp->cmd_minlen) == 0) {
978 break;
979 }
980 }
981
982 if (strcmp(argv[0], tp->cmd_name) == 0)
983 break;
984 }
985 }
986
987 /*
988 * If we don't find a command by this name, see if the first
989 * few characters of this match any of the known commands.
990 * e.g., md1c20 should match md.
991 */
992 if (i == kdb_max_commands) {
993 for_each_kdbcmd(tp, i) {
994 if (tp->cmd_name) {
995 if (strncmp(argv[0],
996 tp->cmd_name,
997 strlen(tp->cmd_name)) == 0) {
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 if (i < kdb_max_commands) {
1005 int result;
1006 KDB_STATE_SET(CMD);
1007 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008 if (result && ignore_errors && result > KDB_CMD_GO)
1009 result = 0;
1010 KDB_STATE_CLEAR(CMD);
1011 switch (tp->cmd_repeat) {
1012 case KDB_REPEAT_NONE:
1013 argc = 0;
1014 if (argv[0])
1015 *(argv[0]) = '\0';
1016 break;
1017 case KDB_REPEAT_NO_ARGS:
1018 argc = 1;
1019 if (argv[1])
1020 *(argv[1]) = '\0';
1021 break;
1022 case KDB_REPEAT_WITH_ARGS:
1023 break;
1024 }
1025 return result;
1026 }
1027
1028 /*
1029 * If the input with which we were presented does not
1030 * map to an existing command, attempt to parse it as an
1031 * address argument and display the result. Useful for
1032 * obtaining the address of a variable, or the nearest symbol
1033 * to an address contained in a register.
1034 */
1035 {
1036 unsigned long value;
1037 char *name = NULL;
1038 long offset;
1039 int nextarg = 0;
1040
1041 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042 &value, &offset, &name)) {
1043 return KDB_NOTFOUND;
1044 }
1045
1046 kdb_printf("%s = ", argv[0]);
1047 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048 kdb_printf("\n");
1049 return 0;
1050 }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P 16
1057#define CTRL_N 14
1058
1059 /* initial situation */
1060 if (cmd_head == cmd_tail)
1061 return 0;
1062 switch (*cmd) {
1063 case CTRL_P:
1064 if (cmdptr != cmd_tail)
1065 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067 return 1;
1068 case CTRL_N:
1069 if (cmdptr != cmd_head)
1070 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072 return 1;
1073 }
1074 return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command. Reboot
1079 * the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083 emergency_restart();
1084 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085 while (1)
1086 cpu_relax();
1087 /* NOTREACHED */
1088 return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093 int old_lvl = console_loglevel;
1094 console_loglevel = 15;
1095 kdb_trap_printk++;
1096 show_regs(regs);
1097 kdb_trap_printk--;
1098 kdb_printf("\n");
1099 console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104 kdb_current_task = p;
1105
1106 if (kdb_task_has_cpu(p)) {
1107 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108 return;
1109 }
1110 kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb. This routine is invoked on a
1115 * specific processor, it is not global. The main kdb() routine
1116 * ensures that only one processor at a time is in this routine.
1117 * This code is called with the real reason code on the first
1118 * entry to a kdb session, thereafter it is called with reason
1119 * SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 * reason The reason KDB was invoked
1122 * error The hardware-defined error code
1123 * regs The exception frame at time of fault/breakpoint.
1124 * db_result Result code from the break or debug point.
1125 * Returns:
1126 * 0 KDB was invoked for an event which it wasn't responsible
1127 * 1 KDB handled the event for which it was invoked.
1128 * KDB_CMD_GO User typed 'go'.
1129 * KDB_CMD_CPU User switched to another cpu.
1130 * KDB_CMD_SS Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133 kdb_dbtrap_t db_result)
1134{
1135 char *cmdbuf;
1136 int diag;
1137 struct task_struct *kdb_current =
1138 kdb_curr_task(raw_smp_processor_id());
1139
1140 KDB_DEBUG_STATE("kdb_local 1", reason);
1141 kdb_go_count = 0;
1142 if (reason == KDB_REASON_DEBUG) {
1143 /* special case below */
1144 } else {
1145 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146 kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 }
1151
1152 switch (reason) {
1153 case KDB_REASON_DEBUG:
1154 {
1155 /*
1156 * If re-entering kdb after a single step
1157 * command, don't print the message.
1158 */
1159 switch (db_result) {
1160 case KDB_DB_BPT:
1161 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162 kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164 kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167 instruction_pointer(regs));
1168 break;
1169 case KDB_DB_SS:
1170 break;
1171 case KDB_DB_SSBPT:
1172 KDB_DEBUG_STATE("kdb_local 4", reason);
1173 return 1; /* kdba_db_trap did the work */
1174 default:
1175 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176 db_result);
1177 break;
1178 }
1179
1180 }
1181 break;
1182 case KDB_REASON_ENTER:
1183 if (KDB_STATE(KEYBOARD))
1184 kdb_printf("due to Keyboard Entry\n");
1185 else
1186 kdb_printf("due to KDB_ENTER()\n");
1187 break;
1188 case KDB_REASON_KEYBOARD:
1189 KDB_STATE_SET(KEYBOARD);
1190 kdb_printf("due to Keyboard Entry\n");
1191 break;
1192 case KDB_REASON_ENTER_SLAVE:
1193 /* drop through, slaves only get released via cpu switch */
1194 case KDB_REASON_SWITCH:
1195 kdb_printf("due to cpu switch\n");
1196 break;
1197 case KDB_REASON_OOPS:
1198 kdb_printf("Oops: %s\n", kdb_diemsg);
1199 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 kdb_dumpregs(regs);
1202 break;
1203 case KDB_REASON_SYSTEM_NMI:
1204 kdb_printf("due to System NonMaskable Interrupt\n");
1205 break;
1206 case KDB_REASON_NMI:
1207 kdb_printf("due to NonMaskable Interrupt @ "
1208 kdb_machreg_fmt "\n",
1209 instruction_pointer(regs));
1210 kdb_dumpregs(regs);
1211 break;
1212 case KDB_REASON_SSTEP:
1213 case KDB_REASON_BREAK:
1214 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215 reason == KDB_REASON_BREAK ?
1216 "Breakpoint" : "SS trap", instruction_pointer(regs));
1217 /*
1218 * Determine if this breakpoint is one that we
1219 * are interested in.
1220 */
1221 if (db_result != KDB_DB_BPT) {
1222 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223 db_result);
1224 KDB_DEBUG_STATE("kdb_local 6", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227 break;
1228 case KDB_REASON_RECURSE:
1229 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230 instruction_pointer(regs));
1231 break;
1232 default:
1233 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234 KDB_DEBUG_STATE("kdb_local 8", reason);
1235 return 0; /* Not for us, dismiss it */
1236 }
1237
1238 while (1) {
1239 /*
1240 * Initialize pager context.
1241 */
1242 kdb_nextline = 1;
1243 KDB_STATE_CLEAR(SUPPRESS);
1244
1245 cmdbuf = cmd_cur;
1246 *cmdbuf = '\0';
1247 *(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252 raw_smp_processor_id());
1253#else
1254 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256 if (defcmd_in_progress)
1257 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259 /*
1260 * Fetch command from keyboard
1261 */
1262 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263 if (*cmdbuf != '\n') {
1264 if (*cmdbuf < 32) {
1265 if (cmdptr == cmd_head) {
1266 strncpy(cmd_hist[cmd_head], cmd_cur,
1267 CMD_BUFLEN);
1268 *(cmd_hist[cmd_head] +
1269 strlen(cmd_hist[cmd_head])-1) = '\0';
1270 }
1271 if (!handle_ctrl_cmd(cmdbuf))
1272 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273 cmdbuf = cmd_cur;
1274 goto do_full_getstr;
1275 } else {
1276 strncpy(cmd_hist[cmd_head], cmd_cur,
1277 CMD_BUFLEN);
1278 }
1279
1280 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281 if (cmd_head == cmd_tail)
1282 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283 }
1284
1285 cmdptr = cmd_head;
1286 diag = kdb_parse(cmdbuf);
1287 if (diag == KDB_NOTFOUND) {
1288 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289 diag = 0;
1290 }
1291 if (diag == KDB_CMD_GO
1292 || diag == KDB_CMD_CPU
1293 || diag == KDB_CMD_SS
1294 || diag == KDB_CMD_KGDB)
1295 break;
1296
1297 if (diag)
1298 kdb_cmderror(diag);
1299 }
1300 KDB_DEBUG_STATE("kdb_local 9", diag);
1301 return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 * for debugging.
1308 * Inputs:
1309 * text Identifies the debug point
1310 * value Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316 kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 * controlling cpu, all cpus are in this loop. One cpu is in
1322 * control and will issue the kdb prompt, the others will spin
1323 * until 'go' or cpu switch.
1324 *
1325 * To get a consistent view of the kernel stacks for all
1326 * processes, this routine is invoked from the main kdb code via
1327 * an architecture specific routine. kdba_main_loop is
1328 * responsible for making the kernel stacks consistent for all
1329 * processes, there should be no difference between a blocked
1330 * process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 * reason The reason KDB was invoked
1333 * error The hardware-defined error code
1334 * reason2 kdb's current reason code.
1335 * Initially error but can change
1336 * according to kdb state.
1337 * db_result Result code from break or debug point.
1338 * regs The exception frame at time of fault/breakpoint.
1339 * should always be valid.
1340 * Returns:
1341 * 0 KDB was invoked for an event which it wasn't responsible
1342 * 1 KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345 kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347 int result = 1;
1348 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1349 while (1) {
1350 /*
1351 * All processors except the one that is in control
1352 * will spin here.
1353 */
1354 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355 while (KDB_STATE(HOLD_CPU)) {
1356 /* state KDB is turned off by kdb_cpu to see if the
1357 * other cpus are still live, each cpu in this loop
1358 * turns it back on.
1359 */
1360 if (!KDB_STATE(KDB))
1361 KDB_STATE_SET(KDB);
1362 }
1363
1364 KDB_STATE_CLEAR(SUPPRESS);
1365 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366 if (KDB_STATE(LEAVING))
1367 break; /* Another cpu said 'go' */
1368 /* Still using kdb, this processor is in control */
1369 result = kdb_local(reason2, error, regs, db_result);
1370 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372 if (result == KDB_CMD_CPU)
1373 break;
1374
1375 if (result == KDB_CMD_SS) {
1376 KDB_STATE_SET(DOING_SS);
1377 break;
1378 }
1379
1380 if (result == KDB_CMD_KGDB) {
1381 if (!KDB_STATE(DOING_KGDB))
1382 kdb_printf("Entering please attach debugger "
1383 "or use $D#44+ or $3#33\n");
1384 break;
1385 }
1386 if (result && result != 1 && result != KDB_CMD_GO)
1387 kdb_printf("\nUnexpected kdb_local return code %d\n",
1388 result);
1389 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390 break;
1391 }
1392 if (KDB_STATE(DOING_SS))
1393 KDB_STATE_CLEAR(SSBPT);
1394
1395 /* Clean up any keyboard devices before leaving */
1396 kdb_kbd_cleanup_state();
1397
1398 return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 * mdr <addr arg>,<byte count>
1405 * Inputs:
1406 * addr Start address
1407 * count Number of bytes
1408 * Returns:
1409 * Always 0. Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413 unsigned char c;
1414 while (count--) {
1415 if (kdb_getarea(c, addr))
1416 return 0;
1417 kdb_printf("%02x", c);
1418 addr++;
1419 }
1420 kdb_printf("\n");
1421 return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 * 'md8' 'mdr' and 'mds' commands.
1427 *
1428 * md|mds [<addr arg> [<line count> [<radix>]]]
1429 * mdWcN [<addr arg> [<line count> [<radix>]]]
1430 * where W = is the width (1, 2, 4 or 8) and N is the count.
1431 * for eg., md1c20 reads 20 bytes, 1 at a time.
