Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * Resizable, Scalable, Concurrent Hash Table
  3 *
  4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
  5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
  6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
  7 *
  8 * Code partially derived from nft_hash
  9 * Rewritten with rehash code from br_multicast plus single list
 10 * pointer as suggested by Josh Triplett
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 */
 16
 17#include <linux/atomic.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/log2.h>
 21#include <linux/sched.h>
 22#include <linux/slab.h>
 23#include <linux/vmalloc.h>
 24#include <linux/mm.h>
 25#include <linux/jhash.h>
 26#include <linux/random.h>
 27#include <linux/rhashtable.h>
 28#include <linux/err.h>
 29#include <linux/export.h>
 30
 31#define HASH_DEFAULT_SIZE	64UL
 32#define HASH_MIN_SIZE		4U
 33#define BUCKET_LOCKS_PER_CPU   128UL
 34
 35static u32 head_hashfn(struct rhashtable *ht,
 36		       const struct bucket_table *tbl,
 37		       const struct rhash_head *he)
 38{
 39	return rht_head_hashfn(ht, tbl, he, ht->p);
 40}
 41
 42#ifdef CONFIG_PROVE_LOCKING
 43#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
 44
 45int lockdep_rht_mutex_is_held(struct rhashtable *ht)
 46{
 47	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
 48}
 49EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
 50
 51int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
 52{
 53	spinlock_t *lock = rht_bucket_lock(tbl, hash);
 54
 55	return (debug_locks) ? lockdep_is_held(lock) : 1;
 56}
 57EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
 58#else
 59#define ASSERT_RHT_MUTEX(HT)
 60#endif
 61
 62
 63static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
 64			      gfp_t gfp)
 65{
 66	unsigned int i, size;
 67#if defined(CONFIG_PROVE_LOCKING)
 68	unsigned int nr_pcpus = 2;
 69#else
 70	unsigned int nr_pcpus = num_possible_cpus();
 71#endif
 72
 73	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
 74	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
 75
 76	/* Never allocate more than 0.5 locks per bucket */
 77	size = min_t(unsigned int, size, tbl->size >> 1);
 78
 79	if (sizeof(spinlock_t) != 0) {
 80#ifdef CONFIG_NUMA
 81		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
 82		    gfp == GFP_KERNEL)
 83			tbl->locks = vmalloc(size * sizeof(spinlock_t));
 84		else
 85#endif
 86		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
 87					   gfp);
 88		if (!tbl->locks)
 89			return -ENOMEM;
 90		for (i = 0; i < size; i++)
 91			spin_lock_init(&tbl->locks[i]);
 92	}
 93	tbl->locks_mask = size - 1;
 94
 95	return 0;
 96}
 97
 98static void bucket_table_free(const struct bucket_table *tbl)
 99{
100	if (tbl)
101		kvfree(tbl->locks);
102
103	kvfree(tbl);
104}
105
106static void bucket_table_free_rcu(struct rcu_head *head)
107{
108	bucket_table_free(container_of(head, struct bucket_table, rcu));
109}
110
111static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112					       size_t nbuckets,
113					       gfp_t gfp)
114{
115	struct bucket_table *tbl = NULL;
116	size_t size;
117	int i;
118
119	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121	    gfp != GFP_KERNEL)
122		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123	if (tbl == NULL && gfp == GFP_KERNEL)
124		tbl = vzalloc(size);
125	if (tbl == NULL)
126		return NULL;
127
128	tbl->size = nbuckets;
129
130	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131		bucket_table_free(tbl);
132		return NULL;
133	}
134
135	INIT_LIST_HEAD(&tbl->walkers);
136
137	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138
139	for (i = 0; i < nbuckets; i++)
140		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141
142	return tbl;
143}
144
145static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146						  struct bucket_table *tbl)
147{
148	struct bucket_table *new_tbl;
149
150	do {
151		new_tbl = tbl;
152		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153	} while (tbl);
154
155	return new_tbl;
156}
157
158static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159{
160	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161	struct bucket_table *new_tbl = rhashtable_last_table(ht,
