Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *			     Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *			     Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <linux/list.h>
  41#include <linux/init.h>
  42#include <linux/compiler.h>
  43#include <linux/hash.h>
  44#include <linux/posix-clock.h>
  45#include <linux/posix-timers.h>
  46#include <linux/syscalls.h>
  47#include <linux/wait.h>
  48#include <linux/workqueue.h>
  49#include <linux/export.h>
  50#include <linux/hashtable.h>
  51
  52/*
  53 * Management arrays for POSIX timers. Timers are now kept in static hash table
  54 * with 512 entries.
  55 * Timer ids are allocated by local routine, which selects proper hash head by
  56 * key, constructed from current->signal address and per signal struct counter.
  57 * This keeps timer ids unique per process, but now they can intersect between
  58 * processes.
  59 */
  60
  61/*
  62 * Lets keep our timers in a slab cache :-)
  63 */
  64static struct kmem_cache *posix_timers_cache;
  65
  66static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  67static DEFINE_SPINLOCK(hash_lock);
  68
  69/*
  70 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  71 * SIGEV values.  Here we put out an error if this assumption fails.
  72 */
  73#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  74                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  75#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  76#endif
  77
  78/*
  79 * parisc wants ENOTSUP instead of EOPNOTSUPP
  80 */
  81#ifndef ENOTSUP
  82# define ENANOSLEEP_NOTSUP EOPNOTSUPP
  83#else
  84# define ENANOSLEEP_NOTSUP ENOTSUP
  85#endif
  86
  87/*
  88 * The timer ID is turned into a timer address by idr_find().
  89 * Verifying a valid ID consists of:
  90 *
  91 * a) checking that idr_find() returns other than -1.
  92 * b) checking that the timer id matches the one in the timer itself.
  93 * c) that the timer owner is in the callers thread group.
  94 */
  95
  96/*
  97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  98 *	    to implement others.  This structure defines the various
  99 *	    clocks.
 100 *
 101 * RESOLUTION: Clock resolution is used to round up timer and interval
 102 *	    times, NOT to report clock times, which are reported with as
 103 *	    much resolution as the system can muster.  In some cases this
 104 *	    resolution may depend on the underlying clock hardware and
 105 *	    may not be quantifiable until run time, and only then is the
 106 *	    necessary code is written.	The standard says we should say
 107 *	    something about this issue in the documentation...
 108 *
 109 * FUNCTIONS: The CLOCKs structure defines possible functions to
 110 *	    handle various clock functions.
 111 *
 112 *	    The standard POSIX timer management code assumes the
 113 *	    following: 1.) The k_itimer struct (sched.h) is used for
 114 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 115 *	    it_pid fields are not modified by timer code.
 116 *
 117 * Permissions: It is assumed that the clock_settime() function defined
 118 *	    for each clock will take care of permission checks.	 Some
 119 *	    clocks may be set able by any user (i.e. local process
 120 *	    clocks) others not.	 Currently the only set able clock we
 121 *	    have is CLOCK_REALTIME and its high res counter part, both of
 122 *	    which we beg off on and pass to do_sys_settimeofday().
 123 */
 124
 125static struct k_clock posix_clocks[MAX_CLOCKS];
 126
 127/*
 128 * These ones are defined below.
