Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
 
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39#include "internal.h"
  40
  41#define rdev_crit(rdev, fmt, ...)					\
  42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_err(rdev, fmt, ...)					\
  44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_warn(rdev, fmt, ...)					\
  46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_info(rdev, fmt, ...)					\
  48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49#define rdev_dbg(rdev, fmt, ...)					\
  50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  51
  52static DEFINE_MUTEX(regulator_list_mutex);
  53static LIST_HEAD(regulator_list);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
 
 
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67	struct list_head list;
  68	const char *dev_name;   /* The dev_name() for the consumer */
  69	const char *supply;
  70	struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
  79	struct list_head list;
  80	int gpio;
  81	u32 enable_count;	/* a number of enabled shared GPIO */
  82	u32 request_count;	/* a number of requested shared GPIO */
  83	unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92	struct list_head list;
  93	struct device *src_dev;
  94	const char *src_supply;
  95	struct device *alias_dev;
  96	const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static void _notifier_call_chain(struct regulator_dev *rdev,
 105				  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107				     int min_uV, int max_uV);
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109					  struct device *dev,
 110					  const char *supply_name);
 
 
 
 
 
 
 111
 112static const char *rdev_get_name(struct regulator_dev *rdev)
 113{
 114	if (rdev->constraints && rdev->constraints->name)
 115		return rdev->constraints->name;
 116	else if (rdev->desc->name)
 117		return rdev->desc->name;
 118	else
 119		return "";
 120}
 121
 122static bool have_full_constraints(void)
 123{
 124	return has_full_constraints || of_have_populated_dt();
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127/**
 128 * of_get_regulator - get a regulator device node based on supply name
 129 * @dev: Device pointer for the consumer (of regulator) device
 130 * @supply: regulator supply name
 131 *
 132 * Extract the regulator device node corresponding to the supply name.
 133 * returns the device node corresponding to the regulator if found, else
 134 * returns NULL.
 135 */
 136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 137{
 138	struct device_node *regnode = NULL;
 139	char prop_name[32]; /* 32 is max size of property name */
 140
 141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 142
 143	snprintf(prop_name, 32, "%s-supply", supply);
 144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 145
 146	if (!regnode) {
 147		dev_dbg(dev, "Looking up %s property in node %s failed",
 148				prop_name, dev->of_node->full_name);
 149		return NULL;
 150	}
 151	return regnode;
 152}
 153
 154static int _regulator_can_change_status(struct regulator_dev *rdev)
 155{
 156	if (!rdev->constraints)
 157		return 0;
 158
 159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 160		return 1;
 161	else
 162		return 0;
 163}
 164
 165/* Platform voltage constraint check */
 166static int regulator_check_voltage(struct regulator_dev *rdev,
 167				   int *min_uV, int *max_uV)
 168{
 169	BUG_ON(*min_uV > *max_uV);
 170
 171	if (!rdev->constraints) {
 172		rdev_err(rdev, "no constraints\n");
 173		return -ENODEV;
 174	}
 175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 176		rdev_err(rdev, "operation not allowed\n");
 177		return -EPERM;
 178	}
 179
 180	if (*max_uV > rdev->constraints->max_uV)
 181		*max_uV = rdev->constraints->max_uV;
 182	if (*min_uV < rdev->constraints->min_uV)
 183		*min_uV = rdev->constraints->min_uV;
 184
 185	if (*min_uV > *max_uV) {
 186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 187			 *min_uV, *max_uV);
 188		return -EINVAL;
 189	}
 190
 191	return 0;
 192}
 193
 194/* Make sure we select a voltage that suits the needs of all
 195 * regulator consumers
 196 */
 197static int regulator_check_consumers(struct regulator_dev *rdev,
 198				     int *min_uV, int *max_uV)
 199{
 200	struct regulator *regulator;
 201
 202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 203		/*
 204		 * Assume consumers that didn't say anything are OK
 205		 * with anything in the constraint range.
 206		 */
 207		if (!regulator->min_uV && !regulator->max_uV)
 208			continue;
 209
 210		if (*max_uV > regulator->max_uV)
 211			*max_uV = regulator->max_uV;
 212		if (*min_uV < regulator->min_uV)
 213			*min_uV = regulator->min_uV;
 214	}
 215
 216	if (*min_uV > *max_uV) {
 217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 218			*min_uV, *max_uV);
 219		return -EINVAL;
 220	}
 221
 222	return 0;
 223}
 224
 225/* current constraint check */
 226static int regulator_check_current_limit(struct regulator_dev *rdev,
 227					int *min_uA, int *max_uA)
 228{
 229	BUG_ON(*min_uA > *max_uA);
 230
 231	if (!rdev->constraints) {
 232		rdev_err(rdev, "no constraints\n");
 233		return -ENODEV;
 234	}
 235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 236		rdev_err(rdev, "operation not allowed\n");
 237		return -EPERM;
 238	}
 239
 240	if (*max_uA > rdev->constraints->max_uA)
 241		*max_uA = rdev->constraints->max_uA;
 242	if (*min_uA < rdev->constraints->min_uA)
 243		*min_uA = rdev->constraints->min_uA;
 244
 245	if (*min_uA > *max_uA) {
 246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 247			 *min_uA, *max_uA);
 248		return -EINVAL;
 249	}
 250
 251	return 0;
 252}
 253
 254/* operating mode constraint check */
 255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 256{
 257	switch (*mode) {
 258	case REGULATOR_MODE_FAST:
 259	case REGULATOR_MODE_NORMAL:
 260	case REGULATOR_MODE_IDLE:
 261	case REGULATOR_MODE_STANDBY:
 262		break;
 263	default:
 264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 265		return -EINVAL;
 266	}
 267
 268	if (!rdev->constraints) {
 269		rdev_err(rdev, "no constraints\n");
 270		return -ENODEV;
 271	}
 272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 273		rdev_err(rdev, "operation not allowed\n");
 274		return -EPERM;
 275	}
 276
 277	/* The modes are bitmasks, the most power hungry modes having
 278	 * the lowest values. If the requested mode isn't supported
 279	 * try higher modes. */
 280	while (*mode) {
 281		if (rdev->constraints->valid_modes_mask & *mode)
 282			return 0;
 283		*mode /= 2;
 284	}
 285
 286	return -EINVAL;
 287}
 288
 289/* dynamic regulator mode switching constraint check */
 290static int regulator_check_drms(struct regulator_dev *rdev)
 291{
 292	if (!rdev->constraints) {
 293		rdev_err(rdev, "no constraints\n");
 294		return -ENODEV;
 295	}
 296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 297		rdev_err(rdev, "operation not allowed\n");
 298		return -EPERM;
 299	}
 300	return 0;
 301}
 302
 303static ssize_t regulator_uV_show(struct device *dev,
 304				struct device_attribute *attr, char *buf)
 305{
 306	struct regulator_dev *rdev = dev_get_drvdata(dev);
 307	ssize_t ret;
 308
 309	mutex_lock(&rdev->mutex);
 310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 311	mutex_unlock(&rdev->mutex);
 312
 313	return ret;
 314}
 315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 316
 317static ssize_t regulator_uA_show(struct device *dev,
 318				struct device_attribute *attr, char *buf)
 319{
 320	struct regulator_dev *rdev = dev_get_drvdata(dev);
 321
 322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 323}
 324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 325
 326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 327			 char *buf)
 328{
 329	struct regulator_dev *rdev = dev_get_drvdata(dev);
 330
 331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 332}
 333static DEVICE_ATTR_RO(name);
 334
 335static ssize_t regulator_print_opmode(char *buf, int mode)
 336{
 337	switch (mode) {
 338	case REGULATOR_MODE_FAST:
 339		return sprintf(buf, "fast\n");
 340	case REGULATOR_MODE_NORMAL:
 341		return sprintf(buf, "normal\n");
 342	case REGULATOR_MODE_IDLE:
 343		return sprintf(buf, "idle\n");
 344	case REGULATOR_MODE_STANDBY:
 345		return sprintf(buf, "standby\n");
 346	}
 347	return sprintf(buf, "unknown\n");
 348}
 349
 350static ssize_t regulator_opmode_show(struct device *dev,
 351				    struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 356}
 357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 358
 359static ssize_t regulator_print_state(char *buf, int state)
 360{
 361	if (state > 0)
 362		return sprintf(buf, "enabled\n");
 363	else if (state == 0)
 364		return sprintf(buf, "disabled\n");
 365	else
 366		return sprintf(buf, "unknown\n");
 367}
 368
 369static ssize_t regulator_state_show(struct device *dev,
 370				   struct device_attribute *attr, char *buf)
 371{
 372	struct regulator_dev *rdev = dev_get_drvdata(dev);
 373	ssize_t ret;
 374
 375	mutex_lock(&rdev->mutex);
 376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 377	mutex_unlock(&rdev->mutex);
 378
 379	return ret;
 380}
 381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 382
 383static ssize_t regulator_status_show(struct device *dev,
 384				   struct device_attribute *attr, char *buf)
 385{
 386	struct regulator_dev *rdev = dev_get_drvdata(dev);
 387	int status;
 388	char *label;
 389
 390	status = rdev->desc->ops->get_status(rdev);
 391	if (status < 0)
 392		return status;
 393
 394	switch (status) {
 395	case REGULATOR_STATUS_OFF:
 396		label = "off";
 397		break;
 398	case REGULATOR_STATUS_ON:
 399		label = "on";
 400		break;
 401	case REGULATOR_STATUS_ERROR:
 402		label = "error";
 403		break;
 404	case REGULATOR_STATUS_FAST:
 405		label = "fast";
 406		break;
 407	case REGULATOR_STATUS_NORMAL:
 408		label = "normal";
 409		break;
 410	case REGULATOR_STATUS_IDLE:
 411		label = "idle";
 412		break;
 413	case REGULATOR_STATUS_STANDBY:
 414		label = "standby";
 415		break;
 416	case REGULATOR_STATUS_BYPASS:
 417		label = "bypass";
 418		break;
 419	case REGULATOR_STATUS_UNDEFINED:
 420		label = "undefined";
 421		break;
 422	default:
 423		return -ERANGE;
 424	}
 425
 426	return sprintf(buf, "%s\n", label);
 427}
 428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 429
 430static ssize_t regulator_min_uA_show(struct device *dev,
 431				    struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434
 435	if (!rdev->constraints)
 436		return sprintf(buf, "constraint not defined\n");
 437
 438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 439}
 440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 441
 442static ssize_t regulator_max_uA_show(struct device *dev,
 443				    struct device_attribute *attr, char *buf)
 444{
 445	struct regulator_dev *rdev = dev_get_drvdata(dev);
 446
 447	if (!rdev->constraints)
 448		return sprintf(buf, "constraint not defined\n");
 449
 450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 451}
 452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 453
 454static ssize_t regulator_min_uV_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 463}
 464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 465
 466static ssize_t regulator_max_uV_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 475}
 476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 477
 478static ssize_t regulator_total_uA_show(struct device *dev,
 479				      struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482	struct regulator *regulator;
 483	int uA = 0;
 484
 485	mutex_lock(&rdev->mutex);
 486	list_for_each_entry(regulator, &rdev->consumer_list, list)
 487		uA += regulator->uA_load;
 488	mutex_unlock(&rdev->mutex);
 489	return sprintf(buf, "%d\n", uA);
 490}
 491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 492
 493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 494			      char *buf)
 495{
 496	struct regulator_dev *rdev = dev_get_drvdata(dev);
 497	return sprintf(buf, "%d\n", rdev->use_count);
 498}
 499static DEVICE_ATTR_RO(num_users);
 500
 501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 502			 char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	switch (rdev->desc->type) {
 507	case REGULATOR_VOLTAGE:
 508		return sprintf(buf, "voltage\n");
 509	case REGULATOR_CURRENT:
 510		return sprintf(buf, "current\n");
 511	}
 512	return sprintf(buf, "unknown\n");
 513}
 514static DEVICE_ATTR_RO(type);
 515
 516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 517				struct device_attribute *attr, char *buf)
 518{
 519	struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 522}
 523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 524		regulator_suspend_mem_uV_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 532}
 533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 534		regulator_suspend_disk_uV_show, NULL);
 535
 536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 537				struct device_attribute *attr, char *buf)
 538{
 539	struct regulator_dev *rdev = dev_get_drvdata(dev);
 540
 541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 542}
 543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 544		regulator_suspend_standby_uV_show, NULL);
 545
 546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 547				struct device_attribute *attr, char *buf)
 548{
 549	struct regulator_dev *rdev = dev_get_drvdata(dev);
 550
 551	return regulator_print_opmode(buf,
 552		rdev->constraints->state_mem.mode);
 553}
 554static DEVICE_ATTR(suspend_mem_mode, 0444,
 555		regulator_suspend_mem_mode_show, NULL);
 556
 557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 558				struct device_attribute *attr, char *buf)
 559{
 560	struct regulator_dev *rdev = dev_get_drvdata(dev);
 561
 562	return regulator_print_opmode(buf,
 563		rdev->constraints->state_disk.mode);
 564}
 565static DEVICE_ATTR(suspend_disk_mode, 0444,
 566		regulator_suspend_disk_mode_show, NULL);
 567
 568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 569				struct device_attribute *attr, char *buf)
 570{
 571	struct regulator_dev *rdev = dev_get_drvdata(dev);
 572
 573	return regulator_print_opmode(buf,
 574		rdev->constraints->state_standby.mode);
 575}
 576static DEVICE_ATTR(suspend_standby_mode, 0444,
 577		regulator_suspend_standby_mode_show, NULL);
 578
 579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 580				   struct device_attribute *attr, char *buf)
 581{
 582	struct regulator_dev *rdev = dev_get_drvdata(dev);
 583
 584	return regulator_print_state(buf,
 585			rdev->constraints->state_mem.enabled);
 586}
 587static DEVICE_ATTR(suspend_mem_state, 0444,
 588		regulator_suspend_mem_state_show, NULL);
 589
 590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 591				   struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595	return regulator_print_state(buf,
 596			rdev->constraints->state_disk.enabled);
 597}
 598static DEVICE_ATTR(suspend_disk_state, 0444,
 599		regulator_suspend_disk_state_show, NULL);
 600
 601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 602				   struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return regulator_print_state(buf,
 607			rdev->constraints->state_standby.enabled);
 608}
 609static DEVICE_ATTR(suspend_standby_state, 0444,
 610		regulator_suspend_standby_state_show, NULL);
 611
 612static ssize_t regulator_bypass_show(struct device *dev,
 613				     struct device_attribute *attr, char *buf)
 614{
 615	struct regulator_dev *rdev = dev_get_drvdata(dev);
 616	const char *report;
 617	bool bypass;
 618	int ret;
 619
 620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 621
 622	if (ret != 0)
 623		report = "unknown";
 624	else if (bypass)
 625		report = "enabled";
 626	else
 627		report = "disabled";
 628
 629	return sprintf(buf, "%s\n", report);
 630}
 631static DEVICE_ATTR(bypass, 0444,
 632		   regulator_bypass_show, NULL);
 633
 634/*
 635 * These are the only attributes are present for all regulators.
 636 * Other attributes are a function of regulator functionality.
 637 */
 638static struct attribute *regulator_dev_attrs[] = {
 639	&dev_attr_name.attr,
 640	&dev_attr_num_users.attr,
 641	&dev_attr_type.attr,
 642	NULL,
 643};
 644ATTRIBUTE_GROUPS(regulator_dev);
 645
 646static void regulator_dev_release(struct device *dev)
 647{
 648	struct regulator_dev *rdev = dev_get_drvdata(dev);
 649	kfree(rdev);
 650}
 651
 652static struct class regulator_class = {
 653	.name = "regulator",
 654	.dev_release = regulator_dev_release,
 655	.dev_groups = regulator_dev_groups,
 656};
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static void drms_uA_update(struct regulator_dev *rdev)
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 
 
 
 
 
 
 666	err = regulator_check_drms(rdev);
 667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 668	    (!rdev->desc->ops->get_voltage &&
 669	     !rdev->desc->ops->get_voltage_sel) ||
 670	    !rdev->desc->ops->set_mode)
 671		return;
 
 
 
 
 
 672
 673	/* get output voltage */
 674	output_uV = _regulator_get_voltage(rdev);
 675	if (output_uV <= 0)
 676		return;
 
 
 677
 678	/* get input voltage */
 679	input_uV = 0;
 680	if (rdev->supply)
 681		input_uV = regulator_get_voltage(rdev->supply);
 682	if (input_uV <= 0)
 683		input_uV = rdev->constraints->input_uV;
 684	if (input_uV <= 0)
 685		return;
 
 
 686
 687	/* calc total requested load */
 688	list_for_each_entry(sibling, &rdev->consumer_list, list)
 689		current_uA += sibling->uA_load;
 690
 691	/* now get the optimum mode for our new total regulator load */
 692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 693						  output_uV, current_uA);
 694
 695	/* check the new mode is allowed */
 696	err = regulator_mode_constrain(rdev, &mode);
 697	if (err == 0)
 698		rdev->desc->ops->set_mode(rdev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701static int suspend_set_state(struct regulator_dev *rdev,
 702	struct regulator_state *rstate)
 703{
 704	int ret = 0;
 705
 706	/* If we have no suspend mode configration don't set anything;
 707	 * only warn if the driver implements set_suspend_voltage or
 708	 * set_suspend_mode callback.
 709	 */
 710	if (!rstate->enabled && !rstate->disabled) {
 711		if (rdev->desc->ops->set_suspend_voltage ||
 712		    rdev->desc->ops->set_suspend_mode)
 713			rdev_warn(rdev, "No configuration\n");
 714		return 0;
 715	}
 716
 717	if (rstate->enabled && rstate->disabled) {
 718		rdev_err(rdev, "invalid configuration\n");
 719		return -EINVAL;
 720	}
 721
 722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 723		ret = rdev->desc->ops->set_suspend_enable(rdev);
 724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 725		ret = rdev->desc->ops->set_suspend_disable(rdev);
 726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 727		ret = 0;
 728
 729	if (ret < 0) {
 730		rdev_err(rdev, "failed to enabled/disable\n");
 731		return ret;
 732	}
 733
 734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 736		if (ret < 0) {
 737			rdev_err(rdev, "failed to set voltage\n");
 738			return ret;
 739		}
 740	}
 741
 742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 744		if (ret < 0) {
 745			rdev_err(rdev, "failed to set mode\n");
 746			return ret;
 747		}
 748	}
 749	return ret;
 750}
 751
 752/* locks held by caller */
 753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 754{
 
 
 755	if (!rdev->constraints)
 756		return -EINVAL;
 757
 758	switch (state) {
 759	case PM_SUSPEND_STANDBY:
 760		return suspend_set_state(rdev,
 761			&rdev->constraints->state_standby);
 762	case PM_SUSPEND_MEM:
 763		return suspend_set_state(rdev,
 764			&rdev->constraints->state_mem);
 765	case PM_SUSPEND_MAX:
 766		return suspend_set_state(rdev,
 767			&rdev->constraints->state_disk);
 768	default:
 769		return -EINVAL;
 770	}
 771}
 772
 773static void print_constraints(struct regulator_dev *rdev)
 774{
 775	struct regulation_constraints *constraints = rdev->constraints;
 776	char buf[80] = "";
 
 777	int count = 0;
 778	int ret;
 779
 780	if (constraints->min_uV && constraints->max_uV) {
 781		if (constraints->min_uV == constraints->max_uV)
 782			count += sprintf(buf + count, "%d mV ",
 783					 constraints->min_uV / 1000);
 784		else
 785			count += sprintf(buf + count, "%d <--> %d mV ",
 786					 constraints->min_uV / 1000,
 787					 constraints->max_uV / 1000);
 
 788	}
 789
 790	if (!constraints->min_uV ||
 791	    constraints->min_uV != constraints->max_uV) {
 792		ret = _regulator_get_voltage(rdev);
 793		if (ret > 0)
 794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 795	}
 796
 797	if (constraints->uV_offset)
 798		count += sprintf(buf, "%dmV offset ",
 799				 constraints->uV_offset / 1000);
 800
 801	if (constraints->min_uA && constraints->max_uA) {
 802		if (constraints->min_uA == constraints->max_uA)
 803			count += sprintf(buf + count, "%d mA ",
 804					 constraints->min_uA / 1000);
 805		else
 806			count += sprintf(buf + count, "%d <--> %d mA ",
 807					 constraints->min_uA / 1000,
 808					 constraints->max_uA / 1000);
 
 809	}
 810
 811	if (!constraints->min_uA ||
 812	    constraints->min_uA != constraints->max_uA) {
 813		ret = _regulator_get_current_limit(rdev);
 814		if (ret > 0)
 815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 816	}
 817
 818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 819		count += sprintf(buf + count, "fast ");
 820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 821		count += sprintf(buf + count, "normal ");
 822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 823		count += sprintf(buf + count, "idle ");
 824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 825		count += sprintf(buf + count, "standby");
 826
 827	if (!count)
 828		sprintf(buf, "no parameters");
 829
 830	rdev_info(rdev, "%s\n", buf);
 831
 832	if ((constraints->min_uV != constraints->max_uV) &&
 833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 834		rdev_warn(rdev,
 835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 836}
 837
 838static int machine_constraints_voltage(struct regulator_dev *rdev,
 839	struct regulation_constraints *constraints)
 840{
 841	struct regulator_ops *ops = rdev->desc->ops;
 842	int ret;
 843
 844	/* do we need to apply the constraint voltage */
 845	if (rdev->constraints->apply_uV &&
 846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 847		ret = _regulator_do_set_voltage(rdev,
 848						rdev->constraints->min_uV,
 849						rdev->constraints->max_uV);
 850		if (ret < 0) {
 851			rdev_err(rdev, "failed to apply %duV constraint\n",
 852				 rdev->constraints->min_uV);
 853			return ret;
 