162		rht_dereference_rcu(old_tbl->future_tbl, ht));
163	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164	int err = -ENOENT;
165	struct rhash_head *head, *next, *entry;
166	spinlock_t *new_bucket_lock;
167	unsigned int new_hash;
168
169	rht_for_each(entry, old_tbl, old_hash) {
170		err = 0;
171		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172
173		if (rht_is_a_nulls(next))
174			break;
175
176		pprev = &entry->next;
177	}
178
179	if (err)
180		goto out;
181
182	new_hash = head_hashfn(ht, new_tbl, entry);
183
184	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185
186	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188				      new_tbl, new_hash);
189
190	RCU_INIT_POINTER(entry->next, head);
191
192	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193	spin_unlock(new_bucket_lock);
194
195	rcu_assign_pointer(*pprev, next);
196
197out:
198	return err;
199}
200
201static void rhashtable_rehash_chain(struct rhashtable *ht,
202				    unsigned int old_hash)
203{
204	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205	spinlock_t *old_bucket_lock;
206
207	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209	spin_lock_bh(old_bucket_lock);
210	while (!rhashtable_rehash_one(ht, old_hash))
211		;
212	old_tbl->rehash++;
213	spin_unlock_bh(old_bucket_lock);
214}
215
216static int rhashtable_rehash_attach(struct rhashtable *ht,
217				    struct bucket_table *old_tbl,
218				    struct bucket_table *new_tbl)
219{
220	/* Protect future_tbl using the first bucket lock. */
221	spin_lock_bh(old_tbl->locks);
222
223	/* Did somebody beat us to it? */
224	if (rcu_access_pointer(old_tbl->future_tbl)) {
225		spin_unlock_bh(old_tbl->locks);
226		return -EEXIST;
227	}
228
229	/* Make insertions go into the new, empty table right away. Deletions
230	 * and lookups will be attempted in both tables until we synchronize.
231	 */
232	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234	spin_unlock_bh(old_tbl->locks);
235
236	return 0;
237}
238
239static int rhashtable_rehash_table(struct rhashtable *ht)
240{
241	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
242	struct bucket_table *new_tbl;
243	struct rhashtable_walker *walker;
244	unsigned int old_hash;
245
246	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
247	if (!new_tbl)
248		return 0;
249
250	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
251		rhashtable_rehash_chain(ht, old_hash);
252
253	/* Publish the new table pointer. */
254	rcu_assign_pointer(ht->tbl, new_tbl);
255
256	spin_lock(&ht->lock);
257	list_for_each_entry(walker, &old_tbl->walkers, list)
258		walker->tbl = NULL;
259	spin_unlock(&ht->lock);
260
261	/* Wait for readers. All new readers will see the new
262	 * table, and thus no references to the old table will
263	 * remain.
264	 */
265	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
266
267	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
268}
269
270/**
271 * rhashtable_expand - Expand hash table while allowing concurrent lookups
272 * @ht:		the hash table to expand
273 *
274 * A secondary bucket array is allocated and the hash entries are migrated.
275 *
276 * This function may only be called in a context where it is safe to call
277 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
278 *
279 * The caller must ensure that no concurrent resizing occurs by holding
280 * ht->mutex.
281 *
282 * It is valid to have concurrent insertions and deletions protected by per
283 * bucket locks or concurrent RCU protected lookups and traversals.
284 */
285static int rhashtable_expand(struct rhashtable *ht)
286{
287	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
288	int err;
289
290	ASSERT_RHT_MUTEX(ht);
291
292	old_tbl = rhashtable_last_table(ht, old_tbl);
293
294	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
295	if (new_tbl == NULL)
296		return -ENOMEM;
297
298	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
299	if (err)
300		bucket_table_free(new_tbl);
301
302	return err;
303}
304
305/**
306 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
307 * @ht:		the hash table to shrink
308 *
309 * This function shrinks the hash table to fit, i.e., the smallest
310 * size would not cause it to expand right away automatically.