1432 * mdr <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435 int symbolic, int nosect, int bytesperword,
1436 int num, int repeat, int phys)
1437{
1438 /* print just one line of data */
1439 kdb_symtab_t symtab;
1440 char cbuf[32];
1441 char *c = cbuf;
1442 int i;
1443 unsigned long word;
1444
1445 memset(cbuf, '\0', sizeof(cbuf));
1446 if (phys)
1447 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448 else
1449 kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451 for (i = 0; i < num && repeat--; i++) {
1452 if (phys) {
1453 if (kdb_getphysword(&word, addr, bytesperword))
1454 break;
1455 } else if (kdb_getword(&word, addr, bytesperword))
1456 break;
1457 kdb_printf(fmtstr, word);
1458 if (symbolic)
1459 kdbnearsym(word, &symtab);
1460 else
1461 memset(&symtab, 0, sizeof(symtab));
1462 if (symtab.sym_name) {
1463 kdb_symbol_print(word, &symtab, 0);
1464 if (!nosect) {
1465 kdb_printf("\n");
1466 kdb_printf(" %s %s "
1467 kdb_machreg_fmt " "
1468 kdb_machreg_fmt " "
1469 kdb_machreg_fmt, symtab.mod_name,
1470 symtab.sec_name, symtab.sec_start,
1471 symtab.sym_start, symtab.sym_end);
1472 }
1473 addr += bytesperword;
1474 } else {
1475 union {
1476 u64 word;
1477 unsigned char c[8];
1478 } wc;
1479 unsigned char *cp;
1480#ifdef __BIG_ENDIAN
1481 cp = wc.c + 8 - bytesperword;
1482#else
1483 cp = wc.c;
1484#endif
1485 wc.word = word;
1486#define printable_char(c) \
1487 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488 switch (bytesperword) {
1489 case 8:
1490 *c++ = printable_char(*cp++);
1491 *c++ = printable_char(*cp++);
1492 *c++ = printable_char(*cp++);
1493 *c++ = printable_char(*cp++);
1494 addr += 4;
1495 case 4:
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 addr += 2;
1499 case 2:
1500 *c++ = printable_char(*cp++);
1501 addr++;
1502 case 1:
1503 *c++ = printable_char(*cp++);
1504 addr++;
1505 break;
1506 }
1507#undef printable_char
1508 }
1509 }
1510 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511 " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516 static unsigned long last_addr;
1517 static int last_radix, last_bytesperword, last_repeat;
1518 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519 int nosect = 0;
1520 char fmtchar, fmtstr[64];
1521 unsigned long addr;
1522 unsigned long word;
1523 long offset = 0;
1524 int symbolic = 0;
1525 int valid = 0;
1526 int phys = 0;
1527
1528 kdbgetintenv("MDCOUNT", &mdcount);
1529 kdbgetintenv("RADIX", &radix);
1530 kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532 /* Assume 'md <addr>' and start with environment values */
1533 repeat = mdcount * 16 / bytesperword;
1534
1535 if (strcmp(argv[0], "mdr") == 0) {
1536 if (argc != 2)
1537 return KDB_ARGCOUNT;
1538 valid = 1;
1539 } else if (isdigit(argv[0][2])) {
1540 bytesperword = (int)(argv[0][2] - '0');
1541 if (bytesperword == 0) {
1542 bytesperword = last_bytesperword;
1543 if (bytesperword == 0)
1544 bytesperword = 4;
1545 }
1546 last_bytesperword = bytesperword;
1547 repeat = mdcount * 16 / bytesperword;
1548 if (!argv[0][3])
1549 valid = 1;
1550 else if (argv[0][3] == 'c' && argv[0][4]) {
1551 char *p;
1552 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553 mdcount = ((repeat * bytesperword) + 15) / 16;
1554 valid = !*p;
1555 }
1556 last_repeat = repeat;
1557 } else if (strcmp(argv[0], "md") == 0)
1558 valid = 1;
1559 else if (strcmp(argv[0], "mds") == 0)
1560 valid = 1;
1561 else if (strcmp(argv[0], "mdp") == 0) {
1562 phys = valid = 1;
1563 }
1564 if (!valid)
1565 return KDB_NOTFOUND;
1566
1567 if (argc == 0) {
1568 if (last_addr == 0)
1569 return KDB_ARGCOUNT;
1570 addr = last_addr;
1571 radix = last_radix;
1572 bytesperword = last_bytesperword;
1573 repeat = last_repeat;
1574 mdcount = ((repeat * bytesperword) + 15) / 16;
1575 }
1576
1577 if (argc) {
1578 unsigned long val;
1579 int diag, nextarg = 1;
1580 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581 &offset, NULL);
1582 if (diag)
1583 return diag;
1584 if (argc > nextarg+2)
1585 return KDB_ARGCOUNT;
1586
1587 if (argc >= nextarg) {
1588 diag = kdbgetularg(argv[nextarg], &val);
1589 if (!diag) {
1590 mdcount = (int) val;
1591 repeat = mdcount * 16 / bytesperword;
1592 }
1593 }
1594 if (argc >= nextarg+1) {
1595 diag = kdbgetularg(argv[nextarg+1], &val);
1596 if (!diag)
1597 radix = (int) val;
1598 }
1599 }
1600
1601 if (strcmp(argv[0], "mdr") == 0)
1602 return kdb_mdr(addr, mdcount);
1603
1604 switch (radix) {
1605 case 10:
1606 fmtchar = 'd';
1607 break;
1608 case 16:
1609 fmtchar = 'x';
1610 break;
1611 case 8:
1612 fmtchar = 'o';
1613 break;
1614 default:
1615 return KDB_BADRADIX;
1616 }
1617
1618 last_radix = radix;
1619
1620 if (bytesperword > KDB_WORD_SIZE)
1621 return KDB_BADWIDTH;
1622
1623 switch (bytesperword) {
1624 case 8:
1625 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626 break;
1627 case 4:
1628 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629 break;
1630 case 2:
1631 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632 break;
1633 case 1:
1634 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635 break;
1636 default:
1637 return KDB_BADWIDTH;
1638 }
1639
1640 last_repeat = repeat;
1641 last_bytesperword = bytesperword;
1642
1643 if (strcmp(argv[0], "mds") == 0) {
1644 symbolic = 1;
1645 /* Do not save these changes as last_*, they are temporary mds
1646 * overrides.
1647 */
1648 bytesperword = KDB_WORD_SIZE;
1649 repeat = mdcount;
1650 kdbgetintenv("NOSECT", &nosect);
1651 }
1652
1653 /* Round address down modulo BYTESPERWORD */
1654
1655 addr &= ~(bytesperword-1);
1656
1657 while (repeat > 0) {
1658 unsigned long a;
1659 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661 if (KDB_FLAG(CMD_INTERRUPT))
1662 return 0;
1663 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664 if (phys) {
1665 if (kdb_getphysword(&word, a, bytesperword)
1666 || word)
1667 break;
1668 } else if (kdb_getword(&word, a, bytesperword) || word)
1669 break;
1670 }
1671 n = min(num, repeat);
1672 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673 num, repeat, phys);
1674 addr += bytesperword * n;
1675 repeat -= n;
1676 z = (z + num - 1) / num;
1677 if (z > 2) {
1678 int s = num * (z-2);
1679 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680 " zero suppressed\n",
1681 addr, addr + bytesperword * s - 1);
1682 addr += bytesperword * s;
1683 repeat -= s;
1684 }
1685 }
1686 last_addr = addr;
1687
1688 return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 * mm address-expression new-value
1694 * Remarks:
1695 * mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699 int diag;
1700 unsigned long addr;
1701 long offset = 0;
1702 unsigned long contents;
1703 int nextarg;
1704 int width;
1705
1706 if (argv[0][2] && !isdigit(argv[0][2]))
1707 return KDB_NOTFOUND;
1708
1709 if (argc < 2)
1710 return KDB_ARGCOUNT;
1711
1712 nextarg = 1;
1713 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714 if (diag)
1715 return diag;
1716
1717 if (nextarg > argc)
1718 return KDB_ARGCOUNT;
1719 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720 if (diag)
1721 return diag;
1722
1723 if (nextarg != argc + 1)
1724 return KDB_ARGCOUNT;
1725
1726 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727 diag = kdb_putword(addr, contents, width);
1728 if (diag)
1729 return diag;
1730
1731 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733 return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 * go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742 unsigned long addr;
1743 int diag;
1744 int nextarg;
1745 long offset;
1746
1747 if (raw_smp_processor_id() != kdb_initial_cpu) {
1748 kdb_printf("go must execute on the entry cpu, "
1749 "please use \"cpu %d\" and then execute go\n",
1750 kdb_initial_cpu);
1751 return KDB_BADCPUNUM;
1752 }
1753 if (argc == 1) {
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg,
1756 &addr, &offset, NULL);
1757 if (diag)
1758 return diag;
1759 } else if (argc) {
1760 return KDB_ARGCOUNT;
1761 }
1762
1763 diag = KDB_CMD_GO;
1764 if (KDB_FLAG(CATASTROPHIC)) {
1765 kdb_printf("Catastrophic error detected\n");
1766 kdb_printf("kdb_continue_catastrophic=%d, ",
1767 kdb_continue_catastrophic);
1768 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769 kdb_printf("type go a second time if you really want "
1770 "to continue\n");
1771 return 0;
1772 }
1773 if (kdb_continue_catastrophic == 2) {
1774 kdb_printf("forcing reboot\n");
1775 kdb_reboot(0, NULL);
1776 }
1777 kdb_printf("attempting to continue\n");
1778 }
1779 return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787 int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789 int i;
1790 char *rname;
1791 int rsize;
1792 u64 reg64;
1793 u32 reg32;
1794 u16 reg16;
1795 u8 reg8;
1796
1797 if (len)
1798 return len;
1799
1800 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801 rsize = dbg_reg_def[i].size * 2;
1802 if (rsize > 16)
1803 rsize = 2;
1804 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805 len = 0;
1806 kdb_printf("\n");
1807 }
1808 if (len)
1809 len += kdb_printf(" ");
1810 switch(dbg_reg_def[i].size * 8) {
1811 case 8:
1812 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1813 if (!rname)
1814 break;
1815 len += kdb_printf("%s: %02x", rname, reg8);
1816 break;
1817 case 16:
1818 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1819 if (!rname)
1820 break;
1821 len += kdb_printf("%s: %04x", rname, reg16);
1822 break;
1823 case 32:
1824 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1825 if (!rname)
1826 break;
1827 len += kdb_printf("%s: %08x", rname, reg32);
1828 break;
1829 case 64:
1830 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1831 if (!rname)
1832 break;
1833 len += kdb_printf("%s: %016llx", rname, reg64);
1834 break;
1835 default:
1836 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837 }
1838 }
1839 kdb_printf("\n");
1840#else
1841 if (len)
1842 return len;
1843
1844 kdb_dumpregs(kdb_current_regs);
1845#endif
1846 return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify) command.
1851 * rm register-name new-contents
1852 * Remarks:
1853 * Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858 int diag;
1859 const char *rname;
1860 int i;
1861 u64 reg64;
1862 u32 reg32;
1863 u16 reg16;
1864 u8 reg8;
1865
1866 if (argc != 2)
1867 return KDB_ARGCOUNT;
1868 /*
1869 * Allow presence or absence of leading '%' symbol.
1870 */
1871 rname = argv[1];
1872 if (*rname == '%')
1873 rname++;
1874
1875 diag = kdbgetu64arg(argv[2], ®64);
1876 if (diag)
1877 return diag;
1878
1879 diag = kdb_check_regs();
1880 if (diag)
1881 return diag;
1882
1883 diag = KDB_BADREG;
1884 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886 diag = 0;
1887 break;
1888 }
1889 }
1890 if (!diag) {
1891 switch(dbg_reg_def[i].size * 8) {
1892 case 8:
1893 reg8 = reg64;
1894 dbg_set_reg(i, ®8, kdb_current_regs);
1895 break;
1896 case 16:
1897 reg16 = reg64;
1898 dbg_set_reg(i, ®16, kdb_current_regs);
1899 break;
1900 case 32:
1901 reg32 = reg64;
1902 dbg_set_reg(i, ®32, kdb_current_regs);
1903 break;
1904 case 64:
1905 dbg_set_reg(i, ®64, kdb_current_regs);
1906 break;
1907 }
1908 }
1909 return diag;
1910#else
1911 kdb_printf("ERROR: Register set currently not implemented\n");
1912 return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 * sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924 if (argc != 1)
1925 return KDB_ARGCOUNT;
1926 kdb_trap_printk++;
1927 __handle_sysrq(*argv[1], false);
1928 kdb_trap_printk--;
1929
1930 return 0;
1931}
1932#endif /* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 * frame) command. This command takes an address and expects to
1937 * find an exception frame at that address, formats and prints
1938 * it.
1939 * regs address-expression
1940 * Remarks:
1941 * Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945 int diag;
1946 unsigned long addr;
1947 long offset;
1948 int nextarg;
1949
1950 if (argc != 1)
1951 return KDB_ARGCOUNT;
1952
1953 nextarg = 1;
1954 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955 if (diag)
1956 return diag;
1957 show_regs((struct pt_regs *)addr);
1958 return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1964 * currently loaded kernel modules.
1965 * Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969 struct module *mod;
1970
1971 if (argc != 0)
1972 return KDB_ARGCOUNT;
1973
1974 kdb_printf("Module Size modstruct Used by\n");
1975 list_for_each_entry(mod, kdb_modules, list) {
1976 if (mod->state == MODULE_STATE_UNFORMED)
1977 continue;
1978
1979 kdb_printf("%-20s%8u 0x%p ", mod->name,
1980 mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982 kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984 if (mod->state == MODULE_STATE_GOING)
1985 kdb_printf(" (Unloading)");
1986 else if (mod->state == MODULE_STATE_COMING)
1987 kdb_printf(" (Loading)");
1988 else
1989 kdb_printf(" (Live)");
1990 kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993 {
1994 struct module_use *use;
1995 kdb_printf(" [ ");
1996 list_for_each_entry(use, &mod->source_list,
1997 source_list)
1998 kdb_printf("%s ", use->target->name);
1999 kdb_printf("]\n");
2000 }
2001#endif
2002 }
2003
2004 return 0;
2005}
2006
2007#endif /* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command. Display the
2011 * current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016 int i;
2017
2018 for (i = 0; i < __nenv; i++) {
2019 if (__env[i])
2020 kdb_printf("%s\n", __env[i]);
2021 }
2022
2023 if (KDB_DEBUG(MASK))
2024 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026 return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 * the contents of the syslog buffer.