 
 
 
 
 
 
 
 
 
 
 854		}
 855	}
 856
 857	/* constrain machine-level voltage specs to fit
 858	 * the actual range supported by this regulator.
 859	 */
 860	if (ops->list_voltage && rdev->desc->n_voltages) {
 861		int	count = rdev->desc->n_voltages;
 862		int	i;
 863		int	min_uV = INT_MAX;
 864		int	max_uV = INT_MIN;
 865		int	cmin = constraints->min_uV;
 866		int	cmax = constraints->max_uV;
 867
 868		/* it's safe to autoconfigure fixed-voltage supplies
 869		   and the constraints are used by list_voltage. */
 870		if (count == 1 && !cmin) {
 871			cmin = 1;
 872			cmax = INT_MAX;
 873			constraints->min_uV = cmin;
 874			constraints->max_uV = cmax;
 875		}
 876
 877		/* voltage constraints are optional */
 878		if ((cmin == 0) && (cmax == 0))
 879			return 0;
 880
 881		/* else require explicit machine-level constraints */
 882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 883			rdev_err(rdev, "invalid voltage constraints\n");
 884			return -EINVAL;
 885		}
 886
 887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 888		for (i = 0; i < count; i++) {
 889			int	value;
 890
 891			value = ops->list_voltage(rdev, i);
 892			if (value <= 0)
 893				continue;
 894
 895			/* maybe adjust [min_uV..max_uV] */
 896			if (value >= cmin && value < min_uV)
 897				min_uV = value;
 898			if (value <= cmax && value > max_uV)
 899				max_uV = value;
 900		}
 901
 902		/* final: [min_uV..max_uV] valid iff constraints valid */
 903		if (max_uV < min_uV) {
 904			rdev_err(rdev,
 905				 "unsupportable voltage constraints %u-%uuV\n",
 906				 min_uV, max_uV);
 907			return -EINVAL;
 908		}
 909
 910		/* use regulator's subset of machine constraints */
 911		if (constraints->min_uV < min_uV) {
 912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 913				 constraints->min_uV, min_uV);
 914			constraints->min_uV = min_uV;
 915		}
 916		if (constraints->max_uV > max_uV) {
 917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 918				 constraints->max_uV, max_uV);
 919			constraints->max_uV = max_uV;
 920		}
 921	}
 922
 923	return 0;
 924}
 925
 926static int machine_constraints_current(struct regulator_dev *rdev,
 927	struct regulation_constraints *constraints)
 928{
 929	struct regulator_ops *ops = rdev->desc->ops;
 930	int ret;
 931
 932	if (!constraints->min_uA && !constraints->max_uA)
 933		return 0;
 934
 935	if (constraints->min_uA > constraints->max_uA) {
 936		rdev_err(rdev, "Invalid current constraints\n");
 937		return -EINVAL;
 938	}
 939
 940	if (!ops->set_current_limit || !ops->get_current_limit) {
 941		rdev_warn(rdev, "Operation of current configuration missing\n");
 942		return 0;
 943	}
 944
 945	/* Set regulator current in constraints range */
 946	ret = ops->set_current_limit(rdev, constraints->min_uA,
 947			constraints->max_uA);
 948	if (ret < 0) {
 949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 950		return ret;
 951	}
 952
 953	return 0;
 954}
 955
 956static int _regulator_do_enable(struct regulator_dev *rdev);
 957
 958/**
 959 * set_machine_constraints - sets regulator constraints
 960 * @rdev: regulator source
 961 * @constraints: constraints to apply
 962 *
 963 * Allows platform initialisation code to define and constrain
 964 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 965 * Constraints *must* be set by platform code in order for some
 966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 967 * set_mode.
 968 */
 969static int set_machine_constraints(struct regulator_dev *rdev,
 970	const struct regulation_constraints *constraints)
 971{
 972	int ret = 0;
 973	struct regulator_ops *ops = rdev->desc->ops;
 974
 975	if (constraints)
 976		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 977					    GFP_KERNEL);
 978	else
 979		rdev->constraints = kzalloc(sizeof(*constraints),
 980					    GFP_KERNEL);
 981	if (!rdev->constraints)
 982		return -ENOMEM;
 983
 984	ret = machine_constraints_voltage(rdev, rdev->constraints);
 985	if (ret != 0)
 986		goto out;
 987
 988	ret = machine_constraints_current(rdev, rdev->constraints);
 989	if (ret != 0)
 990		goto out;
 
 
 
 
 
 
 
 
 
 991
 992	/* do we need to setup our suspend state */
 993	if (rdev->constraints->initial_state) {
 994		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 995		if (ret < 0) {
 996			rdev_err(rdev, "failed to set suspend state\n");
 997			goto out;
 998		}
 999	}
1000
1001	if (rdev->constraints->initial_mode) {
1002		if (!ops->set_mode) {
1003			rdev_err(rdev, "no set_mode operation\n");
1004			ret = -EINVAL;
1005			goto out;
1006		}
1007
1008		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009		if (ret < 0) {
1010			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011			goto out;
1012		}
1013	}
1014
1015	/* If the constraints say the regulator should be on at this point
1016	 * and we have control then make sure it is enabled.
1017	 */
1018	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019		ret = _regulator_do_enable(rdev);
1020		if (ret < 0 && ret != -EINVAL) {
1021			rdev_err(rdev, "failed to enable\n");
1022			goto out;
1023		}
1024	}
1025
1026	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027		&& ops->set_ramp_delay) {
1028		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029		if (ret < 0) {
1030			rdev_err(rdev, "failed to set ramp_delay\n");
1031			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032		}
1033	}
1034
1035	print_constraints(rdev);
1036	return 0;
1037out:
1038	kfree(rdev->constraints);
1039	rdev->constraints = NULL;
1040	return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053		      struct regulator_dev *supply_rdev)
1054{
1055	int err;
1056
1057	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
 
 
 
1059	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060	if (rdev->supply == NULL) {
1061		err = -ENOMEM;
1062		return err;
1063	}
1064	supply_rdev->open_count++;
1065
1066	return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev:         regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply:       symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices.  Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081				      const char *consumer_dev_name,
1082				      const char *supply)
1083{
1084	struct regulator_map *node;
1085	int has_dev;
1086
1087	if (supply == NULL)
1088		return -EINVAL;
1089
1090	if (consumer_dev_name != NULL)
1091		has_dev = 1;
1092	else
1093		has_dev = 0;
1094
1095	list_for_each_entry(node, &regulator_map_list, list) {
1096		if (node->dev_name && consumer_dev_name) {
1097			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098				continue;
1099		} else if (node->dev_name || consumer_dev_name) {
1100			continue;
1101		}
1102
1103		if (strcmp(node->supply, supply) != 0)
1104			continue;
1105
1106		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107			 consumer_dev_name,
1108			 dev_name(&node->regulator->dev),
1109			 node->regulator->desc->name,
1110			 supply,
1111			 dev_name(&rdev->dev), rdev_get_name(rdev));
1112		return -EBUSY;
1113	}
1114
1115	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116	if (node == NULL)
1117		return -ENOMEM;
1118
1119	node->regulator = rdev;
1120	node->supply = supply;
1121
1122	if (has_dev) {
1123		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124		if (node->dev_name == NULL) {
1125			kfree(node);
1126			return -ENOMEM;
1127		}
1128	}
1129
1130	list_add(&node->list, &regulator_map_list);
1131	return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136	struct regulator_map *node, *n;
1137
1138	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139		if (rdev == node->regulator) {
1140			list_del(&node->list);
1141			kfree(node->dev_name);
1142			kfree(node);
1143		}
1144	}
1145}
1146
1147#define REG_STR_SIZE	64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150					  struct device *dev,
1151					  const char *supply_name)
1152{
1153	struct regulator *regulator;
1154	char buf[REG_STR_SIZE];
1155	int err, size;
1156
1157	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158	if (regulator == NULL)
1159		return NULL;
1160
1161	mutex_lock(&rdev->mutex);
1162	regulator->rdev = rdev;
1163	list_add(&regulator->list, &rdev->consumer_list);
1164
1165	if (dev) {
1166		regulator->dev = dev;
1167
1168		/* Add a link to the device sysfs entry */
1169		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170				 dev->kobj.name, supply_name);
1171		if (size >= REG_STR_SIZE)
1172			goto overflow_err;
1173
1174		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175		if (regulator->supply_name == NULL)
1176			goto overflow_err;
1177
1178		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179					buf);
1180		if (err) {
1181			rdev_warn(rdev, "could not add device link %s err %d\n",
1182				  dev->kobj.name, err);
1183			/* non-fatal */
1184		}
1185	} else {
1186		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189	}
1190
1191	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192						rdev->debugfs);
1193	if (!regulator->debugfs) {
1194		rdev_warn(rdev, "Failed to create debugfs directory\n");
1195	} else {
1196		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197				   &regulator->uA_load);
1198		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199				   &regulator->min_uV);
1200		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201				   &regulator->max_uV);
1202	}
1203
1204	/*
1205	 * Check now if the regulator is an always on regulator - if
1206	 * it is then we don't need to do nearly so much work for
1207	 * enable/disable calls.
1208	 */
1209	if (!_regulator_can_change_status(rdev) &&
1210	    _regulator_is_enabled(rdev))
1211		regulator->always_on = true;
1212
1213	mutex_unlock(&rdev->mutex);
1214	return regulator;
1215overflow_err:
1216	list_del(&regulator->list);
1217	kfree(regulator);
1218	mutex_unlock(&rdev->mutex);
1219	return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224	if (rdev->constraints && rdev->constraints->enable_time)
1225		return rdev->constraints->enable_time;
1226	if (!rdev->desc->ops->enable_time)
1227		return rdev->desc->enable_time;
1228	return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232		struct device *dev, const char *supply)
1233{
1234	struct regulator_supply_alias *map;
1235
1236	list_for_each_entry(map, &regulator_supply_alias_list, list)
1237		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238			return map;
1239
1240	return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245	struct regulator_supply_alias *map;
1246
1247	map = regulator_find_supply_alias(*dev, *supply);
1248	if (map) {
1249		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250				*supply, map->alias_supply,
1251				dev_name(map->alias_dev));
1252		*dev = map->alias_dev;
1253		*supply = map->alias_supply;
1254	}
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258						  const char *supply,
1259						  int *ret)
1260{
1261	struct regulator_dev *r;
1262	struct device_node *node;
1263	struct regulator_map *map;
1264	const char *devname = NULL;
1265
1266	regulator_supply_alias(&dev, &supply);
1267
1268	/* first do a dt based lookup */
1269	if (dev && dev->of_node) {
1270		node = of_get_regulator(dev, supply);
1271		if (node) {
1272			list_for_each_entry(r, &regulator_list, list)
1273				if (r->dev.parent &&
1274					node == r->dev.of_node)
1275					return r;
1276			*ret = -EPROBE_DEFER;
1277			return NULL;
1278		} else {
1279			/*
1280			 * If we couldn't even get the node then it's
1281			 * not just that the device didn't register
1282			 * yet, there's no node and we'll never
1283			 * succeed.
1284			 */
1285			*ret = -ENODEV;
1286		}
1287	}
1288
1289	/* if not found, try doing it non-dt way */
1290	if (dev)
1291		devname = dev_name(dev);
1292
1293	list_for_each_entry(r, &regulator_list, list)
1294		if (strcmp(rdev_get_name(r), supply) == 0)
1295			return r;
1296
 
1297	list_for_each_entry(map, &regulator_map_list, list) {
1298		/* If the mapping has a device set up it must match */
1299		if (map->dev_name &&
1300		    (!devname || strcmp(map->dev_name, devname)))
1301			continue;
1302
1303		if (strcmp(map->supply, supply) == 0)
 
 
1304			return map->regulator;
 
1305	}
1306
1307
1308	return NULL;
1309}
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313					bool exclusive, bool allow_dummy)
1314{
1315	struct regulator_dev *rdev;
1316	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317	const char *devname = NULL;
1318	int ret;
1319
1320	if (id == NULL) {
1321		pr_err("get() with no identifier\n");
1322		return ERR_PTR(-EINVAL);
1323	}
1324
1325	if (dev)
1326		devname = dev_name(dev);
1327
1328	if (have_full_constraints())
1329		ret = -ENODEV;
1330	else
1331		ret = -EPROBE_DEFER;
1332
1333	mutex_lock(&regulator_list_mutex);
1334
1335	rdev = regulator_dev_lookup(dev, id, &ret);
1336	if (rdev)
1337		goto found;
1338
1339	regulator = ERR_PTR(ret);
1340
1341	/*
1342	 * If we have return value from dev_lookup fail, we do not expect to
1343	 * succeed, so, quit with appropriate error value
1344	 */
1345	if (ret && ret != -ENODEV)
1346		goto out;
1347
1348	if (!devname)
1349		devname = "deviceless";
1350
1351	/*
1352	 * Assume that a regulator is physically present and enabled
1353	 * even if it isn't hooked up and just provide a dummy.
1354	 */
1355	if (have_full_constraints() && allow_dummy) {
1356		pr_warn("%s supply %s not found, using dummy regulator\n",
1357			devname, id);
1358
1359		rdev = dummy_regulator_rdev;
 
1360		goto found;
1361	/* Don't log an error when called from regulator_get_optional() */
1362	} else if (!have_full_constraints() || exclusive) {
1363		dev_warn(dev, "dummy supplies not allowed\n");
1364	}
1365
1366	mutex_unlock(&regulator_list_mutex);
1367	return regulator;
1368
1369found:
1370	if (rdev->exclusive) {
1371		regulator = ERR_PTR(-EPERM);
1372		goto out;
 
1373	}
1374
1375	if (exclusive && rdev->open_count) {
1376		regulator = ERR_PTR(-EBUSY);
1377		goto out;
 
1378	}
1379
1380	if (!try_module_get(rdev->owner))
1381		goto out;
 
 
 
 
 
 
 
 
 
1382
1383	regulator = create_regulator(rdev, dev, id);
1384	if (regulator == NULL) {
1385		regulator = ERR_PTR(-ENOMEM);
 
1386		module_put(rdev->owner);
1387		goto out;
1388	}
1389
1390	rdev->open_count++;
1391	if (exclusive) {
1392		rdev->exclusive = 1;
1393
1394		ret = _regulator_is_enabled(rdev);
1395		if (ret > 0)
1396			rdev->use_count = 1;
1397		else
1398			rdev->use_count = 0;
1399	}
1400
1401out:
1402	mutex_unlock(&regulator_list_mutex);
1403
1404	return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged.  It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422	return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno.  Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged.  It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449	return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno.  Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged.  It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478	return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485	struct regulator_dev *rdev;
1486
1487	if (regulator == NULL || IS_ERR(regulator))
1488		return;
1489
 
 
1490	rdev = regulator->rdev;
1491
1492	debugfs_remove_recursive(regulator->debugfs);
1493
1494	/* remove any sysfs entries */
1495	if (regulator->dev)
1496		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497	kfree(regulator->supply_name);
1498	list_del(&regulator->list);
1499	kfree(regulator);
1500
1501	rdev->open_count--;
1502	rdev->exclusive = 0;
 
 
 
 
 
1503
1504	module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517	mutex_lock(&regulator_list_mutex);
1518	_regulator_put(regulator);
1519	mutex_unlock(&regulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536				    struct device *alias_dev,
1537				    const char *alias_id)
1538{
1539	struct regulator_supply_alias *map;
1540
1541	map = regulator_find_supply_alias(dev, id);
1542	if (map)
1543		return -EEXIST;
1544
1545	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546	if (!map)
1547		return -ENOMEM;
1548
1549	map->src_dev = dev;
1550	map->src_supply = id;
1551	map->alias_dev = alias_dev;
1552	map->alias_supply = alias_id;
1553
1554	list_add(&map->list, &regulator_supply_alias_list);
1555
1556	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557		id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559	return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573	struct regulator_supply_alias *map;
1574
1575	map = regulator_find_supply_alias(dev, id);
1576	if (map) {
1577		list_del(&map->list);
1578		kfree(map);
1579	}
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation.  If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
 
1601					 struct device *alias_dev,
1602					 const char **alias_id,
1603					 int num_id)
1604{
1605	int i;
1606	int ret;
1607
1608	for (i = 0; i < num_id; ++i) {
1609		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610						      alias_id[i]);
1611		if (ret < 0)
1612			goto err;
1613	}
1614
1615	return 0;
1616
1617err:
1618	dev_err(dev,
1619		"Failed to create supply alias %s,%s -> %s,%s\n",
1620		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622	while (--i >= 0)
1623		regulator_unregister_supply_alias(dev, id[i]);
1624
1625	return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640					    const char **id,
1641					    int num_id)
1642{
1643	int i;
1644
1645	for (i = 0; i < num_id; ++i)
1646		regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653				const struct regulator_config *config)
1654{
1655	struct regulator_enable_gpio *pin;
 
1656	int ret;
1657
 
 
1658	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659		if (pin->gpio == config->ena_gpio) {
1660			rdev_dbg(rdev, "GPIO %d is already used\n",
1661				config->ena_gpio);
1662			goto update_ena_gpio_to_rdev;
1663		}
1664	}
1665
1666	ret = gpio_request_one(config->ena_gpio,
1667				GPIOF_DIR_OUT | config->ena_gpio_flags,
1668				rdev_get_name(rdev));
1669	if (ret)
1670		return ret;
1671
1672	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673	if (pin == NULL) {
1674		gpio_free(config->ena_gpio);
1675		return -ENOMEM;
1676	}
1677
1678	pin->gpio = config->ena_gpio;
1679	pin->ena_gpio_invert = config->ena_gpio_invert;
1680	list_add(&pin->list, &regulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683	pin->request_count++;
1684	rdev->ena_pin = pin;
1685	return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690	struct regulator_enable_gpio *pin, *n;
1691
1692	if (!rdev->ena_pin)
1693		return;
1694
1695	/* Free the GPIO only in case of no use */
1696	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697		if (pin->gpio == rdev->ena_pin->gpio) {
1698			if (pin->request_count <= 1) {
1699				pin->request_count = 0;
1700				gpio_free(pin->gpio);
1701				list_del(&pin->list);
1702				kfree(pin);
 
 
1703			} else {
1704				pin->request_count--;
1705			}
1706		}
1707	}
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720	struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722	if (!pin)
1723		return -EINVAL;
1724
1725	if (enable) {
1726		/* Enable GPIO at initial use */
1727		if (pin->enable_count == 0)
1728			gpio_set_value_cansleep(pin->gpio,
1729						!pin->ena_gpio_invert);
1730
1731		pin->enable_count++;
1732	} else {
1733		if (pin->enable_count > 1) {
1734			pin->enable_count--;
1735			return 0;
1736		}
1737
1738		/* Disable GPIO if not used */
1739		if (pin->enable_count <= 1) {
1740			gpio_set_value_cansleep(pin->gpio,
1741						pin->ena_gpio_invert);
1742			pin->enable_count = 0;
1743		}
1744	}
1745
1746	return 0;
1747}
1748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751	int ret, delay;
1752
1753	/* Query before enabling in case configuration dependent.  */
1754	ret = _regulator_get_enable_time(rdev);
1755	if (ret >= 0) {
1756		delay = ret;
1757	} else {
1758		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759		delay = 0;
1760	}
1761
1762	trace_regulator_enable(rdev_get_name(rdev));
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	if (rdev->ena_pin) {
1765		ret = regulator_ena_gpio_ctrl(rdev, true);
1766		if (ret < 0)
1767			return ret;
1768		rdev->ena_gpio_state = 1;
 
 
1769	} else if (rdev->desc->ops->enable) {
1770		ret = rdev->desc->ops->enable(rdev);
1771		if (ret < 0)
1772			return ret;
1773	} else {
1774		return -EINVAL;
1775	}
1776
1777	/* Allow the regulator to ramp; it would be useful to extend
1778	 * this for bulk operations so that the regulators can ramp
1779	 * together.  */
1780	trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782	/*
1783	 * Delay for the requested amount of time as per the guidelines in:
1784	 *
1785	 *     Documentation/timers/timers-howto.txt
1786	 *
1787	 * The assumption here is that regulators will never be enabled in
1788	 * atomic context and therefore sleeping functions can be used.
1789	 */
1790	if (delay) {
1791		unsigned int ms = delay / 1000;
1792		unsigned int us = delay % 1000;
1793
1794		if (ms > 0) {
1795			/*
1796			 * For small enough values, handle super-millisecond
1797			 * delays in the usleep_range() call below.
1798			 */
1799			if (ms < 20)
1800				us += ms * 1000;
1801			else
1802				msleep(ms);
1803		}
1804
1805		/*
1806		 * Give the scheduler some room to coalesce with any other
1807		 * wakeup sources. For delays shorter than 10 us, don't even
1808		 * bother setting up high-resolution timers and just busy-
1809		 * loop.
1810		 */
1811		if (us >= 10)
1812			usleep_range(us, us + 100);
1813		else
1814			udelay(us);
1815	}
1816
1817	trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819	return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825	int ret;
1826
 