311 *
312 * The caller must ensure that no concurrent resizing occurs by holding
313 * ht->mutex.
314 *
315 * The caller must ensure that no concurrent table mutations take place.
316 * It is however valid to have concurrent lookups if they are RCU protected.
317 *
318 * It is valid to have concurrent insertions and deletions protected by per
319 * bucket locks or concurrent RCU protected lookups and traversals.
320 */
321static int rhashtable_shrink(struct rhashtable *ht)
322{
323	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
324	unsigned int size;
325	int err;
326
327	ASSERT_RHT_MUTEX(ht);
328
329	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
330	if (size < ht->p.min_size)
331		size = ht->p.min_size;
332
333	if (old_tbl->size <= size)
334		return 0;
335
336	if (rht_dereference(old_tbl->future_tbl, ht))
337		return -EEXIST;
338
339	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340	if (new_tbl == NULL)
341		return -ENOMEM;
342
343	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344	if (err)
345		bucket_table_free(new_tbl);
346
347	return err;
348}
349
350static void rht_deferred_worker(struct work_struct *work)
351{
352	struct rhashtable *ht;
353	struct bucket_table *tbl;
354	int err = 0;
355
356	ht = container_of(work, struct rhashtable, run_work);
357	mutex_lock(&ht->mutex);
358
359	tbl = rht_dereference(ht->tbl, ht);
360	tbl = rhashtable_last_table(ht, tbl);
361
362	if (rht_grow_above_75(ht, tbl))
363		rhashtable_expand(ht);
364	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
365		rhashtable_shrink(ht);
366
367	err = rhashtable_rehash_table(ht);
368
369	mutex_unlock(&ht->mutex);
370
371	if (err)
372		schedule_work(&ht->run_work);
373}
374
375static bool rhashtable_check_elasticity(struct rhashtable *ht,
376					struct bucket_table *tbl,
377					unsigned int hash)
378{
379	unsigned int elasticity = ht->elasticity;
380	struct rhash_head *head;
381
382	rht_for_each(head, tbl, hash)
383		if (!--elasticity)
384			return true;
385
386	return false;
387}
388
389int rhashtable_insert_rehash(struct rhashtable *ht,
390			     struct bucket_table *tbl)
391{
392	struct bucket_table *old_tbl;
393	struct bucket_table *new_tbl;
394	unsigned int size;
395	int err;
396
397	old_tbl = rht_dereference_rcu(ht->tbl, ht);
398
399	size = tbl->size;
400
401	err = -EBUSY;
402
403	if (rht_grow_above_75(ht, tbl))
404		size *= 2;
405	/* Do not schedule more than one rehash */
406	else if (old_tbl != tbl)
407		goto fail;
408
409	err = -ENOMEM;
410
411	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412	if (new_tbl == NULL)
413		goto fail;
414
415	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
416	if (err) {
417		bucket_table_free(new_tbl);
418		if (err == -EEXIST)
419			err = 0;
420	} else
421		schedule_work(&ht->run_work);
422
423	return err;
424
425fail:
426	/* Do not fail the insert if someone else did a rehash. */
427	if (likely(rcu_dereference_raw(tbl->future_tbl)))
428		return 0;
429
430	/* Schedule async rehash to retry allocation in process context. */
431	if (err == -ENOMEM)
432		schedule_work(&ht->run_work);
433
434	return err;
435}
436EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
437
438struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
439					    const void *key,
440					    struct rhash_head *obj,
441					    struct bucket_table *tbl)
442{
443	struct rhash_head *head;
444	unsigned int hash;
445	int err;
446
447	tbl = rhashtable_last_table(ht, tbl);
448	hash = head_hashfn(ht, tbl, obj);
449	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
450
451	err = -EEXIST;
452	if (key && rhashtable_lookup_fast(ht, key, ht->p))
453		goto exit;
454
455	err = -E2BIG;
456	if (unlikely(rht_grow_above_max(ht, tbl)))
457		goto exit;
458
459	err = -EAGAIN;
460	if (rhashtable_check_elasticity(ht, tbl, hash) ||
461	    rht_grow_above_100(ht, tbl))
462		goto exit;
463
464	err = 0;
465
466	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
467
468	RCU_INIT_POINTER(obj->next, head);
469
470	rcu_assign_pointer(tbl->buckets[hash], obj);
471
472	atomic_inc(&ht->nelems);
473
474exit:
475	spin_unlock(rht_bucket_lock(tbl, hash));
476
477	if (err == 0)
478		return NULL;
479	else if (err == -EAGAIN)
480		return tbl;
481	else
482		return ERR_PTR(err);
483}
484EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
485
486/**
487 * rhashtable_walk_init - Initialise an iterator
488 * @ht:		Table to walk over
489 * @iter:	Hash table Iterator
490 *
491 * This function prepares a hash table walk.
