Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/aer.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/cpu.h>
  20#include <linux/delay.h>
  21#include <linux/errno.h>
  22#include <linux/fs.h>
  23#include <linux/genhd.h>
  24#include <linux/hdreg.h>
  25#include <linux/idr.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/io.h>
  29#include <linux/kdev_t.h>
  30#include <linux/kernel.h>
  31#include <linux/mm.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/mutex.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/ptrace.h>
  38#include <linux/sched.h>
  39#include <linux/slab.h>
  40#include <linux/t10-pi.h>
  41#include <linux/timer.h>
  42#include <linux/types.h>
  43#include <linux/io-64-nonatomic-lo-hi.h>
  44#include <asm/unaligned.h>
  45
  46#include "nvme.h"
  47
  48#define NVME_Q_DEPTH		1024
  49#define NVME_AQ_DEPTH		256
  50#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
  51#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
  52		
  53/*
  54 * We handle AEN commands ourselves and don't even let the
  55 * block layer know about them.
  56 */
  57#define NVME_NR_AEN_COMMANDS	1
  58#define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
  59
  60static int use_threaded_interrupts;
  61module_param(use_threaded_interrupts, int, 0);
  62
  63static bool use_cmb_sqes = true;
  64module_param(use_cmb_sqes, bool, 0644);
  65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  66
  67static struct workqueue_struct *nvme_workq;
  68
  69struct nvme_dev;
  70struct nvme_queue;
  71
  72static int nvme_reset(struct nvme_dev *dev);
  73static void nvme_process_cq(struct nvme_queue *nvmeq);
  74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  75
  76/*
  77 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  78 */
  79struct nvme_dev {
  80	struct nvme_queue **queues;
  81	struct blk_mq_tag_set tagset;
  82	struct blk_mq_tag_set admin_tagset;
  83	u32 __iomem *dbs;
  84	struct device *dev;
  85	struct dma_pool *prp_page_pool;
  86	struct dma_pool *prp_small_pool;
  87	unsigned queue_count;
  88	unsigned online_queues;
  89	unsigned max_qid;
  90	int q_depth;
  91	u32 db_stride;
  92	struct msix_entry *entry;
  93	void __iomem *bar;
  94	struct work_struct reset_work;
  95	struct work_struct scan_work;
  96	struct work_struct remove_work;
  97	struct work_struct async_work;
  98	struct timer_list watchdog_timer;
  99	struct mutex shutdown_lock;
 100	bool subsystem;
 101	void __iomem *cmb;
 102	dma_addr_t cmb_dma_addr;
 103	u64 cmb_size;
 104	u32 cmbsz;
 105	unsigned long flags;
 106
 107#define NVME_CTRL_RESETTING    0
 108#define NVME_CTRL_REMOVING     1
 109
 110	struct nvme_ctrl ctrl;
 111	struct completion ioq_wait;
 112};
 113
 114static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 115{
 116	return container_of(ctrl, struct nvme_dev, ctrl);
 117}
 118
 119/*
 120 * An NVM Express queue.  Each device has at least two (one for admin
 121 * commands and one for I/O commands).
 122 */
 123struct nvme_queue {
 124	struct device *q_dmadev;
 125	struct nvme_dev *dev;
 126	char irqname[24];	/* nvme4294967295-65535\0 */
 127	spinlock_t q_lock;
 128	struct nvme_command *sq_cmds;
 129	struct nvme_command __iomem *sq_cmds_io;
 130	volatile struct nvme_completion *cqes;
 131	struct blk_mq_tags **tags;
 132	dma_addr_t sq_dma_addr;
 133	dma_addr_t cq_dma_addr;
 134	u32 __iomem *q_db;
 135	u16 q_depth;
 136	s16 cq_vector;
 137	u16 sq_tail;
 138	u16 cq_head;
 139	u16 qid;
 140	u8 cq_phase;
 141	u8 cqe_seen;
 142};
 143
 144/*
 145 * The nvme_iod describes the data in an I/O, including the list of PRP
 146 * entries.  You can't see it in this data structure because C doesn't let
 147 * me express that.  Use nvme_init_iod to ensure there's enough space
 148 * allocated to store the PRP list.
 149 */
 150struct nvme_iod {
 151	struct nvme_queue *nvmeq;
 152	int aborted;
 153	int npages;		/* In the PRP list. 0 means small pool in use */
 154	int nents;		/* Used in scatterlist */
 155	int length;		/* Of data, in bytes */
 156	dma_addr_t first_dma;
 157	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 158	struct scatterlist *sg;
 159	struct scatterlist inline_sg[0];
 160};
 161
 162/*
 163 * Check we didin't inadvertently grow the command struct
 164 */
 165static inline void _nvme_check_size(void)
 166{
 167	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 168	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 169	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 170	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 171	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 172	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 173	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 174	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 175	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 176	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 177	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 178	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 179}
 180
 181/*
 182 * Max size of iod being embedded in the request payload
 183 */
 184#define NVME_INT_PAGES		2
 185#define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
 186
 187/*
 188 * Will slightly overestimate the number of pages needed.  This is OK
 189 * as it only leads to a small amount of wasted memory for the lifetime of
 190 * the I/O.
 191 */
 192static int nvme_npages(unsigned size, struct nvme_dev *dev)
 193{
 194	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 195				      dev->ctrl.page_size);
 196	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 197}
 198
 199static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
 200		unsigned int size, unsigned int nseg)
 201{
 202	return sizeof(__le64 *) * nvme_npages(size, dev) +
 203			sizeof(struct scatterlist) * nseg;
 204}
 205
 206static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 207{
 208	return sizeof(struct nvme_iod) +
 209		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
 210}
 211
 212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 213				unsigned int hctx_idx)
 214{
 215	struct nvme_dev *dev = data;
 216	struct nvme_queue *nvmeq = dev->queues[0];
 217
 218	WARN_ON(hctx_idx != 0);
 219	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 220	WARN_ON(nvmeq->tags);
 221
 222	hctx->driver_data = nvmeq;
 223	nvmeq->tags = &dev->admin_tagset.tags[0];
 224	return 0;
 225}
 226
 227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 228{
 229	struct nvme_queue *nvmeq = hctx->driver_data;
 230
 231	nvmeq->tags = NULL;
 232}
 233
 234static int nvme_admin_init_request(void *data, struct request *req,
 235				unsigned int hctx_idx, unsigned int rq_idx,
 236				unsigned int numa_node)
 237{
 238	struct nvme_dev *dev = data;
 239	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 240	struct nvme_queue *nvmeq = dev->queues[0];
 241
 242	BUG_ON(!nvmeq);
 243	iod->nvmeq = nvmeq;
 244	return 0;
 245}
 246
 247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 248			  unsigned int hctx_idx)
 249{
 250	struct nvme_dev *dev = data;
 251	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 252
 253	if (!nvmeq->tags)
 254		nvmeq->tags = &dev->tagset.tags[hctx_idx];
 255
 256	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 257	hctx->driver_data = nvmeq;
 258	return 0;
 259}
 260
 261static int nvme_init_request(void *data, struct request *req,
 262				unsigned int hctx_idx, unsigned int rq_idx,
 263				unsigned int numa_node)
 264{
 265	struct nvme_dev *dev = data;
 266	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 267	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 268
 269	BUG_ON(!nvmeq);
 270	iod->nvmeq = nvmeq;
 271	return 0;
 272}
 273
 274static void nvme_queue_scan(struct nvme_dev *dev)
 275{
 276	/*
 277	 * Do not queue new scan work when a controller is reset during
 278	 * removal.