 
1827	/* check voltage and requested load before enabling */
1828	if (rdev->constraints &&
1829	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830		drms_uA_update(rdev);
1831
1832	if (rdev->use_count == 0) {
1833		/* The regulator may on if it's not switchable or left on */
1834		ret = _regulator_is_enabled(rdev);
1835		if (ret == -EINVAL || ret == 0) {
1836			if (!_regulator_can_change_status(rdev))
1837				return -EPERM;
1838
1839			ret = _regulator_do_enable(rdev);
1840			if (ret < 0)
1841				return ret;
1842
1843		} else if (ret < 0) {
1844			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845			return ret;
1846		}
1847		/* Fallthrough on positive return values - already enabled */
1848	}
1849
1850	rdev->use_count++;
1851
1852	return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value.  Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868	struct regulator_dev *rdev = regulator->rdev;
1869	int ret = 0;
1870
1871	if (regulator->always_on)
1872		return 0;
1873
1874	if (rdev->supply) {
1875		ret = regulator_enable(rdev->supply);
1876		if (ret != 0)
1877			return ret;
1878	}
1879
1880	mutex_lock(&rdev->mutex);
1881	ret = _regulator_enable(rdev);
1882	mutex_unlock(&rdev->mutex);
1883
1884	if (ret != 0 && rdev->supply)
1885		regulator_disable(rdev->supply);
1886
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893	int ret;
1894
1895	trace_regulator_disable(rdev_get_name(rdev));
1896
1897	if (rdev->ena_pin) {
1898		ret = regulator_ena_gpio_ctrl(rdev, false);
1899		if (ret < 0)
1900			return ret;
1901		rdev->ena_gpio_state = 0;
 
 
1902
1903	} else if (rdev->desc->ops->disable) {
1904		ret = rdev->desc->ops->disable(rdev);
1905		if (ret != 0)
1906			return ret;
1907	}
1908
 
 
 
 
 
 
1909	trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911	return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917	int ret = 0;
1918
 
 
1919	if (WARN(rdev->use_count <= 0,
1920		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921		return -EIO;
1922
1923	/* are we the last user and permitted to disable ? */
1924	if (rdev->use_count == 1 &&
1925	    (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927		/* we are last user */
1928		if (_regulator_can_change_status(rdev)) {
 
 
 
 
 
 
1929			ret = _regulator_do_disable(rdev);
1930			if (ret < 0) {
1931				rdev_err(rdev, "failed to disable\n");
 
 
 
1932				return ret;
1933			}
1934			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935					NULL);
1936		}
1937
1938		rdev->use_count = 0;
1939	} else if (rdev->use_count > 1) {
1940
1941		if (rdev->constraints &&
1942			(rdev->constraints->valid_ops_mask &
1943			REGULATOR_CHANGE_DRMS))
1944			drms_uA_update(rdev);
1945
1946		rdev->use_count--;
1947	}
1948
1949	return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current.  Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966	struct regulator_dev *rdev = regulator->rdev;
1967	int ret = 0;
1968
1969	if (regulator->always_on)
1970		return 0;
1971
1972	mutex_lock(&rdev->mutex);
1973	ret = _regulator_disable(rdev);
1974	mutex_unlock(&rdev->mutex);
1975
1976	if (ret == 0 && rdev->supply)
1977		regulator_disable(rdev->supply);
1978
1979	return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986	int ret = 0;
1987
 
 
 
 
 
 
 
1988	ret = _regulator_do_disable(rdev);
1989	if (ret < 0) {
1990		rdev_err(rdev, "failed to force disable\n");
 
 
1991		return ret;
1992	}
1993
1994	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995			REGULATOR_EVENT_DISABLE, NULL);
1996
1997	return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011	struct regulator_dev *rdev = regulator->rdev;
2012	int ret;
2013
2014	mutex_lock(&rdev->mutex);
2015	regulator->uA_load = 0;
2016	ret = _regulator_force_disable(regulator->rdev);
2017	mutex_unlock(&rdev->mutex);
2018
2019	if (rdev->supply)
2020		while (rdev->open_count--)
2021			regulator_disable(rdev->supply);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030						  disable_work.work);
2031	int count, i, ret;
2032
2033	mutex_lock(&rdev->mutex);
2034
2035	BUG_ON(!rdev->deferred_disables);
2036
2037	count = rdev->deferred_disables;
2038	rdev->deferred_disables = 0;
2039
2040	for (i = 0; i < count; i++) {
2041		ret = _regulator_disable(rdev);
2042		if (ret != 0)
2043			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044	}
2045
2046	mutex_unlock(&rdev->mutex);
2047
2048	if (rdev->supply) {
2049		for (i = 0; i < count; i++) {
2050			ret = regulator_disable(rdev->supply);
2051			if (ret != 0) {
2052				rdev_err(rdev,
2053					 "Supply disable failed: %d\n", ret);
2054			}
2055		}
2056	}
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay.  This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073	struct regulator_dev *rdev = regulator->rdev;
2074	int ret;
2075
2076	if (regulator->always_on)
2077		return 0;
2078
2079	if (!ms)
2080		return regulator_disable(regulator);
2081
2082	mutex_lock(&rdev->mutex);
2083	rdev->deferred_disables++;
2084	mutex_unlock(&rdev->mutex);
2085
2086	ret = queue_delayed_work(system_power_efficient_wq,
2087				 &rdev->disable_work,
2088				 msecs_to_jiffies(ms));
2089	if (ret < 0)
2090		return ret;
2091	else
2092		return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098	/* A GPIO control always takes precedence */
2099	if (rdev->ena_pin)
2100		return rdev->ena_gpio_state;
2101
2102	/* If we don't know then assume that the regulator is always on */
2103	if (!rdev->desc->ops->is_enabled)
2104		return 1;
2105
2106	return rdev->desc->ops->is_enabled(rdev);
2107}
2108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123	int ret;
2124
2125	if (regulator->always_on)
2126		return 1;
2127
2128	mutex_lock(&regulator->rdev->mutex);
2129	ret = _regulator_is_enabled(regulator->rdev);
2130	mutex_unlock(&regulator->rdev->mutex);
2131
2132	return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147	struct regulator_dev	*rdev = regulator->rdev;
2148
2149	if (rdev->constraints &&
2150	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152			return 1;
2153
2154		if (rdev->desc->continuous_voltage_range &&
2155		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2157			return 1;
2158	}
2159
2160	return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno.  Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174	struct regulator_dev	*rdev = regulator->rdev;
2175
2176	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192	struct regulator_dev	*rdev = regulator->rdev;
2193	struct regulator_ops	*ops = rdev->desc->ops;
2194	int			ret;
2195
2196	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197		return rdev->desc->fixed_uV;
 
 
 
 
 
 
 
 
2198
2199	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200		return -EINVAL;
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = ops->list_voltage(rdev, selector);
2204	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205
2206	if (ret > 0) {
2207		if (ret < rdev->constraints->min_uV)
2208			ret = 0;
2209		else if (ret > rdev->constraints->max_uV)
2210			ret = 0;
2211	}
2212
2213	return ret;
 
 
 
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226	struct regulator_dev *rdev = regulator->rdev;
2227
2228	return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242				   int min_uV, int max_uV)
2243{
2244	struct regulator_dev *rdev = regulator->rdev;
2245	int i, voltages, ret;
2246
2247	/* If we can't change voltage check the current voltage */
2248	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249		ret = regulator_get_voltage(regulator);
2250		if (ret >= 0)
2251			return min_uV <= ret && ret <= max_uV;
2252		else
2253			return ret;
2254	}
2255
2256	/* Any voltage within constrains range is fine? */
2257	if (rdev->desc->continuous_voltage_range)
2258		return min_uV >= rdev->constraints->min_uV &&
2259				max_uV <= rdev->constraints->max_uV;
2260
2261	ret = regulator_count_voltages(regulator);
2262	if (ret < 0)
2263		return ret;
2264	voltages = ret;
2265
2266	for (i = 0; i < voltages; i++) {
2267		ret = regulator_list_voltage(regulator, i);
2268
2269		if (ret >= min_uV && ret <= max_uV)
2270			return 1;
2271	}
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278				     int min_uV, int max_uV)
2279{
2280	int ret;
2281	int delay = 0;
2282	int best_val = 0;
2283	unsigned int selector;
2284	int old_selector = -1;
2285
2286	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288	min_uV += rdev->constraints->uV_offset;
2289	max_uV += rdev->constraints->uV_offset;
2290
2291	/*
2292	 * If we can't obtain the old selector there is not enough
2293	 * info to call set_voltage_time_sel().
2294	 */
2295	if (_regulator_is_enabled(rdev) &&
2296	    rdev->desc->ops->set_voltage_time_sel &&
2297	    rdev->desc->ops->get_voltage_sel) {
2298		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299		if (old_selector < 0)
2300			return old_selector;
2301	}
2302
2303	if (rdev->desc->ops->set_voltage) {
2304		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305						   &selector);
2306
2307		if (ret >= 0) {
2308			if (rdev->desc->ops->list_voltage)
2309				best_val = rdev->desc->ops->list_voltage(rdev,
2310									 selector);
2311			else
2312				best_val = _regulator_get_voltage(rdev);
2313		}
2314
2315	} else if (rdev->desc->ops->set_voltage_sel) {
2316		if (rdev->desc->ops->map_voltage) {
2317			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318							   max_uV);
2319		} else {
2320			if (rdev->desc->ops->list_voltage ==
2321			    regulator_list_voltage_linear)
2322				ret = regulator_map_voltage_linear(rdev,
2323								min_uV, max_uV);
2324			else
2325				ret = regulator_map_voltage_iterate(rdev,
2326								min_uV, max_uV);
2327		}
2328
2329		if (ret >= 0) {
2330			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331			if (min_uV <= best_val && max_uV >= best_val) {
2332				selector = ret;
2333				if (old_selector == selector)
2334					ret = 0;
2335				else
2336					ret = rdev->desc->ops->set_voltage_sel(
2337								rdev, ret);
2338			} else {
2339				ret = -EINVAL;
2340			}
2341		}
2342	} else {
2343		ret = -EINVAL;
2344	}
2345
2346	/* Call set_voltage_time_sel if successfully obtained old_selector */
2347	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348		&& old_selector != selector) {
2349
2350		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351						old_selector, selector);
2352		if (delay < 0) {
2353			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354				  delay);
2355			delay = 0;
2356		}
2357
2358		/* Insert any necessary delays */
2359		if (delay >= 1000) {
2360			mdelay(delay / 1000);
2361			udelay(delay % 1000);
2362		} else if (delay) {
2363			udelay(delay);
2364		}
2365	}
2366
2367	if (ret == 0 && best_val >= 0) {
2368		unsigned long data = best_val;
2369
2370		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371				     (void *)data);
2372	}
2373
2374	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376	return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399	struct regulator_dev *rdev = regulator->rdev;
2400	int ret = 0;
2401	int old_min_uV, old_max_uV;
2402	int current_uV;
2403
2404	mutex_lock(&rdev->mutex);
2405
2406	/* If we're setting the same range as last time the change
2407	 * should be a noop (some cpufreq implementations use the same
2408	 * voltage for multiple frequencies, for example).
2409	 */
2410	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411		goto out;
2412
2413	/* If we're trying to set a range that overlaps the current voltage,
2414	 * return succesfully even though the regulator does not support
2415	 * changing the voltage.
2416	 */
2417	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418		current_uV = _regulator_get_voltage(rdev);
2419		if (min_uV <= current_uV && current_uV <= max_uV) {
2420			regulator->min_uV = min_uV;
2421			regulator->max_uV = max_uV;
2422			goto out;
2423		}
2424	}
2425
2426	/* sanity check */
2427	if (!rdev->desc->ops->set_voltage &&
2428	    !rdev->desc->ops->set_voltage_sel) {
2429		ret = -EINVAL;
2430		goto out;
2431	}
2432
2433	/* constraints check */
2434	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435	if (ret < 0)
2436		goto out;
2437
2438	/* restore original values in case of error */
2439	old_min_uV = regulator->min_uV;
2440	old_max_uV = regulator->max_uV;
2441	regulator->min_uV = min_uV;
2442	regulator->max_uV = max_uV;
2443
2444	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445	if (ret < 0)
2446		goto out2;
2447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449	if (ret < 0)
2450		goto out2;
2451
 
 
 
 
 
 
 
 
 
 
2452out:
2453	mutex_unlock(&rdev->mutex);
2454	return ret;
2455out2:
2456	regulator->min_uV = old_min_uV;
2457	regulator->max_uV = old_max_uV;
2458	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474			       int old_uV, int new_uV)
2475{
2476	struct regulator_dev	*rdev = regulator->rdev;
2477	struct regulator_ops	*ops = rdev->desc->ops;
2478	int old_sel = -1;
2479	int new_sel = -1;
2480	int voltage;
2481	int i;
2482
2483	/* Currently requires operations to do this */
2484	if (!ops->list_voltage || !ops->set_voltage_time_sel
2485	    || !rdev->desc->n_voltages)
2486		return -EINVAL;
2487
2488	for (i = 0; i < rdev->desc->n_voltages; i++) {
2489		/* We only look for exact voltage matches here */
2490		voltage = regulator_list_voltage(regulator, i);
2491		if (voltage < 0)
2492			return -EINVAL;
2493		if (voltage == 0)
2494			continue;
2495		if (voltage == old_uV)
2496			old_sel = i;
2497		if (voltage == new_uV)
2498			new_sel = i;
2499	}
2500
2501	if (old_sel < 0 || new_sel < 0)
2502		return -EINVAL;
2503
2504	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521				   unsigned int old_selector,
2522				   unsigned int new_selector)
2523{
2524	unsigned int ramp_delay = 0;
2525	int old_volt, new_volt;
2526
2527	if (rdev->constraints->ramp_delay)
2528		ramp_delay = rdev->constraints->ramp_delay;
2529	else if (rdev->desc->ramp_delay)
2530		ramp_delay = rdev->desc->ramp_delay;
2531
2532	if (ramp_delay == 0) {
2533		rdev_warn(rdev, "ramp_delay not set\n");
2534		return 0;
2535	}
2536
2537	/* sanity check */
2538	if (!rdev->desc->ops->list_voltage)
2539		return -EINVAL;
2540
2541	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage.  This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558	struct regulator_dev *rdev = regulator->rdev;
2559	int ret, min_uV, max_uV;
2560
2561	mutex_lock(&rdev->mutex);
2562
2563	if (!rdev->desc->ops->set_voltage &&
2564	    !rdev->desc->ops->set_voltage_sel) {
2565		ret = -EINVAL;
2566		goto out;
2567	}
2568
2569	/* This is only going to work if we've had a voltage configured. */
2570	if (!regulator->min_uV && !regulator->max_uV) {
2571		ret = -EINVAL;
2572		goto out;
2573	}
2574
2575	min_uV = regulator->min_uV;
2576	max_uV = regulator->max_uV;
2577
2578	/* This should be a paranoia check... */
2579	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580	if (ret < 0)
2581		goto out;
2582
2583	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584	if (ret < 0)
2585		goto out;
2586
2587	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590	mutex_unlock(&rdev->mutex);
2591	return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597	int sel, ret;
2598
2599	if (rdev->desc->ops->get_voltage_sel) {
2600		sel = rdev->desc->ops->get_voltage_sel(rdev);
2601		if (sel < 0)
2602			return sel;
2603		ret = rdev->desc->ops->list_voltage(rdev, sel);
2604	} else if (rdev->desc->ops->get_voltage) {
2605		ret = rdev->desc->ops->get_voltage(rdev);
2606	} else if (rdev->desc->ops->list_voltage) {
2607		ret = rdev->desc->ops->list_voltage(rdev, 0);
2608	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609		ret = rdev->desc->fixed_uV;
 
 
2610	} else {
2611		return -EINVAL;
2612	}
2613
2614	if (ret < 0)
2615		return ret;
2616	return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630	int ret;
2631
2632	mutex_lock(&regulator->rdev->mutex);
2633
2634	ret = _regulator_get_voltage(regulator->rdev);
2635
2636	mutex_unlock(&regulator->rdev->mutex);
2637
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659			       int min_uA, int max_uA)
2660{
2661	struct regulator_dev *rdev = regulator->rdev;
2662	int ret;
2663
2664	mutex_lock(&rdev->mutex);
2665
2666	/* sanity check */
2667	if (!rdev->desc->ops->set_current_limit) {
2668		ret = -EINVAL;
2669		goto out;
2670	}
2671
2672	/* constraints check */
2673	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674	if (ret < 0)
2675		goto out;
2676
2677	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679	mutex_unlock(&rdev->mutex);
2680	return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686	int ret;
2687
2688	mutex_lock(&rdev->mutex);
2689
2690	/* sanity check */
2691	if (!rdev->desc->ops->get_current_limit) {
2692		ret = -EINVAL;
2693		goto out;
2694	}
2695
2696	ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698	mutex_unlock(&rdev->mutex);
2699	return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713	return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730	struct regulator_dev *rdev = regulator->rdev;
2731	int ret;
2732	int regulator_curr_mode;
2733
2734	mutex_lock(&rdev->mutex);
2735
2736	/* sanity check */
2737	if (!rdev->desc->ops->set_mode) {
2738		ret = -EINVAL;
2739		goto out;
2740	}
2741
2742	/* return if the same mode is requested */
2743	if (rdev->desc->ops->get_mode) {
2744		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745		if (regulator_curr_mode == mode) {
2746			ret = 0;
2747			goto out;
2748		}
2749	}
2750
2751	/* constraints check */
2752	ret = regulator_mode_constrain(rdev, &mode);
2753	if (ret < 0)
2754		goto out;
2755
2756	ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758	mutex_unlock(&rdev->mutex);
2759	return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765	int ret;
2766
2767	mutex_lock(&rdev->mutex);
2768
2769	/* sanity check */
2770	if (!rdev->desc->ops->get_mode) {
2771		ret = -EINVAL;
2772		goto out;
2773	}
2774
2775	ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777	mutex_unlock(&rdev->mutex);
2778	return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789	return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 *    o Device is opened / closed.
2809 *    o Device I/O is about to begin or has just finished.
2810 *    o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821	struct regulator_dev *rdev = regulator->rdev;
2822	struct regulator *consumer;
2823	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824	unsigned int mode;
2825
2826	if (rdev->supply)
2827		input_uV = regulator_get_voltage(rdev->supply);
2828
2829	mutex_lock(&rdev->mutex);
2830
2831	/*
2832	 * first check to see if we can set modes at all, otherwise just
2833	 * tell the consumer everything is OK.
2834	 */
2835	regulator->uA_load = uA_load;
2836	ret = regulator_check_drms(rdev);
2837	if (ret < 0) {
2838		ret = 0;
2839		goto out;
2840	}
2841
2842	if (!rdev->desc->ops->get_optimum_mode)
2843		goto out;
2844
2845	/*
2846	 * we can actually do this so any errors are indicators of
2847	 * potential real failure.
2848	 */
2849	ret = -EINVAL;
2850
2851	if (!rdev->desc->ops->set_mode)
2852		goto out;
2853
2854	/* get output voltage */
2855	output_uV = _regulator_get_voltage(rdev);
2856	if (output_uV <= 0) {
2857		rdev_err(rdev, "invalid output voltage found\n");
2858		goto out;
2859	}
2860
2861	/* No supply? Use constraint voltage */
2862	if (input_uV <= 0)
2863		input_uV = rdev->constraints->input_uV;
2864	if (input_uV <= 0) {
2865		rdev_err(rdev, "invalid input voltage found\n");
2866		goto out;
2867	}
2868
2869	/* calc total requested load for this regulator */
2870	list_for_each_entry(consumer, &rdev->consumer_list, list)
2871		total_uA_load += consumer->uA_load;
2872
2873	mode = rdev->desc->ops->get_optimum_mode(rdev,
2874						 input_uV, output_uV,
2875						 total_uA_load);
2876	ret = regulator_mode_constrain(rdev, &mode);
2877	if (ret < 0) {
2878		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879			 total_uA_load, input_uV, output_uV);
2880		goto out;
2881	}
2882
2883	ret = rdev->desc->ops->set_mode(rdev, mode);
2884	if (ret < 0) {
2885		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886		goto out;
2887	}
2888	ret = mode;
2889out:
2890	mutex_unlock(&rdev->mutex);
 
2891	return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this.  Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908	struct regulator_dev *rdev = regulator->rdev;
2909	int ret = 0;
2910
2911	if (!rdev->desc->ops->set_bypass)
2912		return 0;
2913
2914	if (rdev->constraints &&
2915	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916		return 0;
2917
2918	mutex_lock(&rdev->mutex);
2919
2920	if (enable && !regulator->bypass) {
2921		rdev->bypass_count++;
2922
2923		if (rdev->bypass_count == rdev->open_count) {
2924			ret = rdev->desc->ops->set_bypass(rdev, enable);
2925			if (ret != 0)
2926				rdev->bypass_count--;
2927		}
2928
2929	} else if (!enable && regulator->bypass) {
2930		rdev->bypass_count--;
2931
2932		if (rdev->bypass_count != rdev->open_count) {
2933			ret = rdev->desc->ops->set_bypass(rdev, enable);
2934			if (ret != 0)
2935				rdev->bypass_count++;
2936		}
2937	}
2938
2939	if (ret == 0)
2940		regulator->bypass = enable;
2941
2942	mutex_unlock(&rdev->mutex);
2943
2944	return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956			      struct notifier_block *nb)
2957{
2958	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2959						nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971				struct notifier_block *nb)
2972{
2973	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2974						  nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982				  unsigned long event, void *data)
2983{
2984	/* call rdev chain first */
2985	blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev:           Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers:     Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation.  If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003		       struct regulator_bulk_data *consumers)
3004{
3005	int i;
3006	int ret;
3007
3008	for (i = 0; i < num_consumers; i++)
3009		consumers[i].consumer = NULL;
3010
3011	for (i = 0; i < num_consumers; i++) {
3012		consumers[i].consumer = regulator_get(dev,
3013						      consumers[i].supply);
 
