Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.15
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2012-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include "net_driver.h"
  11#include "ef10_regs.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "mcdi_pcol.h"
  15#include "nic.h"
  16#include "workarounds.h"
  17#include "selftest.h"
 
  18#include <linux/in.h>
  19#include <linux/jhash.h>
  20#include <linux/wait.h>
  21#include <linux/workqueue.h>
  22
  23/* Hardware control for EF10 architecture including 'Huntington'. */
  24
  25#define EFX_EF10_DRVGEN_EV		7
  26enum {
  27	EFX_EF10_TEST = 1,
  28	EFX_EF10_REFILL,
  29};
  30
  31/* The reserved RSS context value */
  32#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
 
 
 
  33
  34/* The filter table(s) are managed by firmware and we have write-only
  35 * access.  When removing filters we must identify them to the
  36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  37 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  38 * be able to tell in advance whether a requested insertion will
  39 * replace an existing filter.  Therefore we maintain a software hash
  40 * table, which should be at least as large as the hardware hash
  41 * table.
  42 *
  43 * Huntington has a single 8K filter table shared between all filter
  44 * types and both ports.
  45 */
  46#define HUNT_FILTER_TBL_ROWS 8192
  47
 
 
 
 
 
 
  48struct efx_ef10_filter_table {
  49/* The RX match field masks supported by this fw & hw, in order of priority */
  50	enum efx_filter_match_flags rx_match_flags[
  51		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
  52	unsigned int rx_match_count;
  53
  54	struct {
  55		unsigned long spec;	/* pointer to spec plus flag bits */
  56/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
  57 * used to mark and sweep MAC filters for the device address lists.
  58 */
  59#define EFX_EF10_FILTER_FLAG_BUSY	1UL
  60#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
  61#define EFX_EF10_FILTER_FLAGS		3UL
  62		u64 handle;		/* firmware handle */
  63	} *entry;
  64	wait_queue_head_t waitq;
  65/* Shadow of net_device address lists, guarded by mac_lock */
  66#define EFX_EF10_FILTER_DEV_UC_MAX	32
  67#define EFX_EF10_FILTER_DEV_MC_MAX	256
  68	struct {
  69		u8 addr[ETH_ALEN];
  70		u16 id;
  71	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
  72	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
  73	int dev_uc_count;		/* negative for PROMISC */
  74	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
 
  75};
  76
  77/* An arbitrary search limit for the software hash table */
  78#define EFX_EF10_FILTER_SEARCH_LIMIT 200
  79
  80static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
  81static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
  82static void efx_ef10_filter_table_remove(struct efx_nic *efx);
  83
  84static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  85{
  86	efx_dword_t reg;
  87
  88	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  89	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  90		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  91}
  92
  93static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  94{
  95	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
  99{
 100	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
 101	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 102	size_t outlen;
 103	int rc;
 104
 105	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 106
 107	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 108			  outbuf, sizeof(outbuf), &outlen);
 109	if (rc)
 110		return rc;
 111	if (outlen < sizeof(outbuf)) {
 112		netif_err(efx, drv, efx->net_dev,
 113			  "unable to read datapath firmware capabilities\n");
 114		return -EIO;
 115	}
 116
 117	nic_data->datapath_caps =
 118		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 119
 120	if (!(nic_data->datapath_caps &
 121	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
 122		netif_err(efx, drv, efx->net_dev,
 123			  "current firmware does not support TSO\n");
 124		return -ENODEV;
 125	}
 126
 127	if (!(nic_data->datapath_caps &
 128	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 129		netif_err(efx, probe, efx->net_dev,
 130			  "current firmware does not support an RX prefix\n");
 131		return -ENODEV;
 132	}
 133
 134	return 0;
 135}
 136
 137static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 138{
 139	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 140	int rc;
 141
 142	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 143			  outbuf, sizeof(outbuf), NULL);
 144	if (rc)
 145		return rc;
 146	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 147	return rc > 0 ? rc : -ERANGE;
 148}
 149
 150static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
 151{
 152	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 153	size_t outlen;
 154	int rc;
 155
 156	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 157
 158	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 159			  outbuf, sizeof(outbuf), &outlen);
 160	if (rc)
 161		return rc;
 162	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 163		return -EIO;
 164
 165	ether_addr_copy(mac_address,
 166			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 167	return 0;
 168}
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170static int efx_ef10_probe(struct efx_nic *efx)
 171{
 172	struct efx_ef10_nic_data *nic_data;
 
 173	int i, rc;
 174
 175	/* We can have one VI for each 8K region.  However, until we
 176	 * use TX option descriptors we need two TX queues per channel.
 177	 */
 178	efx->max_channels =
 179		min_t(unsigned int,
 180		      EFX_MAX_CHANNELS,
 181		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
 182		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
 183	BUG_ON(efx->max_channels == 0);
 
 184
 185	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 186	if (!nic_data)
 187		return -ENOMEM;
 188	efx->nic_data = nic_data;
 189
 
 
 
 190	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 191				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 192	if (rc)
 193		goto fail1;
 194
 195	/* Get the MC's warm boot count.  In case it's rebooting right
 196	 * now, be prepared to retry.
 197	 */
 198	i = 0;
 199	for (;;) {
 200		rc = efx_ef10_get_warm_boot_count(efx);
 201		if (rc >= 0)
 202			break;
 203		if (++i == 5)
 204			goto fail2;
 205		ssleep(1);
 206	}
 207	nic_data->warm_boot_count = rc;
 208
 209	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 210
 
 
 211	/* In case we're recovering from a crash (kexec), we want to
 212	 * cancel any outstanding request by the previous user of this
 213	 * function.  We send a special message using the least
 214	 * significant bits of the 'high' (doorbell) register.
 215	 */
 216	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 217
 218	rc = efx_mcdi_init(efx);
 219	if (rc)
 220		goto fail2;
 221
 222	/* Reset (most) configuration for this function */
 223	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 224	if (rc)
 225		goto fail3;
 226
 227	/* Enable event logging */
 228	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 229	if (rc)
 230		goto fail3;
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	rc = efx_ef10_init_datapath_caps(efx);
 233	if (rc < 0)
 234		goto fail3;
 235
 236	efx->rx_packet_len_offset =
 237		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 238
 239	rc = efx_mcdi_port_get_number(efx);
 240	if (rc < 0)
 241		goto fail3;
 242	efx->port_num = rc;
 
 243
 244	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
 245	if (rc)
 246		goto fail3;
 247
 248	rc = efx_ef10_get_sysclk_freq(efx);
 249	if (rc < 0)
 250		goto fail3;
 251	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
 252
 253	/* Check whether firmware supports bug 35388 workaround */
 254	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
 255	if (rc == 0)
 
 
 
 256		nic_data->workaround_35388 = true;
 257	else if (rc != -ENOSYS && rc != -ENOENT)
 258		goto fail3;
 
 
 
 
 
 
 
 
 
 259	netif_dbg(efx, probe, efx->net_dev,
 260		  "workaround for bug 35388 is %sabled\n",
 261		  nic_data->workaround_35388 ? "en" : "dis");
 262
 263	rc = efx_mcdi_mon_probe(efx);
 264	if (rc)
 265		goto fail3;
 266
 267	efx_ptp_probe(efx, NULL);
 268
 
 
 
 
 
 
 
 
 
 
 269	return 0;
 270
 
 
 
 
 271fail3:
 272	efx_mcdi_fini(efx);
 273fail2:
 274	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 275fail1:
 276	kfree(nic_data);
 277	efx->nic_data = NULL;
 278	return rc;
 279}
 280
 281static int efx_ef10_free_vis(struct efx_nic *efx)
 282{
 283	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 284	size_t outlen;
 285	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 286				    outbuf, sizeof(outbuf), &outlen);
 287
 288	/* -EALREADY means nothing to free, so ignore */
 289	if (rc == -EALREADY)
 290		rc = 0;
 291	if (rc)
 292		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 293				       rc);
 294	return rc;
 295}
 296
 297#ifdef EFX_USE_PIO
 298
 299static void efx_ef10_free_piobufs(struct efx_nic *efx)
 300{
 301	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 302	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 303	unsigned int i;
 304	int rc;
 305
 306	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 307
 308	for (i = 0; i < nic_data->n_piobufs; i++) {
 309		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 310			       nic_data->piobuf_handle[i]);
 311		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 312				  NULL, 0, NULL);
 313		WARN_ON(rc);
 314	}
 315
 316	nic_data->n_piobufs = 0;
 317}
 318
 319static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 320{
 321	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 322	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 323	unsigned int i;
 324	size_t outlen;
 325	int rc = 0;
 326
 327	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 328
 329	for (i = 0; i < n; i++) {
 330		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 331				  outbuf, sizeof(outbuf), &outlen);
 332		if (rc)
 
 
 
 
 
 
 333			break;
 
 334		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 335			rc = -EIO;
 336			break;
 337		}
 338		nic_data->piobuf_handle[i] =
 339			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 340		netif_dbg(efx, probe, efx->net_dev,
 341			  "allocated PIO buffer %u handle %x\n", i,
 342			  nic_data->piobuf_handle[i]);
 343	}
 344
 345	nic_data->n_piobufs = i;
 346	if (rc)
 347		efx_ef10_free_piobufs(efx);
 348	return rc;
 349}
 350
 351static int efx_ef10_link_piobufs(struct efx_nic *efx)
 352{
 353	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 354	MCDI_DECLARE_BUF(inbuf,
 355			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
 356			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
 357	struct efx_channel *channel;
 358	struct efx_tx_queue *tx_queue;
 359	unsigned int offset, index;
 360	int rc;
 361
 362	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 363	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 364
 
 
 365	/* Link a buffer to each VI in the write-combining mapping */
 366	for (index = 0; index < nic_data->n_piobufs; ++index) {
 367		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 368			       nic_data->piobuf_handle[index]);
 369		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 370			       nic_data->pio_write_vi_base + index);
 371		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 372				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 373				  NULL, 0, NULL);
 374		if (rc) {
 375			netif_err(efx, drv, efx->net_dev,
 376				  "failed to link VI %u to PIO buffer %u (%d)\n",
 377				  nic_data->pio_write_vi_base + index, index,
 378				  rc);
 379			goto fail;
 380		}
 381		netif_dbg(efx, probe, efx->net_dev,
 382			  "linked VI %u to PIO buffer %u\n",
 383			  nic_data->pio_write_vi_base + index, index);
 384	}
 385
 386	/* Link a buffer to each TX queue */
 387	efx_for_each_channel(channel, efx) {
 388		efx_for_each_channel_tx_queue(tx_queue, channel) {
 389			/* We assign the PIO buffers to queues in
 390			 * reverse order to allow for the following
 391			 * special case.
 392			 */
 393			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 394				   tx_queue->channel->channel - 1) *
 395				  efx_piobuf_size);
 396			index = offset / ER_DZ_TX_PIOBUF_SIZE;
 397			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
 398
 399			/* When the host page size is 4K, the first
 400			 * host page in the WC mapping may be within
 401			 * the same VI page as the last TX queue.  We
 402			 * can only link one buffer to each VI.
 403			 */
 404			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 405				BUG_ON(index != 0);
 406				rc = 0;
 407			} else {
 408				MCDI_SET_DWORD(inbuf,
 409					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 410					       nic_data->piobuf_handle[index]);
 411				MCDI_SET_DWORD(inbuf,
 412					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 413					       tx_queue->queue);
 414				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 415						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 416						  NULL, 0, NULL);
 417			}
 418
 419			if (rc) {
 420				/* This is non-fatal; the TX path just
 421				 * won't use PIO for this queue
 422				 */
 423				netif_err(efx, drv, efx->net_dev,
 424					  "failed to link VI %u to PIO buffer %u (%d)\n",
 425					  tx_queue->queue, index, rc);
 426				tx_queue->piobuf = NULL;
 427			} else {
 428				tx_queue->piobuf =
 429					nic_data->pio_write_base +
 430					index * EFX_VI_PAGE_SIZE + offset;
 431				tx_queue->piobuf_offset = offset;
 432				netif_dbg(efx, probe, efx->net_dev,
 433					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 434					  tx_queue->queue, index,
 435					  tx_queue->piobuf_offset,
 436					  tx_queue->piobuf);
 437			}
 438		}
 439	}
 440
 441	return 0;
 442
 443fail:
 444	while (index--) {
 445		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 446			       nic_data->pio_write_vi_base + index);
 447		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 448			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 449			     NULL, 0, NULL);
 450	}
 451	return rc;
 452}
 453
 454#else /* !EFX_USE_PIO */
 455
 456static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 457{
 458	return n == 0 ? 0 : -ENOBUFS;
 459}
 460
 461static int efx_ef10_link_piobufs(struct efx_nic *efx)
 462{
 463	return 0;
 464}
 465
 466static void efx_ef10_free_piobufs(struct efx_nic *efx)
 467{
 468}
 469
 470#endif /* EFX_USE_PIO */
 471
 472static void efx_ef10_remove(struct efx_nic *efx)
 473{
 474	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 475	int rc;
 476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	efx_ptp_remove(efx);
 478
 479	efx_mcdi_mon_remove(efx);
 480
 481	efx_ef10_rx_free_indir_table(efx);
 482
 483	if (nic_data->wc_membase)
 484		iounmap(nic_data->wc_membase);
 485
 486	rc = efx_ef10_free_vis(efx);
 487	WARN_ON(rc != 0);
 488
 489	if (!nic_data->must_restore_piobufs)
 490		efx_ef10_free_piobufs(efx);
 491
 
 
 
 492	efx_mcdi_fini(efx);
 493	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 494	kfree(nic_data);
 495}
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497static int efx_ef10_alloc_vis(struct efx_nic *efx,
 498			      unsigned int min_vis, unsigned int max_vis)
 499{
 500	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
 501	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
 502	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 503	size_t outlen;
 504	int rc;
 505
 506	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
 507	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
 508	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
 509			  outbuf, sizeof(outbuf), &outlen);
 510	if (rc != 0)
 511		return rc;
 512
 513	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
 514		return -EIO;
 515
 516	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
 517		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
 518
 519	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
 520	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
 521	return 0;
 522}
 523
 524/* Note that the failure path of this function does not free
 525 * resources, as this will be done by efx_ef10_remove().
 526 */
 527static int efx_ef10_dimension_resources(struct efx_nic *efx)
 528{
 529	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 530	unsigned int uc_mem_map_size, wc_mem_map_size;
 531	unsigned int min_vis, pio_write_vi_base, max_vis;
 
 
 532	void __iomem *membase;
 533	int rc;
 534
 535	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
 536
 537#ifdef EFX_USE_PIO
 538	/* Try to allocate PIO buffers if wanted and if the full
 539	 * number of PIO buffers would be sufficient to allocate one
 540	 * copy-buffer per TX channel.  Failure is non-fatal, as there
 541	 * are only a small number of PIO buffers shared between all
 542	 * functions of the controller.
 543	 */
 544	if (efx_piobuf_size != 0 &&
 545	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
 546	    efx->n_tx_channels) {
 547		unsigned int n_piobufs =
 548			DIV_ROUND_UP(efx->n_tx_channels,
 549				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
 550
 551		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
 552		if (rc)
 553			netif_err(efx, probe, efx->net_dev,
 554				  "failed to allocate PIO buffers (%d)\n", rc);
 555		else
 556			netif_dbg(efx, probe, efx->net_dev,
 557				  "allocated %u PIO buffers\n", n_piobufs);
 558	}
 559#else
 560	nic_data->n_piobufs = 0;
 561#endif
 562
 563	/* PIO buffers should be mapped with write-combining enabled,
 564	 * and we want to make single UC and WC mappings rather than
 565	 * several of each (in fact that's the only option if host
 566	 * page size is >4K).  So we may allocate some extra VIs just
 567	 * for writing PIO buffers through.
 568	 *
 569	 * The UC mapping contains (min_vis - 1) complete VIs and the
 570	 * first half of the next VI.  Then the WC mapping begins with
 571	 * the second half of this last VI.
 572	 */
 573	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
 574				     ER_DZ_TX_PIOBUF);
 575	if (nic_data->n_piobufs) {
 576		/* pio_write_vi_base rounds down to give the number of complete
 577		 * VIs inside the UC mapping.
 578		 */
 579		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
 580		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
 581					       nic_data->n_piobufs) *
 582					      EFX_VI_PAGE_SIZE) -
 583				   uc_mem_map_size);
 584		max_vis = pio_write_vi_base + nic_data->n_piobufs;
 585	} else {
 586		pio_write_vi_base = 0;
 587		wc_mem_map_size = 0;
 588		max_vis = min_vis;
 589	}
 590
 591	/* In case the last attached driver failed to free VIs, do it now */
 592	rc = efx_ef10_free_vis(efx);
 593	if (rc != 0)
 594		return rc;
 595
 596	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
 597	if (rc != 0)
 598		return rc;
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600	/* If we didn't get enough VIs to map all the PIO buffers, free the
 601	 * PIO buffers
 602	 */
 603	if (nic_data->n_piobufs &&
 604	    nic_data->n_allocated_vis <
 605	    pio_write_vi_base + nic_data->n_piobufs) {
 606		netif_dbg(efx, probe, efx->net_dev,
 607			  "%u VIs are not sufficient to map %u PIO buffers\n",
 608			  nic_data->n_allocated_vis, nic_data->n_piobufs);
 609		efx_ef10_free_piobufs(efx);
 610	}
 611
 612	/* Shrink the original UC mapping of the memory BAR */
 613	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
 614	if (!membase) {
 615		netif_err(efx, probe, efx->net_dev,
 616			  "could not shrink memory BAR to %x\n",
 617			  uc_mem_map_size);
 618		return -ENOMEM;
 619	}
 620	iounmap(efx->membase);
 621	efx->membase = membase;
 622
 623	/* Set up the WC mapping if needed */
 624	if (wc_mem_map_size) {
 625		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
 626						  uc_mem_map_size,
 627						  wc_mem_map_size);
 628		if (!nic_data->wc_membase) {
 629			netif_err(efx, probe, efx->net_dev,
 630				  "could not allocate WC mapping of size %x\n",
 631				  wc_mem_map_size);
 632			return -ENOMEM;
 633		}
 634		nic_data->pio_write_vi_base = pio_write_vi_base;
 635		nic_data->pio_write_base =
 636			nic_data->wc_membase +
 637			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
 638			 uc_mem_map_size);
 639
 640		rc = efx_ef10_link_piobufs(efx);
 641		if (rc)
 642			efx_ef10_free_piobufs(efx);
 643	}
 644
 645	netif_dbg(efx, probe, efx->net_dev,
 646		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
 647		  &efx->membase_phys, efx->membase, uc_mem_map_size,
 648		  nic_data->wc_membase, wc_mem_map_size);
 649
 650	return 0;
 651}
 652
 653static int efx_ef10_init_nic(struct efx_nic *efx)
 654{
 655	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 656	int rc;
 657
 658	if (nic_data->must_check_datapath_caps) {
 659		rc = efx_ef10_init_datapath_caps(efx);
 660		if (rc)
 661			return rc;
 662		nic_data->must_check_datapath_caps = false;
 663	}
 664
 665	if (nic_data->must_realloc_vis) {
 666		/* We cannot let the number of VIs change now */
 667		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
 668					nic_data->n_allocated_vis);
 669		if (rc)
 670			return rc;
 671		nic_data->must_realloc_vis = false;
 672	}
 673
 674	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
 675		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
 676		if (rc == 0) {
 677			rc = efx_ef10_link_piobufs(efx);
 678			if (rc)
 679				efx_ef10_free_piobufs(efx);
 680		}
 681
 682		/* Log an error on failure, but this is non-fatal */
 683		if (rc)
 684			netif_err(efx, drv, efx->net_dev,
 685				  "failed to restore PIO buffers (%d)\n", rc);
 686		nic_data->must_restore_piobufs = false;
 687	}
 688
 689	efx_ef10_rx_push_rss_config(efx);
 
 
 690	return 0;
 691}
 692
 693static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
 694{
 695	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
 
 696
 697	/* All our allocations have been reset */
 698	nic_data->must_realloc_vis = true;
 699	nic_data->must_restore_filters = true;
 700	nic_data->must_restore_piobufs = true;
 701	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 704static int efx_ef10_map_reset_flags(u32 *flags)
 705{
 706	enum {
 707		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
 708				   ETH_RESET_SHARED_SHIFT),
 709		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
 710				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
 711				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
 712				 ETH_RESET_SHARED_SHIFT)
 713	};
 714
 715	/* We assume for now that our PCI function is permitted to
 716	 * reset everything.
 717	 */
 718
 719	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
 720		*flags &= ~EF10_RESET_MC;
 721		return RESET_TYPE_WORLD;
 722	}
 723
 724	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
 725		*flags &= ~EF10_RESET_PORT;
 726		return RESET_TYPE_ALL;
 727	}
 728
 729	/* no invisible reset implemented */
 730
 731	return -EINVAL;
 732}
 733
 734static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
 735{
 736	int rc = efx_mcdi_reset(efx, reset_type);
 737
 
 
 
 
 
 
 738	/* If it was a port reset, trigger reallocation of MC resources.
 739	 * Note that on an MC reset nothing needs to be done now because we'll
 740	 * detect the MC reset later and handle it then.
 741	 * For an FLR, we never get an MC reset event, but the MC has reset all
 742	 * resources assigned to us, so we have to trigger reallocation now.
 743	 */
 744	if ((reset_type == RESET_TYPE_ALL ||
 745	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
 746		efx_ef10_reset_mc_allocations(efx);
 747	return rc;
 748}
 749
 750#define EF10_DMA_STAT(ext_name, mcdi_name)			\
 751	[EF10_STAT_ ## ext_name] =				\
 752	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 753#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
 754	[EF10_STAT_ ## int_name] =				\
 755	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 756#define EF10_OTHER_STAT(ext_name)				\
 757	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 
 
 758
 759static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
 760	EF10_DMA_STAT(tx_bytes, TX_BYTES),
 761	EF10_DMA_STAT(tx_packets, TX_PKTS),
 762	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
 763	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
 764	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
 765	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
 766	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
 767	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
 768	EF10_DMA_STAT(tx_64, TX_64_PKTS),
 769	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
 770	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
 771	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
 772	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
 773	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
 774	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
 775	EF10_DMA_STAT(rx_bytes, RX_BYTES),
 776	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
 777	EF10_OTHER_STAT(rx_good_bytes),
 778	EF10_OTHER_STAT(rx_bad_bytes),
 779	EF10_DMA_STAT(rx_packets, RX_PKTS),
 780	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
 781	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
 782	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
 783	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
 784	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
 785	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
 786	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
 787	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
 788	EF10_DMA_STAT(rx_64, RX_64_PKTS),
 789	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
 790	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
 791	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
 792	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
 793	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
 794	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
 795	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
 796	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
 797	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
 798	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
 799	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
 800	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
 801	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
 802	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
 803	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
 804	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
 805	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
 806	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
 807	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
 808	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
 809	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
 810	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
 811	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
 812	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813};
 814
 815#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
 816			       (1ULL << EF10_STAT_tx_packets) |		\
 817			       (1ULL << EF10_STAT_tx_pause) |		\
 818			       (1ULL << EF10_STAT_tx_unicast) |		\
 819			       (1ULL << EF10_STAT_tx_multicast) |	\
 820			       (1ULL << EF10_STAT_tx_broadcast) |	\
 821			       (1ULL << EF10_STAT_rx_bytes) |		\
 822			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
 823			       (1ULL << EF10_STAT_rx_good_bytes) |	\
 824			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
 825			       (1ULL << EF10_STAT_rx_packets) |		\
 826			       (1ULL << EF10_STAT_rx_good) |		\
 827			       (1ULL << EF10_STAT_rx_bad) |		\
 828			       (1ULL << EF10_STAT_rx_pause) |		\
 829			       (1ULL << EF10_STAT_rx_control) |		\
 830			       (1ULL << EF10_STAT_rx_unicast) |		\
 831			       (1ULL << EF10_STAT_rx_multicast) |	\
 832			       (1ULL << EF10_STAT_rx_broadcast) |	\
 833			       (1ULL << EF10_STAT_rx_lt64) |		\
 834			       (1ULL << EF10_STAT_rx_64) |		\
 835			       (1ULL << EF10_STAT_rx_65_to_127) |	\
 836			       (1ULL << EF10_STAT_rx_128_to_255) |	\
 837			       (1ULL << EF10_STAT_rx_256_to_511) |	\
 838			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
 839			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
 840			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
 841			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
 842			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
 843			       (1ULL << EF10_STAT_rx_overflow) |	\
 844			       (1ULL << EF10_STAT_rx_nodesc_drops))
 
 
 
 845
 846/* These statistics are only provided by the 10G MAC.  For a 10G/40G
 847 * switchable port we do not expose these because they might not
 848 * include all the packets they should.
 849 */
 850#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
 851				 (1ULL << EF10_STAT_tx_lt64) |		\
 852				 (1ULL << EF10_STAT_tx_64) |		\
 853				 (1ULL << EF10_STAT_tx_65_to_127) |	\
 854				 (1ULL << EF10_STAT_tx_128_to_255) |	\
 855				 (1ULL << EF10_STAT_tx_256_to_511) |	\
 856				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
 857				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
 858				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
 859
 860/* These statistics are only provided by the 40G MAC.  For a 10G/40G
 861 * switchable port we do expose these because the errors will otherwise
 862 * be silent.
 863 */
 864#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
 865				  (1ULL << EF10_STAT_rx_length_error))
 866
 867/* These statistics are only provided if the firmware supports the
 868 * capability PM_AND_RXDP_COUNTERS.
 869 */
 870#define HUNT_PM_AND_RXDP_STAT_MASK (					\
 871	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
 872	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
 873	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
 874	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
 875	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
 876	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
 877	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
 878	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
 879	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
 880	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
 881	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
 882	(1ULL << EF10_STAT_rx_dp_hlb_wait))
 883
 884static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
 885{
 886	u64 raw_mask = HUNT_COMMON_STAT_MASK;
 887	u32 port_caps = efx_mcdi_phy_get_caps(efx);
 888	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 889
 
 
 
 
 890	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
 891		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
 892	else
 893		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
 894
 895	if (nic_data->datapath_caps &
 896	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
 897		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
 898
 899	return raw_mask;
 900}
 901
 902static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
 903{
 904	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906#if BITS_PER_LONG == 64
 907	mask[0] = raw_mask;
 
 908#else
 909	mask[0] = raw_mask & 0xffffffff;
 910	mask[1] = raw_mask >> 32;
 
 
 911#endif
 912}
 913
 914static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
 915{
 916	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 917
 918	efx_ef10_get_stat_mask(efx, mask);
 919	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
 920				      mask, names);
 921}
 922
 923static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924{
 925	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 926	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 927	__le64 generation_start, generation_end;
 928	u64 *stats = nic_data->stats;
 929	__le64 *dma_stats;
 930
 931	efx_ef10_get_stat_mask(efx, mask);
 932
 933	dma_stats = efx->stats_buffer.addr;
 934	nic_data = efx->nic_data;
 935
 936	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
 937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
 938		return 0;
 939	rmb();
 940	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
 941			     stats, efx->stats_buffer.addr, false);
 942	rmb();
 943	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
 944	if (generation_end != generation_start)
 945		return -EAGAIN;
 946
 947	/* Update derived statistics */
 948	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
 949	stats[EF10_STAT_rx_good_bytes] =
 950		stats[EF10_STAT_rx_bytes] -
 951		stats[EF10_STAT_rx_bytes_minus_good_bytes];
 952	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
 953			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
 954
 
 955	return 0;
 956}
 957
 958
 959static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
 960				    struct rtnl_link_stats64 *core_stats)
 961{
 962	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 963	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 964	u64 *stats = nic_data->stats;
 965	size_t stats_count = 0, index;
 966	int retry;
 967
 968	efx_ef10_get_stat_mask(efx, mask);
 969
 970	/* If we're unlucky enough to read statistics during the DMA, wait
 971	 * up to 10ms for it to finish (typically takes <500us)
 972	 */
 973	for (retry = 0; retry < 100; ++retry) {
 974		if (efx_ef10_try_update_nic_stats(efx) == 0)
 975			break;
 976		udelay(100);
 977	}
 978
 979	if (full_stats) {
 980		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
 981			if (efx_ef10_stat_desc[index].name) {
 982				*full_stats++ = stats[index];
 983				++stats_count;
 984			}
 985		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988	if (core_stats) {
 989		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
 990		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
 991		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
 992		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
 993		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
 994		core_stats->multicast = stats[EF10_STAT_rx_multicast];
 995		core_stats->rx_length_errors =
 996			stats[EF10_STAT_rx_gtjumbo] +
 997			stats[EF10_STAT_rx_length_error];
 998		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
 999		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1000		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1001		core_stats->rx_errors = (core_stats->rx_length_errors +
1002					 core_stats->rx_crc_errors +
1003					 core_stats->rx_frame_errors);
1004	}
1005
1006	return stats_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008
1009static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1010{
1011	struct efx_nic *efx = channel->efx;
1012	unsigned int mode, value;
1013	efx_dword_t timer_cmd;
1014
1015	if (channel->irq_moderation) {
1016		mode = 3;
1017		value = channel->irq_moderation - 1;
1018	} else {
1019		mode = 0;
1020		value = 0;
1021	}
1022
1023	if (EFX_EF10_WORKAROUND_35388(efx)) {
1024		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1025				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1026				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1027				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1028		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1029				channel->channel);
1030	} else {
1031		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1032				     ERF_DZ_TC_TIMER_VAL, value);
1033		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1034				channel->channel);
1035	}
1036}
1037
 