 279	 */
 280	if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
 281		return;
 282	queue_work(nvme_workq, &dev->scan_work);
 283}
 284
 285static void nvme_complete_async_event(struct nvme_dev *dev,
 286		struct nvme_completion *cqe)
 287{
 288	u16 status = le16_to_cpu(cqe->status) >> 1;
 289	u32 result = le32_to_cpu(cqe->result);
 290
 291	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
 292		++dev->ctrl.event_limit;
 293		queue_work(nvme_workq, &dev->async_work);
 294	}
 295
 296	if (status != NVME_SC_SUCCESS)
 297		return;
 298
 299	switch (result & 0xff07) {
 300	case NVME_AER_NOTICE_NS_CHANGED:
 301		dev_info(dev->ctrl.device, "rescanning\n");
 302		nvme_queue_scan(dev);
 303	default:
 304		dev_warn(dev->ctrl.device, "async event result %08x\n", result);
 305	}
 306}
 307
 308/**
 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 310 * @nvmeq: The queue to use
 311 * @cmd: The command to send
 312 *
 313 * Safe to use from interrupt context
 314 */
 315static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
 316						struct nvme_command *cmd)
 317{
 318	u16 tail = nvmeq->sq_tail;
 319
 320	if (nvmeq->sq_cmds_io)
 321		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
 322	else
 323		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 324
 325	if (++tail == nvmeq->q_depth)
 326		tail = 0;
 327	writel(tail, nvmeq->q_db);
 328	nvmeq->sq_tail = tail;
 329}
 330
 331static __le64 **iod_list(struct request *req)
 332{
 333	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 334	return (__le64 **)(iod->sg + req->nr_phys_segments);
 335}
 336
 337static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
 338{
 339	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 340	int nseg = rq->nr_phys_segments;
 341	unsigned size;
 342
 343	if (rq->cmd_flags & REQ_DISCARD)
 344		size = sizeof(struct nvme_dsm_range);
 345	else
 346		size = blk_rq_bytes(rq);
 347
 348	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 349		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
 350		if (!iod->sg)
 351			return BLK_MQ_RQ_QUEUE_BUSY;
 352	} else {
 353		iod->sg = iod->inline_sg;
 354	}
 355
 356	iod->aborted = 0;
 357	iod->npages = -1;
 358	iod->nents = 0;
 359	iod->length = size;
 360	return 0;
 361}
 362
 363static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 364{
 365	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 366	const int last_prp = dev->ctrl.page_size / 8 - 1;
 367	int i;
 368	__le64 **list = iod_list(req);
 369	dma_addr_t prp_dma = iod->first_dma;
 370
 371	if (iod->npages == 0)
 372		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 373	for (i = 0; i < iod->npages; i++) {
 374		__le64 *prp_list = list[i];
 375		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 376		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 377		prp_dma = next_prp_dma;
 378	}
 379
 380	if (iod->sg != iod->inline_sg)
 381		kfree(iod->sg);
 382}
 383
 384#ifdef CONFIG_BLK_DEV_INTEGRITY
 385static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 386{
 387	if (be32_to_cpu(pi->ref_tag) == v)
 388		pi->ref_tag = cpu_to_be32(p);
 389}
 390
 391static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 392{
 393	if (be32_to_cpu(pi->ref_tag) == p)
 394		pi->ref_tag = cpu_to_be32(v);
 395}
 396
 397/**
 398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 399 *
 400 * The virtual start sector is the one that was originally submitted by the
 401 * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
 402 * start sector may be different. Remap protection information to match the
 403 * physical LBA on writes, and back to the original seed on reads.
 404 *
 405 * Type 0 and 3 do not have a ref tag, so no remapping required.
 406 */
 407static void nvme_dif_remap(struct request *req,
 408			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 409{
 410	struct nvme_ns *ns = req->rq_disk->private_data;
 411	struct bio_integrity_payload *bip;
 412	struct t10_pi_tuple *pi;
 413	void *p, *pmap;
 414	u32 i, nlb, ts, phys, virt;
 415
 416	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 417		return;
 418
 419	bip = bio_integrity(req->bio);
 420	if (!bip)
 421		return;
 422
 423	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 424
 425	p = pmap;
 426	virt = bip_get_seed(bip);
 427	phys = nvme_block_nr(ns, blk_rq_pos(req));
 428	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 429	ts = ns->disk->queue->integrity.tuple_size;
 430
 431	for (i = 0; i < nlb; i++, virt++, phys++) {
 432		pi = (struct t10_pi_tuple *)p;
 433		dif_swap(phys, virt, pi);
 434		p += ts;
 435	}
 436	kunmap_atomic(pmap);
 437}
 438#else /* CONFIG_BLK_DEV_INTEGRITY */
 439static void nvme_dif_remap(struct request *req,
 440			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 441{
 442}
 443static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 444{
 445}
 446static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 447{
 448}
 449#endif
 450
 451static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
 452		int total_len)
 453{
 454	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 455	struct dma_pool *pool;
 456	int length = total_len;
 457	struct scatterlist *sg = iod->sg;
 458	int dma_len = sg_dma_len(sg);
 459	u64 dma_addr = sg_dma_address(sg);
 460	u32 page_size = dev->ctrl.page_size;
 461	int offset = dma_addr & (page_size - 1);
 462	__le64 *prp_list;
 463	__le64 **list = iod_list(req);
 464	dma_addr_t prp_dma;
 465	int nprps, i;
 466
 467	length -= (page_size - offset);
 468	if (length <= 0)
 469		return true;
 470
 471	dma_len -= (page_size - offset);
 472	if (dma_len) {
 473		dma_addr += (page_size - offset);
 474	} else {
 475		sg = sg_next(sg);
 476		dma_addr = sg_dma_address(sg);
 477		dma_len = sg_dma_len(sg);
 478	}
 479
 480	if (length <= page_size) {
 481		iod->first_dma = dma_addr;
 482		return true;
 483	}
 484
 485	nprps = DIV_ROUND_UP(length, page_size);
 486	if (nprps <= (256 / 8)) {
 487		pool = dev->prp_small_pool;
 488		iod->npages = 0;
 489	} else {
 490		pool = dev->prp_page_pool;
 491		iod->npages = 1;
 492	}
 493
 494	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 495	if (!prp_list) {
 496		iod->first_dma = dma_addr;
 497		iod->npages = -1;
 498		return false;
 499	}
 500	list[0] = prp_list;
 501	iod->first_dma = prp_dma;
 502	i = 0;
 503	for (;;) {
 504		if (i == page_size >> 3) {
 505			__le64 *old_prp_list = prp_list;
 506			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 507			if (!prp_list)
 508				return false;
 509			list[iod->npages++] = prp_list;
 510			prp_list[0] = old_prp_list[i - 1];
 511			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 512			i = 1;
 513		}
 514		prp_list[i++] = cpu_to_le64(dma_addr);
 515		dma_len -= page_size;
 516		dma_addr += page_size;
 517		length -= page_size;
 518		if (length <= 0)
 519			break;
 520		if (dma_len > 0)
 521			continue;
 522		BUG_ON(dma_len < 0);
 523		sg = sg_next(sg);
 524		dma_addr = sg_dma_address(sg);
 525		dma_len = sg_dma_len(sg);
 526	}
 527
 528	return true;
 529}
 530
 531static int nvme_map_data(struct nvme_dev *dev, struct request *req,
 532		struct nvme_command *cmnd)
 533{
 534	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 535	struct request_queue *q = req->q;
 536	enum dma_data_direction dma_dir = rq_data_dir(req) ?
 537			DMA_TO_DEVICE : DMA_FROM_DEVICE;
 538	int ret = BLK_MQ_RQ_QUEUE_ERROR;
 539
 540	sg_init_table(iod->sg, req->nr_phys_segments);
 541	iod->nents = blk_rq_map_sg(q, req, iod->sg);
 542	if (!iod->nents)
 543		goto out;
 544
 545	ret = BLK_MQ_RQ_QUEUE_BUSY;
 546	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
 547		goto out;
 548
 549	if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
 550		goto out_unmap;
 551
 552	ret = BLK_MQ_RQ_QUEUE_ERROR;
 553	if (blk_integrity_rq(req)) {
 554		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 555			goto out_unmap;
 556
 557		sg_init_table(&iod->meta_sg, 1);
 558		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 559			goto out_unmap;
 560
 561		if (rq_data_dir(req))
 562			nvme_dif_remap(req, nvme_dif_prep);
 563
 564		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 565			goto out_unmap;
 566	}
 567
 568	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 569	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
 570	if (blk_integrity_rq(req))
 571		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 572	return BLK_MQ_RQ_QUEUE_OK;
 573
 574out_unmap:
 575	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 576out:
 577	return ret;
 578}
 579
 580static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 581{
 582	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 583	enum dma_data_direction dma_dir = rq_data_dir(req) ?