 
3014		if (IS_ERR(consumers[i].consumer)) {
3015			ret = PTR_ERR(consumers[i].consumer);
3016			dev_err(dev, "Failed to get supply '%s': %d\n",
3017				consumers[i].supply, ret);
3018			consumers[i].consumer = NULL;
3019			goto err;
3020		}
3021	}
3022
3023	return 0;
3024
3025err:
3026	while (--i >= 0)
3027		regulator_put(consumers[i].consumer);
3028
3029	return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035	struct regulator_bulk_data *bulk = data;
3036
3037	bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers:     Consumer data; clients are stored here.
3045 * @return         0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call.  If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053			  struct regulator_bulk_data *consumers)
3054{
3055	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056	int i;
3057	int ret = 0;
3058
3059	for (i = 0; i < num_consumers; i++) {
3060		if (consumers[i].consumer->always_on)
3061			consumers[i].ret = 0;
3062		else
3063			async_schedule_domain(regulator_bulk_enable_async,
3064					      &consumers[i], &async_domain);
3065	}
3066
3067	async_synchronize_full_domain(&async_domain);
3068
3069	/* If any consumer failed we need to unwind any that succeeded */
3070	for (i = 0; i < num_consumers; i++) {
3071		if (consumers[i].ret != 0) {
3072			ret = consumers[i].ret;
3073			goto err;
3074		}
3075	}
3076
3077	return 0;
3078
3079err:
3080	for (i = 0; i < num_consumers; i++) {
3081		if (consumers[i].ret < 0)
3082			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083			       consumers[i].ret);
3084		else
3085			regulator_disable(consumers[i].consumer);
3086	}
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers:     Consumer data; clients are stored here.
3097 * @return         0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call.  If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105			   struct regulator_bulk_data *consumers)
3106{
3107	int i;
3108	int ret, r;
3109
3110	for (i = num_consumers - 1; i >= 0; --i) {
3111		ret = regulator_disable(consumers[i].consumer);
3112		if (ret != 0)
3113			goto err;
3114	}
3115
3116	return 0;
3117
3118err:
3119	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120	for (++i; i < num_consumers; ++i) {
3121		r = regulator_enable(consumers[i].consumer);
3122		if (r != 0)
3123			pr_err("Failed to reename %s: %d\n",
3124			       consumers[i].supply, r);
3125	}
3126
3127	return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers:     Consumer data; clients are stored here.
3136 * @return         0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146			   struct regulator_bulk_data *consumers)
3147{
3148	int i;
3149	int ret;
3150
3151	for (i = 0; i < num_consumers; i++)
3152		consumers[i].ret =
3153			    regulator_force_disable(consumers[i].consumer);
3154
3155	for (i = 0; i < num_consumers; i++) {
3156		if (consumers[i].ret != 0) {
3157			ret = consumers[i].ret;
3158			goto out;
3159		}
3160	}
3161
3162	return 0;
3163out:
3164	return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers:     Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178			 struct regulator_bulk_data *consumers)
3179{
3180	int i;
3181
3182	for (i = 0; i < num_consumers; i++) {
3183		regulator_put(consumers[i].consumer);
3184		consumers[i].consumer = NULL;
3185	}
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200				  unsigned long event, void *data)
3201{
 
 
3202	_notifier_call_chain(rdev, event, data);
3203	return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217	switch (mode) {
3218	case REGULATOR_MODE_FAST:
3219		return REGULATOR_STATUS_FAST;
3220	case REGULATOR_MODE_NORMAL:
3221		return REGULATOR_STATUS_NORMAL;
3222	case REGULATOR_MODE_IDLE:
3223		return REGULATOR_STATUS_IDLE;
3224	case REGULATOR_MODE_STANDBY:
3225		return REGULATOR_STATUS_STANDBY;
3226	default:
3227		return REGULATOR_STATUS_UNDEFINED;
3228	}
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
 
3237{
3238	struct device		*dev = &rdev->dev;
3239	struct regulator_ops	*ops = rdev->desc->ops;
3240	int			status = 0;
 
 
 
 
 
 
 
3241
3242	/* some attributes need specific methods to be displayed */
3243	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247		status = device_create_file(dev, &dev_attr_microvolts);
3248		if (status < 0)
3249			return status;
3250	}
3251	if (ops->get_current_limit) {
3252		status = device_create_file(dev, &dev_attr_microamps);
3253		if (status < 0)
3254			return status;
3255	}
3256	if (ops->get_mode) {
3257		status = device_create_file(dev, &dev_attr_opmode);
3258		if (status < 0)
3259			return status;
3260	}
3261	if (rdev->ena_pin || ops->is_enabled) {
3262		status = device_create_file(dev, &dev_attr_state);
3263		if (status < 0)
3264			return status;
3265	}
3266	if (ops->get_status) {
3267		status = device_create_file(dev, &dev_attr_status);
3268		if (status < 0)
3269			return status;
3270	}
3271	if (ops->get_bypass) {
3272		status = device_create_file(dev, &dev_attr_bypass);
3273		if (status < 0)
3274			return status;
3275	}
3276
3277	/* some attributes are type-specific */
3278	if (rdev->desc->type == REGULATOR_CURRENT) {
3279		status = device_create_file(dev, &dev_attr_requested_microamps);
3280		if (status < 0)
3281			return status;
3282	}
3283
3284	/* all the other attributes exist to support constraints;
3285	 * don't show them if there are no constraints, or if the
3286	 * relevant supporting methods are missing.
3287	 */
3288	if (!rdev->constraints)
3289		return status;
 
 
 
 
 
 
 
 
 
3290
3291	/* constraints need specific supporting methods */
3292	if (ops->set_voltage || ops->set_voltage_sel) {
3293		status = device_create_file(dev, &dev_attr_min_microvolts);
3294		if (status < 0)
3295			return status;
3296		status = device_create_file(dev, &dev_attr_max_microvolts);
3297		if (status < 0)
3298			return status;
3299	}
3300	if (ops->set_current_limit) {
3301		status = device_create_file(dev, &dev_attr_min_microamps);
3302		if (status < 0)
3303			return status;
3304		status = device_create_file(dev, &dev_attr_max_microamps);
3305		if (status < 0)
3306			return status;
3307	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308
3309	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310	if (status < 0)
3311		return status;
3312	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313	if (status < 0)
3314		return status;
3315	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316	if (status < 0)
3317		return status;
3318
3319	if (ops->set_suspend_voltage) {
3320		status = device_create_file(dev,
3321				&dev_attr_suspend_standby_microvolts);
3322		if (status < 0)
3323			return status;
3324		status = device_create_file(dev,
3325				&dev_attr_suspend_mem_microvolts);
3326		if (status < 0)
3327			return status;
3328		status = device_create_file(dev,
3329				&dev_attr_suspend_disk_microvolts);
3330		if (status < 0)
3331			return status;
3332	}
3333
3334	if (ops->set_suspend_mode) {
3335		status = device_create_file(dev,
3336				&dev_attr_suspend_standby_mode);
3337		if (status < 0)
3338			return status;
3339		status = device_create_file(dev,
3340				&dev_attr_suspend_mem_mode);
3341		if (status < 0)
3342			return status;
3343		status = device_create_file(dev,
3344				&dev_attr_suspend_disk_mode);
3345		if (status < 0)
3346			return status;
3347	}
3348
3349	return status;
 
 
3350}
3351
 
 
 
 
 
 
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
 
 
 
 
 
 
 
 
 
 
 
3355	if (!rdev->debugfs) {
3356		rdev_warn(rdev, "Failed to create debugfs directory\n");
3357		return;
3358	}
3359
3360	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361			   &rdev->use_count);
3362	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363			   &rdev->open_count);
3364	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365			   &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379		   const struct regulator_config *config)
3380{
3381	const struct regulation_constraints *constraints = NULL;
3382	const struct regulator_init_data *init_data;
3383	static atomic_t regulator_no = ATOMIC_INIT(0);
 
3384	struct regulator_dev *rdev;
3385	struct device *dev;
3386	int ret, i;
3387	const char *supply = NULL;
3388
3389	if (regulator_desc == NULL || config == NULL)
3390		return ERR_PTR(-EINVAL);
3391
3392	dev = config->dev;
3393	WARN_ON(!dev);
3394
3395	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396		return ERR_PTR(-EINVAL);
3397
3398	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399	    regulator_desc->type != REGULATOR_CURRENT)
3400		return ERR_PTR(-EINVAL);
3401
3402	/* Only one of each should be implemented */
3403	WARN_ON(regulator_desc->ops->get_voltage &&
3404		regulator_desc->ops->get_voltage_sel);
3405	WARN_ON(regulator_desc->ops->set_voltage &&
3406		regulator_desc->ops->set_voltage_sel);
3407
3408	/* If we're using selectors we must implement list_voltage. */
3409	if (regulator_desc->ops->get_voltage_sel &&
3410	    !regulator_desc->ops->list_voltage) {
3411		return ERR_PTR(-EINVAL);
3412	}
3413	if (regulator_desc->ops->set_voltage_sel &&
3414	    !regulator_desc->ops->list_voltage) {
3415		return ERR_PTR(-EINVAL);
3416	}
3417
3418	init_data = config->init_data;
3419
3420	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421	if (rdev == NULL)
3422		return ERR_PTR(-ENOMEM);
3423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3424	mutex_lock(&regulator_list_mutex);
3425
3426	mutex_init(&rdev->mutex);
3427	rdev->reg_data = config->driver_data;
3428	rdev->owner = regulator_desc->owner;
3429	rdev->desc = regulator_desc;
3430	if (config->regmap)
3431		rdev->regmap = config->regmap;
3432	else if (dev_get_regmap(dev, NULL))
3433		rdev->regmap = dev_get_regmap(dev, NULL);
3434	else if (dev->parent)
3435		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436	INIT_LIST_HEAD(&rdev->consumer_list);
3437	INIT_LIST_HEAD(&rdev->list);
3438	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441	/* preform any regulator specific init */
3442	if (init_data && init_data->regulator_init) {
3443		ret = init_data->regulator_init(rdev->reg_data);
3444		if (ret < 0)
3445			goto clean;
3446	}
3447
 
 
 
 
 
 
 
 
 
 
3448	/* register with sysfs */
3449	rdev->dev.class = &regulator_class;
3450	rdev->dev.of_node = config->of_node;
3451	rdev->dev.parent = dev;
3452	dev_set_name(&rdev->dev, "regulator.%d",
3453		     atomic_inc_return(&regulator_no) - 1);
3454	ret = device_register(&rdev->dev);
3455	if (ret != 0) {
3456		put_device(&rdev->dev);
3457		goto clean;
3458	}
3459
3460	dev_set_drvdata(&rdev->dev, rdev);
3461
3462	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463		ret = regulator_ena_gpio_request(rdev, config);
3464		if (ret != 0) {
3465			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466				 config->ena_gpio, ret);
3467			goto wash;
3468		}
3469
3470		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471			rdev->ena_gpio_state = 1;
3472
3473		if (config->ena_gpio_invert)
3474			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475	}
3476
3477	/* set regulator constraints */
3478	if (init_data)
3479		constraints = &init_data->constraints;
3480
3481	ret = set_machine_constraints(rdev, constraints);
3482	if (ret < 0)
3483		goto scrub;
3484
3485	/* add attributes supported by this regulator */
3486	ret = add_regulator_attributes(rdev);
3487	if (ret < 0)
3488		goto scrub;
3489
3490	if (init_data && init_data->supply_regulator)
3491		supply = init_data->supply_regulator;
3492	else if (regulator_desc->supply_name)
3493		supply = regulator_desc->supply_name;
3494
3495	if (supply) {
3496		struct regulator_dev *r;
3497
3498		r = regulator_dev_lookup(dev, supply, &ret);
3499
3500		if (ret == -ENODEV) {
3501			/*
3502			 * No supply was specified for this regulator and
3503			 * there will never be one.
3504			 */
3505			ret = 0;
3506			goto add_dev;
3507		} else if (!r) {
3508			dev_err(dev, "Failed to find supply %s\n", supply);
3509			ret = -EPROBE_DEFER;
3510			goto scrub;
3511		}
3512
3513		ret = set_supply(rdev, r);
3514		if (ret < 0)
3515			goto scrub;
3516
3517		/* Enable supply if rail is enabled */
3518		if (_regulator_is_enabled(rdev)) {
3519			ret = regulator_enable(rdev->supply);
3520			if (ret < 0)
3521				goto scrub;
3522		}
3523	}
3524
3525add_dev:
3526	/* add consumers devices */
3527	if (init_data) {
3528		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529			ret = set_consumer_device_supply(rdev,
3530				init_data->consumer_supplies[i].dev_name,
3531				init_data->consumer_supplies[i].supply);
3532			if (ret < 0) {
3533				dev_err(dev, "Failed to set supply %s\n",
3534					init_data->consumer_supplies[i].supply);
3535				goto unset_supplies;
3536			}
3537		}
3538	}
3539
3540	list_add(&rdev->list, &regulator_list);
3541
3542	rdev_init_debugfs(rdev);
3543out:
3544	mutex_unlock(&regulator_list_mutex);
 
3545	return rdev;
3546
3547unset_supplies:
3548	unset_regulator_supplies(rdev);
3549
3550scrub:
3551	if (rdev->supply)
3552		_regulator_put(rdev->supply);
3553	regulator_ena_gpio_free(rdev);
3554	kfree(rdev->constraints);
3555wash:
3556	device_unregister(&rdev->dev);
3557	/* device core frees rdev */
3558	rdev = ERR_PTR(ret);
3559	goto out;
3560
 
 
3561clean:
3562	kfree(rdev);
3563	rdev = ERR_PTR(ret);
3564	goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576	if (rdev == NULL)
3577		return;
3578
3579	if (rdev->supply) {
3580		while (rdev->use_count--)
3581			regulator_disable(rdev->supply);
3582		regulator_put(rdev->supply);
3583	}
3584	mutex_lock(&regulator_list_mutex);
3585	debugfs_remove_recursive(rdev->debugfs);
3586	flush_work(&rdev->disable_work.work);
3587	WARN_ON(rdev->open_count);
3588	unset_regulator_supplies(rdev);
3589	list_del(&rdev->list);
3590	kfree(rdev->constraints);
3591	regulator_ena_gpio_free(rdev);
3592	device_unregister(&rdev->dev);
3593	mutex_unlock(&regulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
 
 
 
 
 
 
 
 
 
 
 
 
 
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606	struct regulator_dev *rdev;
3607	int ret = 0;
3608
3609	/* ON is handled by regulator active state */
3610	if (state == PM_SUSPEND_ON)
3611		return -EINVAL;
3612
3613	mutex_lock(&regulator_list_mutex);
3614	list_for_each_entry(rdev, &regulator_list, list) {
 
 
3615
3616		mutex_lock(&rdev->mutex);
3617		ret = suspend_prepare(rdev, state);
3618		mutex_unlock(&rdev->mutex);
 
3619
3620		if (ret < 0) {
3621			rdev_err(rdev, "failed to prepare\n");
3622			goto out;
 
 
 
 
 
3623		}
 
 
 
 
 
 
 
 
 
3624	}
3625out:
3626	mutex_unlock(&regulator_list_mutex);
3627	return ret;
 
 
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639	struct regulator_dev *rdev;
3640	int ret = 0, error;
3641
3642	mutex_lock(&regulator_list_mutex);
3643	list_for_each_entry(rdev, &regulator_list, list) {
3644		mutex_lock(&rdev->mutex);
3645		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3646			error = _regulator_do_enable(rdev);
3647			if (error)
3648				ret = error;
3649		} else {
3650			if (!have_full_constraints())
3651				goto unlock;
3652			if (!_regulator_is_enabled(rdev))
3653				goto unlock;
3654
3655			error = _regulator_do_disable(rdev);
3656			if (error)
3657				ret = error;
3658		}
3659unlock:
3660		mutex_unlock(&rdev->mutex);
3661	}
3662	mutex_unlock(&regulator_list_mutex);
3663	return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680	has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693	return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706	return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717	regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727	return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733	return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739	return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745				    size_t count, loff_t *ppos)
3746{
3747	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748	ssize_t len, ret = 0;
3749	struct regulator_map *map;
3750
3751	if (!buf)
3752		return -ENOMEM;
3753
3754	list_for_each_entry(map, &regulator_map_list, list) {
3755		len = snprintf(buf + ret, PAGE_SIZE - ret,
3756			       "%s -> %s.%s\n",
3757			       rdev_get_name(map->regulator), map->dev_name,
3758			       map->supply);
3759		if (len >= 0)
3760			ret += len;
3761		if (ret > PAGE_SIZE) {
3762			ret = PAGE_SIZE;
3763			break;
3764		}
3765	}
3766
3767	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769	kfree(buf);
3770
3771	return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777	.read = supply_map_read_file,
3778	.llseek = default_llseek,
3779#endif
3780};
3781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3782static int __init regulator_init(void)
3783{
3784	int ret;
3785
3786	ret = class_register(&regulator_class);
3787
3788	debugfs_root = debugfs_create_dir("regulator", NULL);
3789	if (!debugfs_root)
3790		pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793			    &supply_map_fops);
3794
 
 
 
3795	regulator_dummy_init();
3796
3797	return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805	struct regulator_dev *rdev;
3806	struct regulator_ops *ops;
3807	struct regulation_constraints *c;
3808	int enabled, ret;
3809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3810	/*
3811	 * Since DT doesn't provide an idiomatic mechanism for
3812	 * enabling full constraints and since it's much more natural
3813	 * with DT to provide them just assume that a DT enabled
3814	 * system has full constraints.
3815	 */
3816	if (of_have_populated_dt())
3817		has_full_constraints = true;
3818
3819	mutex_lock(&regulator_list_mutex);
3820
3821	/* If we have a full configuration then disable any regulators
3822	 * which are not in use or always_on.  This will become the
3823	 * default behaviour in the future.
 
3824	 */
3825	list_for_each_entry(rdev, &regulator_list, list) {
3826		ops = rdev->desc->ops;
3827		c = rdev->constraints;
3828
3829		if (c && c->always_on)
3830			continue;
3831
3832		mutex_lock(&rdev->mutex);
3833
3834		if (rdev->use_count)
3835			goto unlock;
3836
3837		/* If we can't read the status assume it's on. */
3838		if (ops->is_enabled)
3839			enabled = ops->is_enabled(rdev);
3840		else
3841			enabled = 1;
3842
3843		if (!enabled)
3844			goto unlock;
3845
3846		if (have_full_constraints()) {
3847			/* We log since this may kill the system if it
3848			 * goes wrong. */
3849			rdev_info(rdev, "disabling\n");
3850			ret = _regulator_do_disable(rdev);
3851			if (ret != 0)
3852				rdev_err(rdev, "couldn't disable: %d\n", ret);
3853		} else {
3854			/* The intention is that in future we will
3855			 * assume that full constraints are provided
3856			 * so warn even if we aren't going to do
3857			 * anything here.
3858			 */
3859			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860		}
3861
3862unlock:
3863		mutex_unlock(&rdev->mutex);
3864	}
3865
3866	mutex_unlock(&regulator_list_mutex);
3867
3868	return 0;
3869}
3870late_initcall(regulator_init_complete);
v4.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
 
