Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * fs/kernfs/file.c - kernfs file implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/seq_file.h>
 13#include <linux/slab.h>
 14#include <linux/poll.h>
 15#include <linux/pagemap.h>
 16#include <linux/sched.h>
 
 17
 18#include "kernfs-internal.h"
 19
 20/*
 21 * There's one kernfs_open_file for each open file and one kernfs_open_node
 22 * for each kernfs_node with one or more open files.
 23 *
 24 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
 25 * protected by kernfs_open_node_lock.
 26 *
 27 * filp->private_data points to seq_file whose ->private points to
 28 * kernfs_open_file.  kernfs_open_files are chained at
 29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
 30 */
 31static DEFINE_SPINLOCK(kernfs_open_node_lock);
 32static DEFINE_MUTEX(kernfs_open_file_mutex);
 33
 34struct kernfs_open_node {
 35	atomic_t		refcnt;
 36	atomic_t		event;
 37	wait_queue_head_t	poll;
 38	struct list_head	files; /* goes through kernfs_open_file.list */
 39};
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 41static struct kernfs_open_file *kernfs_of(struct file *file)
 42{
 43	return ((struct seq_file *)file->private_data)->private;
 44}
 45
 46/*
 47 * Determine the kernfs_ops for the given kernfs_node.  This function must
 48 * be called while holding an active reference.
 49 */
 50static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 51{
 52	if (kn->flags & KERNFS_LOCKDEP)
 53		lockdep_assert_held(kn);
 54	return kn->attr.ops;
 55}
 56
 57/*
 58 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 59 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 60 * a seq_file iteration which is fully initialized with an active reference
 61 * or an aborted kernfs_seq_start() due to get_active failure.  The
 62 * position pointer is the only context for each seq_file iteration and
 63 * thus the stop condition should be encoded in it.  As the return value is
 64 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 65 * choice to indicate get_active failure.
 66 *
 67 * Unfortunately, this is complicated due to the optional custom seq_file
 68 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 69 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 70 * custom seq_file operations and thus can't decide whether put_active
 71 * should be performed or not only on ERR_PTR(-ENODEV).
 72 *
 73 * This is worked around by factoring out the custom seq_stop() and
 74 * put_active part into kernfs_seq_stop_active(), skipping it from
 75 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 76 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 77 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 78 */
 79static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 80{
 81	struct kernfs_open_file *of = sf->private;
 82	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 83
 84	if (ops->seq_stop)
 85		ops->seq_stop(sf, v);
 86	kernfs_put_active(of->kn);
 87}
 88
 89static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 90{
 91	struct kernfs_open_file *of = sf->private;
 92	const struct kernfs_ops *ops;
 93
 94	/*
 95	 * @of->mutex nests outside active ref and is just to ensure that
 96	 * the ops aren't called concurrently for the same open file.
 97	 */
 98	mutex_lock(&of->mutex);
 99	if (!kernfs_get_active(of->kn))
100		return ERR_PTR(-ENODEV);
101
102	ops = kernfs_ops(of->kn);
103	if (ops->seq_start) {
104		void *next = ops->seq_start(sf, ppos);
105		/* see the comment above kernfs_seq_stop_active() */
106		if (next == ERR_PTR(-ENODEV))
107			kernfs_seq_stop_active(sf, next);
108		return next;
109	} else {
110		/*
111		 * The same behavior and code as single_open().  Returns
112		 * !NULL if pos is at the beginning; otherwise, NULL.
113		 */
114		return NULL + !*ppos;
115	}
116}
117
118static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
119{
120	struct kernfs_open_file *of = sf->private;
121	const struct kernfs_ops *ops = kernfs_ops(of->kn);
122
123	if (ops->seq_next) {
124		void *next = ops->seq_next(sf, v, ppos);
125		/* see the comment above kernfs_seq_stop_active() */
126		if (next == ERR_PTR(-ENODEV))
127			kernfs_seq_stop_active(sf, next);
128		return next;
129	} else {
130		/*
131		 * The same behavior and code as single_open(), always
132		 * terminate after the initial read.
133		 */
134		++*ppos;
135		return NULL;
136	}
137}
138
139static void kernfs_seq_stop(struct seq_file *sf, void *v)
140{
141	struct kernfs_open_file *of = sf->private;
142
143	if (v != ERR_PTR(-ENODEV))
144		kernfs_seq_stop_active(sf, v);
145	mutex_unlock(&of->mutex);
146}
147
148static int kernfs_seq_show(struct seq_file *sf, void *v)
149{
150	struct kernfs_open_file *of = sf->private;
151
152	of->event = atomic_read(&of->kn->attr.open->event);
153
154	return of->kn->attr.ops->seq_show(sf, v);
155}
156
157static const struct seq_operations kernfs_seq_ops = {
158	.start = kernfs_seq_start,
159	.next = kernfs_seq_next,
160	.stop = kernfs_seq_stop,
161	.show = kernfs_seq_show,
162};
163
164/*
165 * As reading a bin file can have side-effects, the exact offset and bytes
166 * specified in read(2) call should be passed to the read callback making
167 * it difficult to use seq_file.  Implement simplistic custom buffering for
168 * bin files.
169 */
170static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
171				       char __user *user_buf, size_t count,
172				       loff_t *ppos)
173{
174	ssize_t len = min_t(size_t, count, PAGE_SIZE);
175	const struct kernfs_ops *ops;
176	char *buf;
177
178	buf = kmalloc(len, GFP_KERNEL);
 
 
179	if (!buf)
180		return -ENOMEM;
181
182	/*
183	 * @of->mutex nests outside active ref and is just to ensure that
184	 * the ops aren't called concurrently for the same open file.
 
185	 */
186	mutex_lock(&of->mutex);
187	if (!kernfs_get_active(of->kn)) {
188		len = -ENODEV;
189		mutex_unlock(&of->mutex);
190		goto out_free;
191	}
192
 
193	ops = kernfs_ops(of->kn);
194	if (ops->read)
195		len = ops->read(of, buf, len, *ppos);
196	else
197		len = -EINVAL;
198
199	kernfs_put_active(of->kn);
200	mutex_unlock(&of->mutex);
201
202	if (len < 0)
203		goto out_free;
204
205	if (copy_to_user(user_buf, buf, len)) {
206		len = -EFAULT;
207		goto out_free;
208	}
209
210	*ppos += len;
211
 
 
 
212 out_free:
213	kfree(buf);
 