 584			DMA_TO_DEVICE : DMA_FROM_DEVICE;
 585
 586	if (iod->nents) {
 587		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 588		if (blk_integrity_rq(req)) {
 589			if (!rq_data_dir(req))
 590				nvme_dif_remap(req, nvme_dif_complete);
 591			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 592		}
 593	}
 594
 595	nvme_free_iod(dev, req);
 596}
 597
 598/*
 599 * We reuse the small pool to allocate the 16-byte range here as it is not
 600 * worth having a special pool for these or additional cases to handle freeing
 601 * the iod.
 602 */
 603static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 604		struct request *req, struct nvme_command *cmnd)
 605{
 606	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 607	struct nvme_dsm_range *range;
 608
 609	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
 610						&iod->first_dma);
 611	if (!range)
 612		return BLK_MQ_RQ_QUEUE_BUSY;
 613	iod_list(req)[0] = (__le64 *)range;
 614	iod->npages = 0;
 615
 616	range->cattr = cpu_to_le32(0);
 617	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
 618	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 619
 620	memset(cmnd, 0, sizeof(*cmnd));
 621	cmnd->dsm.opcode = nvme_cmd_dsm;
 622	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 623	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
 624	cmnd->dsm.nr = 0;
 625	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 626	return BLK_MQ_RQ_QUEUE_OK;
 627}
 628
 629/*
 630 * NOTE: ns is NULL when called on the admin queue.
 631 */
 632static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 633			 const struct blk_mq_queue_data *bd)
 634{
 635	struct nvme_ns *ns = hctx->queue->queuedata;
 636	struct nvme_queue *nvmeq = hctx->driver_data;
 637	struct nvme_dev *dev = nvmeq->dev;
 638	struct request *req = bd->rq;
 639	struct nvme_command cmnd;
 640	int ret = BLK_MQ_RQ_QUEUE_OK;
 641
 642	/*
 643	 * If formated with metadata, require the block layer provide a buffer
 644	 * unless this namespace is formated such that the metadata can be
 645	 * stripped/generated by the controller with PRACT=1.
 646	 */
 647	if (ns && ns->ms && !blk_integrity_rq(req)) {
 648		if (!(ns->pi_type && ns->ms == 8) &&
 649					req->cmd_type != REQ_TYPE_DRV_PRIV) {
 650			blk_mq_end_request(req, -EFAULT);
 651			return BLK_MQ_RQ_QUEUE_OK;
 652		}
 653	}
 654
 655	ret = nvme_init_iod(req, dev);
 656	if (ret)
 657		return ret;
 658
 659	if (req->cmd_flags & REQ_DISCARD) {
 660		ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
 661	} else {
 662		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
 663			memcpy(&cmnd, req->cmd, sizeof(cmnd));
 664		else if (req->cmd_flags & REQ_FLUSH)
 665			nvme_setup_flush(ns, &cmnd);
 666		else
 667			nvme_setup_rw(ns, req, &cmnd);
 668
 669		if (req->nr_phys_segments)
 670			ret = nvme_map_data(dev, req, &cmnd);
 671	}
 672
 673	if (ret)
 674		goto out;
 675
 676	cmnd.common.command_id = req->tag;
 677	blk_mq_start_request(req);
 678
 679	spin_lock_irq(&nvmeq->q_lock);
 680	if (unlikely(nvmeq->cq_vector < 0)) {
 681		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
 682			ret = BLK_MQ_RQ_QUEUE_BUSY;
 683		else
 684			ret = BLK_MQ_RQ_QUEUE_ERROR;
 685		spin_unlock_irq(&nvmeq->q_lock);
 686		goto out;
 687	}
 688	__nvme_submit_cmd(nvmeq, &cmnd);
 689	nvme_process_cq(nvmeq);
 690	spin_unlock_irq(&nvmeq->q_lock);
 691	return BLK_MQ_RQ_QUEUE_OK;
 692out:
 693	nvme_free_iod(dev, req);
 694	return ret;
 695}
 696
 697static void nvme_complete_rq(struct request *req)
 698{
 699	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 700	struct nvme_dev *dev = iod->nvmeq->dev;
 701	int error = 0;
 702
 703	nvme_unmap_data(dev, req);
 704
 705	if (unlikely(req->errors)) {
 706		if (nvme_req_needs_retry(req, req->errors)) {
 707			nvme_requeue_req(req);
 708			return;
 709		}
 710
 711		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
 712			error = req->errors;
 713		else
 714			error = nvme_error_status(req->errors);
 715	}
 716
 717	if (unlikely(iod->aborted)) {
 718		dev_warn(dev->ctrl.device,
 719			"completing aborted command with status: %04x\n",
 720			req->errors);
 721	}
 722
 723	blk_mq_end_request(req, error);
 724}
 725
 726/* We read the CQE phase first to check if the rest of the entry is valid */
 727static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
 728		u16 phase)
 729{
 730	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
 731}
 732
 733static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
 734{
 735	u16 head, phase;
 736
 737	head = nvmeq->cq_head;
 738	phase = nvmeq->cq_phase;
 739
 740	while (nvme_cqe_valid(nvmeq, head, phase)) {
 741		struct nvme_completion cqe = nvmeq->cqes[head];
 742		struct request *req;
 743
 744		if (++head == nvmeq->q_depth) {
 745			head = 0;
 746			phase = !phase;
 747		}
 748
 749		if (tag && *tag == cqe.command_id)
 750			*tag = -1;
 751
 752		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
 753			dev_warn(nvmeq->dev->ctrl.device,
 754				"invalid id %d completed on queue %d\n",
 755				cqe.command_id, le16_to_cpu(cqe.sq_id));
 756			continue;
 757		}
 758
 759		/*
 760		 * AEN requests are special as they don't time out and can
 761		 * survive any kind of queue freeze and often don't respond to
 762		 * aborts.  We don't even bother to allocate a struct request
 763		 * for them but rather special case them here.
 764		 */
 765		if (unlikely(nvmeq->qid == 0 &&
 766				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
 767			nvme_complete_async_event(nvmeq->dev, &cqe);
 768			continue;
 769		}
 770
 771		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
 772		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
 773			memcpy(req->special, &cqe, sizeof(cqe));
 774		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
 775
 776	}
 777
 778	/* If the controller ignores the cq head doorbell and continuously
 779	 * writes to the queue, it is theoretically possible to wrap around
 780	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
 781	 * requires that 0.1% of your interrupts are handled, so this isn't
 782	 * a big problem.
 783	 */
 784	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 785		return;
 786
 787	if (likely(nvmeq->cq_vector >= 0))
 788		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 789	nvmeq->cq_head = head;
 790	nvmeq->cq_phase = phase;
 791
 792	nvmeq->cqe_seen = 1;
 793}
 794
 795static void nvme_process_cq(struct nvme_queue *nvmeq)
 796{
 797	__nvme_process_cq(nvmeq, NULL);
 798}
 799
 800static irqreturn_t nvme_irq(int irq, void *data)
 801{
 802	irqreturn_t result;
 803	struct nvme_queue *nvmeq = data;
 804	spin_lock(&nvmeq->q_lock);
 805	nvme_process_cq(nvmeq);
 806	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 807	nvmeq->cqe_seen = 0;
 808	spin_unlock(&nvmeq->q_lock);
 809	return result;
 810}
 811
 812static irqreturn_t nvme_irq_check(int irq, void *data)
 813{
 814	struct nvme_queue *nvmeq = data;
 815	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
 816		return IRQ_WAKE_THREAD;
 817	return IRQ_NONE;
 818}
 819
 820static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
 821{
 822	struct nvme_queue *nvmeq = hctx->driver_data;
 823
 824	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
 825		spin_lock_irq(&nvmeq->q_lock);
 826		__nvme_process_cq(nvmeq, &tag);
 827		spin_unlock_irq(&nvmeq->q_lock);
 828
 829		if (tag == -1)
 830			return 1;
 831	}
 832
 833	return 0;
 834}
 835
 836static void nvme_async_event_work(struct work_struct *work)
 837{
 838	struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
 839	struct nvme_queue *nvmeq = dev->queues[0];
 840	struct nvme_command c;
 841
 842	memset(&c, 0, sizeof(c));
 843	c.common.opcode = nvme_admin_async_event;
 844
 845	spin_lock_irq(&nvmeq->q_lock);
 846	while (dev->ctrl.event_limit > 0) {
 847		c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
 848			--dev->ctrl.event_limit;
 849		__nvme_submit_cmd(nvmeq, &c);
 850	}
 851	spin_unlock_irq(&nvmeq->q_lock);
 852}
 853
 854static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 855{
 856	struct nvme_command c;
 857
 858	memset(&c, 0, sizeof(c));
 859	c.delete_queue.opcode = opcode;
 860	c.delete_queue.qid = cpu_to_le16(id);
 861
 862	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 863}
 864
 865static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 866						struct nvme_queue *nvmeq)
 867{
 868	struct nvme_command c;
 869	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 870
 871	/*
 872	 * Note: we (ab)use the fact the the prp fields survive if no data
 873	 * is attached to the request.
