Loading...
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/init.h>
47#include <asm/types.h>
48#include <linux/atomic.h>
49#include <linux/mm.h>
50#include <linux/export.h>
51#include <linux/slab.h>
52#include <linux/err.h>
53#include <linux/kthread.h>
54#include <linux/kernel.h>
55#include <linux/syscalls.h>
56
57#include <linux/audit.h>
58
59#include <net/sock.h>
60#include <net/netlink.h>
61#include <linux/skbuff.h>
62#ifdef CONFIG_SECURITY
63#include <linux/security.h>
64#endif
65#include <linux/freezer.h>
66#include <linux/tty.h>
67#include <linux/pid_namespace.h>
68#include <net/netns/generic.h>
69
70#include "audit.h"
71
72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74#define AUDIT_DISABLED -1
75#define AUDIT_UNINITIALIZED 0
76#define AUDIT_INITIALIZED 1
77static int audit_initialized;
78
79#define AUDIT_OFF 0
80#define AUDIT_ON 1
81#define AUDIT_LOCKED 2
82u32 audit_enabled;
83u32 audit_ever_enabled;
84
85EXPORT_SYMBOL_GPL(audit_enabled);
86
87/* Default state when kernel boots without any parameters. */
88static u32 audit_default;
89
90/* If auditing cannot proceed, audit_failure selects what happens. */
91static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93/*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98int audit_pid;
99static __u32 audit_nlk_portid;
100
101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104static u32 audit_rate_limit;
105
106/* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108static u32 audit_backlog_limit = 64;
109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111static u32 audit_backlog_wait_overflow = 0;
112
113/* The identity of the user shutting down the audit system. */
114kuid_t audit_sig_uid = INVALID_UID;
115pid_t audit_sig_pid = -1;
116u32 audit_sig_sid = 0;
117
118/* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124*/
125static atomic_t audit_lost = ATOMIC_INIT(0);
126
127/* The netlink socket. */
128static struct sock *audit_sock;
129int audit_net_id;
130
131/* Hash for inode-based rules */
132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134/* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137static DEFINE_SPINLOCK(audit_freelist_lock);
138static int audit_freelist_count;
139static LIST_HEAD(audit_freelist);
140
141static struct sk_buff_head audit_skb_queue;
142/* queue of skbs to send to auditd when/if it comes back */
143static struct sk_buff_head audit_skb_hold_queue;
144static struct task_struct *kauditd_task;
145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156};
157
158
159/* Serialize requests from userspace. */
160DEFINE_MUTEX(audit_cmd_mutex);
161
162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165#define AUDIT_BUFSIZ 1024
166
167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169#define AUDIT_MAXFREE (2*NR_CPUS)
170
171/* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181};
182
183struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187};
188
189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190{
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195}
196
197void audit_panic(const char *message)
198{
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212}
213
214static inline int audit_rate_check(void)
215{
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241}
242
243/**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250*/
251void audit_log_lost(const char *message)
252{
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281}
282
283static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285{
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300}
301
302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303{
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326}
327
328static int audit_set_rate_limit(u32 limit)
329{
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331}
332
333static int audit_set_backlog_limit(u32 limit)
334{
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336}
337
338static int audit_set_backlog_wait_time(u32 timeout)
339{
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
342}
343
344static int audit_set_enabled(u32 state)
345{
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355}
356
357static int audit_set_failure(u32 state)
358{
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365}
366
367/*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376static void audit_hold_skb(struct sk_buff *skb)
377{
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384}
385
386/*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390static void audit_printk_skb(struct sk_buff *skb)
391{
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded");
400 }
401
402 audit_hold_skb(skb);
403}
404
405static void kauditd_send_skb(struct sk_buff *skb)
406{
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared");
416 audit_pid = 0;
417 audit_sock = NULL;
418 }
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
424}
425
426/*
427 * flush_hold_queue - empty the hold queue if auditd appears
428 *
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
434 *
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
440 */
441static void flush_hold_queue(void)
442{
443 struct sk_buff *skb;
444
445 if (!audit_default || !audit_pid)
446 return;
447
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
451
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
455 }
456
457 /*
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
460 */
461 if (skb)
462 consume_skb(skb);
463}
464
465static int kauditd_thread(void *dummy)
466{
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
471
472 flush_hold_queue();
473
474 skb = skb_dequeue(&audit_skb_queue);
475
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
484 }
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
487
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
491 }
492
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
495 }
496 return 0;
497}
498
499int audit_send_list(void *_dest)
500{
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = dest->net;
504 struct audit_net *aunet = net_generic(net, audit_net_id);
505
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
509
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512
513 put_net(net);
514 kfree(dest);
515
516 return 0;
517}
518
519struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
520 int multi, const void *payload, int size)
521{
522 struct sk_buff *skb;
523 struct nlmsghdr *nlh;
524 void *data;
525 int flags = multi ? NLM_F_MULTI : 0;
526 int t = done ? NLMSG_DONE : type;
527
528 skb = nlmsg_new(size, GFP_KERNEL);
529 if (!skb)
530 return NULL;
531
532 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
533 if (!nlh)
534 goto out_kfree_skb;
535 data = nlmsg_data(nlh);
536 memcpy(data, payload, size);
537 return skb;
538
539out_kfree_skb:
540 kfree_skb(skb);
541 return NULL;
542}
543
544static int audit_send_reply_thread(void *arg)
545{
546 struct audit_reply *reply = (struct audit_reply *)arg;
547 struct net *net = reply->net;
548 struct audit_net *aunet = net_generic(net, audit_net_id);
549
550 mutex_lock(&audit_cmd_mutex);
551 mutex_unlock(&audit_cmd_mutex);
552
553 /* Ignore failure. It'll only happen if the sender goes away,
554 because our timeout is set to infinite. */
555 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
556 put_net(net);
557 kfree(reply);
558 return 0;
559}
560/**
561 * audit_send_reply - send an audit reply message via netlink
562 * @request_skb: skb of request we are replying to (used to target the reply)
563 * @seq: sequence number
564 * @type: audit message type
565 * @done: done (last) flag
566 * @multi: multi-part message flag
567 * @payload: payload data
568 * @size: payload size
569 *
570 * Allocates an skb, builds the netlink message, and sends it to the port id.
571 * No failure notifications.
572 */
573static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
574 int multi, const void *payload, int size)
575{
576 u32 portid = NETLINK_CB(request_skb).portid;
577 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
578 struct sk_buff *skb;
579 struct task_struct *tsk;
580 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
581 GFP_KERNEL);
582
583 if (!reply)
584 return;
585
586 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
587 if (!skb)
588 goto out;
589
590 reply->net = get_net(net);
591 reply->portid = portid;
592 reply->skb = skb;
593
594 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
595 if (!IS_ERR(tsk))
596 return;
597 kfree_skb(skb);
598out:
599 kfree(reply);
600}
601
602/*
603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
604 * control messages.
605 */
606static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
607{
608 int err = 0;
609
610 /* Only support initial user namespace for now. */
611 /*
612 * We return ECONNREFUSED because it tricks userspace into thinking
613 * that audit was not configured into the kernel. Lots of users
614 * configure their PAM stack (because that's what the distro does)
615 * to reject login if unable to send messages to audit. If we return
616 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
617 * configured in and will let login proceed. If we return EPERM
618 * userspace will reject all logins. This should be removed when we
619 * support non init namespaces!!