214	return len;
215}
216
217/**
218 * kernfs_fop_read - kernfs vfs read callback
219 * @file: file pointer
220 * @user_buf: data to write
221 * @count: number of bytes
222 * @ppos: starting offset
223 */
224static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
225			       size_t count, loff_t *ppos)
226{
227	struct kernfs_open_file *of = kernfs_of(file);
228
229	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
230		return seq_read(file, user_buf, count, ppos);
231	else
232		return kernfs_file_direct_read(of, user_buf, count, ppos);
233}
234
235/**
236 * kernfs_fop_write - kernfs vfs write callback
237 * @file: file pointer
238 * @user_buf: data to write
239 * @count: number of bytes
240 * @ppos: starting offset
241 *
242 * Copy data in from userland and pass it to the matching kernfs write
243 * operation.
244 *
245 * There is no easy way for us to know if userspace is only doing a partial
246 * write, so we don't support them. We expect the entire buffer to come on
247 * the first write.  Hint: if you're writing a value, first read the file,
248 * modify only the the value you're changing, then write entire buffer
249 * back.
250 */
251static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
252				size_t count, loff_t *ppos)
253{
254	struct kernfs_open_file *of = kernfs_of(file);
255	const struct kernfs_ops *ops;
256	size_t len;
257	char *buf;
258
259	if (of->atomic_write_len) {
260		len = count;
261		if (len > of->atomic_write_len)
262			return -E2BIG;
263	} else {
264		len = min_t(size_t, count, PAGE_SIZE);
265	}
266
267	buf = kmalloc(len + 1, GFP_KERNEL);
 
 
268	if (!buf)
269		return -ENOMEM;
270
271	if (copy_from_user(buf, user_buf, len)) {
272		len = -EFAULT;
273		goto out_free;
274	}
275	buf[len] = '\0';	/* guarantee string termination */
276
277	/*
278	 * @of->mutex nests outside active ref and is just to ensure that
279	 * the ops aren't called concurrently for the same open file.
 
280	 */
281	mutex_lock(&of->mutex);
282	if (!kernfs_get_active(of->kn)) {
283		mutex_unlock(&of->mutex);
284		len = -ENODEV;
285		goto out_free;
286	}
287
 
 
 
 
 
 
288	ops = kernfs_ops(of->kn);
289	if (ops->write)
290		len = ops->write(of, buf, len, *ppos);
291	else
292		len = -EINVAL;
293
294	kernfs_put_active(of->kn);
295	mutex_unlock(&of->mutex);
296
297	if (len > 0)
298		*ppos += len;
 
 
 
 
299out_free:
300	kfree(buf);
 