 874	 */
 875	memset(&c, 0, sizeof(c));
 876	c.create_cq.opcode = nvme_admin_create_cq;
 877	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 878	c.create_cq.cqid = cpu_to_le16(qid);
 879	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 880	c.create_cq.cq_flags = cpu_to_le16(flags);
 881	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 882
 883	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 884}
 885
 886static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 887						struct nvme_queue *nvmeq)
 888{
 889	struct nvme_command c;
 890	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 891
 892	/*
 893	 * Note: we (ab)use the fact the the prp fields survive if no data
 894	 * is attached to the request.
 895	 */
 896	memset(&c, 0, sizeof(c));
 897	c.create_sq.opcode = nvme_admin_create_sq;
 898	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 899	c.create_sq.sqid = cpu_to_le16(qid);
 900	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 901	c.create_sq.sq_flags = cpu_to_le16(flags);
 902	c.create_sq.cqid = cpu_to_le16(qid);
 903
 904	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 905}
 906
 907static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
 908{
 909	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
 910}
 911
 912static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 913{
 914	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 915}
 916
 917static void abort_endio(struct request *req, int error)
 918{
 919	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 920	struct nvme_queue *nvmeq = iod->nvmeq;
 921	u16 status = req->errors;
 922
 923	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
 924	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
 925	blk_mq_free_request(req);
 926}
 927
 928static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
 929{
 930	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 931	struct nvme_queue *nvmeq = iod->nvmeq;
 932	struct nvme_dev *dev = nvmeq->dev;
 933	struct request *abort_req;
 934	struct nvme_command cmd;
 935
 936	/*
 937	 * Shutdown immediately if controller times out while starting. The
 938	 * reset work will see the pci device disabled when it gets the forced
 939	 * cancellation error. All outstanding requests are completed on
 940	 * shutdown, so we return BLK_EH_HANDLED.
 941	 */
 942	if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
 943		dev_warn(dev->ctrl.device,
 944			 "I/O %d QID %d timeout, disable controller\n",
 945			 req->tag, nvmeq->qid);
 946		nvme_dev_disable(dev, false);
 947		req->errors = NVME_SC_CANCELLED;
 948		return BLK_EH_HANDLED;
 949	}
 950
 951	/*
 952 	 * Shutdown the controller immediately and schedule a reset if the
 953 	 * command was already aborted once before and still hasn't been
 954 	 * returned to the driver, or if this is the admin queue.
 955	 */
 956	if (!nvmeq->qid || iod->aborted) {
 957		dev_warn(dev->ctrl.device,
 958			 "I/O %d QID %d timeout, reset controller\n",
 959			 req->tag, nvmeq->qid);
 960		nvme_dev_disable(dev, false);
 961		queue_work(nvme_workq, &dev->reset_work);
 962
 963		/*
 964		 * Mark the request as handled, since the inline shutdown
 965		 * forces all outstanding requests to complete.
 966		 */
 967		req->errors = NVME_SC_CANCELLED;
 968		return BLK_EH_HANDLED;
 969	}
 970
 971	iod->aborted = 1;
 972
 973	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
 974		atomic_inc(&dev->ctrl.abort_limit);
 975		return BLK_EH_RESET_TIMER;
 976	}
 977
 978	memset(&cmd, 0, sizeof(cmd));
 979	cmd.abort.opcode = nvme_admin_abort_cmd;
 980	cmd.abort.cid = req->tag;
 981	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
 982
 983	dev_warn(nvmeq->dev->ctrl.device,
 984		"I/O %d QID %d timeout, aborting\n",
 985		 req->tag, nvmeq->qid);
 986
 987	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
 988			BLK_MQ_REQ_NOWAIT);
 989	if (IS_ERR(abort_req)) {
 990		atomic_inc(&dev->ctrl.abort_limit);
 991		return BLK_EH_RESET_TIMER;
 992	}
 993
 994	abort_req->timeout = ADMIN_TIMEOUT;
 995	abort_req->end_io_data = NULL;
 996	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
 997
 998	/*
 999	 * The aborted req will be completed on receiving the abort req.
1000	 * We enable the timer again. If hit twice, it'll cause a device reset,
1001	 * as the device then is in a faulty state.
1002	 */
1003	return BLK_EH_RESET_TIMER;
1004}
1005
1006static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1007{
1008	struct nvme_queue *nvmeq = data;
1009	int status;
1010
1011	if (!blk_mq_request_started(req))
1012		return;
1013
1014	dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
1015		 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1016
1017	status = NVME_SC_ABORT_REQ;
1018	if (blk_queue_dying(req->q))
1019		status |= NVME_SC_DNR;
1020	blk_mq_complete_request(req, status);
1021}
1022
1023static void nvme_free_queue(struct nvme_queue *nvmeq)
1024{
1025	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1026				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1027	if (nvmeq->sq_cmds)
1028		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1029					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1030	kfree(nvmeq);
1031}
1032
1033static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1034{
1035	int i;
1036
1037	for (i = dev->queue_count - 1; i >= lowest; i--) {
1038		struct nvme_queue *nvmeq = dev->queues[i];
1039		dev->queue_count--;
1040		dev->queues[i] = NULL;
1041		nvme_free_queue(nvmeq);
1042	}
1043}
1044
1045/**
1046 * nvme_suspend_queue - put queue into suspended state
1047 * @nvmeq - queue to suspend
1048 */
1049static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1050{
1051	int vector;
1052
1053	spin_lock_irq(&nvmeq->q_lock);
1054	if (nvmeq->cq_vector == -1) {
1055		spin_unlock_irq(&nvmeq->q_lock);
1056		return 1;
1057	}
1058	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1059	nvmeq->dev->online_queues--;
1060	nvmeq->cq_vector = -1;
1061	spin_unlock_irq(&nvmeq->q_lock);
1062
1063	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1064		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1065
1066	irq_set_affinity_hint(vector, NULL);
1067	free_irq(vector, nvmeq);
1068
1069	return 0;
1070}
1071
1072static void nvme_clear_queue(struct nvme_queue *nvmeq)
1073{
1074	spin_lock_irq(&nvmeq->q_lock);
1075	if (nvmeq->tags && *nvmeq->tags)
1076		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1077	spin_unlock_irq(&nvmeq->q_lock);
1078}
1079
1080static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1081{
1082	struct nvme_queue *nvmeq = dev->queues[0];
1083
1084	if (!nvmeq)
1085		return;
1086	if (nvme_suspend_queue(nvmeq))
1087		return;
1088
1089	if (shutdown)
1090		nvme_shutdown_ctrl(&dev->ctrl);
1091	else
1092		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1093						dev->bar + NVME_REG_CAP));
1094
1095	spin_lock_irq(&nvmeq->q_lock);
1096	nvme_process_cq(nvmeq);
1097	spin_unlock_irq(&nvmeq->q_lock);
1098}
1099
1100static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1101				int entry_size)
1102{
1103	int q_depth = dev->q_depth;
1104	unsigned q_size_aligned = roundup(q_depth * entry_size,
1105					  dev->ctrl.page_size);
1106
1107	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1108		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1109		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1110		q_depth = div_u64(mem_per_q, entry_size);
1111
1112		/*
1113		 * Ensure the reduced q_depth is above some threshold where it
1114		 * would be better to map queues in system memory with the
1115		 * original depth
1116		 */
1117		if (q_depth < 64)
1118			return -ENOMEM;
1119	}
1120
1121	return q_depth;
1122}
1123
1124static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1125				int qid, int depth)
1126{
1127	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1128		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1129						      dev->ctrl.page_size);