620 */
621 if (current_user_ns() != &init_user_ns)
622 return -ECONNREFUSED;
623
624 switch (msg_type) {
625 case AUDIT_LIST:
626 case AUDIT_ADD:
627 case AUDIT_DEL:
628 return -EOPNOTSUPP;
629 case AUDIT_GET:
630 case AUDIT_SET:
631 case AUDIT_GET_FEATURE:
632 case AUDIT_SET_FEATURE:
633 case AUDIT_LIST_RULES:
634 case AUDIT_ADD_RULE:
635 case AUDIT_DEL_RULE:
636 case AUDIT_SIGNAL_INFO:
637 case AUDIT_TTY_GET:
638 case AUDIT_TTY_SET:
639 case AUDIT_TRIM:
640 case AUDIT_MAKE_EQUIV:
641 /* Only support auditd and auditctl in initial pid namespace
642 * for now. */
643 if ((task_active_pid_ns(current) != &init_pid_ns))
644 return -EPERM;
645
646 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
647 err = -EPERM;
648 break;
649 case AUDIT_USER:
650 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
651 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
652 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
653 err = -EPERM;
654 break;
655 default: /* bad msg */
656 err = -EINVAL;
657 }
658
659 return err;
660}
661
662static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
663{
664 int rc = 0;
665 uid_t uid = from_kuid(&init_user_ns, current_uid());
666 pid_t pid = task_tgid_nr(current);
667
668 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
669 *ab = NULL;
670 return rc;
671 }
672
673 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
674 if (unlikely(!*ab))
675 return rc;
676 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
677 audit_log_session_info(*ab);
678 audit_log_task_context(*ab);
679
680 return rc;
681}
682
683int is_audit_feature_set(int i)
684{
685 return af.features & AUDIT_FEATURE_TO_MASK(i);
686}
687
688
689static int audit_get_feature(struct sk_buff *skb)
690{
691 u32 seq;
692
693 seq = nlmsg_hdr(skb)->nlmsg_seq;
694
695 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
696
697 return 0;
698}
699
700static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
701 u32 old_lock, u32 new_lock, int res)
702{
703 struct audit_buffer *ab;
704
705 if (audit_enabled == AUDIT_OFF)
706 return;
707
708 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
709 audit_log_task_info(ab, current);
710 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
711 audit_feature_names[which], !!old_feature, !!new_feature,
712 !!old_lock, !!new_lock, res);
713 audit_log_end(ab);
714}
715
716static int audit_set_feature(struct sk_buff *skb)
717{
718 struct audit_features *uaf;
719 int i;
720
721 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
722 uaf = nlmsg_data(nlmsg_hdr(skb));
723
724 /* if there is ever a version 2 we should handle that here */
725
726 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
727 u32 feature = AUDIT_FEATURE_TO_MASK(i);
728 u32 old_feature, new_feature, old_lock, new_lock;
729
730 /* if we are not changing this feature, move along */
731 if (!(feature & uaf->mask))
732 continue;
733
734 old_feature = af.features & feature;
735 new_feature = uaf->features & feature;
736 new_lock = (uaf->lock | af.lock) & feature;
737 old_lock = af.lock & feature;
738
739 /* are we changing a locked feature? */
740 if (old_lock && (new_feature != old_feature)) {
741 audit_log_feature_change(i, old_feature, new_feature,
742 old_lock, new_lock, 0);
743 return -EPERM;
744 }
745 }
746 /* nothing invalid, do the changes */
747 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
748 u32 feature = AUDIT_FEATURE_TO_MASK(i);
749 u32 old_feature, new_feature, old_lock, new_lock;
750
751 /* if we are not changing this feature, move along */
752 if (!(feature & uaf->mask))
753 continue;
754
755 old_feature = af.features & feature;
756 new_feature = uaf->features & feature;
757 old_lock = af.lock & feature;
758 new_lock = (uaf->lock | af.lock) & feature;
759
760 if (new_feature != old_feature)
761 audit_log_feature_change(i, old_feature, new_feature,
762 old_lock, new_lock, 1);
763
764 if (new_feature)
765 af.features |= feature;
766 else
767 af.features &= ~feature;
768 af.lock |= new_lock;
769 }
770
771 return 0;
772}
773
774static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
775{
776 u32 seq;
777 void *data;
778 int err;
779 struct audit_buffer *ab;
780 u16 msg_type = nlh->nlmsg_type;
781 struct audit_sig_info *sig_data;
782 char *ctx = NULL;
783 u32 len;
784
785 err = audit_netlink_ok(skb, msg_type);
786 if (err)
787 return err;
788
789 /* As soon as there's any sign of userspace auditd,
790 * start kauditd to talk to it */
791 if (!kauditd_task) {
792 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
793 if (IS_ERR(kauditd_task)) {
794 err = PTR_ERR(kauditd_task);
795 kauditd_task = NULL;
796 return err;
797 }
798 }
799 seq = nlh->nlmsg_seq;
800 data = nlmsg_data(nlh);
801
802 switch (msg_type) {
803 case AUDIT_GET: {
804 struct audit_status s;
805 memset(&s, 0, sizeof(s));
806 s.enabled = audit_enabled;
807 s.failure = audit_failure;
808 s.pid = audit_pid;
809 s.rate_limit = audit_rate_limit;
810 s.backlog_limit = audit_backlog_limit;
811 s.lost = atomic_read(&audit_lost);
812 s.backlog = skb_queue_len(&audit_skb_queue);
813 s.version = AUDIT_VERSION_LATEST;
814 s.backlog_wait_time = audit_backlog_wait_time;
815 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
816 break;
817 }
818 case AUDIT_SET: {
819 struct audit_status s;
820 memset(&s, 0, sizeof(s));
821 /* guard against past and future API changes */
822 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
823 if (s.mask & AUDIT_STATUS_ENABLED) {
824 err = audit_set_enabled(s.enabled);
825 if (err < 0)
826 return err;
827 }
828 if (s.mask & AUDIT_STATUS_FAILURE) {
829 err = audit_set_failure(s.failure);
830 if (err < 0)
831 return err;
832 }
833 if (s.mask & AUDIT_STATUS_PID) {
834 int new_pid = s.pid;
835
836 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
837 return -EACCES;
838 if (audit_enabled != AUDIT_OFF)
839 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
840 audit_pid = new_pid;
841 audit_nlk_portid = NETLINK_CB(skb).portid;
842 audit_sock = skb->sk;
843 }
844 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
845 err = audit_set_rate_limit(s.rate_limit);
846 if (err < 0)
847 return err;
848 }
849 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
850 err = audit_set_backlog_limit(s.backlog_limit);
851 if (err < 0)
852 return err;
853 }
854 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
855 if (sizeof(s) > (size_t)nlh->nlmsg_len)
856 return -EINVAL;
857 if (s.backlog_wait_time < 0 ||
858 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
859 return -EINVAL;
860 err = audit_set_backlog_wait_time(s.backlog_wait_time);
861 if (err < 0)
862 return err;
863 }
864 break;
865 }
866 case AUDIT_GET_FEATURE:
867 err = audit_get_feature(skb);
868 if (err)
869 return err;
870 break;
871 case AUDIT_SET_FEATURE:
872 err = audit_set_feature(skb);
873 if (err)
874 return err;
875 break;
876 case AUDIT_USER:
877 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
878 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
879 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
880 return 0;
881
882 err = audit_filter_user(msg_type);
883 if (err == 1) { /* match or error */
884 err = 0;
885 if (msg_type == AUDIT_USER_TTY) {
886 err = tty_audit_push_current();
887 if (err)
888 break;
889 }
890 mutex_unlock(&audit_cmd_mutex);
891 audit_log_common_recv_msg(&ab, msg_type);
892 if (msg_type != AUDIT_USER_TTY)
893 audit_log_format(ab, " msg='%.*s'",
894 AUDIT_MESSAGE_TEXT_MAX,
895 (char *)data);
896 else {
897 int size;
898
899 audit_log_format(ab, " data=");
900 size = nlmsg_len(nlh);
901 if (size > 0 &&
902 ((unsigned char *)data)[size - 1] == '\0')
903 size--;
904 audit_log_n_untrustedstring(ab, data, size);
905 }
906 audit_set_portid(ab, NETLINK_CB(skb).portid);
907 audit_log_end(ab);
908 mutex_lock(&audit_cmd_mutex);
909 }
910 break;
911 case AUDIT_ADD_RULE:
912 case AUDIT_DEL_RULE:
913 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
914 return -EINVAL;
915 if (audit_enabled == AUDIT_LOCKED) {
916 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
917 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
918 audit_log_end(ab);
919 return -EPERM;
920 }
921 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
922 seq, data, nlmsg_len(nlh));
923 break;
924 case AUDIT_LIST_RULES:
925 err = audit_list_rules_send(skb, seq);
926 break;
927 case AUDIT_TRIM:
928 audit_trim_trees();
929 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
930 audit_log_format(ab, " op=trim res=1");
931 audit_log_end(ab);
932 break;
933 case AUDIT_MAKE_EQUIV: {
934 void *bufp = data;
935 u32 sizes[2];
936 size_t msglen = nlmsg_len(nlh);
937 char *old, *new;
938
939 err = -EINVAL;
940 if (msglen < 2 * sizeof(u32))
941 break;
942 memcpy(sizes, bufp, 2 * sizeof(u32));
943 bufp += 2 * sizeof(u32);
944 msglen -= 2 * sizeof(u32);
945 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
946 if (IS_ERR(old)) {
947 err = PTR_ERR(old);
948 break;
949 }
950 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
951 if (IS_ERR(new)) {
952 err = PTR_ERR(new);
953 kfree(old);
954 break;
955 }
956 /* OK, here comes... */
957 err = audit_tag_tree(old, new);
958
959 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
960
961 audit_log_format(ab, " op=make_equiv old=");
962 audit_log_untrustedstring(ab, old);
963 audit_log_format(ab, " new=");
964 audit_log_untrustedstring(ab, new);
965 audit_log_format(ab, " res=%d", !err);
966 audit_log_end(ab);
967 kfree(old);
968 kfree(new);
969 break;
970 }
971 case AUDIT_SIGNAL_INFO:
972 len = 0;
973 if (audit_sig_sid) {
974 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
975 if (err)
976 return err;
977 }
978 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
979 if (!sig_data) {
980 if (audit_sig_sid)
981 security_release_secctx(ctx, len);
982 return -ENOMEM;
983 }
984 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
985 sig_data->pid = audit_sig_pid;
986 if (audit_sig_sid) {
987 memcpy(sig_data->ctx, ctx, len);
988 security_release_secctx(ctx, len);
989 }
990 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
991 sig_data, sizeof(*sig_data) + len);
992 kfree(sig_data);
993 break;
994 case AUDIT_TTY_GET: {
995 struct audit_tty_status s;
996 struct task_struct *tsk = current;
997
998 spin_lock(&tsk->sighand->siglock);
999 s.enabled = tsk->signal->audit_tty;
1000 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1001 spin_unlock(&tsk->sighand->siglock);
1002
1003 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1004 break;
1005 }
1006 case AUDIT_TTY_SET: {
1007 struct audit_tty_status s, old;
1008 struct task_struct *tsk = current;
1009 struct audit_buffer *ab;
1010
1011 memset(&s, 0, sizeof(s));
1012 /* guard against past and future API changes */
1013 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1014 /* check if new data is valid */
1015 if ((s.enabled != 0 && s.enabled != 1) ||
1016 (s.log_passwd != 0 && s.log_passwd != 1))
1017 err = -EINVAL;
1018
1019 spin_lock(&tsk->sighand->siglock);
1020 old.enabled = tsk->signal->audit_tty;
1021 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1022 if (!err) {
1023 tsk->signal->audit_tty = s.enabled;
1024 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1025 }
1026 spin_unlock(&tsk->sighand->siglock);
1027
1028 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1029 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1030 " old-log_passwd=%d new-log_passwd=%d res=%d",
1031 old.enabled, s.enabled, old.log_passwd,
1032 s.log_passwd, !err);
1033 audit_log_end(ab);
1034 break;
1035 }
1036 default:
1037 err = -EINVAL;
1038 break;
1039 }
1040
1041 return err < 0 ? err : 0;
1042}
1043
1044/*
1045 * Get message from skb. Each message is processed by audit_receive_msg.
1046 * Malformed skbs with wrong length are discarded silently.