301	return len;
302}
303
304static void kernfs_vma_open(struct vm_area_struct *vma)
305{
306	struct file *file = vma->vm_file;
307	struct kernfs_open_file *of = kernfs_of(file);
308
309	if (!of->vm_ops)
310		return;
311
312	if (!kernfs_get_active(of->kn))
313		return;
314
315	if (of->vm_ops->open)
316		of->vm_ops->open(vma);
317
318	kernfs_put_active(of->kn);
319}
320
321static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
322{
323	struct file *file = vma->vm_file;
324	struct kernfs_open_file *of = kernfs_of(file);
325	int ret;
326
327	if (!of->vm_ops)
328		return VM_FAULT_SIGBUS;
329
330	if (!kernfs_get_active(of->kn))
331		return VM_FAULT_SIGBUS;
332
333	ret = VM_FAULT_SIGBUS;
334	if (of->vm_ops->fault)
335		ret = of->vm_ops->fault(vma, vmf);
336
337	kernfs_put_active(of->kn);
338	return ret;
339}
340
341static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
342				   struct vm_fault *vmf)
343{
344	struct file *file = vma->vm_file;
345	struct kernfs_open_file *of = kernfs_of(file);
346	int ret;
347
348	if (!of->vm_ops)
349		return VM_FAULT_SIGBUS;
350
351	if (!kernfs_get_active(of->kn))
352		return VM_FAULT_SIGBUS;
353
354	ret = 0;
355	if (of->vm_ops->page_mkwrite)
356		ret = of->vm_ops->page_mkwrite(vma, vmf);
357	else
358		file_update_time(file);
359
360	kernfs_put_active(of->kn);
361	return ret;
362}
363
364static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
365			     void *buf, int len, int write)
366{
367	struct file *file = vma->vm_file;
368	struct kernfs_open_file *of = kernfs_of(file);
369	int ret;
370
371	if (!of->vm_ops)
372		return -EINVAL;
373
374	if (!kernfs_get_active(of->kn))
375		return -EINVAL;
376
377	ret = -EINVAL;
378	if (of->vm_ops->access)
379		ret = of->vm_ops->access(vma, addr, buf, len, write);
380
381	kernfs_put_active(of->kn);
382	return ret;
383}
384
385#ifdef CONFIG_NUMA
386static int kernfs_vma_set_policy(struct vm_area_struct *vma,
387				 struct mempolicy *new)
388{
389	struct file *file = vma->vm_file;
390	struct kernfs_open_file *of = kernfs_of(file);
391	int ret;
392
393	if (!of->vm_ops)
394		return 0;
395
396	if (!kernfs_get_active(of->kn))
397		return -EINVAL;
398
399	ret = 0;
400	if (of->vm_ops->set_policy)
401		ret = of->vm_ops->set_policy(vma, new);
402
403	kernfs_put_active(of->kn);
404	return ret;
405}
406
407static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
408					       unsigned long addr)
409{
410	struct file *file = vma->vm_file;
411	struct kernfs_open_file *of = kernfs_of(file);
412	struct mempolicy *pol;
413
414	if (!of->vm_ops)
415		return vma->vm_policy;
416
417	if (!kernfs_get_active(of->kn))
418		return vma->vm_policy;
419
420	pol = vma->vm_policy;
421	if (of->vm_ops->get_policy)
422		pol = of->vm_ops->get_policy(vma, addr);
423
424	kernfs_put_active(of->kn);
425	return pol;
426}
427
428static int kernfs_vma_migrate(struct vm_area_struct *vma,
429			      const nodemask_t *from, const nodemask_t *to,
430			      unsigned long flags)
431{
432	struct file *file = vma->vm_file;
433	struct kernfs_open_file *of = kernfs_of(file);
434	int ret;
435
436	if (!of->vm_ops)
437		return 0;
438
439	if (!kernfs_get_active(of->kn))
440		return 0;
441
442	ret = 0;
443	if (of->vm_ops->migrate)
444		ret = of->vm_ops->migrate(vma, from, to, flags);
445
446	kernfs_put_active(of->kn);
447	return ret;
448}
449#endif
450
451static const struct vm_operations_struct kernfs_vm_ops = {
452	.open		= kernfs_vma_open,
453	.fault		= kernfs_vma_fault,
454	.page_mkwrite	= kernfs_vma_page_mkwrite,
455	.access		= kernfs_vma_access,
456#ifdef CONFIG_NUMA
457	.set_policy	= kernfs_vma_set_policy,
458	.get_policy	= kernfs_vma_get_policy,
459	.migrate	= kernfs_vma_migrate,
460#endif
461};
462
463static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
464{
465	struct kernfs_open_file *of = kernfs_of(file);
466	const struct kernfs_ops *ops;
467	int rc;
468
469	/*
470	 * mmap path and of->mutex are prone to triggering spurious lockdep
471	 * warnings and we don't want to add spurious locking dependency
472	 * between the two.  Check whether mmap is actually implemented
473	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
474	 * comment in kernfs_file_open() for more details.
475	 */
476	if (!(of->kn->flags & KERNFS_HAS_MMAP))
477		return -ENODEV;
478
479	mutex_lock(&of->mutex);
480
481	rc = -ENODEV;
482	if (!kernfs_get_active(of->kn))
483		goto out_unlock;
484
485	ops = kernfs_ops(of->kn);
486	rc = ops->mmap(of, vma);
487	if (rc)
488		goto out_put;
489
490	/*
491	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
492	 * to satisfy versions of X which crash if the mmap fails: that
493	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
494	 */
495	if (vma->vm_file != file)
496		goto out_put;
497
498	rc = -EINVAL;
499	if (of->mmapped && of->vm_ops != vma->vm_ops)
500		goto out_put;
501
502	/*
503	 * It is not possible to successfully wrap close.
504	 * So error if someone is trying to use close.
505	 */
506	rc = -EINVAL;
507	if (vma->vm_ops && vma->vm_ops->close)
508		goto out_put;
509
510	rc = 0;
511	of->mmapped = 1;
512	of->vm_ops = vma->vm_ops;
513	vma->vm_ops = &kernfs_vm_ops;
514out_put:
515	kernfs_put_active(of->kn);
516out_unlock:
517	mutex_unlock(&of->mutex);
518
519	return rc;
520}
521
522/**
523 *	kernfs_get_open_node - get or create kernfs_open_node
524 *	@kn: target kernfs_node
525 *	@of: kernfs_open_file for this instance of open
526 *
527 *	If @kn->attr.open exists, increment its reference count; otherwise,
528 *	create one.  @of is chained to the files list.
529 *
530 *	LOCKING:
531 *	Kernel thread context (may sleep).
532 *
533 *	RETURNS:
534 *	0 on success, -errno on failure.
535 */
536static int kernfs_get_open_node(struct kernfs_node *kn,
537				struct kernfs_open_file *of)
538{
539	struct kernfs_open_node *on, *new_on = NULL;
540
541 retry:
542	mutex_lock(&kernfs_open_file_mutex);
543	spin_lock_irq(&kernfs_open_node_lock);
544
545	if (!kn->attr.open && new_on) {
546		kn->attr.open = new_on;
547		new_on = NULL;
548	}
549
550	on = kn->attr.open;
551	if (on) {
552		atomic_inc(&on->refcnt);
553		list_add_tail(&of->list, &on->files);
554	}
555
556	spin_unlock_irq(&kernfs_open_node_lock);
557	mutex_unlock(&kernfs_open_file_mutex);
558
559	if (on) {
560		kfree(new_on);
561		return 0;
562	}
563
564	/* not there, initialize a new one and retry */
565	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
566	if (!new_on)
567		return -ENOMEM;
568
569	atomic_set(&new_on->refcnt, 0);
570	atomic_set(&new_on->event, 1);
571	init_waitqueue_head(&new_on->poll);
572	INIT_LIST_HEAD(&new_on->files);
573	goto retry;
574}
575
576/**
577 *	kernfs_put_open_node - put kernfs_open_node
578 *	@kn: target kernfs_nodet
579 *	@of: associated kernfs_open_file
580 *
581 *	Put @kn->attr.open and unlink @of from the files list.  If
582 *	reference count reaches zero, disassociate and free it.
583 *
584 *	LOCKING:
585 *	None.
586 */
587static void kernfs_put_open_node(struct kernfs_node *kn,
588				 struct kernfs_open_file *of)
589{
590	struct kernfs_open_node *on = kn->attr.open;
591	unsigned long flags;
592
593	mutex_lock(&kernfs_open_file_mutex);
594	spin_lock_irqsave(&kernfs_open_node_lock, flags);
595
596	if (of)
597		list_del(&of->list);
598
599	if (atomic_dec_and_test(&on->refcnt))
600		kn->attr.open = NULL;
601	else
602		on = NULL;
603
604	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
605	mutex_unlock(&kernfs_open_file_mutex);
606
607	kfree(on);
608}
609
610static int kernfs_fop_open(struct inode *inode, struct file *file)
611{
612	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
613	struct kernfs_root *root = kernfs_root(kn);
614	const struct kernfs_ops *ops;
615	struct kernfs_open_file *of;
616	bool has_read, has_write, has_mmap;
617	int error = -EACCES;
618
619	if (!kernfs_get_active(kn))
620		return -ENODEV;
621
622	ops = kernfs_ops(kn);
623
624	has_read = ops->seq_show || ops->read || ops->mmap;
625	has_write = ops->write || ops->mmap;
626	has_mmap = ops->mmap;
627
628	/* see the flag definition for details */
629	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
630		if ((file->f_mode & FMODE_WRITE) &&
631		    (!(inode->i_mode & S_IWUGO) || !has_write))
632			goto err_out;
633
634		if ((file->f_mode & FMODE_READ) &&
635		    (!(inode->i_mode & S_IRUGO) || !has_read))
636			goto err_out;
637	}
638
639	/* allocate a kernfs_open_file for the file */
640	error = -ENOMEM;
641	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
642	if (!of)
643		goto err_out;
644
645	/*
646	 * The following is done to give a different lockdep key to
647	 * @of->mutex for files which implement mmap.  This is a rather
648	 * crude way to avoid false positive lockdep warning around
649	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
650	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
651	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
652	 * open file has a separate mutex, it's okay as long as those don't
653	 * happen on the same file.  At this point, we can't easily give
654	 * each file a separate locking class.  Let's differentiate on
655	 * whether the file has mmap or not for now.
656	 *
657	 * Both paths of the branch look the same.  They're supposed to
658	 * look that way and give @of->mutex different static lockdep keys.
659	 */
660	if (has_mmap)
661		mutex_init(&of->mutex);
662	else
663		mutex_init(&of->mutex);
664
665	of->kn = kn;
666	of->file = file;
667
668	/*
669	 * Write path needs to atomic_write_len outside active reference.
670	 * Cache it in open_file.  See kernfs_fop_write() for details.
671	 */
672	of->atomic_write_len = ops->atomic_write_len;
673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674	/*
675	 * Always instantiate seq_file even if read access doesn't use
676	 * seq_file or is not requested.  This unifies private data access
677	 * and readable regular files are the vast majority anyway.
678	 */
679	if (ops->seq_show)
680		error = seq_open(file, &kernfs_seq_ops);
681	else
682		error = seq_open(file, NULL);
683	if (error)
684		goto err_free;
685
686	((struct seq_file *)file->private_data)->private = of;
687
688	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
689	if (file->f_mode & FMODE_WRITE)
690		file->f_mode |= FMODE_PWRITE;
691
692	/* make sure we have open node struct */
693	error = kernfs_get_open_node(kn, of);
694	if (error)
695		goto err_close;
696
697	/* open succeeded, put active references */
698	kernfs_put_active(kn);
699	return 0;
700
701err_close:
702	seq_release(inode, file);
703err_free:
 