2033 * dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037 int diag;
2038 int logging;
2039 int lines = 0;
2040 int adjust = 0;
2041 int n = 0;
2042 int skip = 0;
2043 struct kmsg_dumper dumper = { .active = 1 };
2044 size_t len;
2045 char buf[201];
2046
2047 if (argc > 2)
2048 return KDB_ARGCOUNT;
2049 if (argc) {
2050 char *cp;
2051 lines = simple_strtol(argv[1], &cp, 0);
2052 if (*cp)
2053 lines = 0;
2054 if (argc > 1) {
2055 adjust = simple_strtoul(argv[2], &cp, 0);
2056 if (*cp || adjust < 0)
2057 adjust = 0;
2058 }
2059 }
2060
2061 /* disable LOGGING if set */
2062 diag = kdbgetintenv("LOGGING", &logging);
2063 if (!diag && logging) {
2064 const char *setargs[] = { "set", "LOGGING", "0" };
2065 kdb_set(2, setargs);
2066 }
2067
2068 kmsg_dump_rewind_nolock(&dumper);
2069 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070 n++;
2071
2072 if (lines < 0) {
2073 if (adjust >= n)
2074 kdb_printf("buffer only contains %d lines, nothing "
2075 "printed\n", n);
2076 else if (adjust - lines >= n)
2077 kdb_printf("buffer only contains %d lines, last %d "
2078 "lines printed\n", n, n - adjust);
2079 skip = adjust;
2080 lines = abs(lines);
2081 } else if (lines > 0) {
2082 skip = n - lines - adjust;
2083 lines = abs(lines);
2084 if (adjust >= n) {
2085 kdb_printf("buffer only contains %d lines, "
2086 "nothing printed\n", n);
2087 skip = n;
2088 } else if (skip < 0) {
2089 lines += skip;
2090 skip = 0;
2091 kdb_printf("buffer only contains %d lines, first "
2092 "%d lines printed\n", n, lines);
2093 }
2094 } else {
2095 lines = n;
2096 }
2097
2098 if (skip >= n || skip < 0)
2099 return 0;
2100
2101 kmsg_dump_rewind_nolock(&dumper);
2102 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103 if (skip) {
2104 skip--;
2105 continue;
2106 }
2107 if (!lines--)
2108 break;
2109 if (KDB_FLAG(CMD_INTERRUPT))
2110 return 0;
2111
2112 kdb_printf("%.*s\n", (int)len - 1, buf);
2113 }
2114
2115 return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124 if (atomic_read(&kdb_nmi_disabled))
2125 return 0;
2126 atomic_set(&kdb_nmi_disabled, 1);
2127 arch_kgdb_ops.enable_nmi(0);
2128 return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134 return -EINVAL;
2135 arch_kgdb_ops.enable_nmi(1);
2136 return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140 .set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 * cpu [<cpunum>]
2147 * Returns:
2148 * KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152 int i, start_cpu, first_print = 1;
2153 char state, prev_state = '?';
2154
2155 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156 kdb_printf("Available cpus: ");
2157 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158 if (!cpu_online(i)) {
2159 state = 'F'; /* cpu is offline */
2160 } else {
2161 state = ' '; /* cpu is responding to kdb */
2162 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163 state = 'I'; /* idle task */
2164 }
2165 if (state != prev_state) {
2166 if (prev_state != '?') {
2167 if (!first_print)
2168 kdb_printf(", ");
2169 first_print = 0;
2170 kdb_printf("%d", start_cpu);
2171 if (start_cpu < i-1)
2172 kdb_printf("-%d", i-1);
2173 if (prev_state != ' ')
2174 kdb_printf("(%c)", prev_state);
2175 }
2176 prev_state = state;
2177 start_cpu = i;
2178 }
2179 }
2180 /* print the trailing cpus, ignoring them if they are all offline */
2181 if (prev_state != 'F') {
2182 if (!first_print)
2183 kdb_printf(", ");
2184 kdb_printf("%d", start_cpu);
2185 if (start_cpu < i-1)
2186 kdb_printf("-%d", i-1);
2187 if (prev_state != ' ')
2188 kdb_printf("(%c)", prev_state);
2189 }
2190 kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195 unsigned long cpunum;
2196 int diag;
2197
2198 if (argc == 0) {
2199 kdb_cpu_status();
2200 return 0;
2201 }
2202
2203 if (argc != 1)
2204 return KDB_ARGCOUNT;
2205
2206 diag = kdbgetularg(argv[1], &cpunum);
2207 if (diag)
2208 return diag;
2209
2210 /*
2211 * Validate cpunum
2212 */
2213 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214 return KDB_BADCPUNUM;
2215
2216 dbg_switch_cpu = cpunum;
2217
2218 /*
2219 * Switch to other cpu
2220 */
2221 return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229 int idle = 0, daemon = 0;
2230 unsigned long mask_I = kdb_task_state_string("I"),
2231 mask_M = kdb_task_state_string("M");
2232 unsigned long cpu;
2233 const struct task_struct *p, *g;
2234 for_each_online_cpu(cpu) {
2235 p = kdb_curr_task(cpu);
2236 if (kdb_task_state(p, mask_I))
2237 ++idle;
2238 }
2239 kdb_do_each_thread(g, p) {
2240 if (kdb_task_state(p, mask_M))
2241 ++daemon;
2242 } kdb_while_each_thread(g, p);
2243 if (idle || daemon) {
2244 if (idle)
2245 kdb_printf("%d idle process%s (state I)%s\n",
2246 idle, idle == 1 ? "" : "es",
2247 daemon ? " and " : "");
2248 if (daemon)
2249 kdb_printf("%d sleeping system daemon (state M) "
2250 "process%s", daemon,
2251 daemon == 1 ? "" : "es");
2252 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253 }
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 * list of the active processes.
2259 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263 int cpu;
2264 unsigned long tmp;
2265
2266 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%p)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290 struct task_struct *g, *p;
2291 unsigned long mask, cpu;
2292
2293 if (argc == 0)
2294 kdb_ps_suppressed();
2295 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2296 (int)(2*sizeof(void *))+2, "Task Addr",
2297 (int)(2*sizeof(void *))+2, "Thread");
2298 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299 /* Run the active tasks first */
2300 for_each_online_cpu(cpu) {
2301 if (KDB_FLAG(CMD_INTERRUPT))
2302 return 0;
2303 p = kdb_curr_task(cpu);
2304 if (kdb_task_state(p, mask))
2305 kdb_ps1(p);
2306 }
2307 kdb_printf("\n");
2308 /* Now the real tasks */
2309 kdb_do_each_thread(g, p) {
2310 if (KDB_FLAG(CMD_INTERRUPT))
2311 return 0;
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 } kdb_while_each_thread(g, p);
2315
2316 return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 * the currently active process.
2322 * pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326 struct task_struct *p;
2327 unsigned long val;
2328 int diag;
2329
2330 if (argc > 1)
2331 return KDB_ARGCOUNT;
2332
2333 if (argc) {
2334 if (strcmp(argv[1], "R") == 0) {
2335 p = KDB_TSK(kdb_initial_cpu);
2336 } else {
2337 diag = kdbgetularg(argv[1], &val);
2338 if (diag)
2339 return KDB_BADINT;
2340
2341 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2342 if (!p) {
2343 kdb_printf("No task with pid=%d\n", (pid_t)val);
2344 return 0;
2345 }
2346 }
2347 kdb_set_current_task(p);
2348 }
2349 kdb_printf("KDB current process is %s(pid=%d)\n",
2350 kdb_current_task->comm,
2351 kdb_current_task->pid);
2352
2353 return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358 return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366 kdbtab_t *kt;
2367 int i;
2368
2369 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370 kdb_printf("-----------------------------"
2371 "-----------------------------\n");
2372 for_each_kdbcmd(kt, i) {
2373 char *space = "";
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (!kt->cmd_name)
2377 continue;
2378 if (strlen(kt->cmd_usage) > 20)
2379 space = "\n ";
2380 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381 kt->cmd_usage, space, kt->cmd_help);
2382 }
2383 return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391 long sig, pid;
2392 char *endp;
2393 struct task_struct *p;
2394 struct siginfo info;
2395
2396 if (argc != 2)
2397 return KDB_ARGCOUNT;
2398
2399 sig = simple_strtol(argv[1], &endp, 0);
2400 if (*endp)
2401 return KDB_BADINT;
2402 if (sig >= 0) {
2403 kdb_printf("Invalid signal parameter.<-signal>\n");
2404 return 0;
2405 }
2406 sig = -sig;
2407
2408 pid = simple_strtol(argv[2], &endp, 0);
2409 if (*endp)
2410 return KDB_BADINT;
2411 if (pid <= 0) {
2412 kdb_printf("Process ID must be large than 0.\n");
2413 return 0;
2414 }
2415
2416 /* Find the process. */
2417 p = find_task_by_pid_ns(pid, &init_pid_ns);
2418 if (!p) {
2419 kdb_printf("The specified process isn't found.\n");
2420 return 0;
2421 }
2422 p = p->group_leader;
2423 info.si_signo = sig;
2424 info.si_errno = 0;
2425 info.si_code = SI_USER;
2426 info.si_pid = pid; /* same capabilities as process being signalled */
2427 info.si_uid = 0; /* kdb has root authority */
2428 kdb_send_sig_info(p, &info);
2429 return 0;
2430}
2431
2432struct kdb_tm {
2433 int tm_sec; /* seconds */
2434 int tm_min; /* minutes */
2435 int tm_hour; /* hours */
2436 int tm_mday; /* day of the month */
2437 int tm_mon; /* month */
2438 int tm_year; /* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443 /* This will work from 1970-2099, 2100 is not a leap year */
2444 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445 31, 30, 31, 30, 31 };
2446 memset(tm, 0, sizeof(*tm));
2447 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2448 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2450 tm->tm_min = tm->tm_sec / 60 % 60;
2451 tm->tm_hour = tm->tm_sec / 60 / 60;
2452 tm->tm_sec = tm->tm_sec % 60;
2453 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454 tm->tm_mday %= (4*365+1);
2455 mon_day[1] = 29;
2456 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457 tm->tm_mday -= mon_day[tm->tm_mon];
2458 if (++tm->tm_mon == 12) {
2459 tm->tm_mon = 0;
2460 ++tm->tm_year;
2461 mon_day[1] = 28;
2462 }
2463 }
2464 ++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474 struct timespec uptime;
2475 do_posix_clock_monotonic_gettime(&uptime);
2476 memset(val, 0, sizeof(*val));
2477 val->uptime = uptime.tv_sec;
2478 val->loads[0] = avenrun[0];
2479 val->loads[1] = avenrun[1];
2480 val->loads[2] = avenrun[2];
2481 val->procs = nr_threads-1;
2482 si_meminfo(val);
2483
2484 return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492 struct timespec now;
2493 struct kdb_tm tm;
2494 struct sysinfo val;
2495
2496 if (argc)
2497 return KDB_ARGCOUNT;
2498
2499 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2500 kdb_printf("release %s\n", init_uts_ns.name.release);
2501 kdb_printf("version %s\n", init_uts_ns.name.version);
2502 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2503 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2504 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2506
2507 now = __current_kernel_time();
2508 kdb_gmtime(&now, &tm);
2509 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2510 "tz_minuteswest %d\n",
2511 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512 tm.tm_hour, tm.tm_min, tm.tm_sec,
2513 sys_tz.tz_minuteswest);
2514
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534 /* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2537 "Buffers: %8lu kB\n",
2538 val.totalram, val.freeram, val.bufferram);
2539 return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547 char fmtstr[64];
2548 int cpu, diag, nextarg = 1;
2549 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551 if (argc < 1 || argc > 3)
2552 return KDB_ARGCOUNT;
2553
2554 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555 if (diag)
2556 return diag;
2557
2558 if (argc >= 2) {
2559 diag = kdbgetularg(argv[2], &bytesperword);
2560 if (diag)
2561 return diag;
2562 }
2563 if (!bytesperword)
2564 bytesperword = KDB_WORD_SIZE;
2565 else if (bytesperword > KDB_WORD_SIZE)
2566 return KDB_BADWIDTH;
2567 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568 if (argc >= 3) {
2569 diag = kdbgetularg(argv[3], &whichcpu);
2570 if (diag)
2571 return diag;
2572 if (!cpu_online(whichcpu)) {
2573 kdb_printf("cpu %ld is not online\n", whichcpu);
2574 return KDB_BADCPUNUM;
2575 }
2576 }
2577
2578 /* Most architectures use __per_cpu_offset[cpu], some use
2579 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580 */
2581#ifdef __per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590 for_each_online_cpu(cpu) {
2591 if (KDB_FLAG(CMD_INTERRUPT))
2592 return 0;
2593
2594 if (whichcpu != ~0UL && whichcpu != cpu)
2595 continue;
2596 addr = symaddr + KDB_PCU(cpu);
2597 diag = kdb_getword(&val, addr, bytesperword);
2598 if (diag) {
2599 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600 "read, diag=%d\n", cpu, addr, diag);
2601 continue;
2602 }
2603 kdb_printf("%5d ", cpu);
2604 kdb_md_line(fmtstr, addr,
2605 bytesperword == KDB_WORD_SIZE,
2606 1, bytesperword, 1, 1, 0);
2607 }
2608#undef KDB_PCU
2609 return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617 kdb_printf("Usage of cmd args | grep pattern:\n");
2618 kdb_printf(" Any command's output may be filtered through an ");
2619 kdb_printf("emulated 'pipe'.\n");
2620 kdb_printf(" 'grep' is just a key word.\n");
2621 kdb_printf(" The pattern may include a very limited set of "
2622 "metacharacters:\n");
2623 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2624 kdb_printf(" And if there are spaces in the pattern, you may "
2625 "quote it:\n");
2626 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627 " or \"^pat tern$\"\n");
2628 return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * debugger command.