1047 */
1048static void audit_receive_skb(struct sk_buff *skb)
1049{
1050 struct nlmsghdr *nlh;
1051 /*
1052 * len MUST be signed for nlmsg_next to be able to dec it below 0
1053 * if the nlmsg_len was not aligned
1054 */
1055 int len;
1056 int err;
1057
1058 nlh = nlmsg_hdr(skb);
1059 len = skb->len;
1060
1061 while (nlmsg_ok(nlh, len)) {
1062 err = audit_receive_msg(skb, nlh);
1063 /* if err or if this message says it wants a response */
1064 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1065 netlink_ack(skb, nlh, err);
1066
1067 nlh = nlmsg_next(nlh, &len);
1068 }
1069}
1070
1071/* Receive messages from netlink socket. */
1072static void audit_receive(struct sk_buff *skb)
1073{
1074 mutex_lock(&audit_cmd_mutex);
1075 audit_receive_skb(skb);
1076 mutex_unlock(&audit_cmd_mutex);
1077}
1078
1079static int __net_init audit_net_init(struct net *net)
1080{
1081 struct netlink_kernel_cfg cfg = {
1082 .input = audit_receive,
1083 };
1084
1085 struct audit_net *aunet = net_generic(net, audit_net_id);
1086
1087 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1088 if (aunet->nlsk == NULL) {
1089 audit_panic("cannot initialize netlink socket in namespace");
1090 return -ENOMEM;
1091 }
1092 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1093 return 0;
1094}
1095
1096static void __net_exit audit_net_exit(struct net *net)
1097{
1098 struct audit_net *aunet = net_generic(net, audit_net_id);
1099 struct sock *sock = aunet->nlsk;
1100 if (sock == audit_sock) {
1101 audit_pid = 0;
1102 audit_sock = NULL;
1103 }
1104
1105 RCU_INIT_POINTER(aunet->nlsk, NULL);
1106 synchronize_net();
1107 netlink_kernel_release(sock);
1108}
1109
1110static struct pernet_operations audit_net_ops __net_initdata = {
1111 .init = audit_net_init,
1112 .exit = audit_net_exit,
1113 .id = &audit_net_id,
1114 .size = sizeof(struct audit_net),
1115};
1116
1117/* Initialize audit support at boot time. */
1118static int __init audit_init(void)
1119{
1120 int i;
1121
1122 if (audit_initialized == AUDIT_DISABLED)
1123 return 0;
1124
1125 pr_info("initializing netlink subsys (%s)\n",
1126 audit_default ? "enabled" : "disabled");
1127 register_pernet_subsys(&audit_net_ops);
1128
1129 skb_queue_head_init(&audit_skb_queue);
1130 skb_queue_head_init(&audit_skb_hold_queue);
1131 audit_initialized = AUDIT_INITIALIZED;
1132 audit_enabled = audit_default;
1133 audit_ever_enabled |= !!audit_default;
1134
1135 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1136
1137 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1138 INIT_LIST_HEAD(&audit_inode_hash[i]);
1139
1140 return 0;
1141}
1142__initcall(audit_init);
1143
1144/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1145static int __init audit_enable(char *str)
1146{
1147 audit_default = !!simple_strtol(str, NULL, 0);
1148 if (!audit_default)
1149 audit_initialized = AUDIT_DISABLED;
1150
1151 pr_info("%s\n", audit_default ?
1152 "enabled (after initialization)" : "disabled (until reboot)");
1153
1154 return 1;
1155}
1156__setup("audit=", audit_enable);
1157
1158/* Process kernel command-line parameter at boot time.
1159 * audit_backlog_limit=<n> */
1160static int __init audit_backlog_limit_set(char *str)
1161{
1162 u32 audit_backlog_limit_arg;
1163
1164 pr_info("audit_backlog_limit: ");
1165 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1166 pr_cont("using default of %u, unable to parse %s\n",
1167 audit_backlog_limit, str);
1168 return 1;
1169 }
1170
1171 audit_backlog_limit = audit_backlog_limit_arg;
1172 pr_cont("%d\n", audit_backlog_limit);
1173
1174 return 1;
1175}
1176__setup("audit_backlog_limit=", audit_backlog_limit_set);
1177
1178static void audit_buffer_free(struct audit_buffer *ab)
1179{
1180 unsigned long flags;
1181
1182 if (!ab)
1183 return;
1184
1185 if (ab->skb)
1186 kfree_skb(ab->skb);
1187
1188 spin_lock_irqsave(&audit_freelist_lock, flags);
1189 if (audit_freelist_count > AUDIT_MAXFREE)
1190 kfree(ab);
1191 else {
1192 audit_freelist_count++;
1193 list_add(&ab->list, &audit_freelist);
1194 }
1195 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1196}
1197
1198static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1199 gfp_t gfp_mask, int type)
1200{
1201 unsigned long flags;
1202 struct audit_buffer *ab = NULL;
1203 struct nlmsghdr *nlh;
1204
1205 spin_lock_irqsave(&audit_freelist_lock, flags);
1206 if (!list_empty(&audit_freelist)) {
1207 ab = list_entry(audit_freelist.next,
1208 struct audit_buffer, list);
1209 list_del(&ab->list);
1210 --audit_freelist_count;
1211 }
1212 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1213
1214 if (!ab) {
1215 ab = kmalloc(sizeof(*ab), gfp_mask);
1216 if (!ab)
1217 goto err;
1218 }
1219
1220 ab->ctx = ctx;
1221 ab->gfp_mask = gfp_mask;
1222
1223 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1224 if (!ab->skb)
1225 goto err;
1226
1227 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1228 if (!nlh)
1229 goto out_kfree_skb;
1230
1231 return ab;
1232
1233out_kfree_skb:
1234 kfree_skb(ab->skb);
1235 ab->skb = NULL;
1236err:
1237 audit_buffer_free(ab);
1238 return NULL;
1239}
1240
1241/**
1242 * audit_serial - compute a serial number for the audit record
1243 *
1244 * Compute a serial number for the audit record. Audit records are
1245 * written to user-space as soon as they are generated, so a complete
1246 * audit record may be written in several pieces. The timestamp of the
1247 * record and this serial number are used by the user-space tools to
1248 * determine which pieces belong to the same audit record. The
1249 * (timestamp,serial) tuple is unique for each syscall and is live from
1250 * syscall entry to syscall exit.
1251 *
1252 * NOTE: Another possibility is to store the formatted records off the
1253 * audit context (for those records that have a context), and emit them
1254 * all at syscall exit. However, this could delay the reporting of
1255 * significant errors until syscall exit (or never, if the system
1256 * halts).
1257 */
1258unsigned int audit_serial(void)
1259{
1260 static DEFINE_SPINLOCK(serial_lock);
1261 static unsigned int serial = 0;
1262
1263 unsigned long flags;
1264 unsigned int ret;
1265
1266 spin_lock_irqsave(&serial_lock, flags);
1267 do {
1268 ret = ++serial;
1269 } while (unlikely(!ret));
1270 spin_unlock_irqrestore(&serial_lock, flags);
1271
1272 return ret;
1273}
1274
1275static inline void audit_get_stamp(struct audit_context *ctx,
1276 struct timespec *t, unsigned int *serial)
1277{
1278 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1279 *t = CURRENT_TIME;
1280 *serial = audit_serial();
1281 }
1282}
1283
1284/*
1285 * Wait for auditd to drain the queue a little
1286 */
1287static long wait_for_auditd(long sleep_time)
1288{
1289 DECLARE_WAITQUEUE(wait, current);
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1292
1293 if (audit_backlog_limit &&
1294 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1295 sleep_time = schedule_timeout(sleep_time);
1296
1297 __set_current_state(TASK_RUNNING);
1298 remove_wait_queue(&audit_backlog_wait, &wait);
1299
1300 return sleep_time;
1301}
1302
1303/**
1304 * audit_log_start - obtain an audit buffer
1305 * @ctx: audit_context (may be NULL)
1306 * @gfp_mask: type of allocation
1307 * @type: audit message type
1308 *
1309 * Returns audit_buffer pointer on success or NULL on error.
1310 *
1311 * Obtain an audit buffer. This routine does locking to obtain the
1312 * audit buffer, but then no locking is required for calls to
1313 * audit_log_*format. If the task (ctx) is a task that is currently in a
1314 * syscall, then the syscall is marked as auditable and an audit record
1315 * will be written at syscall exit. If there is no associated task, then
1316 * task context (ctx) should be NULL.
1317 */
1318struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1319 int type)
1320{
1321 struct audit_buffer *ab = NULL;
1322 struct timespec t;
1323 unsigned int uninitialized_var(serial);
1324 int reserve = 5; /* Allow atomic callers to go up to five
1325 entries over the normal backlog limit */
1326 unsigned long timeout_start = jiffies;
1327
1328 if (audit_initialized != AUDIT_INITIALIZED)
1329 return NULL;
1330
1331 if (unlikely(audit_filter_type(type)))
1332 return NULL;
1333
1334 if (gfp_mask & __GFP_WAIT) {
1335 if (audit_pid && audit_pid == current->pid)
1336 gfp_mask &= ~__GFP_WAIT;
1337 else
1338 reserve = 0;
1339 }
1340
1341 while (audit_backlog_limit
1342 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1343 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1344 long sleep_time;
1345
1346 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1347 if (sleep_time > 0) {
1348 sleep_time = wait_for_auditd(sleep_time);
1349 if (sleep_time > 0)
1350 continue;
1351 }
1352 }
1353 if (audit_rate_check() && printk_ratelimit())
1354 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1355 skb_queue_len(&audit_skb_queue),
1356 audit_backlog_limit);
1357 audit_log_lost("backlog limit exceeded");
1358 audit_backlog_wait_time = audit_backlog_wait_overflow;
1359 wake_up(&audit_backlog_wait);
1360 return NULL;
1361 }
1362
1363 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1364
1365 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1366 if (!ab) {
1367 audit_log_lost("out of memory in audit_log_start");
1368 return NULL;
1369 }
1370
1371 audit_get_stamp(ab->ctx, &t, &serial);
1372
1373 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1374 t.tv_sec, t.tv_nsec/1000000, serial);
1375 return ab;
1376}
1377
1378/**
1379 * audit_expand - expand skb in the audit buffer
1380 * @ab: audit_buffer
1381 * @extra: space to add at tail of the skb
1382 *
1383 * Returns 0 (no space) on failed expansion, or available space if
1384 * successful.