492 *
493 * Note that if you restart a walk after rhashtable_walk_stop you
494 * may see the same object twice.  Also, you may miss objects if
495 * there are removals in between rhashtable_walk_stop and the next
496 * call to rhashtable_walk_start.
497 *
498 * For a completely stable walk you should construct your own data
499 * structure outside the hash table.
500 *
501 * This function may sleep so you must not call it from interrupt
502 * context or with spin locks held.
503 *
504 * You must call rhashtable_walk_exit if this function returns
505 * successfully.
506 */
507int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
508{
509	iter->ht = ht;
510	iter->p = NULL;
511	iter->slot = 0;
512	iter->skip = 0;
513
514	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
515	if (!iter->walker)
516		return -ENOMEM;
517
518	spin_lock(&ht->lock);
519	iter->walker->tbl =
520		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
521	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
522	spin_unlock(&ht->lock);
523
524	return 0;
525}
526EXPORT_SYMBOL_GPL(rhashtable_walk_init);
527
528/**
529 * rhashtable_walk_exit - Free an iterator
530 * @iter:	Hash table Iterator
531 *
532 * This function frees resources allocated by rhashtable_walk_init.
533 */
534void rhashtable_walk_exit(struct rhashtable_iter *iter)
535{
536	spin_lock(&iter->ht->lock);
537	if (iter->walker->tbl)
538		list_del(&iter->walker->list);
539	spin_unlock(&iter->ht->lock);
540	kfree(iter->walker);
541}
542EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
543
544/**
545 * rhashtable_walk_start - Start a hash table walk
546 * @iter:	Hash table iterator
547 *
548 * Start a hash table walk.  Note that we take the RCU lock in all
549 * cases including when we return an error.  So you must always call
550 * rhashtable_walk_stop to clean up.
551 *
552 * Returns zero if successful.
553 *
554 * Returns -EAGAIN if resize event occured.  Note that the iterator
555 * will rewind back to the beginning and you may use it immediately
556 * by calling rhashtable_walk_next.
557 */
558int rhashtable_walk_start(struct rhashtable_iter *iter)
559	__acquires(RCU)
560{
561	struct rhashtable *ht = iter->ht;
562
563	rcu_read_lock();
564
565	spin_lock(&ht->lock);
566	if (iter->walker->tbl)
567		list_del(&iter->walker->list);
568	spin_unlock(&ht->lock);
569
570	if (!iter->walker->tbl) {
571		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
572		return -EAGAIN;
573	}
574
575	return 0;
576}
577EXPORT_SYMBOL_GPL(rhashtable_walk_start);
578
579/**
580 * rhashtable_walk_next - Return the next object and advance the iterator
581 * @iter:	Hash table iterator
582 *
583 * Note that you must call rhashtable_walk_stop when you are finished
584 * with the walk.
585 *
586 * Returns the next object or NULL when the end of the table is reached.
587 *
588 * Returns -EAGAIN if resize event occured.  Note that the iterator
589 * will rewind back to the beginning and you may continue to use it.