 
 
 
 
 
 
 
1038static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1039{
1040	wol->supported = 0;
1041	wol->wolopts = 0;
1042	memset(&wol->sopass, 0, sizeof(wol->sopass));
1043}
1044
1045static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1046{
1047	if (type != 0)
1048		return -EINVAL;
1049	return 0;
1050}
1051
1052static void efx_ef10_mcdi_request(struct efx_nic *efx,
1053				  const efx_dword_t *hdr, size_t hdr_len,
1054				  const efx_dword_t *sdu, size_t sdu_len)
1055{
1056	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057	u8 *pdu = nic_data->mcdi_buf.addr;
1058
1059	memcpy(pdu, hdr, hdr_len);
1060	memcpy(pdu + hdr_len, sdu, sdu_len);
1061	wmb();
1062
1063	/* The hardware provides 'low' and 'high' (doorbell) registers
1064	 * for passing the 64-bit address of an MCDI request to
1065	 * firmware.  However the dwords are swapped by firmware.  The
1066	 * least significant bits of the doorbell are then 0 for all
1067	 * MCDI requests due to alignment.
1068	 */
1069	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1070		    ER_DZ_MC_DB_LWRD);
1071	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1072		    ER_DZ_MC_DB_HWRD);
1073}
1074
1075static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1076{
1077	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1078	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1079
1080	rmb();
1081	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1082}
1083
1084static void
1085efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1086			    size_t offset, size_t outlen)
1087{
1088	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1089	const u8 *pdu = nic_data->mcdi_buf.addr;
1090
1091	memcpy(outbuf, pdu + offset, outlen);
1092}
1093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1095{
1096	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1097	int rc;
1098
1099	rc = efx_ef10_get_warm_boot_count(efx);
1100	if (rc < 0) {
1101		/* The firmware is presumably in the process of
1102		 * rebooting.  However, we are supposed to report each
1103		 * reboot just once, so we must only do that once we
1104		 * can read and store the updated warm boot count.
1105		 */
1106		return 0;
1107	}
1108
1109	if (rc == nic_data->warm_boot_count)
1110		return 0;
1111
1112	nic_data->warm_boot_count = rc;
1113
1114	/* All our allocations have been reset */
1115	efx_ef10_reset_mc_allocations(efx);
1116
1117	/* The datapath firmware might have been changed */
1118	nic_data->must_check_datapath_caps = true;
1119
1120	/* MAC statistics have been cleared on the NIC; clear the local
1121	 * statistic that we update with efx_update_diff_stat().
1122	 */
1123	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1124
1125	return -EIO;
1126}
1127
1128/* Handle an MSI interrupt
1129 *
1130 * Handle an MSI hardware interrupt.  This routine schedules event
1131 * queue processing.  No interrupt acknowledgement cycle is necessary.
1132 * Also, we never need to check that the interrupt is for us, since
1133 * MSI interrupts cannot be shared.
1134 */
1135static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1136{
1137	struct efx_msi_context *context = dev_id;
1138	struct efx_nic *efx = context->efx;
1139
1140	netif_vdbg(efx, intr, efx->net_dev,
1141		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1142
1143	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1144		/* Note test interrupts */
1145		if (context->index == efx->irq_level)
1146			efx->last_irq_cpu = raw_smp_processor_id();
1147
1148		/* Schedule processing of the channel */
1149		efx_schedule_channel_irq(efx->channel[context->index]);
1150	}
1151
1152	return IRQ_HANDLED;
1153}
1154
1155static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1156{
1157	struct efx_nic *efx = dev_id;
1158	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1159	struct efx_channel *channel;
1160	efx_dword_t reg;
1161	u32 queues;
1162
1163	/* Read the ISR which also ACKs the interrupts */
1164	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1165	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1166
1167	if (queues == 0)
1168		return IRQ_NONE;
1169
1170	if (likely(soft_enabled)) {
1171		/* Note test interrupts */
1172		if (queues & (1U << efx->irq_level))
1173			efx->last_irq_cpu = raw_smp_processor_id();
1174
1175		efx_for_each_channel(channel, efx) {
1176			if (queues & 1)
1177				efx_schedule_channel_irq(channel);
1178			queues >>= 1;
1179		}
1180	}
1181
1182	netif_vdbg(efx, intr, efx->net_dev,
1183		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1184		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1185
1186	return IRQ_HANDLED;
1187}
1188
1189static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1190{
1191	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1192
1193	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1194
1195	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1196	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1197			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1198}
1199
1200static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1201{
1202	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1203				    (tx_queue->ptr_mask + 1) *
1204				    sizeof(efx_qword_t),
1205				    GFP_KERNEL);
1206}
1207
1208/* This writes to the TX_DESC_WPTR and also pushes data */
1209static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1210					 const efx_qword_t *txd)
1211{
1212	unsigned int write_ptr;
1213	efx_oword_t reg;
1214
1215	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1216	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1217	reg.qword[0] = *txd;
1218	efx_writeo_page(tx_queue->efx, &reg,
1219			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1220}
1221
1222static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1223{
1224	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1225						       EFX_BUF_SIZE));
1226	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1227	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1228	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1229	struct efx_channel *channel = tx_queue->channel;
1230	struct efx_nic *efx = tx_queue->efx;
1231	size_t inlen, outlen;
 
1232	dma_addr_t dma_addr;
1233	efx_qword_t *txd;
1234	int rc;
1235	int i;
 
1236
1237	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1238	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1239	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1240	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1241	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1242			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1243			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1244	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1245	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1246
1247	dma_addr = tx_queue->txd.buf.dma_addr;
1248
1249	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1250		  tx_queue->queue, entries, (u64)dma_addr);
1251
1252	for (i = 0; i < entries; ++i) {
1253		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1254		dma_addr += EFX_BUF_SIZE;
1255	}
1256
1257	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1258
1259	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1260			  outbuf, sizeof(outbuf), &outlen);
1261	if (rc)
1262		goto fail;
1263
1264	/* A previous user of this TX queue might have set us up the
1265	 * bomb by writing a descriptor to the TX push collector but
1266	 * not the doorbell.  (Each collector belongs to a port, not a
1267	 * queue or function, so cannot easily be reset.)  We must
1268	 * attempt to push a no-op descriptor in its place.
1269	 */
1270	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1271	tx_queue->insert_count = 1;
1272	txd = efx_tx_desc(tx_queue, 0);
1273	EFX_POPULATE_QWORD_4(*txd,
1274			     ESF_DZ_TX_DESC_IS_OPT, true,
1275			     ESF_DZ_TX_OPTION_TYPE,
1276			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1277			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1278			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1279	tx_queue->write_count = 1;
 
 
 
 
 
 
1280	wmb();
1281	efx_ef10_push_tx_desc(tx_queue, txd);
1282
1283	return;
1284
1285fail:
1286	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1287		    tx_queue->queue);
1288}
1289
1290static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1291{
1292	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1293	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1294	struct efx_nic *efx = tx_queue->efx;
1295	size_t outlen;
1296	int rc;
1297
1298	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1299		       tx_queue->queue);
1300
1301	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1302			  outbuf, sizeof(outbuf), &outlen);
1303
1304	if (rc && rc != -EALREADY)
1305		goto fail;
1306
1307	return;
1308
1309fail:
1310	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1311			       outbuf, outlen, rc);
1312}
1313
1314static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1315{
1316	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1317}
1318
1319/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1320static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1321{
1322	unsigned int write_ptr;
1323	efx_dword_t reg;
1324
1325	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1326	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1327	efx_writed_page(tx_queue->efx, &reg,
1328			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1329}
1330
1331static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1332{
1333	unsigned int old_write_count = tx_queue->write_count;
1334	struct efx_tx_buffer *buffer;
1335	unsigned int write_ptr;
1336	efx_qword_t *txd;
1337
1338	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 
 
1339
1340	do {
1341		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1342		buffer = &tx_queue->buffer[write_ptr];
1343		txd = efx_tx_desc(tx_queue, write_ptr);
1344		++tx_queue->write_count;
1345
1346		/* Create TX descriptor ring entry */
1347		if (buffer->flags & EFX_TX_BUF_OPTION) {
1348			*txd = buffer->option;
1349		} else {
1350			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1351			EFX_POPULATE_QWORD_3(
1352				*txd,
1353				ESF_DZ_TX_KER_CONT,
1354				buffer->flags & EFX_TX_BUF_CONT,
1355				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1356				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1357		}
1358	} while (tx_queue->write_count != tx_queue->insert_count);
1359
1360	wmb(); /* Ensure descriptors are written before they are fetched */
1361
1362	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1363		txd = efx_tx_desc(tx_queue,
1364				  old_write_count & tx_queue->ptr_mask);
1365		efx_ef10_push_tx_desc(tx_queue, txd);
1366		++tx_queue->pushes;
1367	} else {
1368		efx_ef10_notify_tx_desc(tx_queue);
1369	}
1370}
1371
1372static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
 
1373{
1374	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1375	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
 
1376	size_t outlen;
1377	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1380		       EVB_PORT_ID_ASSIGNED);
1381	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1382		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1383	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1384		       EFX_MAX_CHANNELS);
1385
1386	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1387		outbuf, sizeof(outbuf), &outlen);
1388	if (rc != 0)
1389		return rc;
1390
1391	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1392		return -EIO;
1393
1394	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1395
 
 
 
1396	return 0;
1397}
1398
1399static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1400{
1401	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1402	int rc;
1403
1404	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1405		       context);
1406
1407	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1408			    NULL, 0, NULL);
1409	WARN_ON(rc != 0);
1410}
1411
1412static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
 
1413{
1414	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1415	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1416	int i, rc;
1417
1418	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1419		       context);
1420	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1421		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1422
1423	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1424		MCDI_PTR(tablebuf,
1425			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1426				(u8) efx->rx_indir_table[i];
1427
1428	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1429			  sizeof(tablebuf), NULL, 0, NULL);
1430	if (rc != 0)
1431		return rc;
1432
1433	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1434		       context);
1435	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1436		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1437	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1438		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1439			efx->rx_hash_key[i];
1440
1441	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1442			    sizeof(keybuf), NULL, 0, NULL);
1443}
1444
1445static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1446{
1447	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1448
1449	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1450		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1451	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1452}
1453
1454static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
 
1455{
 
1456	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1457	int rc;
 
1458
1459	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
 
1460
1461	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1462		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1463		if (rc != 0)
1464			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465	}
1466
1467	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
 
1468	if (rc != 0)
1469		goto fail;
1470
1471	return;
 
 
 
 
 
 
 
1472
1473fail:
 
 
 
1474	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475}
1476
1477static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1478{
1479	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1480				    (rx_queue->ptr_mask + 1) *
1481				    sizeof(efx_qword_t),
1482				    GFP_KERNEL);
1483}
1484
1485static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1486{
1487	MCDI_DECLARE_BUF(inbuf,
1488			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1489						EFX_BUF_SIZE));
1490	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1491	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1492	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1493	struct efx_nic *efx = rx_queue->efx;
1494	size_t inlen, outlen;
 
1495	dma_addr_t dma_addr;
1496	int rc;
1497	int i;
 
1498
1499	rx_queue->scatter_n = 0;
1500	rx_queue->scatter_len = 0;
1501
1502	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1503	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1504	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1505	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1506		       efx_rx_queue_index(rx_queue));
1507	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1508			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1509			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1510	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1511	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1512
1513	dma_addr = rx_queue->rxd.buf.dma_addr;
1514
1515	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1516		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1517
1518	for (i = 0; i < entries; ++i) {
1519		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1520		dma_addr += EFX_BUF_SIZE;
1521	}
1522
1523	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1524
1525	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1526			  outbuf, sizeof(outbuf), &outlen);
1527	if (rc)
1528		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1529			    efx_rx_queue_index(rx_queue));
1530}
1531
1532static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1533{
1534	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1535	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1536	struct efx_nic *efx = rx_queue->efx;
1537	size_t outlen;
1538	int rc;
1539
1540	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1541		       efx_rx_queue_index(rx_queue));
1542
1543	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1544			  outbuf, sizeof(outbuf), &outlen);
1545
1546	if (rc && rc != -EALREADY)
1547		goto fail;
1548
1549	return;
1550
1551fail:
1552	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1553			       outbuf, outlen, rc);
1554}
1555
1556static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1557{
1558	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1559}
1560
1561/* This creates an entry in the RX descriptor queue */
1562static inline void
1563efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1564{
1565	struct efx_rx_buffer *rx_buf;
1566	efx_qword_t *rxd;
1567
1568	rxd = efx_rx_desc(rx_queue, index);
1569	rx_buf = efx_rx_buffer(rx_queue, index);
1570	EFX_POPULATE_QWORD_2(*rxd,
1571			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1572			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1573}
1574
1575static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1576{
1577	struct efx_nic *efx = rx_queue->efx;
1578	unsigned int write_count;
1579	efx_dword_t reg;
1580
1581	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1582	write_count = rx_queue->added_count & ~7;
1583	if (rx_queue->notified_count == write_count)
1584		return;
1585
1586	do
1587		efx_ef10_build_rx_desc(
1588			rx_queue,
1589			rx_queue->notified_count & rx_queue->ptr_mask);
1590	while (++rx_queue->notified_count != write_count);
1591
1592	wmb();
1593	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1594			     write_count & rx_queue->ptr_mask);
1595	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1596			efx_rx_queue_index(rx_queue));
1597}
1598
1599static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1600
1601static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1602{
1603	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1604	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1605	efx_qword_t event;
1606
1607	EFX_POPULATE_QWORD_2(event,
1608			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1609			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1610
1611	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1612
1613	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1614	 * already swapped the data to little-endian order.
1615	 */
1616	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1617	       sizeof(efx_qword_t));
1618
1619	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1620			   inbuf, sizeof(inbuf), 0,
1621			   efx_ef10_rx_defer_refill_complete, 0);
1622}
1623
1624static void
1625efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1626				  int rc, efx_dword_t *outbuf,
1627				  size_t outlen_actual)
1628{
1629	/* nothing to do */
1630}
1631
1632static int efx_ef10_ev_probe(struct efx_channel *channel)
1633{
1634	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1635				    (channel->eventq_mask + 1) *
1636				    sizeof(efx_qword_t),
1637				    GFP_KERNEL);
1638}
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640static int efx_ef10_ev_init(struct efx_channel *channel)
1641{
1642	MCDI_DECLARE_BUF(inbuf,
1643			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1644						EFX_BUF_SIZE));
1645	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1646	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1647	struct efx_nic *efx = channel->efx;
1648	struct efx_ef10_nic_data *nic_data;
1649	bool supports_rx_merge;
1650	size_t inlen, outlen;
 
1651	dma_addr_t dma_addr;
1652	int rc;
1653	int i;
1654
1655	nic_data = efx->nic_data;
1656	supports_rx_merge =
1657		!!(nic_data->datapath_caps &
1658		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1659
1660	/* Fill event queue with all ones (i.e. empty events) */
1661	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1662
1663	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1664	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1665	/* INIT_EVQ expects index in vector table, not absolute */
1666	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1667	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1668			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1669			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1670			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1671			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1672	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1673		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1674	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1675	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1676	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1677		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1678	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1679
1680	dma_addr = channel->eventq.buf.dma_addr;
1681	for (i = 0; i < entries; ++i) {
1682		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1683		dma_addr += EFX_BUF_SIZE;
1684	}
1685
1686	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1687
1688	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1689			  outbuf, sizeof(outbuf), &outlen);
1690	/* IRQ return is ignored */
1691	return rc;
1692}
1693
1694static void efx_ef10_ev_fini(struct efx_channel *channel)
1695{
1696	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1697	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1698	struct efx_nic *efx = channel->efx;
1699	size_t outlen;
1700	int rc;
1701
1702	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1703
1704	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1705			  outbuf, sizeof(outbuf), &outlen);
1706
1707	if (rc && rc != -EALREADY)
 
 
 
 
 
 
 
 
1708		goto fail;
 
 
 
1709
1710	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712fail:
1713	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1714			       outbuf, outlen, rc);
1715}
1716
1717static void efx_ef10_ev_remove(struct efx_channel *channel)
1718{
1719	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1720}
1721
1722static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1723					   unsigned int rx_queue_label)
1724{
1725	struct efx_nic *efx = rx_queue->efx;
1726
1727	netif_info(efx, hw, efx->net_dev,
1728		   "rx event arrived on queue %d labeled as queue %u\n",
1729		   efx_rx_queue_index(rx_queue), rx_queue_label);
1730
1731	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1732}
1733
1734static void
1735efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1736			     unsigned int actual, unsigned int expected)
1737{
1738	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1739	struct efx_nic *efx = rx_queue->efx;
1740
1741	netif_info(efx, hw, efx->net_dev,
1742		   "dropped %d events (index=%d expected=%d)\n",
1743		   dropped, actual, expected);
1744
1745	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1746}
1747
1748/* partially received RX was aborted. clean up. */
1749static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1750{
1751	unsigned int rx_desc_ptr;
1752
1753	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1754		  "scattered RX aborted (dropping %u buffers)\n",
1755		  rx_queue->scatter_n);
1756
1757	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1758
1759	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1760		      0, EFX_RX_PKT_DISCARD);
1761
1762	rx_queue->removed_count += rx_queue->scatter_n;
1763	rx_queue->scatter_n = 0;
1764	rx_queue->scatter_len = 0;
1765	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1766}
1767
1768static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1769				    const efx_qword_t *event)
1770{
1771	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1772	unsigned int n_descs, n_packets, i;
1773	struct efx_nic *efx = channel->efx;
1774	struct efx_rx_queue *rx_queue;
1775	bool rx_cont;
1776	u16 flags = 0;
1777
1778	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1779		return 0;
1780
1781	/* Basic packet information */
1782	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1783	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1784	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1785	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1786	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1787
1788	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1789		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1790			    EFX_QWORD_FMT "\n",
1791			    EFX_QWORD_VAL(*event));
1792
1793	rx_queue = efx_channel_get_rx_queue(channel);
1794
1795	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1796		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1797
1798	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1799		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1800
1801	if (n_descs != rx_queue->scatter_n + 1) {
1802		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803
1804		/* detect rx abort */
1805		if (unlikely(n_descs == rx_queue->scatter_n)) {
1806			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1807				netdev_WARN(efx->net_dev,
1808					    "invalid RX abort: scatter_n=%u event="
1809					    EFX_QWORD_FMT "\n",
1810					    rx_queue->scatter_n,
1811					    EFX_QWORD_VAL(*event));
1812			efx_ef10_handle_rx_abort(rx_queue);
1813			return 0;
1814		}
1815
1816		/* Check that RX completion merging is valid, i.e.
1817		 * the current firmware supports it and this is a
1818		 * non-scattered packet.
1819		 */
1820		if (!(nic_data->datapath_caps &
1821		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1822		    rx_queue->scatter_n != 0 || rx_cont) {
1823			efx_ef10_handle_rx_bad_lbits(
1824				rx_queue, next_ptr_lbits,
1825				(rx_queue->removed_count +
1826				 rx_queue->scatter_n + 1) &
1827				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1828			return 0;
1829		}
1830
1831		/* Merged completion for multiple non-scattered packets */
1832		rx_queue->scatter_n = 1;
1833		rx_queue->scatter_len = 0;
1834		n_packets = n_descs;
1835		++channel->n_rx_merge_events;
1836		channel->n_rx_merge_packets += n_packets;
1837		flags |= EFX_RX_PKT_PREFIX_LEN;
1838	} else {
1839		++rx_queue->scatter_n;
1840		rx_queue->scatter_len += rx_bytes;
1841		if (rx_cont)
1842			return 0;
1843		n_packets = 1;
1844	}
1845
1846	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1847		flags |= EFX_RX_PKT_DISCARD;
1848
1849	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1850		channel->n_rx_ip_hdr_chksum_err += n_packets;
1851	} else if (unlikely(EFX_QWORD_FIELD(*event,
1852					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1853		channel->n_rx_tcp_udp_chksum_err += n_packets;
1854	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1855		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1856		flags |= EFX_RX_PKT_CSUMMED;
1857	}
1858
1859	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1860		flags |= EFX_RX_PKT_TCP;
1861
1862	channel->irq_mod_score += 2 * n_packets;
1863
1864	/* Handle received packet(s) */
1865	for (i = 0; i < n_packets; i++) {
1866		efx_rx_packet(rx_queue,
1867			      rx_queue->removed_count & rx_queue->ptr_mask,
1868			      rx_queue->scatter_n, rx_queue->scatter_len,
1869			      flags);
1870		rx_queue->removed_count += rx_queue->scatter_n;
1871	}
1872
1873	rx_queue->scatter_n = 0;
1874	rx_queue->scatter_len = 0;
1875
1876	return n_packets;
1877}
1878
1879static int
1880efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1881{
1882	struct efx_nic *efx = channel->efx;
1883	struct efx_tx_queue *tx_queue;
1884	unsigned int tx_ev_desc_ptr;
1885	unsigned int tx_ev_q_label;
1886	int tx_descs = 0;
1887
1888	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1889		return 0;
1890
1891	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1892		return 0;
1893
1894	/* Transmit completion */
1895	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1896	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1897	tx_queue = efx_channel_get_tx_queue(channel,
1898					    tx_ev_q_label % EFX_TXQ_TYPES);
1899	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1900		    tx_queue->ptr_mask);
1901	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1902
1903	return tx_descs;
1904}
1905
1906static void
1907efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1908{
1909	struct efx_nic *efx = channel->efx;
1910	int subcode;
1911
1912	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1913
1914	switch (subcode) {
1915	case ESE_DZ_DRV_TIMER_EV:
1916	case ESE_DZ_DRV_WAKE_UP_EV:
1917		break;
1918	case ESE_DZ_DRV_START_UP_EV:
1919		/* event queue init complete. ok. */
1920		break;
1921	default:
1922		netif_err(efx, hw, efx->net_dev,
1923			  "channel %d unknown driver event type %d"
1924			  " (data " EFX_QWORD_FMT ")\n",
1925			  channel->channel, subcode,
1926			  EFX_QWORD_VAL(*event));
1927
1928	}
1929}
1930
1931static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1932						   efx_qword_t *event)
1933{
1934	struct efx_nic *efx = channel->efx;
1935	u32 subcode;
1936
1937	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1938
1939	switch (subcode) {
1940	case EFX_EF10_TEST:
1941		channel->event_test_cpu = raw_smp_processor_id();
1942		break;
1943	case EFX_EF10_REFILL:
1944		/* The queue must be empty, so we won't receive any rx
1945		 * events, so efx_process_channel() won't refill the
1946		 * queue. Refill it here
1947		 */
1948		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1949		break;
1950	default:
1951		netif_err(efx, hw, efx->net_dev,
1952			  "channel %d unknown driver event type %u"
1953			  " (data " EFX_QWORD_FMT ")\n",
1954			  channel->channel, (unsigned) subcode,
1955			  EFX_QWORD_VAL(*event));
1956	}
1957}
1958
1959static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1960{
1961	struct efx_nic *efx = channel->efx;
1962	efx_qword_t event, *p_event;
1963	unsigned int read_ptr;
1964	int ev_code;
1965	int tx_descs = 0;
1966	int spent = 0;
1967
1968	if (quota <= 0)
1969		return spent;
1970
1971	read_ptr = channel->eventq_read_ptr;
1972
1973	for (;;) {
1974		p_event = efx_event(channel, read_ptr);
1975		event = *p_event;
1976
1977		if (!efx_event_present(&event))
1978			break;
1979
1980		EFX_SET_QWORD(*p_event);
1981
1982		++read_ptr;
1983
1984		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1985
1986		netif_vdbg(efx, drv, efx->net_dev,
1987			   "processing event on %d " EFX_QWORD_FMT "\n",
1988			   channel->channel, EFX_QWORD_VAL(event));
1989
1990		switch (ev_code) {
1991		case ESE_DZ_EV_CODE_MCDI_EV:
1992			efx_mcdi_process_event(channel, &event);
1993			break;
1994		case ESE_DZ_EV_CODE_RX_EV:
1995			spent += efx_ef10_handle_rx_event(channel, &event);
1996			if (spent >= quota) {
1997				/* XXX can we split a merged event to
1998				 * avoid going over-quota?
1999				 */
2000				spent = quota;
2001				goto out;
2002			}
2003			break;
2004		case ESE_DZ_EV_CODE_TX_EV:
2005			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2006			if (tx_descs > efx->txq_entries) {
2007				spent = quota;
2008				goto out;
2009			} else if (++spent == quota) {
2010				goto out;
2011			}
2012			break;
2013		case ESE_DZ_EV_CODE_DRIVER_EV:
2014			efx_ef10_handle_driver_event(channel, &event);
2015			if (++spent == quota)
2016				goto out;
2017			break;
2018		case EFX_EF10_DRVGEN_EV:
2019			efx_ef10_handle_driver_generated_event(channel, &event);
2020			break;
2021		default:
2022			netif_err(efx, hw, efx->net_dev,
2023				  "channel %d unknown event type %d"
2024				  " (data " EFX_QWORD_FMT ")\n",
2025				  channel->channel, ev_code,
2026				  EFX_QWORD_VAL(event));
2027		}
2028	}
2029
2030out:
2031	channel->eventq_read_ptr = read_ptr;
2032	return spent;
2033}
2034
2035static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2036{
2037	struct efx_nic *efx = channel->efx;
2038	efx_dword_t rptr;
2039
2040	if (EFX_EF10_WORKAROUND_35388(efx)) {
2041		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2042			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2043		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2044			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2045
2046		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2047				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2048				     ERF_DD_EVQ_IND_RPTR,
2049				     (channel->eventq_read_ptr &
2050				      channel->eventq_mask) >>
2051				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2052		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2053				channel->channel);
2054		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2055				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2056				     ERF_DD_EVQ_IND_RPTR,
2057				     channel->eventq_read_ptr &
2058				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2059		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2060				channel->channel);
2061	} else {
2062		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2063				     channel->eventq_read_ptr &
2064				     channel->eventq_mask);
2065		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2066	}
2067}
2068
2069static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2070{
2071	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2072	struct efx_nic *efx = channel->efx;
2073	efx_qword_t event;
2074	int rc;
2075
2076	EFX_POPULATE_QWORD_2(event,
2077			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2078			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2079
2080	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2081
2082	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2083	 * already swapped the data to little-endian order.
2084	 */
2085	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2086	       sizeof(efx_qword_t));
2087
2088	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2089			  NULL, 0, NULL);
2090	if (rc != 0)
2091		goto fail;
2092
2093	return;
2094
2095fail:
2096	WARN_ON(true);
2097	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2098}
2099
2100void efx_ef10_handle_drain_event(struct efx_nic *efx)
2101{
2102	if (atomic_dec_and_test(&efx->active_queues))
2103		wake_up(&efx->flush_wq);
2104
2105	WARN_ON(atomic_read(&efx->active_queues) < 0);
2106}
2107
2108static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2109{
2110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2111	struct efx_channel *channel;
2112	struct efx_tx_queue *tx_queue;
2113	struct efx_rx_queue *rx_queue;
2114	int pending;
2115
2116	/* If the MC has just rebooted, the TX/RX queues will have already been
2117	 * torn down, but efx->active_queues needs to be set to zero.
2118	 */
2119	if (nic_data->must_realloc_vis) {
2120		atomic_set(&efx->active_queues, 0);
2121		return 0;
2122	}
2123
2124	/* Do not attempt to write to the NIC during EEH recovery */
2125	if (efx->state != STATE_RECOVERY) {
2126		efx_for_each_channel(channel, efx) {
2127			efx_for_each_channel_rx_queue(rx_queue, channel)
2128				efx_ef10_rx_fini(rx_queue);
2129			efx_for_each_channel_tx_queue(tx_queue, channel)
2130				efx_ef10_tx_fini(tx_queue);
2131		}
2132
2133		wait_event_timeout(efx->flush_wq,
2134				   atomic_read(&efx->active_queues) == 0,
2135				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2136		pending = atomic_read(&efx->active_queues);
2137		if (pending) {
2138			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2139				  pending);
2140			return -ETIMEDOUT;
2141		}
2142	}
2143
2144	return 0;
2145}
2146
2147static void efx_ef10_prepare_flr(struct efx_nic *efx)
2148{
2149	atomic_set(&efx->active_queues, 0);
2150}
2151
2152static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2153				  const struct efx_filter_spec *right)
2154{
2155	if ((left->match_flags ^ right->match_flags) |
2156	    ((left->flags ^ right->flags) &
2157	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2158		return false;
2159
2160	return memcmp(&left->outer_vid, &right->outer_vid,
2161		      sizeof(struct efx_filter_spec) -
2162		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2163}
2164
2165static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2166{
2167	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2168	return jhash2((const u32 *)&spec->outer_vid,
2169		      (sizeof(struct efx_filter_spec) -
2170		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2171		      0);
2172	/* XXX should we randomise the initval? */
2173}
2174
2175/* Decide whether a filter should be exclusive or else should allow
2176 * delivery to additional recipients.  Currently we decide that
2177 * filters for specific local unicast MAC and IP addresses are
2178 * exclusive.
2179 */
2180static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2181{
2182	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2183	    !is_multicast_ether_addr(spec->loc_mac))
2184		return true;
2185
2186	if ((spec->match_flags &
2187	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2188	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2189		if (spec->ether_type == htons(ETH_P_IP) &&
2190		    !ipv4_is_multicast(spec->loc_host[0]))
2191			return true;
2192		if (spec->ether_type == htons(ETH_P_IPV6) &&
2193		    ((const u8 *)spec->loc_host)[0] != 0xff)
2194			return true;
2195	}
2196
2197	return false;
2198}
2199
2200static struct efx_filter_spec *
2201efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2202			   unsigned int filter_idx)
2203{
2204	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2205					  ~EFX_EF10_FILTER_FLAGS);
2206}
2207
2208static unsigned int
2209efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2210			   unsigned int filter_idx)
2211{
2212	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2213}
2214
2215static void
2216efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2217			  unsigned int filter_idx,
2218			  const struct efx_filter_spec *spec,
2219			  unsigned int flags)
2220{
2221	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2222}
2223
2224static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2225				      const struct efx_filter_spec *spec,
2226				      efx_dword_t *inbuf, u64 handle,
2227				      bool replacing)
2228{
2229	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
2230
2231	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2232
 