1385 */
1386static inline int audit_expand(struct audit_buffer *ab, int extra)
1387{
1388 struct sk_buff *skb = ab->skb;
1389 int oldtail = skb_tailroom(skb);
1390 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1391 int newtail = skb_tailroom(skb);
1392
1393 if (ret < 0) {
1394 audit_log_lost("out of memory in audit_expand");
1395 return 0;
1396 }
1397
1398 skb->truesize += newtail - oldtail;
1399 return newtail;
1400}
1401
1402/*
1403 * Format an audit message into the audit buffer. If there isn't enough
1404 * room in the audit buffer, more room will be allocated and vsnprint
1405 * will be called a second time. Currently, we assume that a printk
1406 * can't format message larger than 1024 bytes, so we don't either.
1407 */
1408static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1409 va_list args)
1410{
1411 int len, avail;
1412 struct sk_buff *skb;
1413 va_list args2;
1414
1415 if (!ab)
1416 return;
1417
1418 BUG_ON(!ab->skb);
1419 skb = ab->skb;
1420 avail = skb_tailroom(skb);
1421 if (avail == 0) {
1422 avail = audit_expand(ab, AUDIT_BUFSIZ);
1423 if (!avail)
1424 goto out;
1425 }
1426 va_copy(args2, args);
1427 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1428 if (len >= avail) {
1429 /* The printk buffer is 1024 bytes long, so if we get
1430 * here and AUDIT_BUFSIZ is at least 1024, then we can
1431 * log everything that printk could have logged. */
1432 avail = audit_expand(ab,
1433 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1434 if (!avail)
1435 goto out_va_end;
1436 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1437 }
1438 if (len > 0)
1439 skb_put(skb, len);
1440out_va_end:
1441 va_end(args2);
1442out:
1443 return;
1444}
1445
1446/**
1447 * audit_log_format - format a message into the audit buffer.
1448 * @ab: audit_buffer
1449 * @fmt: format string
1450 * @...: optional parameters matching @fmt string
1451 *
1452 * All the work is done in audit_log_vformat.
1453 */
1454void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1455{
1456 va_list args;
1457
1458 if (!ab)
1459 return;
1460 va_start(args, fmt);
1461 audit_log_vformat(ab, fmt, args);
1462 va_end(args);
1463}
1464
1465/**
1466 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1467 * @ab: the audit_buffer
1468 * @buf: buffer to convert to hex
1469 * @len: length of @buf to be converted
1470 *
1471 * No return value; failure to expand is silently ignored.
1472 *
1473 * This function will take the passed buf and convert it into a string of
1474 * ascii hex digits. The new string is placed onto the skb.
1475 */
1476void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1477 size_t len)
1478{
1479 int i, avail, new_len;
1480 unsigned char *ptr;
1481 struct sk_buff *skb;
1482
1483 if (!ab)
1484 return;
1485
1486 BUG_ON(!ab->skb);
1487 skb = ab->skb;
1488 avail = skb_tailroom(skb);
1489 new_len = len<<1;
1490 if (new_len >= avail) {
1491 /* Round the buffer request up to the next multiple */
1492 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1493 avail = audit_expand(ab, new_len);
1494 if (!avail)
1495 return;
1496 }
1497
1498 ptr = skb_tail_pointer(skb);
1499 for (i = 0; i < len; i++)
1500 ptr = hex_byte_pack_upper(ptr, buf[i]);
1501 *ptr = 0;
1502 skb_put(skb, len << 1); /* new string is twice the old string */
1503}
1504
1505/*
1506 * Format a string of no more than slen characters into the audit buffer,
1507 * enclosed in quote marks.
1508 */
1509void audit_log_n_string(struct audit_buffer *ab, const char *string,
1510 size_t slen)
1511{
1512 int avail, new_len;
1513 unsigned char *ptr;
1514 struct sk_buff *skb;
1515
1516 if (!ab)
1517 return;
1518
1519 BUG_ON(!ab->skb);
1520 skb = ab->skb;
1521 avail = skb_tailroom(skb);
1522 new_len = slen + 3; /* enclosing quotes + null terminator */
1523 if (new_len > avail) {
1524 avail = audit_expand(ab, new_len);
1525 if (!avail)
1526 return;
1527 }
1528 ptr = skb_tail_pointer(skb);
1529 *ptr++ = '"';
1530 memcpy(ptr, string, slen);
1531 ptr += slen;
1532 *ptr++ = '"';
1533 *ptr = 0;
1534 skb_put(skb, slen + 2); /* don't include null terminator */
1535}
1536
1537/**
1538 * audit_string_contains_control - does a string need to be logged in hex
1539 * @string: string to be checked
1540 * @len: max length of the string to check
1541 */
1542int audit_string_contains_control(const char *string, size_t len)
1543{
1544 const unsigned char *p;
1545 for (p = string; p < (const unsigned char *)string + len; p++) {
1546 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1547 return 1;
1548 }
1549 return 0;
1550}
1551
1552/**
1553 * audit_log_n_untrustedstring - log a string that may contain random characters
1554 * @ab: audit_buffer
1555 * @len: length of string (not including trailing null)
1556 * @string: string to be logged
1557 *
1558 * This code will escape a string that is passed to it if the string
1559 * contains a control character, unprintable character, double quote mark,
1560 * or a space. Unescaped strings will start and end with a double quote mark.
1561 * Strings that are escaped are printed in hex (2 digits per char).
1562 *
1563 * The caller specifies the number of characters in the string to log, which may
1564 * or may not be the entire string.
1565 */
1566void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1567 size_t len)
1568{
1569 if (audit_string_contains_control(string, len))
1570 audit_log_n_hex(ab, string, len);
1571 else
1572 audit_log_n_string(ab, string, len);
1573}
1574
1575/**
1576 * audit_log_untrustedstring - log a string that may contain random characters
1577 * @ab: audit_buffer
1578 * @string: string to be logged
1579 *
1580 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1581 * determine string length.
1582 */
1583void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1584{
1585 audit_log_n_untrustedstring(ab, string, strlen(string));
1586}
1587
1588/* This is a helper-function to print the escaped d_path */
1589void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1590 const struct path *path)
1591{
1592 char *p, *pathname;
1593
1594 if (prefix)
1595 audit_log_format(ab, "%s", prefix);
1596
1597 /* We will allow 11 spaces for ' (deleted)' to be appended */
1598 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1599 if (!pathname) {
1600 audit_log_string(ab, "<no_memory>");
1601 return;
1602 }
1603 p = d_path(path, pathname, PATH_MAX+11);
1604 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1605 /* FIXME: can we save some information here? */
1606 audit_log_string(ab, "<too_long>");
1607 } else
1608 audit_log_untrustedstring(ab, p);
1609 kfree(pathname);
1610}
1611
1612void audit_log_session_info(struct audit_buffer *ab)
1613{
1614 unsigned int sessionid = audit_get_sessionid(current);
1615 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1616
1617 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1618}
1619
1620void audit_log_key(struct audit_buffer *ab, char *key)
1621{
1622 audit_log_format(ab, " key=");
1623 if (key)
1624 audit_log_untrustedstring(ab, key);
1625 else
1626 audit_log_format(ab, "(null)");
1627}
1628
1629void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1630{
1631 int i;
1632
1633 audit_log_format(ab, " %s=", prefix);
1634 CAP_FOR_EACH_U32(i) {
1635 audit_log_format(ab, "%08x",
1636 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1637 }
1638}
1639
1640void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1641{
1642 kernel_cap_t *perm = &name->fcap.permitted;
1643 kernel_cap_t *inh = &name->fcap.inheritable;
1644 int log = 0;
1645
1646 if (!cap_isclear(*perm)) {
1647 audit_log_cap(ab, "cap_fp", perm);
1648 log = 1;
1649 }
1650 if (!cap_isclear(*inh)) {
1651 audit_log_cap(ab, "cap_fi", inh);
1652 log = 1;
1653 }
1654
1655 if (log)
1656 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1657 name->fcap.fE, name->fcap_ver);
1658}
1659
1660static inline int audit_copy_fcaps(struct audit_names *name,
1661 const struct dentry *dentry)
1662{
1663 struct cpu_vfs_cap_data caps;
1664 int rc;
1665
1666 if (!dentry)
1667 return 0;
1668
1669 rc = get_vfs_caps_from_disk(dentry, &caps);
1670 if (rc)
1671 return rc;
1672
1673 name->fcap.permitted = caps.permitted;
1674 name->fcap.inheritable = caps.inheritable;
1675 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1676 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1677 VFS_CAP_REVISION_SHIFT;