1130		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1131		nvmeq->sq_cmds_io = dev->cmb + offset;
1132	} else {
1133		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1134					&nvmeq->sq_dma_addr, GFP_KERNEL);
1135		if (!nvmeq->sq_cmds)
1136			return -ENOMEM;
1137	}
1138
1139	return 0;
1140}
1141
1142static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1143							int depth)
1144{
1145	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1146	if (!nvmeq)
1147		return NULL;
1148
1149	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1150					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1151	if (!nvmeq->cqes)
1152		goto free_nvmeq;
1153
1154	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1155		goto free_cqdma;
1156
1157	nvmeq->q_dmadev = dev->dev;
1158	nvmeq->dev = dev;
1159	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1160			dev->ctrl.instance, qid);
1161	spin_lock_init(&nvmeq->q_lock);
1162	nvmeq->cq_head = 0;
1163	nvmeq->cq_phase = 1;
1164	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1165	nvmeq->q_depth = depth;
1166	nvmeq->qid = qid;
1167	nvmeq->cq_vector = -1;
1168	dev->queues[qid] = nvmeq;
1169	dev->queue_count++;
1170
1171	return nvmeq;
1172
1173 free_cqdma:
1174	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1175							nvmeq->cq_dma_addr);
1176 free_nvmeq:
1177	kfree(nvmeq);
1178	return NULL;
1179}
1180
1181static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1182							const char *name)
1183{
1184	if (use_threaded_interrupts)
1185		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1186					nvme_irq_check, nvme_irq, IRQF_SHARED,
1187					name, nvmeq);
1188	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1189				IRQF_SHARED, name, nvmeq);
1190}
1191
1192static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1193{
1194	struct nvme_dev *dev = nvmeq->dev;
1195
1196	spin_lock_irq(&nvmeq->q_lock);
1197	nvmeq->sq_tail = 0;
1198	nvmeq->cq_head = 0;
1199	nvmeq->cq_phase = 1;
1200	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1201	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1202	dev->online_queues++;
1203	spin_unlock_irq(&nvmeq->q_lock);
1204}
1205
1206static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1207{
1208	struct nvme_dev *dev = nvmeq->dev;
1209	int result;
1210
1211	nvmeq->cq_vector = qid - 1;
1212	result = adapter_alloc_cq(dev, qid, nvmeq);
1213	if (result < 0)
1214		return result;
1215
1216	result = adapter_alloc_sq(dev, qid, nvmeq);
1217	if (result < 0)
1218		goto release_cq;
1219
1220	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1221	if (result < 0)
1222		goto release_sq;
1223
1224	nvme_init_queue(nvmeq, qid);
1225	return result;
1226
1227 release_sq:
1228	adapter_delete_sq(dev, qid);
1229 release_cq:
1230	adapter_delete_cq(dev, qid);
1231	return result;
1232}
1233
1234static struct blk_mq_ops nvme_mq_admin_ops = {
1235	.queue_rq	= nvme_queue_rq,
1236	.complete	= nvme_complete_rq,
1237	.map_queue	= blk_mq_map_queue,
1238	.init_hctx	= nvme_admin_init_hctx,
1239	.exit_hctx      = nvme_admin_exit_hctx,
1240	.init_request	= nvme_admin_init_request,
1241	.timeout	= nvme_timeout,
1242};
1243
1244static struct blk_mq_ops nvme_mq_ops = {
1245	.queue_rq	= nvme_queue_rq,
1246	.complete	= nvme_complete_rq,
1247	.map_queue	= blk_mq_map_queue,
1248	.init_hctx	= nvme_init_hctx,
1249	.init_request	= nvme_init_request,
1250	.timeout	= nvme_timeout,
1251	.poll		= nvme_poll,
1252};
1253
1254static void nvme_dev_remove_admin(struct nvme_dev *dev)
1255{
1256	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1257		/*
1258		 * If the controller was reset during removal, it's possible
1259		 * user requests may be waiting on a stopped queue. Start the
1260		 * queue to flush these to completion.
1261		 */
1262		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1263		blk_cleanup_queue(dev->ctrl.admin_q);
1264		blk_mq_free_tag_set(&dev->admin_tagset);
1265	}
1266}
1267
1268static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1269{
1270	if (!dev->ctrl.admin_q) {
1271		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1272		dev->admin_tagset.nr_hw_queues = 1;
1273
1274		/*
1275		 * Subtract one to leave an empty queue entry for 'Full Queue'
1276		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1277		 */
1278		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1279		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1280		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1281		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1282		dev->admin_tagset.driver_data = dev;
1283
1284		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1285			return -ENOMEM;
1286
1287		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1288		if (IS_ERR(dev->ctrl.admin_q)) {
1289			blk_mq_free_tag_set(&dev->admin_tagset);
1290			return -ENOMEM;
1291		}
1292		if (!blk_get_queue(dev->ctrl.admin_q)) {
1293			nvme_dev_remove_admin(dev);
1294			dev->ctrl.admin_q = NULL;
1295			return -ENODEV;
1296		}
1297	} else
1298		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1299
1300	return 0;
1301}
1302
1303static int nvme_configure_admin_queue(struct nvme_dev *dev)
1304{
1305	int result;
1306	u32 aqa;
1307	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1308	struct nvme_queue *nvmeq;
1309
1310	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1311						NVME_CAP_NSSRC(cap) : 0;
1312
1313	if (dev->subsystem &&
1314	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1315		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1316
1317	result = nvme_disable_ctrl(&dev->ctrl, cap);
1318	if (result < 0)
1319		return result;
1320
1321	nvmeq = dev->queues[0];
1322	if (!nvmeq) {
1323		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1324		if (!nvmeq)
1325			return -ENOMEM;
1326	}
1327
1328	aqa = nvmeq->q_depth - 1;
1329	aqa |= aqa << 16;
1330
1331	writel(aqa, dev->bar + NVME_REG_AQA);
1332	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1333	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1334
1335	result = nvme_enable_ctrl(&dev->ctrl, cap);
1336	if (result)
1337		goto free_nvmeq;
1338
1339	nvmeq->cq_vector = 0;
1340	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1341	if (result) {
1342		nvmeq->cq_vector = -1;
1343		goto free_nvmeq;
1344	}
1345
1346	return result;
1347
1348 free_nvmeq:
1349	nvme_free_queues(dev, 0);
1350	return result;
1351}
1352
1353static void nvme_watchdog_timer(unsigned long data)
1354{
1355	struct nvme_dev *dev = (struct nvme_dev *)data;
1356	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1357
1358	/*
1359	 * Skip controllers currently under reset.
1360	 */
1361	if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1362	    ((csts & NVME_CSTS_CFS) ||
1363	     (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1364		if (queue_work(nvme_workq, &dev->reset_work)) {
1365			dev_warn(dev->dev,
1366				"Failed status: 0x%x, reset controller.\n",
1367				csts);
1368		}
1369		return;
1370	}
1371
1372	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1373}
1374
1375static int nvme_create_io_queues(struct nvme_dev *dev)
1376{
1377	unsigned i, max;
1378	int ret = 0;
1379
1380	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1381		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1382			ret = -ENOMEM;
1383			break;
1384		}
1385	}
1386
1387	max = min(dev->max_qid, dev->queue_count - 1);
1388	for (i = dev->online_queues; i <= max; i++) {
1389		ret = nvme_create_queue(dev->queues[i], i);
1390		if (ret) {
1391			nvme_free_queues(dev, i);
1392			break;
1393		}
1394	}
1395
1396	/*
1397	 * Ignore failing Create SQ/CQ commands, we can continue with less
1398	 * than the desired aount of queues, and even a controller without
1399	 * I/O queues an still be used to issue admin commands.  This might
1400	 * be useful to upgrade a buggy firmware for example.