704	kfree(of);
705err_out:
706	kernfs_put_active(kn);
707	return error;
708}
709
710static int kernfs_fop_release(struct inode *inode, struct file *filp)
711{
712	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
713	struct kernfs_open_file *of = kernfs_of(filp);
714
715	kernfs_put_open_node(kn, of);
716	seq_release(inode, filp);
 
717	kfree(of);
718
719	return 0;
720}
721
722void kernfs_unmap_bin_file(struct kernfs_node *kn)
723{
724	struct kernfs_open_node *on;
725	struct kernfs_open_file *of;
726
727	if (!(kn->flags & KERNFS_HAS_MMAP))
728		return;
729
730	spin_lock_irq(&kernfs_open_node_lock);
731	on = kn->attr.open;
732	if (on)
733		atomic_inc(&on->refcnt);
734	spin_unlock_irq(&kernfs_open_node_lock);
735	if (!on)
736		return;
737
738	mutex_lock(&kernfs_open_file_mutex);
739	list_for_each_entry(of, &on->files, list) {
740		struct inode *inode = file_inode(of->file);
741		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
742	}
743	mutex_unlock(&kernfs_open_file_mutex);
744
745	kernfs_put_open_node(kn, NULL);
746}
747
748/*
749 * Kernfs attribute files are pollable.  The idea is that you read
750 * the content and then you use 'poll' or 'select' to wait for
751 * the content to change.  When the content changes (assuming the
752 * manager for the kobject supports notification), poll will
753 * return POLLERR|POLLPRI, and select will return the fd whether
754 * it is waiting for read, write, or exceptions.
755 * Once poll/select indicates that the value has changed, you
756 * need to close and re-open the file, or seek to 0 and read again.
757 * Reminder: this only works for attributes which actively support
758 * it, and it is not possible to test an attribute from userspace
759 * to see if it supports poll (Neither 'poll' nor 'select' return
760 * an appropriate error code).  When in doubt, set a suitable timeout value.
761 */
762static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
763{
764	struct kernfs_open_file *of = kernfs_of(filp);
765	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
766	struct kernfs_open_node *on = kn->attr.open;
767
768	/* need parent for the kobj, grab both */
769	if (!kernfs_get_active(kn))
770		goto trigger;
771
772	poll_wait(filp, &on->poll, wait);
773
774	kernfs_put_active(kn);
775
776	if (of->event != atomic_read(&on->event))
777		goto trigger;
778
779	return DEFAULT_POLLMASK;
780
781 trigger:
782	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
783}
784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785/**
786 * kernfs_notify - notify a kernfs file
787 * @kn: file to notify
788 *
789 * Notify @kn such that poll(2) on @kn wakes up.
 