2634 * Inputs:
2635 * cmd Command name
2636 * func Function to execute the command
2637 * usage A simple usage string showing arguments
2638 * help A simple help string describing command
2639 * repeat Does the command auto repeat on enter?
2640 * Returns:
2641 * zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50 /* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645 kdb_func_t func,
2646 char *usage,
2647 char *help,
2648 short minlen,
2649 kdb_repeat_t repeat)
2650{
2651 int i;
2652 kdbtab_t *kp;
2653
2654 /*
2655 * Brute force method to determine duplicates
2656 */
2657 for_each_kdbcmd(kp, i) {
2658 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659 kdb_printf("Duplicate kdb command registered: "
2660 "%s, func %p help %s\n", cmd, func, help);
2661 return 1;
2662 }
2663 }
2664
2665 /*
2666 * Insert command into first available location in table
2667 */
2668 for_each_kdbcmd(kp, i) {
2669 if (kp->cmd_name == NULL)
2670 break;
2671 }
2672
2673 if (i >= kdb_max_commands) {
2674 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676 if (!new) {
2677 kdb_printf("Could not allocate new kdb_command "
2678 "table\n");
2679 return 1;
2680 }
2681 if (kdb_commands) {
2682 memcpy(new, kdb_commands,
2683 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684 kfree(kdb_commands);
2685 }
2686 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687 kdb_command_extend * sizeof(*new));
2688 kdb_commands = new;
2689 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690 kdb_max_commands += kdb_command_extend;
2691 }
2692
2693 kp->cmd_name = cmd;
2694 kp->cmd_func = func;
2695 kp->cmd_usage = usage;
2696 kp->cmd_help = help;
2697 kp->cmd_flags = 0;
2698 kp->cmd_minlen = minlen;
2699 kp->cmd_repeat = repeat;
2700
2701 return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 * not need to specify a repeat state. Equivalent to
2709 * kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 * cmd Command name
2712 * func Function to execute the command
2713 * usage A simple usage string showing arguments
2714 * help A simple help string describing command
2715 * Returns:
2716 * zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719 kdb_func_t func,
2720 char *usage,
2721 char *help,
2722 short minlen)
2723{
2724 return kdb_register_repeat(cmd, func, usage, help, minlen,
2725 KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 * debugger command. It is generally called when a module which
2732 * implements kdb commands is unloaded.
2733 * Inputs:
2734 * cmd Command name
2735 * Returns:
2736 * zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740 int i;
2741 kdbtab_t *kp;
2742
2743 /*
2744 * find the command.
2745 */
2746 for_each_kdbcmd(kp, i) {
2747 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748 kp->cmd_name = NULL;
2749 return 0;
2750 }
2751 }
2752
2753 /* Couldn't find it. */
2754 return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761 int i;
2762 kdbtab_t *kp;
2763
2764 for_each_kdbcmd(kp, i)
2765 kp->cmd_name = NULL;
2766
2767 kdb_register_repeat("md", kdb_md, "<vaddr>",
2768 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769 KDB_REPEAT_NO_ARGS);
2770 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779 "Continue Execution", 1, KDB_REPEAT_NONE);
2780 kdb_register_repeat("rd", kdb_rd, "",
2781 "Display Registers", 0, KDB_REPEAT_NONE);
2782 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783 "Modify Registers", 0, KDB_REPEAT_NONE);
2784 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785 "Display exception frame", 0, KDB_REPEAT_NONE);
2786 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787 "Stack traceback", 1, KDB_REPEAT_NONE);
2788 kdb_register_repeat("btp", kdb_bt, "<pid>",
2789 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790 kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792 kdb_register_repeat("btc", kdb_bt, "",
2793 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795 "Backtrace process given its struct task address", 0,
2796 KDB_REPEAT_NONE);
2797 kdb_register_repeat("env", kdb_env, "",
2798 "Show environment variables", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("set", kdb_set, "",
2800 "Set environment variables", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("help", kdb_help, "",
2802 "Display Help Message", 1, KDB_REPEAT_NONE);
2803 kdb_register_repeat("?", kdb_help, "",
2804 "Display Help Message", 0, KDB_REPEAT_NONE);
2805 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807 kdb_register_repeat("kgdb", kdb_kgdb, "",
2808 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810 "Display active task list", 0, KDB_REPEAT_NONE);
2811 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812 "Switch to another task", 0, KDB_REPEAT_NONE);
2813 kdb_register_repeat("reboot", kdb_reboot, "",
2814 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816 kdb_register_repeat("lsmod", kdb_lsmod, "",
2817 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820 kdb_register_repeat("sr", kdb_sr, "<key>",
2821 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827 if (arch_kgdb_ops.enable_nmi) {
2828 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830 }
2831 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835 kdb_register_repeat("summary", kdb_summary, "",
2836 "Summarize the system", 4, KDB_REPEAT_NONE);
2837 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839 kdb_register_repeat("grephelp", kdb_grep_help, "",
2840 "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds. */
2844static void __init kdb_cmd_init(void)
2845{
2846 int i, diag;
2847 for (i = 0; kdb_cmds[i]; ++i) {
2848 diag = kdb_parse(kdb_cmds[i]);
2849 if (diag)
2850 kdb_printf("kdb command %s failed, kdb diag %d\n",
2851 kdb_cmds[i], diag);
2852 }
2853 if (defcmd_in_progress) {
2854 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855 kdb_parse("endefcmd");
2856 }
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863 int i;
2864
2865 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866 return;
2867 for (i = kdb_init_lvl; i < lvl; i++) {
2868 switch (i) {
2869 case KDB_NOT_INITIALIZED:
2870 kdb_inittab(); /* Initialize Command Table */
2871 kdb_initbptab(); /* Initialize Breakpoints */
2872 break;
2873 case KDB_INIT_EARLY:
2874 kdb_cmd_init(); /* Build kdb_cmds tables */
2875 break;
2876 }
2877 }
2878 kdb_init_lvl = lvl;
2879}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63atomic_t kdb_event;
64
65/*
66 * kdb_lock protects updates to kdb_initial_cpu. Used to
67 * single thread processors through the kernel debugger.
68 */
69int kdb_initial_cpu = -1; /* cpu number that owns kdb */
70int kdb_nextline = 1;
71int kdb_state; /* General KDB state */
72
73struct task_struct *kdb_current_task;
74EXPORT_SYMBOL(kdb_current_task);
75struct pt_regs *kdb_current_regs;
76
77const char *kdb_diemsg;
78static int kdb_go_count;
79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
80static unsigned int kdb_continue_catastrophic =
81 CONFIG_KDB_CONTINUE_CATASTROPHIC;
82#else
83static unsigned int kdb_continue_catastrophic;
84#endif
85
86/* kdb_commands describes the available commands. */
87static kdbtab_t *kdb_commands;
88#define KDB_BASE_CMD_MAX 50
89static int kdb_max_commands = KDB_BASE_CMD_MAX;
90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
91#define for_each_kdbcmd(cmd, num) \
92 for ((cmd) = kdb_base_commands, (num) = 0; \
93 num < kdb_max_commands; \
94 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
95
96typedef struct _kdbmsg {
97 int km_diag; /* kdb diagnostic */
98 char *km_msg; /* Corresponding message text */
99} kdbmsg_t;
100
101#define KDBMSG(msgnum, text) \
102 { KDB_##msgnum, text }
103
104static kdbmsg_t kdbmsgs[] = {
105 KDBMSG(NOTFOUND, "Command Not Found"),
106 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
107 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
108 "8 is only allowed on 64 bit systems"),
109 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
110 KDBMSG(NOTENV, "Cannot find environment variable"),
111 KDBMSG(NOENVVALUE, "Environment variable should have value"),
112 KDBMSG(NOTIMP, "Command not implemented"),
113 KDBMSG(ENVFULL, "Environment full"),
114 KDBMSG(ENVBUFFULL, "Environment buffer full"),
115 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
116#ifdef CONFIG_CPU_XSCALE
117 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
118#else
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
120#endif
121 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
122 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
123 KDBMSG(BADMODE, "Invalid IDMODE"),
124 KDBMSG(BADINT, "Illegal numeric value"),
125 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
126 KDBMSG(BADREG, "Invalid register name"),
127 KDBMSG(BADCPUNUM, "Invalid cpu number"),
128 KDBMSG(BADLENGTH, "Invalid length field"),
129 KDBMSG(NOBP, "No Breakpoint exists"),
130 KDBMSG(BADADDR, "Invalid address"),
131 KDBMSG(NOPERM, "Permission denied"),
132};
133#undef KDBMSG
134
135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
136
137
138/*
139 * Initial environment. This is all kept static and local to
140 * this file. We don't want to rely on the memory allocation
141 * mechanisms in the kernel, so we use a very limited allocate-only
142 * heap for new and altered environment variables. The entire
143 * environment is limited to a fixed number of entries (add more
144 * to __env[] if required) and a fixed amount of heap (add more to
145 * KDB_ENVBUFSIZE if required).
146 */
147
148static char *__env[] = {
149#if defined(CONFIG_SMP)
150 "PROMPT=[%d]kdb> ",
151#else
152 "PROMPT=kdb> ",
153#endif
154 "MOREPROMPT=more> ",
155 "RADIX=16",
156 "MDCOUNT=8", /* lines of md output */
157 KDB_PLATFORM_ENV,
158 "DTABCOUNT=30",
159 "NOSECT=1",
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184};
185
186static const int __nenv = ARRAY_SIZE(__env);
187
188struct task_struct *kdb_curr_task(int cpu)
189{
190 struct task_struct *p = curr_task(cpu);
191#ifdef _TIF_MCA_INIT
192 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
193 p = krp->p;
194#endif
195 return p;
196}
197
198/*
199 * Check whether the flags of the current command and the permissions
200 * of the kdb console has allow a command to be run.
201 */
202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
203 bool no_args)
204{
205 /* permissions comes from userspace so needs massaging slightly */
206 permissions &= KDB_ENABLE_MASK;
207 permissions |= KDB_ENABLE_ALWAYS_SAFE;
208
209 /* some commands change group when launched with no arguments */
210 if (no_args)
211 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
212
213 flags |= KDB_ENABLE_ALL;
214
215 return permissions & flags;
216}
217
218/*
219 * kdbgetenv - This function will return the character string value of
220 * an environment variable.
221 * Parameters:
222 * match A character string representing an environment variable.
223 * Returns:
224 * NULL No environment variable matches 'match'
225 * char* Pointer to string value of environment variable.
226 */
227char *kdbgetenv(const char *match)
228{
229 char **ep = __env;
230 int matchlen = strlen(match);
231 int i;
232
233 for (i = 0; i < __nenv; i++) {
234 char *e = *ep++;
235
236 if (!e)
237 continue;
238
239 if ((strncmp(match, e, matchlen) == 0)
240 && ((e[matchlen] == '\0')
241 || (e[matchlen] == '='))) {
242 char *cp = strchr(e, '=');
243 return cp ? ++cp : "";
244 }
245 }
246 return NULL;
247}
248
249/*
250 * kdballocenv - This function is used to allocate bytes for
251 * environment entries.
252 * Parameters:
253 * match A character string representing a numeric value
254 * Outputs:
255 * *value the unsigned long representation of the env variable 'match'
256 * Returns:
257 * Zero on success, a kdb diagnostic on failure.
258 * Remarks:
259 * We use a static environment buffer (envbuffer) to hold the values
260 * of dynamically generated environment variables (see kdb_set). Buffer
261 * space once allocated is never free'd, so over time, the amount of space
262 * (currently 512 bytes) will be exhausted if env variables are changed
263 * frequently.
264 */
265static char *kdballocenv(size_t bytes)
266{
267#define KDB_ENVBUFSIZE 512
268 static char envbuffer[KDB_ENVBUFSIZE];
269 static int envbufsize;
270 char *ep = NULL;
271
272 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
273 ep = &envbuffer[envbufsize];
274 envbufsize += bytes;
275 }
276 return ep;
277}
278
279/*
280 * kdbgetulenv - This function will return the value of an unsigned
281 * long-valued environment variable.