1678
1679 return 0;
1680}
1681
1682/* Copy inode data into an audit_names. */
1683void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1684 const struct inode *inode)
1685{
1686 name->ino = inode->i_ino;
1687 name->dev = inode->i_sb->s_dev;
1688 name->mode = inode->i_mode;
1689 name->uid = inode->i_uid;
1690 name->gid = inode->i_gid;
1691 name->rdev = inode->i_rdev;
1692 security_inode_getsecid(inode, &name->osid);
1693 audit_copy_fcaps(name, dentry);
1694}
1695
1696/**
1697 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1698 * @context: audit_context for the task
1699 * @n: audit_names structure with reportable details
1700 * @path: optional path to report instead of audit_names->name
1701 * @record_num: record number to report when handling a list of names
1702 * @call_panic: optional pointer to int that will be updated if secid fails
1703 */
1704void audit_log_name(struct audit_context *context, struct audit_names *n,
1705 struct path *path, int record_num, int *call_panic)
1706{
1707 struct audit_buffer *ab;
1708 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1709 if (!ab)
1710 return;
1711
1712 audit_log_format(ab, "item=%d", record_num);
1713
1714 if (path)
1715 audit_log_d_path(ab, " name=", path);
1716 else if (n->name) {
1717 switch (n->name_len) {
1718 case AUDIT_NAME_FULL:
1719 /* log the full path */
1720 audit_log_format(ab, " name=");
1721 audit_log_untrustedstring(ab, n->name->name);
1722 break;
1723 case 0:
1724 /* name was specified as a relative path and the
1725 * directory component is the cwd */
1726 audit_log_d_path(ab, " name=", &context->pwd);
1727 break;
1728 default:
1729 /* log the name's directory component */
1730 audit_log_format(ab, " name=");
1731 audit_log_n_untrustedstring(ab, n->name->name,
1732 n->name_len);
1733 }
1734 } else
1735 audit_log_format(ab, " name=(null)");
1736
1737 if (n->ino != (unsigned long)-1) {
1738 audit_log_format(ab, " inode=%lu"
1739 " dev=%02x:%02x mode=%#ho"
1740 " ouid=%u ogid=%u rdev=%02x:%02x",
1741 n->ino,
1742 MAJOR(n->dev),
1743 MINOR(n->dev),
1744 n->mode,
1745 from_kuid(&init_user_ns, n->uid),
1746 from_kgid(&init_user_ns, n->gid),
1747 MAJOR(n->rdev),
1748 MINOR(n->rdev));
1749 }
1750 if (n->osid != 0) {
1751 char *ctx = NULL;
1752 u32 len;
1753 if (security_secid_to_secctx(
1754 n->osid, &ctx, &len)) {
1755 audit_log_format(ab, " osid=%u", n->osid);
1756 if (call_panic)
1757 *call_panic = 2;
1758 } else {
1759 audit_log_format(ab, " obj=%s", ctx);
1760 security_release_secctx(ctx, len);
1761 }
1762 }
1763
1764 /* log the audit_names record type */
1765 audit_log_format(ab, " nametype=");
1766 switch(n->type) {
1767 case AUDIT_TYPE_NORMAL:
1768 audit_log_format(ab, "NORMAL");
1769 break;
1770 case AUDIT_TYPE_PARENT:
1771 audit_log_format(ab, "PARENT");
1772 break;
1773 case AUDIT_TYPE_CHILD_DELETE:
1774 audit_log_format(ab, "DELETE");
1775 break;
1776 case AUDIT_TYPE_CHILD_CREATE:
1777 audit_log_format(ab, "CREATE");
1778 break;
1779 default:
1780 audit_log_format(ab, "UNKNOWN");
1781 break;
1782 }
1783
1784 audit_log_fcaps(ab, n);
1785 audit_log_end(ab);
1786}
1787
1788int audit_log_task_context(struct audit_buffer *ab)
1789{
1790 char *ctx = NULL;
1791 unsigned len;
1792 int error;
1793 u32 sid;
1794
1795 security_task_getsecid(current, &sid);
1796 if (!sid)
1797 return 0;
1798
1799 error = security_secid_to_secctx(sid, &ctx, &len);
1800 if (error) {
1801 if (error != -EINVAL)
1802 goto error_path;
1803 return 0;
1804 }
1805
1806 audit_log_format(ab, " subj=%s", ctx);
1807 security_release_secctx(ctx, len);
1808 return 0;
1809
1810error_path:
1811 audit_panic("error in audit_log_task_context");
1812 return error;
1813}
1814EXPORT_SYMBOL(audit_log_task_context);
1815
1816void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1817{
1818 const struct cred *cred;
1819 char name[sizeof(tsk->comm)];
1820 struct mm_struct *mm = tsk->mm;
1821 char *tty;
1822
1823 if (!ab)
1824 return;
1825
1826 /* tsk == current */
1827 cred = current_cred();
1828
1829 spin_lock_irq(&tsk->sighand->siglock);
1830 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1831 tty = tsk->signal->tty->name;
1832 else
1833 tty = "(none)";
1834 spin_unlock_irq(&tsk->sighand->siglock);
1835
1836 audit_log_format(ab,
1837 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1838 " euid=%u suid=%u fsuid=%u"
1839 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1840 task_ppid_nr(tsk),
1841 task_pid_nr(tsk),
1842 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1843 from_kuid(&init_user_ns, cred->uid),
1844 from_kgid(&init_user_ns, cred->gid),
1845 from_kuid(&init_user_ns, cred->euid),
1846 from_kuid(&init_user_ns, cred->suid),
1847 from_kuid(&init_user_ns, cred->fsuid),
1848 from_kgid(&init_user_ns, cred->egid),
1849 from_kgid(&init_user_ns, cred->sgid),
1850 from_kgid(&init_user_ns, cred->fsgid),
1851 tty, audit_get_sessionid(tsk));
1852
1853 get_task_comm(name, tsk);
1854 audit_log_format(ab, " comm=");
1855 audit_log_untrustedstring(ab, name);
1856
1857 if (mm) {
1858 down_read(&mm->mmap_sem);
1859 if (mm->exe_file)
1860 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1861 up_read(&mm->mmap_sem);
1862 } else
1863 audit_log_format(ab, " exe=(null)");
1864 audit_log_task_context(ab);
1865}
1866EXPORT_SYMBOL(audit_log_task_info);
1867
1868/**
1869 * audit_log_link_denied - report a link restriction denial
1870 * @operation: specific link opreation
1871 * @link: the path that triggered the restriction
1872 */
1873void audit_log_link_denied(const char *operation, struct path *link)
1874{
1875 struct audit_buffer *ab;
1876 struct audit_names *name;
1877
1878 name = kzalloc(sizeof(*name), GFP_NOFS);
1879 if (!name)
1880 return;
1881
1882 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1883 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1884 AUDIT_ANOM_LINK);
1885 if (!ab)
1886 goto out;
1887 audit_log_format(ab, "op=%s", operation);
1888 audit_log_task_info(ab, current);
1889 audit_log_format(ab, " res=0");
1890 audit_log_end(ab);
1891
1892 /* Generate AUDIT_PATH record with object. */
1893 name->type = AUDIT_TYPE_NORMAL;
1894 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1895 audit_log_name(current->audit_context, name, link, 0, NULL);
1896out:
1897 kfree(name);
1898}
1899
1900/**
1901 * audit_log_end - end one audit record
1902 * @ab: the audit_buffer
1903 *
1904 * The netlink_* functions cannot be called inside an irq context, so
1905 * the audit buffer is placed on a queue and a tasklet is scheduled to
1906 * remove them from the queue outside the irq context. May be called in
1907 * any context.
1908 */
1909void audit_log_end(struct audit_buffer *ab)
1910{
1911 if (!ab)
1912 return;
1913 if (!audit_rate_check()) {
1914 audit_log_lost("rate limit exceeded");
1915 } else {
1916 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1917 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1918
1919 if (audit_pid) {
1920 skb_queue_tail(&audit_skb_queue, ab->skb);
1921 wake_up_interruptible(&kauditd_wait);
1922 } else {
1923 audit_printk_skb(ab->skb);
1924 }
1925 ab->skb = NULL;
1926 }
1927 audit_buffer_free(ab);
1928}
1929
1930/**
1931 * audit_log - Log an audit record
1932 * @ctx: audit context
1933 * @gfp_mask: type of allocation
1934 * @type: audit message type
1935 * @fmt: format string to use
1936 * @...: variable parameters matching the format string
1937 *
1938 * This is a convenience function that calls audit_log_start,
1939 * audit_log_vformat, and audit_log_end. It may be called
1940 * in any context.
1941 */
1942void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1943 const char *fmt, ...)
1944{
1945 struct audit_buffer *ab;
1946 va_list args;
1947
1948 ab = audit_log_start(ctx, gfp_mask, type);
1949 if (ab) {
1950 va_start(args, fmt);
1951 audit_log_vformat(ab, fmt, args);
1952 va_end(args);
1953 audit_log_end(ab);
1954 }
1955}
1956
1957#ifdef CONFIG_SECURITY
1958/**
1959 * audit_log_secctx - Converts and logs SELinux context
1960 * @ab: audit_buffer
1961 * @secid: security number
1962 *
1963 * This is a helper function that calls security_secid_to_secctx to convert
1964 * secid to secctx and then adds the (converted) SELinux context to the audit
1965 * log by calling audit_log_format, thus also preventing leak of internal secid
1966 * to userspace. If secid cannot be converted audit_panic is called.