 
 
 
 
 
2233	if (replacing) {
2234		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2235			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2236		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2237	} else {
2238		u32 match_fields = 0;
2239
2240		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2241			       efx_ef10_filter_is_exclusive(spec) ?
2242			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2243			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2244
2245		/* Convert match flags and values.  Unlike almost
2246		 * everything else in MCDI, these fields are in
2247		 * network byte order.
2248		 */
2249		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2250			match_fields |=
2251				is_multicast_ether_addr(spec->loc_mac) ?
2252				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2253				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2254#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2255		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2256			match_fields |=					     \
2257				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2258				mcdi_field ## _LBN;			     \
2259			BUILD_BUG_ON(					     \
2260				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2261				sizeof(spec->gen_field));		     \
2262			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2263			       &spec->gen_field, sizeof(spec->gen_field));   \
2264		}
2265		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2266		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2267		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2268		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2269		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2270		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2271		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2272		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2273		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2274		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2275#undef COPY_FIELD
2276		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2277			       match_fields);
2278	}
2279
2280	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2281	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2282		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2283		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2284		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
 
2285	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2286		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2287	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2288		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2289		       0 : spec->dmaq_id);
2290	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2291		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2292		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2293		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2294	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2295		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2296			       spec->rss_context !=
2297			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2298			       spec->rss_context : nic_data->rx_rss_context);
2299}
2300
2301static int efx_ef10_filter_push(struct efx_nic *efx,
2302				const struct efx_filter_spec *spec,
2303				u64 *handle, bool replacing)
2304{
2305	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2306	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2307	int rc;
2308
2309	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2310	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2311			  outbuf, sizeof(outbuf), NULL);
2312	if (rc == 0)
2313		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2314	if (rc == -ENOSPC)
2315		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2316	return rc;
2317}
2318
2319static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2320					enum efx_filter_match_flags match_flags)
2321{
2322	unsigned int match_pri;
2323
2324	for (match_pri = 0;
2325	     match_pri < table->rx_match_count;
2326	     match_pri++)
2327		if (table->rx_match_flags[match_pri] == match_flags)
2328			return match_pri;
2329
2330	return -EPROTONOSUPPORT;
2331}
2332
2333static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2334				  struct efx_filter_spec *spec,
2335				  bool replace_equal)
2336{
2337	struct efx_ef10_filter_table *table = efx->filter_state;
2338	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2339	struct efx_filter_spec *saved_spec;
2340	unsigned int match_pri, hash;
2341	unsigned int priv_flags;
2342	bool replacing = false;
2343	int ins_index = -1;
2344	DEFINE_WAIT(wait);
2345	bool is_mc_recip;
2346	s32 rc;
2347
2348	/* For now, only support RX filters */
2349	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2350	    EFX_FILTER_FLAG_RX)
2351		return -EINVAL;
2352
2353	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2354	if (rc < 0)
2355		return rc;
2356	match_pri = rc;
2357
2358	hash = efx_ef10_filter_hash(spec);
2359	is_mc_recip = efx_filter_is_mc_recipient(spec);
2360	if (is_mc_recip)
2361		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2362
2363	/* Find any existing filters with the same match tuple or
2364	 * else a free slot to insert at.  If any of them are busy,
2365	 * we have to wait and retry.
2366	 */
2367	for (;;) {
2368		unsigned int depth = 1;
2369		unsigned int i;
2370
2371		spin_lock_bh(&efx->filter_lock);
2372
2373		for (;;) {
2374			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2375			saved_spec = efx_ef10_filter_entry_spec(table, i);
2376
2377			if (!saved_spec) {
2378				if (ins_index < 0)
2379					ins_index = i;
2380			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2381				if (table->entry[i].spec &
2382				    EFX_EF10_FILTER_FLAG_BUSY)
2383					break;
2384				if (spec->priority < saved_spec->priority &&
2385				    spec->priority != EFX_FILTER_PRI_AUTO) {
2386					rc = -EPERM;
2387					goto out_unlock;
2388				}
2389				if (!is_mc_recip) {
2390					/* This is the only one */
2391					if (spec->priority ==
2392					    saved_spec->priority &&
2393					    !replace_equal) {
2394						rc = -EEXIST;
2395						goto out_unlock;
2396					}
2397					ins_index = i;
2398					goto found;
2399				} else if (spec->priority >
2400					   saved_spec->priority ||
2401					   (spec->priority ==
2402					    saved_spec->priority &&
2403					    replace_equal)) {
2404					if (ins_index < 0)
2405						ins_index = i;
2406					else
2407						__set_bit(depth, mc_rem_map);
2408				}
2409			}
2410
2411			/* Once we reach the maximum search depth, use
2412			 * the first suitable slot or return -EBUSY if
2413			 * there was none
2414			 */
2415			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2416				if (ins_index < 0) {
2417					rc = -EBUSY;
2418					goto out_unlock;
2419				}
2420				goto found;
2421			}
2422
2423			++depth;
2424		}
2425
2426		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2427		spin_unlock_bh(&efx->filter_lock);
2428		schedule();
2429	}
2430
2431found:
2432	/* Create a software table entry if necessary, and mark it
2433	 * busy.  We might yet fail to insert, but any attempt to
2434	 * insert a conflicting filter while we're waiting for the
2435	 * firmware must find the busy entry.
2436	 */
2437	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2438	if (saved_spec) {
2439		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2440		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2441			/* Just make sure it won't be removed */
2442			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2443				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2444			table->entry[ins_index].spec &=
2445				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2446			rc = ins_index;
2447			goto out_unlock;
2448		}
2449		replacing = true;
2450		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2451	} else {
2452		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2453		if (!saved_spec) {
2454			rc = -ENOMEM;
2455			goto out_unlock;
2456		}
2457		*saved_spec = *spec;
2458		priv_flags = 0;
2459	}
2460	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2461				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2462
2463	/* Mark lower-priority multicast recipients busy prior to removal */
2464	if (is_mc_recip) {
2465		unsigned int depth, i;
2466
2467		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2468			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2469			if (test_bit(depth, mc_rem_map))
2470				table->entry[i].spec |=
2471					EFX_EF10_FILTER_FLAG_BUSY;
2472		}
2473	}
2474
2475	spin_unlock_bh(&efx->filter_lock);
2476
2477	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2478				  replacing);
2479
2480	/* Finalise the software table entry */
2481	spin_lock_bh(&efx->filter_lock);
2482	if (rc == 0) {
2483		if (replacing) {
2484			/* Update the fields that may differ */
2485			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2486				saved_spec->flags |=
2487					EFX_FILTER_FLAG_RX_OVER_AUTO;
2488			saved_spec->priority = spec->priority;
2489			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2490			saved_spec->flags |= spec->flags;
2491			saved_spec->rss_context = spec->rss_context;
2492			saved_spec->dmaq_id = spec->dmaq_id;
2493		}
2494	} else if (!replacing) {
2495		kfree(saved_spec);
2496		saved_spec = NULL;
2497	}
2498	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2499
2500	/* Remove and finalise entries for lower-priority multicast
2501	 * recipients
2502	 */
2503	if (is_mc_recip) {
2504		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2505		unsigned int depth, i;
2506
2507		memset(inbuf, 0, sizeof(inbuf));
2508
2509		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2510			if (!test_bit(depth, mc_rem_map))
2511				continue;
2512
2513			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2514			saved_spec = efx_ef10_filter_entry_spec(table, i);
2515			priv_flags = efx_ef10_filter_entry_flags(table, i);
2516
2517			if (rc == 0) {
2518				spin_unlock_bh(&efx->filter_lock);
2519				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2520					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2521				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2522					       table->entry[i].handle);
2523				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2524						  inbuf, sizeof(inbuf),
2525						  NULL, 0, NULL);
2526				spin_lock_bh(&efx->filter_lock);
2527			}
2528
2529			if (rc == 0) {
2530				kfree(saved_spec);
2531				saved_spec = NULL;
2532				priv_flags = 0;
2533			} else {
2534				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2535			}
2536			efx_ef10_filter_set_entry(table, i, saved_spec,
2537						  priv_flags);
2538		}
2539	}
2540
2541	/* If successful, return the inserted filter ID */
2542	if (rc == 0)
2543		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2544
2545	wake_up_all(&table->waitq);
2546out_unlock:
2547	spin_unlock_bh(&efx->filter_lock);
2548	finish_wait(&table->waitq, &wait);
2549	return rc;
2550}
2551
2552static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2553{
2554	/* no need to do anything here on EF10 */
2555}
2556
2557/* Remove a filter.
2558 * If !by_index, remove by ID
2559 * If by_index, remove by index
2560 * Filter ID may come from userland and must be range-checked.
2561 */
2562static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2563					   unsigned int priority_mask,
2564					   u32 filter_id, bool by_index)
2565{
2566	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2567	struct efx_ef10_filter_table *table = efx->filter_state;
2568	MCDI_DECLARE_BUF(inbuf,
2569			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2570			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2571	struct efx_filter_spec *spec;
2572	DEFINE_WAIT(wait);
2573	int rc;
2574
2575	/* Find the software table entry and mark it busy.  Don't
2576	 * remove it yet; any attempt to update while we're waiting
2577	 * for the firmware must find the busy entry.
2578	 */
2579	for (;;) {
2580		spin_lock_bh(&efx->filter_lock);
2581		if (!(table->entry[filter_idx].spec &
2582		      EFX_EF10_FILTER_FLAG_BUSY))
2583			break;
2584		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2585		spin_unlock_bh(&efx->filter_lock);
2586		schedule();
2587	}
2588
2589	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2590	if (!spec ||
2591	    (!by_index &&
2592	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2593	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2594		rc = -ENOENT;
2595		goto out_unlock;
2596	}
2597
2598	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2599	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2600		/* Just remove flags */
2601		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2602		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2603		rc = 0;
2604		goto out_unlock;
2605	}
2606
2607	if (!(priority_mask & (1U << spec->priority))) {
2608		rc = -ENOENT;
2609		goto out_unlock;
2610	}
2611
2612	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2613	spin_unlock_bh(&efx->filter_lock);
2614
2615	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2616		/* Reset to an automatic filter */
2617
2618		struct efx_filter_spec new_spec = *spec;
2619
2620		new_spec.priority = EFX_FILTER_PRI_AUTO;
2621		new_spec.flags = (EFX_FILTER_FLAG_RX |
2622				  EFX_FILTER_FLAG_RX_RSS);
 
2623		new_spec.dmaq_id = 0;
2624		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2625		rc = efx_ef10_filter_push(efx, &new_spec,
2626					  &table->entry[filter_idx].handle,
2627					  true);
2628
2629		spin_lock_bh(&efx->filter_lock);
2630		if (rc == 0)
2631			*spec = new_spec;
2632	} else {
2633		/* Really remove the filter */
2634
2635		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2636			       efx_ef10_filter_is_exclusive(spec) ?
2637			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2638			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2639		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2640			       table->entry[filter_idx].handle);
2641		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2642				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2643
2644		spin_lock_bh(&efx->filter_lock);
2645		if (rc == 0) {
2646			kfree(spec);
2647			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2648		}
2649	}
2650
2651	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2652	wake_up_all(&table->waitq);
2653out_unlock:
2654	spin_unlock_bh(&efx->filter_lock);
2655	finish_wait(&table->waitq, &wait);
2656	return rc;
2657}
2658
2659static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2660				       enum efx_filter_priority priority,
2661				       u32 filter_id)
2662{
2663	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2664					       filter_id, false);
2665}
2666
 
 
 
 
 
 
 
 
 
 
 
 
 
2667static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2668				    enum efx_filter_priority priority,
2669				    u32 filter_id, struct efx_filter_spec *spec)
2670{
2671	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2672	struct efx_ef10_filter_table *table = efx->filter_state;
2673	const struct efx_filter_spec *saved_spec;
2674	int rc;
2675
2676	spin_lock_bh(&efx->filter_lock);
2677	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2678	if (saved_spec && saved_spec->priority == priority &&
2679	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2680	    filter_id / HUNT_FILTER_TBL_ROWS) {
2681		*spec = *saved_spec;
2682		rc = 0;
2683	} else {
2684		rc = -ENOENT;
2685	}
2686	spin_unlock_bh(&efx->filter_lock);
2687	return rc;
2688}
2689
2690static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2691				     enum efx_filter_priority priority)
2692{
2693	unsigned int priority_mask;
2694	unsigned int i;
2695	int rc;
2696
2697	priority_mask = (((1U << (priority + 1)) - 1) &
2698			 ~(1U << EFX_FILTER_PRI_AUTO));
2699
2700	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2701		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2702						     i, true);
2703		if (rc && rc != -ENOENT)
2704			return rc;
2705	}
2706
2707	return 0;
2708}
2709
2710static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2711					 enum efx_filter_priority priority)
2712{
2713	struct efx_ef10_filter_table *table = efx->filter_state;
2714	unsigned int filter_idx;
2715	s32 count = 0;
2716
2717	spin_lock_bh(&efx->filter_lock);
2718	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2719		if (table->entry[filter_idx].spec &&
2720		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2721		    priority)
2722			++count;
2723	}
2724	spin_unlock_bh(&efx->filter_lock);
2725	return count;
2726}
2727
2728static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2729{
2730	struct efx_ef10_filter_table *table = efx->filter_state;
2731
2732	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2733}
2734
2735static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2736				      enum efx_filter_priority priority,
2737				      u32 *buf, u32 size)
2738{
2739	struct efx_ef10_filter_table *table = efx->filter_state;
2740	struct efx_filter_spec *spec;
2741	unsigned int filter_idx;
2742	s32 count = 0;
2743
2744	spin_lock_bh(&efx->filter_lock);
2745	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2746		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2747		if (spec && spec->priority == priority) {
2748			if (count == size) {
2749				count = -EMSGSIZE;
2750				break;
2751			}
2752			buf[count++] = (efx_ef10_filter_rx_match_pri(
2753						table, spec->match_flags) *
2754					HUNT_FILTER_TBL_ROWS +
2755					filter_idx);
2756		}
2757	}
2758	spin_unlock_bh(&efx->filter_lock);
2759	return count;
2760}
2761
2762#ifdef CONFIG_RFS_ACCEL
2763
2764static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2765
2766static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2767				      struct efx_filter_spec *spec)
2768{
2769	struct efx_ef10_filter_table *table = efx->filter_state;
2770	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2771	struct efx_filter_spec *saved_spec;
2772	unsigned int hash, i, depth = 1;
2773	bool replacing = false;
2774	int ins_index = -1;
2775	u64 cookie;
2776	s32 rc;
2777
2778	/* Must be an RX filter without RSS and not for a multicast
2779	 * destination address (RFS only works for connected sockets).
2780	 * These restrictions allow us to pass only a tiny amount of
2781	 * data through to the completion function.
2782	 */
2783	EFX_WARN_ON_PARANOID(spec->flags !=
2784			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2785	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2786	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2787
2788	hash = efx_ef10_filter_hash(spec);
2789
2790	spin_lock_bh(&efx->filter_lock);
2791
2792	/* Find any existing filter with the same match tuple or else
2793	 * a free slot to insert at.  If an existing filter is busy,
2794	 * we have to give up.
2795	 */
2796	for (;;) {
2797		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2798		saved_spec = efx_ef10_filter_entry_spec(table, i);
2799
2800		if (!saved_spec) {
2801			if (ins_index < 0)
2802				ins_index = i;
2803		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2804			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2805				rc = -EBUSY;
2806				goto fail_unlock;
2807			}
2808			if (spec->priority < saved_spec->priority) {
2809				rc = -EPERM;
2810				goto fail_unlock;
2811			}
2812			ins_index = i;
2813			break;
2814		}
2815
2816		/* Once we reach the maximum search depth, use the
2817		 * first suitable slot or return -EBUSY if there was
2818		 * none
2819		 */
2820		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2821			if (ins_index < 0) {
2822				rc = -EBUSY;
2823				goto fail_unlock;
2824			}
2825			break;
2826		}
2827
2828		++depth;
2829	}
2830
2831	/* Create a software table entry if necessary, and mark it
2832	 * busy.  We might yet fail to insert, but any attempt to
2833	 * insert a conflicting filter while we're waiting for the
2834	 * firmware must find the busy entry.
2835	 */
2836	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2837	if (saved_spec) {
2838		replacing = true;
2839	} else {
2840		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2841		if (!saved_spec) {
2842			rc = -ENOMEM;
2843			goto fail_unlock;
2844		}
2845		*saved_spec = *spec;
2846	}
2847	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2848				  EFX_EF10_FILTER_FLAG_BUSY);
2849
2850	spin_unlock_bh(&efx->filter_lock);
2851
2852	/* Pack up the variables needed on completion */
2853	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2854
2855	efx_ef10_filter_push_prep(efx, spec, inbuf,
2856				  table->entry[ins_index].handle, replacing);
2857	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2858			   MC_CMD_FILTER_OP_OUT_LEN,
2859			   efx_ef10_filter_rfs_insert_complete, cookie);
2860
2861	return ins_index;
2862
2863fail_unlock:
2864	spin_unlock_bh(&efx->filter_lock);
2865	return rc;
2866}
2867
2868static void
2869efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2870				    int rc, efx_dword_t *outbuf,
2871				    size_t outlen_actual)
2872{
2873	struct efx_ef10_filter_table *table = efx->filter_state;
2874	unsigned int ins_index, dmaq_id;
2875	struct efx_filter_spec *spec;
2876	bool replacing;
2877
2878	/* Unpack the cookie */
2879	replacing = cookie >> 31;
2880	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2881	dmaq_id = cookie & 0xffff;
2882
2883	spin_lock_bh(&efx->filter_lock);
2884	spec = efx_ef10_filter_entry_spec(table, ins_index);
2885	if (rc == 0) {
2886		table->entry[ins_index].handle =
2887			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2888		if (replacing)
2889			spec->dmaq_id = dmaq_id;
2890	} else if (!replacing) {
2891		kfree(spec);
2892		spec = NULL;
2893	}
2894	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2895	spin_unlock_bh(&efx->filter_lock);
2896
2897	wake_up_all(&table->waitq);
2898}
2899
2900static void
2901efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2902				    unsigned long filter_idx,
2903				    int rc, efx_dword_t *outbuf,
2904				    size_t outlen_actual);
2905
2906static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2907					   unsigned int filter_idx)
2908{
2909	struct efx_ef10_filter_table *table = efx->filter_state;
2910	struct efx_filter_spec *spec =
2911		efx_ef10_filter_entry_spec(table, filter_idx);
2912	MCDI_DECLARE_BUF(inbuf,
2913			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2914			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2915
2916	if (!spec ||
2917	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2918	    spec->priority != EFX_FILTER_PRI_HINT ||
2919	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2920				 flow_id, filter_idx))
2921		return false;
2922
2923	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2924		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2925	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2926		       table->entry[filter_idx].handle);
2927	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2928			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2929		return false;
2930
2931	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2932	return true;
2933}
2934
2935static void
2936efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2937				    unsigned long filter_idx,
2938				    int rc, efx_dword_t *outbuf,
2939				    size_t outlen_actual)
2940{
2941	struct efx_ef10_filter_table *table = efx->filter_state;
2942	struct efx_filter_spec *spec =
2943		efx_ef10_filter_entry_spec(table, filter_idx);
2944
2945	spin_lock_bh(&efx->filter_lock);
2946	if (rc == 0) {
2947		kfree(spec);
2948		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2949	}
2950	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2951	wake_up_all(&table->waitq);
2952	spin_unlock_bh(&efx->filter_lock);
2953}
2954
2955#endif /* CONFIG_RFS_ACCEL */
2956
2957static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2958{
2959	int match_flags = 0;
2960
2961#define MAP_FLAG(gen_flag, mcdi_field) {				\
2962		u32 old_mcdi_flags = mcdi_flags;			\
2963		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2964				mcdi_field ## _LBN);			\
2965		if (mcdi_flags != old_mcdi_flags)			\
2966			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2967	}
2968	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2969	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2970	MAP_FLAG(REM_HOST, SRC_IP);
2971	MAP_FLAG(LOC_HOST, DST_IP);
2972	MAP_FLAG(REM_MAC, SRC_MAC);
2973	MAP_FLAG(REM_PORT, SRC_PORT);
2974	MAP_FLAG(LOC_MAC, DST_MAC);
2975	MAP_FLAG(LOC_PORT, DST_PORT);
2976	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2977	MAP_FLAG(INNER_VID, INNER_VLAN);
2978	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2979	MAP_FLAG(IP_PROTO, IP_PROTO);
2980#undef MAP_FLAG
2981
2982	/* Did we map them all? */
2983	if (mcdi_flags)
2984		return -EINVAL;
2985
2986	return match_flags;
2987}
2988
2989static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2990{
2991	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2992	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2993	unsigned int pd_match_pri, pd_match_count;
2994	struct efx_ef10_filter_table *table;
2995	size_t outlen;
2996	int rc;
2997
2998	table = kzalloc(sizeof(*table), GFP_KERNEL);
2999	if (!table)
3000		return -ENOMEM;
3001
3002	/* Find out which RX filter types are supported, and their priorities */
3003	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3004		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3005	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3006			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3007			  &outlen);
3008	if (rc)
3009		goto fail;
3010	pd_match_count = MCDI_VAR_ARRAY_LEN(
3011		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3012	table->rx_match_count = 0;
3013
3014	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3015		u32 mcdi_flags =
3016			MCDI_ARRAY_DWORD(
3017				outbuf,
3018				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3019				pd_match_pri);
3020		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3021		if (rc < 0) {
3022			netif_dbg(efx, probe, efx->net_dev,
3023				  "%s: fw flags %#x pri %u not supported in driver\n",
3024				  __func__, mcdi_flags, pd_match_pri);
3025		} else {
3026			netif_dbg(efx, probe, efx->net_dev,
3027				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3028				  __func__, mcdi_flags, pd_match_pri,
3029				  rc, table->rx_match_count);
3030			table->rx_match_flags[table->rx_match_count++] = rc;
3031		}
3032	}
3033
3034	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3035	if (!table->entry) {
3036		rc = -ENOMEM;
3037		goto fail;
3038	}
3039
 
 
 
 
3040	efx->filter_state = table;
3041	init_waitqueue_head(&table->waitq);
3042	return 0;
3043
3044fail:
3045	kfree(table);
3046	return rc;
3047}
3048
 
 
 
3049static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3050{
3051	struct efx_ef10_filter_table *table = efx->filter_state;
3052	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3053	struct efx_filter_spec *spec;
3054	unsigned int filter_idx;
3055	bool failed = false;
3056	int rc;
3057
 
 
3058	if (!nic_data->must_restore_filters)
3059		return;
3060
 
 
 
3061	spin_lock_bh(&efx->filter_lock);
3062
3063	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3064		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3065		if (!spec)
3066			continue;
3067
3068		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3069		spin_unlock_bh(&efx->filter_lock);
3070
3071		rc = efx_ef10_filter_push(efx, spec,
3072					  &table->entry[filter_idx].handle,
3073					  false);
3074		if (rc)
3075			failed = true;
3076
3077		spin_lock_bh(&efx->filter_lock);
3078		if (rc) {
3079			kfree(spec);
3080			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3081		} else {
3082			table->entry[filter_idx].spec &=
3083				~EFX_EF10_FILTER_FLAG_BUSY;
3084		}
3085	}
3086
3087	spin_unlock_bh(&efx->filter_lock);
3088
3089	if (failed)
3090		netif_err(efx, hw, efx->net_dev,
3091			  "unable to restore all filters\n");
3092	else
3093		nic_data->must_restore_filters = false;
3094}
3095
 
3096static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3097{
3098	struct efx_ef10_filter_table *table = efx->filter_state;
3099	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3100	struct efx_filter_spec *spec;
3101	unsigned int filter_idx;
3102	int rc;
3103
 
 
 
 
3104	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3105		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3106		if (!spec)
3107			continue;
3108
3109		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3110			       efx_ef10_filter_is_exclusive(spec) ?
3111			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3112			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3113		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3114			       table->entry[filter_idx].handle);
3115		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3116				  NULL, 0, NULL);
3117		if (rc)
3118			netdev_WARN(efx->net_dev,
3119				    "filter_idx=%#x handle=%#llx\n",
3120				    filter_idx,
3121				    table->entry[filter_idx].handle);
3122		kfree(spec);
3123	}
3124
3125	vfree(table->entry);
3126	kfree(table);
3127}
3128
3129static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
3130{
3131	struct efx_ef10_filter_table *table = efx->filter_state;
3132	struct net_device *net_dev = efx->net_dev;
3133	struct efx_filter_spec spec;
3134	bool remove_failed = false;
3135	struct netdev_hw_addr *uc;
3136	struct netdev_hw_addr *mc;
3137	unsigned int filter_idx;
3138	int i, n, rc;
3139
3140	if (!efx_dev_registered(efx))
3141		return;
3142
3143	/* Mark old filters that may need to be removed */
3144	spin_lock_bh(&efx->filter_lock);
3145	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3146	for (i = 0; i < n; i++) {
3147		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3148		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3149	}
3150	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3151	for (i = 0; i < n; i++) {
3152		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3153		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3154	}
3155	spin_unlock_bh(&efx->filter_lock);
 
 
3156
3157	/* Copy/convert the address lists; add the primary station
3158	 * address and broadcast address
3159	 */
3160	netif_addr_lock_bh(net_dev);
3161	if (net_dev->flags & IFF_PROMISC ||
3162	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3163		table->dev_uc_count = -1;
3164	} else {
3165		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3166		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3167		i = 1;
3168		netdev_for_each_uc_addr(uc, net_dev) {
3169			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3170			i++;
3171		}
3172	}
3173	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3174	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3175		table->dev_mc_count = -1;
3176	} else {
3177		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3178		eth_broadcast_addr(table->dev_mc_list[0].addr);
3179		i = 1;
3180		netdev_for_each_mc_addr(mc, net_dev) {
3181			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3182			i++;
3183		}
 
 
 
3184	}
3185	netif_addr_unlock_bh(net_dev);
3186
3187	/* Insert/renew unicast filters */
3188	if (table->dev_uc_count >= 0) {
3189		for (i = 0; i < table->dev_uc_count; i++) {
3190			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3191					   EFX_FILTER_FLAG_RX_RSS,
3192					   0);
3193			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3194						 table->dev_uc_list[i].addr);
3195			rc = efx_ef10_filter_insert(efx, &spec, true);
3196			if (rc < 0) {
3197				/* Fall back to unicast-promisc */
3198				while (i--)
3199					efx_ef10_filter_remove_safe(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200						efx, EFX_FILTER_PRI_AUTO,
3201						table->dev_uc_list[i].id);
3202				table->dev_uc_count = -1;
3203				break;
 
 
 
 
3204			}
3205			table->dev_uc_list[i].id = rc;
3206		}
 
3207	}
3208	if (table->dev_uc_count < 0) {
3209		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3210				   EFX_FILTER_FLAG_RX_RSS,
3211				   0);
3212		efx_filter_set_uc_def(&spec);
 
3213		rc = efx_ef10_filter_insert(efx, &spec, true);
3214		if (rc < 0) {
3215			WARN_ON(1);
3216			table->dev_uc_count = 0;
 
 
 
 
 
 
 
 
 
 
3217		} else {
3218			table->dev_uc_list[0].id = rc;
3219		}
3220	}
3221
3222	/* Insert/renew multicast filters */
3223	if (table->dev_mc_count >= 0) {
3224		for (i = 0; i < table->dev_mc_count; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3225			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3226					   EFX_FILTER_FLAG_RX_RSS,
3227					   0);
3228			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3229						 table->dev_mc_list[i].addr);
3230			rc = efx_ef10_filter_insert(efx, &spec, true);
3231			if (rc < 0) {
3232				/* Fall back to multicast-promisc */
3233				while (i--)
3234					efx_ef10_filter_remove_safe(
3235						efx, EFX_FILTER_PRI_AUTO,
3236						table->dev_mc_list[i].id);
3237				table->dev_mc_count = -1;
3238				break;
 
 
 
 
 
 
3239			}
3240			table->dev_mc_list[i].id = rc;
3241		}
3242	}
3243	if (table->dev_mc_count < 0) {
3244		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3245				   EFX_FILTER_FLAG_RX_RSS,
3246				   0);
3247		efx_filter_set_mc_def(&spec);
3248		rc = efx_ef10_filter_insert(efx, &spec, true);
3249		if (rc < 0) {
3250			WARN_ON(1);
3251			table->dev_mc_count = 0;
3252		} else {
3253			table->dev_mc_list[0].id = rc;
3254		}
 