 129 */
 130static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 131			 struct timespec __user *rmtp);
 132static int common_timer_create(struct k_itimer *new_timer);
 133static void common_timer_get(struct k_itimer *, struct itimerspec *);
 134static int common_timer_set(struct k_itimer *, int,
 135			    struct itimerspec *, struct itimerspec *);
 136static int common_timer_del(struct k_itimer *timer);
 137
 138static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 139
 140static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 141
 142#define lock_timer(tid, flags)						   \
 143({	struct k_itimer *__timr;					   \
 144	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 145	__timr;								   \
 146})
 147
 148static int hash(struct signal_struct *sig, unsigned int nr)
 149{
 150	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 151}
 152
 153static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 154					    struct signal_struct *sig,
 155					    timer_t id)
 156{
 157	struct k_itimer *timer;
 158
 159	hlist_for_each_entry_rcu(timer, head, t_hash) {
 160		if ((timer->it_signal == sig) && (timer->it_id == id))
 161			return timer;
 162	}
 163	return NULL;
 164}
 165
 166static struct k_itimer *posix_timer_by_id(timer_t id)
 167{
 168	struct signal_struct *sig = current->signal;
 169	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 170
 171	return __posix_timers_find(head, sig, id);
 172}
 173
 174static int posix_timer_add(struct k_itimer *timer)
 175{
 176	struct signal_struct *sig = current->signal;
 177	int first_free_id = sig->posix_timer_id;
 178	struct hlist_head *head;
 179	int ret = -ENOENT;
 180
 181	do {
 182		spin_lock(&hash_lock);
 183		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 184		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 185			hlist_add_head_rcu(&timer->t_hash, head);
 186			ret = sig->posix_timer_id;
 187		}
 188		if (++sig->posix_timer_id < 0)
 189			sig->posix_timer_id = 0;
 190		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 191			/* Loop over all possible ids completed */
 192			ret = -EAGAIN;
 193		spin_unlock(&hash_lock);
 194	} while (ret == -ENOENT);
 195	return ret;
 196}
 197
 198static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 199{
 200	spin_unlock_irqrestore(&timr->it_lock, flags);
 201}
 202
 203/* Get clock_realtime */
 204static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
 205{
 206	ktime_get_real_ts(tp);
 207	return 0;
 208}
 209
 210/* Set clock_realtime */
 211static int posix_clock_realtime_set(const clockid_t which_clock,
 212				    const struct timespec *tp)
 213{
 214	return do_sys_settimeofday(tp, NULL);
 215}
 216
 217static int posix_clock_realtime_adj(const clockid_t which_clock,
 218				    struct timex *t)
 219{
 220	return do_adjtimex(t);
 221}
 222
 223/*
 224 * Get monotonic time for posix timers
 225 */
 226static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 227{
 228	ktime_get_ts(tp);
 229	return 0;
 230}
 231
 232/*
 233 * Get monotonic-raw time for posix timers
 234 */
 235static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
 236{
 237	getrawmonotonic(tp);
 238	return 0;
 239}
 240
 241
 242static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
 243{
 244	*tp = current_kernel_time();
 245	return 0;
 246}
 247
 248static int posix_get_monotonic_coarse(clockid_t which_clock,
 249						struct timespec *tp)
 250{
 251	*tp = get_monotonic_coarse();
 252	return 0;
 253}
 254
 255static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
 256{
 257	*tp = ktime_to_timespec(KTIME_LOW_RES);
 258	return 0;
 259}
 260
 261static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
 262{
 263	get_monotonic_boottime(tp);
 264	return 0;
 265}
 266
 267static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
 268{
 269	timekeeping_clocktai(tp);
 270	return 0;
 271}
 272
 273/*
 274 * Initialize everything, well, just everything in Posix clocks/timers ;)
 275 */
 276static __init int init_posix_timers(void)
 277{
 278	struct k_clock clock_realtime = {
 279		.clock_getres	= hrtimer_get_res,
 280		.clock_get	= posix_clock_realtime_get,
 281		.clock_set	= posix_clock_realtime_set,
 282		.clock_adj	= posix_clock_realtime_adj,
 283		.nsleep		= common_nsleep,
 284		.nsleep_restart	= hrtimer_nanosleep_restart,
 285		.timer_create	= common_timer_create,
 286		.timer_set	= common_timer_set,
 287		.timer_get	= common_timer_get,
 288		.timer_del	= common_timer_del,
 289	};
 290	struct k_clock clock_monotonic = {
 291		.clock_getres	= hrtimer_get_res,
 292		.clock_get	= posix_ktime_get_ts,
 293		.nsleep		= common_nsleep,
 294		.nsleep_restart	= hrtimer_nanosleep_restart,
 295		.timer_create	= common_timer_create,
 296		.timer_set	= common_timer_set,