282 * Parameters:
283 * match A character string representing a numeric value
284 * Outputs:
285 * *value the unsigned long represntation of the env variable 'match'
286 * Returns:
287 * Zero on success, a kdb diagnostic on failure.
288 */
289static int kdbgetulenv(const char *match, unsigned long *value)
290{
291 char *ep;
292
293 ep = kdbgetenv(match);
294 if (!ep)
295 return KDB_NOTENV;
296 if (strlen(ep) == 0)
297 return KDB_NOENVVALUE;
298
299 *value = simple_strtoul(ep, NULL, 0);
300
301 return 0;
302}
303
304/*
305 * kdbgetintenv - This function will return the value of an
306 * integer-valued environment variable.
307 * Parameters:
308 * match A character string representing an integer-valued env variable
309 * Outputs:
310 * *value the integer representation of the environment variable 'match'
311 * Returns:
312 * Zero on success, a kdb diagnostic on failure.
313 */
314int kdbgetintenv(const char *match, int *value)
315{
316 unsigned long val;
317 int diag;
318
319 diag = kdbgetulenv(match, &val);
320 if (!diag)
321 *value = (int) val;
322 return diag;
323}
324
325/*
326 * kdbgetularg - This function will convert a numeric string into an
327 * unsigned long value.
328 * Parameters:
329 * arg A character string representing a numeric value
330 * Outputs:
331 * *value the unsigned long represntation of arg.
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetularg(const char *arg, unsigned long *value)
336{
337 char *endp;
338 unsigned long val;
339
340 val = simple_strtoul(arg, &endp, 0);
341
342 if (endp == arg) {
343 /*
344 * Also try base 16, for us folks too lazy to type the
345 * leading 0x...
346 */
347 val = simple_strtoul(arg, &endp, 16);
348 if (endp == arg)
349 return KDB_BADINT;
350 }
351
352 *value = val;
353
354 return 0;
355}
356
357int kdbgetu64arg(const char *arg, u64 *value)
358{
359 char *endp;
360 u64 val;
361
362 val = simple_strtoull(arg, &endp, 0);
363
364 if (endp == arg) {
365
366 val = simple_strtoull(arg, &endp, 16);
367 if (endp == arg)
368 return KDB_BADINT;
369 }
370
371 *value = val;
372
373 return 0;
374}
375
376/*
377 * kdb_set - This function implements the 'set' command. Alter an
378 * existing environment variable or create a new one.
379 */
380int kdb_set(int argc, const char **argv)
381{
382 int i;
383 char *ep;
384 size_t varlen, vallen;
385
386 /*
387 * we can be invoked two ways:
388 * set var=value argv[1]="var", argv[2]="value"
389 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
390 * - if the latter, shift 'em down.
391 */
392 if (argc == 3) {
393 argv[2] = argv[3];
394 argc--;
395 }
396
397 if (argc != 2)
398 return KDB_ARGCOUNT;
399
400 /*
401 * Check for internal variables
402 */
403 if (strcmp(argv[1], "KDBDEBUG") == 0) {
404 unsigned int debugflags;
405 char *cp;
406
407 debugflags = simple_strtoul(argv[2], &cp, 0);
408 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
409 kdb_printf("kdb: illegal debug flags '%s'\n",
410 argv[2]);
411 return 0;
412 }
413 kdb_flags = (kdb_flags &
414 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
415 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
416
417 return 0;
418 }
419
420 /*
421 * Tokenizer squashed the '=' sign. argv[1] is variable
422 * name, argv[2] = value.
423 */
424 varlen = strlen(argv[1]);
425 vallen = strlen(argv[2]);
426 ep = kdballocenv(varlen + vallen + 2);
427 if (ep == (char *)0)
428 return KDB_ENVBUFFULL;
429
430 sprintf(ep, "%s=%s", argv[1], argv[2]);
431
432 ep[varlen+vallen+1] = '\0';
433
434 for (i = 0; i < __nenv; i++) {
435 if (__env[i]
436 && ((strncmp(__env[i], argv[1], varlen) == 0)
437 && ((__env[i][varlen] == '\0')
438 || (__env[i][varlen] == '=')))) {
439 __env[i] = ep;
440 return 0;
441 }
442 }
443
444 /*
445 * Wasn't existing variable. Fit into slot.
446 */
447 for (i = 0; i < __nenv-1; i++) {
448 if (__env[i] == (char *)0) {
449 __env[i] = ep;
450 return 0;
451 }
452 }
453
454 return KDB_ENVFULL;
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexidecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 int usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static int defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = 0;
678 if (!s->count)
679 s->usable = 0;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = 0;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = 1;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = 1;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (strncmp(cp, "grep ", 5)) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimeter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int i, escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 for_each_kdbcmd(tp, i) {
1008 if (tp->cmd_name) {
1009 /*
1010 * If this command is allowed to be abbreviated,
1011 * check to see if this is it.
1012 */
1013
1014 if (tp->cmd_minlen
1015 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016 if (strncmp(argv[0],
1017 tp->cmd_name,
1018 tp->cmd_minlen) == 0) {
1019 break;
1020 }
1021 }
1022
1023 if (strcmp(argv[0], tp->cmd_name) == 0)
1024 break;
1025 }
1026 }
1027
1028 /*
1029 * If we don't find a command by this name, see if the first
1030 * few characters of this match any of the known commands.
1031 * e.g., md1c20 should match md.
1032 */
1033 if (i == kdb_max_commands) {
1034 for_each_kdbcmd(tp, i) {
1035 if (tp->cmd_name) {
1036 if (strncmp(argv[0],
1037 tp->cmd_name,
1038 strlen(tp->cmd_name)) == 0) {
1039 break;
1040 }
1041 }
1042 }
1043 }
1044
1045 if (i < kdb_max_commands) {
1046 int result;
1047
1048 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049 return KDB_NOPERM;
1050
1051 KDB_STATE_SET(CMD);
1052 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053 if (result && ignore_errors && result > KDB_CMD_GO)
1054 result = 0;
1055 KDB_STATE_CLEAR(CMD);
1056
1057 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058 return result;
1059
1060 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061 if (argv[argc])
1062 *(argv[argc]) = '\0';
1063 return result;
1064 }
1065
1066 /*
1067 * If the input with which we were presented does not
1068 * map to an existing command, attempt to parse it as an
1069 * address argument and display the result. Useful for
1070 * obtaining the address of a variable, or the nearest symbol
1071 * to an address contained in a register.
1072 */
1073 {
1074 unsigned long value;
1075 char *name = NULL;
1076 long offset;
1077 int nextarg = 0;
1078
1079 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080 &value, &offset, &name)) {
1081 return KDB_NOTFOUND;
1082 }
1083
1084 kdb_printf("%s = ", argv[0]);
1085 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086 kdb_printf("\n");
1087 return 0;
1088 }
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P 16
1095#define CTRL_N 14
1096
1097 /* initial situation */
1098 if (cmd_head == cmd_tail)
1099 return 0;
1100 switch (*cmd) {
1101 case CTRL_P:
1102 if (cmdptr != cmd_tail)
1103 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105 return 1;
1106 case CTRL_N:
1107 if (cmdptr != cmd_head)
1108 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110 return 1;
1111 }
1112 return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command. Reboot
1117 * the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121 emergency_restart();
1122 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123 while (1)
1124 cpu_relax();
1125 /* NOTREACHED */
1126 return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131 int old_lvl = console_loglevel;
1132 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133 kdb_trap_printk++;
1134 show_regs(regs);
1135 kdb_trap_printk--;
1136 kdb_printf("\n");
1137 console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142 kdb_current_task = p;
1143
1144 if (kdb_task_has_cpu(p)) {
1145 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146 return;
1147 }
1148 kdb_current_regs = NULL;
1149}
1150
1151/*
1152 * kdb_local - The main code for kdb. This routine is invoked on a
1153 * specific processor, it is not global. The main kdb() routine
1154 * ensures that only one processor at a time is in this routine.
1155 * This code is called with the real reason code on the first
1156 * entry to a kdb session, thereafter it is called with reason
1157 * SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 * reason The reason KDB was invoked
1160 * error The hardware-defined error code
1161 * regs The exception frame at time of fault/breakpoint.
1162 * db_result Result code from the break or debug point.
1163 * Returns:
1164 * 0 KDB was invoked for an event which it wasn't responsible
1165 * 1 KDB handled the event for which it was invoked.
1166 * KDB_CMD_GO User typed 'go'.
1167 * KDB_CMD_CPU User switched to another cpu.
1168 * KDB_CMD_SS Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171 kdb_dbtrap_t db_result)
1172{
1173 char *cmdbuf;
1174 int diag;
1175 struct task_struct *kdb_current =
1176 kdb_curr_task(raw_smp_processor_id());
1177
1178 KDB_DEBUG_STATE("kdb_local 1", reason);
1179 kdb_go_count = 0;
1180 if (reason == KDB_REASON_DEBUG) {
1181 /* special case below */
1182 } else {
1183 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184 kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186 kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188 }
1189
1190 switch (reason) {
1191 case KDB_REASON_DEBUG:
1192 {
1193 /*
1194 * If re-entering kdb after a single step
1195 * command, don't print the message.
1196 */
1197 switch (db_result) {
1198 case KDB_DB_BPT:
1199 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200 kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202 kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205 instruction_pointer(regs));
1206 break;
1207 case KDB_DB_SS:
1208 break;
1209 case KDB_DB_SSBPT:
1210 KDB_DEBUG_STATE("kdb_local 4", reason);
1211 return 1; /* kdba_db_trap did the work */
1212 default:
1213 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214 db_result);
1215 break;
1216 }
1217
1218 }
1219 break;
1220 case KDB_REASON_ENTER:
1221 if (KDB_STATE(KEYBOARD))
1222 kdb_printf("due to Keyboard Entry\n");
1223 else
1224 kdb_printf("due to KDB_ENTER()\n");
1225 break;
1226 case KDB_REASON_KEYBOARD:
1227 KDB_STATE_SET(KEYBOARD);
1228 kdb_printf("due to Keyboard Entry\n");
1229 break;
1230 case KDB_REASON_ENTER_SLAVE:
1231 /* drop through, slaves only get released via cpu switch */
1232 case KDB_REASON_SWITCH:
1233 kdb_printf("due to cpu switch\n");
1234 break;
1235 case KDB_REASON_OOPS:
1236 kdb_printf("Oops: %s\n", kdb_diemsg);
1237 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238 instruction_pointer(regs));
1239 kdb_dumpregs(regs);
1240 break;
1241 case KDB_REASON_SYSTEM_NMI:
1242 kdb_printf("due to System NonMaskable Interrupt\n");
1243 break;
1244 case KDB_REASON_NMI:
1245 kdb_printf("due to NonMaskable Interrupt @ "
1246 kdb_machreg_fmt "\n",
1247 instruction_pointer(regs));
1248 break;
1249 case KDB_REASON_SSTEP:
1250 case KDB_REASON_BREAK:
1251 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252 reason == KDB_REASON_BREAK ?
1253 "Breakpoint" : "SS trap", instruction_pointer(regs));
1254 /*
1255 * Determine if this breakpoint is one that we
1256 * are interested in.
1257 */
1258 if (db_result != KDB_DB_BPT) {
1259 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260 db_result);
1261 KDB_DEBUG_STATE("kdb_local 6", reason);
1262 return 0; /* Not for us, dismiss it */
1263 }
1264 break;
1265 case KDB_REASON_RECURSE:
1266 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267 instruction_pointer(regs));
1268 break;
1269 default:
1270 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271 KDB_DEBUG_STATE("kdb_local 8", reason);
1272 return 0; /* Not for us, dismiss it */
1273 }
1274
1275 while (1) {
1276 /*
1277 * Initialize pager context.
1278 */
1279 kdb_nextline = 1;
1280 KDB_STATE_CLEAR(SUPPRESS);
1281 kdb_grepping_flag = 0;
1282 /* ensure the old search does not leak into '/' commands */
1283 kdb_grep_string[0] = '\0';
1284
1285 cmdbuf = cmd_cur;
1286 *cmdbuf = '\0';
1287 *(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 raw_smp_processor_id());
1293#else
1294 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296 if (defcmd_in_progress)
1297 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299 /*
1300 * Fetch command from keyboard
1301 */
1302 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 if (*cmdbuf != '\n') {
1304 if (*cmdbuf < 32) {
1305 if (cmdptr == cmd_head) {
1306 strncpy(cmd_hist[cmd_head], cmd_cur,
1307 CMD_BUFLEN);
1308 *(cmd_hist[cmd_head] +
1309 strlen(cmd_hist[cmd_head])-1) = '\0';
1310 }
1311 if (!handle_ctrl_cmd(cmdbuf))
1312 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 cmdbuf = cmd_cur;
1314 goto do_full_getstr;
1315 } else {
1316 strncpy(cmd_hist[cmd_head], cmd_cur,
1317 CMD_BUFLEN);
1318 }
1319
1320 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 if (cmd_head == cmd_tail)
1322 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 }
1324
1325 cmdptr = cmd_head;
1326 diag = kdb_parse(cmdbuf);
1327 if (diag == KDB_NOTFOUND) {
1328 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 diag = 0;
1330 }
1331 if (diag == KDB_CMD_GO
1332 || diag == KDB_CMD_CPU
1333 || diag == KDB_CMD_SS
1334 || diag == KDB_CMD_KGDB)
1335 break;
1336
1337 if (diag)
1338 kdb_cmderror(diag);
1339 }
1340 KDB_DEBUG_STATE("kdb_local 9", diag);
1341 return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 * for debugging.