 
 
 
3255	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256
3257	/* Remove filters that weren't renewed.  Since nothing else
3258	 * changes the AUTO_OLD flag or removes these filters, we
3259	 * don't need to hold the filter_lock while scanning for
3260	 * these filters.
3261	 */
3262	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3263		if (ACCESS_ONCE(table->entry[i].spec) &
3264		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3265			if (efx_ef10_filter_remove_internal(
3266				    efx, 1U << EFX_FILTER_PRI_AUTO,
3267				    i, true) < 0)
3268				remove_failed = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269		}
3270	}
3271	WARN_ON(remove_failed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3272}
3273
3274static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3275{
3276	efx_ef10_filter_sync_rx_mode(efx);
3277
3278	return efx_mcdi_set_mac(efx);
3279}
3280
 
 
 
 
 
 
 
3281static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3282{
3283	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3284
3285	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3286	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3287			    NULL, 0, NULL);
3288}
3289
3290/* MC BISTs follow a different poll mechanism to phy BISTs.
3291 * The BIST is done in the poll handler on the MC, and the MCDI command
3292 * will block until the BIST is done.
3293 */
3294static int efx_ef10_poll_bist(struct efx_nic *efx)
3295{
3296	int rc;
3297	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3298	size_t outlen;
3299	u32 result;
3300
3301	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3302			   outbuf, sizeof(outbuf), &outlen);
3303	if (rc != 0)
3304		return rc;
3305
3306	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3307		return -EIO;
3308
3309	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3310	switch (result) {
3311	case MC_CMD_POLL_BIST_PASSED:
3312		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3313		return 0;
3314	case MC_CMD_POLL_BIST_TIMEOUT:
3315		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3316		return -EIO;
3317	case MC_CMD_POLL_BIST_FAILED:
3318		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3319		return -EIO;
3320	default:
3321		netif_err(efx, hw, efx->net_dev,
3322			  "BIST returned unknown result %u", result);
3323		return -EIO;
3324	}
3325}
3326
3327static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3328{
3329	int rc;
3330
3331	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3332
3333	rc = efx_ef10_start_bist(efx, bist_type);
3334	if (rc != 0)
3335		return rc;
3336
3337	return efx_ef10_poll_bist(efx);
3338}
3339
3340static int
3341efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3342{
3343	int rc, rc2;
3344
3345	efx_reset_down(efx, RESET_TYPE_WORLD);
3346
3347	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3348			  NULL, 0, NULL, 0, NULL);
3349	if (rc != 0)
3350		goto out;
3351
3352	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3353	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3354
3355	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3356
3357out:
 
 
3358	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3359	return rc ? rc : rc2;
3360}
3361
3362#ifdef CONFIG_SFC_MTD
3363
3364struct efx_ef10_nvram_type_info {
3365	u16 type, type_mask;
3366	u8 port;
3367	const char *name;
3368};
3369
3370static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3371	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3372	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3373	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3374	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3375	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3376	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3377	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3378	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3379	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3380	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3381	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3382};
3383
3384static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3385					struct efx_mcdi_mtd_partition *part,
3386					unsigned int type)
3387{
3388	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3389	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3390	const struct efx_ef10_nvram_type_info *info;
3391	size_t size, erase_size, outlen;
3392	bool protected;
3393	int rc;
3394
3395	for (info = efx_ef10_nvram_types; ; info++) {
3396		if (info ==
3397		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3398			return -ENODEV;
3399		if ((type & ~info->type_mask) == info->type)
3400			break;
3401	}
3402	if (info->port != efx_port_num(efx))
3403		return -ENODEV;
3404
3405	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3406	if (rc)
3407		return rc;
3408	if (protected)
3409		return -ENODEV; /* hide it */
3410
3411	part->nvram_type = type;
3412
3413	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3414	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3415			  outbuf, sizeof(outbuf), &outlen);
3416	if (rc)
3417		return rc;
3418	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3419		return -EIO;
3420	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3421	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3422		part->fw_subtype = MCDI_DWORD(outbuf,
3423					      NVRAM_METADATA_OUT_SUBTYPE);
3424
3425	part->common.dev_type_name = "EF10 NVRAM manager";
3426	part->common.type_name = info->name;
3427
3428	part->common.mtd.type = MTD_NORFLASH;
3429	part->common.mtd.flags = MTD_CAP_NORFLASH;
3430	part->common.mtd.size = size;
3431	part->common.mtd.erasesize = erase_size;
3432
3433	return 0;
3434}
3435
3436static int efx_ef10_mtd_probe(struct efx_nic *efx)
3437{
3438	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3439	struct efx_mcdi_mtd_partition *parts;
3440	size_t outlen, n_parts_total, i, n_parts;
3441	unsigned int type;
3442	int rc;
3443
3444	ASSERT_RTNL();
3445
3446	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3447	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3448			  outbuf, sizeof(outbuf), &outlen);
3449	if (rc)
3450		return rc;
3451	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3452		return -EIO;
3453
3454	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3455	if (n_parts_total >
3456	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3457		return -EIO;
3458
3459	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3460	if (!parts)
3461		return -ENOMEM;
3462
3463	n_parts = 0;
3464	for (i = 0; i < n_parts_total; i++) {
3465		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3466					i);
3467		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3468		if (rc == 0)
3469			n_parts++;
3470		else if (rc != -ENODEV)
3471			goto fail;
3472	}
3473
3474	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3475fail:
3476	if (rc)
3477		kfree(parts);
3478	return rc;
3479}
3480
3481#endif /* CONFIG_SFC_MTD */
3482
3483static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3484{
3485	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3486}
3487
 
 
 
3488static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3489					   bool temp)
3490{
3491	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3492	int rc;
3493
3494	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3495	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3496	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3497		return 0;
3498	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3499
3500	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3501	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3502	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3503		       channel->channel);
3504
3505	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3506			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3507
3508	if (rc != 0)
3509		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3510						    SYNC_EVENTS_DISABLED;
3511
3512	return rc;
3513}
3514
3515static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3516					    bool temp)
3517{
3518	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3519	int rc;
3520
3521	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3522	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3523		return 0;
3524	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3525		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3526		return 0;
3527	}
3528	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3529					    SYNC_EVENTS_DISABLED;
3530
3531	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3532	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3533	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3534		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3535	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3536		       channel->channel);
3537
3538	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3539			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3540
3541	return rc;
3542}
3543
3544static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3545					   bool temp)
3546{
3547	int (*set)(struct efx_channel *channel, bool temp);
3548	struct efx_channel *channel;
3549
3550	set = en ?
3551	      efx_ef10_rx_enable_timestamping :
3552	      efx_ef10_rx_disable_timestamping;
3553
3554	efx_for_each_channel(channel, efx) {
3555		int rc = set(channel, temp);
3556		if (en && rc != 0) {
3557			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3558			return rc;
3559		}
3560	}
3561
3562	return 0;
3563}
3564
 
 
 
 
 
 
3565static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3566				      struct hwtstamp_config *init)
3567{
3568	int rc;
3569
3570	switch (init->rx_filter) {
3571	case HWTSTAMP_FILTER_NONE:
3572		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3573		/* if TX timestamping is still requested then leave PTP on */
3574		return efx_ptp_change_mode(efx,
3575					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3576	case HWTSTAMP_FILTER_ALL:
3577	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3578	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3579	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3580	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3581	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3582	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3583	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3584	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3585	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3586	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3588	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3589		init->rx_filter = HWTSTAMP_FILTER_ALL;
3590		rc = efx_ptp_change_mode(efx, true, 0);
3591		if (!rc)
3592			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3593		if (rc)
3594			efx_ptp_change_mode(efx, false, 0);
3595		return rc;
3596	default:
3597		return -ERANGE;
3598	}
3599}
3600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3601const struct efx_nic_type efx_hunt_a0_nic_type = {
 
 
3602	.mem_map_size = efx_ef10_mem_map_size,
3603	.probe = efx_ef10_probe,
3604	.remove = efx_ef10_remove,
3605	.dimension_resources = efx_ef10_dimension_resources,
3606	.init = efx_ef10_init_nic,
3607	.fini = efx_port_dummy_op_void,
3608	.map_reset_reason = efx_mcdi_map_reset_reason,
3609	.map_reset_flags = efx_ef10_map_reset_flags,
3610	.reset = efx_ef10_reset,
3611	.probe_port = efx_mcdi_port_probe,
3612	.remove_port = efx_mcdi_port_remove,
3613	.fini_dmaq = efx_ef10_fini_dmaq,
3614	.prepare_flr = efx_ef10_prepare_flr,
3615	.finish_flr = efx_port_dummy_op_void,
3616	.describe_stats = efx_ef10_describe_stats,
3617	.update_stats = efx_ef10_update_stats,
3618	.start_stats = efx_mcdi_mac_start_stats,
3619	.pull_stats = efx_mcdi_mac_pull_stats,
3620	.stop_stats = efx_mcdi_mac_stop_stats,
3621	.set_id_led = efx_mcdi_set_id_led,
3622	.push_irq_moderation = efx_ef10_push_irq_moderation,
3623	.reconfigure_mac = efx_ef10_mac_reconfigure,
3624	.check_mac_fault = efx_mcdi_mac_check_fault,
3625	.reconfigure_port = efx_mcdi_port_reconfigure,
3626	.get_wol = efx_ef10_get_wol,
3627	.set_wol = efx_ef10_set_wol,
3628	.resume_wol = efx_port_dummy_op_void,
3629	.test_chip = efx_ef10_test_chip,
3630	.test_nvram = efx_mcdi_nvram_test_all,
3631	.mcdi_request = efx_ef10_mcdi_request,
3632	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3633	.mcdi_read_response = efx_ef10_mcdi_read_response,
3634	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
 
3635	.irq_enable_master = efx_port_dummy_op_void,
3636	.irq_test_generate = efx_ef10_irq_test_generate,
3637	.irq_disable_non_ev = efx_port_dummy_op_void,
3638	.irq_handle_msi = efx_ef10_msi_interrupt,
3639	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3640	.tx_probe = efx_ef10_tx_probe,
3641	.tx_init = efx_ef10_tx_init,
3642	.tx_remove = efx_ef10_tx_remove,
3643	.tx_write = efx_ef10_tx_write,
3644	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3645	.rx_probe = efx_ef10_rx_probe,
3646	.rx_init = efx_ef10_rx_init,
3647	.rx_remove = efx_ef10_rx_remove,
3648	.rx_write = efx_ef10_rx_write,
3649	.rx_defer_refill = efx_ef10_rx_defer_refill,
3650	.ev_probe = efx_ef10_ev_probe,
3651	.ev_init = efx_ef10_ev_init,
3652	.ev_fini = efx_ef10_ev_fini,
3653	.ev_remove = efx_ef10_ev_remove,
3654	.ev_process = efx_ef10_ev_process,
3655	.ev_read_ack = efx_ef10_ev_read_ack,
3656	.ev_test_generate = efx_ef10_ev_test_generate,
3657	.filter_table_probe = efx_ef10_filter_table_probe,
3658	.filter_table_restore = efx_ef10_filter_table_restore,
3659	.filter_table_remove = efx_ef10_filter_table_remove,
3660	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3661	.filter_insert = efx_ef10_filter_insert,
3662	.filter_remove_safe = efx_ef10_filter_remove_safe,
3663	.filter_get_safe = efx_ef10_filter_get_safe,
3664	.filter_clear_rx = efx_ef10_filter_clear_rx,
3665	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3666	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3667	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3668#ifdef CONFIG_RFS_ACCEL
3669	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3670	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3671#endif
3672#ifdef CONFIG_SFC_MTD
3673	.mtd_probe = efx_ef10_mtd_probe,
3674	.mtd_rename = efx_mcdi_mtd_rename,
3675	.mtd_read = efx_mcdi_mtd_read,
3676	.mtd_erase = efx_mcdi_mtd_erase,
3677	.mtd_write = efx_mcdi_mtd_write,
3678	.mtd_sync = efx_mcdi_mtd_sync,
3679#endif
3680	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3681	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3682	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683
3684	.revision = EFX_REV_HUNT_A0,
3685	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3686	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3687	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3688	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3689	.can_rx_scatter = true,
3690	.always_rx_scatter = true,
3691	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3692	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3693	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3694			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3695	.mcdi_max_ver = 2,
3696	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3697	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3698			    1 << HWTSTAMP_FILTER_ALL,
3699};
v4.6
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2012-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include "net_driver.h"
  11#include "ef10_regs.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "mcdi_pcol.h"
  15#include "nic.h"
  16#include "workarounds.h"
  17#include "selftest.h"
  18#include "ef10_sriov.h"
  19#include <linux/in.h>
  20#include <linux/jhash.h>
  21#include <linux/wait.h>
  22#include <linux/workqueue.h>
  23
  24/* Hardware control for EF10 architecture including 'Huntington'. */
  25
  26#define EFX_EF10_DRVGEN_EV		7
  27enum {
  28	EFX_EF10_TEST = 1,
  29	EFX_EF10_REFILL,
  30};
  31
  32/* The reserved RSS context value */
  33#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
  34/* The maximum size of a shared RSS context */
  35/* TODO: this should really be from the mcdi protocol export */
  36#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
  37
  38/* The filter table(s) are managed by firmware and we have write-only
  39 * access.  When removing filters we must identify them to the
  40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  41 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  42 * be able to tell in advance whether a requested insertion will
  43 * replace an existing filter.  Therefore we maintain a software hash
  44 * table, which should be at least as large as the hardware hash
  45 * table.
  46 *
  47 * Huntington has a single 8K filter table shared between all filter
  48 * types and both ports.
  49 */
  50#define HUNT_FILTER_TBL_ROWS 8192
  51
  52#define EFX_EF10_FILTER_ID_INVALID 0xffff
  53struct efx_ef10_dev_addr {
  54	u8 addr[ETH_ALEN];
  55	u16 id;
  56};
  57
  58struct efx_ef10_filter_table {
  59/* The RX match field masks supported by this fw & hw, in order of priority */
  60	enum efx_filter_match_flags rx_match_flags[
  61		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
  62	unsigned int rx_match_count;
  63
  64	struct {
  65		unsigned long spec;	/* pointer to spec plus flag bits */
  66/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
  67 * used to mark and sweep MAC filters for the device address lists.
  68 */
  69#define EFX_EF10_FILTER_FLAG_BUSY	1UL
  70#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
  71#define EFX_EF10_FILTER_FLAGS		3UL
  72		u64 handle;		/* firmware handle */
  73	} *entry;
  74	wait_queue_head_t waitq;
  75/* Shadow of net_device address lists, guarded by mac_lock */
  76#define EFX_EF10_FILTER_DEV_UC_MAX	32
  77#define EFX_EF10_FILTER_DEV_MC_MAX	256
  78	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
  79	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
  80	int dev_uc_count;
  81	int dev_mc_count;
  82/* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
  83	u16 ucdef_id;
  84	u16 bcast_id;
  85	u16 mcdef_id;
  86};
  87
  88/* An arbitrary search limit for the software hash table */
  89#define EFX_EF10_FILTER_SEARCH_LIMIT 200
  90
 