790 */
791void kernfs_notify(struct kernfs_node *kn)
792{
793	struct kernfs_open_node *on;
794	unsigned long flags;
795
796	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 
797
798	if (!WARN_ON(kernfs_type(kn) != KERNFS_FILE)) {
799		on = kn->attr.open;
800		if (on) {
801			atomic_inc(&on->event);
802			wake_up_interruptible(&on->poll);
803		}
804	}
805
806	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
807}
808EXPORT_SYMBOL_GPL(kernfs_notify);
809
810const struct file_operations kernfs_file_fops = {
811	.read		= kernfs_fop_read,
812	.write		= kernfs_fop_write,
813	.llseek		= generic_file_llseek,
814	.mmap		= kernfs_fop_mmap,
815	.open		= kernfs_fop_open,
816	.release	= kernfs_fop_release,
817	.poll		= kernfs_fop_poll,
818};
819
820/**
821 * __kernfs_create_file - kernfs internal function to create a file
822 * @parent: directory to create the file in
823 * @name: name of the file
824 * @mode: mode of the file
825 * @size: size of the file
826 * @ops: kernfs operations for the file
827 * @priv: private data for the file
828 * @ns: optional namespace tag of the file
829 * @static_name: don't copy file name
830 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
831 *
832 * Returns the created node on success, ERR_PTR() value on error.
833 */
834struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
835					 const char *name,
836					 umode_t mode, loff_t size,
837					 const struct kernfs_ops *ops,
838					 void *priv, const void *ns,
839					 bool name_is_static,
840					 struct lock_class_key *key)
841{
842	struct kernfs_node *kn;
843	unsigned flags;
844	int rc;
845
846	flags = KERNFS_FILE;
847	if (name_is_static)
848		flags |= KERNFS_STATIC_NAME;
849
850	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
851	if (!kn)
852		return ERR_PTR(-ENOMEM);
853
854	kn->attr.ops = ops;
855	kn->attr.size = size;
856	kn->ns = ns;
857	kn->priv = priv;
858
859#ifdef CONFIG_DEBUG_LOCK_ALLOC
860	if (key) {
861		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
862		kn->flags |= KERNFS_LOCKDEP;
863	}
864#endif
865
866	/*
867	 * kn->attr.ops is accesible only while holding active ref.  We
868	 * need to know whether some ops are implemented outside active
869	 * ref.  Cache their existence in flags.
870	 */
871	if (ops->seq_show)
872		kn->flags |= KERNFS_HAS_SEQ_SHOW;
873	if (ops->mmap)
874		kn->flags |= KERNFS_HAS_MMAP;
875
876	rc = kernfs_add_one(kn);
877	if (rc) {
878		kernfs_put(kn);
879		return ERR_PTR(rc);
880	}
881	return kn;
882}
v4.6
  1/*
  2 * fs/kernfs/file.c - kernfs file implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/seq_file.h>
 13#include <linux/slab.h>
 14#include <linux/poll.h>
 15#include <linux/pagemap.h>
 16#include <linux/sched.h>
 17#include <linux/fsnotify.h>
 18
 19#include "kernfs-internal.h"
 20
 21/*
 22 * There's one kernfs_open_file for each open file and one kernfs_open_node
 23 * for each kernfs_node with one or more open files.
 24 *
 25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
 26 * protected by kernfs_open_node_lock.
 27 *
 28 * filp->private_data points to seq_file whose ->private points to
 29 * kernfs_open_file.  kernfs_open_files are chained at
 30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
 31 */
 32static DEFINE_SPINLOCK(kernfs_open_node_lock);
 33static DEFINE_MUTEX(kernfs_open_file_mutex);
 34
 35struct kernfs_open_node {
 36	atomic_t		refcnt;
 37	atomic_t		event;
 38	wait_queue_head_t	poll;
 39	struct list_head	files; /* goes through kernfs_open_file.list */
 40};
 41
 42/*
 43 * kernfs_notify() may be called from any context and bounces notifications
 44 * through a work item.  To minimize space overhead in kernfs_node, the
 45 * pending queue is implemented as a singly linked list of kernfs_nodes.
 46 * The list is terminated with the self pointer so that whether a
 47 * kernfs_node is on the list or not can be determined by testing the next
 48 * pointer for NULL.
 49 */
 50#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
 51
 52static DEFINE_SPINLOCK(kernfs_notify_lock);
 53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
 54
 55static struct kernfs_open_file *kernfs_of(struct file *file)
 56{
 57	return ((struct seq_file *)file->private_data)->private;
 58}
 59
 60/*
 61 * Determine the kernfs_ops for the given kernfs_node.  This function must
 62 * be called while holding an active reference.
 63 */
 64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 65{
 66	if (kn->flags & KERNFS_LOCKDEP)
 67		lockdep_assert_held(kn);
 68	return kn->attr.ops;
 69}
 70
 71/*
 72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 74 * a seq_file iteration which is fully initialized with an active reference
 75 * or an aborted kernfs_seq_start() due to get_active failure.  The
 76 * position pointer is the only context for each seq_file iteration and
 77 * thus the stop condition should be encoded in it.  As the return value is
 78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 79 * choice to indicate get_active failure.
 80 *
 81 * Unfortunately, this is complicated due to the optional custom seq_file
 82 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 84 * custom seq_file operations and thus can't decide whether put_active
 85 * should be performed or not only on ERR_PTR(-ENODEV).
 86 *
 87 * This is worked around by factoring out the custom seq_stop() and
 88 * put_active part into kernfs_seq_stop_active(), skipping it from
 89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 92 */
 93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 94{
 95	struct kernfs_open_file *of = sf->private;
 96	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 97
 98	if (ops->seq_stop)
 99		ops->seq_stop(sf, v);
100	kernfs_put_active(of->kn);
101}
102
103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104{
105	struct kernfs_open_file *of = sf->private;
106	const struct kernfs_ops *ops;
107
108	/*
109	 * @of->mutex nests outside active ref and is primarily to ensure that
110	 * the ops aren't called concurrently for the same open file.
111	 */
112	mutex_lock(&of->mutex);
113	if (!kernfs_get_active(of->kn))
114		return ERR_PTR(-ENODEV);
115
116	ops = kernfs_ops(of->kn);
117	if (ops->seq_start) {
118		void *next = ops->seq_start(sf, ppos);
119		/* see the comment above kernfs_seq_stop_active() */
120		if (next == ERR_PTR(-ENODEV))
121			kernfs_seq_stop_active(sf, next);
122		return next;
123	} else {
124		/*
125		 * The same behavior and code as single_open().  Returns
126		 * !NULL if pos is at the beginning; otherwise, NULL.
127		 */
128		return NULL + !*ppos;
129	}
130}
131
132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133{
134	struct kernfs_open_file *of = sf->private;
135	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136
137	if (ops->seq_next) {
138		void *next = ops->seq_next(sf, v, ppos);
139		/* see the comment above kernfs_seq_stop_active() */
140		if (next == ERR_PTR(-ENODEV))
141			kernfs_seq_stop_active(sf, next);
142		return next;
143	} else {
144		/*
145		 * The same behavior and code as single_open(), always
146		 * terminate after the initial read.
147		 */
148		++*ppos;
149		return NULL;
150	}
151}
152
153static void kernfs_seq_stop(struct seq_file *sf, void *v)
154{
155	struct kernfs_open_file *of = sf->private;
156
157	if (v != ERR_PTR(-ENODEV))
158		kernfs_seq_stop_active(sf, v);
159	mutex_unlock(&of->mutex);
160}
161
162static int kernfs_seq_show(struct seq_file *sf, void *v)
163{
164	struct kernfs_open_file *of = sf->private;
165
166	of->event = atomic_read(&of->kn->attr.open->event);
167
168	return of->kn->attr.ops->seq_show(sf, v);
169}
170
171static const struct seq_operations kernfs_seq_ops = {
172	.start = kernfs_seq_start,
173	.next = kernfs_seq_next,
174	.stop = kernfs_seq_stop,
175	.show = kernfs_seq_show,
176};
177
178/*
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file.  Implement simplistic custom buffering for
182 * bin files.
183 */
184static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185				       char __user *user_buf, size_t count,
186				       loff_t *ppos)
187{
188	ssize_t len = min_t(size_t, count, PAGE_SIZE);
189	const struct kernfs_ops *ops;
190	char *buf;
191
192	buf = of->prealloc_buf;
193	if (!buf)
194		buf = kmalloc(len, GFP_KERNEL);
195	if (!buf)
196		return -ENOMEM;
197
198	/*
199	 * @of->mutex nests outside active ref and is used both to ensure that
200	 * the ops aren't called concurrently for the same open file, and
201	 * to provide exclusive access to ->prealloc_buf (when that exists).
202	 */
203	mutex_lock(&of->mutex);
204	if (!kernfs_get_active(of->kn)) {
205		len = -ENODEV;
206		mutex_unlock(&of->mutex);
207		goto out_free;
208	}
209
210	of->event = atomic_read(&of->kn->attr.open->event);
211	ops = kernfs_ops(of->kn);
212	if (ops->read)
213		len = ops->read(of, buf, len, *ppos);
214	else
215		len = -EINVAL;
216
 
 
 
217	if (len < 0)
218		goto out_unlock;
219
220	if (copy_to_user(user_buf, buf, len)) {
221		len = -EFAULT;
222		goto out_unlock;
223	}
224
225	*ppos += len;
226
227 out_unlock:
228	kernfs_put_active(of->kn);
229	mutex_unlock(&of->mutex);
230 out_free:
231	if (buf != of->prealloc_buf)
232		kfree(buf);
233	return len;
234}
235
236/**
237 * kernfs_fop_read - kernfs vfs read callback
238 * @file: file pointer
239 * @user_buf: data to write
240 * @count: number of bytes
241 * @ppos: starting offset
242 */
243static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
244			       size_t count, loff_t *ppos)
245{
246	struct kernfs_open_file *of = kernfs_of(file);
247
248	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
249		return seq_read(file, user_buf, count, ppos);
250	else
251		return kernfs_file_direct_read(of, user_buf, count, ppos);
252}
253
254/**
255 * kernfs_fop_write - kernfs vfs write callback
256 * @file: file pointer
257 * @user_buf: data to write
258 * @count: number of bytes
259 * @ppos: starting offset
260 *
261 * Copy data in from userland and pass it to the matching kernfs write
262 * operation.
263 *
264 * There is no easy way for us to know if userspace is only doing a partial
265 * write, so we don't support them. We expect the entire buffer to come on
266 * the first write.  Hint: if you're writing a value, first read the file,
267 * modify only the the value you're changing, then write entire buffer
268 * back.
269 */
270static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
271				size_t count, loff_t *ppos)
272{
273	struct kernfs_open_file *of = kernfs_of(file);
274	const struct kernfs_ops *ops;
275	size_t len;
276	char *buf;
277
278	if (of->atomic_write_len) {
279		len = count;
280		if (len > of->atomic_write_len)
281			return -E2BIG;
282	} else {
283		len = min_t(size_t, count, PAGE_SIZE);
284	}
285
286	buf = of->prealloc_buf;
287	if (!buf)
288		buf = kmalloc(len + 1, GFP_KERNEL);
289	if (!buf)
290		return -ENOMEM;
291
 