1967 */
1968void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1969{
1970 u32 len;
1971 char *secctx;
1972
1973 if (security_secid_to_secctx(secid, &secctx, &len)) {
1974 audit_panic("Cannot convert secid to context");
1975 } else {
1976 audit_log_format(ab, " obj=%s", secctx);
1977 security_release_secctx(secctx, len);
1978 }
1979}
1980EXPORT_SYMBOL(audit_log_secctx);
1981#endif
1982
1983EXPORT_SYMBOL(audit_log_start);
1984EXPORT_SYMBOL(audit_log_end);
1985EXPORT_SYMBOL(audit_log_format);
1986EXPORT_SYMBOL(audit_log);
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
61#include <net/netlink.h>
62#include <linux/skbuff.h>
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
66#include <linux/freezer.h>
67#include <linux/tty.h>
68#include <linux/pid_namespace.h>
69#include <net/netns/generic.h>
70
71#include "audit.h"
72
73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75#define AUDIT_DISABLED -1
76#define AUDIT_UNINITIALIZED 0
77#define AUDIT_INITIALIZED 1
78static int audit_initialized;
79
80#define AUDIT_OFF 0
81#define AUDIT_ON 1
82#define AUDIT_LOCKED 2
83u32 audit_enabled;
84u32 audit_ever_enabled;
85
86EXPORT_SYMBOL_GPL(audit_enabled);
87
88/* Default state when kernel boots without any parameters. */
89static u32 audit_default;
90
91/* If auditing cannot proceed, audit_failure selects what happens. */
92static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94/*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99int audit_pid;
100static __u32 audit_nlk_portid;
101
102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105static u32 audit_rate_limit;
106
107/* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109static u32 audit_backlog_limit = 64;
110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114/* The identity of the user shutting down the audit system. */
115kuid_t audit_sig_uid = INVALID_UID;
116pid_t audit_sig_pid = -1;
117u32 audit_sig_sid = 0;
118
119/* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125*/
126static atomic_t audit_lost = ATOMIC_INIT(0);
127
128/* The netlink socket. */
129static struct sock *audit_sock;
130static int audit_net_id;
131
132/* Hash for inode-based rules */
133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135/* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138static DEFINE_SPINLOCK(audit_freelist_lock);
139static int audit_freelist_count;
140static LIST_HEAD(audit_freelist);
141
142static struct sk_buff_head audit_skb_queue;
143/* queue of skbs to send to auditd when/if it comes back */
144static struct sk_buff_head audit_skb_hold_queue;
145static struct task_struct *kauditd_task;
146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157};
158
159
160/* Serialize requests from userspace. */
161DEFINE_MUTEX(audit_cmd_mutex);
162
163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166#define AUDIT_BUFSIZ 1024
167
168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170#define AUDIT_MAXFREE (2*NR_CPUS)
171
172/* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182};
183
184struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188};
189
190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191{
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196}
197
198void audit_panic(const char *message)
199{
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213}
214
215static inline int audit_rate_check(void)
216{
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242}
243
244/**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251*/
252void audit_log_lost(const char *message)
253{
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282}
283
284static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286{
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301}
302
303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304{
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327}
328
329static int audit_set_rate_limit(u32 limit)
330{
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332}
333
334static int audit_set_backlog_limit(u32 limit)
335{
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337}
338
339static int audit_set_backlog_wait_time(u32 timeout)
340{
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343}
344
345static int audit_set_enabled(u32 state)
346{
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356}
357
358static int audit_set_failure(u32 state)
359{
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366}
367
368/*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377static void audit_hold_skb(struct sk_buff *skb)
378{
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385}
386
387/*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391static void audit_printk_skb(struct sk_buff *skb)
392{
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404}
405
406static void kauditd_send_skb(struct sk_buff *skb)
407{
408 int err;
409 int attempts = 0;
410#define AUDITD_RETRIES 5
411
412restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442}
443
444/*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451{
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474}
475
476/*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491static void flush_hold_queue(void)
492{
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 consume_skb(skb);
512}
513
514static int kauditd_thread(void *dummy)
515{
516 set_freezable();
517 while (!kthread_should_stop()) {
518 struct sk_buff *skb;
519
520 flush_hold_queue();
521
522 skb = skb_dequeue(&audit_skb_queue);
523
524 if (skb) {
525 if (!audit_backlog_limit ||
526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538}
539
540int audit_send_list(void *_dest)
541{
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558}
559
560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562{
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583}
584
585static int audit_send_reply_thread(void *arg)
586{
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600}
601/**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616{
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639out:
640 kfree(reply);
641}
642
643/*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648{
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701}
702
703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704{
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719}
720
721int is_audit_feature_set(int i)
722{
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724}
725
726
727static int audit_get_feature(struct sk_buff *skb)
728{
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736}
737
738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740{
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
824 u32 seq;
825 void *data;
826 int err;
827 struct audit_buffer *ab;
828 u16 msg_type = nlh->nlmsg_type;
829 struct audit_sig_info *sig_data;
830 char *ctx = NULL;
831 u32 len;
832
833 err = audit_netlink_ok(skb, msg_type);
834 if (err)
835 return err;
836
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
839 if (!kauditd_task) {
840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
846 }
847 seq = nlh->nlmsg_seq;
848 data = nlmsg_data(nlh);
849
850 switch (msg_type) {
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
862 s.backlog_wait_time = audit_backlog_wait_time_master;
863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 break;
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
873 if (err < 0)
874 return err;
875 }
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
878 if (err < 0)
879 return err;
880 }
881 if (s.mask & AUDIT_STATUS_PID) {
882 int new_pid = s.pid;
883 pid_t requesting_pid = task_tgid_vnr(current);
884
885 if ((!new_pid) && (requesting_pid != audit_pid)) {
886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
887 return -EACCES;
888 }
889 if (audit_pid && new_pid &&
890 audit_replace(requesting_pid) != -ECONNREFUSED) {
891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
892 return -EEXIST;
893 }
894 if (audit_enabled != AUDIT_OFF)
895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
896 audit_pid = new_pid;
897 audit_nlk_portid = NETLINK_CB(skb).portid;
898 audit_sock = skb->sk;
899 }
900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 err = audit_set_rate_limit(s.rate_limit);
902 if (err < 0)
903 return err;
904 }
905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
906 err = audit_set_backlog_limit(s.backlog_limit);
907 if (err < 0)
908 return err;
909 }
910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 return -EINVAL;
913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
914 return -EINVAL;
915 err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 if (err < 0)
917 return err;
918 }
919 break;
920 }
921 case AUDIT_GET_FEATURE:
922 err = audit_get_feature(skb);
923 if (err)
924 return err;
925 break;
926 case AUDIT_SET_FEATURE:
927 err = audit_set_feature(skb);
928 if (err)
929 return err;
930 break;
931 case AUDIT_USER:
932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
934 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 return 0;
936
937 err = audit_filter_user(msg_type);
938 if (err == 1) { /* match or error */
939 err = 0;
940 if (msg_type == AUDIT_USER_TTY) {
941 err = tty_audit_push();
942 if (err)
943 break;
944 }
945 mutex_unlock(&audit_cmd_mutex);
946 audit_log_common_recv_msg(&ab, msg_type);
947 if (msg_type != AUDIT_USER_TTY)
948 audit_log_format(ab, " msg='%.*s'",
949 AUDIT_MESSAGE_TEXT_MAX,
950 (char *)data);
951 else {
952 int size;
953
954 audit_log_format(ab, " data=");
955 size = nlmsg_len(nlh);
956 if (size > 0 &&
957 ((unsigned char *)data)[size - 1] == '\0')
958 size--;
959 audit_log_n_untrustedstring(ab, data, size);
960 }
961 audit_set_portid(ab, NETLINK_CB(skb).portid);
962 audit_log_end(ab);
963 mutex_lock(&audit_cmd_mutex);
964 }
965 break;
966 case AUDIT_ADD_RULE:
967 case AUDIT_DEL_RULE:
968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 return -EINVAL;
970 if (audit_enabled == AUDIT_LOCKED) {
971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
973 audit_log_end(ab);
974 return -EPERM;
975 }
976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
977 seq, data, nlmsg_len(nlh));
978 break;
979 case AUDIT_LIST_RULES:
980 err = audit_list_rules_send(skb, seq);
981 break;
982 case AUDIT_TRIM:
983 audit_trim_trees();
984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
985 audit_log_format(ab, " op=trim res=1");
986 audit_log_end(ab);
987 break;
988 case AUDIT_MAKE_EQUIV: {
989 void *bufp = data;
990 u32 sizes[2];
991 size_t msglen = nlmsg_len(nlh);
992 char *old, *new;
993
994 err = -EINVAL;
995 if (msglen < 2 * sizeof(u32))
996 break;
997 memcpy(sizes, bufp, 2 * sizeof(u32));
998 bufp += 2 * sizeof(u32);
999 msglen -= 2 * sizeof(u32);
1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001 if (IS_ERR(old)) {
1002 err = PTR_ERR(old);
1003 break;
1004 }
1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006 if (IS_ERR(new)) {
1007 err = PTR_ERR(new);
1008 kfree(old);
1009 break;
1010 }
1011 /* OK, here comes... */
1012 err = audit_tag_tree(old, new);
1013
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016 audit_log_format(ab, " op=make_equiv old=");
1017 audit_log_untrustedstring(ab, old);
1018 audit_log_format(ab, " new=");
1019 audit_log_untrustedstring(ab, new);
1020 audit_log_format(ab, " res=%d", !err);
1021 audit_log_end(ab);
1022 kfree(old);
1023 kfree(new);
1024 break;
1025 }
1026 case AUDIT_SIGNAL_INFO:
1027 len = 0;
1028 if (audit_sig_sid) {
1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 if (err)
1031 return err;
1032 }
1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 if (!sig_data) {
1035 if (audit_sig_sid)
1036 security_release_secctx(ctx, len);
1037 return -ENOMEM;
1038 }
1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040 sig_data->pid = audit_sig_pid;
1041 if (audit_sig_sid) {
1042 memcpy(sig_data->ctx, ctx, len);
1043 security_release_secctx(ctx, len);
1044 }
1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 sig_data, sizeof(*sig_data) + len);
1047 kfree(sig_data);
1048 break;
1049 case AUDIT_TTY_GET: {
1050 struct audit_tty_status s;
1051 unsigned int t;
1052
1053 t = READ_ONCE(current->signal->audit_tty);
1054 s.enabled = t & AUDIT_TTY_ENABLE;
1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058 break;
1059 }
1060 case AUDIT_TTY_SET: {
1061 struct audit_tty_status s, old;
1062 struct audit_buffer *ab;
1063 unsigned int t;
1064
1065 memset(&s, 0, sizeof(s));
1066 /* guard against past and future API changes */
1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 /* check if new data is valid */
1069 if ((s.enabled != 0 && s.enabled != 1) ||
1070 (s.log_passwd != 0 && s.log_passwd != 1))
1071 err = -EINVAL;
1072
1073 if (err)
1074 t = READ_ONCE(current->signal->audit_tty);
1075 else {
1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 t = xchg(¤t->signal->audit_tty, t);
1078 }
1079 old.enabled = t & AUDIT_TTY_ENABLE;
1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 old.enabled, s.enabled, old.log_passwd,
1086 s.log_passwd, !err);
1087 audit_log_end(ab);
1088 break;
1089 }
1090 default:
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb. Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104 struct nlmsghdr *nlh;
1105 /*
1106 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107 * if the nlmsg_len was not aligned
1108 */
1109 int len;
1110 int err;
1111
1112 nlh = nlmsg_hdr(skb);
1113 len = skb->len;
1114
1115 while (nlmsg_ok(nlh, len)) {
1116 err = audit_receive_msg(skb, nlh);
1117 /* if err or if this message says it wants a response */
1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119 netlink_ack(skb, nlh, err);
1120
1121 nlh = nlmsg_next(nlh, &len);
1122 }
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff *skb)
1127{
1128 mutex_lock(&audit_cmd_mutex);
1129 audit_receive_skb(skb);
1130 mutex_unlock(&audit_cmd_mutex);
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
1136 if (!capable(CAP_AUDIT_READ))
1137 return -EPERM;
1138
1139 return 0;
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144 struct netlink_kernel_cfg cfg = {
1145 .input = audit_receive,
1146 .bind = audit_bind,
1147 .flags = NL_CFG_F_NONROOT_RECV,
1148 .groups = AUDIT_NLGRP_MAX,
1149 };
1150
1151 struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154 if (aunet->nlsk == NULL) {
1155 audit_panic("cannot initialize netlink socket in namespace");
1156 return -ENOMEM;
1157 }
1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159 return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164 struct audit_net *aunet = net_generic(net, audit_net_id);
1165 struct sock *sock = aunet->nlsk;
1166 if (sock == audit_sock) {
1167 audit_pid = 0;
1168 audit_sock = NULL;
1169 }
1170
1171 RCU_INIT_POINTER(aunet->nlsk, NULL);
1172 synchronize_net();
1173 netlink_kernel_release(sock);
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177 .init = audit_net_init,
1178 .exit = audit_net_exit,
1179 .id = &audit_net_id,
1180 .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186 int i;
1187
1188 if (audit_initialized == AUDIT_DISABLED)
1189 return 0;
1190
1191 pr_info("initializing netlink subsys (%s)\n",
1192 audit_default ? "enabled" : "disabled");
1193 register_pernet_subsys(&audit_net_ops);
1194
1195 skb_queue_head_init(&audit_skb_queue);
1196 skb_queue_head_init(&audit_skb_hold_queue);
1197 audit_initialized = AUDIT_INITIALIZED;
1198 audit_enabled = audit_default;
1199 audit_ever_enabled |= !!audit_default;
1200
1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202
1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 INIT_LIST_HEAD(&audit_inode_hash[i]);
1205
1206 return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213 audit_default = !!simple_strtol(str, NULL, 0);
1214 if (!audit_default)
1215 audit_initialized = AUDIT_DISABLED;
1216
1217 pr_info("%s\n", audit_default ?