  91static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
  92static void efx_ef10_filter_table_remove(struct efx_nic *efx);
  93
  94static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  95{
  96	efx_dword_t reg;
  97
  98	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  99	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
 100		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
 101}
 102
 103static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
 104{
 105	int bar;
 106
 107	bar = efx->type->mem_bar;
 108	return resource_size(&efx->pci_dev->resource[bar]);
 109}
 110
 111static bool efx_ef10_is_vf(struct efx_nic *efx)
 112{
 113	return efx->type->is_vf;
 114}
 115
 116static int efx_ef10_get_pf_index(struct efx_nic *efx)
 117{
 118	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 119	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 120	size_t outlen;
 121	int rc;
 122
 123	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 124			  sizeof(outbuf), &outlen);
 125	if (rc)
 126		return rc;
 127	if (outlen < sizeof(outbuf))
 128		return -EIO;
 129
 130	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
 131	return 0;
 132}
 133
 134#ifdef CONFIG_SFC_SRIOV
 135static int efx_ef10_get_vf_index(struct efx_nic *efx)
 136{
 137	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 138	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 139	size_t outlen;
 140	int rc;
 141
 142	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 143			  sizeof(outbuf), &outlen);
 144	if (rc)
 145		return rc;
 146	if (outlen < sizeof(outbuf))
 147		return -EIO;
 148
 149	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 150	return 0;
 151}
 152#endif
 153
 154static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 155{
 156	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
 157	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 158	size_t outlen;
 159	int rc;
 160
 161	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 162
 163	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 164			  outbuf, sizeof(outbuf), &outlen);
 165	if (rc)
 166		return rc;
 167	if (outlen < sizeof(outbuf)) {
 168		netif_err(efx, drv, efx->net_dev,
 169			  "unable to read datapath firmware capabilities\n");
 170		return -EIO;
 171	}
 172
 173	nic_data->datapath_caps =
 174		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 175
 176	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 177	 */
 178	nic_data->rx_dpcpu_fw_id =
 179		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 180	nic_data->tx_dpcpu_fw_id =
 181		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 182
 183	if (!(nic_data->datapath_caps &
 184	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 185		netif_err(efx, probe, efx->net_dev,
 186			  "current firmware does not support an RX prefix\n");
 187		return -ENODEV;
 188	}
 189
 190	return 0;
 191}
 192
 193static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 194{
 195	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 196	int rc;
 197
 198	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 199			  outbuf, sizeof(outbuf), NULL);
 200	if (rc)
 201		return rc;
 202	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 203	return rc > 0 ? rc : -ERANGE;
 204}
 205
 206static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 207{
 208	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 209	size_t outlen;
 210	int rc;
 211
 212	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 213
 214	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 215			  outbuf, sizeof(outbuf), &outlen);
 216	if (rc)
 217		return rc;
 218	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 219		return -EIO;
 220
 221	ether_addr_copy(mac_address,
 222			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 223	return 0;
 224}
 225
 226static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 227{
 228	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 229	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 230	size_t outlen;
 231	int num_addrs, rc;
 232
 233	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 234		       EVB_PORT_ID_ASSIGNED);
 235	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 236			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 237
 238	if (rc)
 239		return rc;
 240	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 241		return -EIO;
 242
 243	num_addrs = MCDI_DWORD(outbuf,
 244			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 245
 246	WARN_ON(num_addrs != 1);
 247
 248	ether_addr_copy(mac_address,
 249			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 250
 251	return 0;
 252}
 253
 254static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 255					       struct device_attribute *attr,
 256					       char *buf)
 257{
 258	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 259
 260	return sprintf(buf, "%d\n",
 261		       ((efx->mcdi->fn_flags) &
 262			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 263		       ? 1 : 0);
 264}
 265
 266static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 267					  struct device_attribute *attr,
 268					  char *buf)
 269{
 270	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 271
 272	return sprintf(buf, "%d\n",
 273		       ((efx->mcdi->fn_flags) &
 274			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 275		       ? 1 : 0);
 276}
 277
 278static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 279		   NULL);
 280static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 281
 282static int efx_ef10_probe(struct efx_nic *efx)
 283{
 284	struct efx_ef10_nic_data *nic_data;
 285	struct net_device *net_dev = efx->net_dev;
 286	int i, rc;
 287
 288	/* We can have one VI for each 8K region.  However, until we
 289	 * use TX option descriptors we need two TX queues per channel.
 290	 */
 291	efx->max_channels = min_t(unsigned int,
 292				  EFX_MAX_CHANNELS,
 293				  efx_ef10_mem_map_size(efx) /
 294				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
 295	efx->max_tx_channels = efx->max_channels;
 296	if (WARN_ON(efx->max_channels == 0))
 297		return -EIO;
 298
 299	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 300	if (!nic_data)
 301		return -ENOMEM;
 302	efx->nic_data = nic_data;
 303
 304	/* we assume later that we can copy from this buffer in dwords */
 305	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 306
 307	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 308				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 309	if (rc)
 310		goto fail1;
 311
 312	/* Get the MC's warm boot count.  In case it's rebooting right
 313	 * now, be prepared to retry.
 314	 */
 315	i = 0;
 316	for (;;) {
 317		rc = efx_ef10_get_warm_boot_count(efx);
 318		if (rc >= 0)
 319			break;
 320		if (++i == 5)
 321			goto fail2;
 322		ssleep(1);
 323	}
 324	nic_data->warm_boot_count = rc;
 325
 326	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 327
 328	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 329
 330	/* In case we're recovering from a crash (kexec), we want to
 331	 * cancel any outstanding request by the previous user of this
 332	 * function.  We send a special message using the least
 333	 * significant bits of the 'high' (doorbell) register.
 334	 */
 335	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 336
 337	rc = efx_mcdi_init(efx);
 338	if (rc)
 339		goto fail2;
 340
 341	/* Reset (most) configuration for this function */
 342	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 343	if (rc)
 344		goto fail3;
 345
 346	/* Enable event logging */
 347	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 348	if (rc)
 349		goto fail3;
 350
 351	rc = device_create_file(&efx->pci_dev->dev,
 352				&dev_attr_link_control_flag);
 353	if (rc)
 354		goto fail3;
 355
 356	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 357	if (rc)
 358		goto fail4;
 359
 360	rc = efx_ef10_get_pf_index(efx);
 361	if (rc)
 362		goto fail5;
 363
 364	rc = efx_ef10_init_datapath_caps(efx);
 365	if (rc < 0)
 366		goto fail5;
 367
 368	efx->rx_packet_len_offset =
 369		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 370
 371	rc = efx_mcdi_port_get_number(efx);
 372	if (rc < 0)
 373		goto fail5;
 374	efx->port_num = rc;
 375	net_dev->dev_port = rc;
 376
 377	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 378	if (rc)
 379		goto fail5;
 380
 381	rc = efx_ef10_get_sysclk_freq(efx);
 382	if (rc < 0)
 383		goto fail5;
 384	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
 385
 386	/* Check whether firmware supports bug 35388 workaround.
 387	 * First try to enable it, then if we get EPERM, just
 388	 * ask if it's already enabled
 389	 */
 390	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
 391	if (rc == 0) {
 392		nic_data->workaround_35388 = true;
 393	} else if (rc == -EPERM) {
 394		unsigned int enabled;
 395
 396		rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
 397		if (rc)
 398			goto fail3;
 399		nic_data->workaround_35388 = enabled &
 400			MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
 401	} else if (rc != -ENOSYS && rc != -ENOENT) {
 402		goto fail5;
 403	}
 404	netif_dbg(efx, probe, efx->net_dev,
 405		  "workaround for bug 35388 is %sabled\n",
 406		  nic_data->workaround_35388 ? "en" : "dis");
 407
 408	rc = efx_mcdi_mon_probe(efx);
 409	if (rc && rc != -EPERM)
 410		goto fail5;
 411
 412	efx_ptp_probe(efx, NULL);
 413
 414#ifdef CONFIG_SFC_SRIOV
 415	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 416		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 417		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 418
 419		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 420	} else
 421#endif
 422		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 423
 424	return 0;
 425
 426fail5:
 427	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 428fail4:
 429	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 430fail3:
 431	efx_mcdi_fini(efx);
 432fail2:
 433	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 434fail1:
 435	kfree(nic_data);
 436	efx->nic_data = NULL;
 437	return rc;
 438}
 439
 440static int efx_ef10_free_vis(struct efx_nic *efx)
 441{
 442	MCDI_DECLARE_BUF_ERR(outbuf);
 443	size_t outlen;
 444	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 445				    outbuf, sizeof(outbuf), &outlen);
 446
 447	/* -EALREADY means nothing to free, so ignore */
 448	if (rc == -EALREADY)
 449		rc = 0;
 450	if (rc)
 451		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 452				       rc);
 453	return rc;
 454}
 455
 456#ifdef EFX_USE_PIO
 457
 458static void efx_ef10_free_piobufs(struct efx_nic *efx)
 459{
 460	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 461	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 462	unsigned int i;
 463	int rc;
 464
 465	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 466
 467	for (i = 0; i < nic_data->n_piobufs; i++) {
 468		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 469			       nic_data->piobuf_handle[i]);
 470		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 471				  NULL, 0, NULL);
 472		WARN_ON(rc);
 473	}
 474
 475	nic_data->n_piobufs = 0;
 476}
 477
 478static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 479{
 480	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 481	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 482	unsigned int i;
 483	size_t outlen;
 484	int rc = 0;
 485
 486	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 487
 488	for (i = 0; i < n; i++) {
 489		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 490					outbuf, sizeof(outbuf), &outlen);
 491		if (rc) {
 492			/* Don't display the MC error if we didn't have space
 493			 * for a VF.
 494			 */
 495			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 496				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 497						       0, outbuf, outlen, rc);
 498			break;
 499		}
 500		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 501			rc = -EIO;
 502			break;
 503		}
 504		nic_data->piobuf_handle[i] =
 505			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 506		netif_dbg(efx, probe, efx->net_dev,
 507			  "allocated PIO buffer %u handle %x\n", i,
 508			  nic_data->piobuf_handle[i]);
 509	}
 510
 511	nic_data->n_piobufs = i;
 512	if (rc)
 513		efx_ef10_free_piobufs(efx);
 514	return rc;
 515}
 516
 517static int efx_ef10_link_piobufs(struct efx_nic *efx)
 518{
 519	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 520	_MCDI_DECLARE_BUF(inbuf,
 521			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
 522			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
 523	struct efx_channel *channel;
 524	struct efx_tx_queue *tx_queue;
 525	unsigned int offset, index;
 526	int rc;
 527
 528	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 529	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 530
 531	memset(inbuf, 0, sizeof(inbuf));
 532
 533	/* Link a buffer to each VI in the write-combining mapping */
 534	for (index = 0; index < nic_data->n_piobufs; ++index) {
 535		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 536			       nic_data->piobuf_handle[index]);
 537		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 538			       nic_data->pio_write_vi_base + index);
 539		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 540				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 541				  NULL, 0, NULL);
 542		if (rc) {
 543			netif_err(efx, drv, efx->net_dev,
 544				  "failed to link VI %u to PIO buffer %u (%d)\n",
 545				  nic_data->pio_write_vi_base + index, index,
 546				  rc);
 547			goto fail;
 548		}
 549		netif_dbg(efx, probe, efx->net_dev,
 550			  "linked VI %u to PIO buffer %u\n",
 551			  nic_data->pio_write_vi_base + index, index);
 552	}
 553
 554	/* Link a buffer to each TX queue */
 555	efx_for_each_channel(channel, efx) {
 556		efx_for_each_channel_tx_queue(tx_queue, channel) {
 557			/* We assign the PIO buffers to queues in
 558			 * reverse order to allow for the following
 559			 * special case.
 560			 */
 561			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 562				   tx_queue->channel->channel - 1) *
 563				  efx_piobuf_size);
 564			index = offset / ER_DZ_TX_PIOBUF_SIZE;
 565			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
 566
 567			/* When the host page size is 4K, the first
 568			 * host page in the WC mapping may be within
 569			 * the same VI page as the last TX queue.  We
 570			 * can only link one buffer to each VI.
 571			 */
 572			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 573				BUG_ON(index != 0);
 574				rc = 0;
 575			} else {
 576				MCDI_SET_DWORD(inbuf,
 577					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 578					       nic_data->piobuf_handle[index]);
 579				MCDI_SET_DWORD(inbuf,
 580					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 581					       tx_queue->queue);
 582				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 583						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 584						  NULL, 0, NULL);
 585			}
 586
 587			if (rc) {
 588				/* This is non-fatal; the TX path just
 589				 * won't use PIO for this queue
 590				 */
 591				netif_err(efx, drv, efx->net_dev,
 592					  "failed to link VI %u to PIO buffer %u (%d)\n",
 593					  tx_queue->queue, index, rc);
 594				tx_queue->piobuf = NULL;
 595			} else {
 596				tx_queue->piobuf =
 597					nic_data->pio_write_base +
 598					index * EFX_VI_PAGE_SIZE + offset;
 599				tx_queue->piobuf_offset = offset;
 600				netif_dbg(efx, probe, efx->net_dev,
 601					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 602					  tx_queue->queue, index,
 603					  tx_queue->piobuf_offset,
 604					  tx_queue->piobuf);
 605			}
 606		}
 607	}
 608
 609	return 0;
 610
 611fail:
 612	while (index--) {
 613		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 614			       nic_data->pio_write_vi_base + index);
 615		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 616			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 617			     NULL, 0, NULL);
 618	}
 619	return rc;
 620}
 621
 622#else /* !EFX_USE_PIO */
 623
 624static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 625{
 626	return n == 0 ? 0 : -ENOBUFS;
 627}
 628
 629static int efx_ef10_link_piobufs(struct efx_nic *efx)
 630{
 631	return 0;
 632}
 633
 634static void efx_ef10_free_piobufs(struct efx_nic *efx)
 635{
 636}
 637
 638#endif /* EFX_USE_PIO */
 639
 640static void efx_ef10_remove(struct efx_nic *efx)
 641{
 642	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 643	int rc;
 644
 645#ifdef CONFIG_SFC_SRIOV
 646	struct efx_ef10_nic_data *nic_data_pf;
 647	struct pci_dev *pci_dev_pf;
 648	struct efx_nic *efx_pf;
 649	struct ef10_vf *vf;
 650
 651	if (efx->pci_dev->is_virtfn) {
 652		pci_dev_pf = efx->pci_dev->physfn;
 653		if (pci_dev_pf) {
 654			efx_pf = pci_get_drvdata(pci_dev_pf);
 655			nic_data_pf = efx_pf->nic_data;
 656			vf = nic_data_pf->vf + nic_data->vf_index;
 657			vf->efx = NULL;
 658		} else
 659			netif_info(efx, drv, efx->net_dev,
 660				   "Could not get the PF id from VF\n");
 661	}
 662#endif
 663
 664	efx_ptp_remove(efx);
 665
 666	efx_mcdi_mon_remove(efx);
 667
 668	efx_ef10_rx_free_indir_table(efx);
 669
 670	if (nic_data->wc_membase)
 671		iounmap(nic_data->wc_membase);
 672
 673	rc = efx_ef10_free_vis(efx);
 674	WARN_ON(rc != 0);
 675
 676	if (!nic_data->must_restore_piobufs)
 677		efx_ef10_free_piobufs(efx);
 678
 679	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 680	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 681
 682	efx_mcdi_fini(efx);
 683	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 684	kfree(nic_data);
 685}
 686
 687static int efx_ef10_probe_pf(struct efx_nic *efx)
 688{
 689	return efx_ef10_probe(efx);
 690}
 691
 692int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
 693{
 694	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
 695
 696	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
 697	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
 698			    NULL, 0, NULL);
 699}
 700
 701int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
 702{
 703	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
 704
 705	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
 706	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
 707			    NULL, 0, NULL);
 708}
 709
 710int efx_ef10_vport_add_mac(struct efx_nic *efx,
 711			   unsigned int port_id, u8 *mac)
 712{
 713	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
 714
 715	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
 716	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
 717
 718	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
 719			    sizeof(inbuf), NULL, 0, NULL);
 720}
 721
 722int efx_ef10_vport_del_mac(struct efx_nic *efx,
 723			   unsigned int port_id, u8 *mac)
 724{
 725	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
 726
 727	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
 728	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
 729
 730	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
 731			    sizeof(inbuf), NULL, 0, NULL);
 732}
 733
 734#ifdef CONFIG_SFC_SRIOV
 735static int efx_ef10_probe_vf(struct efx_nic *efx)
 736{
 737	int rc;
 738	struct pci_dev *pci_dev_pf;
 739
 740	/* If the parent PF has no VF data structure, it doesn't know about this
 741	 * VF so fail probe.  The VF needs to be re-created.  This can happen
 742	 * if the PF driver is unloaded while the VF is assigned to a guest.
 743	 */
 744	pci_dev_pf = efx->pci_dev->physfn;
 745	if (pci_dev_pf) {
 746		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 747		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
 748
 749		if (!nic_data_pf->vf) {
 750			netif_info(efx, drv, efx->net_dev,
 751				   "The VF cannot link to its parent PF; "
 752				   "please destroy and re-create the VF\n");
 753			return -EBUSY;
 754		}
 755	}
 756
 757	rc = efx_ef10_probe(efx);
 758	if (rc)
 759		return rc;
 760
 761	rc = efx_ef10_get_vf_index(efx);
 762	if (rc)
 763		goto fail;
 764
 765	if (efx->pci_dev->is_virtfn) {
 766		if (efx->pci_dev->physfn) {
 767			struct efx_nic *efx_pf =
 768				pci_get_drvdata(efx->pci_dev->physfn);
 769			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
 770			struct efx_ef10_nic_data *nic_data = efx->nic_data;
 771
 772			nic_data_p->vf[nic_data->vf_index].efx = efx;
 773			nic_data_p->vf[nic_data->vf_index].pci_dev =
 774				efx->pci_dev;
 775		} else
 776			netif_info(efx, drv, efx->net_dev,
 777				   "Could not get the PF id from VF\n");
 778	}
 779
 780	return 0;
 781
 782fail:
 783	efx_ef10_remove(efx);
 784	return rc;
 785}
 786#else
 787static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
 788{
 789	return 0;
 790}
 791#endif
 792
 793static int efx_ef10_alloc_vis(struct efx_nic *efx,
 794			      unsigned int min_vis, unsigned int max_vis)
 795{
 796	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
 797	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
 798	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 799	size_t outlen;
 800	int rc;
 801
 802	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
 803	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
 804	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
 805			  outbuf, sizeof(outbuf), &outlen);
 806	if (rc != 0)
 807		return rc;
 808
 809	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
 810		return -EIO;
 811
 812	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
 813		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
 814
 815	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
 816	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
 817	return 0;
 818}
 819
 820/* Note that the failure path of this function does not free
 821 * resources, as this will be done by efx_ef10_remove().
 822 */
 823static int efx_ef10_dimension_resources(struct efx_nic *efx)
 824{
 825	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 826	unsigned int uc_mem_map_size, wc_mem_map_size;
 827	unsigned int min_vis = max(EFX_TXQ_TYPES,
 828				   efx_separate_tx_channels ? 2 : 1);
 829	unsigned int channel_vis, pio_write_vi_base, max_vis;
 830	void __iomem *membase;
 831	int rc;
 832
 833	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
 834
 835#ifdef EFX_USE_PIO
 836	/* Try to allocate PIO buffers if wanted and if the full
 837	 * number of PIO buffers would be sufficient to allocate one
 838	 * copy-buffer per TX channel.  Failure is non-fatal, as there
 839	 * are only a small number of PIO buffers shared between all
 840	 * functions of the controller.
 841	 */
 842	if (efx_piobuf_size != 0 &&
 843	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
 844	    efx->n_tx_channels) {
 845		unsigned int n_piobufs =
 846			DIV_ROUND_UP(efx->n_tx_channels,
 847				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
 848
 849		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
 850		if (rc)
 851			netif_err(efx, probe, efx->net_dev,
 852				  "failed to allocate PIO buffers (%d)\n", rc);
 853		else
 854			netif_dbg(efx, probe, efx->net_dev,
 855				  "allocated %u PIO buffers\n", n_piobufs);
 856	}
 857#else
 858	nic_data->n_piobufs = 0;
 859#endif
 860
 861	/* PIO buffers should be mapped with write-combining enabled,
 862	 * and we want to make single UC and WC mappings rather than
 863	 * several of each (in fact that's the only option if host
 864	 * page size is >4K).  So we may allocate some extra VIs just
 865	 * for writing PIO buffers through.
 866	 *
 867	 * The UC mapping contains (channel_vis - 1) complete VIs and the
 868	 * first half of the next VI.  Then the WC mapping begins with
 869	 * the second half of this last VI.
 870	 */
 871	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
 872				     ER_DZ_TX_PIOBUF);
 873	if (nic_data->n_piobufs) {
 874		/* pio_write_vi_base rounds down to give the number of complete
 875		 * VIs inside the UC mapping.
 876		 */
 877		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
 878		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
 879					       nic_data->n_piobufs) *
 880					      EFX_VI_PAGE_SIZE) -
 881				   uc_mem_map_size);
 882		max_vis = pio_write_vi_base + nic_data->n_piobufs;
 883	} else {
 884		pio_write_vi_base = 0;
 885		wc_mem_map_size = 0;
 886		max_vis = channel_vis;
 887	}
 888
 889	/* In case the last attached driver failed to free VIs, do it now */
 890	rc = efx_ef10_free_vis(efx);
 891	if (rc != 0)
 892		return rc;
 893
 894	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
 895	if (rc != 0)
 896		return rc;
 897
 898	if (nic_data->n_allocated_vis < channel_vis) {
 899		netif_info(efx, drv, efx->net_dev,
 900			   "Could not allocate enough VIs to satisfy RSS"
 901			   " requirements. Performance may not be optimal.\n");
 902		/* We didn't get the VIs to populate our channels.
 903		 * We could keep what we got but then we'd have more
 904		 * interrupts than we need.
 905		 * Instead calculate new max_channels and restart
 906		 */
 907		efx->max_channels = nic_data->n_allocated_vis;
 908		efx->max_tx_channels =
 909			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
 910
 911		efx_ef10_free_vis(efx);
 912		return -EAGAIN;
 913	}
 914
 915	/* If we didn't get enough VIs to map all the PIO buffers, free the
 916	 * PIO buffers
 917	 */
 918	if (nic_data->n_piobufs &&
 919	    nic_data->n_allocated_vis <
 920	    pio_write_vi_base + nic_data->n_piobufs) {
 921		netif_dbg(efx, probe, efx->net_dev,
 922			  "%u VIs are not sufficient to map %u PIO buffers\n",
 923			  nic_data->n_allocated_vis, nic_data->n_piobufs);
 924		efx_ef10_free_piobufs(efx);
 925	}
 926
 927	/* Shrink the original UC mapping of the memory BAR */
 928	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
 929	if (!membase) {
 930		netif_err(efx, probe, efx->net_dev,
 931			  "could not shrink memory BAR to %x\n",
 932			  uc_mem_map_size);
 933		return -ENOMEM;
 934	}
 935	iounmap(efx->membase);
 936	efx->membase = membase;
 937
 938	/* Set up the WC mapping if needed */
 939	if (wc_mem_map_size) {
 940		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
 941						  uc_mem_map_size,
 942						  wc_mem_map_size);
 943		if (!nic_data->wc_membase) {
 944			netif_err(efx, probe, efx->net_dev,
 945				  "could not allocate WC mapping of size %x\n",
 946				  wc_mem_map_size);
 947			return -ENOMEM;
 948		}
 949		nic_data->pio_write_vi_base = pio_write_vi_base;
 950		nic_data->pio_write_base =
 951			nic_data->wc_membase +
 952			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
 953			 uc_mem_map_size);
 954
 955		rc = efx_ef10_link_piobufs(efx);
 956		if (rc)
 957			efx_ef10_free_piobufs(efx);
 958	}
 959
 960	netif_dbg(efx, probe, efx->net_dev,
 961		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
 962		  &efx->membase_phys, efx->membase, uc_mem_map_size,
 963		  nic_data->wc_membase, wc_mem_map_size);
 964
 965	return 0;
 966}
 967
 968static int efx_ef10_init_nic(struct efx_nic *efx)
 969{
 970	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 971	int rc;
 972
 973	if (nic_data->must_check_datapath_caps) {
 974		rc = efx_ef10_init_datapath_caps(efx);
 975		if (rc)
 976			return rc;
 977		nic_data->must_check_datapath_caps = false;
 978	}
 979
 980	if (nic_data->must_realloc_vis) {
 981		/* We cannot let the number of VIs change now */
 982		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
 983					nic_data->n_allocated_vis);
 984		if (rc)
 985			return rc;
 986		nic_data->must_realloc_vis = false;
 987	}
 988
 989	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
 990		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
 991		if (rc == 0) {
 992			rc = efx_ef10_link_piobufs(efx);
 993			if (rc)
 994				efx_ef10_free_piobufs(efx);
 995		}
 996
 997		/* Log an error on failure, but this is non-fatal */
 998		if (rc)
 999			netif_err(efx, drv, efx->net_dev,
1000				  "failed to restore PIO buffers (%d)\n", rc);
1001		nic_data->must_restore_piobufs = false;
1002	}
1003
1004	/* don't fail init if RSS setup doesn't work */
1005	efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1006
1007	return 0;
1008}
1009
1010static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1011{
1012	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1013#ifdef CONFIG_SFC_SRIOV
1014	unsigned int i;
1015#endif
1016
1017	/* All our allocations have been reset */
1018	nic_data->must_realloc_vis = true;
1019	nic_data->must_restore_filters = true;
1020	nic_data->must_restore_piobufs = true;
1021	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1022
1023	/* Driver-created vswitches and vports must be re-created */
1024	nic_data->must_probe_vswitching = true;
1025	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1026#ifdef CONFIG_SFC_SRIOV
1027	if (nic_data->vf)
1028		for (i = 0; i < efx->vf_count; i++)
1029			nic_data->vf[i].vport_id = 0;
1030#endif
1031}
1032
1033static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1034{
1035	if (reason == RESET_TYPE_MC_FAILURE)
1036		return RESET_TYPE_DATAPATH;
1037
1038	return efx_mcdi_map_reset_reason(reason);
1039}
1040
1041static int efx_ef10_map_reset_flags(u32 *flags)
1042{
1043	enum {
1044		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1045				   ETH_RESET_SHARED_SHIFT),
1046		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1047				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1048				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1049				 ETH_RESET_SHARED_SHIFT)
1050	};
1051
1052	/* We assume for now that our PCI function is permitted to
1053	 * reset everything.
1054	 */
1055
1056	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1057		*flags &= ~EF10_RESET_MC;
1058		return RESET_TYPE_WORLD;
1059	}
1060
1061	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1062		*flags &= ~EF10_RESET_PORT;
1063		return RESET_TYPE_ALL;
1064	}
1065
1066	/* no invisible reset implemented */
1067
1068	return -EINVAL;
1069}
1070
1071static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1072{
1073	int rc = efx_mcdi_reset(efx, reset_type);
1074
1075	/* Unprivileged functions return -EPERM, but need to return success
1076	 * here so that the datapath is brought back up.
1077	 */
1078	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1079		rc = 0;
1080
1081	/* If it was a port reset, trigger reallocation of MC resources.
1082	 * Note that on an MC reset nothing needs to be done now because we'll
1083	 * detect the MC reset later and handle it then.
1084	 * For an FLR, we never get an MC reset event, but the MC has reset all
1085	 * resources assigned to us, so we have to trigger reallocation now.
1086	 */
1087	if ((reset_type == RESET_TYPE_ALL ||
1088	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1089		efx_ef10_reset_mc_allocations(efx);
1090	return rc;
1091}
1092
1093#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1094	[EF10_STAT_ ## ext_name] =				\
1095	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1096#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1097	[EF10_STAT_ ## int_name] =				\
1098	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1099#define EF10_OTHER_STAT(ext_name)				\
1100	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1101#define GENERIC_SW_STAT(ext_name)				\
1102	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1103
1104static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1105	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1106	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1107	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1108	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1109	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1110	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1111	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1112	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1113	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1114	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1115	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1116	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1117	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1118	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1119	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1120	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1121	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1122	EF10_OTHER_STAT(port_rx_good_bytes),
1123	EF10_OTHER_STAT(port_rx_bad_bytes),
1124	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1125	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1126	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1127	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1128	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1129	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1130	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1131	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1132	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1133	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1134	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1135	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1136	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1137	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1138	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1139	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1140	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1141	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1142	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1143	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1144	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1145	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1146	GENERIC_SW_STAT(rx_nodesc_trunc),
1147	GENERIC_SW_STAT(rx_noskb_drops),
1148	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1149	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1150	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1151	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1152	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1153	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1154	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1155	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1156	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1157	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1158	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1159	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1160	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1161	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1162	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1163	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1164	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1165	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1166	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1167	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1168	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1169	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1170	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1171	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1172	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1173	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1174	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1175	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1176	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1177	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1178};
1179
1180#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1181			       (1ULL << EF10_STAT_port_tx_packets) |	\
1182			       (1ULL << EF10_STAT_port_tx_pause) |	\
1183			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1184			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1185			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1186			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1187			       (1ULL <<                                 \
1188				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1189			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1190			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1191			       (1ULL << EF10_STAT_port_rx_packets) |	\
1192			       (1ULL << EF10_STAT_port_rx_good) |	\
1193			       (1ULL << EF10_STAT_port_rx_bad) |	\
1194			       (1ULL << EF10_STAT_port_rx_pause) |	\
1195			       (1ULL << EF10_STAT_port_rx_control) |	\
1196			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1197			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1198			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1199			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1200			       (1ULL << EF10_STAT_port_rx_64) |		\
1201			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1202			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1203			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1204			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1205			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1206			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1207			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1208			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1209			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1210			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1211			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1212			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1213
1214/* These statistics are only provided by the 10G MAC.  For a 10G/40G
1215 * switchable port we do not expose these because they might not
1216 * include all the packets they should.
1217 */
1218#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1219				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1220				 (1ULL << EF10_STAT_port_tx_64) |	\
1221				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1222				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1223				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1224				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1225				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1226				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1227
1228/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1229 * switchable port we do expose these because the errors will otherwise
1230 * be silent.
1231 */
1232#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1233				  (1ULL << EF10_STAT_port_rx_length_error))
1234
1235/* These statistics are only provided if the firmware supports the
1236 * capability PM_AND_RXDP_COUNTERS.
1237 */
1238#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1239	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1240	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1241	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1242	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1243	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1244	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1245	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1246	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1247	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1248	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1249	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1250	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1251
1252static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1253{
1254	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1255	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1256	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1257
1258	if (!(efx->mcdi->fn_flags &
1259	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1260		return 0;
1261
1262	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1263		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1264	else
1265		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1266
1267	if (nic_data->datapath_caps &
1268	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1269		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1270
1271	return raw_mask;
1272}
1273
1274static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1275{
1276	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1277	u64 raw_mask[2];
1278
1279	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1280
1281	/* Only show vadaptor stats when EVB capability is present */
1282	if (nic_data->datapath_caps &
1283	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1284		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1285		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1286	} else {
1287		raw_mask[1] = 0;
1288	}
1289
1290#if BITS_PER_LONG == 64
1291	mask[0] = raw_mask[0];
1292	mask[1] = raw_mask[1];
1293#else
1294	mask[0] = raw_mask[0] & 0xffffffff;
1295	mask[1] = raw_mask[0] >> 32;
1296	mask[2] = raw_mask[1] & 0xffffffff;
1297	mask[3] = raw_mask[1] >> 32;
1298#endif
1299}
1300
1301static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1302{
1303	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1304
1305	efx_ef10_get_stat_mask(efx, mask);
1306	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1307				      mask, names);
1308}
1309
1310static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1311					   struct rtnl_link_stats64 *core_stats)
1312{
1313	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1314	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1315	u64 *stats = nic_data->stats;
1316	size_t stats_count = 0, index;
1317
1318	efx_ef10_get_stat_mask(efx, mask);
1319
1320	if (full_stats) {
1321		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1322			if (efx_ef10_stat_desc[index].name) {
1323				*full_stats++ = stats[index];
1324				++stats_count;
1325			}
1326		}
1327	}
1328
1329	if (!core_stats)
1330		return stats_count;
1331
1332	if (nic_data->datapath_caps &
1333			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1334		/* Use vadaptor stats. */
1335		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1336					 stats[EF10_STAT_rx_multicast] +
1337					 stats[EF10_STAT_rx_broadcast];
1338		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1339					 stats[EF10_STAT_tx_multicast] +
1340					 stats[EF10_STAT_tx_broadcast];
1341		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1342				       stats[EF10_STAT_rx_multicast_bytes] +
1343				       stats[EF10_STAT_rx_broadcast_bytes];
1344		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1345				       stats[EF10_STAT_tx_multicast_bytes] +
1346				       stats[EF10_STAT_tx_broadcast_bytes];
1347		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1348					 stats[GENERIC_STAT_rx_noskb_drops];
1349		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1350		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1351		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1352		core_stats->rx_errors = core_stats->rx_crc_errors;
1353		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1354	} else {
1355		/* Use port stats. */
1356		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1357		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1358		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1359		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1360		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1361					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1362					 stats[GENERIC_STAT_rx_noskb_drops];
1363		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1364		core_stats->rx_length_errors =
1365				stats[EF10_STAT_port_rx_gtjumbo] +
1366				stats[EF10_STAT_port_rx_length_error];
1367		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1368		core_stats->rx_frame_errors =
1369				stats[EF10_STAT_port_rx_align_error];
1370		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1371		core_stats->rx_errors = (core_stats->rx_length_errors +
1372					 core_stats->rx_crc_errors +
1373					 core_stats->rx_frame_errors);
1374	}
1375
1376	return stats_count;
1377}
1378
1379static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1380{
1381	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1382	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1383	__le64 generation_start, generation_end;
1384	u64 *stats = nic_data->stats;
1385	__le64 *dma_stats;
1386
1387	efx_ef10_get_stat_mask(efx, mask);
1388
1389	dma_stats = efx->stats_buffer.addr;
1390	nic_data = efx->nic_data;
1391
1392	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1393	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1394		return 0;
1395	rmb();
1396	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1397			     stats, efx->stats_buffer.addr, false);
1398	rmb();
1399	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1400	if (generation_end != generation_start)
1401		return -EAGAIN;
1402
1403	/* Update derived statistics */
1404	efx_nic_fix_nodesc_drop_stat(efx,
1405				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1406	stats[EF10_STAT_port_rx_good_bytes] =
1407		stats[EF10_STAT_port_rx_bytes] -
1408		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1409	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1410			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1411	efx_update_sw_stats(efx, stats);
1412	return 0;
1413}
1414
1415
1416static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1417				       struct rtnl_link_stats64 *core_stats)
1418{
 
 
 
 
1419	int retry;
1420
 
 
1421	/* If we're unlucky enough to read statistics during the DMA, wait
1422	 * up to 10ms for it to finish (typically takes <500us)
1423	 */
1424	for (retry = 0; retry < 100; ++retry) {
1425		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1426			break;
1427		udelay(100);
1428	}
1429
1430	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1431}
1432
1433static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1434{
1435	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1436	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1437	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1438	__le64 generation_start, generation_end;
1439	u64 *stats = nic_data->stats;
1440	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1441	struct efx_buffer stats_buf;
1442	__le64 *dma_stats;
1443	int rc;
1444
1445	spin_unlock_bh(&efx->stats_lock);
1446
1447	if (in_interrupt()) {
1448		/* If in atomic context, cannot update stats.  Just update the
1449		 * software stats and return so the caller can continue.
1450		 */
1451		spin_lock_bh(&efx->stats_lock);
1452		efx_update_sw_stats(efx, stats);
1453		return 0;
1454	}
1455
1456	efx_ef10_get_stat_mask(efx, mask);
1457
1458	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1459	if (rc) {
1460		spin_lock_bh(&efx->stats_lock);
1461		return rc;
 
 
 
 
 
 
 
 
 
 
1462	}
1463
1464	dma_stats = stats_buf.addr;
1465	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1466
1467	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1468	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1469			      MAC_STATS_IN_DMA, 1);
1470	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1471	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1472
1473	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1474				NULL, 0, NULL);
1475	spin_lock_bh(&efx->stats_lock);
1476	if (rc) {
1477		/* Expect ENOENT if DMA queues have not been set up */
1478		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1479			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1480					       sizeof(inbuf), NULL, 0, rc);
1481		goto out;
1482	}
1483
1484	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1485	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1486		WARN_ON_ONCE(1);
1487		goto out;
1488	}
1489	rmb();
1490	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1491			     stats, stats_buf.addr, false);
1492	rmb();
1493	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1494	if (generation_end != generation_start) {
1495		rc = -EAGAIN;
1496		goto out;
1497	}
1498
1499	efx_update_sw_stats(efx, stats);
1500out:
1501	efx_nic_free_buffer(efx, &stats_buf);
1502	return rc;
1503}
1504
1505static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1506				       struct rtnl_link_stats64 *core_stats)
1507{
1508	if (efx_ef10_try_update_nic_stats_vf(efx))
1509		return 0;
1510
1511	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1512}
1513
1514static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1515{
1516	struct efx_nic *efx = channel->efx;
1517	unsigned int mode, value;
1518	efx_dword_t timer_cmd;
1519
1520	if (channel->irq_moderation) {
1521		mode = 3;
1522		value = channel->irq_moderation - 1;
1523	} else {
1524		mode = 0;
1525		value = 0;
1526	}
1527
1528	if (EFX_EF10_WORKAROUND_35388(efx)) {
1529		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1530				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1531				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1532				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1533		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1534				channel->channel);
1535	} else {
1536		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1537				     ERF_DZ_TC_TIMER_VAL, value);
1538		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1539				channel->channel);
1540	}
1541}
1542
1543static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1544				struct ethtool_wolinfo *wol) {}
1545
1546static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1547{
1548	return -EOPNOTSUPP;
1549}
1550
1551static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1552{
1553	wol->supported = 0;
1554	wol->wolopts = 0;
1555	memset(&wol->sopass, 0, sizeof(wol->sopass));
1556}
1557
1558static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1559{
1560	if (type != 0)
1561		return -EINVAL;
1562	return 0;
1563}
1564
1565static void efx_ef10_mcdi_request(struct efx_nic *efx,
1566				  const efx_dword_t *hdr, size_t hdr_len,
1567				  const efx_dword_t *sdu, size_t sdu_len)
1568{
1569	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1570	u8 *pdu = nic_data->mcdi_buf.addr;
1571
1572	memcpy(pdu, hdr, hdr_len);
1573	memcpy(pdu + hdr_len, sdu, sdu_len);
1574	wmb();
1575
1576	/* The hardware provides 'low' and 'high' (doorbell) registers
1577	 * for passing the 64-bit address of an MCDI request to
1578	 * firmware.  However the dwords are swapped by firmware.  The
1579	 * least significant bits of the doorbell are then 0 for all
1580	 * MCDI requests due to alignment.
1581	 */
1582	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1583		    ER_DZ_MC_DB_LWRD);
1584	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1585		    ER_DZ_MC_DB_HWRD);
1586}
1587
1588static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1589{
1590	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1591	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1592
1593	rmb();
1594	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1595}
1596
1597static void
1598efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1599			    size_t offset, size_t outlen)
1600{
1601	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1602	const u8 *pdu = nic_data->mcdi_buf.addr;
1603
1604	memcpy(outbuf, pdu + offset, outlen);
1605}
1606
1607static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1608{
1609	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1610
1611	/* All our allocations have been reset */
1612	efx_ef10_reset_mc_allocations(efx);
1613
1614	/* The datapath firmware might have been changed */
1615	nic_data->must_check_datapath_caps = true;
1616
1617	/* MAC statistics have been cleared on the NIC; clear the local
1618	 * statistic that we update with efx_update_diff_stat().
1619	 */
1620	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1621}
1622
1623static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1624{
1625	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1626	int rc;
1627
1628	rc = efx_ef10_get_warm_boot_count(efx);
1629	if (rc < 0) {
1630		/* The firmware is presumably in the process of
1631		 * rebooting.  However, we are supposed to report each
1632		 * reboot just once, so we must only do that once we
1633		 * can read and store the updated warm boot count.
1634		 */
1635		return 0;
1636	}
1637
1638	if (rc == nic_data->warm_boot_count)
1639		return 0;
1640
1641	nic_data->warm_boot_count = rc;
1642	efx_ef10_mcdi_reboot_detected(efx);
 
 
 
 
 
 
 
 
 
 
1643
1644	return -EIO;
1645}
1646
1647/* Handle an MSI interrupt
1648 *
1649 * Handle an MSI hardware interrupt.  This routine schedules event
1650 * queue processing.  No interrupt acknowledgement cycle is necessary.
1651 * Also, we never need to check that the interrupt is for us, since
1652 * MSI interrupts cannot be shared.
1653 */
1654static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1655{
1656	struct efx_msi_context *context = dev_id;
1657	struct efx_nic *efx = context->efx;
1658
1659	netif_vdbg(efx, intr, efx->net_dev,
1660		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1661
1662	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1663		/* Note test interrupts */
1664		if (context->index == efx->irq_level)
1665			efx->last_irq_cpu = raw_smp_processor_id();
1666
1667		/* Schedule processing of the channel */
1668		efx_schedule_channel_irq(efx->channel[context->index]);
1669	}
1670
1671	return IRQ_HANDLED;
1672}
1673
1674static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1675{
1676	struct efx_nic *efx = dev_id;
1677	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1678	struct efx_channel *channel;
1679	efx_dword_t reg;
1680	u32 queues;
1681
1682	/* Read the ISR which also ACKs the interrupts */
1683	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1684	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1685
1686	if (queues == 0)
1687		return IRQ_NONE;
1688
1689	if (likely(soft_enabled)) {
1690		/* Note test interrupts */
1691		if (queues & (1U << efx->irq_level))
1692			efx->last_irq_cpu = raw_smp_processor_id();
1693
1694		efx_for_each_channel(channel, efx) {
1695			if (queues & 1)
1696				efx_schedule_channel_irq(channel);
1697			queues >>= 1;
1698		}
1699	}
1700
1701	netif_vdbg(efx, intr, efx->net_dev,
1702		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1703		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1704
1705	return IRQ_HANDLED;
1706}
1707
1708static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1709{
1710	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1711
1712	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1713
1714	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1715	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1716			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1717}
1718
1719static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1720{
1721	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1722				    (tx_queue->ptr_mask + 1) *
1723				    sizeof(efx_qword_t),
1724				    GFP_KERNEL);
1725}
1726
1727/* This writes to the TX_DESC_WPTR and also pushes data */
1728static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1729					 const efx_qword_t *txd)
1730{
1731	unsigned int write_ptr;
1732	efx_oword_t reg;
1733
1734	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1735	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1736	reg.qword[0] = *txd;
1737	efx_writeo_page(tx_queue->efx, &reg,
1738			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1739}
1740
1741static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1742{
1743	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1744						       EFX_BUF_SIZE));
 