1401	 */
1402	return ret >= 0 ? 0 : ret;
1403}
1404
1405static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1406{
1407	u64 szu, size, offset;
1408	u32 cmbloc;
1409	resource_size_t bar_size;
1410	struct pci_dev *pdev = to_pci_dev(dev->dev);
1411	void __iomem *cmb;
1412	dma_addr_t dma_addr;
1413
1414	if (!use_cmb_sqes)
1415		return NULL;
1416
1417	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1418	if (!(NVME_CMB_SZ(dev->cmbsz)))
1419		return NULL;
1420
1421	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1422
1423	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1424	size = szu * NVME_CMB_SZ(dev->cmbsz);
1425	offset = szu * NVME_CMB_OFST(cmbloc);
1426	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1427
1428	if (offset > bar_size)
1429		return NULL;
1430
1431	/*
1432	 * Controllers may support a CMB size larger than their BAR,
1433	 * for example, due to being behind a bridge. Reduce the CMB to
1434	 * the reported size of the BAR
1435	 */
1436	if (size > bar_size - offset)
1437		size = bar_size - offset;
1438
1439	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1440	cmb = ioremap_wc(dma_addr, size);
1441	if (!cmb)
1442		return NULL;
1443
1444	dev->cmb_dma_addr = dma_addr;
1445	dev->cmb_size = size;
1446	return cmb;
1447}
1448
1449static inline void nvme_release_cmb(struct nvme_dev *dev)
1450{
1451	if (dev->cmb) {
1452		iounmap(dev->cmb);
1453		dev->cmb = NULL;
1454	}
1455}
1456
1457static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1458{
1459	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1460}
1461
1462static int nvme_setup_io_queues(struct nvme_dev *dev)
1463{
1464	struct nvme_queue *adminq = dev->queues[0];
1465	struct pci_dev *pdev = to_pci_dev(dev->dev);
1466	int result, i, vecs, nr_io_queues, size;
1467
1468	nr_io_queues = num_possible_cpus();
1469	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1470	if (result < 0)
1471		return result;
1472
1473	/*
1474	 * Degraded controllers might return an error when setting the queue
1475	 * count.  We still want to be able to bring them online and offer
1476	 * access to the admin queue, as that might be only way to fix them up.
1477	 */
1478	if (result > 0) {
1479		dev_err(dev->ctrl.device,
1480			"Could not set queue count (%d)\n", result);
1481		return 0;
1482	}
1483
1484	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1485		result = nvme_cmb_qdepth(dev, nr_io_queues,
1486				sizeof(struct nvme_command));
1487		if (result > 0)
1488			dev->q_depth = result;
1489		else
1490			nvme_release_cmb(dev);
1491	}
1492
1493	size = db_bar_size(dev, nr_io_queues);
1494	if (size > 8192) {
1495		iounmap(dev->bar);
1496		do {
1497			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1498			if (dev->bar)
1499				break;
1500			if (!--nr_io_queues)
1501				return -ENOMEM;
1502			size = db_bar_size(dev, nr_io_queues);
1503		} while (1);
1504		dev->dbs = dev->bar + 4096;
1505		adminq->q_db = dev->dbs;
1506	}
1507
1508	/* Deregister the admin queue's interrupt */
1509	free_irq(dev->entry[0].vector, adminq);
1510
1511	/*
1512	 * If we enable msix early due to not intx, disable it again before
1513	 * setting up the full range we need.
1514	 */
1515	if (pdev->msi_enabled)
1516		pci_disable_msi(pdev);
1517	else if (pdev->msix_enabled)
1518		pci_disable_msix(pdev);
1519
1520	for (i = 0; i < nr_io_queues; i++)
1521		dev->entry[i].entry = i;
1522	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1523	if (vecs < 0) {
1524		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1525		if (vecs < 0) {
1526			vecs = 1;
1527		} else {
1528			for (i = 0; i < vecs; i++)
1529				dev->entry[i].vector = i + pdev->irq;
1530		}
1531	}
1532
1533	/*
1534	 * Should investigate if there's a performance win from allocating
1535	 * more queues than interrupt vectors; it might allow the submission
1536	 * path to scale better, even if the receive path is limited by the
1537	 * number of interrupts.
1538	 */
1539	nr_io_queues = vecs;
1540	dev->max_qid = nr_io_queues;
1541
1542	result = queue_request_irq(dev, adminq, adminq->irqname);
1543	if (result) {
1544		adminq->cq_vector = -1;
1545		goto free_queues;
1546	}
1547	return nvme_create_io_queues(dev);
1548
1549 free_queues:
1550	nvme_free_queues(dev, 1);
1551	return result;
1552}
1553
1554static void nvme_set_irq_hints(struct nvme_dev *dev)
1555{
1556	struct nvme_queue *nvmeq;
1557	int i;
1558
1559	for (i = 0; i < dev->online_queues; i++) {
1560		nvmeq = dev->queues[i];
1561
1562		if (!nvmeq->tags || !(*nvmeq->tags))
1563			continue;
1564
1565		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1566					blk_mq_tags_cpumask(*nvmeq->tags));
1567	}
1568}
1569
1570static void nvme_dev_scan(struct work_struct *work)
1571{
1572	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1573
1574	if (!dev->tagset.tags)
1575		return;
1576	nvme_scan_namespaces(&dev->ctrl);
1577	nvme_set_irq_hints(dev);
1578}
1579
1580static void nvme_del_queue_end(struct request *req, int error)
1581{
1582	struct nvme_queue *nvmeq = req->end_io_data;
1583
1584	blk_mq_free_request(req);
1585	complete(&nvmeq->dev->ioq_wait);
1586}
1587
1588static void nvme_del_cq_end(struct request *req, int error)
1589{
1590	struct nvme_queue *nvmeq = req->end_io_data;
1591
1592	if (!error) {
1593		unsigned long flags;
1594
1595		spin_lock_irqsave(&nvmeq->q_lock, flags);
1596		nvme_process_cq(nvmeq);
1597		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1598	}
1599
1600	nvme_del_queue_end(req, error);
1601}
1602
1603static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1604{
1605	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1606	struct request *req;
1607	struct nvme_command cmd;
1608
1609	memset(&cmd, 0, sizeof(cmd));
1610	cmd.delete_queue.opcode = opcode;
1611	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1612
1613	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1614	if (IS_ERR(req))
1615		return PTR_ERR(req);
1616
1617	req->timeout = ADMIN_TIMEOUT;
1618	req->end_io_data = nvmeq;
1619
1620	blk_execute_rq_nowait(q, NULL, req, false,
1621			opcode == nvme_admin_delete_cq ?
1622				nvme_del_cq_end : nvme_del_queue_end);
1623	return 0;
1624}
1625
1626static void nvme_disable_io_queues(struct nvme_dev *dev)
1627{
1628	int pass;
1629	unsigned long timeout;
1630	u8 opcode = nvme_admin_delete_sq;
1631
1632	for (pass = 0; pass < 2; pass++) {
1633		int sent = 0, i = dev->queue_count - 1;
1634
1635		reinit_completion(&dev->ioq_wait);
1636 retry:
1637		timeout = ADMIN_TIMEOUT;
1638		for (; i > 0; i--) {
1639			struct nvme_queue *nvmeq = dev->queues[i];
1640
1641			if (!pass)
1642				nvme_suspend_queue(nvmeq);
1643			if (nvme_delete_queue(nvmeq, opcode))
1644				break;
1645			++sent;
1646		}
1647		while (sent--) {
1648			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1649			if (timeout == 0)
1650				return;
1651			if (i)
1652				goto retry;
1653		}
1654		opcode = nvme_admin_delete_cq;
1655	}
1656}
1657
1658/*
1659 * Return: error value if an error occurred setting up the queues or calling
1660 * Identify Device.  0 if these succeeded, even if adding some of the
1661 * namespaces failed.  At the moment, these failures are silent.  TBD which
1662 * failures should be reported.