 
 
 
 
 
292	/*
293	 * @of->mutex nests outside active ref and is used both to ensure that
294	 * the ops aren't called concurrently for the same open file, and
295	 * to provide exclusive access to ->prealloc_buf (when that exists).
296	 */
297	mutex_lock(&of->mutex);
298	if (!kernfs_get_active(of->kn)) {
299		mutex_unlock(&of->mutex);
300		len = -ENODEV;
301		goto out_free;
302	}
303
304	if (copy_from_user(buf, user_buf, len)) {
305		len = -EFAULT;
306		goto out_unlock;
307	}
308	buf[len] = '\0';	/* guarantee string termination */
309
310	ops = kernfs_ops(of->kn);
311	if (ops->write)
312		len = ops->write(of, buf, len, *ppos);
313	else
314		len = -EINVAL;
315
 
 
 
316	if (len > 0)
317		*ppos += len;
318
319out_unlock:
320	kernfs_put_active(of->kn);
321	mutex_unlock(&of->mutex);
322out_free:
323	if (buf != of->prealloc_buf)
324		kfree(buf);
325	return len;
326}
327
328static void kernfs_vma_open(struct vm_area_struct *vma)
329{
330	struct file *file = vma->vm_file;
331	struct kernfs_open_file *of = kernfs_of(file);
332
333	if (!of->vm_ops)
334		return;
335
336	if (!kernfs_get_active(of->kn))
337		return;
338
339	if (of->vm_ops->open)
340		of->vm_ops->open(vma);
341
342	kernfs_put_active(of->kn);
343}
344
345static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
346{
347	struct file *file = vma->vm_file;
348	struct kernfs_open_file *of = kernfs_of(file);
349	int ret;
350
351	if (!of->vm_ops)
352		return VM_FAULT_SIGBUS;
353
354	if (!kernfs_get_active(of->kn))
355		return VM_FAULT_SIGBUS;
356
357	ret = VM_FAULT_SIGBUS;
358	if (of->vm_ops->fault)
359		ret = of->vm_ops->fault(vma, vmf);
360
361	kernfs_put_active(of->kn);
362	return ret;
363}
364
365static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
366				   struct vm_fault *vmf)
367{
368	struct file *file = vma->vm_file;
369	struct kernfs_open_file *of = kernfs_of(file);
370	int ret;
371
372	if (!of->vm_ops)
373		return VM_FAULT_SIGBUS;
374
375	if (!kernfs_get_active(of->kn))
376		return VM_FAULT_SIGBUS;
377
378	ret = 0;
379	if (of->vm_ops->page_mkwrite)
380		ret = of->vm_ops->page_mkwrite(vma, vmf);
381	else
382		file_update_time(file);
383
384	kernfs_put_active(of->kn);
385	return ret;
386}
387
388static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
389			     void *buf, int len, int write)
390{
391	struct file *file = vma->vm_file;
392	struct kernfs_open_file *of = kernfs_of(file);
393	int ret;
394
395	if (!of->vm_ops)
396		return -EINVAL;
397
398	if (!kernfs_get_active(of->kn))
399		return -EINVAL;
400
401	ret = -EINVAL;
402	if (of->vm_ops->access)
403		ret = of->vm_ops->access(vma, addr, buf, len, write);
404
405	kernfs_put_active(of->kn);
406	return ret;
407}
408
409#ifdef CONFIG_NUMA
410static int kernfs_vma_set_policy(struct vm_area_struct *vma,
411				 struct mempolicy *new)
412{
413	struct file *file = vma->vm_file;
414	struct kernfs_open_file *of = kernfs_of(file);
415	int ret;
416
417	if (!of->vm_ops)
418		return 0;
419
420	if (!kernfs_get_active(of->kn))
421		return -EINVAL;
422
423	ret = 0;
424	if (of->vm_ops->set_policy)
425		ret = of->vm_ops->set_policy(vma, new);
426
427	kernfs_put_active(of->kn);
428	return ret;
429}
430
431static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
432					       unsigned long addr)
433{
434	struct file *file = vma->vm_file;
435	struct kernfs_open_file *of = kernfs_of(file);
436	struct mempolicy *pol;
437
438	if (!of->vm_ops)
439		return vma->vm_policy;
440
441	if (!kernfs_get_active(of->kn))
442		return vma->vm_policy;
443
444	pol = vma->vm_policy;
445	if (of->vm_ops->get_policy)
446		pol = of->vm_ops->get_policy(vma, addr);
447
448	kernfs_put_active(of->kn);
449	return pol;
450}
451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452#endif
453
454static const struct vm_operations_struct kernfs_vm_ops = {
455	.open		= kernfs_vma_open,
456	.fault		= kernfs_vma_fault,
457	.page_mkwrite	= kernfs_vma_page_mkwrite,
458	.access		= kernfs_vma_access,
459#ifdef CONFIG_NUMA
460	.set_policy	= kernfs_vma_set_policy,
461	.get_policy	= kernfs_vma_get_policy,
 