1745	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1746	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1747	struct efx_channel *channel = tx_queue->channel;
1748	struct efx_nic *efx = tx_queue->efx;
1749	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1750	size_t inlen;
1751	dma_addr_t dma_addr;
1752	efx_qword_t *txd;
1753	int rc;
1754	int i;
1755	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1756
1757	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1758	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1759	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1760	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1761	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1762			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1763			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1764	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1765	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1766
1767	dma_addr = tx_queue->txd.buf.dma_addr;
1768
1769	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1770		  tx_queue->queue, entries, (u64)dma_addr);
1771
1772	for (i = 0; i < entries; ++i) {
1773		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1774		dma_addr += EFX_BUF_SIZE;
1775	}
1776
1777	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1778
1779	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1780			  NULL, 0, NULL);
1781	if (rc)
1782		goto fail;
1783
1784	/* A previous user of this TX queue might have set us up the
1785	 * bomb by writing a descriptor to the TX push collector but
1786	 * not the doorbell.  (Each collector belongs to a port, not a
1787	 * queue or function, so cannot easily be reset.)  We must
1788	 * attempt to push a no-op descriptor in its place.
1789	 */
1790	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1791	tx_queue->insert_count = 1;
1792	txd = efx_tx_desc(tx_queue, 0);
1793	EFX_POPULATE_QWORD_4(*txd,
1794			     ESF_DZ_TX_DESC_IS_OPT, true,
1795			     ESF_DZ_TX_OPTION_TYPE,
1796			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1797			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1798			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1799	tx_queue->write_count = 1;
1800
1801	if (nic_data->datapath_caps &
1802	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
1803		tx_queue->tso_version = 1;
1804	}
1805
1806	wmb();
1807	efx_ef10_push_tx_desc(tx_queue, txd);
1808
1809	return;
1810
1811fail:
1812	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1813		    tx_queue->queue);
1814}
1815
1816static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1817{
1818	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1819	MCDI_DECLARE_BUF_ERR(outbuf);
1820	struct efx_nic *efx = tx_queue->efx;
1821	size_t outlen;
1822	int rc;
1823
1824	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1825		       tx_queue->queue);
1826
1827	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1828			  outbuf, sizeof(outbuf), &outlen);
1829
1830	if (rc && rc != -EALREADY)
1831		goto fail;
1832
1833	return;
1834
1835fail:
1836	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1837			       outbuf, outlen, rc);
1838}
1839
1840static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1841{
1842	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1843}
1844
1845/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1846static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1847{
1848	unsigned int write_ptr;
1849	efx_dword_t reg;
1850
1851	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1852	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1853	efx_writed_page(tx_queue->efx, &reg,
1854			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1855}
1856
1857static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1858{
1859	unsigned int old_write_count = tx_queue->write_count;
1860	struct efx_tx_buffer *buffer;
1861	unsigned int write_ptr;
1862	efx_qword_t *txd;
1863
1864	tx_queue->xmit_more_available = false;
1865	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1866		return;
1867
1868	do {
1869		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1870		buffer = &tx_queue->buffer[write_ptr];
1871		txd = efx_tx_desc(tx_queue, write_ptr);
1872		++tx_queue->write_count;
1873
1874		/* Create TX descriptor ring entry */
1875		if (buffer->flags & EFX_TX_BUF_OPTION) {
1876			*txd = buffer->option;
1877		} else {
1878			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1879			EFX_POPULATE_QWORD_3(
1880				*txd,
1881				ESF_DZ_TX_KER_CONT,
1882				buffer->flags & EFX_TX_BUF_CONT,
1883				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1884				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1885		}
1886	} while (tx_queue->write_count != tx_queue->insert_count);
1887
1888	wmb(); /* Ensure descriptors are written before they are fetched */
1889
1890	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1891		txd = efx_tx_desc(tx_queue,
1892				  old_write_count & tx_queue->ptr_mask);
1893		efx_ef10_push_tx_desc(tx_queue, txd);
1894		++tx_queue->pushes;
1895	} else {
1896		efx_ef10_notify_tx_desc(tx_queue);
1897	}
1898}
1899
1900static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1901				      bool exclusive, unsigned *context_size)
1902{
1903	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1904	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1905	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1906	size_t outlen;
1907	int rc;
1908	u32 alloc_type = exclusive ?
1909				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1910				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1911	unsigned rss_spread = exclusive ?
1912				efx->rss_spread :
1913				min(rounddown_pow_of_two(efx->rss_spread),
1914				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1915
1916	if (!exclusive && rss_spread == 1) {
1917		*context = EFX_EF10_RSS_CONTEXT_INVALID;
1918		if (context_size)
1919			*context_size = 1;
1920		return 0;
1921	}
1922
1923	if (nic_data->datapath_caps &
1924	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
1925		return -EOPNOTSUPP;
1926
1927	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1928		       nic_data->vport_id);
1929	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1930	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
 
 
1931
1932	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1933		outbuf, sizeof(outbuf), &outlen);
1934	if (rc != 0)
1935		return rc;
1936
1937	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1938		return -EIO;
1939
1940	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1941
1942	if (context_size)
1943		*context_size = rss_spread;
1944
1945	return 0;
1946}
1947
1948static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1949{
1950	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1951	int rc;
1952
1953	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1954		       context);
1955
1956	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1957			    NULL, 0, NULL);
1958	WARN_ON(rc != 0);
1959}
1960
1961static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1962				       const u32 *rx_indir_table)
1963{
1964	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1965	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1966	int i, rc;
1967
1968	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1969		       context);
1970	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1971		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1972
1973	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1974		MCDI_PTR(tablebuf,
1975			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1976				(u8) rx_indir_table[i];
1977
1978	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1979			  sizeof(tablebuf), NULL, 0, NULL);
1980	if (rc != 0)
1981		return rc;
1982
1983	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1984		       context);
1985	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1986		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1987	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1988		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1989			efx->rx_hash_key[i];
1990
1991	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1992			    sizeof(keybuf), NULL, 0, NULL);
1993}
1994
1995static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1996{
1997	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1998
1999	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2000		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2001	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2002}
2003
2004static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2005					      unsigned *context_size)
2006{
2007	u32 new_rx_rss_context;
2008	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2009	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2010					    false, context_size);
2011
2012	if (rc != 0)
2013		return rc;
2014
2015	nic_data->rx_rss_context = new_rx_rss_context;
2016	nic_data->rx_rss_context_exclusive = false;
2017	efx_set_default_rx_indir_table(efx);
2018	return 0;
2019}
2020
2021static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2022						 const u32 *rx_indir_table)
2023{
2024	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2025	int rc;
2026	u32 new_rx_rss_context;
2027
2028	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2029	    !nic_data->rx_rss_context_exclusive) {
2030		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2031						true, NULL);
2032		if (rc == -EOPNOTSUPP)
2033			return rc;
2034		else if (rc != 0)
2035			goto fail1;
2036	} else {
2037		new_rx_rss_context = nic_data->rx_rss_context;
2038	}
2039
2040	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2041					 rx_indir_table);
2042	if (rc != 0)
2043		goto fail2;
2044
2045	if (nic_data->rx_rss_context != new_rx_rss_context)
2046		efx_ef10_rx_free_indir_table(efx);
2047	nic_data->rx_rss_context = new_rx_rss_context;
2048	nic_data->rx_rss_context_exclusive = true;
2049	if (rx_indir_table != efx->rx_indir_table)
2050		memcpy(efx->rx_indir_table, rx_indir_table,
2051		       sizeof(efx->rx_indir_table));
2052	return 0;
2053
2054fail2:
2055	if (new_rx_rss_context != nic_data->rx_rss_context)
2056		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2057fail1:
2058	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2059	return rc;
2060}
2061
2062static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2063					  const u32 *rx_indir_table)
2064{
2065	int rc;
2066
2067	if (efx->rss_spread == 1)
2068		return 0;
2069
2070	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2071
2072	if (rc == -ENOBUFS && !user) {
2073		unsigned context_size;
2074		bool mismatch = false;
2075		size_t i;
2076
2077		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2078		     i++)
2079			mismatch = rx_indir_table[i] !=
2080				ethtool_rxfh_indir_default(i, efx->rss_spread);
2081
2082		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2083		if (rc == 0) {
2084			if (context_size != efx->rss_spread)
2085				netif_warn(efx, probe, efx->net_dev,
2086					   "Could not allocate an exclusive RSS"
2087					   " context; allocated a shared one of"
2088					   " different size."
2089					   " Wanted %u, got %u.\n",
2090					   efx->rss_spread, context_size);
2091			else if (mismatch)
2092				netif_warn(efx, probe, efx->net_dev,
2093					   "Could not allocate an exclusive RSS"
2094					   " context; allocated a shared one but"
2095					   " could not apply custom"
2096					   " indirection.\n");
2097			else
2098				netif_info(efx, probe, efx->net_dev,
2099					   "Could not allocate an exclusive RSS"
2100					   " context; allocated a shared one.\n");
2101		}
2102	}
2103	return rc;
2104}
2105
2106static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2107					  const u32 *rx_indir_table
2108					  __attribute__ ((unused)))
2109{
2110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2111
2112	if (user)
2113		return -EOPNOTSUPP;
2114	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2115		return 0;
2116	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2117}
2118
2119static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2120{
2121	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2122				    (rx_queue->ptr_mask + 1) *
2123				    sizeof(efx_qword_t),
2124				    GFP_KERNEL);
2125}
2126
2127static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2128{
2129	MCDI_DECLARE_BUF(inbuf,
2130			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2131						EFX_BUF_SIZE));
 