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 136{
 137	if (rdev && rdev->supply)
 138		return rdev->supply->rdev;
 139
 140	return NULL;
 141}
 142
 143/**
 144 * regulator_lock_supply - lock a regulator and its supplies
 145 * @rdev:         regulator source
 146 */
 147static void regulator_lock_supply(struct regulator_dev *rdev)
 148{
 149	int i;
 150
 151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 152		mutex_lock_nested(&rdev->mutex, i);
 153}
 154
 155/**
 156 * regulator_unlock_supply - unlock a regulator and its supplies
 157 * @rdev:         regulator source
 158 */
 159static void regulator_unlock_supply(struct regulator_dev *rdev)
 160{
 161	struct regulator *supply;
 162
 163	while (1) {
 164		mutex_unlock(&rdev->mutex);
 165		supply = rdev->supply;
 166
 167		if (!rdev->supply)
 168			return;
 169
 170		rdev = supply->rdev;
 171	}
 172}
 173
 174/**
 175 * of_get_regulator - get a regulator device node based on supply name
 176 * @dev: Device pointer for the consumer (of regulator) device
 177 * @supply: regulator supply name
 178 *
 179 * Extract the regulator device node corresponding to the supply name.
 180 * returns the device node corresponding to the regulator if found, else
 181 * returns NULL.
 182 */
 183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 184{
 185	struct device_node *regnode = NULL;
 186	char prop_name[32]; /* 32 is max size of property name */
 187
 188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 189
 190	snprintf(prop_name, 32, "%s-supply", supply);
 191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 192
 193	if (!regnode) {
 194		dev_dbg(dev, "Looking up %s property in node %s failed",
 195				prop_name, dev->of_node->full_name);
 196		return NULL;
 197	}
 198	return regnode;
 199}
 200
 201static int _regulator_can_change_status(struct regulator_dev *rdev)
 202{
 203	if (!rdev->constraints)
 204		return 0;
 205
 206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 207		return 1;
 208	else
 209		return 0;
 210}
 211
 212/* Platform voltage constraint check */
 213static int regulator_check_voltage(struct regulator_dev *rdev,
 214				   int *min_uV, int *max_uV)
 215{
 216	BUG_ON(*min_uV > *max_uV);
 217
 218	if (!rdev->constraints) {
 219		rdev_err(rdev, "no constraints\n");
 220		return -ENODEV;
 221	}
 222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 223		rdev_err(rdev, "voltage operation not allowed\n");
 224		return -EPERM;
 225	}
 226
 227	if (*max_uV > rdev->constraints->max_uV)
 228		*max_uV = rdev->constraints->max_uV;
 229	if (*min_uV < rdev->constraints->min_uV)
 230		*min_uV = rdev->constraints->min_uV;
 231
 232	if (*min_uV > *max_uV) {
 233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 234			 *min_uV, *max_uV);
 235		return -EINVAL;
 236	}
 237
 238	return 0;
 239}
 240
 241/* Make sure we select a voltage that suits the needs of all
 242 * regulator consumers
 243 */
 244static int regulator_check_consumers(struct regulator_dev *rdev,
 245				     int *min_uV, int *max_uV)
 246{
 247	struct regulator *regulator;
 248
 249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!regulator->min_uV && !regulator->max_uV)
 255			continue;
 256
 257		if (*max_uV > regulator->max_uV)
 258			*max_uV = regulator->max_uV;
 259		if (*min_uV < regulator->min_uV)
 260			*min_uV = regulator->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!rdev->constraints) {
 279		rdev_err(rdev, "no constraints\n");
 280		return -ENODEV;
 281	}
 282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 283		rdev_err(rdev, "current operation not allowed\n");
 284		return -EPERM;
 285	}
 286
 287	if (*max_uA > rdev->constraints->max_uA)
 288		*max_uA = rdev->constraints->max_uA;
 289	if (*min_uA < rdev->constraints->min_uA)
 290		*min_uA = rdev->constraints->min_uA;
 291
 292	if (*min_uA > *max_uA) {
 293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 294			 *min_uA, *max_uA);
 295		return -EINVAL;
 296	}
 297
 298	return 0;
 299}
 300
 301/* operating mode constraint check */
 302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 303{
 304	switch (*mode) {
 305	case REGULATOR_MODE_FAST:
 306	case REGULATOR_MODE_NORMAL:
 307	case REGULATOR_MODE_IDLE:
 308	case REGULATOR_MODE_STANDBY:
 309		break;
 310	default:
 311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 312		return -EINVAL;
 313	}
 314
 315	if (!rdev->constraints) {
 316		rdev_err(rdev, "no constraints\n");
 317		return -ENODEV;
 318	}
 319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 320		rdev_err(rdev, "mode operation not allowed\n");
 321		return -EPERM;
 322	}
 323
 324	/* The modes are bitmasks, the most power hungry modes having
 325	 * the lowest values. If the requested mode isn't supported
 326	 * try higher modes. */
 327	while (*mode) {
 328		if (rdev->constraints->valid_modes_mask & *mode)
 329			return 0;
 330		*mode /= 2;
 331	}
 332
 333	return -EINVAL;
 334}
 335
 336/* dynamic regulator mode switching constraint check */
 337static int regulator_check_drms(struct regulator_dev *rdev)
 338{
 339	if (!rdev->constraints) {
 340		rdev_err(rdev, "no constraints\n");
 341		return -ENODEV;
 342	}
 343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 344		rdev_dbg(rdev, "drms operation not allowed\n");
 345		return -EPERM;
 346	}
 347	return 0;
 348}
 349
 350static ssize_t regulator_uV_show(struct device *dev,
 351				struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354	ssize_t ret;
 355
 356	mutex_lock(&rdev->mutex);
 357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 358	mutex_unlock(&rdev->mutex);
 359
 360	return ret;
 361}
 362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 363
 364static ssize_t regulator_uA_show(struct device *dev,
 365				struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 370}
 371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 372
 373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 374			 char *buf)
 375{
 376	struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 379}
 380static DEVICE_ATTR_RO(name);
 381
 382static ssize_t regulator_print_opmode(char *buf, int mode)
 383{
 384	switch (mode) {
 385	case REGULATOR_MODE_FAST:
 386		return sprintf(buf, "fast\n");
 387	case REGULATOR_MODE_NORMAL:
 388		return sprintf(buf, "normal\n");
 389	case REGULATOR_MODE_IDLE:
 390		return sprintf(buf, "idle\n");
 391	case REGULATOR_MODE_STANDBY:
 392		return sprintf(buf, "standby\n");
 393	}
 394	return sprintf(buf, "unknown\n");
 395}
 396
 397static ssize_t regulator_opmode_show(struct device *dev,
 398				    struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 403}
 404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 405
 406static ssize_t regulator_print_state(char *buf, int state)
 407{
 408	if (state > 0)
 409		return sprintf(buf, "enabled\n");
 410	else if (state == 0)
 411		return sprintf(buf, "disabled\n");
 412	else
 413		return sprintf(buf, "unknown\n");
 414}
 415
 416static ssize_t regulator_state_show(struct device *dev,
 417				   struct device_attribute *attr, char *buf)
 418{
 419	struct regulator_dev *rdev = dev_get_drvdata(dev);
 420	ssize_t ret;
 421
 422	mutex_lock(&rdev->mutex);
 423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 424	mutex_unlock(&rdev->mutex);
 425
 426	return ret;
 427}
 428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 429
 430static ssize_t regulator_status_show(struct device *dev,
 431				   struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434	int status;
 435	char *label;
 436
 437	status = rdev->desc->ops->get_status(rdev);
 438	if (status < 0)
 439		return status;
 440
 441	switch (status) {
 442	case REGULATOR_STATUS_OFF:
 443		label = "off";
 444		break;
 445	case REGULATOR_STATUS_ON:
 446		label = "on";
 447		break;
 448	case REGULATOR_STATUS_ERROR:
 449		label = "error";
 450		break;
 451	case REGULATOR_STATUS_FAST:
 452		label = "fast";
 453		break;
 454	case REGULATOR_STATUS_NORMAL:
 455		label = "normal";
 456		break;
 457	case REGULATOR_STATUS_IDLE:
 458		label = "idle";
 459		break;
 460	case REGULATOR_STATUS_STANDBY:
 461		label = "standby";
 462		break;
 463	case REGULATOR_STATUS_BYPASS:
 464		label = "bypass";
 465		break;
 466	case REGULATOR_STATUS_UNDEFINED:
 467		label = "undefined";
 468		break;
 469	default:
 470		return -ERANGE;
 471	}
 472
 473	return sprintf(buf, "%s\n", label);
 474}
 475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 476
 477static ssize_t regulator_min_uA_show(struct device *dev,
 478				    struct device_attribute *attr, char *buf)
 479{
 480	struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482	if (!rdev->constraints)
 483		return sprintf(buf, "constraint not defined\n");
 484
 485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 486}
 487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 488
 489static ssize_t regulator_max_uA_show(struct device *dev,
 490				    struct device_attribute *attr, char *buf)
 491{
 492	struct regulator_dev *rdev = dev_get_drvdata(dev);
 493
 494	if (!rdev->constraints)
 495		return sprintf(buf, "constraint not defined\n");
 496
 497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 498}
 499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 500
 501static ssize_t regulator_min_uV_show(struct device *dev,
 502				    struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	if (!rdev->constraints)
 507		return sprintf(buf, "constraint not defined\n");
 508
 509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 510}
 511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 512
 513static ssize_t regulator_max_uV_show(struct device *dev,
 514				    struct device_attribute *attr, char *buf)
 515{
 516	struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518	if (!rdev->constraints)
 519		return sprintf(buf, "constraint not defined\n");
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 522}
 523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 524
 525static ssize_t regulator_total_uA_show(struct device *dev,
 526				      struct device_attribute *attr, char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529	struct regulator *regulator;
 530	int uA = 0;
 531
 532	mutex_lock(&rdev->mutex);
 533	list_for_each_entry(regulator, &rdev->consumer_list, list)
 534		uA += regulator->uA_load;
 535	mutex_unlock(&rdev->mutex);
 536	return sprintf(buf, "%d\n", uA);
 537}
 538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 539
 540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 541			      char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544	return sprintf(buf, "%d\n", rdev->use_count);
 545}
 546static DEVICE_ATTR_RO(num_users);
 547
 548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 549			 char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	switch (rdev->desc->type) {
 554	case REGULATOR_VOLTAGE:
 555		return sprintf(buf, "voltage\n");
 556	case REGULATOR_CURRENT:
 557		return sprintf(buf, "current\n");
 558	}
 559	return sprintf(buf, "unknown\n");
 560}
 561static DEVICE_ATTR_RO(type);
 562
 563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 569}
 570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 571		regulator_suspend_mem_uV_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 574				struct device_attribute *attr, char *buf)
 575{
 576	struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 579}
 580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 581		regulator_suspend_disk_uV_show, NULL);
 582
 583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 589}
 590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 591		regulator_suspend_standby_uV_show, NULL);
 592
 593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 594				struct device_attribute *attr, char *buf)
 595{
 596	struct regulator_dev *rdev = dev_get_drvdata(dev);
 597
 598	return regulator_print_opmode(buf,
 599		rdev->constraints->state_mem.mode);
 600}
 601static DEVICE_ATTR(suspend_mem_mode, 0444,
 602		regulator_suspend_mem_mode_show, NULL);
 603
 604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 605				struct device_attribute *attr, char *buf)
 606{
 607	struct regulator_dev *rdev = dev_get_drvdata(dev);
 608
 609	return regulator_print_opmode(buf,
 610		rdev->constraints->state_disk.mode);
 611}
 612static DEVICE_ATTR(suspend_disk_mode, 0444,
 613		regulator_suspend_disk_mode_show, NULL);
 614
 615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 616				struct device_attribute *attr, char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return regulator_print_opmode(buf,
 621		rdev->constraints->state_standby.mode);
 622}
 623static DEVICE_ATTR(suspend_standby_mode, 0444,
 624		regulator_suspend_standby_mode_show, NULL);
 625
 626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 627				   struct device_attribute *attr, char *buf)
 628{
 629	struct regulator_dev *rdev = dev_get_drvdata(dev);
 630
 631	return regulator_print_state(buf,
 632			rdev->constraints->state_mem.enabled);
 633}
 634static DEVICE_ATTR(suspend_mem_state, 0444,
 635		regulator_suspend_mem_state_show, NULL);
 636
 637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 638				   struct device_attribute *attr, char *buf)
 639{
 640	struct regulator_dev *rdev = dev_get_drvdata(dev);
 641
 642	return regulator_print_state(buf,
 643			rdev->constraints->state_disk.enabled);
 644}
 645static DEVICE_ATTR(suspend_disk_state, 0444,
 646		regulator_suspend_disk_state_show, NULL);
 647
 648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 649				   struct device_attribute *attr, char *buf)
 650{
 651	struct regulator_dev *rdev = dev_get_drvdata(dev);
 652
 653	return regulator_print_state(buf,
 654			rdev->constraints->state_standby.enabled);
 655}
 656static DEVICE_ATTR(suspend_standby_state, 0444,
 657		regulator_suspend_standby_state_show, NULL);
 658
 659static ssize_t regulator_bypass_show(struct device *dev,
 660				     struct device_attribute *attr, char *buf)
 661{
 662	struct regulator_dev *rdev = dev_get_drvdata(dev);
 663	const char *report;
 664	bool bypass;
 665	int ret;
 666
 667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 668
 669	if (ret != 0)
 670		report = "unknown";
 671	else if (bypass)
 672		report = "enabled";
 673	else
 674		report = "disabled";
 675
 676	return sprintf(buf, "%s\n", report);
 677}
 678static DEVICE_ATTR(bypass, 0444,
 679		   regulator_bypass_show, NULL);
 680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681/* Calculate the new optimum regulator operating mode based on the new total
 682 * consumer load. All locks held by caller */
 683static int drms_uA_update(struct regulator_dev *rdev)
 684{
 685	struct regulator *sibling;
 686	int current_uA = 0, output_uV, input_uV, err;
 687	unsigned int mode;
 688
 689	lockdep_assert_held_once(&rdev->mutex);
 690
 691	/*
 692	 * first check to see if we can set modes at all, otherwise just
 693	 * tell the consumer everything is OK.
 694	 */
 695	err = regulator_check_drms(rdev);
 696	if (err < 0)
 697		return 0;
 698
 699	if (!rdev->desc->ops->get_optimum_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return 0;
 702
 703	if (!rdev->desc->ops->set_mode &&
 704	    !rdev->desc->ops->set_load)
 705		return -EINVAL;
 706
 707	/* get output voltage */
 708	output_uV = _regulator_get_voltage(rdev);
 709	if (output_uV <= 0) {
 710		rdev_err(rdev, "invalid output voltage found\n");
 711		return -EINVAL;
 712	}
 713
 714	/* get input voltage */
 715	input_uV = 0;
 716	if (rdev->supply)
 717		input_uV = regulator_get_voltage(rdev->supply);
 718	if (input_uV <= 0)
 719		input_uV = rdev->constraints->input_uV;
 720	if (input_uV <= 0) {
 721		rdev_err(rdev, "invalid input voltage found\n");
 722		return -EINVAL;
 723	}
 724
 725	/* calc total requested load */
 726	list_for_each_entry(sibling, &rdev->consumer_list, list)
 727		current_uA += sibling->uA_load;
 728
 729	current_uA += rdev->constraints->system_load;
 730
 731	if (rdev->desc->ops->set_load) {
 732		/* set the optimum mode for our new total regulator load */
 733		err = rdev->desc->ops->set_load(rdev, current_uA);
 734		if (err < 0)
 735			rdev_err(rdev, "failed to set load %d\n", current_uA);
 736	} else {
 737		/* now get the optimum mode for our new total regulator load */
 738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 739							 output_uV, current_uA);
 740
 741		/* check the new mode is allowed */
 742		err = regulator_mode_constrain(rdev, &mode);
 743		if (err < 0) {
 744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 745				 current_uA, input_uV, output_uV);
 746			return err;
 747		}
 748
 749		err = rdev->desc->ops->set_mode(rdev, mode);
 750		if (err < 0)
 751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 752	}
 753
 754	return err;
 755}
 756
 757static int suspend_set_state(struct regulator_dev *rdev,
 758	struct regulator_state *rstate)
 759{
 760	int ret = 0;
 761
 762	/* If we have no suspend mode configration don't set anything;
 763	 * only warn if the driver implements set_suspend_voltage or
 764	 * set_suspend_mode callback.
 765	 */
 766	if (!rstate->enabled && !rstate->disabled) {
 767		if (rdev->desc->ops->set_suspend_voltage ||
 768		    rdev->desc->ops->set_suspend_mode)
 769			rdev_warn(rdev, "No configuration\n");
 770		return 0;
 771	}
 772
 773	if (rstate->enabled && rstate->disabled) {
 774		rdev_err(rdev, "invalid configuration\n");
 775		return -EINVAL;
 776	}
 777
 778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 779		ret = rdev->desc->ops->set_suspend_enable(rdev);
 780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 781		ret = rdev->desc->ops->set_suspend_disable(rdev);
 782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 783		ret = 0;
 784
 785	if (ret < 0) {
 786		rdev_err(rdev, "failed to enabled/disable\n");
 787		return ret;
 788	}
 789
 790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 792		if (ret < 0) {
 793			rdev_err(rdev, "failed to set voltage\n");
 794			return ret;
 795		}
 796	}
 797
 798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 800		if (ret < 0) {
 801			rdev_err(rdev, "failed to set mode\n");
 802			return ret;
 803		}
 804	}
 805	return ret;
 806}
 807
 808/* locks held by caller */
 809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 810{
 811	lockdep_assert_held_once(&rdev->mutex);
 812
 813	if (!rdev->constraints)
 814		return -EINVAL;
 815
 816	switch (state) {
 817	case PM_SUSPEND_STANDBY:
 818		return suspend_set_state(rdev,
 819			&rdev->constraints->state_standby);
 820	case PM_SUSPEND_MEM:
 821		return suspend_set_state(rdev,
 822			&rdev->constraints->state_mem);
 823	case PM_SUSPEND_MAX:
 824		return suspend_set_state(rdev,
 825			&rdev->constraints->state_disk);
 826	default:
 827		return -EINVAL;
 828	}
 829}
 830
 831static void print_constraints(struct regulator_dev *rdev)
 832{
 833	struct regulation_constraints *constraints = rdev->constraints;
 834	char buf[160] = "";
 835	size_t len = sizeof(buf) - 1;
 836	int count = 0;
 837	int ret;
 838
 839	if (constraints->min_uV && constraints->max_uV) {
 840		if (constraints->min_uV == constraints->max_uV)
 841			count += scnprintf(buf + count, len - count, "%d mV ",
 842					   constraints->min_uV / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mV ",
 846					   constraints->min_uV / 1000,
 847					   constraints->max_uV / 1000);
 848	}
 849
 850	if (!constraints->min_uV ||
 851	    constraints->min_uV != constraints->max_uV) {
 852		ret = _regulator_get_voltage(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mV ", ret / 1000);
 856	}
 857
 858	if (constraints->uV_offset)
 859		count += scnprintf(buf + count, len - count, "%dmV offset ",
 860				   constraints->uV_offset / 1000);
 861
 862	if (constraints->min_uA && constraints->max_uA) {
 863		if (constraints->min_uA == constraints->max_uA)
 864			count += scnprintf(buf + count, len - count, "%d mA ",
 865					   constraints->min_uA / 1000);
 866		else
 867			count += scnprintf(buf + count, len - count,
 868					   "%d <--> %d mA ",
 869					   constraints->min_uA / 1000,
 870					   constraints->max_uA / 1000);
 871	}
 872
 873	if (!constraints->min_uA ||
 874	    constraints->min_uA != constraints->max_uA) {
 875		ret = _regulator_get_current_limit(rdev);
 876		if (ret > 0)
 877			count += scnprintf(buf + count, len - count,
 878					   "at %d mA ", ret / 1000);
 879	}
 880
 881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 882		count += scnprintf(buf + count, len - count, "fast ");
 883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 884		count += scnprintf(buf + count, len - count, "normal ");
 885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 886		count += scnprintf(buf + count, len - count, "idle ");
 887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 888		count += scnprintf(buf + count, len - count, "standby");
 889
 890	if (!count)
 891		scnprintf(buf, len, "no parameters");
 892
 893	rdev_dbg(rdev, "%s\n", buf);
 894
 895	if ((constraints->min_uV != constraints->max_uV) &&
 896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 897		rdev_warn(rdev,
 898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 899}
 900
 901static int machine_constraints_voltage(struct regulator_dev *rdev,
 902	struct regulation_constraints *constraints)
 903{
 904	const struct regulator_ops *ops = rdev->desc->ops;
 905	int ret;
 906
 907	/* do we need to apply the constraint voltage */
 908	if (rdev->constraints->apply_uV &&
 909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 910		int current_uV = _regulator_get_voltage(rdev);
 911		if (current_uV < 0) {
 912			rdev_err(rdev,
 913				 "failed to get the current voltage(%d)\n",
 914				 current_uV);
 915			return current_uV;
 916		}
 917		if (current_uV < rdev->constraints->min_uV ||
 918		    current_uV > rdev->constraints->max_uV) {
 919			ret = _regulator_do_set_voltage(
 920				rdev, rdev->constraints->min_uV,
 921				rdev->constraints->max_uV);
 922			if (ret < 0) {
 923				rdev_err(rdev,
 924					"failed to apply %duV constraint(%d)\n",
 925					rdev->constraints->min_uV, ret);
 926				return ret;
 927			}
 928		}
 929	}
 930
 931	/* constrain machine-level voltage specs to fit
 932	 * the actual range supported by this regulator.
 933	 */
 934	if (ops->list_voltage && rdev->desc->n_voltages) {
 935		int	count = rdev->desc->n_voltages;
 936		int	i;
 937		int	min_uV = INT_MAX;
 938		int	max_uV = INT_MIN;
 939		int	cmin = constraints->min_uV;
 940		int	cmax = constraints->max_uV;
 941
 942		/* it's safe to autoconfigure fixed-voltage supplies
 943		   and the constraints are used by list_voltage. */
 944		if (count == 1 && !cmin) {
 945			cmin = 1;
 946			cmax = INT_MAX;
 947			constraints->min_uV = cmin;
 948			constraints->max_uV = cmax;
 949		}
 950
 951		/* voltage constraints are optional */
 952		if ((cmin == 0) && (cmax == 0))
 953			return 0;
 954
 955		/* else require explicit machine-level constraints */
 956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 957			rdev_err(rdev, "invalid voltage constraints\n");
 958			return -EINVAL;
 959		}
 960
 961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 962		for (i = 0; i < count; i++) {
 963			int	value;
 964
 965			value = ops->list_voltage(rdev, i);
 966			if (value <= 0)
 967				continue;
 968
 969			/* maybe adjust [min_uV..max_uV] */
 970			if (value >= cmin && value < min_uV)
 971				min_uV = value;
 972			if (value <= cmax && value > max_uV)
 973				max_uV = value;
 974		}
 975
 976		/* final: [min_uV..max_uV] valid iff constraints valid */
 977		if (max_uV < min_uV) {
 978			rdev_err(rdev,
 979				 "unsupportable voltage constraints %u-%uuV\n",
 980				 min_uV, max_uV);
 981			return -EINVAL;
 982		}
 983
 984		/* use regulator's subset of machine constraints */
 985		if (constraints->min_uV < min_uV) {
 986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 987				 constraints->min_uV, min_uV);
 988			constraints->min_uV = min_uV;
 989		}
 990		if (constraints->max_uV > max_uV) {
 991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 992				 constraints->max_uV, max_uV);
 993			constraints->max_uV = max_uV;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		return ret;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		return ret;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			return ret;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			return ret;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			return -EINVAL;
 