1663 */
1664static int nvme_dev_add(struct nvme_dev *dev)
1665{
1666	if (!dev->ctrl.tagset) {
1667		dev->tagset.ops = &nvme_mq_ops;
1668		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1669		dev->tagset.timeout = NVME_IO_TIMEOUT;
1670		dev->tagset.numa_node = dev_to_node(dev->dev);
1671		dev->tagset.queue_depth =
1672				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1673		dev->tagset.cmd_size = nvme_cmd_size(dev);
1674		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1675		dev->tagset.driver_data = dev;
1676
1677		if (blk_mq_alloc_tag_set(&dev->tagset))
1678			return 0;
1679		dev->ctrl.tagset = &dev->tagset;
1680	} else {
1681		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1682
1683		/* Free previously allocated queues that are no longer usable */
1684		nvme_free_queues(dev, dev->online_queues);
1685	}
1686
1687	nvme_queue_scan(dev);
1688	return 0;
1689}
1690
1691static int nvme_pci_enable(struct nvme_dev *dev)
1692{
1693	u64 cap;
1694	int result = -ENOMEM;
1695	struct pci_dev *pdev = to_pci_dev(dev->dev);
1696
1697	if (pci_enable_device_mem(pdev))
1698		return result;
1699
1700	pci_set_master(pdev);
1701
1702	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1703	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1704		goto disable;
1705
1706	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1707		result = -ENODEV;
1708		goto disable;
1709	}
1710
1711	/*
1712	 * Some devices and/or platforms don't advertise or work with INTx
1713	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1714	 * adjust this later.
1715	 */
1716	if (pci_enable_msix(pdev, dev->entry, 1)) {
1717		pci_enable_msi(pdev);
1718		dev->entry[0].vector = pdev->irq;
1719	}
1720
1721	if (!dev->entry[0].vector) {
1722		result = -ENODEV;
1723		goto disable;
1724	}
1725
1726	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1727
1728	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1729	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1730	dev->dbs = dev->bar + 4096;
1731
1732	/*
1733	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1734	 * some MacBook7,1 to avoid controller resets and data loss.
1735	 */
1736	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1737		dev->q_depth = 2;
1738		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1739			"queue depth=%u to work around controller resets\n",
1740			dev->q_depth);
1741	}
1742
1743	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1744		dev->cmb = nvme_map_cmb(dev);
1745
1746	pci_enable_pcie_error_reporting(pdev);
1747	pci_save_state(pdev);
1748	return 0;
1749
1750 disable:
1751	pci_disable_device(pdev);
1752	return result;
1753}
1754
1755static void nvme_dev_unmap(struct nvme_dev *dev)
1756{
1757	if (dev->bar)
1758		iounmap(dev->bar);
1759	pci_release_regions(to_pci_dev(dev->dev));
1760}
1761
1762static void nvme_pci_disable(struct nvme_dev *dev)
1763{
1764	struct pci_dev *pdev = to_pci_dev(dev->dev);
1765
1766	if (pdev->msi_enabled)
1767		pci_disable_msi(pdev);
1768	else if (pdev->msix_enabled)
1769		pci_disable_msix(pdev);
1770
1771	if (pci_is_enabled(pdev)) {
1772		pci_disable_pcie_error_reporting(pdev);
1773		pci_disable_device(pdev);
1774	}
1775}
1776
1777static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1778{
1779	int i;
1780	u32 csts = -1;
1781
1782	del_timer_sync(&dev->watchdog_timer);
1783
1784	mutex_lock(&dev->shutdown_lock);
1785	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1786		nvme_stop_queues(&dev->ctrl);
1787		csts = readl(dev->bar + NVME_REG_CSTS);
1788	}
1789	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1790		for (i = dev->queue_count - 1; i >= 0; i--) {
1791			struct nvme_queue *nvmeq = dev->queues[i];
1792			nvme_suspend_queue(nvmeq);
1793		}
1794	} else {
1795		nvme_disable_io_queues(dev);
1796		nvme_disable_admin_queue(dev, shutdown);
1797	}
1798	nvme_pci_disable(dev);
1799
1800	for (i = dev->queue_count - 1; i >= 0; i--)
1801		nvme_clear_queue(dev->queues[i]);
1802	mutex_unlock(&dev->shutdown_lock);
1803}
1804
1805static int nvme_setup_prp_pools(struct nvme_dev *dev)
1806{
1807	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1808						PAGE_SIZE, PAGE_SIZE, 0);
1809	if (!dev->prp_page_pool)
1810		return -ENOMEM;
1811
1812	/* Optimisation for I/Os between 4k and 128k */
1813	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1814						256, 256, 0);
1815	if (!dev->prp_small_pool) {
1816		dma_pool_destroy(dev->prp_page_pool);
1817		return -ENOMEM;
1818	}
1819	return 0;
1820}
1821
1822static void nvme_release_prp_pools(struct nvme_dev *dev)
1823{
1824	dma_pool_destroy(dev->prp_page_pool);
1825	dma_pool_destroy(dev->prp_small_pool);
1826}
1827
1828static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1829{
1830	struct nvme_dev *dev = to_nvme_dev(ctrl);
1831
1832	put_device(dev->dev);
1833	if (dev->tagset.tags)
1834		blk_mq_free_tag_set(&dev->tagset);
1835	if (dev->ctrl.admin_q)
1836		blk_put_queue(dev->ctrl.admin_q);
1837	kfree(dev->queues);
1838	kfree(dev->entry);
1839	kfree(dev);
1840}
1841
1842static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1843{
1844	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1845
1846	kref_get(&dev->ctrl.kref);
1847	nvme_dev_disable(dev, false);
1848	if (!schedule_work(&dev->remove_work))
1849		nvme_put_ctrl(&dev->ctrl);
1850}
1851
1852static void nvme_reset_work(struct work_struct *work)
1853{
1854	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1855	int result = -ENODEV;
1856
1857	if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1858		goto out;
1859
1860	/*
1861	 * If we're called to reset a live controller first shut it down before
1862	 * moving on.
1863	 */
1864	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1865		nvme_dev_disable(dev, false);
1866
1867	if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
1868		goto out;
1869
1870	set_bit(NVME_CTRL_RESETTING, &dev->flags);
1871
1872	result = nvme_pci_enable(dev);
1873	if (result)
1874		goto out;
1875
1876	result = nvme_configure_admin_queue(dev);
1877	if (result)
1878		goto out;
1879
1880	nvme_init_queue(dev->queues[0], 0);
1881	result = nvme_alloc_admin_tags(dev);
1882	if (result)
1883		goto out;
1884
1885	result = nvme_init_identify(&dev->ctrl);
1886	if (result)
1887		goto out;
1888
1889	result = nvme_setup_io_queues(dev);
1890	if (result)
1891		goto out;
1892
1893	dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1894	queue_work(nvme_workq, &dev->async_work);
1895
1896	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1897
1898	/*
1899	 * Keep the controller around but remove all namespaces if we don't have
1900	 * any working I/O queue.