1348 * Inputs:
1349 * text Identifies the debug point
1350 * value Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 * controlling cpu, all cpus are in this loop. One cpu is in
1362 * control and will issue the kdb prompt, the others will spin
1363 * until 'go' or cpu switch.
1364 *
1365 * To get a consistent view of the kernel stacks for all
1366 * processes, this routine is invoked from the main kdb code via
1367 * an architecture specific routine. kdba_main_loop is
1368 * responsible for making the kernel stacks consistent for all
1369 * processes, there should be no difference between a blocked
1370 * process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 * reason The reason KDB was invoked
1373 * error The hardware-defined error code
1374 * reason2 kdb's current reason code.
1375 * Initially error but can change
1376 * according to kdb state.
1377 * db_result Result code from break or debug point.
1378 * regs The exception frame at time of fault/breakpoint.
1379 * should always be valid.
1380 * Returns:
1381 * 0 KDB was invoked for an event which it wasn't responsible
1382 * 1 KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387 int result = 1;
1388 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 while (1) {
1390 /*
1391 * All processors except the one that is in control
1392 * will spin here.
1393 */
1394 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 while (KDB_STATE(HOLD_CPU)) {
1396 /* state KDB is turned off by kdb_cpu to see if the
1397 * other cpus are still live, each cpu in this loop
1398 * turns it back on.
1399 */
1400 if (!KDB_STATE(KDB))
1401 KDB_STATE_SET(KDB);
1402 }
1403
1404 KDB_STATE_CLEAR(SUPPRESS);
1405 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 if (KDB_STATE(LEAVING))
1407 break; /* Another cpu said 'go' */
1408 /* Still using kdb, this processor is in control */
1409 result = kdb_local(reason2, error, regs, db_result);
1410 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412 if (result == KDB_CMD_CPU)
1413 break;
1414
1415 if (result == KDB_CMD_SS) {
1416 KDB_STATE_SET(DOING_SS);
1417 break;
1418 }
1419
1420 if (result == KDB_CMD_KGDB) {
1421 if (!KDB_STATE(DOING_KGDB))
1422 kdb_printf("Entering please attach debugger "
1423 "or use $D#44+ or $3#33\n");
1424 break;
1425 }
1426 if (result && result != 1 && result != KDB_CMD_GO)
1427 kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 result);
1429 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 break;
1431 }
1432 if (KDB_STATE(DOING_SS))
1433 KDB_STATE_CLEAR(SSBPT);
1434
1435 /* Clean up any keyboard devices before leaving */
1436 kdb_kbd_cleanup_state();
1437
1438 return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 * mdr <addr arg>,<byte count>
1445 * Inputs:
1446 * addr Start address
1447 * count Number of bytes
1448 * Returns:
1449 * Always 0. Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453 unsigned char c;
1454 while (count--) {
1455 if (kdb_getarea(c, addr))
1456 return 0;
1457 kdb_printf("%02x", c);
1458 addr++;
1459 }
1460 kdb_printf("\n");
1461 return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 * 'md8' 'mdr' and 'mds' commands.
1467 *
1468 * md|mds [<addr arg> [<line count> [<radix>]]]
1469 * mdWcN [<addr arg> [<line count> [<radix>]]]
1470 * where W = is the width (1, 2, 4 or 8) and N is the count.
1471 * for eg., md1c20 reads 20 bytes, 1 at a time.
1472 * mdr <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 int symbolic, int nosect, int bytesperword,
1476 int num, int repeat, int phys)
1477{
1478 /* print just one line of data */
1479 kdb_symtab_t symtab;
1480 char cbuf[32];
1481 char *c = cbuf;
1482 int i;
1483 unsigned long word;
1484
1485 memset(cbuf, '\0', sizeof(cbuf));
1486 if (phys)
1487 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 else
1489 kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491 for (i = 0; i < num && repeat--; i++) {
1492 if (phys) {
1493 if (kdb_getphysword(&word, addr, bytesperword))
1494 break;
1495 } else if (kdb_getword(&word, addr, bytesperword))
1496 break;
1497 kdb_printf(fmtstr, word);
1498 if (symbolic)
1499 kdbnearsym(word, &symtab);
1500 else
1501 memset(&symtab, 0, sizeof(symtab));
1502 if (symtab.sym_name) {
1503 kdb_symbol_print(word, &symtab, 0);
1504 if (!nosect) {
1505 kdb_printf("\n");
1506 kdb_printf(" %s %s "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt " "
1509 kdb_machreg_fmt, symtab.mod_name,
1510 symtab.sec_name, symtab.sec_start,
1511 symtab.sym_start, symtab.sym_end);
1512 }
1513 addr += bytesperword;
1514 } else {
1515 union {
1516 u64 word;
1517 unsigned char c[8];
1518 } wc;
1519 unsigned char *cp;
1520#ifdef __BIG_ENDIAN
1521 cp = wc.c + 8 - bytesperword;
1522#else
1523 cp = wc.c;
1524#endif
1525 wc.word = word;
1526#define printable_char(c) \
1527 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 switch (bytesperword) {
1529 case 8:
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 addr += 4;
1535 case 4:
1536 *c++ = printable_char(*cp++);
1537 *c++ = printable_char(*cp++);
1538 addr += 2;
1539 case 2:
1540 *c++ = printable_char(*cp++);
1541 addr++;
1542 case 1:
1543 *c++ = printable_char(*cp++);
1544 addr++;
1545 break;
1546 }
1547#undef printable_char
1548 }
1549 }
1550 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556 static unsigned long last_addr;
1557 static int last_radix, last_bytesperword, last_repeat;
1558 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 int nosect = 0;
1560 char fmtchar, fmtstr[64];
1561 unsigned long addr;
1562 unsigned long word;
1563 long offset = 0;
1564 int symbolic = 0;
1565 int valid = 0;
1566 int phys = 0;
1567
1568 kdbgetintenv("MDCOUNT", &mdcount);
1569 kdbgetintenv("RADIX", &radix);
1570 kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572 /* Assume 'md <addr>' and start with environment values */
1573 repeat = mdcount * 16 / bytesperword;
1574
1575 if (strcmp(argv[0], "mdr") == 0) {
1576 if (argc != 2)
1577 return KDB_ARGCOUNT;
1578 valid = 1;
1579 } else if (isdigit(argv[0][2])) {
1580 bytesperword = (int)(argv[0][2] - '0');
1581 if (bytesperword == 0) {
1582 bytesperword = last_bytesperword;
1583 if (bytesperword == 0)
1584 bytesperword = 4;
1585 }
1586 last_bytesperword = bytesperword;
1587 repeat = mdcount * 16 / bytesperword;
1588 if (!argv[0][3])
1589 valid = 1;
1590 else if (argv[0][3] == 'c' && argv[0][4]) {
1591 char *p;
1592 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 mdcount = ((repeat * bytesperword) + 15) / 16;
1594 valid = !*p;
1595 }
1596 last_repeat = repeat;
1597 } else if (strcmp(argv[0], "md") == 0)
1598 valid = 1;
1599 else if (strcmp(argv[0], "mds") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mdp") == 0) {
1602 phys = valid = 1;
1603 }
1604 if (!valid)
1605 return KDB_NOTFOUND;
1606
1607 if (argc == 0) {
1608 if (last_addr == 0)
1609 return KDB_ARGCOUNT;
1610 addr = last_addr;
1611 radix = last_radix;
1612 bytesperword = last_bytesperword;
1613 repeat = last_repeat;
1614 mdcount = ((repeat * bytesperword) + 15) / 16;
1615 }
1616
1617 if (argc) {
1618 unsigned long val;
1619 int diag, nextarg = 1;
1620 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621 &offset, NULL);
1622 if (diag)
1623 return diag;
1624 if (argc > nextarg+2)
1625 return KDB_ARGCOUNT;
1626
1627 if (argc >= nextarg) {
1628 diag = kdbgetularg(argv[nextarg], &val);
1629 if (!diag) {
1630 mdcount = (int) val;
1631 repeat = mdcount * 16 / bytesperword;
1632 }
1633 }
1634 if (argc >= nextarg+1) {
1635 diag = kdbgetularg(argv[nextarg+1], &val);
1636 if (!diag)
1637 radix = (int) val;
1638 }
1639 }
1640
1641 if (strcmp(argv[0], "mdr") == 0)
1642 return kdb_mdr(addr, mdcount);
1643
1644 switch (radix) {
1645 case 10:
1646 fmtchar = 'd';
1647 break;
1648 case 16:
1649 fmtchar = 'x';
1650 break;
1651 case 8:
1652 fmtchar = 'o';
1653 break;
1654 default:
1655 return KDB_BADRADIX;
1656 }
1657
1658 last_radix = radix;
1659
1660 if (bytesperword > KDB_WORD_SIZE)
1661 return KDB_BADWIDTH;
1662
1663 switch (bytesperword) {
1664 case 8:
1665 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666 break;
1667 case 4:
1668 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669 break;
1670 case 2:
1671 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672 break;
1673 case 1:
1674 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675 break;
1676 default:
1677 return KDB_BADWIDTH;
1678 }
1679
1680 last_repeat = repeat;
1681 last_bytesperword = bytesperword;
1682
1683 if (strcmp(argv[0], "mds") == 0) {
1684 symbolic = 1;
1685 /* Do not save these changes as last_*, they are temporary mds
1686 * overrides.
1687 */
1688 bytesperword = KDB_WORD_SIZE;
1689 repeat = mdcount;
1690 kdbgetintenv("NOSECT", &nosect);
1691 }
1692
1693 /* Round address down modulo BYTESPERWORD */
1694
1695 addr &= ~(bytesperword-1);
1696
1697 while (repeat > 0) {
1698 unsigned long a;
1699 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701 if (KDB_FLAG(CMD_INTERRUPT))
1702 return 0;
1703 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704 if (phys) {
1705 if (kdb_getphysword(&word, a, bytesperword)
1706 || word)
1707 break;
1708 } else if (kdb_getword(&word, a, bytesperword) || word)
1709 break;
1710 }
1711 n = min(num, repeat);
1712 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713 num, repeat, phys);
1714 addr += bytesperword * n;
1715 repeat -= n;
1716 z = (z + num - 1) / num;
1717 if (z > 2) {
1718 int s = num * (z-2);
1719 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720 " zero suppressed\n",
1721 addr, addr + bytesperword * s - 1);
1722 addr += bytesperword * s;
1723 repeat -= s;
1724 }
1725 }
1726 last_addr = addr;
1727
1728 return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 * mm address-expression new-value
1734 * Remarks:
1735 * mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739 int diag;
1740 unsigned long addr;
1741 long offset = 0;
1742 unsigned long contents;
1743 int nextarg;
1744 int width;
1745
1746 if (argv[0][2] && !isdigit(argv[0][2]))
1747 return KDB_NOTFOUND;
1748
1749 if (argc < 2)
1750 return KDB_ARGCOUNT;
1751
1752 nextarg = 1;
1753 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754 if (diag)
1755 return diag;
1756
1757 if (nextarg > argc)
1758 return KDB_ARGCOUNT;
1759 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760 if (diag)
1761 return diag;
1762
1763 if (nextarg != argc + 1)
1764 return KDB_ARGCOUNT;
1765
1766 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767 diag = kdb_putword(addr, contents, width);
1768 if (diag)
1769 return diag;
1770
1771 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773 return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 * go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782 unsigned long addr;
1783 int diag;
1784 int nextarg;
1785 long offset;
1786
1787 if (raw_smp_processor_id() != kdb_initial_cpu) {
1788 kdb_printf("go must execute on the entry cpu, "
1789 "please use \"cpu %d\" and then execute go\n",
1790 kdb_initial_cpu);
1791 return KDB_BADCPUNUM;
1792 }
1793 if (argc == 1) {
1794 nextarg = 1;
1795 diag = kdbgetaddrarg(argc, argv, &nextarg,
1796 &addr, &offset, NULL);
1797 if (diag)
1798 return diag;
1799 } else if (argc) {
1800 return KDB_ARGCOUNT;
1801 }
1802
1803 diag = KDB_CMD_GO;
1804 if (KDB_FLAG(CATASTROPHIC)) {
1805 kdb_printf("Catastrophic error detected\n");
1806 kdb_printf("kdb_continue_catastrophic=%d, ",
1807 kdb_continue_catastrophic);
1808 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809 kdb_printf("type go a second time if you really want "
1810 "to continue\n");
1811 return 0;
1812 }
1813 if (kdb_continue_catastrophic == 2) {
1814 kdb_printf("forcing reboot\n");
1815 kdb_reboot(0, NULL);
1816 }
1817 kdb_printf("attempting to continue\n");
1818 }
1819 return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827 int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829 int i;
1830 char *rname;
1831 int rsize;
1832 u64 reg64;
1833 u32 reg32;
1834 u16 reg16;
1835 u8 reg8;
1836
1837 if (len)
1838 return len;
1839
1840 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841 rsize = dbg_reg_def[i].size * 2;
1842 if (rsize > 16)
1843 rsize = 2;
1844 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845 len = 0;
1846 kdb_printf("\n");
1847 }
1848 if (len)
1849 len += kdb_printf(" ");
1850 switch(dbg_reg_def[i].size * 8) {
1851 case 8:
1852 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1853 if (!rname)
1854 break;
1855 len += kdb_printf("%s: %02x", rname, reg8);
1856 break;
1857 case 16:
1858 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1859 if (!rname)
1860 break;
1861 len += kdb_printf("%s: %04x", rname, reg16);
1862 break;
1863 case 32:
1864 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1865 if (!rname)
1866 break;
1867 len += kdb_printf("%s: %08x", rname, reg32);
1868 break;
1869 case 64:
1870 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1871 if (!rname)
1872 break;
1873 len += kdb_printf("%s: %016llx", rname, reg64);
1874 break;
1875 default:
1876 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877 }
1878 }
1879 kdb_printf("\n");
1880#else
1881 if (len)
1882 return len;
1883
1884 kdb_dumpregs(kdb_current_regs);
1885#endif
1886 return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify) command.