1088		}
1089
1090		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091		if (ret < 0) {
1092			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093			return ret;
1094		}
1095	}
1096
1097	/* If the constraints say the regulator should be on at this point
1098	 * and we have control then make sure it is enabled.
1099	 */
1100	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101		ret = _regulator_do_enable(rdev);
1102		if (ret < 0 && ret != -EINVAL) {
1103			rdev_err(rdev, "failed to enable\n");
1104			return ret;
1105		}
1106	}
1107
1108	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109		&& ops->set_ramp_delay) {
1110		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111		if (ret < 0) {
1112			rdev_err(rdev, "failed to set ramp_delay\n");
1113			return ret;
1114		}
1115	}
1116
1117	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118		ret = ops->set_pull_down(rdev);
1119		if (ret < 0) {
1120			rdev_err(rdev, "failed to set pull down\n");
1121			return ret;
1122		}
1123	}
1124
1125	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126		ret = ops->set_soft_start(rdev);
1127		if (ret < 0) {
1128			rdev_err(rdev, "failed to set soft start\n");
1129			return ret;
1130		}
1131	}
1132
1133	if (rdev->constraints->over_current_protection
1134		&& ops->set_over_current_protection) {
1135		ret = ops->set_over_current_protection(rdev);
1136		if (ret < 0) {
1137			rdev_err(rdev, "failed to set over current protection\n");
1138			return ret;
1139		}
1140	}
1141
1142	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143		bool ad_state = (rdev->constraints->active_discharge ==
1144			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146		ret = ops->set_active_discharge(rdev, ad_state);
1147		if (ret < 0) {
1148			rdev_err(rdev, "failed to set active discharge\n");
1149			return ret;
1150		}
1151	}
1152
1153	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154		bool ad_state = (rdev->constraints->active_discharge ==
1155			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157		ret = ops->set_active_discharge(rdev, ad_state);
1158		if (ret < 0) {
1159			rdev_err(rdev, "failed to set active discharge\n");
1160			return ret;
1161		}
1162	}
1163
1164	print_constraints(rdev);
1165	return 0;
 
 
 
 
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178		      struct regulator_dev *supply_rdev)
1179{
1180	int err;
1181
1182	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184	if (!try_module_get(supply_rdev->owner))
1185		return -ENODEV;
1186
1187	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188	if (rdev->supply == NULL) {
1189		err = -ENOMEM;
1190		return err;
1191	}
1192	supply_rdev->open_count++;
1193
1194	return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev:         regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply:       symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices.  Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209				      const char *consumer_dev_name,
1210				      const char *supply)
1211{
1212	struct regulator_map *node;
1213	int has_dev;
1214
1215	if (supply == NULL)
1216		return -EINVAL;
1217
1218	if (consumer_dev_name != NULL)
1219		has_dev = 1;
1220	else
1221		has_dev = 0;
1222
1223	list_for_each_entry(node, &regulator_map_list, list) {
1224		if (node->dev_name && consumer_dev_name) {
1225			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226				continue;
1227		} else if (node->dev_name || consumer_dev_name) {
1228			continue;
1229		}
1230
1231		if (strcmp(node->supply, supply) != 0)
1232			continue;
1233
1234		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235			 consumer_dev_name,
1236			 dev_name(&node->regulator->dev),
1237			 node->regulator->desc->name,
1238			 supply,
1239			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240		return -EBUSY;
1241	}
1242
1243	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244	if (node == NULL)
1245		return -ENOMEM;
1246
1247	node->regulator = rdev;
1248	node->supply = supply;
1249
1250	if (has_dev) {
1251		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252		if (node->dev_name == NULL) {
1253			kfree(node);
1254			return -ENOMEM;
1255		}
1256	}
1257
1258	list_add(&node->list, &regulator_map_list);
1259	return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264	struct regulator_map *node, *n;
1265
1266	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267		if (rdev == node->regulator) {
1268			list_del(&node->list);
1269			kfree(node->dev_name);
1270			kfree(node);
1271		}
1272	}
1273}
1274
1275#define REG_STR_SIZE	64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278					  struct device *dev,
1279					  const char *supply_name)
1280{
1281	struct regulator *regulator;
1282	char buf[REG_STR_SIZE];
1283	int err, size;
1284
1285	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286	if (regulator == NULL)
1287		return NULL;
1288
1289	mutex_lock(&rdev->mutex);
1290	regulator->rdev = rdev;
1291	list_add(&regulator->list, &rdev->consumer_list);
1292
1293	if (dev) {
1294		regulator->dev = dev;
1295
1296		/* Add a link to the device sysfs entry */
1297		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298				 dev->kobj.name, supply_name);
1299		if (size >= REG_STR_SIZE)
1300			goto overflow_err;
1301
1302		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303		if (regulator->supply_name == NULL)
1304			goto overflow_err;
1305
1306		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307					buf);
1308		if (err) {
1309			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310				  dev->kobj.name, err);
1311			/* non-fatal */
1312		}
1313	} else {
1314		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315		if (regulator->supply_name == NULL)
1316			goto overflow_err;
1317	}
1318
1319	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320						rdev->debugfs);
1321	if (!regulator->debugfs) {
1322		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323	} else {
1324		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325				   &regulator->uA_load);
1326		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327				   &regulator->min_uV);
1328		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329				   &regulator->max_uV);
1330	}
1331
1332	/*
1333	 * Check now if the regulator is an always on regulator - if
1334	 * it is then we don't need to do nearly so much work for
1335	 * enable/disable calls.
1336	 */
1337	if (!_regulator_can_change_status(rdev) &&
1338	    _regulator_is_enabled(rdev))
1339		regulator->always_on = true;
1340
1341	mutex_unlock(&rdev->mutex);
1342	return regulator;
1343overflow_err:
1344	list_del(&regulator->list);
1345	kfree(regulator);
1346	mutex_unlock(&rdev->mutex);
1347	return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352	if (rdev->constraints && rdev->constraints->enable_time)
1353		return rdev->constraints->enable_time;
1354	if (!rdev->desc->ops->enable_time)
1355		return rdev->desc->enable_time;
1356	return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360		struct device *dev, const char *supply)
1361{
1362	struct regulator_supply_alias *map;
1363
1364	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366			return map;
1367
1368	return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373	struct regulator_supply_alias *map;
1374
1375	map = regulator_find_supply_alias(*dev, *supply);
1376	if (map) {
1377		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378				*supply, map->alias_supply,
1379				dev_name(map->alias_dev));
1380		*dev = map->alias_dev;
1381		*supply = map->alias_supply;
1382	}
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387	return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392	struct device *dev;
1393
1394	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396	return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401	struct regulator_dev *r = dev_to_rdev(dev);
1402
1403	return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408	struct device *dev;
1409
1410	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412	return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427						  const char *supply,
1428						  int *ret)
1429{
1430	struct regulator_dev *r;
1431	struct device_node *node;
1432	struct regulator_map *map;
1433	const char *devname = NULL;
1434
1435	regulator_supply_alias(&dev, &supply);
1436
1437	/* first do a dt based lookup */
1438	if (dev && dev->of_node) {
1439		node = of_get_regulator(dev, supply);
1440		if (node) {
1441			r = of_find_regulator_by_node(node);
1442			if (r)
1443				return r;
 
1444			*ret = -EPROBE_DEFER;
1445			return NULL;
1446		} else {
1447			/*
1448			 * If we couldn't even get the node then it's
1449			 * not just that the device didn't register
1450			 * yet, there's no node and we'll never
1451			 * succeed.
1452			 */
1453			*ret = -ENODEV;
1454		}
1455	}
1456
1457	/* if not found, try doing it non-dt way */
1458	if (dev)
1459		devname = dev_name(dev);
1460
1461	r = regulator_lookup_by_name(supply);
1462	if (r)
1463		return r;
1464
1465	mutex_lock(&regulator_list_mutex);
1466	list_for_each_entry(map, &regulator_map_list, list) {
1467		/* If the mapping has a device set up it must match */
1468		if (map->dev_name &&
1469		    (!devname || strcmp(map->dev_name, devname)))
1470			continue;
1471
1472		if (strcmp(map->supply, supply) == 0 &&
1473		    get_device(&map->regulator->dev)) {
1474			mutex_unlock(&regulator_list_mutex);
1475			return map->regulator;
1476		}
1477	}
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return NULL;
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485	struct regulator_dev *r;
1486	struct device *dev = rdev->dev.parent;
1487	int ret;
1488
1489	/* No supply to resovle? */
1490	if (!rdev->supply_name)
1491		return 0;
1492
1493	/* Supply already resolved? */
1494	if (rdev->supply)
1495		return 0;
1496
1497	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498	if (!r) {
1499		if (ret == -ENODEV) {
1500			/*
1501			 * No supply was specified for this regulator and
1502			 * there will never be one.
1503			 */
1504			return 0;
1505		}
1506
1507		/* Did the lookup explicitly defer for us? */
1508		if (ret == -EPROBE_DEFER)
1509			return ret;
1510
1511		if (have_full_constraints()) {
1512			r = dummy_regulator_rdev;
1513			get_device(&r->dev);
1514		} else {
1515			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516				rdev->supply_name, rdev->desc->name);
1517			return -EPROBE_DEFER;
1518		}
1519	}
1520
1521	/* Recursively resolve the supply of the supply */
1522	ret = regulator_resolve_supply(r);
1523	if (ret < 0) {
1524		put_device(&r->dev);
1525		return ret;
1526	}
1527
1528	ret = set_supply(rdev, r);
1529	if (ret < 0) {
1530		put_device(&r->dev);
1531		return ret;
1532	}
1533
1534	/* Cascade always-on state to supply */
1535	if (_regulator_is_enabled(rdev) && rdev->supply) {
1536		ret = regulator_enable(rdev->supply);
1537		if (ret < 0) {
1538			_regulator_put(rdev->supply);
1539			return ret;
1540		}
1541	}
1542
1543	return 0;
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548					bool exclusive, bool allow_dummy)
1549{
1550	struct regulator_dev *rdev;
1551	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552	const char *devname = NULL;
1553	int ret;
1554
1555	if (id == NULL) {
1556		pr_err("get() with no identifier\n");
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	if (dev)
1561		devname = dev_name(dev);
1562
1563	if (have_full_constraints())
1564		ret = -ENODEV;
1565	else
1566		ret = -EPROBE_DEFER;
1567
 
 
1568	rdev = regulator_dev_lookup(dev, id, &ret);
1569	if (rdev)
1570		goto found;
1571
1572	regulator = ERR_PTR(ret);
1573
1574	/*
1575	 * If we have return value from dev_lookup fail, we do not expect to
1576	 * succeed, so, quit with appropriate error value
1577	 */
1578	if (ret && ret != -ENODEV)
1579		return regulator;
1580
1581	if (!devname)
1582		devname = "deviceless";
1583
1584	/*
1585	 * Assume that a regulator is physically present and enabled
1586	 * even if it isn't hooked up and just provide a dummy.
1587	 */
1588	if (have_full_constraints() && allow_dummy) {
1589		pr_warn("%s supply %s not found, using dummy regulator\n",
1590			devname, id);
1591
1592		rdev = dummy_regulator_rdev;
1593		get_device(&rdev->dev);
1594		goto found;
1595	/* Don't log an error when called from regulator_get_optional() */
1596	} else if (!have_full_constraints() || exclusive) {
1597		dev_warn(dev, "dummy supplies not allowed\n");
1598	}
1599
 
1600	return regulator;
1601
1602found:
1603	if (rdev->exclusive) {
1604		regulator = ERR_PTR(-EPERM);
1605		put_device(&rdev->dev);
1606		return regulator;
1607	}
1608
1609	if (exclusive && rdev->open_count) {
1610		regulator = ERR_PTR(-EBUSY);
1611		put_device(&rdev->dev);
1612		return regulator;
1613	}
1614
1615	ret = regulator_resolve_supply(rdev);
1616	if (ret < 0) {
1617		regulator = ERR_PTR(ret);
1618		put_device(&rdev->dev);
1619		return regulator;
1620	}
1621
1622	if (!try_module_get(rdev->owner)) {
1623		put_device(&rdev->dev);
1624		return regulator;
1625	}
1626
1627	regulator = create_regulator(rdev, dev, id);
1628	if (regulator == NULL) {
1629		regulator = ERR_PTR(-ENOMEM);
1630		put_device(&rdev->dev);
1631		module_put(rdev->owner);
1632		return regulator;
1633	}
1634
1635	rdev->open_count++;
1636	if (exclusive) {
1637		rdev->exclusive = 1;
1638
1639		ret = _regulator_is_enabled(rdev);
1640		if (ret > 0)
1641			rdev->use_count = 1;
1642		else
1643			rdev->use_count = 0;
1644	}
1645
 
 
 
1646	return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged.  It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664	return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno.  Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged.  It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691	return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
 
 
 
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged.  It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717	return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724	struct regulator_dev *rdev;
1725
1726	if (IS_ERR_OR_NULL(regulator))
1727		return;
1728
1729	lockdep_assert_held_once(&regulator_list_mutex);
1730
1731	rdev = regulator->rdev;
1732
1733	debugfs_remove_recursive(regulator->debugfs);
1734
1735	/* remove any sysfs entries */
1736	if (regulator->dev)
1737		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738	mutex_lock(&rdev->mutex);
1739	list_del(&regulator->list);
 
1740
1741	rdev->open_count--;
1742	rdev->exclusive = 0;
1743	put_device(&rdev->dev);
1744	mutex_unlock(&rdev->mutex);
1745
1746	kfree(regulator->supply_name);
1747	kfree(regulator);
1748
1749	module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762	mutex_lock(&regulator_list_mutex);
1763	_regulator_put(regulator);
1764	mutex_unlock(&regulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781				    struct device *alias_dev,
1782				    const char *alias_id)
1783{
1784	struct regulator_supply_alias *map;
1785
1786	map = regulator_find_supply_alias(dev, id);
1787	if (map)
1788		return -EEXIST;
1789
1790	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791	if (!map)
1792		return -ENOMEM;
1793
1794	map->src_dev = dev;
1795	map->src_supply = id;
1796	map->alias_dev = alias_dev;
1797	map->alias_supply = alias_id;
1798
1799	list_add(&map->list, &regulator_supply_alias_list);
1800
1801	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804	return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818	struct regulator_supply_alias *map;
1819
1820	map = regulator_find_supply_alias(dev, id);
1821	if (map) {
1822		list_del(&map->list);
1823		kfree(map);
1824	}
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation.  If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846					 const char *const *id,
1847					 struct device *alias_dev,
1848					 const char *const *alias_id,
1849					 int num_id)
1850{
1851	int i;
1852	int ret;
1853
1854	for (i = 0; i < num_id; ++i) {
1855		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856						      alias_id[i]);
1857		if (ret < 0)
1858			goto err;
1859	}
1860
1861	return 0;
1862
1863err:
1864	dev_err(dev,
1865		"Failed to create supply alias %s,%s -> %s,%s\n",
1866		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868	while (--i >= 0)
1869		regulator_unregister_supply_alias(dev, id[i]);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886					    const char *const *id,
1887					    int num_id)
1888{
1889	int i;
1890
1891	for (i = 0; i < num_id; ++i)
1892		regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899				const struct regulator_config *config)
1900{
1901	struct regulator_enable_gpio *pin;
1902	struct gpio_desc *gpiod;
1903	int ret;
1904
1905	gpiod = gpio_to_desc(config->ena_gpio);
1906
1907	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908		if (pin->gpiod == gpiod) {
1909			rdev_dbg(rdev, "GPIO %d is already used\n",
1910				config->ena_gpio);
1911			goto update_ena_gpio_to_rdev;
1912		}
1913	}
1914
1915	ret = gpio_request_one(config->ena_gpio,
1916				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917				rdev_get_name(rdev));
1918	if (ret)
1919		return ret;
1920
1921	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922	if (pin == NULL) {
1923		gpio_free(config->ena_gpio);
1924		return -ENOMEM;
1925	}
1926
1927	pin->gpiod = gpiod;
1928	pin->ena_gpio_invert = config->ena_gpio_invert;
1929	list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932	pin->request_count++;
1933	rdev->ena_pin = pin;
1934	return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939	struct regulator_enable_gpio *pin, *n;
1940
1941	if (!rdev->ena_pin)
1942		return;
1943
1944	/* Free the GPIO only in case of no use */
1945	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947			if (pin->request_count <= 1) {
1948				pin->request_count = 0;
1949				gpiod_put(pin->gpiod);
1950				list_del(&pin->list);
1951				kfree(pin);
1952				rdev->ena_pin = NULL;
1953				return;
1954			} else {
1955				pin->request_count--;
1956			}
1957		}
1958	}
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973	if (!pin)
1974		return -EINVAL;
1975
1976	if (enable) {
1977		/* Enable GPIO at initial use */
1978		if (pin->enable_count == 0)
1979			gpiod_set_value_cansleep(pin->gpiod,
1980						 !pin->ena_gpio_invert);
1981
1982		pin->enable_count++;
1983	} else {
1984		if (pin->enable_count > 1) {
1985			pin->enable_count--;
1986			return 0;
1987		}
1988
1989		/* Disable GPIO if not used */
1990		if (pin->enable_count <= 1) {
1991			gpiod_set_value_cansleep(pin->gpiod,
1992						 pin->ena_gpio_invert);
1993			pin->enable_count = 0;
1994		}
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 *     Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013	unsigned int ms = delay / 1000;
2014	unsigned int us = delay % 1000;
2015
2016	if (ms > 0) {
2017		/*
2018		 * For small enough values, handle super-millisecond
2019		 * delays in the usleep_range() call below.
2020		 */
2021		if (ms < 20)
2022			us += ms * 1000;
2023		else
2024			msleep(ms);
2025	}
2026
2027	/*
2028	 * Give the scheduler some room to coalesce with any other
2029	 * wakeup sources. For delays shorter than 10 us, don't even
2030	 * bother setting up high-resolution timers and just busy-
2031	 * loop.
2032	 */
2033	if (us >= 10)
2034		usleep_range(us, us + 100);
2035	else
2036		udelay(us);
2037}
2038
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041	int ret, delay;
2042
2043	/* Query before enabling in case configuration dependent.  */
2044	ret = _regulator_get_enable_time(rdev);
2045	if (ret >= 0) {
2046		delay = ret;
2047	} else {
2048		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049		delay = 0;
2050	}
2051
2052	trace_regulator_enable(rdev_get_name(rdev));
2053
2054	if (rdev->desc->off_on_delay) {
2055		/* if needed, keep a distance of off_on_delay from last time
2056		 * this regulator was disabled.
2057		 */
2058		unsigned long start_jiffy = jiffies;
2059		unsigned long intended, max_delay, remaining;
2060
2061		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062		intended = rdev->last_off_jiffy + max_delay;
2063
2064		if (time_before(start_jiffy, intended)) {
2065			/* calc remaining jiffies to deal with one-time
2066			 * timer wrapping.
2067			 * in case of multiple timer wrapping, either it can be
2068			 * detected by out-of-range remaining, or it cannot be
2069			 * detected and we gets a panelty of
2070			 * _regulator_enable_delay().
2071			 */
2072			remaining = intended - start_jiffy;
2073			if (remaining <= max_delay)
2074				_regulator_enable_delay(
2075						jiffies_to_usecs(remaining));
2076		}
2077	}
2078
2079	if (rdev->ena_pin) {
2080		if (!rdev->ena_gpio_state) {
2081			ret = regulator_ena_gpio_ctrl(rdev, true);
2082			if (ret < 0)
2083				return ret;
2084			rdev->ena_gpio_state = 1;
2085		}
2086	} else if (rdev->desc->ops->enable) {
2087		ret = rdev->desc->ops->enable(rdev);
2088		if (ret < 0)
2089			return ret;
2090	} else {
2091		return -EINVAL;
2092	}
2093
2094	/* Allow the regulator to ramp; it would be useful to extend
2095	 * this for bulk operations so that the regulators can ramp
2096	 * together.  */
2097	trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099	_regulator_enable_delay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100
2101	trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103	return 0;
2104}
2105
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
2109	int ret;
2110
2111	lockdep_assert_held_once(&rdev->mutex);
2112
2113	/* check voltage and requested load before enabling */
2114	if (rdev->constraints &&
2115	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116		drms_uA_update(rdev);
2117
2118	if (rdev->use_count == 0) {
2119		/* The regulator may on if it's not switchable or left on */
2120		ret = _regulator_is_enabled(rdev);
2121		if (ret == -EINVAL || ret == 0) {
2122			if (!_regulator_can_change_status(rdev))
2123				return -EPERM;
2124
2125			ret = _regulator_do_enable(rdev);
2126			if (ret < 0)
2127				return ret;
2128
2129		} else if (ret < 0) {
2130			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131			return ret;
2132		}
2133		/* Fallthrough on positive return values - already enabled */
2134	}
2135
2136	rdev->use_count++;
2137
2138	return 0;
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value.  Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155	int ret = 0;
2156
2157	if (regulator->always_on)
2158		return 0;
2159
2160	if (rdev->supply) {
2161		ret = regulator_enable(rdev->supply);
2162		if (ret != 0)
2163			return ret;
2164	}
2165
2166	mutex_lock(&rdev->mutex);
2167	ret = _regulator_enable(rdev);
2168	mutex_unlock(&rdev->mutex);
2169
2170	if (ret != 0 && rdev->supply)
2171		regulator_disable(rdev->supply);
2172
2173	return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179	int ret;
2180
2181	trace_regulator_disable(rdev_get_name(rdev));
2182
2183	if (rdev->ena_pin) {
2184		if (rdev->ena_gpio_state) {
2185			ret = regulator_ena_gpio_ctrl(rdev, false);
2186			if (ret < 0)
2187				return ret;
2188			rdev->ena_gpio_state = 0;
2189		}
2190
2191	} else if (rdev->desc->ops->disable) {
2192		ret = rdev->desc->ops->disable(rdev);
2193		if (ret != 0)
2194			return ret;
2195	}
2196
2197	/* cares about last_off_jiffy only if off_on_delay is required by
2198	 * device.
2199	 */
2200	if (rdev->desc->off_on_delay)
2201		rdev->last_off_jiffy = jiffies;
2202
2203	trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205	return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
2211	int ret = 0;
2212
2213	lockdep_assert_held_once(&rdev->mutex);
2214
2215	if (WARN(rdev->use_count <= 0,
2216		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217		return -EIO;
2218
2219	/* are we the last user and permitted to disable ? */
2220	if (rdev->use_count == 1 &&
2221	    (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223		/* we are last user */
2224		if (_regulator_can_change_status(rdev)) {
2225			ret = _notifier_call_chain(rdev,
2226						   REGULATOR_EVENT_PRE_DISABLE,
2227						   NULL);
2228			if (ret & NOTIFY_STOP_MASK)
2229				return -EINVAL;
2230
2231			ret = _regulator_do_disable(rdev);
2232			if (ret < 0) {
2233				rdev_err(rdev, "failed to disable\n");
2234				_notifier_call_chain(rdev,
2235						REGULATOR_EVENT_ABORT_DISABLE,
2236						NULL);
2237				return ret;
2238			}
2239			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240					NULL);
2241		}
2242
2243		rdev->use_count = 0;
2244	} else if (rdev->use_count > 1) {
2245
2246		if (rdev->constraints &&
2247			(rdev->constraints->valid_ops_mask &
2248			REGULATOR_CHANGE_DRMS))
2249			drms_uA_update(rdev);
2250
2251		rdev->use_count--;
2252	}
2253
2254	return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current.  Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271	struct regulator_dev *rdev = regulator->rdev;
2272	int ret = 0;
2273
2274	if (regulator->always_on)
2275		return 0;
2276
2277	mutex_lock(&rdev->mutex);
2278	ret = _regulator_disable(rdev);
2279	mutex_unlock(&rdev->mutex);
2280
2281	if (ret == 0 && rdev->supply)
2282		regulator_disable(rdev->supply);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291	int ret = 0;
2292
2293	lockdep_assert_held_once(&rdev->mutex);
2294
2295	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297	if (ret & NOTIFY_STOP_MASK)
2298		return -EINVAL;
2299
2300	ret = _regulator_do_disable(rdev);
2301	if (ret < 0) {
2302		rdev_err(rdev, "failed to force disable\n");
2303		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305		return ret;
2306	}
2307
2308	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309			REGULATOR_EVENT_DISABLE, NULL);
2310
2311	return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325	struct regulator_dev *rdev = regulator->rdev;
2326	int ret;
2327
2328	mutex_lock(&rdev->mutex);
2329	regulator->uA_load = 0;
2330	ret = _regulator_force_disable(regulator->rdev);
2331	mutex_unlock(&rdev->mutex);
2332
2333	if (rdev->supply)
2334		while (rdev->open_count--)
2335			regulator_disable(rdev->supply);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344						  disable_work.work);
2345	int count, i, ret;
2346
2347	mutex_lock(&rdev->mutex);
2348
2349	BUG_ON(!rdev->deferred_disables);
2350
2351	count = rdev->deferred_disables;
2352	rdev->deferred_disables = 0;
2353
2354	for (i = 0; i < count; i++) {
2355		ret = _regulator_disable(rdev);
2356		if (ret != 0)
2357			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358	}
2359
2360	mutex_unlock(&rdev->mutex);
2361
2362	if (rdev->supply) {
2363		for (i = 0; i < count; i++) {
2364			ret = regulator_disable(rdev->supply);
2365			if (ret != 0) {
2366				rdev_err(rdev,
2367					 "Supply disable failed: %d\n", ret);
2368			}
2369		}
2370	}
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay.  This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
 