590 */
591void *rhashtable_walk_next(struct rhashtable_iter *iter)
592{
593	struct bucket_table *tbl = iter->walker->tbl;
594	struct rhashtable *ht = iter->ht;
595	struct rhash_head *p = iter->p;
596
597	if (p) {
598		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
599		goto next;
600	}
601
602	for (; iter->slot < tbl->size; iter->slot++) {
603		int skip = iter->skip;
604
605		rht_for_each_rcu(p, tbl, iter->slot) {
606			if (!skip)
607				break;
608			skip--;
609		}
610
611next:
612		if (!rht_is_a_nulls(p)) {
613			iter->skip++;
614			iter->p = p;
615			return rht_obj(ht, p);
616		}
617
618		iter->skip = 0;
619	}
620
621	iter->p = NULL;
622
623	/* Ensure we see any new tables. */
624	smp_rmb();
625
626	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
627	if (iter->walker->tbl) {
628		iter->slot = 0;
629		iter->skip = 0;
630		return ERR_PTR(-EAGAIN);
631	}
632
633	return NULL;
634}
635EXPORT_SYMBOL_GPL(rhashtable_walk_next);
636
637/**
638 * rhashtable_walk_stop - Finish a hash table walk
639 * @iter:	Hash table iterator
640 *
641 * Finish a hash table walk.
642 */
643void rhashtable_walk_stop(struct rhashtable_iter *iter)
644	__releases(RCU)
645{
646	struct rhashtable *ht;
647	struct bucket_table *tbl = iter->walker->tbl;
648
649	if (!tbl)
650		goto out;
651
652	ht = iter->ht;
653
654	spin_lock(&ht->lock);
655	if (tbl->rehash < tbl->size)
656		list_add(&iter->walker->list, &tbl->walkers);
657	else
658		iter->walker->tbl = NULL;
659	spin_unlock(&ht->lock);
660
661	iter->p = NULL;
662
663out:
664	rcu_read_unlock();
665}
666EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
667
668static size_t rounded_hashtable_size(const struct rhashtable_params *params)
669{
670	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
671		   (unsigned long)params->min_size);
672}
673
674static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
675{
676	return jhash2(key, length, seed);
677}
678
679/**
680 * rhashtable_init - initialize a new hash table
681 * @ht:		hash table to be initialized
682 * @params:	configuration parameters
683 *
684 * Initializes a new hash table based on the provided configuration
685 * parameters. A table can be configured either with a variable or
686 * fixed length key:
687 *
688 * Configuration Example 1: Fixed length keys
689 * struct test_obj {
690 *	int			key;
691 *	void *			my_member;
692 *	struct rhash_head	node;
693 * };
694 *
695 * struct rhashtable_params params = {
696 *	.head_offset = offsetof(struct test_obj, node),
697 *	.key_offset = offsetof(struct test_obj, key),
698 *	.key_len = sizeof(int),
699 *	.hashfn = jhash,
700 *	.nulls_base = (1U << RHT_BASE_SHIFT),
701 * };
702 *
703 * Configuration Example 2: Variable length keys
704 * struct test_obj {
705 *	[...]
706 *	struct rhash_head	node;
707 * };
708 *
709 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
710 * {
711 *	struct test_obj *obj = data;
712 *
713 *	return [... hash ...];
714 * }
715 *
716 * struct rhashtable_params params = {
717 *	.head_offset = offsetof(struct test_obj, node),
718 *	.hashfn = jhash,
719 *	.obj_hashfn = my_hash_fn,
720 * };
721 */
722int rhashtable_init(struct rhashtable *ht,
723		    const struct rhashtable_params *params)
724{
725	struct bucket_table *tbl;
726	size_t size;
727
728	size = HASH_DEFAULT_SIZE;
729
730	if ((!params->key_len && !params->obj_hashfn) ||
731	    (params->obj_hashfn && !params->obj_cmpfn))
732		return -EINVAL;
733
734	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
735		return -EINVAL;
736
737	memset(ht, 0, sizeof(*ht));
738	mutex_init(&ht->mutex);
739	spin_lock_init(&ht->lock);
740	memcpy(&ht->p, params, sizeof(*params));
741
742	if (params->min_size)
743		ht->p.min_size = roundup_pow_of_two(params->min_size);
744
745	if (params->max_size)
746		ht->p.max_size = rounddown_pow_of_two(params->max_size);
747
748	if (params->insecure_max_entries)
749		ht->p.insecure_max_entries =
750			rounddown_pow_of_two(params->insecure_max_entries);
751	else
752		ht->p.insecure_max_entries = ht->p.max_size * 2;
753
754	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
755
756	if (params->nelem_hint)
757		size = rounded_hashtable_size(&ht->p);
758
759	/* The maximum (not average) chain length grows with the
760	 * size of the hash table, at a rate of (log N)/(log log N).