1891 * rm register-name new-contents
1892 * Remarks:
1893 * Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898 int diag;
1899 const char *rname;
1900 int i;
1901 u64 reg64;
1902 u32 reg32;
1903 u16 reg16;
1904 u8 reg8;
1905
1906 if (argc != 2)
1907 return KDB_ARGCOUNT;
1908 /*
1909 * Allow presence or absence of leading '%' symbol.
1910 */
1911 rname = argv[1];
1912 if (*rname == '%')
1913 rname++;
1914
1915 diag = kdbgetu64arg(argv[2], ®64);
1916 if (diag)
1917 return diag;
1918
1919 diag = kdb_check_regs();
1920 if (diag)
1921 return diag;
1922
1923 diag = KDB_BADREG;
1924 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926 diag = 0;
1927 break;
1928 }
1929 }
1930 if (!diag) {
1931 switch(dbg_reg_def[i].size * 8) {
1932 case 8:
1933 reg8 = reg64;
1934 dbg_set_reg(i, ®8, kdb_current_regs);
1935 break;
1936 case 16:
1937 reg16 = reg64;
1938 dbg_set_reg(i, ®16, kdb_current_regs);
1939 break;
1940 case 32:
1941 reg32 = reg64;
1942 dbg_set_reg(i, ®32, kdb_current_regs);
1943 break;
1944 case 64:
1945 dbg_set_reg(i, ®64, kdb_current_regs);
1946 break;
1947 }
1948 }
1949 return diag;
1950#else
1951 kdb_printf("ERROR: Register set currently not implemented\n");
1952 return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 * sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964 bool check_mask =
1965 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967 if (argc != 1)
1968 return KDB_ARGCOUNT;
1969
1970 kdb_trap_printk++;
1971 __handle_sysrq(*argv[1], check_mask);
1972 kdb_trap_printk--;
1973
1974 return 0;
1975}
1976#endif /* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 * frame) command. This command takes an address and expects to
1981 * find an exception frame at that address, formats and prints
1982 * it.
1983 * regs address-expression
1984 * Remarks:
1985 * Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989 int diag;
1990 unsigned long addr;
1991 long offset;
1992 int nextarg;
1993
1994 if (argc != 1)
1995 return KDB_ARGCOUNT;
1996
1997 nextarg = 1;
1998 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999 if (diag)
2000 return diag;
2001 show_regs((struct pt_regs *)addr);
2002 return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2008 * currently loaded kernel modules.
2009 * Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013 struct module *mod;
2014
2015 if (argc != 0)
2016 return KDB_ARGCOUNT;
2017
2018 kdb_printf("Module Size modstruct Used by\n");
2019 list_for_each_entry(mod, kdb_modules, list) {
2020 if (mod->state == MODULE_STATE_UNFORMED)
2021 continue;
2022
2023 kdb_printf("%-20s%8u 0x%p ", mod->name,
2024 mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026 kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028 if (mod->state == MODULE_STATE_GOING)
2029 kdb_printf(" (Unloading)");
2030 else if (mod->state == MODULE_STATE_COMING)
2031 kdb_printf(" (Loading)");
2032 else
2033 kdb_printf(" (Live)");
2034 kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037 {
2038 struct module_use *use;
2039 kdb_printf(" [ ");
2040 list_for_each_entry(use, &mod->source_list,
2041 source_list)
2042 kdb_printf("%s ", use->target->name);
2043 kdb_printf("]\n");
2044 }
2045#endif
2046 }
2047
2048 return 0;
2049}
2050
2051#endif /* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command. Display the
2055 * current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060 int i;
2061
2062 for (i = 0; i < __nenv; i++) {
2063 if (__env[i])
2064 kdb_printf("%s\n", __env[i]);
2065 }
2066
2067 if (KDB_DEBUG(MASK))
2068 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069
2070 return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 * the contents of the syslog buffer.
2077 * dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081 int diag;
2082 int logging;
2083 int lines = 0;
2084 int adjust = 0;
2085 int n = 0;
2086 int skip = 0;
2087 struct kmsg_dumper dumper = { .active = 1 };
2088 size_t len;
2089 char buf[201];
2090
2091 if (argc > 2)
2092 return KDB_ARGCOUNT;
2093 if (argc) {
2094 char *cp;
2095 lines = simple_strtol(argv[1], &cp, 0);
2096 if (*cp)
2097 lines = 0;
2098 if (argc > 1) {
2099 adjust = simple_strtoul(argv[2], &cp, 0);
2100 if (*cp || adjust < 0)
2101 adjust = 0;
2102 }
2103 }
2104
2105 /* disable LOGGING if set */
2106 diag = kdbgetintenv("LOGGING", &logging);
2107 if (!diag && logging) {
2108 const char *setargs[] = { "set", "LOGGING", "0" };
2109 kdb_set(2, setargs);
2110 }
2111
2112 kmsg_dump_rewind_nolock(&dumper);
2113 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114 n++;
2115
2116 if (lines < 0) {
2117 if (adjust >= n)
2118 kdb_printf("buffer only contains %d lines, nothing "
2119 "printed\n", n);
2120 else if (adjust - lines >= n)
2121 kdb_printf("buffer only contains %d lines, last %d "
2122 "lines printed\n", n, n - adjust);
2123 skip = adjust;
2124 lines = abs(lines);
2125 } else if (lines > 0) {
2126 skip = n - lines - adjust;
2127 lines = abs(lines);
2128 if (adjust >= n) {
2129 kdb_printf("buffer only contains %d lines, "
2130 "nothing printed\n", n);
2131 skip = n;
2132 } else if (skip < 0) {
2133 lines += skip;
2134 skip = 0;
2135 kdb_printf("buffer only contains %d lines, first "
2136 "%d lines printed\n", n, lines);
2137 }
2138 } else {
2139 lines = n;
2140 }
2141
2142 if (skip >= n || skip < 0)
2143 return 0;
2144
2145 kmsg_dump_rewind_nolock(&dumper);
2146 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147 if (skip) {
2148 skip--;
2149 continue;
2150 }
2151 if (!lines--)
2152 break;
2153 if (KDB_FLAG(CMD_INTERRUPT))
2154 return 0;
2155
2156 kdb_printf("%.*s\n", (int)len - 1, buf);
2157 }
2158
2159 return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168 if (atomic_read(&kdb_nmi_disabled))
2169 return 0;
2170 atomic_set(&kdb_nmi_disabled, 1);
2171 arch_kgdb_ops.enable_nmi(0);
2172 return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178 return -EINVAL;
2179 arch_kgdb_ops.enable_nmi(1);
2180 return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184 .set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 * cpu [<cpunum>]
2191 * Returns:
2192 * KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196 int i, start_cpu, first_print = 1;
2197 char state, prev_state = '?';
2198
2199 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200 kdb_printf("Available cpus: ");
2201 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202 if (!cpu_online(i)) {
2203 state = 'F'; /* cpu is offline */
2204 } else if (!kgdb_info[i].enter_kgdb) {
2205 state = 'D'; /* cpu is online but unresponsive */
2206 } else {
2207 state = ' '; /* cpu is responding to kdb */
2208 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209 state = 'I'; /* idle task */
2210 }
2211 if (state != prev_state) {
2212 if (prev_state != '?') {
2213 if (!first_print)
2214 kdb_printf(", ");
2215 first_print = 0;
2216 kdb_printf("%d", start_cpu);
2217 if (start_cpu < i-1)
2218 kdb_printf("-%d", i-1);
2219 if (prev_state != ' ')
2220 kdb_printf("(%c)", prev_state);
2221 }
2222 prev_state = state;
2223 start_cpu = i;
2224 }
2225 }
2226 /* print the trailing cpus, ignoring them if they are all offline */
2227 if (prev_state != 'F') {
2228 if (!first_print)
2229 kdb_printf(", ");
2230 kdb_printf("%d", start_cpu);
2231 if (start_cpu < i-1)
2232 kdb_printf("-%d", i-1);
2233 if (prev_state != ' ')
2234 kdb_printf("(%c)", prev_state);
2235 }
2236 kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241 unsigned long cpunum;
2242 int diag;
2243
2244 if (argc == 0) {
2245 kdb_cpu_status();
2246 return 0;
2247 }
2248
2249 if (argc != 1)
2250 return KDB_ARGCOUNT;
2251
2252 diag = kdbgetularg(argv[1], &cpunum);
2253 if (diag)
2254 return diag;
2255
2256 /*
2257 * Validate cpunum
2258 */
2259 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260 return KDB_BADCPUNUM;
2261
2262 dbg_switch_cpu = cpunum;
2263
2264 /*
2265 * Switch to other cpu
2266 */
2267 return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275 int idle = 0, daemon = 0;
2276 unsigned long mask_I = kdb_task_state_string("I"),
2277 mask_M = kdb_task_state_string("M");
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, mask_I))
2283 ++idle;
2284 }
2285 kdb_do_each_thread(g, p) {
2286 if (kdb_task_state(p, mask_M))
2287 ++daemon;
2288 } kdb_while_each_thread(g, p);
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state I)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state M) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 * list of the active processes.
2305 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309 int cpu;
2310 unsigned long tmp;
2311
2312 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313 return;
2314
2315 cpu = kdb_process_cpu(p);
2316 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2317 (void *)p, p->pid, p->parent->pid,
2318 kdb_task_has_cpu(p), kdb_process_cpu(p),
2319 kdb_task_state_char(p),
2320 (void *)(&p->thread),
2321 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322 p->comm);
2323 if (kdb_task_has_cpu(p)) {
2324 if (!KDB_TSK(cpu)) {
2325 kdb_printf(" Error: no saved data for this cpu\n");
2326 } else {
2327 if (KDB_TSK(cpu) != p)
2328 kdb_printf(" Error: does not match running "
2329 "process table (0x%p)\n", KDB_TSK(cpu));
2330 }
2331 }
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336 struct task_struct *g, *p;
2337 unsigned long mask, cpu;
2338
2339 if (argc == 0)
2340 kdb_ps_suppressed();
2341 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2342 (int)(2*sizeof(void *))+2, "Task Addr",
2343 (int)(2*sizeof(void *))+2, "Thread");
2344 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345 /* Run the active tasks first */
2346 for_each_online_cpu(cpu) {
2347 if (KDB_FLAG(CMD_INTERRUPT))
2348 return 0;
2349 p = kdb_curr_task(cpu);
2350 if (kdb_task_state(p, mask))
2351 kdb_ps1(p);
2352 }
2353 kdb_printf("\n");
2354 /* Now the real tasks */
2355 kdb_do_each_thread(g, p) {
2356 if (KDB_FLAG(CMD_INTERRUPT))
2357 return 0;
2358 if (kdb_task_state(p, mask))
2359 kdb_ps1(p);
2360 } kdb_while_each_thread(g, p);
2361
2362 return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 * the currently active process.