1218 "enabled (after initialization)" : "disabled (until reboot)");
1219
1220 return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228 u32 audit_backlog_limit_arg;
1229
1230 pr_info("audit_backlog_limit: ");
1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 pr_cont("using default of %u, unable to parse %s\n",
1233 audit_backlog_limit, str);
1234 return 1;
1235 }
1236
1237 audit_backlog_limit = audit_backlog_limit_arg;
1238 pr_cont("%d\n", audit_backlog_limit);
1239
1240 return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246 unsigned long flags;
1247
1248 if (!ab)
1249 return;
1250
1251 kfree_skb(ab->skb);
1252 spin_lock_irqsave(&audit_freelist_lock, flags);
1253 if (audit_freelist_count > AUDIT_MAXFREE)
1254 kfree(ab);
1255 else {
1256 audit_freelist_count++;
1257 list_add(&ab->list, &audit_freelist);
1258 }
1259 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263 gfp_t gfp_mask, int type)
1264{
1265 unsigned long flags;
1266 struct audit_buffer *ab = NULL;
1267 struct nlmsghdr *nlh;
1268
1269 spin_lock_irqsave(&audit_freelist_lock, flags);
1270 if (!list_empty(&audit_freelist)) {
1271 ab = list_entry(audit_freelist.next,
1272 struct audit_buffer, list);
1273 list_del(&ab->list);
1274 --audit_freelist_count;
1275 }
1276 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278 if (!ab) {
1279 ab = kmalloc(sizeof(*ab), gfp_mask);
1280 if (!ab)
1281 goto err;
1282 }
1283
1284 ab->ctx = ctx;
1285 ab->gfp_mask = gfp_mask;
1286
1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 if (!ab->skb)
1289 goto err;
1290
1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 if (!nlh)
1293 goto out_kfree_skb;
1294
1295 return ab;
1296
1297out_kfree_skb:
1298 kfree_skb(ab->skb);
1299 ab->skb = NULL;
1300err:
1301 audit_buffer_free(ab);
1302 return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record. Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces. The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record. The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit. However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324 static atomic_t serial = ATOMIC_INIT(0);
1325
1326 return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330 struct timespec *t, unsigned int *serial)
1331{
1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333 *t = CURRENT_TIME;
1334 *serial = audit_serial();
1335 }
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343 DECLARE_WAITQUEUE(wait, current);
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347 if (audit_backlog_limit &&
1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349 sleep_time = schedule_timeout(sleep_time);
1350
1351 __set_current_state(TASK_RUNNING);
1352 remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354 return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer. This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format. If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit. If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373 int type)
1374{
1375 struct audit_buffer *ab = NULL;
1376 struct timespec t;
1377 unsigned int uninitialized_var(serial);
1378 int reserve = 5; /* Allow atomic callers to go up to five
1379 entries over the normal backlog limit */
1380 unsigned long timeout_start = jiffies;
1381
1382 if (audit_initialized != AUDIT_INITIALIZED)
1383 return NULL;
1384
1385 if (unlikely(audit_filter_type(type)))
1386 return NULL;
1387
1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389 if (audit_pid && audit_pid == current->tgid)
1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391 else
1392 reserve = 0;
1393 }
1394
1395 while (audit_backlog_limit
1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398 long sleep_time;
1399
1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 if (sleep_time > 0) {
1402 sleep_time = wait_for_auditd(sleep_time);
1403 if (sleep_time > 0)
1404 continue;
1405 }
1406 }
1407 if (audit_rate_check() && printk_ratelimit())
1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 skb_queue_len(&audit_skb_queue),
1410 audit_backlog_limit);
1411 audit_log_lost("backlog limit exceeded");
1412 audit_backlog_wait_time = 0;
1413 wake_up(&audit_backlog_wait);
1414 return NULL;
1415 }
1416
1417 if (!reserve && !audit_backlog_wait_time)
1418 audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421 if (!ab) {
1422 audit_log_lost("out of memory in audit_log_start");
1423 return NULL;
1424 }
1425
1426 audit_get_stamp(ab->ctx, &t, &serial);
1427
1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 t.tv_sec, t.tv_nsec/1000000, serial);
1430 return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443 struct sk_buff *skb = ab->skb;
1444 int oldtail = skb_tailroom(skb);
1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 int newtail = skb_tailroom(skb);
1447
1448 if (ret < 0) {
1449 audit_log_lost("out of memory in audit_expand");
1450 return 0;
1451 }
1452
1453 skb->truesize += newtail - oldtail;
1454 return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer. If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time. Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 va_list args)
1465{
1466 int len, avail;
1467 struct sk_buff *skb;
1468 va_list args2;
1469
1470 if (!ab)
1471 return;
1472
1473 BUG_ON(!ab->skb);
1474 skb = ab->skb;
1475 avail = skb_tailroom(skb);
1476 if (avail == 0) {
1477 avail = audit_expand(ab, AUDIT_BUFSIZ);
1478 if (!avail)
1479 goto out;
1480 }
1481 va_copy(args2, args);
1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483 if (len >= avail) {
1484 /* The printk buffer is 1024 bytes long, so if we get
1485 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 * log everything that printk could have logged. */
1487 avail = audit_expand(ab,
1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489 if (!avail)
1490 goto out_va_end;
1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492 }
1493 if (len > 0)
1494 skb_put(skb, len);
1495out_va_end:
1496 va_end(args2);
1497out:
1498 return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511 va_list args;
1512
1513 if (!ab)
1514 return;
1515 va_start(args, fmt);
1516 audit_log_vformat(ab, fmt, args);
1517 va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532 size_t len)
1533{
1534 int i, avail, new_len;
1535 unsigned char *ptr;
1536 struct sk_buff *skb;
1537
1538 if (!ab)
1539 return;
1540
1541 BUG_ON(!ab->skb);
1542 skb = ab->skb;
1543 avail = skb_tailroom(skb);
1544 new_len = len<<1;
1545 if (new_len >= avail) {
1546 /* Round the buffer request up to the next multiple */
1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 avail = audit_expand(ab, new_len);
1549 if (!avail)
1550 return;
1551 }
1552
1553 ptr = skb_tail_pointer(skb);
1554 for (i = 0; i < len; i++)
1555 ptr = hex_byte_pack_upper(ptr, buf[i]);
1556 *ptr = 0;
1557 skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 size_t slen)
1566{
1567 int avail, new_len;
1568 unsigned char *ptr;
1569 struct sk_buff *skb;
1570
1571 if (!ab)
1572 return;
1573
1574 BUG_ON(!ab->skb);
1575 skb = ab->skb;
1576 avail = skb_tailroom(skb);
1577 new_len = slen + 3; /* enclosing quotes + null terminator */
1578 if (new_len > avail) {
1579 avail = audit_expand(ab, new_len);
1580 if (!avail)
1581 return;
1582 }
1583 ptr = skb_tail_pointer(skb);
1584 *ptr++ = '"';
1585 memcpy(ptr, string, slen);
1586 ptr += slen;
1587 *ptr++ = '"';
1588 *ptr = 0;
1589 skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599 const unsigned char *p;
1600 for (p = string; p < (const unsigned char *)string + len; p++) {
1601 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602 return true;
1603 }
1604 return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 size_t len)
1623{
1624 if (audit_string_contains_control(string, len))
1625 audit_log_n_hex(ab, string, len);
1626 else
1627 audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640 audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645 const struct path *path)
1646{
1647 char *p, *pathname;
1648
1649 if (prefix)
1650 audit_log_format(ab, "%s", prefix);
1651
1652 /* We will allow 11 spaces for ' (deleted)' to be appended */
1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 if (!pathname) {
1655 audit_log_string(ab, "<no_memory>");
1656 return;
1657 }
1658 p = d_path(path, pathname, PATH_MAX+11);
1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 /* FIXME: can we save some information here? */
1661 audit_log_string(ab, "<too_long>");
1662 } else