2388
2389	if (regulator->always_on)
2390		return 0;
2391
2392	if (!ms)
2393		return regulator_disable(regulator);
2394
2395	mutex_lock(&rdev->mutex);
2396	rdev->deferred_disables++;
2397	mutex_unlock(&rdev->mutex);
2398
2399	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400			   msecs_to_jiffies(ms));
2401	return 0;
 
 
 
 
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
2406{
2407	/* A GPIO control always takes precedence */
2408	if (rdev->ena_pin)
2409		return rdev->ena_gpio_state;
2410
2411	/* If we don't know then assume that the regulator is always on */
2412	if (!rdev->desc->ops->is_enabled)
2413		return 1;
2414
2415	return rdev->desc->ops->is_enabled(rdev);
2416}
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419				    unsigned selector, int lock)
2420{
2421	struct regulator_dev *rdev = regulator->rdev;
2422	const struct regulator_ops *ops = rdev->desc->ops;
2423	int ret;
2424
2425	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426		return rdev->desc->fixed_uV;
2427
2428	if (ops->list_voltage) {
2429		if (selector >= rdev->desc->n_voltages)
2430			return -EINVAL;
2431		if (lock)
2432			mutex_lock(&rdev->mutex);
2433		ret = ops->list_voltage(rdev, selector);
2434		if (lock)
2435			mutex_unlock(&rdev->mutex);
2436	} else if (rdev->supply) {
2437		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438	} else {
2439		return -EINVAL;
2440	}
2441
2442	if (ret > 0) {
2443		if (ret < rdev->constraints->min_uV)
2444			ret = 0;
2445		else if (ret > rdev->constraints->max_uV)
2446			ret = 0;
2447	}
2448
2449	return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	if (regulator->always_on)
2469		return 1;
2470
2471	mutex_lock(&regulator->rdev->mutex);
2472	ret = _regulator_is_enabled(regulator->rdev);
2473	mutex_unlock(&regulator->rdev->mutex);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490	struct regulator_dev	*rdev = regulator->rdev;
2491
2492	if (rdev->constraints &&
2493	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495			return 1;
2496
2497		if (rdev->desc->continuous_voltage_range &&
2498		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500			return 1;
2501	}
2502
2503	return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno.  Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517	struct regulator_dev	*rdev = regulator->rdev;
2518
2519	if (rdev->desc->n_voltages)
2520		return rdev->desc->n_voltages;
2521
2522	if (!rdev->supply)
2523		return -EINVAL;
2524
2525	return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541	return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
2553{
2554	struct regmap *map = regulator->rdev->regmap;
2555
2556	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574					 unsigned *vsel_reg,
2575					 unsigned *vsel_mask)
2576{
2577	struct regulator_dev *rdev = regulator->rdev;
2578	const struct regulator_ops *ops = rdev->desc->ops;
2579
2580	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581		return -EOPNOTSUPP;
 
 
 
 
2582
2583	 *vsel_reg = rdev->desc->vsel_reg;
2584	 *vsel_mask = rdev->desc->vsel_mask;
2585
2586	 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602				 unsigned selector)
2603{
2604	struct regulator_dev *rdev = regulator->rdev;
2605	const struct regulator_ops *ops = rdev->desc->ops;
2606
2607	if (selector >= rdev->desc->n_voltages)
2608		return -EINVAL;
2609	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610		return -EOPNOTSUPP;
2611
2612	return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625	struct regulator_dev *rdev = regulator->rdev;
2626
2627	return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641				   int min_uV, int max_uV)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int i, voltages, ret;
2645
2646	/* If we can't change voltage check the current voltage */
2647	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648		ret = regulator_get_voltage(regulator);
2649		if (ret >= 0)
2650			return min_uV <= ret && ret <= max_uV;
2651		else
2652			return ret;
2653	}
2654
2655	/* Any voltage within constrains range is fine? */
2656	if (rdev->desc->continuous_voltage_range)
2657		return min_uV >= rdev->constraints->min_uV &&
2658				max_uV <= rdev->constraints->max_uV;
2659
2660	ret = regulator_count_voltages(regulator);
2661	if (ret < 0)
2662		return ret;
2663	voltages = ret;
2664
2665	for (i = 0; i < voltages; i++) {
2666		ret = regulator_list_voltage(regulator, i);
2667
2668		if (ret >= min_uV && ret <= max_uV)
2669			return 1;
2670	}
2671
2672	return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677				 int max_uV)
2678{
2679	const struct regulator_desc *desc = rdev->desc;
2680
2681	if (desc->ops->map_voltage)
2682		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
2690	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694				       int min_uV, int max_uV,
2695				       unsigned *selector)
2696{
2697	struct pre_voltage_change_data data;
2698	int ret;
2699
2700	data.old_uV = _regulator_get_voltage(rdev);
2701	data.min_uV = min_uV;
2702	data.max_uV = max_uV;
2703	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704				   &data);
2705	if (ret & NOTIFY_STOP_MASK)
2706		return -EINVAL;
2707
2708	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709	if (ret >= 0)
2710		return ret;
2711
2712	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713			     (void *)data.old_uV);
2714
2715	return ret;
2716}
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719					   int uV, unsigned selector)
2720{
2721	struct pre_voltage_change_data data;
2722	int ret;
2723
2724	data.old_uV = _regulator_get_voltage(rdev);
2725	data.min_uV = uV;
2726	data.max_uV = uV;
2727	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728				   &data);
2729	if (ret & NOTIFY_STOP_MASK)
2730		return -EINVAL;
2731
2732	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733	if (ret >= 0)
2734		return ret;
2735
2736	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737			     (void *)data.old_uV);
2738
2739	return ret;
2740}
2741
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743				     int min_uV, int max_uV)
2744{
2745	int ret;
2746	int delay = 0;
2747	int best_val = 0;
2748	unsigned int selector;
2749	int old_selector = -1;
2750
2751	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753	min_uV += rdev->constraints->uV_offset;
2754	max_uV += rdev->constraints->uV_offset;
2755
2756	/*
2757	 * If we can't obtain the old selector there is not enough
2758	 * info to call set_voltage_time_sel().
2759	 */
2760	if (_regulator_is_enabled(rdev) &&
2761	    rdev->desc->ops->set_voltage_time_sel &&
2762	    rdev->desc->ops->get_voltage_sel) {
2763		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764		if (old_selector < 0)
2765			return old_selector;
2766	}
2767
2768	if (rdev->desc->ops->set_voltage) {
2769		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770						  &selector);
2771
2772		if (ret >= 0) {
2773			if (rdev->desc->ops->list_voltage)
2774				best_val = rdev->desc->ops->list_voltage(rdev,
2775									 selector);
2776			else
2777				best_val = _regulator_get_voltage(rdev);
2778		}
2779
2780	} else if (rdev->desc->ops->set_voltage_sel) {
2781		ret = regulator_map_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
2782		if (ret >= 0) {
2783			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784			if (min_uV <= best_val && max_uV >= best_val) {
2785				selector = ret;
2786				if (old_selector == selector)
2787					ret = 0;
2788				else
2789					ret = _regulator_call_set_voltage_sel(
2790						rdev, best_val, selector);
2791			} else {
2792				ret = -EINVAL;
2793			}
2794		}
2795	} else {
2796		ret = -EINVAL;
2797	}
2798
2799	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801		&& old_selector != selector) {
2802
2803		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804						old_selector, selector);
2805		if (delay < 0) {
2806			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807				  delay);
2808			delay = 0;
2809		}
2810
2811		/* Insert any necessary delays */
2812		if (delay >= 1000) {
2813			mdelay(delay / 1000);
2814			udelay(delay % 1000);
2815		} else if (delay) {
2816			udelay(delay);
2817		}
2818	}
2819
2820	if (ret == 0 && best_val >= 0) {
2821		unsigned long data = best_val;
2822
2823		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824				     (void *)data);
2825	}
2826
2827	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829	return ret;
2830}
2831
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833					  int min_uV, int max_uV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834{
2835	struct regulator_dev *rdev = regulator->rdev;
2836	int ret = 0;
2837	int old_min_uV, old_max_uV;
2838	int current_uV;
2839	int best_supply_uV = 0;
2840	int supply_change_uV = 0;
2841
2842	/* If we're setting the same range as last time the change
2843	 * should be a noop (some cpufreq implementations use the same
2844	 * voltage for multiple frequencies, for example).
2845	 */
2846	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847		goto out;
2848
2849	/* If we're trying to set a range that overlaps the current voltage,
2850	 * return successfully even though the regulator does not support
2851	 * changing the voltage.
2852	 */
2853	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854		current_uV = _regulator_get_voltage(rdev);
2855		if (min_uV <= current_uV && current_uV <= max_uV) {
2856			regulator->min_uV = min_uV;
2857			regulator->max_uV = max_uV;
2858			goto out;
2859		}
2860	}
2861
2862	/* sanity check */
2863	if (!rdev->desc->ops->set_voltage &&
2864	    !rdev->desc->ops->set_voltage_sel) {
2865		ret = -EINVAL;
2866		goto out;
2867	}
2868
2869	/* constraints check */
2870	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871	if (ret < 0)
2872		goto out;
2873
2874	/* restore original values in case of error */
2875	old_min_uV = regulator->min_uV;
2876	old_max_uV = regulator->max_uV;
2877	regulator->min_uV = min_uV;
2878	regulator->max_uV = max_uV;
2879
2880	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881	if (ret < 0)
2882		goto out2;
2883
2884	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885				!rdev->desc->ops->get_voltage)) {
2886		int current_supply_uV;
2887		int selector;
2888
2889		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890		if (selector < 0) {
2891			ret = selector;
2892			goto out2;
2893		}
2894
2895		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896		if (best_supply_uV < 0) {
2897			ret = best_supply_uV;
2898			goto out2;
2899		}
2900
2901		best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904		if (current_supply_uV < 0) {
2905			ret = current_supply_uV;
2906			goto out2;
2907		}
2908
2909		supply_change_uV = best_supply_uV - current_supply_uV;
2910	}
2911
2912	if (supply_change_uV > 0) {
2913		ret = regulator_set_voltage_unlocked(rdev->supply,
2914				best_supply_uV, INT_MAX);
2915		if (ret) {
2916			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917					ret);
2918			goto out2;
2919		}
2920	}
2921
2922	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923	if (ret < 0)
2924		goto out2;
2925
2926	if (supply_change_uV < 0) {
2927		ret = regulator_set_voltage_unlocked(rdev->supply,
2928				best_supply_uV, INT_MAX);
2929		if (ret)
2930			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931					ret);
2932		/* No need to fail here */
2933		ret = 0;
2934	}
2935
2936out:
 
2937	return ret;
2938out2:
2939	regulator->min_uV = old_min_uV;
2940	regulator->max_uV = old_max_uV;
2941
2942	return ret;
2943}
2944
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965	int ret = 0;
2966
2967	regulator_lock_supply(regulator->rdev);
2968
2969	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970
2971	regulator_unlock_supply(regulator->rdev);
2972
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988			       int old_uV, int new_uV)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	const struct regulator_ops *ops = rdev->desc->ops;
2992	int old_sel = -1;
2993	int new_sel = -1;
2994	int voltage;
2995	int i;
2996
2997	/* Currently requires operations to do this */
2998	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999	    || !rdev->desc->n_voltages)
3000		return -EINVAL;
3001
3002	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003		/* We only look for exact voltage matches here */
3004		voltage = regulator_list_voltage(regulator, i);
3005		if (voltage < 0)
3006			return -EINVAL;
3007		if (voltage == 0)
3008			continue;
3009		if (voltage == old_uV)
3010			old_sel = i;
3011		if (voltage == new_uV)
3012			new_sel = i;
3013	}
3014
3015	if (old_sel < 0 || new_sel < 0)
3016		return -EINVAL;
3017
3018	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035				   unsigned int old_selector,
3036				   unsigned int new_selector)
3037{
3038	unsigned int ramp_delay = 0;
3039	int old_volt, new_volt;
3040
3041	if (rdev->constraints->ramp_delay)
3042		ramp_delay = rdev->constraints->ramp_delay;
3043	else if (rdev->desc->ramp_delay)
3044		ramp_delay = rdev->desc->ramp_delay;
3045
3046	if (ramp_delay == 0) {
3047		rdev_warn(rdev, "ramp_delay not set\n");
3048		return 0;
3049	}
3050
3051	/* sanity check */
3052	if (!rdev->desc->ops->list_voltage)
3053		return -EINVAL;
3054
3055	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage.  This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	int ret, min_uV, max_uV;
3074
3075	mutex_lock(&rdev->mutex);
3076
3077	if (!rdev->desc->ops->set_voltage &&
3078	    !rdev->desc->ops->set_voltage_sel) {
3079		ret = -EINVAL;
3080		goto out;
3081	}
3082
3083	/* This is only going to work if we've had a voltage configured. */
3084	if (!regulator->min_uV && !regulator->max_uV) {
3085		ret = -EINVAL;
3086		goto out;
3087	}
3088
3089	min_uV = regulator->min_uV;
3090	max_uV = regulator->max_uV;
3091
3092	/* This should be a paranoia check... */
3093	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094	if (ret < 0)
3095		goto out;
3096
3097	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098	if (ret < 0)
3099		goto out;
3100
3101	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103out:
3104	mutex_unlock(&rdev->mutex);
3105	return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111	int sel, ret;
3112
3113	if (rdev->desc->ops->get_voltage_sel) {
3114		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115		if (sel < 0)
3116			return sel;
3117		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118	} else if (rdev->desc->ops->get_voltage) {
3119		ret = rdev->desc->ops->get_voltage(rdev);
3120	} else if (rdev->desc->ops->list_voltage) {
3121		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123		ret = rdev->desc->fixed_uV;
3124	} else if (rdev->supply) {
3125		ret = _regulator_get_voltage(rdev->supply->rdev);
3126	} else {
3127		return -EINVAL;
3128	}
3129
3130	if (ret < 0)
3131		return ret;
3132	return ret - rdev->constraints->uV_offset;
3133}
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
3146	int ret;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_get_voltage(regulator->rdev);
3151
3152	regulator_unlock_supply(regulator->rdev);
3153
3154	return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175			       int min_uA, int max_uA)
3176{
3177	struct regulator_dev *rdev = regulator->rdev;
3178	int ret;
3179
3180	mutex_lock(&rdev->mutex);
3181
3182	/* sanity check */
3183	if (!rdev->desc->ops->set_current_limit) {
3184		ret = -EINVAL;
3185		goto out;
3186	}
3187
3188	/* constraints check */
3189	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190	if (ret < 0)
3191		goto out;
3192
3193	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195	mutex_unlock(&rdev->mutex);
3196	return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202	int ret;
3203
3204	mutex_lock(&rdev->mutex);
3205
3206	/* sanity check */
3207	if (!rdev->desc->ops->get_current_limit) {
3208		ret = -EINVAL;
3209		goto out;
3210	}
3211
3212	ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214	mutex_unlock(&rdev->mutex);
3215	return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229	return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246	struct regulator_dev *rdev = regulator->rdev;
3247	int ret;
3248	int regulator_curr_mode;
3249
3250	mutex_lock(&rdev->mutex);
3251
3252	/* sanity check */
3253	if (!rdev->desc->ops->set_mode) {
3254		ret = -EINVAL;
3255		goto out;
3256	}
3257
3258	/* return if the same mode is requested */
3259	if (rdev->desc->ops->get_mode) {
3260		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261		if (regulator_curr_mode == mode) {
3262			ret = 0;
3263			goto out;
3264		}
3265	}
3266
3267	/* constraints check */
3268	ret = regulator_mode_constrain(rdev, &mode);
3269	if (ret < 0)
3270		goto out;
3271
3272	ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274	mutex_unlock(&rdev->mutex);
3275	return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281	int ret;
3282
3283	mutex_lock(&rdev->mutex);
3284
3285	/* sanity check */
3286	if (!rdev->desc->ops->get_mode) {
3287		ret = -EINVAL;
3288		goto out;
3289	}
3290
3291	ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293	mutex_unlock(&rdev->mutex);
3294	return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
3304{
3305	return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 *    o Device is opened / closed.
3325 *    o Device I/O is about to begin or has just finished.
3326 *    o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337	struct regulator_dev *rdev = regulator->rdev;
3338	int ret;
 
 
 
 
 
3339
3340	mutex_lock(&rdev->mutex);
 
 
 
 
 