1901	 */
1902	if (dev->online_queues < 2) {
1903		dev_warn(dev->ctrl.device, "IO queues not created\n");
1904		nvme_remove_namespaces(&dev->ctrl);
1905	} else {
1906		nvme_start_queues(&dev->ctrl);
1907		nvme_dev_add(dev);
1908	}
1909
1910	clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1911	return;
1912
1913 out:
1914	nvme_remove_dead_ctrl(dev, result);
1915}
1916
1917static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1918{
1919	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1920	struct pci_dev *pdev = to_pci_dev(dev->dev);
1921
1922	nvme_kill_queues(&dev->ctrl);
1923	if (pci_get_drvdata(pdev))
1924		pci_stop_and_remove_bus_device_locked(pdev);
1925	nvme_put_ctrl(&dev->ctrl);
1926}
1927
1928static int nvme_reset(struct nvme_dev *dev)
1929{
1930	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1931		return -ENODEV;
1932
1933	if (!queue_work(nvme_workq, &dev->reset_work))
1934		return -EBUSY;
1935
1936	flush_work(&dev->reset_work);
1937	return 0;
1938}
1939
1940static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1941{
1942	*val = readl(to_nvme_dev(ctrl)->bar + off);
1943	return 0;
1944}
1945
1946static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1947{
1948	writel(val, to_nvme_dev(ctrl)->bar + off);
1949	return 0;
1950}
1951
1952static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1953{
1954	*val = readq(to_nvme_dev(ctrl)->bar + off);
1955	return 0;
1956}
1957
1958static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1959{
1960	struct nvme_dev *dev = to_nvme_dev(ctrl);
1961
1962	return !dev->bar || dev->online_queues < 2;
1963}
1964
1965static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1966{
1967	return nvme_reset(to_nvme_dev(ctrl));
1968}
1969
1970static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1971	.module			= THIS_MODULE,
1972	.reg_read32		= nvme_pci_reg_read32,
1973	.reg_write32		= nvme_pci_reg_write32,
1974	.reg_read64		= nvme_pci_reg_read64,
1975	.io_incapable		= nvme_pci_io_incapable,
1976	.reset_ctrl		= nvme_pci_reset_ctrl,
1977	.free_ctrl		= nvme_pci_free_ctrl,
1978};
1979
1980static int nvme_dev_map(struct nvme_dev *dev)
1981{
1982	int bars;
1983	struct pci_dev *pdev = to_pci_dev(dev->dev);
1984
1985	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1986	if (!bars)
1987		return -ENODEV;
1988	if (pci_request_selected_regions(pdev, bars, "nvme"))
1989		return -ENODEV;
1990
1991	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1992	if (!dev->bar)
1993		goto release;
1994
1995       return 0;
1996  release:
1997       pci_release_regions(pdev);
1998       return -ENODEV;
1999}
2000
2001static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2002{
2003	int node, result = -ENOMEM;
2004	struct nvme_dev *dev;
2005
2006	node = dev_to_node(&pdev->dev);
2007	if (node == NUMA_NO_NODE)
2008		set_dev_node(&pdev->dev, 0);
2009
2010	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2011	if (!dev)
2012		return -ENOMEM;
2013	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2014							GFP_KERNEL, node);
2015	if (!dev->entry)
2016		goto free;
2017	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2018							GFP_KERNEL, node);
2019	if (!dev->queues)
2020		goto free;
2021
2022	dev->dev = get_device(&pdev->dev);
2023	pci_set_drvdata(pdev, dev);
2024
2025	result = nvme_dev_map(dev);
2026	if (result)
2027		goto free;
2028
2029	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2030	INIT_WORK(&dev->reset_work, nvme_reset_work);
2031	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2032	INIT_WORK(&dev->async_work, nvme_async_event_work);
2033	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2034		(unsigned long)dev);
2035	mutex_init(&dev->shutdown_lock);
2036	init_completion(&dev->ioq_wait);
2037
2038	result = nvme_setup_prp_pools(dev);
2039	if (result)
2040		goto put_pci;
2041
2042	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2043			id->driver_data);
2044	if (result)
2045		goto release_pools;
2046
2047	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2048
2049	queue_work(nvme_workq, &dev->reset_work);
2050	return 0;
2051
2052 release_pools:
2053	nvme_release_prp_pools(dev);
2054 put_pci:
2055	put_device(dev->dev);
2056	nvme_dev_unmap(dev);
2057 free:
2058	kfree(dev->queues);
2059	kfree(dev->entry);
2060	kfree(dev);
2061	return result;
2062}
2063
2064static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2065{
2066	struct nvme_dev *dev = pci_get_drvdata(pdev);
2067
2068	if (prepare)
2069		nvme_dev_disable(dev, false);
2070	else
2071		queue_work(nvme_workq, &dev->reset_work);
2072}
2073
2074static void nvme_shutdown(struct pci_dev *pdev)
2075{
2076	struct nvme_dev *dev = pci_get_drvdata(pdev);
2077	nvme_dev_disable(dev, true);
2078}
2079
2080/*
2081 * The driver's remove may be called on a device in a partially initialized
2082 * state. This function must not have any dependencies on the device state in
2083 * order to proceed.
2084 */
2085static void nvme_remove(struct pci_dev *pdev)
2086{
2087	struct nvme_dev *dev = pci_get_drvdata(pdev);
2088
2089	set_bit(NVME_CTRL_REMOVING, &dev->flags);
2090	pci_set_drvdata(pdev, NULL);
2091	flush_work(&dev->async_work);
2092	flush_work(&dev->reset_work);
2093	flush_work(&dev->scan_work);
2094	nvme_remove_namespaces(&dev->ctrl);
2095	nvme_uninit_ctrl(&dev->ctrl);
2096	nvme_dev_disable(dev, true);
2097	flush_work(&dev->reset_work);
2098	nvme_dev_remove_admin(dev);
2099	nvme_free_queues(dev, 0);
2100	nvme_release_cmb(dev);
2101	nvme_release_prp_pools(dev);
2102	nvme_dev_unmap(dev);
2103	nvme_put_ctrl(&dev->ctrl);
2104}
2105
2106#ifdef CONFIG_PM_SLEEP
2107static int nvme_suspend(struct device *dev)
2108{
2109	struct pci_dev *pdev = to_pci_dev(dev);
2110	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2111
2112	nvme_dev_disable(ndev, true);
2113	return 0;
2114}
2115
2116static int nvme_resume(struct device *dev)
2117{
2118	struct pci_dev *pdev = to_pci_dev(dev);
2119	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2120
2121	queue_work(nvme_workq, &ndev->reset_work);
2122	return 0;
2123}
2124#endif
2125
2126static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2127
2128static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2129						pci_channel_state_t state)
2130{
2131	struct nvme_dev *dev = pci_get_drvdata(pdev);
2132
2133	/*
2134	 * A frozen channel requires a reset. When detected, this method will
2135	 * shutdown the controller to quiesce. The controller will be restarted
2136	 * after the slot reset through driver's slot_reset callback.
2137	 */
2138	dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2139	switch (state) {
2140	case pci_channel_io_normal:
2141		return PCI_ERS_RESULT_CAN_RECOVER;
2142	case pci_channel_io_frozen:
2143		nvme_dev_disable(dev, false);
2144		return PCI_ERS_RESULT_NEED_RESET;
2145	case pci_channel_io_perm_failure:
2146		return PCI_ERS_RESULT_DISCONNECT;
2147	}
2148	return PCI_ERS_RESULT_NEED_RESET;
2149}
2150
2151static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2152{
2153	struct nvme_dev *dev = pci_get_drvdata(pdev);
2154
2155	dev_info(dev->ctrl.device, "restart after slot reset\n");
2156	pci_restore_state(pdev);
2157	queue_work(nvme_workq, &dev->reset_work);
2158	return PCI_ERS_RESULT_RECOVERED;
2159}
2160
2161static void nvme_error_resume(struct pci_dev *pdev)
2162{
2163	pci_cleanup_aer_uncorrect_error_status(pdev);
2164}
2165
2166static const struct pci_error_handlers nvme_err_handler = {
2167	.error_detected	= nvme_error_detected,
2168	.slot_reset	= nvme_slot_reset,
2169	.resume		= nvme_error_resume,
2170	.reset_notify	= nvme_reset_notify,
2171};
2172
2173/* Move to pci_ids.h later */
2174#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2175
2176static const struct pci_device_id nvme_id_table[] = {
2177	{ PCI_VDEVICE(INTEL, 0x0953),
2178		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2179				NVME_QUIRK_DISCARD_ZEROES, },
2180	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2181		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2182	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2183	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2184	{ 0, }
2185};
2186MODULE_DEVICE_TABLE(pci, nvme_id_table);
2187
2188static struct pci_driver nvme_driver = {
2189	.name		= "nvme",
2190	.id_table	= nvme_id_table,
2191	.probe		= nvme_probe,
2192	.remove		= nvme_remove,
2193	.shutdown	= nvme_shutdown,
2194	.driver		= {
2195		.pm	= &nvme_dev_pm_ops,
2196	},
2197	.err_handler	= &nvme_err_handler,
2198};
2199
2200static int __init nvme_init(void)
2201{
2202	int result;
2203
2204	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2205	if (!nvme_workq)
2206		return -ENOMEM;
2207
2208	result = pci_register_driver(&nvme_driver);
2209	if (result)
2210		destroy_workqueue(nvme_workq);
2211	return result;
2212}
2213
2214static void __exit nvme_exit(void)
2215{
2216	pci_unregister_driver(&nvme_driver);
2217	destroy_workqueue(nvme_workq);
2218	_nvme_check_size();
2219}
2220
2221MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2222MODULE_LICENSE("GPL");
2223MODULE_VERSION("1.0");
2224module_init(nvme_init);
2225module_exit(nvme_exit);