462#endif
463};
464
465static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
466{
467	struct kernfs_open_file *of = kernfs_of(file);
468	const struct kernfs_ops *ops;
469	int rc;
470
471	/*
472	 * mmap path and of->mutex are prone to triggering spurious lockdep
473	 * warnings and we don't want to add spurious locking dependency
474	 * between the two.  Check whether mmap is actually implemented
475	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
476	 * comment in kernfs_file_open() for more details.
477	 */
478	if (!(of->kn->flags & KERNFS_HAS_MMAP))
479		return -ENODEV;
480
481	mutex_lock(&of->mutex);
482
483	rc = -ENODEV;
484	if (!kernfs_get_active(of->kn))
485		goto out_unlock;
486
487	ops = kernfs_ops(of->kn);
488	rc = ops->mmap(of, vma);
489	if (rc)
490		goto out_put;
491
492	/*
493	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
494	 * to satisfy versions of X which crash if the mmap fails: that
495	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
496	 */
497	if (vma->vm_file != file)
498		goto out_put;
499
500	rc = -EINVAL;
501	if (of->mmapped && of->vm_ops != vma->vm_ops)
502		goto out_put;
503
504	/*
505	 * It is not possible to successfully wrap close.
506	 * So error if someone is trying to use close.
507	 */
508	rc = -EINVAL;
509	if (vma->vm_ops && vma->vm_ops->close)
510		goto out_put;
511
512	rc = 0;
513	of->mmapped = 1;
514	of->vm_ops = vma->vm_ops;
515	vma->vm_ops = &kernfs_vm_ops;
516out_put:
517	kernfs_put_active(of->kn);
518out_unlock:
519	mutex_unlock(&of->mutex);
520
521	return rc;
522}
523
524/**
525 *	kernfs_get_open_node - get or create kernfs_open_node
526 *	@kn: target kernfs_node
527 *	@of: kernfs_open_file for this instance of open
528 *
529 *	If @kn->attr.open exists, increment its reference count; otherwise,
530 *	create one.  @of is chained to the files list.
531 *
532 *	LOCKING:
533 *	Kernel thread context (may sleep).
534 *
535 *	RETURNS:
536 *	0 on success, -errno on failure.
537 */
538static int kernfs_get_open_node(struct kernfs_node *kn,
539				struct kernfs_open_file *of)
540{
541	struct kernfs_open_node *on, *new_on = NULL;
542
543 retry:
544	mutex_lock(&kernfs_open_file_mutex);
545	spin_lock_irq(&kernfs_open_node_lock);
546
547	if (!kn->attr.open && new_on) {
548		kn->attr.open = new_on;
549		new_on = NULL;
550	}
551
552	on = kn->attr.open;
553	if (on) {
554		atomic_inc(&on->refcnt);
555		list_add_tail(&of->list, &on->files);
556	}
557
558	spin_unlock_irq(&kernfs_open_node_lock);
559	mutex_unlock(&kernfs_open_file_mutex);
560
561	if (on) {
562		kfree(new_on);
563		return 0;
564	}
565
566	/* not there, initialize a new one and retry */
567	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
568	if (!new_on)
569		return -ENOMEM;
570
571	atomic_set(&new_on->refcnt, 0);
572	atomic_set(&new_on->event, 1);
573	init_waitqueue_head(&new_on->poll);
574	INIT_LIST_HEAD(&new_on->files);
575	goto retry;
576}
577
578/**
579 *	kernfs_put_open_node - put kernfs_open_node
580 *	@kn: target kernfs_nodet
581 *	@of: associated kernfs_open_file
582 *
583 *	Put @kn->attr.open and unlink @of from the files list.  If
584 *	reference count reaches zero, disassociate and free it.
585 *
586 *	LOCKING:
587 *	None.
588 */
589static void kernfs_put_open_node(struct kernfs_node *kn,
590				 struct kernfs_open_file *of)
591{
592	struct kernfs_open_node *on = kn->attr.open;
593	unsigned long flags;
594
595	mutex_lock(&kernfs_open_file_mutex);
596	spin_lock_irqsave(&kernfs_open_node_lock, flags);
597
598	if (of)
599		list_del(&of->list);
600
601	if (atomic_dec_and_test(&on->refcnt))
602		kn->attr.open = NULL;
603	else
604		on = NULL;
605
606	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
607	mutex_unlock(&kernfs_open_file_mutex);
608
609	kfree(on);
610}
611
612static int kernfs_fop_open(struct inode *inode, struct file *file)
613{
614	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
615	struct kernfs_root *root = kernfs_root(kn);
616	const struct kernfs_ops *ops;
617	struct kernfs_open_file *of;
618	bool has_read, has_write, has_mmap;
619	int error = -EACCES;
620
621	if (!kernfs_get_active(kn))
622		return -ENODEV;
623
624	ops = kernfs_ops(kn);
625
626	has_read = ops->seq_show || ops->read || ops->mmap;
627	has_write = ops->write || ops->mmap;
628	has_mmap = ops->mmap;
629
630	/* see the flag definition for details */
631	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
632		if ((file->f_mode & FMODE_WRITE) &&
633		    (!(inode->i_mode & S_IWUGO) || !has_write))
634			goto err_out;
635
636		if ((file->f_mode & FMODE_READ) &&
637		    (!(inode->i_mode & S_IRUGO) || !has_read))
638			goto err_out;
639	}
640
641	/* allocate a kernfs_open_file for the file */
642	error = -ENOMEM;
643	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
644	if (!of)
645		goto err_out;
646
647	/*
648	 * The following is done to give a different lockdep key to
649	 * @of->mutex for files which implement mmap.  This is a rather
650	 * crude way to avoid false positive lockdep warning around
651	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
652	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
653	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
654	 * open file has a separate mutex, it's okay as long as those don't
655	 * happen on the same file.  At this point, we can't easily give
656	 * each file a separate locking class.  Let's differentiate on
657	 * whether the file has mmap or not for now.
658	 *
659	 * Both paths of the branch look the same.  They're supposed to
660	 * look that way and give @of->mutex different static lockdep keys.
661	 */
662	if (has_mmap)
663		mutex_init(&of->mutex);
664	else
665		mutex_init(&of->mutex);
666
667	of->kn = kn;
668	of->file = file;
669
670	/*
671	 * Write path needs to atomic_write_len outside active reference.
672	 * Cache it in open_file.  See kernfs_fop_write() for details.
673	 */
674	of->atomic_write_len = ops->atomic_write_len;
675
676	error = -EINVAL;
677	/*
678	 * ->seq_show is incompatible with ->prealloc,
679	 * as seq_read does its own allocation.
680	 * ->read must be used instead.
681	 */
682	if (ops->prealloc && ops->seq_show)
683		goto err_free;
684	if (ops->prealloc) {
685		int len = of->atomic_write_len ?: PAGE_SIZE;
686		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
687		error = -ENOMEM;
688		if (!of->prealloc_buf)
689			goto err_free;
690	}
691
692	/*
693	 * Always instantiate seq_file even if read access doesn't use
694	 * seq_file or is not requested.  This unifies private data access
695	 * and readable regular files are the vast majority anyway.
696	 */
697	if (ops->seq_show)
698		error = seq_open(file, &kernfs_seq_ops);
699	else
700		error = seq_open(file, NULL);
701	if (error)
702		goto err_free;
703
704	((struct seq_file *)file->private_data)->private = of;
705
706	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
707	if (file->f_mode & FMODE_WRITE)
708		file->f_mode |= FMODE_PWRITE;
709
710	/* make sure we have open node struct */
711	error = kernfs_get_open_node(kn, of);
712	if (error)
713		goto err_close;
714
715	/* open succeeded, put active references */
716	kernfs_put_active(kn);
717	return 0;
718
719err_close:
720	seq_release(inode, file);
721err_free:
722	kfree(of->prealloc_buf);
723	kfree(of);
724err_out:
725	kernfs_put_active(kn);
726	return error;
727}
728
729static int kernfs_fop_release(struct inode *inode, struct file *filp)
730{
731	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
732	struct kernfs_open_file *of = kernfs_of(filp);
733
734	kernfs_put_open_node(kn, of);
735	seq_release(inode, filp);
736	kfree(of->prealloc_buf);
737	kfree(of);
738
739	return 0;
740}
741
742void kernfs_unmap_bin_file(struct kernfs_node *kn)
743{
744	struct kernfs_open_node *on;
745	struct kernfs_open_file *of;
746
747	if (!(kn->flags & KERNFS_HAS_MMAP))
748		return;
749
750	spin_lock_irq(&kernfs_open_node_lock);
751	on = kn->attr.open;
752	if (on)
753		atomic_inc(&on->refcnt);
754	spin_unlock_irq(&kernfs_open_node_lock);
755	if (!on)
756		return;
757
758	mutex_lock(&kernfs_open_file_mutex);
759	list_for_each_entry(of, &on->files, list) {
760		struct inode *inode = file_inode(of->file);
761		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
762	}
763	mutex_unlock(&kernfs_open_file_mutex);
764
765	kernfs_put_open_node(kn, NULL);
766}
767
768/*
769 * Kernfs attribute files are pollable.  The idea is that you read
770 * the content and then you use 'poll' or 'select' to wait for
771 * the content to change.  When the content changes (assuming the
772 * manager for the kobject supports notification), poll will
773 * return POLLERR|POLLPRI, and select will return the fd whether
774 * it is waiting for read, write, or exceptions.
775 * Once poll/select indicates that the value has changed, you
776 * need to close and re-open the file, or seek to 0 and read again.
777 * Reminder: this only works for attributes which actively support
778 * it, and it is not possible to test an attribute from userspace
779 * to see if it supports poll (Neither 'poll' nor 'select' return
780 * an appropriate error code).  When in doubt, set a suitable timeout value.
781 */
782static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
783{
784	struct kernfs_open_file *of = kernfs_of(filp);
785	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
786	struct kernfs_open_node *on = kn->attr.open;
787
 