3341	regulator->uA_load = uA_load;
3342	ret = drms_uA_update(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343	mutex_unlock(&rdev->mutex);
3344
3345	return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this.  Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362	struct regulator_dev *rdev = regulator->rdev;
3363	int ret = 0;
3364
3365	if (!rdev->desc->ops->set_bypass)
3366		return 0;
3367
3368	if (rdev->constraints &&
3369	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370		return 0;
3371
3372	mutex_lock(&rdev->mutex);
3373
3374	if (enable && !regulator->bypass) {
3375		rdev->bypass_count++;
3376
3377		if (rdev->bypass_count == rdev->open_count) {
3378			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379			if (ret != 0)
3380				rdev->bypass_count--;
3381		}
3382
3383	} else if (!enable && regulator->bypass) {
3384		rdev->bypass_count--;
3385
3386		if (rdev->bypass_count != rdev->open_count) {
3387			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388			if (ret != 0)
3389				rdev->bypass_count++;
3390		}
3391	}
3392
3393	if (ret == 0)
3394		regulator->bypass = enable;
3395
3396	mutex_unlock(&rdev->mutex);
3397
3398	return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410			      struct notifier_block *nb)
3411{
3412	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413						nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425				struct notifier_block *nb)
3426{
3427	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428						  nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436				  unsigned long event, void *data)
3437{
3438	/* call rdev chain first */
3439	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev:           Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers:     Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation.  If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457		       struct regulator_bulk_data *consumers)
3458{
3459	int i;
3460	int ret;
3461
3462	for (i = 0; i < num_consumers; i++)
3463		consumers[i].consumer = NULL;
3464
3465	for (i = 0; i < num_consumers; i++) {
3466		consumers[i].consumer = _regulator_get(dev,
3467						       consumers[i].supply,
3468						       false,
3469						       !consumers[i].optional);
3470		if (IS_ERR(consumers[i].consumer)) {
3471			ret = PTR_ERR(consumers[i].consumer);
3472			dev_err(dev, "Failed to get supply '%s': %d\n",
3473				consumers[i].supply, ret);
3474			consumers[i].consumer = NULL;
3475			goto err;
3476		}
3477	}
3478
3479	return 0;
3480
3481err:
3482	while (--i >= 0)
3483		regulator_put(consumers[i].consumer);
3484
3485	return ret;
3486}
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491	struct regulator_bulk_data *bulk = data;
3492
3493	bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers:     Consumer data; clients are stored here.
3501 * @return         0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call.  If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509			  struct regulator_bulk_data *consumers)
3510{
3511	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512	int i;
3513	int ret = 0;
3514
3515	for (i = 0; i < num_consumers; i++) {
3516		if (consumers[i].consumer->always_on)
3517			consumers[i].ret = 0;
3518		else
3519			async_schedule_domain(regulator_bulk_enable_async,
3520					      &consumers[i], &async_domain);
3521	}
3522
3523	async_synchronize_full_domain(&async_domain);
3524
3525	/* If any consumer failed we need to unwind any that succeeded */
3526	for (i = 0; i < num_consumers; i++) {
3527		if (consumers[i].ret != 0) {
3528			ret = consumers[i].ret;
3529			goto err;
3530		}
3531	}
3532
3533	return 0;
3534
3535err:
3536	for (i = 0; i < num_consumers; i++) {
3537		if (consumers[i].ret < 0)
3538			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539			       consumers[i].ret);
3540		else
3541			regulator_disable(consumers[i].consumer);
3542	}
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers:     Consumer data; clients are stored here.
3553 * @return         0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call.  If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561			   struct regulator_bulk_data *consumers)
3562{
3563	int i;
3564	int ret, r;
3565
3566	for (i = num_consumers - 1; i >= 0; --i) {
3567		ret = regulator_disable(consumers[i].consumer);
3568		if (ret != 0)
3569			goto err;
3570	}
3571
3572	return 0;
3573
3574err:
3575	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576	for (++i; i < num_consumers; ++i) {
3577		r = regulator_enable(consumers[i].consumer);
3578		if (r != 0)
3579			pr_err("Failed to reename %s: %d\n",
3580			       consumers[i].supply, r);
3581	}
3582
3583	return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers:     Consumer data; clients are stored here.
3592 * @return         0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602			   struct regulator_bulk_data *consumers)
3603{
3604	int i;
3605	int ret;
3606
3607	for (i = 0; i < num_consumers; i++)
3608		consumers[i].ret =
3609			    regulator_force_disable(consumers[i].consumer);
3610
3611	for (i = 0; i < num_consumers; i++) {
3612		if (consumers[i].ret != 0) {
3613			ret = consumers[i].ret;
3614			goto out;
3615		}
3616	}
3617
3618	return 0;
3619out:
3620	return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers:     Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634			 struct regulator_bulk_data *consumers)
3635{
3636	int i;
3637
3638	for (i = 0; i < num_consumers; i++) {
3639		regulator_put(consumers[i].consumer);
3640		consumers[i].consumer = NULL;
3641	}
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656				  unsigned long event, void *data)
3657{
3658	lockdep_assert_held_once(&rdev->mutex);
3659
3660	_notifier_call_chain(rdev, event, data);
3661	return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675	switch (mode) {
3676	case REGULATOR_MODE_FAST:
3677		return REGULATOR_STATUS_FAST;
3678	case REGULATOR_MODE_NORMAL:
3679		return REGULATOR_STATUS_NORMAL;
3680	case REGULATOR_MODE_IDLE:
3681		return REGULATOR_STATUS_IDLE;
3682	case REGULATOR_MODE_STANDBY:
3683		return REGULATOR_STATUS_STANDBY;
3684	default:
3685		return REGULATOR_STATUS_UNDEFINED;
3686	}
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691	&dev_attr_name.attr,
3692	&dev_attr_num_users.attr,
3693	&dev_attr_type.attr,
3694	&dev_attr_microvolts.attr,
3695	&dev_attr_microamps.attr,
3696	&dev_attr_opmode.attr,
3697	&dev_attr_state.attr,
3698	&dev_attr_status.attr,
3699	&dev_attr_bypass.attr,
3700	&dev_attr_requested_microamps.attr,
3701	&dev_attr_min_microvolts.attr,
3702	&dev_attr_max_microvolts.attr,
3703	&dev_attr_min_microamps.attr,
3704	&dev_attr_max_microamps.attr,
3705	&dev_attr_suspend_standby_state.attr,
3706	&dev_attr_suspend_mem_state.attr,
3707	&dev_attr_suspend_disk_state.attr,
3708	&dev_attr_suspend_standby_microvolts.attr,
3709	&dev_attr_suspend_mem_microvolts.attr,
3710	&dev_attr_suspend_disk_microvolts.attr,
3711	&dev_attr_suspend_standby_mode.attr,
3712	&dev_attr_suspend_mem_mode.attr,
3713	&dev_attr_suspend_disk_mode.attr,
3714	NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722					 struct attribute *attr, int idx)
3723{
3724	struct device *dev = kobj_to_dev(kobj);
3725	struct regulator_dev *rdev = dev_to_rdev(dev);
3726	const struct regulator_ops *ops = rdev->desc->ops;
3727	umode_t mode = attr->mode;
3728
3729	/* these three are always present */
3730	if (attr == &dev_attr_name.attr ||
3731	    attr == &dev_attr_num_users.attr ||
3732	    attr == &dev_attr_type.attr)
3733		return mode;
3734
3735	/* some attributes need specific methods to be displayed */
3736	if (attr == &dev_attr_microvolts.attr) {
3737		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741			return mode;
3742		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743	}
3744
3745	if (attr == &dev_attr_microamps.attr)
3746		return ops->get_current_limit ? mode : 0;
 
 
 
 
3747
3748	if (attr == &dev_attr_opmode.attr)
3749		return ops->get_mode ? mode : 0;
3750
3751	if (attr == &dev_attr_state.attr)
3752		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754	if (attr == &dev_attr_status.attr)
3755		return ops->get_status ? mode : 0;
3756
3757	if (attr == &dev_attr_bypass.attr)
3758		return ops->get_bypass ? mode : 0;
3759
3760	/* some attributes are type-specific */
3761	if (attr == &dev_attr_requested_microamps.attr)
3762		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763
3764	/* constraints need specific supporting methods */
3765	if (attr == &dev_attr_min_microvolts.attr ||
3766	    attr == &dev_attr_max_microvolts.attr)
3767		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769	if (attr == &dev_attr_min_microamps.attr ||
3770	    attr == &dev_attr_max_microamps.attr)
3771		return ops->set_current_limit ? mode : 0;
3772
3773	if (attr == &dev_attr_suspend_standby_state.attr ||
3774	    attr == &dev_attr_suspend_mem_state.attr ||
3775	    attr == &dev_attr_suspend_disk_state.attr)
3776		return mode;
3777
3778	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781		return ops->set_suspend_voltage ? mode : 0;
3782
3783	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784	    attr == &dev_attr_suspend_mem_mode.attr ||
3785	    attr == &dev_attr_suspend_disk_mode.attr)
3786		return ops->set_suspend_mode ? mode : 0;
3787
3788	return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792	.attrs = regulator_dev_attrs,
3793	.is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797	&regulator_dev_group,
3798	NULL
3799};
 
 
 
 
 
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803	struct regulator_dev *rdev = dev_get_drvdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3804
3805	kfree(rdev->constraints);
3806	of_node_put(rdev->dev.of_node);
3807	kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811	.name = "regulator",
3812	.dev_release = regulator_dev_release,
3813	.dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818	struct device *parent = rdev->dev.parent;
3819	const char *rname = rdev_get_name(rdev);
3820	char name[NAME_MAX];
3821
3822	/* Avoid duplicate debugfs directory names */
3823	if (parent && rname == rdev->desc->name) {
3824		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825			 rname);
3826		rname = name;
3827	}
3828
3829	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830	if (!rdev->debugfs) {
3831		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832		return;
3833	}
3834
3835	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836			   &rdev->use_count);
3837	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838			   &rdev->open_count);
3839	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840			   &rdev->bypass_count);
3841}
3842
3843/**
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
3854		   const struct regulator_config *cfg)
3855{
3856	const struct regulation_constraints *constraints = NULL;
3857	const struct regulator_init_data *init_data;
3858	struct regulator_config *config = NULL;
3859	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860	struct regulator_dev *rdev;
3861	struct device *dev;
3862	int ret, i;
 
3863
3864	if (regulator_desc == NULL || cfg == NULL)
3865		return ERR_PTR(-EINVAL);
3866
3867	dev = cfg->dev;
3868	WARN_ON(!dev);
3869
3870	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871		return ERR_PTR(-EINVAL);
3872
3873	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874	    regulator_desc->type != REGULATOR_CURRENT)
3875		return ERR_PTR(-EINVAL);
3876
3877	/* Only one of each should be implemented */
3878	WARN_ON(regulator_desc->ops->get_voltage &&
3879		regulator_desc->ops->get_voltage_sel);
3880	WARN_ON(regulator_desc->ops->set_voltage &&
3881		regulator_desc->ops->set_voltage_sel);
3882
3883	/* If we're using selectors we must implement list_voltage. */
3884	if (regulator_desc->ops->get_voltage_sel &&
3885	    !regulator_desc->ops->list_voltage) {
3886		return ERR_PTR(-EINVAL);
3887	}
3888	if (regulator_desc->ops->set_voltage_sel &&
3889	    !regulator_desc->ops->list_voltage) {
3890		return ERR_PTR(-EINVAL);
3891	}
3892
 
 
3893	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894	if (rdev == NULL)
3895		return ERR_PTR(-ENOMEM);
3896
3897	/*
3898	 * Duplicate the config so the driver could override it after
3899	 * parsing init data.
3900	 */
3901	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902	if (config == NULL) {
3903		kfree(rdev);
3904		return ERR_PTR(-ENOMEM);
3905	}
3906
3907	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908					       &rdev->dev.of_node);
3909	if (!init_data) {
3910		init_data = config->init_data;
3911		rdev->dev.of_node = of_node_get(config->of_node);
3912	}
3913
3914	mutex_lock(&regulator_list_mutex);
3915
3916	mutex_init(&rdev->mutex);
3917	rdev->reg_data = config->driver_data;
3918	rdev->owner = regulator_desc->owner;
3919	rdev->desc = regulator_desc;
3920	if (config->regmap)
3921		rdev->regmap = config->regmap;
3922	else if (dev_get_regmap(dev, NULL))
3923		rdev->regmap = dev_get_regmap(dev, NULL);
3924	else if (dev->parent)
3925		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926	INIT_LIST_HEAD(&rdev->consumer_list);
3927	INIT_LIST_HEAD(&rdev->list);
3928	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931	/* preform any regulator specific init */
3932	if (init_data && init_data->regulator_init) {
3933		ret = init_data->regulator_init(rdev->reg_data);
3934		if (ret < 0)
3935			goto clean;
3936	}
3937
3938	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939	    gpio_is_valid(config->ena_gpio)) {
3940		ret = regulator_ena_gpio_request(rdev, config);
3941		if (ret != 0) {
3942			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943				 config->ena_gpio, ret);
3944			goto clean;
3945		}
3946	}
3947
3948	/* register with sysfs */
3949	rdev->dev.class = &regulator_class;
 
3950	rdev->dev.parent = dev;
3951	dev_set_name(&rdev->dev, "regulator.%lu",
3952		    (unsigned long) atomic_inc_return(&regulator_no));
3953	ret = device_register(&rdev->dev);
3954	if (ret != 0) {
3955		put_device(&rdev->dev);
3956		goto wash;
3957	}
3958
3959	dev_set_drvdata(&rdev->dev, rdev);
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3961	/* set regulator constraints */
3962	if (init_data)
3963		constraints = &init_data->constraints;
3964
3965	ret = set_machine_constraints(rdev, constraints);
3966	if (ret < 0)
3967		goto scrub;
3968
 
 
 
 
 
3969	if (init_data && init_data->supply_regulator)
3970		rdev->supply_name = init_data->supply_regulator;
3971	else if (regulator_desc->supply_name)
3972		rdev->supply_name = regulator_desc->supply_name;
3973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3974	/* add consumers devices */
3975	if (init_data) {
3976		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977			ret = set_consumer_device_supply(rdev,
3978				init_data->consumer_supplies[i].dev_name,
3979				init_data->consumer_supplies[i].supply);
3980			if (ret < 0) {
3981				dev_err(dev, "Failed to set supply %s\n",
3982					init_data->consumer_supplies[i].supply);
3983				goto unset_supplies;
3984			}
3985		}
3986	}
3987
 
 
3988	rdev_init_debugfs(rdev);
3989out:
3990	mutex_unlock(&regulator_list_mutex);
3991	kfree(config);
3992	return rdev;
3993
3994unset_supplies:
3995	unset_regulator_supplies(rdev);
3996
3997scrub:
 
 
3998	regulator_ena_gpio_free(rdev);
 
 
3999	device_unregister(&rdev->dev);
4000	/* device core frees rdev */
4001	rdev = ERR_PTR(ret);
4002	goto out;
4003
4004wash:
4005	regulator_ena_gpio_free(rdev);
4006clean:
4007	kfree(rdev);
4008	rdev = ERR_PTR(ret);
4009	goto out;
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021	if (rdev == NULL)
4022		return;
4023
4024	if (rdev->supply) {
4025		while (rdev->use_count--)
4026			regulator_disable(rdev->supply);
4027		regulator_put(rdev->supply);
4028	}
4029	mutex_lock(&regulator_list_mutex);
4030	debugfs_remove_recursive(rdev->debugfs);
4031	flush_work(&rdev->disable_work.work);
4032	WARN_ON(rdev->open_count);
4033	unset_regulator_supplies(rdev);
4034	list_del(&rdev->list);
4035	mutex_unlock(&regulator_list_mutex);
4036	regulator_ena_gpio_free(rdev);
4037	device_unregister(&rdev->dev);
 
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
4042{
4043	struct regulator_dev *rdev = dev_to_rdev(dev);
4044	const suspend_state_t *state = data;
4045	int ret;
4046
4047	mutex_lock(&rdev->mutex);
4048	ret = suspend_prepare(rdev, *state);
4049	mutex_unlock(&rdev->mutex);
4050
4051	return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
 
 
 
4063	/* ON is handled by regulator active state */
4064	if (state == PM_SUSPEND_ON)
4065		return -EINVAL;
4066
4067	return class_for_each_device(&regulator_class, NULL, &state,
4068				     _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074	struct regulator_dev *rdev = dev_to_rdev(dev);
4075	int ret;
4076
4077	mutex_lock(&rdev->mutex);
4078	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079		if (!_regulator_is_enabled(rdev)) {
4080			ret = _regulator_do_enable(rdev);
4081			if (ret)
4082				dev_err(dev,
4083					"Failed to resume regulator %d\n",
4084					ret);
4085		}
4086	} else {
4087		if (!have_full_constraints())
4088			goto unlock;
4089		if (!_regulator_is_enabled(rdev))
4090			goto unlock;
4091
4092		ret = _regulator_do_disable(rdev);
4093		if (ret)
4094			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095	}
4096unlock:
4097	mutex_unlock(&rdev->mutex);
4098
4099	/* Keep processing regulators in spite of any errors */
4100	return 0;
4101}
 
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111	return class_for_each_device(&regulator_class, NULL, NULL,
4112				     _regulator_suspend_finish);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129	has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142	return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155	return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166	regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176	return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182	return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188	return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194				    size_t count, loff_t *ppos)
4195{
4196	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197	ssize_t len, ret = 0;
4198	struct regulator_map *map;
4199
4200	if (!buf)
4201		return -ENOMEM;
4202
4203	list_for_each_entry(map, &regulator_map_list, list) {
4204		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205			       "%s -> %s.%s\n",
4206			       rdev_get_name(map->regulator), map->dev_name,
4207			       map->supply);
4208		if (len >= 0)
4209			ret += len;
4210		if (ret > PAGE_SIZE) {
4211			ret = PAGE_SIZE;
4212			break;
4213		}
4214	}
4215
4216	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218	kfree(buf);
4219
4220	return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226	.read = supply_map_read_file,
4227	.llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233	struct seq_file *s;
4234	struct regulator_dev *parent;
4235	int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239					   struct regulator_dev *rdev,
4240					   int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244	struct regulator_dev *rdev = dev_to_rdev(dev);
4245	struct summary_data *summary_data = data;
4246
4247	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248		regulator_summary_show_subtree(summary_data->s, rdev,
4249					       summary_data->level + 1);
4250
4251	return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255					   struct regulator_dev *rdev,
4256					   int level)
4257{
4258	struct regulation_constraints *c;
4259	struct regulator *consumer;
4260	struct summary_data summary_data;
4261
4262	if (!rdev)
4263		return;
4264
4265	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266		   level * 3 + 1, "",
4267		   30 - level * 3, rdev_get_name(rdev),
4268		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4269
4270	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272
4273	c = rdev->constraints;
4274	if (c) {
4275		switch (rdev->desc->type) {
4276		case REGULATOR_VOLTAGE:
4277			seq_printf(s, "%5dmV %5dmV ",
4278				   c->min_uV / 1000, c->max_uV / 1000);
4279			break;
4280		case REGULATOR_CURRENT:
4281			seq_printf(s, "%5dmA %5dmA ",
4282				   c->min_uA / 1000, c->max_uA / 1000);
4283			break;
4284		}
4285	}
4286
4287	seq_puts(s, "\n");
4288
4289	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290		if (consumer->dev->class == &regulator_class)
4291			continue;
4292
4293		seq_printf(s, "%*s%-*s ",
4294			   (level + 1) * 3 + 1, "",
4295			   30 - (level + 1) * 3, dev_name(consumer->dev));
4296
4297		switch (rdev->desc->type) {
4298		case REGULATOR_VOLTAGE:
4299			seq_printf(s, "%37dmV %5dmV",
4300				   consumer->min_uV / 1000,
4301				   consumer->max_uV / 1000);
4302			break;
4303		case REGULATOR_CURRENT:
4304			break;
4305		}
4306
4307		seq_puts(s, "\n");
4308	}
4309
4310	summary_data.s = s;
4311	summary_data.level = level;
4312	summary_data.parent = rdev;
4313
4314	class_for_each_device(&regulator_class, NULL, &summary_data,
4315			      regulator_summary_show_children);
4316}
4317
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320	struct regulator_dev *rdev = dev_to_rdev(dev);
4321	struct seq_file *s = data;
4322
4323	if (!rdev->supply)
4324		regulator_summary_show_subtree(s, rdev, 0);
4325
4326	return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332	seq_puts(s, "-------------------------------------------------------------------------------\n");
4333
4334	class_for_each_device(&regulator_class, NULL, s,
4335			      regulator_summary_show_roots);
4336
4337	return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342	return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348	.open		= regulator_summary_open,
4349	.read		= seq_read,
4350	.llseek		= seq_lseek,
4351	.release	= single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357	int ret;
4358
4359	ret = class_register(&regulator_class);
4360
4361	debugfs_root = debugfs_create_dir("regulator", NULL);
4362	if (!debugfs_root)
4363		pr_warn("regulator: Failed to create debugfs directory\n");
4364
4365	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366			    &supply_map_fops);
4367
4368	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369			    NULL, &regulator_summary_fops);
4370
4371	regulator_dummy_init();
4372
4373	return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381	struct regulator_dev *rdev = dev_to_rdev(dev);
4382	const struct regulator_ops *ops = rdev->desc->ops;
4383	struct regulation_constraints *c = rdev->constraints;
4384	int enabled, ret;
4385
4386	if (c && c->always_on)
4387		return 0;
4388
4389	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390		return 0;
4391
4392	mutex_lock(&rdev->mutex);
4393
4394	if (rdev->use_count)
4395		goto unlock;
4396
4397	/* If we can't read the status assume it's on. */
4398	if (ops->is_enabled)
4399		enabled = ops->is_enabled(rdev);
4400	else
4401		enabled = 1;
4402
4403	if (!enabled)
4404		goto unlock;
4405
4406	if (have_full_constraints()) {
4407		/* We log since this may kill the system if it goes
4408		 * wrong. */
4409		rdev_info(rdev, "disabling\n");
4410		ret = _regulator_do_disable(rdev);
4411		if (ret != 0)
4412			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413	} else {
4414		/* The intention is that in future we will
4415		 * assume that full constraints are provided
4416		 * so warn even if we aren't going to do
4417		 * anything here.
4418		 */
4419		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420	}
4421
4422unlock:
4423	mutex_unlock(&rdev->mutex);
4424
4425	return 0;
4426}
4427
4428static int __init regulator_init_complete(void)
4429{
4430	/*
4431	 * Since DT doesn't provide an idiomatic mechanism for
4432	 * enabling full constraints and since it's much more natural
4433	 * with DT to provide them just assume that a DT enabled
4434	 * system has full constraints.
4435	 */
4436	if (of_have_populated_dt())
4437		has_full_constraints = true;
4438
 
 
4439	/* If we have a full configuration then disable any regulators
4440	 * we have permission to change the status for and which are
4441	 * not in use or always_on.  This is effectively the default
4442	 * for DT and ACPI as they have full constraints.
4443	 */
4444	class_for_each_device(&regulator_class, NULL, NULL,
4445			      regulator_late_cleanup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446
4447	return 0;
4448}
4449late_initcall_sync(regulator_init_complete);