2368 * pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372 struct task_struct *p;
2373 unsigned long val;
2374 int diag;
2375
2376 if (argc > 1)
2377 return KDB_ARGCOUNT;
2378
2379 if (argc) {
2380 if (strcmp(argv[1], "R") == 0) {
2381 p = KDB_TSK(kdb_initial_cpu);
2382 } else {
2383 diag = kdbgetularg(argv[1], &val);
2384 if (diag)
2385 return KDB_BADINT;
2386
2387 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2388 if (!p) {
2389 kdb_printf("No task with pid=%d\n", (pid_t)val);
2390 return 0;
2391 }
2392 }
2393 kdb_set_current_task(p);
2394 }
2395 kdb_printf("KDB current process is %s(pid=%d)\n",
2396 kdb_current_task->comm,
2397 kdb_current_task->pid);
2398
2399 return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404 return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412 kdbtab_t *kt;
2413 int i;
2414
2415 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416 kdb_printf("-----------------------------"
2417 "-----------------------------\n");
2418 for_each_kdbcmd(kt, i) {
2419 char *space = "";
2420 if (KDB_FLAG(CMD_INTERRUPT))
2421 return 0;
2422 if (!kt->cmd_name)
2423 continue;
2424 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425 continue;
2426 if (strlen(kt->cmd_usage) > 20)
2427 space = "\n ";
2428 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429 kt->cmd_usage, space, kt->cmd_help);
2430 }
2431 return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439 long sig, pid;
2440 char *endp;
2441 struct task_struct *p;
2442 struct siginfo info;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if (sig >= 0) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 info.si_signo = sig;
2472 info.si_errno = 0;
2473 info.si_code = SI_USER;
2474 info.si_pid = pid; /* same capabilities as process being signalled */
2475 info.si_uid = 0; /* kdb has root authority */
2476 kdb_send_sig_info(p, &info);
2477 return 0;
2478}
2479
2480struct kdb_tm {
2481 int tm_sec; /* seconds */
2482 int tm_min; /* minutes */
2483 int tm_hour; /* hours */
2484 int tm_mday; /* day of the month */
2485 int tm_mon; /* month */
2486 int tm_year; /* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491 /* This will work from 1970-2099, 2100 is not a leap year */
2492 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493 31, 30, 31, 30, 31 };
2494 memset(tm, 0, sizeof(*tm));
2495 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2496 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2498 tm->tm_min = tm->tm_sec / 60 % 60;
2499 tm->tm_hour = tm->tm_sec / 60 / 60;
2500 tm->tm_sec = tm->tm_sec % 60;
2501 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502 tm->tm_mday %= (4*365+1);
2503 mon_day[1] = 29;
2504 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505 tm->tm_mday -= mon_day[tm->tm_mon];
2506 if (++tm->tm_mon == 12) {
2507 tm->tm_mon = 0;
2508 ++tm->tm_year;
2509 mon_day[1] = 28;
2510 }
2511 }
2512 ++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522 struct timespec uptime;
2523 ktime_get_ts(&uptime);
2524 memset(val, 0, sizeof(*val));
2525 val->uptime = uptime.tv_sec;
2526 val->loads[0] = avenrun[0];
2527 val->loads[1] = avenrun[1];
2528 val->loads[2] = avenrun[2];
2529 val->procs = nr_threads-1;
2530 si_meminfo(val);
2531
2532 return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540 struct timespec now;
2541 struct kdb_tm tm;
2542 struct sysinfo val;
2543
2544 if (argc)
2545 return KDB_ARGCOUNT;
2546
2547 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2548 kdb_printf("release %s\n", init_uts_ns.name.release);
2549 kdb_printf("version %s\n", init_uts_ns.name.version);
2550 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2551 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2552 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2554
2555 now = __current_kernel_time();
2556 kdb_gmtime(&now, &tm);
2557 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2558 "tz_minuteswest %d\n",
2559 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560 tm.tm_hour, tm.tm_min, tm.tm_sec,
2561 sys_tz.tz_minuteswest);
2562
2563 kdb_sysinfo(&val);
2564 kdb_printf("uptime ");
2565 if (val.uptime > (24*60*60)) {
2566 int days = val.uptime / (24*60*60);
2567 val.uptime %= (24*60*60);
2568 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569 }
2570 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582 /* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2585 "Buffers: %8lu kB\n",
2586 K(val.totalram), K(val.freeram), K(val.bufferram));
2587 return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595 char fmtstr[64];
2596 int cpu, diag, nextarg = 1;
2597 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599 if (argc < 1 || argc > 3)
2600 return KDB_ARGCOUNT;
2601
2602 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603 if (diag)
2604 return diag;
2605
2606 if (argc >= 2) {
2607 diag = kdbgetularg(argv[2], &bytesperword);
2608 if (diag)
2609 return diag;
2610 }
2611 if (!bytesperword)
2612 bytesperword = KDB_WORD_SIZE;
2613 else if (bytesperword > KDB_WORD_SIZE)
2614 return KDB_BADWIDTH;
2615 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616 if (argc >= 3) {
2617 diag = kdbgetularg(argv[3], &whichcpu);
2618 if (diag)
2619 return diag;
2620 if (!cpu_online(whichcpu)) {
2621 kdb_printf("cpu %ld is not online\n", whichcpu);
2622 return KDB_BADCPUNUM;
2623 }
2624 }
2625
2626 /* Most architectures use __per_cpu_offset[cpu], some use
2627 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628 */
2629#ifdef __per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638 for_each_online_cpu(cpu) {
2639 if (KDB_FLAG(CMD_INTERRUPT))
2640 return 0;
2641
2642 if (whichcpu != ~0UL && whichcpu != cpu)
2643 continue;
2644 addr = symaddr + KDB_PCU(cpu);
2645 diag = kdb_getword(&val, addr, bytesperword);
2646 if (diag) {
2647 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648 "read, diag=%d\n", cpu, addr, diag);
2649 continue;
2650 }
2651 kdb_printf("%5d ", cpu);
2652 kdb_md_line(fmtstr, addr,
2653 bytesperword == KDB_WORD_SIZE,
2654 1, bytesperword, 1, 1, 0);
2655 }
2656#undef KDB_PCU
2657 return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665 kdb_printf("Usage of cmd args | grep pattern:\n");
2666 kdb_printf(" Any command's output may be filtered through an ");
2667 kdb_printf("emulated 'pipe'.\n");
2668 kdb_printf(" 'grep' is just a key word.\n");
2669 kdb_printf(" The pattern may include a very limited set of "
2670 "metacharacters:\n");
2671 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2672 kdb_printf(" And if there are spaces in the pattern, you may "
2673 "quote it:\n");
2674 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675 " or \"^pat tern$\"\n");
2676 return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * debugger command.
2682 * Inputs:
2683 * cmd Command name
2684 * func Function to execute the command
2685 * usage A simple usage string showing arguments
2686 * help A simple help string describing command
2687 * repeat Does the command auto repeat on enter?
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50 /* arbitrary */
2692int kdb_register_flags(char *cmd,
2693 kdb_func_t func,
2694 char *usage,
2695 char *help,
2696 short minlen,
2697 kdb_cmdflags_t flags)
2698{
2699 int i;
2700 kdbtab_t *kp;
2701
2702 /*
2703 * Brute force method to determine duplicates
2704 */
2705 for_each_kdbcmd(kp, i) {
2706 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707 kdb_printf("Duplicate kdb command registered: "
2708 "%s, func %p help %s\n", cmd, func, help);
2709 return 1;
2710 }
2711 }
2712
2713 /*
2714 * Insert command into first available location in table
2715 */
2716 for_each_kdbcmd(kp, i) {
2717 if (kp->cmd_name == NULL)
2718 break;
2719 }
2720
2721 if (i >= kdb_max_commands) {
2722 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724 if (!new) {
2725 kdb_printf("Could not allocate new kdb_command "
2726 "table\n");
2727 return 1;
2728 }
2729 if (kdb_commands) {
2730 memcpy(new, kdb_commands,
2731 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732 kfree(kdb_commands);
2733 }
2734 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735 kdb_command_extend * sizeof(*new));
2736 kdb_commands = new;
2737 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738 kdb_max_commands += kdb_command_extend;
2739 }
2740
2741 kp->cmd_name = cmd;
2742 kp->cmd_func = func;
2743 kp->cmd_usage = usage;
2744 kp->cmd_help = help;
2745 kp->cmd_minlen = minlen;
2746 kp->cmd_flags = flags;
2747
2748 return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 * not need to specify a repeat state. Equivalent to
2756 * kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 * cmd Command name
2759 * func Function to execute the command
2760 * usage A simple usage string showing arguments
2761 * help A simple help string describing command
2762 * Returns:
2763 * zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766 kdb_func_t func,
2767 char *usage,
2768 char *help,
2769 short minlen)
2770{
2771 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 * debugger command. It is generally called when a module which
2778 * implements kdb commands is unloaded.
2779 * Inputs:
2780 * cmd Command name
2781 * Returns:
2782 * zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786 int i;
2787 kdbtab_t *kp;
2788
2789 /*
2790 * find the command.
2791 */
2792 for_each_kdbcmd(kp, i) {
2793 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794 kp->cmd_name = NULL;
2795 return 0;
2796 }
2797 }
2798
2799 /* Couldn't find it. */
2800 return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807 int i;
2808 kdbtab_t *kp;
2809
2810 for_each_kdbcmd(kp, i)
2811 kp->cmd_name = NULL;
2812
2813 kdb_register_flags("md", kdb_md, "<vaddr>",
2814 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817 "Display Raw Memory", 0,
2818 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820 "Display Physical Memory", 0,
2821 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822 kdb_register_flags("mds", kdb_md, "<vaddr>",
2823 "Display Memory Symbolically", 0,
2824 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826 "Modify Memory Contents", 0,
2827 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829 "Continue Execution", 1,
2830 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831 kdb_register_flags("rd", kdb_rd, "",
2832 "Display Registers", 0,
2833 KDB_ENABLE_REG_READ);
2834 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835 "Modify Registers", 0,
2836 KDB_ENABLE_REG_WRITE);
2837 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838 "Display exception frame", 0,
2839 KDB_ENABLE_MEM_READ);
2840 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841 "Stack traceback", 1,
2842 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843 kdb_register_flags("btp", kdb_bt, "<pid>",
2844 "Display stack for process <pid>", 0,
2845 KDB_ENABLE_INSPECT);
2846 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847 "Backtrace all processes matching state flag", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("btc", kdb_bt, "",
2850 "Backtrace current process on each cpu", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853 "Backtrace process given its struct task address", 0,
2854 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855 kdb_register_flags("env", kdb_env, "",
2856 "Show environment variables", 0,
2857 KDB_ENABLE_ALWAYS_SAFE);
2858 kdb_register_flags("set", kdb_set, "",
2859 "Set environment variables", 0,
2860 KDB_ENABLE_ALWAYS_SAFE);
2861 kdb_register_flags("help", kdb_help, "",
2862 "Display Help Message", 1,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864 kdb_register_flags("?", kdb_help, "",
2865 "Display Help Message", 0,
2866 KDB_ENABLE_ALWAYS_SAFE);
2867 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0,
2869 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870 kdb_register_flags("kgdb", kdb_kgdb, "",
2871 "Enter kgdb mode", 0, 0);
2872 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873 "Display active task list", 0,
2874 KDB_ENABLE_INSPECT);
2875 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876 "Switch to another task", 0,
2877 KDB_ENABLE_INSPECT);
2878 kdb_register_flags("reboot", kdb_reboot, "",
2879 "Reboot the machine immediately", 0,
2880 KDB_ENABLE_REBOOT);
2881#if defined(CONFIG_MODULES)
2882 kdb_register_flags("lsmod", kdb_lsmod, "",
2883 "List loaded kernel modules", 0,
2884 KDB_ENABLE_INSPECT);
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887 kdb_register_flags("sr", kdb_sr, "<key>",
2888 "Magic SysRq key", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893 "Display syslog buffer", 0,
2894 KDB_ENABLE_ALWAYS_SAFE);
2895#endif
2896 if (arch_kgdb_ops.enable_nmi) {
2897 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898 "Disable NMI entry to KDB", 0,
2899 KDB_ENABLE_ALWAYS_SAFE);
2900 }
2901 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902 "Define a set of commands, down to endefcmd", 0,
2903 KDB_ENABLE_ALWAYS_SAFE);
2904 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905 "Send a signal to a process", 0,
2906 KDB_ENABLE_SIGNAL);
2907 kdb_register_flags("summary", kdb_summary, "",
2908 "Summarize the system", 4,
2909 KDB_ENABLE_ALWAYS_SAFE);
2910 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911 "Display per_cpu variables", 3,
2912 KDB_ENABLE_MEM_READ);
2913 kdb_register_flags("grephelp", kdb_grep_help, "",
2914 "Display help on | grep", 0,
2915 KDB_ENABLE_ALWAYS_SAFE);
2916}
2917
2918/* Execute any commands defined in kdb_cmds. */
2919static void __init kdb_cmd_init(void)
2920{
2921 int i, diag;
2922 for (i = 0; kdb_cmds[i]; ++i) {
2923 diag = kdb_parse(kdb_cmds[i]);
2924 if (diag)
2925 kdb_printf("kdb command %s failed, kdb diag %d\n",
2926 kdb_cmds[i], diag);
2927 }
2928 if (defcmd_in_progress) {
2929 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930 kdb_parse("endefcmd");
2931 }
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938 int i;
2939
2940 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941 return;
2942 for (i = kdb_init_lvl; i < lvl; i++) {
2943 switch (i) {
2944 case KDB_NOT_INITIALIZED:
2945 kdb_inittab(); /* Initialize Command Table */
2946 kdb_initbptab(); /* Initialize Breakpoints */
2947 break;
2948 case KDB_INIT_EARLY:
2949 kdb_cmd_init(); /* Build kdb_cmds tables */
2950 break;
2951 }
2952 }
2953 kdb_init_lvl = lvl;
2954}