788	if (!kernfs_get_active(kn))
789		goto trigger;
790
791	poll_wait(filp, &on->poll, wait);
792
793	kernfs_put_active(kn);
794
795	if (of->event != atomic_read(&on->event))
796		goto trigger;
797
798	return DEFAULT_POLLMASK;
799
800 trigger:
801	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
802}
803
804static void kernfs_notify_workfn(struct work_struct *work)
805{
806	struct kernfs_node *kn;
807	struct kernfs_open_node *on;
808	struct kernfs_super_info *info;
809repeat:
810	/* pop one off the notify_list */
811	spin_lock_irq(&kernfs_notify_lock);
812	kn = kernfs_notify_list;
813	if (kn == KERNFS_NOTIFY_EOL) {
814		spin_unlock_irq(&kernfs_notify_lock);
815		return;
816	}
817	kernfs_notify_list = kn->attr.notify_next;
818	kn->attr.notify_next = NULL;
819	spin_unlock_irq(&kernfs_notify_lock);
820
821	/* kick poll */
822	spin_lock_irq(&kernfs_open_node_lock);
823
824	on = kn->attr.open;
825	if (on) {
826		atomic_inc(&on->event);
827		wake_up_interruptible(&on->poll);
828	}
829
830	spin_unlock_irq(&kernfs_open_node_lock);
831
832	/* kick fsnotify */
833	mutex_lock(&kernfs_mutex);
834
835	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
836		struct inode *inode;
837		struct dentry *dentry;
838
839		inode = ilookup(info->sb, kn->ino);
840		if (!inode)
841			continue;
842
843		dentry = d_find_any_alias(inode);
844		if (dentry) {
845			fsnotify_parent(NULL, dentry, FS_MODIFY);
846			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
847				 NULL, 0);
848			dput(dentry);
849		}
850
851		iput(inode);
852	}
853
854	mutex_unlock(&kernfs_mutex);
855	kernfs_put(kn);
856	goto repeat;
857}
858
859/**
860 * kernfs_notify - notify a kernfs file
861 * @kn: file to notify
862 *
863 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
864 * context.
865 */
866void kernfs_notify(struct kernfs_node *kn)
867{
868	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
869	unsigned long flags;
870
871	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
872		return;
873
874	spin_lock_irqsave(&kernfs_notify_lock, flags);
875	if (!kn->attr.notify_next) {
876		kernfs_get(kn);
877		kn->attr.notify_next = kernfs_notify_list;
878		kernfs_notify_list = kn;
879		schedule_work(&kernfs_notify_work);
880	}
881	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 
882}
883EXPORT_SYMBOL_GPL(kernfs_notify);
884
885const struct file_operations kernfs_file_fops = {
886	.read		= kernfs_fop_read,
887	.write		= kernfs_fop_write,
888	.llseek		= generic_file_llseek,
889	.mmap		= kernfs_fop_mmap,
890	.open		= kernfs_fop_open,
891	.release	= kernfs_fop_release,
892	.poll		= kernfs_fop_poll,
893};
894
895/**
896 * __kernfs_create_file - kernfs internal function to create a file
897 * @parent: directory to create the file in
898 * @name: name of the file
899 * @mode: mode of the file
900 * @size: size of the file
901 * @ops: kernfs operations for the file
902 * @priv: private data for the file
903 * @ns: optional namespace tag of the file
 
904 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
905 *
906 * Returns the created node on success, ERR_PTR() value on error.
907 */
908struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
909					 const char *name,
910					 umode_t mode, loff_t size,
911					 const struct kernfs_ops *ops,
912					 void *priv, const void *ns,
 
913					 struct lock_class_key *key)
914{
915	struct kernfs_node *kn;
916	unsigned flags;
917	int rc;
918
919	flags = KERNFS_FILE;
 
 
920
921	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
922	if (!kn)
923		return ERR_PTR(-ENOMEM);
924
925	kn->attr.ops = ops;
926	kn->attr.size = size;
927	kn->ns = ns;
928	kn->priv = priv;
929
930#ifdef CONFIG_DEBUG_LOCK_ALLOC
931	if (key) {
932		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
933		kn->flags |= KERNFS_LOCKDEP;
934	}
935#endif
936
937	/*
938	 * kn->attr.ops is accesible only while holding active ref.  We
939	 * need to know whether some ops are implemented outside active
940	 * ref.  Cache their existence in flags.
941	 */
942	if (ops->seq_show)
943		kn->flags |= KERNFS_HAS_SEQ_SHOW;
944	if (ops->mmap)
945		kn->flags |= KERNFS_HAS_MMAP;
946
947	rc = kernfs_add_one(kn);
948	if (rc) {
949		kernfs_put(kn);
950		return ERR_PTR(rc);
951	}
952	return kn;
953}