1663 audit_log_untrustedstring(ab, p);
1664 kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669 unsigned int sessionid = audit_get_sessionid(current);
1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677 audit_log_format(ab, " key=");
1678 if (key)
1679 audit_log_untrustedstring(ab, key);
1680 else
1681 audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686 int i;
1687
1688 audit_log_format(ab, " %s=", prefix);
1689 CAP_FOR_EACH_U32(i) {
1690 audit_log_format(ab, "%08x",
1691 cap->cap[CAP_LAST_U32 - i]);
1692 }
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697 kernel_cap_t *perm = &name->fcap.permitted;
1698 kernel_cap_t *inh = &name->fcap.inheritable;
1699 int log = 0;
1700
1701 if (!cap_isclear(*perm)) {
1702 audit_log_cap(ab, "cap_fp", perm);
1703 log = 1;
1704 }
1705 if (!cap_isclear(*inh)) {
1706 audit_log_cap(ab, "cap_fi", inh);
1707 log = 1;
1708 }
1709
1710 if (log)
1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716 const struct dentry *dentry)
1717{
1718 struct cpu_vfs_cap_data caps;
1719 int rc;
1720
1721 if (!dentry)
1722 return 0;
1723
1724 rc = get_vfs_caps_from_disk(dentry, &caps);
1725 if (rc)
1726 return rc;
1727
1728 name->fcap.permitted = caps.permitted;
1729 name->fcap.inheritable = caps.inheritable;
1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 VFS_CAP_REVISION_SHIFT;
1733
1734 return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739 struct inode *inode)
1740{
1741 name->ino = inode->i_ino;
1742 name->dev = inode->i_sb->s_dev;
1743 name->mode = inode->i_mode;
1744 name->uid = inode->i_uid;
1745 name->gid = inode->i_gid;
1746 name->rdev = inode->i_rdev;
1747 security_inode_getsecid(inode, &name->osid);
1748 audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 struct path *path, int record_num, int *call_panic)
1761{
1762 struct audit_buffer *ab;
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 if (!ab)
1765 return;
1766
1767 audit_log_format(ab, "item=%d", record_num);
1768
1769 if (path)
1770 audit_log_d_path(ab, " name=", path);
1771 else if (n->name) {
1772 switch (n->name_len) {
1773 case AUDIT_NAME_FULL:
1774 /* log the full path */
1775 audit_log_format(ab, " name=");
1776 audit_log_untrustedstring(ab, n->name->name);
1777 break;
1778 case 0:
1779 /* name was specified as a relative path and the
1780 * directory component is the cwd */
1781 audit_log_d_path(ab, " name=", &context->pwd);
1782 break;
1783 default:
1784 /* log the name's directory component */
1785 audit_log_format(ab, " name=");
1786 audit_log_n_untrustedstring(ab, n->name->name,
1787 n->name_len);
1788 }
1789 } else
1790 audit_log_format(ab, " name=(null)");
1791
1792 if (n->ino != AUDIT_INO_UNSET)
1793 audit_log_format(ab, " inode=%lu"
1794 " dev=%02x:%02x mode=%#ho"
1795 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 n->ino,
1797 MAJOR(n->dev),
1798 MINOR(n->dev),
1799 n->mode,
1800 from_kuid(&init_user_ns, n->uid),
1801 from_kgid(&init_user_ns, n->gid),
1802 MAJOR(n->rdev),
1803 MINOR(n->rdev));
1804 if (n->osid != 0) {
1805 char *ctx = NULL;
1806 u32 len;
1807 if (security_secid_to_secctx(
1808 n->osid, &ctx, &len)) {
1809 audit_log_format(ab, " osid=%u", n->osid);
1810 if (call_panic)
1811 *call_panic = 2;
1812 } else {
1813 audit_log_format(ab, " obj=%s", ctx);
1814 security_release_secctx(ctx, len);
1815 }
1816 }
1817
1818 /* log the audit_names record type */
1819 audit_log_format(ab, " nametype=");
1820 switch(n->type) {
1821 case AUDIT_TYPE_NORMAL:
1822 audit_log_format(ab, "NORMAL");
1823 break;
1824 case AUDIT_TYPE_PARENT:
1825 audit_log_format(ab, "PARENT");
1826 break;
1827 case AUDIT_TYPE_CHILD_DELETE:
1828 audit_log_format(ab, "DELETE");
1829 break;
1830 case AUDIT_TYPE_CHILD_CREATE:
1831 audit_log_format(ab, "CREATE");
1832 break;
1833 default:
1834 audit_log_format(ab, "UNKNOWN");
1835 break;
1836 }
1837
1838 audit_log_fcaps(ab, n);
1839 audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844 char *ctx = NULL;
1845 unsigned len;
1846 int error;
1847 u32 sid;
1848
1849 security_task_getsecid(current, &sid);
1850 if (!sid)
1851 return 0;
1852
1853 error = security_secid_to_secctx(sid, &ctx, &len);
1854 if (error) {
1855 if (error != -EINVAL)
1856 goto error_path;
1857 return 0;
1858 }
1859
1860 audit_log_format(ab, " subj=%s", ctx);
1861 security_release_secctx(ctx, len);
1862 return 0;
1863
1864error_path:
1865 audit_panic("error in audit_log_task_context");
1866 return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871 struct mm_struct *mm)
1872{
1873 struct file *exe_file;
1874
1875 if (!mm)
1876 goto out_null;
1877
1878 exe_file = get_mm_exe_file(mm);
1879 if (!exe_file)
1880 goto out_null;
1881
1882 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 fput(exe_file);
1884 return;
1885out_null:
1886 audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891 const struct cred *cred;
1892 char comm[sizeof(tsk->comm)];
1893 char *tty;
1894
1895 if (!ab)
1896 return;
1897
1898 /* tsk == current */
1899 cred = current_cred();
1900
1901 spin_lock_irq(&tsk->sighand->siglock);
1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 tty = tsk->signal->tty->name;
1904 else
1905 tty = "(none)";
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 audit_log_format(ab,
1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910 " euid=%u suid=%u fsuid=%u"
1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912 task_ppid_nr(tsk),
1913 task_pid_nr(tsk),
1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 from_kuid(&init_user_ns, cred->uid),
1916 from_kgid(&init_user_ns, cred->gid),
1917 from_kuid(&init_user_ns, cred->euid),
1918 from_kuid(&init_user_ns, cred->suid),
1919 from_kuid(&init_user_ns, cred->fsuid),
1920 from_kgid(&init_user_ns, cred->egid),
1921 from_kgid(&init_user_ns, cred->sgid),
1922 from_kgid(&init_user_ns, cred->fsgid),
1923 tty, audit_get_sessionid(tsk));
1924
1925 audit_log_format(ab, " comm=");
1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928 audit_log_d_path_exe(ab, tsk->mm);
1929 audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940 struct audit_buffer *ab;
1941 struct audit_names *name;
1942
1943 name = kzalloc(sizeof(*name), GFP_NOFS);
1944 if (!name)
1945 return;
1946
1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 AUDIT_ANOM_LINK);
1950 if (!ab)
1951 goto out;
1952 audit_log_format(ab, "op=%s", operation);
1953 audit_log_task_info(ab, current);
1954 audit_log_format(ab, " res=0");
1955 audit_log_end(ab);
1956
1957 /* Generate AUDIT_PATH record with object. */
1958 name->type = AUDIT_TYPE_NORMAL;
1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960 audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962 kfree(name);
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context. May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
1976 if (!ab)
1977 return;
1978 if (!audit_rate_check()) {
1979 audit_log_lost("rate limit exceeded");
1980 } else {
1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983 nlh->nlmsg_len = ab->skb->len;
1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985
1986 /*
1987 * The original kaudit unicast socket sends up messages with
1988 * nlmsg_len set to the payload length rather than the entire
1989 * message length. This breaks the standard set by netlink.
1990 * The existing auditd daemon assumes this breakage. Fixing
1991 * this would require co-ordinating a change in the established
1992 * protocol between the kaudit kernel subsystem and the auditd
1993 * userspace code.
1994 */
1995 nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997 if (audit_pid) {
1998 skb_queue_tail(&audit_skb_queue, ab->skb);
1999 wake_up_interruptible(&kauditd_wait);
2000 } else {
2001 audit_printk_skb(ab->skb);
2002 }
2003 ab->skb = NULL;
2004 }
2005 audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end. It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021 const char *fmt, ...)
2022{
2023 struct audit_buffer *ab;
2024 va_list args;
2025
2026 ab = audit_log_start(ctx, gfp_mask, type);
2027 if (ab) {
2028 va_start(args, fmt);
2029 audit_log_vformat(ab, fmt, args);
2030 va_end(args);
2031 audit_log_end(ab);
2032 }
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048 u32 len;
2049 char *secctx;
2050
2051 if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 audit_panic("Cannot convert secid to context");
2053 } else {
2054 audit_log_format(ab, " obj=%s", secctx);
2055 security_release_secctx(secctx, len);
2056 }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);