2132	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2133	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2134	struct efx_nic *efx = rx_queue->efx;
2135	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2136	size_t inlen;
2137	dma_addr_t dma_addr;
2138	int rc;
2139	int i;
2140	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2141
2142	rx_queue->scatter_n = 0;
2143	rx_queue->scatter_len = 0;
2144
2145	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2146	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2147	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2148	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2149		       efx_rx_queue_index(rx_queue));
2150	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2151			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2152			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2153	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2154	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2155
2156	dma_addr = rx_queue->rxd.buf.dma_addr;
2157
2158	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2159		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2160
2161	for (i = 0; i < entries; ++i) {
2162		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2163		dma_addr += EFX_BUF_SIZE;
2164	}
2165
2166	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2167
2168	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2169			  NULL, 0, NULL);
2170	if (rc)
2171		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2172			    efx_rx_queue_index(rx_queue));
2173}
2174
2175static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2176{
2177	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2178	MCDI_DECLARE_BUF_ERR(outbuf);
2179	struct efx_nic *efx = rx_queue->efx;
2180	size_t outlen;
2181	int rc;
2182
2183	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2184		       efx_rx_queue_index(rx_queue));
2185
2186	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2187			  outbuf, sizeof(outbuf), &outlen);
2188
2189	if (rc && rc != -EALREADY)
2190		goto fail;
2191
2192	return;
2193
2194fail:
2195	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2196			       outbuf, outlen, rc);
2197}
2198
2199static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2200{
2201	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2202}
2203
2204/* This creates an entry in the RX descriptor queue */
2205static inline void
2206efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2207{
2208	struct efx_rx_buffer *rx_buf;
2209	efx_qword_t *rxd;
2210
2211	rxd = efx_rx_desc(rx_queue, index);
2212	rx_buf = efx_rx_buffer(rx_queue, index);
2213	EFX_POPULATE_QWORD_2(*rxd,
2214			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2215			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2216}
2217
2218static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2219{
2220	struct efx_nic *efx = rx_queue->efx;
2221	unsigned int write_count;
2222	efx_dword_t reg;
2223
2224	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2225	write_count = rx_queue->added_count & ~7;
2226	if (rx_queue->notified_count == write_count)
2227		return;
2228
2229	do
2230		efx_ef10_build_rx_desc(
2231			rx_queue,
2232			rx_queue->notified_count & rx_queue->ptr_mask);
2233	while (++rx_queue->notified_count != write_count);
2234
2235	wmb();
2236	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2237			     write_count & rx_queue->ptr_mask);
2238	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2239			efx_rx_queue_index(rx_queue));
2240}
2241
2242static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2243
2244static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2245{
2246	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2247	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2248	efx_qword_t event;
2249
2250	EFX_POPULATE_QWORD_2(event,
2251			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2252			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2253
2254	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2255
2256	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2257	 * already swapped the data to little-endian order.
2258	 */
2259	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2260	       sizeof(efx_qword_t));
2261
2262	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2263			   inbuf, sizeof(inbuf), 0,
2264			   efx_ef10_rx_defer_refill_complete, 0);
2265}
2266
2267static void
2268efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2269				  int rc, efx_dword_t *outbuf,
2270				  size_t outlen_actual)
2271{
2272	/* nothing to do */
2273}
2274
2275static int efx_ef10_ev_probe(struct efx_channel *channel)
2276{
2277	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2278				    (channel->eventq_mask + 1) *
2279				    sizeof(efx_qword_t),
2280				    GFP_KERNEL);
2281}
2282
2283static void efx_ef10_ev_fini(struct efx_channel *channel)
2284{
2285	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2286	MCDI_DECLARE_BUF_ERR(outbuf);
2287	struct efx_nic *efx = channel->efx;
2288	size_t outlen;
2289	int rc;
2290
2291	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2292
2293	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2294			  outbuf, sizeof(outbuf), &outlen);
2295
2296	if (rc && rc != -EALREADY)
2297		goto fail;
2298
2299	return;
2300
2301fail:
2302	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2303			       outbuf, outlen, rc);
2304}
2305
2306static int efx_ef10_ev_init(struct efx_channel *channel)
2307{
2308	MCDI_DECLARE_BUF(inbuf,
2309			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2310						EFX_BUF_SIZE));
2311	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2312	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2313	struct efx_nic *efx = channel->efx;
2314	struct efx_ef10_nic_data *nic_data;
2315	bool supports_rx_merge;
2316	size_t inlen, outlen;
2317	unsigned int enabled, implemented;
2318	dma_addr_t dma_addr;
2319	int rc;
2320	int i;
2321
2322	nic_data = efx->nic_data;
2323	supports_rx_merge =
2324		!!(nic_data->datapath_caps &
2325		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2326
2327	/* Fill event queue with all ones (i.e. empty events) */
2328	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2329
2330	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2331	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2332	/* INIT_EVQ expects index in vector table, not absolute */
2333	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2334	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2335			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2336			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2337			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2338			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2339	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2340		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2341	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2342	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2343	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2344		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2345	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2346
2347	dma_addr = channel->eventq.buf.dma_addr;
2348	for (i = 0; i < entries; ++i) {
2349		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2350		dma_addr += EFX_BUF_SIZE;
2351	}
2352
2353	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2354
2355	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2356			  outbuf, sizeof(outbuf), &outlen);
2357	/* IRQ return is ignored */
2358	if (channel->channel || rc)
2359		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361	/* Successfully created event queue on channel 0 */
2362	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2363	if (rc == -ENOSYS) {
2364		/* GET_WORKAROUNDS was implemented before the bug26807
2365		 * workaround, thus the latter must be unavailable in this fw
2366		 */
2367		nic_data->workaround_26807 = false;
2368		rc = 0;
2369	} else if (rc) {
2370		goto fail;
2371	} else {
2372		nic_data->workaround_26807 =
2373			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2374
2375		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2376		    !nic_data->workaround_26807) {
2377			unsigned int flags;
2378
2379			rc = efx_mcdi_set_workaround(efx,
2380						     MC_CMD_WORKAROUND_BUG26807,
2381						     true, &flags);
2382
2383			if (!rc) {
2384				if (flags &
2385				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2386					netif_info(efx, drv, efx->net_dev,
2387						   "other functions on NIC have been reset\n");
2388
2389					/* With MCFW v4.6.x and earlier, the
2390					 * boot count will have incremented,
2391					 * so re-read the warm_boot_count
2392					 * value now to ensure this function
2393					 * doesn't think it has changed next
2394					 * time it checks.
2395					 */
2396					rc = efx_ef10_get_warm_boot_count(efx);
2397					if (rc >= 0) {
2398						nic_data->warm_boot_count = rc;
2399						rc = 0;
2400					}
2401				}
2402				nic_data->workaround_26807 = true;
2403			} else if (rc == -EPERM) {
2404				rc = 0;
2405			}
2406		}
2407	}
2408
2409	if (!rc)
2410		return 0;
2411
2412fail:
2413	efx_ef10_ev_fini(channel);
2414	return rc;
2415}
2416
2417static void efx_ef10_ev_remove(struct efx_channel *channel)
2418{
2419	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2420}
2421
2422static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2423					   unsigned int rx_queue_label)
2424{
2425	struct efx_nic *efx = rx_queue->efx;
2426
2427	netif_info(efx, hw, efx->net_dev,
2428		   "rx event arrived on queue %d labeled as queue %u\n",
2429		   efx_rx_queue_index(rx_queue), rx_queue_label);
2430
2431	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2432}
2433
2434static void
2435efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2436			     unsigned int actual, unsigned int expected)
2437{
2438	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2439	struct efx_nic *efx = rx_queue->efx;
2440
2441	netif_info(efx, hw, efx->net_dev,
2442		   "dropped %d events (index=%d expected=%d)\n",
2443		   dropped, actual, expected);
2444
2445	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2446}
2447
2448/* partially received RX was aborted. clean up. */
2449static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2450{
2451	unsigned int rx_desc_ptr;
2452
2453	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2454		  "scattered RX aborted (dropping %u buffers)\n",
2455		  rx_queue->scatter_n);
2456
2457	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2458
2459	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2460		      0, EFX_RX_PKT_DISCARD);
2461
2462	rx_queue->removed_count += rx_queue->scatter_n;
2463	rx_queue->scatter_n = 0;
2464	rx_queue->scatter_len = 0;
2465	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2466}
2467
2468static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2469				    const efx_qword_t *event)
2470{
2471	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2472	unsigned int n_descs, n_packets, i;
2473	struct efx_nic *efx = channel->efx;
2474	struct efx_rx_queue *rx_queue;
2475	bool rx_cont;
2476	u16 flags = 0;
2477
2478	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2479		return 0;
2480
2481	/* Basic packet information */
2482	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2483	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2484	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2485	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2486	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2487
2488	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2489		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2490			    EFX_QWORD_FMT "\n",
2491			    EFX_QWORD_VAL(*event));
2492
2493	rx_queue = efx_channel_get_rx_queue(channel);
2494
2495	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2496		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2497
2498	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2499		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2500
2501	if (n_descs != rx_queue->scatter_n + 1) {
2502		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2503
2504		/* detect rx abort */
2505		if (unlikely(n_descs == rx_queue->scatter_n)) {
2506			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2507				netdev_WARN(efx->net_dev,
2508					    "invalid RX abort: scatter_n=%u event="
2509					    EFX_QWORD_FMT "\n",
2510					    rx_queue->scatter_n,
2511					    EFX_QWORD_VAL(*event));
2512			efx_ef10_handle_rx_abort(rx_queue);
2513			return 0;
2514		}
2515
2516		/* Check that RX completion merging is valid, i.e.
2517		 * the current firmware supports it and this is a
2518		 * non-scattered packet.
2519		 */
2520		if (!(nic_data->datapath_caps &
2521		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2522		    rx_queue->scatter_n != 0 || rx_cont) {
2523			efx_ef10_handle_rx_bad_lbits(
2524				rx_queue, next_ptr_lbits,
2525				(rx_queue->removed_count +
2526				 rx_queue->scatter_n + 1) &
2527				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2528			return 0;
2529		}
2530
2531		/* Merged completion for multiple non-scattered packets */
2532		rx_queue->scatter_n = 1;
2533		rx_queue->scatter_len = 0;
2534		n_packets = n_descs;
2535		++channel->n_rx_merge_events;
2536		channel->n_rx_merge_packets += n_packets;
2537		flags |= EFX_RX_PKT_PREFIX_LEN;
2538	} else {
2539		++rx_queue->scatter_n;
2540		rx_queue->scatter_len += rx_bytes;
2541		if (rx_cont)
2542			return 0;
2543		n_packets = 1;
2544	}
2545
2546	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2547		flags |= EFX_RX_PKT_DISCARD;
2548
2549	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2550		channel->n_rx_ip_hdr_chksum_err += n_packets;
2551	} else if (unlikely(EFX_QWORD_FIELD(*event,
2552					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2553		channel->n_rx_tcp_udp_chksum_err += n_packets;
2554	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2555		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2556		flags |= EFX_RX_PKT_CSUMMED;
2557	}
2558
2559	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2560		flags |= EFX_RX_PKT_TCP;
2561
2562	channel->irq_mod_score += 2 * n_packets;
2563
2564	/* Handle received packet(s) */
2565	for (i = 0; i < n_packets; i++) {
2566		efx_rx_packet(rx_queue,
2567			      rx_queue->removed_count & rx_queue->ptr_mask,
2568			      rx_queue->scatter_n, rx_queue->scatter_len,
2569			      flags);
2570		rx_queue->removed_count += rx_queue->scatter_n;
2571	}
2572
2573	rx_queue->scatter_n = 0;
2574	rx_queue->scatter_len = 0;
2575
2576	return n_packets;
2577}
2578
2579static int
2580efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2581{
2582	struct efx_nic *efx = channel->efx;
2583	struct efx_tx_queue *tx_queue;
2584	unsigned int tx_ev_desc_ptr;
2585	unsigned int tx_ev_q_label;
2586	int tx_descs = 0;
2587
2588	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2589		return 0;
2590
2591	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2592		return 0;
2593
2594	/* Transmit completion */
2595	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2596	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2597	tx_queue = efx_channel_get_tx_queue(channel,
2598					    tx_ev_q_label % EFX_TXQ_TYPES);
2599	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2600		    tx_queue->ptr_mask);
2601	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2602
2603	return tx_descs;
2604}
2605
2606static void
2607efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2608{
2609	struct efx_nic *efx = channel->efx;
2610	int subcode;
2611
2612	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2613
2614	switch (subcode) {
2615	case ESE_DZ_DRV_TIMER_EV:
2616	case ESE_DZ_DRV_WAKE_UP_EV:
2617		break;
2618	case ESE_DZ_DRV_START_UP_EV:
2619		/* event queue init complete. ok. */
2620		break;
2621	default:
2622		netif_err(efx, hw, efx->net_dev,
2623			  "channel %d unknown driver event type %d"
2624			  " (data " EFX_QWORD_FMT ")\n",
2625			  channel->channel, subcode,
2626			  EFX_QWORD_VAL(*event));
2627
2628	}
2629}
2630
2631static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2632						   efx_qword_t *event)
2633{
2634	struct efx_nic *efx = channel->efx;
2635	u32 subcode;
2636
2637	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2638
2639	switch (subcode) {
2640	case EFX_EF10_TEST:
2641		channel->event_test_cpu = raw_smp_processor_id();
2642		break;
2643	case EFX_EF10_REFILL:
2644		/* The queue must be empty, so we won't receive any rx
2645		 * events, so efx_process_channel() won't refill the
2646		 * queue. Refill it here
2647		 */
2648		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2649		break;
2650	default:
2651		netif_err(efx, hw, efx->net_dev,
2652			  "channel %d unknown driver event type %u"
2653			  " (data " EFX_QWORD_FMT ")\n",
2654			  channel->channel, (unsigned) subcode,
2655			  EFX_QWORD_VAL(*event));
2656	}
2657}
2658
2659static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2660{
2661	struct efx_nic *efx = channel->efx;
2662	efx_qword_t event, *p_event;
2663	unsigned int read_ptr;
2664	int ev_code;
2665	int tx_descs = 0;
2666	int spent = 0;
2667
2668	if (quota <= 0)
2669		return spent;
2670
2671	read_ptr = channel->eventq_read_ptr;
2672
2673	for (;;) {
2674		p_event = efx_event(channel, read_ptr);
2675		event = *p_event;
2676
2677		if (!efx_event_present(&event))
2678			break;
2679
2680		EFX_SET_QWORD(*p_event);
2681
2682		++read_ptr;
2683
2684		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2685
2686		netif_vdbg(efx, drv, efx->net_dev,
2687			   "processing event on %d " EFX_QWORD_FMT "\n",
2688			   channel->channel, EFX_QWORD_VAL(event));
2689
2690		switch (ev_code) {
2691		case ESE_DZ_EV_CODE_MCDI_EV:
2692			efx_mcdi_process_event(channel, &event);
2693			break;
2694		case ESE_DZ_EV_CODE_RX_EV:
2695			spent += efx_ef10_handle_rx_event(channel, &event);
2696			if (spent >= quota) {
2697				/* XXX can we split a merged event to
2698				 * avoid going over-quota?
2699				 */
2700				spent = quota;
2701				goto out;
2702			}
2703			break;
2704		case ESE_DZ_EV_CODE_TX_EV:
2705			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2706			if (tx_descs > efx->txq_entries) {
2707				spent = quota;
2708				goto out;
2709			} else if (++spent == quota) {
2710				goto out;
2711			}
2712			break;
2713		case ESE_DZ_EV_CODE_DRIVER_EV:
2714			efx_ef10_handle_driver_event(channel, &event);
2715			if (++spent == quota)
2716				goto out;
2717			break;
2718		case EFX_EF10_DRVGEN_EV:
2719			efx_ef10_handle_driver_generated_event(channel, &event);
2720			break;
2721		default:
2722			netif_err(efx, hw, efx->net_dev,
2723				  "channel %d unknown event type %d"
2724				  " (data " EFX_QWORD_FMT ")\n",
2725				  channel->channel, ev_code,
2726				  EFX_QWORD_VAL(event));
2727		}
2728	}
2729
2730out:
2731	channel->eventq_read_ptr = read_ptr;
2732	return spent;
2733}
2734
2735static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2736{
2737	struct efx_nic *efx = channel->efx;
2738	efx_dword_t rptr;
2739
2740	if (EFX_EF10_WORKAROUND_35388(efx)) {
2741		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2742			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2743		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2744			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2745
2746		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2747				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2748				     ERF_DD_EVQ_IND_RPTR,
2749				     (channel->eventq_read_ptr &
2750				      channel->eventq_mask) >>
2751				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2752		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2753				channel->channel);
2754		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2755				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2756				     ERF_DD_EVQ_IND_RPTR,
2757				     channel->eventq_read_ptr &
2758				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2759		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2760				channel->channel);
2761	} else {
2762		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2763				     channel->eventq_read_ptr &
2764				     channel->eventq_mask);
2765		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2766	}
2767}
2768
2769static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2770{
2771	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2772	struct efx_nic *efx = channel->efx;
2773	efx_qword_t event;
2774	int rc;
2775
2776	EFX_POPULATE_QWORD_2(event,
2777			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2778			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2779
2780	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2781
2782	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2783	 * already swapped the data to little-endian order.
2784	 */
2785	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2786	       sizeof(efx_qword_t));
2787
2788	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2789			  NULL, 0, NULL);
2790	if (rc != 0)
2791		goto fail;
2792
2793	return;
2794
2795fail:
2796	WARN_ON(true);
2797	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2798}
2799
2800void efx_ef10_handle_drain_event(struct efx_nic *efx)
2801{
2802	if (atomic_dec_and_test(&efx->active_queues))
2803		wake_up(&efx->flush_wq);
2804
2805	WARN_ON(atomic_read(&efx->active_queues) < 0);
2806}
2807
2808static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2809{
2810	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2811	struct efx_channel *channel;
2812	struct efx_tx_queue *tx_queue;
2813	struct efx_rx_queue *rx_queue;
2814	int pending;
2815
2816	/* If the MC has just rebooted, the TX/RX queues will have already been
2817	 * torn down, but efx->active_queues needs to be set to zero.
2818	 */
2819	if (nic_data->must_realloc_vis) {
2820		atomic_set(&efx->active_queues, 0);
2821		return 0;
2822	}
2823
2824	/* Do not attempt to write to the NIC during EEH recovery */
2825	if (efx->state != STATE_RECOVERY) {
2826		efx_for_each_channel(channel, efx) {
2827			efx_for_each_channel_rx_queue(rx_queue, channel)
2828				efx_ef10_rx_fini(rx_queue);
2829			efx_for_each_channel_tx_queue(tx_queue, channel)
2830				efx_ef10_tx_fini(tx_queue);
2831		}
2832
2833		wait_event_timeout(efx->flush_wq,
2834				   atomic_read(&efx->active_queues) == 0,
2835				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2836		pending = atomic_read(&efx->active_queues);
2837		if (pending) {
2838			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2839				  pending);
2840			return -ETIMEDOUT;
2841		}
2842	}
2843
2844	return 0;
2845}
2846
2847static void efx_ef10_prepare_flr(struct efx_nic *efx)
2848{
2849	atomic_set(&efx->active_queues, 0);
2850}
2851
2852static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2853				  const struct efx_filter_spec *right)
2854{
2855	if ((left->match_flags ^ right->match_flags) |
2856	    ((left->flags ^ right->flags) &
2857	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2858		return false;
2859
2860	return memcmp(&left->outer_vid, &right->outer_vid,
2861		      sizeof(struct efx_filter_spec) -
2862		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2863}
2864
2865static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2866{
2867	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2868	return jhash2((const u32 *)&spec->outer_vid,
2869		      (sizeof(struct efx_filter_spec) -
2870		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2871		      0);
2872	/* XXX should we randomise the initval? */
2873}
2874
2875/* Decide whether a filter should be exclusive or else should allow
2876 * delivery to additional recipients.  Currently we decide that
2877 * filters for specific local unicast MAC and IP addresses are
2878 * exclusive.
2879 */
2880static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2881{
2882	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2883	    !is_multicast_ether_addr(spec->loc_mac))
2884		return true;
2885
2886	if ((spec->match_flags &
2887	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2888	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2889		if (spec->ether_type == htons(ETH_P_IP) &&
2890		    !ipv4_is_multicast(spec->loc_host[0]))
2891			return true;
2892		if (spec->ether_type == htons(ETH_P_IPV6) &&
2893		    ((const u8 *)spec->loc_host)[0] != 0xff)
2894			return true;
2895	}
2896
2897	return false;
2898}
2899
2900static struct efx_filter_spec *
2901efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2902			   unsigned int filter_idx)
2903{
2904	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2905					  ~EFX_EF10_FILTER_FLAGS);
2906}
2907
2908static unsigned int
2909efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2910			   unsigned int filter_idx)
2911{
2912	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2913}
2914
2915static void
2916efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2917			  unsigned int filter_idx,
2918			  const struct efx_filter_spec *spec,
2919			  unsigned int flags)
2920{
2921	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2922}
2923
2924static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2925				      const struct efx_filter_spec *spec,
2926				      efx_dword_t *inbuf, u64 handle,
2927				      bool replacing)
2928{
2929	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2930	u32 flags = spec->flags;
2931
2932	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2933
2934	/* Remove RSS flag if we don't have an RSS context. */
2935	if (flags & EFX_FILTER_FLAG_RX_RSS &&
2936	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
2937	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2938		flags &= ~EFX_FILTER_FLAG_RX_RSS;
2939
2940	if (replacing) {
2941		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2942			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2943		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2944	} else {
2945		u32 match_fields = 0;
2946
2947		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2948			       efx_ef10_filter_is_exclusive(spec) ?
2949			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2950			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2951
2952		/* Convert match flags and values.  Unlike almost
2953		 * everything else in MCDI, these fields are in
2954		 * network byte order.
2955		 */
2956		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2957			match_fields |=
2958				is_multicast_ether_addr(spec->loc_mac) ?
2959				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2960				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2961#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2962		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2963			match_fields |=					     \
2964				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2965				mcdi_field ## _LBN;			     \
2966			BUILD_BUG_ON(					     \
2967				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2968				sizeof(spec->gen_field));		     \
2969			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2970			       &spec->gen_field, sizeof(spec->gen_field));   \
2971		}
2972		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2973		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2974		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2975		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2976		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2977		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2978		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2979		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2980		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2981		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2982#undef COPY_FIELD
2983		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2984			       match_fields);
2985	}
2986
2987	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2988	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2989		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2990		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2991		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2992	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2993	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2994		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2995	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2996		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2997		       0 : spec->dmaq_id);
2998	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2999		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3000		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3001		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3002	if (flags & EFX_FILTER_FLAG_RX_RSS)
3003		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3004			       spec->rss_context !=
3005			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3006			       spec->rss_context : nic_data->rx_rss_context);
3007}
3008
3009static int efx_ef10_filter_push(struct efx_nic *efx,
3010				const struct efx_filter_spec *spec,
3011				u64 *handle, bool replacing)
3012{
3013	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3014	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3015	int rc;
3016
3017	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3018	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3019			  outbuf, sizeof(outbuf), NULL);
3020	if (rc == 0)
3021		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3022	if (rc == -ENOSPC)
3023		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3024	return rc;
3025}
3026
3027static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
3028					enum efx_filter_match_flags match_flags)
3029{
3030	unsigned int match_pri;
3031
3032	for (match_pri = 0;
3033	     match_pri < table->rx_match_count;
3034	     match_pri++)
3035		if (table->rx_match_flags[match_pri] == match_flags)
3036			return match_pri;
3037
3038	return -EPROTONOSUPPORT;
3039}
3040
3041static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3042				  struct efx_filter_spec *spec,
3043				  bool replace_equal)
3044{
3045	struct efx_ef10_filter_table *table = efx->filter_state;
3046	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3047	struct efx_filter_spec *saved_spec;
3048	unsigned int match_pri, hash;
3049	unsigned int priv_flags;
3050	bool replacing = false;
3051	int ins_index = -1;
3052	DEFINE_WAIT(wait);
3053	bool is_mc_recip;
3054	s32 rc;
3055
3056	/* For now, only support RX filters */
3057	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3058	    EFX_FILTER_FLAG_RX)
3059		return -EINVAL;
3060
3061	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
3062	if (rc < 0)
3063		return rc;
3064	match_pri = rc;
3065
3066	hash = efx_ef10_filter_hash(spec);
3067	is_mc_recip = efx_filter_is_mc_recipient(spec);
3068	if (is_mc_recip)
3069		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3070
3071	/* Find any existing filters with the same match tuple or
3072	 * else a free slot to insert at.  If any of them are busy,
3073	 * we have to wait and retry.
3074	 */
3075	for (;;) {
3076		unsigned int depth = 1;
3077		unsigned int i;
3078
3079		spin_lock_bh(&efx->filter_lock);
3080
3081		for (;;) {
3082			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3083			saved_spec = efx_ef10_filter_entry_spec(table, i);
3084
3085			if (!saved_spec) {
3086				if (ins_index < 0)
3087					ins_index = i;
3088			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3089				if (table->entry[i].spec &
3090				    EFX_EF10_FILTER_FLAG_BUSY)
3091					break;
3092				if (spec->priority < saved_spec->priority &&
3093				    spec->priority != EFX_FILTER_PRI_AUTO) {
3094					rc = -EPERM;
3095					goto out_unlock;
3096				}
3097				if (!is_mc_recip) {
3098					/* This is the only one */
3099					if (spec->priority ==
3100					    saved_spec->priority &&
3101					    !replace_equal) {
3102						rc = -EEXIST;
3103						goto out_unlock;
3104					}
3105					ins_index = i;
3106					goto found;
3107				} else if (spec->priority >
3108					   saved_spec->priority ||
3109					   (spec->priority ==
3110					    saved_spec->priority &&
3111					    replace_equal)) {
3112					if (ins_index < 0)
3113						ins_index = i;
3114					else
3115						__set_bit(depth, mc_rem_map);
3116				}
3117			}
3118
3119			/* Once we reach the maximum search depth, use
3120			 * the first suitable slot or return -EBUSY if
3121			 * there was none
3122			 */
3123			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3124				if (ins_index < 0) {
3125					rc = -EBUSY;
3126					goto out_unlock;
3127				}
3128				goto found;
3129			}
3130
3131			++depth;
3132		}
3133
3134		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3135		spin_unlock_bh(&efx->filter_lock);
3136		schedule();
3137	}
3138
3139found:
3140	/* Create a software table entry if necessary, and mark it
3141	 * busy.  We might yet fail to insert, but any attempt to
3142	 * insert a conflicting filter while we're waiting for the
3143	 * firmware must find the busy entry.
3144	 */
3145	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3146	if (saved_spec) {
3147		if (spec->priority == EFX_FILTER_PRI_AUTO &&
3148		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3149			/* Just make sure it won't be removed */
3150			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3151				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3152			table->entry[ins_index].spec &=
3153				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3154			rc = ins_index;
3155			goto out_unlock;
3156		}
3157		replacing = true;
3158		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3159	} else {
3160		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3161		if (!saved_spec) {
3162			rc = -ENOMEM;
3163			goto out_unlock;
3164		}
3165		*saved_spec = *spec;
3166		priv_flags = 0;
3167	}
3168	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3169				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3170
3171	/* Mark lower-priority multicast recipients busy prior to removal */
3172	if (is_mc_recip) {
3173		unsigned int depth, i;
3174
3175		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3176			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3177			if (test_bit(depth, mc_rem_map))
3178				table->entry[i].spec |=
3179					EFX_EF10_FILTER_FLAG_BUSY;
3180		}
3181	}
3182
3183	spin_unlock_bh(&efx->filter_lock);
3184
3185	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3186				  replacing);
3187
3188	/* Finalise the software table entry */
3189	spin_lock_bh(&efx->filter_lock);
3190	if (rc == 0) {
3191		if (replacing) {
3192			/* Update the fields that may differ */
3193			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3194				saved_spec->flags |=
3195					EFX_FILTER_FLAG_RX_OVER_AUTO;
3196			saved_spec->priority = spec->priority;
3197			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3198			saved_spec->flags |= spec->flags;
3199			saved_spec->rss_context = spec->rss_context;
3200			saved_spec->dmaq_id = spec->dmaq_id;
3201		}
3202	} else if (!replacing) {
3203		kfree(saved_spec);
3204		saved_spec = NULL;
3205	}
3206	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3207
3208	/* Remove and finalise entries for lower-priority multicast
3209	 * recipients
3210	 */
3211	if (is_mc_recip) {
3212		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3213		unsigned int depth, i;
3214
3215		memset(inbuf, 0, sizeof(inbuf));
3216
3217		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3218			if (!test_bit(depth, mc_rem_map))
3219				continue;
3220
3221			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3222			saved_spec = efx_ef10_filter_entry_spec(table, i);
3223			priv_flags = efx_ef10_filter_entry_flags(table, i);
3224
3225			if (rc == 0) {
3226				spin_unlock_bh(&efx->filter_lock);
3227				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3228					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3229				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3230					       table->entry[i].handle);
3231				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3232						  inbuf, sizeof(inbuf),
3233						  NULL, 0, NULL);
3234				spin_lock_bh(&efx->filter_lock);
3235			}
3236
3237			if (rc == 0) {
3238				kfree(saved_spec);
3239				saved_spec = NULL;
3240				priv_flags = 0;
3241			} else {
3242				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3243			}
3244			efx_ef10_filter_set_entry(table, i, saved_spec,
3245						  priv_flags);
3246		}
3247	}
3248
3249	/* If successful, return the inserted filter ID */
3250	if (rc == 0)
3251		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3252
3253	wake_up_all(&table->waitq);
3254out_unlock:
3255	spin_unlock_bh(&efx->filter_lock);
3256	finish_wait(&table->waitq, &wait);
3257	return rc;
3258}
3259
3260static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3261{
3262	/* no need to do anything here on EF10 */
3263}
3264
3265/* Remove a filter.
3266 * If !by_index, remove by ID
3267 * If by_index, remove by index
3268 * Filter ID may come from userland and must be range-checked.
3269 */
3270static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3271					   unsigned int priority_mask,
3272					   u32 filter_id, bool by_index)
3273{
3274	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3275	struct efx_ef10_filter_table *table = efx->filter_state;
3276	MCDI_DECLARE_BUF(inbuf,
3277			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3278			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3279	struct efx_filter_spec *spec;
3280	DEFINE_WAIT(wait);
3281	int rc;
3282
3283	/* Find the software table entry and mark it busy.  Don't
3284	 * remove it yet; any attempt to update while we're waiting
3285	 * for the firmware must find the busy entry.
3286	 */
3287	for (;;) {
3288		spin_lock_bh(&efx->filter_lock);
3289		if (!(table->entry[filter_idx].spec &
3290		      EFX_EF10_FILTER_FLAG_BUSY))
3291			break;
3292		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3293		spin_unlock_bh(&efx->filter_lock);
3294		schedule();
3295	}
3296
3297	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3298	if (!spec ||
3299	    (!by_index &&
3300	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3301	     filter_id / HUNT_FILTER_TBL_ROWS)) {
3302		rc = -ENOENT;
3303		goto out_unlock;
3304	}
3305
3306	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3307	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3308		/* Just remove flags */
3309		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3310		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3311		rc = 0;
3312		goto out_unlock;
3313	}
3314
3315	if (!(priority_mask & (1U << spec->priority))) {
3316		rc = -ENOENT;
3317		goto out_unlock;
3318	}
3319
3320	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3321	spin_unlock_bh(&efx->filter_lock);
3322
3323	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3324		/* Reset to an automatic filter */
3325
3326		struct efx_filter_spec new_spec = *spec;
3327
3328		new_spec.priority = EFX_FILTER_PRI_AUTO;
3329		new_spec.flags = (EFX_FILTER_FLAG_RX |
3330				  (efx_rss_enabled(efx) ?
3331				   EFX_FILTER_FLAG_RX_RSS : 0));
3332		new_spec.dmaq_id = 0;
3333		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3334		rc = efx_ef10_filter_push(efx, &new_spec,
3335					  &table->entry[filter_idx].handle,
3336					  true);
3337
3338		spin_lock_bh(&efx->filter_lock);
3339		if (rc == 0)
3340			*spec = new_spec;
3341	} else {
3342		/* Really remove the filter */
3343
3344		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3345			       efx_ef10_filter_is_exclusive(spec) ?
3346			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3347			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3348		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3349			       table->entry[filter_idx].handle);
3350		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3351				  inbuf, sizeof(inbuf), NULL, 0, NULL);
3352
3353		spin_lock_bh(&efx->filter_lock);
3354		if (rc == 0) {
3355			kfree(spec);
3356			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3357		}
3358	}
3359
3360	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3361	wake_up_all(&table->waitq);
3362out_unlock:
3363	spin_unlock_bh(&efx->filter_lock);
3364	finish_wait(&table->waitq, &wait);
3365	return rc;
3366}
3367
3368static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3369				       enum efx_filter_priority priority,
3370				       u32 filter_id)
3371{
3372	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3373					       filter_id, false);
3374}
3375
3376static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3377{
3378	return filter_id % HUNT_FILTER_TBL_ROWS;
3379}
3380
3381static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3382					 enum efx_filter_priority priority,
3383					 u32 filter_id)
3384{
3385	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3386					       filter_id, true);
3387}
3388
3389static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3390				    enum efx_filter_priority priority,
3391				    u32 filter_id, struct efx_filter_spec *spec)
3392{
3393	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3394	struct efx_ef10_filter_table *table = efx->filter_state;
3395	const struct efx_filter_spec *saved_spec;
3396	int rc;
3397
3398	spin_lock_bh(&efx->filter_lock);
3399	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3400	if (saved_spec && saved_spec->priority == priority &&
3401	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3402	    filter_id / HUNT_FILTER_TBL_ROWS) {
3403		*spec = *saved_spec;
3404		rc = 0;
3405	} else {
3406		rc = -ENOENT;
3407	}
3408	spin_unlock_bh(&efx->filter_lock);
3409	return rc;
3410}
3411
3412static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3413				     enum efx_filter_priority priority)
3414{
3415	unsigned int priority_mask;
3416	unsigned int i;
3417	int rc;
3418
3419	priority_mask = (((1U << (priority + 1)) - 1) &
3420			 ~(1U << EFX_FILTER_PRI_AUTO));
3421
3422	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3423		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3424						     i, true);
3425		if (rc && rc != -ENOENT)
3426			return rc;
3427	}
3428
3429	return 0;
3430}
3431
3432static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3433					 enum efx_filter_priority priority)
3434{
3435	struct efx_ef10_filter_table *table = efx->filter_state;
3436	unsigned int filter_idx;
3437	s32 count = 0;
3438
3439	spin_lock_bh(&efx->filter_lock);
3440	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3441		if (table->entry[filter_idx].spec &&
3442		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3443		    priority)
3444			++count;
3445	}
3446	spin_unlock_bh(&efx->filter_lock);
3447	return count;
3448}
3449
3450static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3451{
3452	struct efx_ef10_filter_table *table = efx->filter_state;
3453
3454	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3455}
3456
3457static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3458				      enum efx_filter_priority priority,
3459				      u32 *buf, u32 size)
3460{
3461	struct efx_ef10_filter_table *table = efx->filter_state;
3462	struct efx_filter_spec *spec;
3463	unsigned int filter_idx;
3464	s32 count = 0;
3465
3466	spin_lock_bh(&efx->filter_lock);
3467	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3468		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3469		if (spec && spec->priority == priority) {
3470			if (count == size) {
3471				count = -EMSGSIZE;
3472				break;
3473			}
3474			buf[count++] = (efx_ef10_filter_rx_match_pri(
3475						table, spec->match_flags) *
3476					HUNT_FILTER_TBL_ROWS +
3477					filter_idx);
3478		}
3479	}
3480	spin_unlock_bh(&efx->filter_lock);
3481	return count;
3482}
3483
3484#ifdef CONFIG_RFS_ACCEL
3485
3486static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3487
3488static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3489				      struct efx_filter_spec *spec)
3490{
3491	struct efx_ef10_filter_table *table = efx->filter_state;
3492	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3493	struct efx_filter_spec *saved_spec;
3494	unsigned int hash, i, depth = 1;
3495	bool replacing = false;
3496	int ins_index = -1;
3497	u64 cookie;
3498	s32 rc;
3499
3500	/* Must be an RX filter without RSS and not for a multicast
3501	 * destination address (RFS only works for connected sockets).
3502	 * These restrictions allow us to pass only a tiny amount of
3503	 * data through to the completion function.
3504	 */
3505	EFX_WARN_ON_PARANOID(spec->flags !=
3506			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3507	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3508	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3509
3510	hash = efx_ef10_filter_hash(spec);
3511
3512	spin_lock_bh(&efx->filter_lock);
3513
3514	/* Find any existing filter with the same match tuple or else
3515	 * a free slot to insert at.  If an existing filter is busy,
3516	 * we have to give up.
3517	 */
3518	for (;;) {
3519		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3520		saved_spec = efx_ef10_filter_entry_spec(table, i);
3521
3522		if (!saved_spec) {
3523			if (ins_index < 0)
3524				ins_index = i;
3525		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3526			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3527				rc = -EBUSY;
3528				goto fail_unlock;
3529			}
3530			if (spec->priority < saved_spec->priority) {
3531				rc = -EPERM;
3532				goto fail_unlock;
3533			}
3534			ins_index = i;
3535			break;
3536		}
3537
3538		/* Once we reach the maximum search depth, use the
3539		 * first suitable slot or return -EBUSY if there was
3540		 * none
3541		 */
3542		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3543			if (ins_index < 0) {
3544				rc = -EBUSY;
3545				goto fail_unlock;
3546			}
3547			break;
3548		}
3549
3550		++depth;
3551	}
3552
3553	/* Create a software table entry if necessary, and mark it
3554	 * busy.  We might yet fail to insert, but any attempt to
3555	 * insert a conflicting filter while we're waiting for the
3556	 * firmware must find the busy entry.
3557	 */
3558	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3559	if (saved_spec) {
3560		replacing = true;
3561	} else {
3562		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3563		if (!saved_spec) {
3564			rc = -ENOMEM;
3565			goto fail_unlock;
3566		}
3567		*saved_spec = *spec;
3568	}
3569	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3570				  EFX_EF10_FILTER_FLAG_BUSY);
3571
3572	spin_unlock_bh(&efx->filter_lock);
3573
3574	/* Pack up the variables needed on completion */
3575	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3576
3577	efx_ef10_filter_push_prep(efx, spec, inbuf,
3578				  table->entry[ins_index].handle, replacing);
3579	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3580			   MC_CMD_FILTER_OP_OUT_LEN,
3581			   efx_ef10_filter_rfs_insert_complete, cookie);
3582
3583	return ins_index;
3584
3585fail_unlock:
3586	spin_unlock_bh(&efx->filter_lock);
3587	return rc;
3588}
3589
3590static void
3591efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3592				    int rc, efx_dword_t *outbuf,
3593				    size_t outlen_actual)
3594{
3595	struct efx_ef10_filter_table *table = efx->filter_state;
3596	unsigned int ins_index, dmaq_id;
3597	struct efx_filter_spec *spec;
3598	bool replacing;
3599
3600	/* Unpack the cookie */
3601	replacing = cookie >> 31;
3602	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3603	dmaq_id = cookie & 0xffff;
3604
3605	spin_lock_bh(&efx->filter_lock);
3606	spec = efx_ef10_filter_entry_spec(table, ins_index);
3607	if (rc == 0) {
3608		table->entry[ins_index].handle =
3609			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3610		if (replacing)
3611			spec->dmaq_id = dmaq_id;
3612	} else if (!replacing) {
3613		kfree(spec);
3614		spec = NULL;
3615	}
3616	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3617	spin_unlock_bh(&efx->filter_lock);
3618
3619	wake_up_all(&table->waitq);
3620}
3621
3622static void
3623efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3624				    unsigned long filter_idx,
3625				    int rc, efx_dword_t *outbuf,
3626				    size_t outlen_actual);
3627
3628static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3629					   unsigned int filter_idx)
3630{
3631	struct efx_ef10_filter_table *table = efx->filter_state;
3632	struct efx_filter_spec *spec =
3633		efx_ef10_filter_entry_spec(table, filter_idx);
3634	MCDI_DECLARE_BUF(inbuf,
3635			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3636			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3637
3638	if (!spec ||
3639	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3640	    spec->priority != EFX_FILTER_PRI_HINT ||
3641	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3642				 flow_id, filter_idx))
3643		return false;
3644
3645	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3646		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
3647	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3648		       table->entry[filter_idx].handle);
3649	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3650			       efx_ef10_filter_rfs_expire_complete, filter_idx))
3651		return false;
3652
3653	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3654	return true;
3655}
3656
3657static void
3658efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3659				    unsigned long filter_idx,
3660				    int rc, efx_dword_t *outbuf,
3661				    size_t outlen_actual)
3662{
3663	struct efx_ef10_filter_table *table = efx->filter_state;
3664	struct efx_filter_spec *spec =
3665		efx_ef10_filter_entry_spec(table, filter_idx);
3666
3667	spin_lock_bh(&efx->filter_lock);
3668	if (rc == 0) {
3669		kfree(spec);
3670		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3671	}
3672	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3673	wake_up_all(&table->waitq);
3674	spin_unlock_bh(&efx->filter_lock);
3675}
3676
3677#endif /* CONFIG_RFS_ACCEL */
3678
3679static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3680{
3681	int match_flags = 0;
3682
3683#define MAP_FLAG(gen_flag, mcdi_field) {				\
3684		u32 old_mcdi_flags = mcdi_flags;			\
3685		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
3686				mcdi_field ## _LBN);			\
3687		if (mcdi_flags != old_mcdi_flags)			\
3688			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
3689	}
3690	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3691	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3692	MAP_FLAG(REM_HOST, SRC_IP);
3693	MAP_FLAG(LOC_HOST, DST_IP);
3694	MAP_FLAG(REM_MAC, SRC_MAC);
3695	MAP_FLAG(REM_PORT, SRC_PORT);
3696	MAP_FLAG(LOC_MAC, DST_MAC);
3697	MAP_FLAG(LOC_PORT, DST_PORT);
3698	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3699	MAP_FLAG(INNER_VID, INNER_VLAN);
3700	MAP_FLAG(OUTER_VID, OUTER_VLAN);
3701	MAP_FLAG(IP_PROTO, IP_PROTO);
3702#undef MAP_FLAG
3703
3704	/* Did we map them all? */
3705	if (mcdi_flags)
3706		return -EINVAL;
3707
3708	return match_flags;
3709}
3710
3711static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3712{
3713	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3714	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3715	unsigned int pd_match_pri, pd_match_count;
3716	struct efx_ef10_filter_table *table;
3717	size_t outlen;
3718	int rc;
3719
3720	table = kzalloc(sizeof(*table), GFP_KERNEL);
3721	if (!table)
3722		return -ENOMEM;
3723
3724	/* Find out which RX filter types are supported, and their priorities */
3725	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3726		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3727	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3728			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3729			  &outlen);
3730	if (rc)
3731		goto fail;
3732	pd_match_count = MCDI_VAR_ARRAY_LEN(
3733		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3734	table->rx_match_count = 0;
3735
3736	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3737		u32 mcdi_flags =
3738			MCDI_ARRAY_DWORD(
3739				outbuf,
3740				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3741				pd_match_pri);
3742		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3743		if (rc < 0) {
3744			netif_dbg(efx, probe, efx->net_dev,
3745				  "%s: fw flags %#x pri %u not supported in driver\n",
3746				  __func__, mcdi_flags, pd_match_pri);
3747		} else {
3748			netif_dbg(efx, probe, efx->net_dev,
3749				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3750				  __func__, mcdi_flags, pd_match_pri,
3751				  rc, table->rx_match_count);
3752			table->rx_match_flags[table->rx_match_count++] = rc;
3753		}
3754	}
3755
3756	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3757	if (!table->entry) {
3758		rc = -ENOMEM;
3759		goto fail;
3760	}
3761
3762	table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3763	table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3764	table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3765
3766	efx->filter_state = table;
3767	init_waitqueue_head(&table->waitq);
3768	return 0;
3769
3770fail:
3771	kfree(table);
3772	return rc;
3773}
3774
3775/* Caller must hold efx->filter_sem for read if race against
3776 * efx_ef10_filter_table_remove() is possible
3777 */
3778static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3779{
3780	struct efx_ef10_filter_table *table = efx->filter_state;
3781	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3782	struct efx_filter_spec *spec;
3783	unsigned int filter_idx;
3784	bool failed = false;
3785	int rc;
3786
3787	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3788
3789	if (!nic_data->must_restore_filters)
3790		return;
3791
3792	if (!table)
3793		return;
3794
3795	spin_lock_bh(&efx->filter_lock);
3796
3797	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3798		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3799		if (!spec)
3800			continue;
3801
3802		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3803		spin_unlock_bh(&efx->filter_lock);
3804
3805		rc = efx_ef10_filter_push(efx, spec,
3806					  &table->entry[filter_idx].handle,
3807					  false);
3808		if (rc)
3809			failed = true;
3810
3811		spin_lock_bh(&efx->filter_lock);
3812		if (rc) {
3813			kfree(spec);
3814			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3815		} else {
3816			table->entry[filter_idx].spec &=
3817				~EFX_EF10_FILTER_FLAG_BUSY;
3818		}
3819	}
3820
3821	spin_unlock_bh(&efx->filter_lock);
3822
3823	if (failed)
3824		netif_err(efx, hw, efx->net_dev,
3825			  "unable to restore all filters\n");
3826	else
3827		nic_data->must_restore_filters = false;
3828}
3829
3830/* Caller must hold efx->filter_sem for write */
3831static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3832{
3833	struct efx_ef10_filter_table *table = efx->filter_state;
3834	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3835	struct efx_filter_spec *spec;
3836	unsigned int filter_idx;
3837	int rc;
3838
3839	efx->filter_state = NULL;
3840	if (!table)
3841		return;
3842
3843	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3844		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3845		if (!spec)
3846			continue;
3847
3848		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3849			       efx_ef10_filter_is_exclusive(spec) ?
3850			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3851			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3852		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3853			       table->entry[filter_idx].handle);
3854		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
3855					sizeof(inbuf), NULL, 0, NULL);
3856		if (rc)
3857			netif_info(efx, drv, efx->net_dev,
3858				   "%s: filter %04x remove failed\n",
3859				   __func__, filter_idx);
 
3860		kfree(spec);
3861	}
3862
3863	vfree(table->entry);
3864	kfree(table);
3865}
3866
3867#define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3868	if (id != EFX_EF10_FILTER_ID_INVALID) { \
3869		filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3870		if (!table->entry[filter_idx].spec) \
3871			netif_dbg(efx, drv, efx->net_dev, \
3872				  "%s: marked null spec old %04x:%04x\n", \
3873				  __func__, id, filter_idx); \
3874		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;\
3875	}
3876static void efx_ef10_filter_mark_old(struct efx_nic *efx)
3877{
3878	struct efx_ef10_filter_table *table = efx->filter_state;
3879	unsigned int filter_idx, i;
 
 
 
 
 
 
3880
3881	if (!table)
3882		return;
3883
3884	/* Mark old filters that may need to be removed */
3885	spin_lock_bh(&efx->filter_lock);
3886	for (i = 0; i < table->dev_uc_count; i++)
3887		EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
3888	for (i = 0; i < table->dev_mc_count; i++)
3889		EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
3890	EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
3891	EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
3892	EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
 
 
 
3893	spin_unlock_bh(&efx->filter_lock);
3894}
3895#undef EFX_EF10_FILTER_DO_MARK_OLD
3896
3897static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
3898{
3899	struct efx_ef10_filter_table *table = efx->filter_state;
3900	struct net_device *net_dev = efx->net_dev;
3901	struct netdev_hw_addr *uc;
3902	int addr_count;
3903	unsigned int i;
3904
3905	table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3906	addr_count = netdev_uc_count(net_dev);
3907	if (net_dev->flags & IFF_PROMISC)
3908		*promisc = true;
3909	table->dev_uc_count = 1 + addr_count;
3910	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3911	i = 1;
3912	netdev_for_each_uc_addr(uc, net_dev) {
3913		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
3914			*promisc = true;
3915			break;
 
 
 
 
 
 
 
3916		}
3917		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3918		table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3919		i++;
3920	}
3921}
3922
3923static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
3924{
3925	struct efx_ef10_filter_table *table = efx->filter_state;
3926	struct net_device *net_dev = efx->net_dev;
3927	struct netdev_hw_addr *mc;
3928	unsigned int i, addr_count;
3929
3930	table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3931	table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3932	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
3933		*promisc = true;
3934
3935	addr_count = netdev_mc_count(net_dev);
3936	i = 0;
3937	netdev_for_each_mc_addr(mc, net_dev) {
3938		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
3939			*promisc = true;
3940			break;
3941		}
3942		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3943		table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3944		i++;
3945	}
3946
3947	table->dev_mc_count = i;
3948}
3949
3950static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
3951					     bool multicast, bool rollback)
3952{
3953	struct efx_ef10_filter_table *table = efx->filter_state;
3954	struct efx_ef10_dev_addr *addr_list;
3955	enum efx_filter_flags filter_flags;
3956	struct efx_filter_spec spec;
3957	u8 baddr[ETH_ALEN];
3958	unsigned int i, j;
3959	int addr_count;
3960	int rc;
3961
3962	if (multicast) {
3963		addr_list = table->dev_mc_list;
3964		addr_count = table->dev_mc_count;
3965	} else {
3966		addr_list = table->dev_uc_list;
3967		addr_count = table->dev_uc_count;
3968	}
3969
3970	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
3971
3972	/* Insert/renew filters */
3973	for (i = 0; i < addr_count; i++) {
3974		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
3975		efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3976					 addr_list[i].addr);
3977		rc = efx_ef10_filter_insert(efx, &spec, true);
3978		if (rc < 0) {
3979			if (rollback) {
3980				netif_info(efx, drv, efx->net_dev,
3981					   "efx_ef10_filter_insert failed rc=%d\n",
3982					   rc);
3983				/* Fall back to promiscuous */
3984				for (j = 0; j < i; j++) {
3985					if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3986						continue;
3987					efx_ef10_filter_remove_unsafe(
3988						efx, EFX_FILTER_PRI_AUTO,
3989						addr_list[j].id);
3990					addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
3991				}
3992				return rc;
3993			} else {
3994				/* mark as not inserted, and carry on */
3995				rc = EFX_EF10_FILTER_ID_INVALID;
3996			}
 