761	 * The value of 16 is selected so that even if the hash
762	 * table grew to 2^32 you would not expect the maximum
763	 * chain length to exceed it unless we are under attack
764	 * (or extremely unlucky).
765	 *
766	 * As this limit is only to detect attacks, we don't need
767	 * to set it to a lower value as you'd need the chain
768	 * length to vastly exceed 16 to have any real effect
769	 * on the system.
770	 */
771	if (!params->insecure_elasticity)
772		ht->elasticity = 16;
773
774	if (params->locks_mul)
775		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
776	else
777		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
778
779	ht->key_len = ht->p.key_len;
780	if (!params->hashfn) {
781		ht->p.hashfn = jhash;
782
783		if (!(ht->key_len & (sizeof(u32) - 1))) {
784			ht->key_len /= sizeof(u32);
785			ht->p.hashfn = rhashtable_jhash2;
786		}
787	}
788
789	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
790	if (tbl == NULL)
791		return -ENOMEM;
792
793	atomic_set(&ht->nelems, 0);
794
795	RCU_INIT_POINTER(ht->tbl, tbl);
796
797	INIT_WORK(&ht->run_work, rht_deferred_worker);
798
799	return 0;
800}
801EXPORT_SYMBOL_GPL(rhashtable_init);
802
803/**
804 * rhashtable_free_and_destroy - free elements and destroy hash table
805 * @ht:		the hash table to destroy
806 * @free_fn:	callback to release resources of element
807 * @arg:	pointer passed to free_fn
808 *
809 * Stops an eventual async resize. If defined, invokes free_fn for each
810 * element to releasal resources. Please note that RCU protected
811 * readers may still be accessing the elements. Releasing of resources
812 * must occur in a compatible manner. Then frees the bucket array.
813 *
814 * This function will eventually sleep to wait for an async resize
815 * to complete. The caller is responsible that no further write operations
816 * occurs in parallel.
817 */
818void rhashtable_free_and_destroy(struct rhashtable *ht,
819				 void (*free_fn)(void *ptr, void *arg),
820				 void *arg)
821{
822	const struct bucket_table *tbl;
823	unsigned int i;
824
825	cancel_work_sync(&ht->run_work);
826
827	mutex_lock(&ht->mutex);
828	tbl = rht_dereference(ht->tbl, ht);
829	if (free_fn) {
830		for (i = 0; i < tbl->size; i++) {
831			struct rhash_head *pos, *next;
832
833			for (pos = rht_dereference(tbl->buckets[i], ht),
834			     next = !rht_is_a_nulls(pos) ?
835					rht_dereference(pos->next, ht) : NULL;
836			     !rht_is_a_nulls(pos);
837			     pos = next,
838			     next = !rht_is_a_nulls(pos) ?
839					rht_dereference(pos->next, ht) : NULL)
840				free_fn(rht_obj(ht, pos), arg);
841		}
842	}
843
844	bucket_table_free(tbl);
845	mutex_unlock(&ht->mutex);
846}
847EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
848
849void rhashtable_destroy(struct rhashtable *ht)
850{
851	return rhashtable_free_and_destroy(ht, NULL, NULL);
852}
853EXPORT_SYMBOL_GPL(rhashtable_destroy);