3997		}
3998		addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
3999	}
4000
4001	if (multicast && rollback) {
4002		/* Also need an Ethernet broadcast filter */
4003		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4004		eth_broadcast_addr(baddr);
4005		efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
4006		rc = efx_ef10_filter_insert(efx, &spec, true);
4007		if (rc < 0) {
4008			netif_warn(efx, drv, efx->net_dev,
4009				   "Broadcast filter insert failed rc=%d\n", rc);
4010			/* Fall back to promiscuous */
4011			for (j = 0; j < i; j++) {
4012				if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
4013					continue;
4014				efx_ef10_filter_remove_unsafe(
4015					efx, EFX_FILTER_PRI_AUTO,
4016					addr_list[j].id);
4017				addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
4018			}
4019			return rc;
4020		} else {
4021			table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4022		}
4023	}
4024
4025	return 0;
4026}
4027
4028static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
4029				      bool rollback)
4030{
4031	struct efx_ef10_filter_table *table = efx->filter_state;
4032	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4033	enum efx_filter_flags filter_flags;
4034	struct efx_filter_spec spec;
4035	u8 baddr[ETH_ALEN];
4036	int rc;
4037
4038	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4039
4040	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4041
4042	if (multicast)
4043		efx_filter_set_mc_def(&spec);
4044	else
4045		efx_filter_set_uc_def(&spec);
4046
4047	rc = efx_ef10_filter_insert(efx, &spec, true);
4048	if (rc < 0) {
4049		netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4050			     efx->net_dev,
4051			     "%scast mismatch filter insert failed rc=%d\n",
4052			     multicast ? "Multi" : "Uni", rc);
4053	} else if (multicast) {
4054		table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4055		if (!nic_data->workaround_26807) {
4056			/* Also need an Ethernet broadcast filter */
4057			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4058					   filter_flags, 0);
4059			eth_broadcast_addr(baddr);
4060			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4061						 baddr);
4062			rc = efx_ef10_filter_insert(efx, &spec, true);
4063			if (rc < 0) {
4064				netif_warn(efx, drv, efx->net_dev,
4065					   "Broadcast filter insert failed rc=%d\n",
4066					   rc);
4067				if (rollback) {
4068					/* Roll back the mc_def filter */
4069					efx_ef10_filter_remove_unsafe(
4070							efx, EFX_FILTER_PRI_AUTO,
4071							table->mcdef_id);
4072					table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
4073					return rc;
4074				}
4075			} else {
4076				table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4077			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4078		}
4079		rc = 0;
4080	} else {
4081		table->ucdef_id = rc;
4082		rc = 0;
4083	}
4084	return rc;
4085}
4086
4087/* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4088 * flag or removes these filters, we don't need to hold the filter_lock while
4089 * scanning for these filters.
4090 */
4091static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4092{
4093	struct efx_ef10_filter_table *table = efx->filter_state;
4094	int remove_failed = 0;
4095	int remove_noent = 0;
4096	int rc;
4097	int i;
4098
 
 
 
 
 
4099	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4100		if (ACCESS_ONCE(table->entry[i].spec) &
4101		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4102			rc = efx_ef10_filter_remove_internal(efx,
4103					1U << EFX_FILTER_PRI_AUTO, i, true);
4104			if (rc == -ENOENT)
4105				remove_noent++;
4106			else if (rc)
4107				remove_failed++;
4108		}
4109	}
4110
4111	if (remove_failed)
4112		netif_info(efx, drv, efx->net_dev,
4113			   "%s: failed to remove %d filters\n",
4114			   __func__, remove_failed);
4115	if (remove_noent)
4116		netif_info(efx, drv, efx->net_dev,
4117			   "%s: failed to remove %d non-existent filters\n",
4118			   __func__, remove_noent);
4119}
4120
4121static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4122{
4123	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4124	u8 mac_old[ETH_ALEN];
4125	int rc, rc2;
4126
4127	/* Only reconfigure a PF-created vport */
4128	if (is_zero_ether_addr(nic_data->vport_mac))
4129		return 0;
4130
4131	efx_device_detach_sync(efx);
4132	efx_net_stop(efx->net_dev);
4133	down_write(&efx->filter_sem);
4134	efx_ef10_filter_table_remove(efx);
4135	up_write(&efx->filter_sem);
4136
4137	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4138	if (rc)
4139		goto restore_filters;
4140
4141	ether_addr_copy(mac_old, nic_data->vport_mac);
4142	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4143				    nic_data->vport_mac);
4144	if (rc)
4145		goto restore_vadaptor;
4146
4147	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4148				    efx->net_dev->dev_addr);
4149	if (!rc) {
4150		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4151	} else {
4152		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4153		if (rc2) {
4154			/* Failed to add original MAC, so clear vport_mac */
4155			eth_zero_addr(nic_data->vport_mac);
4156			goto reset_nic;
4157		}
4158	}
4159
4160restore_vadaptor:
4161	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4162	if (rc2)
4163		goto reset_nic;
4164restore_filters:
4165	down_write(&efx->filter_sem);
4166	rc2 = efx_ef10_filter_table_probe(efx);
4167	up_write(&efx->filter_sem);
4168	if (rc2)
4169		goto reset_nic;
4170
4171	rc2 = efx_net_open(efx->net_dev);
4172	if (rc2)
4173		goto reset_nic;
4174
4175	netif_device_attach(efx->net_dev);
4176
4177	return rc;
4178
4179reset_nic:
4180	netif_err(efx, drv, efx->net_dev,
4181		  "Failed to restore when changing MAC address - scheduling reset\n");
4182	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4183
4184	return rc ? rc : rc2;
4185}
4186
4187/* Caller must hold efx->filter_sem for read if race against
4188 * efx_ef10_filter_table_remove() is possible
4189 */
4190static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4191{
4192	struct efx_ef10_filter_table *table = efx->filter_state;
4193	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4194	struct net_device *net_dev = efx->net_dev;
4195	bool uc_promisc = false, mc_promisc = false;
4196
4197	if (!efx_dev_registered(efx))
4198		return;
4199
4200	if (!table)
4201		return;
4202
4203	efx_ef10_filter_mark_old(efx);
4204
4205	/* Copy/convert the address lists; add the primary station
4206	 * address and broadcast address
4207	 */
4208	netif_addr_lock_bh(net_dev);
4209	efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
4210	efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
4211	netif_addr_unlock_bh(net_dev);
4212
4213	/* Insert/renew unicast filters */
4214	if (uc_promisc) {
4215		efx_ef10_filter_insert_def(efx, false, false);
4216		efx_ef10_filter_insert_addr_list(efx, false, false);
4217	} else {
4218		/* If any of the filters failed to insert, fall back to
4219		 * promiscuous mode - add in the uc_def filter.  But keep
4220		 * our individual unicast filters.
4221		 */
4222		if (efx_ef10_filter_insert_addr_list(efx, false, false))
4223			efx_ef10_filter_insert_def(efx, false, false);
4224	}
4225
4226	/* Insert/renew multicast filters */
4227	/* If changing promiscuous state with cascaded multicast filters, remove
4228	 * old filters first, so that packets are dropped rather than duplicated
4229	 */
4230	if (nic_data->workaround_26807 && efx->mc_promisc != mc_promisc)
4231		efx_ef10_filter_remove_old(efx);
4232	if (mc_promisc) {
4233		if (nic_data->workaround_26807) {
4234			/* If we failed to insert promiscuous filters, rollback
4235			 * and fall back to individual multicast filters
4236			 */
4237			if (efx_ef10_filter_insert_def(efx, true, true)) {
4238				/* Changing promisc state, so remove old filters */
4239				efx_ef10_filter_remove_old(efx);
4240				efx_ef10_filter_insert_addr_list(efx, true, false);
4241			}
4242		} else {
4243			/* If we failed to insert promiscuous filters, don't
4244			 * rollback.  Regardless, also insert the mc_list
4245			 */
4246			efx_ef10_filter_insert_def(efx, true, false);
4247			efx_ef10_filter_insert_addr_list(efx, true, false);
4248		}
4249	} else {
4250		/* If any filters failed to insert, rollback and fall back to
4251		 * promiscuous mode - mc_def filter and maybe broadcast.  If
4252		 * that fails, roll back again and insert as many of our
4253		 * individual multicast filters as we can.
4254		 */
4255		if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
4256			/* Changing promisc state, so remove old filters */
4257			if (nic_data->workaround_26807)
4258				efx_ef10_filter_remove_old(efx);
4259			if (efx_ef10_filter_insert_def(efx, true, true))
4260				efx_ef10_filter_insert_addr_list(efx, true, false);
4261		}
4262	}
4263
4264	efx_ef10_filter_remove_old(efx);
4265	efx->mc_promisc = mc_promisc;
4266}
4267
4268static int efx_ef10_set_mac_address(struct efx_nic *efx)
4269{
4270	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4271	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4272	bool was_enabled = efx->port_enabled;
4273	int rc;
4274
4275	efx_device_detach_sync(efx);
4276	efx_net_stop(efx->net_dev);
4277	down_write(&efx->filter_sem);
4278	efx_ef10_filter_table_remove(efx);
4279
4280	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4281			efx->net_dev->dev_addr);
4282	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4283		       nic_data->vport_id);
4284	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4285				sizeof(inbuf), NULL, 0, NULL);
4286
4287	efx_ef10_filter_table_probe(efx);
4288	up_write(&efx->filter_sem);
4289	if (was_enabled)
4290		efx_net_open(efx->net_dev);
4291	netif_device_attach(efx->net_dev);
4292
4293#ifdef CONFIG_SFC_SRIOV
4294	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4295		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4296
4297		if (rc == -EPERM) {
4298			struct efx_nic *efx_pf;
4299
4300			/* Switch to PF and change MAC address on vport */
4301			efx_pf = pci_get_drvdata(pci_dev_pf);
4302
4303			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4304						       nic_data->vf_index,
4305						       efx->net_dev->dev_addr);
4306		} else if (!rc) {
4307			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4308			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4309			unsigned int i;
4310
4311			/* MAC address successfully changed by VF (with MAC
4312			 * spoofing) so update the parent PF if possible.
4313			 */
4314			for (i = 0; i < efx_pf->vf_count; ++i) {
4315				struct ef10_vf *vf = nic_data->vf + i;
4316
4317				if (vf->efx == efx) {
4318					ether_addr_copy(vf->mac,
4319							efx->net_dev->dev_addr);
4320					return 0;
4321				}
4322			}
4323		}
4324	} else
4325#endif
4326	if (rc == -EPERM) {
4327		netif_err(efx, drv, efx->net_dev,
4328			  "Cannot change MAC address; use sfboot to enable"
4329			  " mac-spoofing on this interface\n");
4330	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4331		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4332		 * fall-back to the method of changing the MAC address on the
4333		 * vport.  This only applies to PFs because such versions of
4334		 * MCFW do not support VFs.
4335		 */
4336		rc = efx_ef10_vport_set_mac_address(efx);
4337	} else {
4338		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4339				       sizeof(inbuf), NULL, 0, rc);
4340	}
4341
4342	return rc;
4343}
4344
4345static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4346{
4347	efx_ef10_filter_sync_rx_mode(efx);
4348
4349	return efx_mcdi_set_mac(efx);
4350}
4351
4352static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4353{
4354	efx_ef10_filter_sync_rx_mode(efx);
4355
4356	return 0;
4357}
4358
4359static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4360{
4361	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4362
4363	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4364	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4365			    NULL, 0, NULL);
4366}
4367
4368/* MC BISTs follow a different poll mechanism to phy BISTs.
4369 * The BIST is done in the poll handler on the MC, and the MCDI command
4370 * will block until the BIST is done.
4371 */
4372static int efx_ef10_poll_bist(struct efx_nic *efx)
4373{
4374	int rc;
4375	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4376	size_t outlen;
4377	u32 result;
4378
4379	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4380			   outbuf, sizeof(outbuf), &outlen);
4381	if (rc != 0)
4382		return rc;
4383
4384	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4385		return -EIO;
4386
4387	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4388	switch (result) {
4389	case MC_CMD_POLL_BIST_PASSED:
4390		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4391		return 0;
4392	case MC_CMD_POLL_BIST_TIMEOUT:
4393		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4394		return -EIO;
4395	case MC_CMD_POLL_BIST_FAILED:
4396		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4397		return -EIO;
4398	default:
4399		netif_err(efx, hw, efx->net_dev,
4400			  "BIST returned unknown result %u", result);
4401		return -EIO;
4402	}
4403}
4404
4405static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4406{
4407	int rc;
4408
4409	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4410
4411	rc = efx_ef10_start_bist(efx, bist_type);
4412	if (rc != 0)
4413		return rc;
4414
4415	return efx_ef10_poll_bist(efx);
4416}
4417
4418static int
4419efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4420{
4421	int rc, rc2;
4422
4423	efx_reset_down(efx, RESET_TYPE_WORLD);
4424
4425	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4426			  NULL, 0, NULL, 0, NULL);
4427	if (rc != 0)
4428		goto out;
4429
4430	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4431	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4432
4433	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4434
4435out:
4436	if (rc == -EPERM)
4437		rc = 0;
4438	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4439	return rc ? rc : rc2;
4440}
4441
4442#ifdef CONFIG_SFC_MTD
4443
4444struct efx_ef10_nvram_type_info {
4445	u16 type, type_mask;
4446	u8 port;
4447	const char *name;
4448};
4449
4450static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4451	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
4452	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
4453	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
4454	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
4455	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
4456	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
4457	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
4458	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
4459	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
4460	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
4461	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
4462};
4463
4464static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4465					struct efx_mcdi_mtd_partition *part,
4466					unsigned int type)
4467{
4468	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4469	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4470	const struct efx_ef10_nvram_type_info *info;
4471	size_t size, erase_size, outlen;
4472	bool protected;
4473	int rc;
4474
4475	for (info = efx_ef10_nvram_types; ; info++) {
4476		if (info ==
4477		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4478			return -ENODEV;
4479		if ((type & ~info->type_mask) == info->type)
4480			break;
4481	}
4482	if (info->port != efx_port_num(efx))
4483		return -ENODEV;
4484
4485	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4486	if (rc)
4487		return rc;
4488	if (protected)
4489		return -ENODEV; /* hide it */
4490
4491	part->nvram_type = type;
4492
4493	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4494	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4495			  outbuf, sizeof(outbuf), &outlen);
4496	if (rc)
4497		return rc;
4498	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4499		return -EIO;
4500	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4501	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4502		part->fw_subtype = MCDI_DWORD(outbuf,
4503					      NVRAM_METADATA_OUT_SUBTYPE);
4504
4505	part->common.dev_type_name = "EF10 NVRAM manager";
4506	part->common.type_name = info->name;
4507
4508	part->common.mtd.type = MTD_NORFLASH;
4509	part->common.mtd.flags = MTD_CAP_NORFLASH;
4510	part->common.mtd.size = size;
4511	part->common.mtd.erasesize = erase_size;
4512
4513	return 0;
4514}
4515
4516static int efx_ef10_mtd_probe(struct efx_nic *efx)
4517{
4518	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4519	struct efx_mcdi_mtd_partition *parts;
4520	size_t outlen, n_parts_total, i, n_parts;
4521	unsigned int type;
4522	int rc;
4523
4524	ASSERT_RTNL();
4525
4526	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4527	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4528			  outbuf, sizeof(outbuf), &outlen);
4529	if (rc)
4530		return rc;
4531	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4532		return -EIO;
4533
4534	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4535	if (n_parts_total >
4536	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4537		return -EIO;
4538
4539	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4540	if (!parts)
4541		return -ENOMEM;
4542
4543	n_parts = 0;
4544	for (i = 0; i < n_parts_total; i++) {
4545		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4546					i);
4547		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4548		if (rc == 0)
4549			n_parts++;
4550		else if (rc != -ENODEV)
4551			goto fail;
4552	}
4553
4554	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4555fail:
4556	if (rc)
4557		kfree(parts);
4558	return rc;
4559}
4560
4561#endif /* CONFIG_SFC_MTD */
4562
4563static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4564{
4565	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4566}
4567
4568static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4569					    u32 host_time) {}
4570
4571static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4572					   bool temp)
4573{
4574	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4575	int rc;
4576
4577	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4578	    channel->sync_events_state == SYNC_EVENTS_VALID ||
4579	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4580		return 0;
4581	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4582
4583	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4584	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4585	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4586		       channel->channel);
4587
4588	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4589			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4590
4591	if (rc != 0)
4592		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4593						    SYNC_EVENTS_DISABLED;
4594
4595	return rc;
4596}
4597
4598static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4599					    bool temp)
4600{
4601	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4602	int rc;
4603
4604	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4605	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4606		return 0;
4607	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4608		channel->sync_events_state = SYNC_EVENTS_DISABLED;
4609		return 0;
4610	}
4611	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4612					    SYNC_EVENTS_DISABLED;
4613
4614	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4615	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4616	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4617		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4618	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4619		       channel->channel);
4620
4621	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4622			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4623
4624	return rc;
4625}
4626
4627static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4628					   bool temp)
4629{
4630	int (*set)(struct efx_channel *channel, bool temp);
4631	struct efx_channel *channel;
4632
4633	set = en ?
4634	      efx_ef10_rx_enable_timestamping :
4635	      efx_ef10_rx_disable_timestamping;
4636
4637	efx_for_each_channel(channel, efx) {
4638		int rc = set(channel, temp);
4639		if (en && rc != 0) {
4640			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4641			return rc;
4642		}
4643	}
4644
4645	return 0;
4646}
4647
4648static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4649					 struct hwtstamp_config *init)
4650{
4651	return -EOPNOTSUPP;
4652}
4653
4654static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4655				      struct hwtstamp_config *init)
4656{
4657	int rc;
4658
4659	switch (init->rx_filter) {
4660	case HWTSTAMP_FILTER_NONE:
4661		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4662		/* if TX timestamping is still requested then leave PTP on */
4663		return efx_ptp_change_mode(efx,
4664					   init->tx_type != HWTSTAMP_TX_OFF, 0);
4665	case HWTSTAMP_FILTER_ALL:
4666	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4667	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4668	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4669	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4670	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4671	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4672	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4673	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4674	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4675	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4676	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4677	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4678		init->rx_filter = HWTSTAMP_FILTER_ALL;
4679		rc = efx_ptp_change_mode(efx, true, 0);
4680		if (!rc)
4681			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4682		if (rc)
4683			efx_ptp_change_mode(efx, false, 0);
4684		return rc;
4685	default:
4686		return -ERANGE;
4687	}
4688}
4689
4690const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4691	.is_vf = true,
4692	.mem_bar = EFX_MEM_VF_BAR,
4693	.mem_map_size = efx_ef10_mem_map_size,
4694	.probe = efx_ef10_probe_vf,
4695	.remove = efx_ef10_remove,
4696	.dimension_resources = efx_ef10_dimension_resources,
4697	.init = efx_ef10_init_nic,
4698	.fini = efx_port_dummy_op_void,
4699	.map_reset_reason = efx_ef10_map_reset_reason,
4700	.map_reset_flags = efx_ef10_map_reset_flags,
4701	.reset = efx_ef10_reset,
4702	.probe_port = efx_mcdi_port_probe,
4703	.remove_port = efx_mcdi_port_remove,
4704	.fini_dmaq = efx_ef10_fini_dmaq,
4705	.prepare_flr = efx_ef10_prepare_flr,
4706	.finish_flr = efx_port_dummy_op_void,
4707	.describe_stats = efx_ef10_describe_stats,
4708	.update_stats = efx_ef10_update_stats_vf,
4709	.start_stats = efx_port_dummy_op_void,
4710	.pull_stats = efx_port_dummy_op_void,
4711	.stop_stats = efx_port_dummy_op_void,
4712	.set_id_led = efx_mcdi_set_id_led,
4713	.push_irq_moderation = efx_ef10_push_irq_moderation,
4714	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4715	.check_mac_fault = efx_mcdi_mac_check_fault,
4716	.reconfigure_port = efx_mcdi_port_reconfigure,
4717	.get_wol = efx_ef10_get_wol_vf,
4718	.set_wol = efx_ef10_set_wol_vf,
4719	.resume_wol = efx_port_dummy_op_void,
4720	.mcdi_request = efx_ef10_mcdi_request,
4721	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4722	.mcdi_read_response = efx_ef10_mcdi_read_response,
4723	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4724	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4725	.irq_enable_master = efx_port_dummy_op_void,
4726	.irq_test_generate = efx_ef10_irq_test_generate,
4727	.irq_disable_non_ev = efx_port_dummy_op_void,
4728	.irq_handle_msi = efx_ef10_msi_interrupt,
4729	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4730	.tx_probe = efx_ef10_tx_probe,
4731	.tx_init = efx_ef10_tx_init,
4732	.tx_remove = efx_ef10_tx_remove,
4733	.tx_write = efx_ef10_tx_write,
4734	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4735	.rx_probe = efx_ef10_rx_probe,
4736	.rx_init = efx_ef10_rx_init,
4737	.rx_remove = efx_ef10_rx_remove,
4738	.rx_write = efx_ef10_rx_write,
4739	.rx_defer_refill = efx_ef10_rx_defer_refill,
4740	.ev_probe = efx_ef10_ev_probe,
4741	.ev_init = efx_ef10_ev_init,
4742	.ev_fini = efx_ef10_ev_fini,
4743	.ev_remove = efx_ef10_ev_remove,
4744	.ev_process = efx_ef10_ev_process,
4745	.ev_read_ack = efx_ef10_ev_read_ack,
4746	.ev_test_generate = efx_ef10_ev_test_generate,
4747	.filter_table_probe = efx_ef10_filter_table_probe,
4748	.filter_table_restore = efx_ef10_filter_table_restore,
4749	.filter_table_remove = efx_ef10_filter_table_remove,
4750	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4751	.filter_insert = efx_ef10_filter_insert,
4752	.filter_remove_safe = efx_ef10_filter_remove_safe,
4753	.filter_get_safe = efx_ef10_filter_get_safe,
4754	.filter_clear_rx = efx_ef10_filter_clear_rx,
4755	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4756	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4757	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4758#ifdef CONFIG_RFS_ACCEL
4759	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4760	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4761#endif
4762#ifdef CONFIG_SFC_MTD
4763	.mtd_probe = efx_port_dummy_op_int,
4764#endif
4765	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4766	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4767#ifdef CONFIG_SFC_SRIOV
4768	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4769	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4770	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4771	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4772#endif
4773	.get_mac_address = efx_ef10_get_mac_address_vf,
4774	.set_mac_address = efx_ef10_set_mac_address,
4775
4776	.revision = EFX_REV_HUNT_A0,
4777	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4778	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4779	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4780	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4781	.can_rx_scatter = true,
4782	.always_rx_scatter = true,
4783	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4784	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4785	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4786			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4787	.mcdi_max_ver = 2,
4788	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4789	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4790			    1 << HWTSTAMP_FILTER_ALL,
4791};
4792
4793const struct efx_nic_type efx_hunt_a0_nic_type = {
4794	.is_vf = false,
4795	.mem_bar = EFX_MEM_BAR,
4796	.mem_map_size = efx_ef10_mem_map_size,
4797	.probe = efx_ef10_probe_pf,
4798	.remove = efx_ef10_remove,
4799	.dimension_resources = efx_ef10_dimension_resources,
4800	.init = efx_ef10_init_nic,
4801	.fini = efx_port_dummy_op_void,
4802	.map_reset_reason = efx_ef10_map_reset_reason,
4803	.map_reset_flags = efx_ef10_map_reset_flags,
4804	.reset = efx_ef10_reset,
4805	.probe_port = efx_mcdi_port_probe,
4806	.remove_port = efx_mcdi_port_remove,
4807	.fini_dmaq = efx_ef10_fini_dmaq,
4808	.prepare_flr = efx_ef10_prepare_flr,
4809	.finish_flr = efx_port_dummy_op_void,
4810	.describe_stats = efx_ef10_describe_stats,
4811	.update_stats = efx_ef10_update_stats_pf,
4812	.start_stats = efx_mcdi_mac_start_stats,
4813	.pull_stats = efx_mcdi_mac_pull_stats,
4814	.stop_stats = efx_mcdi_mac_stop_stats,
4815	.set_id_led = efx_mcdi_set_id_led,
4816	.push_irq_moderation = efx_ef10_push_irq_moderation,
4817	.reconfigure_mac = efx_ef10_mac_reconfigure,
4818	.check_mac_fault = efx_mcdi_mac_check_fault,
4819	.reconfigure_port = efx_mcdi_port_reconfigure,
4820	.get_wol = efx_ef10_get_wol,
4821	.set_wol = efx_ef10_set_wol,
4822	.resume_wol = efx_port_dummy_op_void,
4823	.test_chip = efx_ef10_test_chip,
4824	.test_nvram = efx_mcdi_nvram_test_all,
4825	.mcdi_request = efx_ef10_mcdi_request,
4826	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4827	.mcdi_read_response = efx_ef10_mcdi_read_response,
4828	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4829	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4830	.irq_enable_master = efx_port_dummy_op_void,
4831	.irq_test_generate = efx_ef10_irq_test_generate,
4832	.irq_disable_non_ev = efx_port_dummy_op_void,
4833	.irq_handle_msi = efx_ef10_msi_interrupt,
4834	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4835	.tx_probe = efx_ef10_tx_probe,
4836	.tx_init = efx_ef10_tx_init,
4837	.tx_remove = efx_ef10_tx_remove,
4838	.tx_write = efx_ef10_tx_write,
4839	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4840	.rx_probe = efx_ef10_rx_probe,
4841	.rx_init = efx_ef10_rx_init,
4842	.rx_remove = efx_ef10_rx_remove,
4843	.rx_write = efx_ef10_rx_write,
4844	.rx_defer_refill = efx_ef10_rx_defer_refill,
4845	.ev_probe = efx_ef10_ev_probe,
4846	.ev_init = efx_ef10_ev_init,
4847	.ev_fini = efx_ef10_ev_fini,
4848	.ev_remove = efx_ef10_ev_remove,
4849	.ev_process = efx_ef10_ev_process,
4850	.ev_read_ack = efx_ef10_ev_read_ack,
4851	.ev_test_generate = efx_ef10_ev_test_generate,
4852	.filter_table_probe = efx_ef10_filter_table_probe,
4853	.filter_table_restore = efx_ef10_filter_table_restore,
4854	.filter_table_remove = efx_ef10_filter_table_remove,
4855	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4856	.filter_insert = efx_ef10_filter_insert,
4857	.filter_remove_safe = efx_ef10_filter_remove_safe,
4858	.filter_get_safe = efx_ef10_filter_get_safe,
4859	.filter_clear_rx = efx_ef10_filter_clear_rx,
4860	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4861	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4862	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4863#ifdef CONFIG_RFS_ACCEL
4864	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4865	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4866#endif
4867#ifdef CONFIG_SFC_MTD
4868	.mtd_probe = efx_ef10_mtd_probe,
4869	.mtd_rename = efx_mcdi_mtd_rename,
4870	.mtd_read = efx_mcdi_mtd_read,
4871	.mtd_erase = efx_mcdi_mtd_erase,
4872	.mtd_write = efx_mcdi_mtd_write,
4873	.mtd_sync = efx_mcdi_mtd_sync,
4874#endif
4875	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4876	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4877	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4878#ifdef CONFIG_SFC_SRIOV
4879	.sriov_configure = efx_ef10_sriov_configure,
4880	.sriov_init = efx_ef10_sriov_init,
4881	.sriov_fini = efx_ef10_sriov_fini,
4882	.sriov_wanted = efx_ef10_sriov_wanted,
4883	.sriov_reset = efx_ef10_sriov_reset,
4884	.sriov_flr = efx_ef10_sriov_flr,
4885	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4886	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4887	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4888	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4889	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4890	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4891	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4892	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4893#endif
4894	.get_mac_address = efx_ef10_get_mac_address_pf,
4895	.set_mac_address = efx_ef10_set_mac_address,
4896
4897	.revision = EFX_REV_HUNT_A0,
4898	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4899	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4900	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4901	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4902	.can_rx_scatter = true,
4903	.always_rx_scatter = true,
4904	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4905	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4906	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4907			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4908	.mcdi_max_ver = 2,
4909	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4910	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4911			    1 << HWTSTAMP_FILTER_ALL,
4912};