 297		.timer_get	= common_timer_get,
 298		.timer_del	= common_timer_del,
 299	};
 300	struct k_clock clock_monotonic_raw = {
 301		.clock_getres	= hrtimer_get_res,
 302		.clock_get	= posix_get_monotonic_raw,
 303	};
 304	struct k_clock clock_realtime_coarse = {
 305		.clock_getres	= posix_get_coarse_res,
 306		.clock_get	= posix_get_realtime_coarse,
 307	};
 308	struct k_clock clock_monotonic_coarse = {
 309		.clock_getres	= posix_get_coarse_res,
 310		.clock_get	= posix_get_monotonic_coarse,
 311	};
 312	struct k_clock clock_tai = {
 313		.clock_getres	= hrtimer_get_res,
 314		.clock_get	= posix_get_tai,
 315		.nsleep		= common_nsleep,
 316		.nsleep_restart	= hrtimer_nanosleep_restart,
 317		.timer_create	= common_timer_create,
 318		.timer_set	= common_timer_set,
 319		.timer_get	= common_timer_get,
 320		.timer_del	= common_timer_del,
 321	};
 322	struct k_clock clock_boottime = {
 323		.clock_getres	= hrtimer_get_res,
 324		.clock_get	= posix_get_boottime,
 325		.nsleep		= common_nsleep,
 326		.nsleep_restart	= hrtimer_nanosleep_restart,
 327		.timer_create	= common_timer_create,
 328		.timer_set	= common_timer_set,
 329		.timer_get	= common_timer_get,
 330		.timer_del	= common_timer_del,
 331	};
 332
 333	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
 334	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
 335	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
 336	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
 337	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
 338	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
 339	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
 340
 341	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 342					sizeof (struct k_itimer), 0, SLAB_PANIC,
 343					NULL);
 344	return 0;
 345}
 346
 347__initcall(init_posix_timers);
 348
 349static void schedule_next_timer(struct k_itimer *timr)
 350{
 351	struct hrtimer *timer = &timr->it.real.timer;
 352
 353	if (timr->it.real.interval.tv64 == 0)
 354		return;
 355
 356	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 357						timer->base->get_time(),
 358						timr->it.real.interval);
 359
 360	timr->it_overrun_last = timr->it_overrun;
 361	timr->it_overrun = -1;
 362	++timr->it_requeue_pending;
 363	hrtimer_restart(timer);
 364}
 365
 366/*
 367 * This function is exported for use by the signal deliver code.  It is
 368 * called just prior to the info block being released and passes that
 369 * block to us.  It's function is to update the overrun entry AND to
 370 * restart the timer.  It should only be called if the timer is to be
 371 * restarted (i.e. we have flagged this in the sys_private entry of the
 372 * info block).
 373 *
 374 * To protect against the timer going away while the interrupt is queued,
 375 * we require that the it_requeue_pending flag be set.
 376 */
 377void do_schedule_next_timer(struct siginfo *info)
 378{
 379	struct k_itimer *timr;
 380	unsigned long flags;
 381
 382	timr = lock_timer(info->si_tid, &flags);
 383
 384	if (timr && timr->it_requeue_pending == info->si_sys_private) {
 385		if (timr->it_clock < 0)
 386			posix_cpu_timer_schedule(timr);
 387		else
 388			schedule_next_timer(timr);
 389
 390		info->si_overrun += timr->it_overrun_last;
 391	}
 392
 393	if (timr)
 394		unlock_timer(timr, flags);
 395}
 396
 397int posix_timer_event(struct k_itimer *timr, int si_private)
 398{
 399	struct task_struct *task;
 400	int shared, ret = -1;
 401	/*
 402	 * FIXME: if ->sigq is queued we can race with
 403	 * dequeue_signal()->do_schedule_next_timer().
 404	 *
 405	 * If dequeue_signal() sees the "right" value of
 406	 * si_sys_private it calls do_schedule_next_timer().
 407	 * We re-queue ->sigq and drop ->it_lock().
 408	 * do_schedule_next_timer() locks the timer
 409	 * and re-schedules it while ->sigq is pending.
 410	 * Not really bad, but not that we want.
 411	 */
 412	timr->sigq->info.si_sys_private = si_private;
 413
 414	rcu_read_lock();
 415	task = pid_task(timr->it_pid, PIDTYPE_PID);
 416	if (task) {
 417		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 418		ret = send_sigqueue(timr->sigq, task, shared);
 419	}
 420	rcu_read_unlock();
 421	/* If we failed to send the signal the timer stops. */
 422	return ret > 0;
 423}
 424EXPORT_SYMBOL_GPL(posix_timer_event);
 425
 426/*
 427 * This function gets called when a POSIX.1b interval timer expires.  It
 428 * is used as a callback from the kernel internal timer.  The
 429 * run_timer_list code ALWAYS calls with interrupts on.
 430
 431 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 432 */
 433static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 434{
 435	struct k_itimer *timr;
 436	unsigned long flags;
 437	int si_private = 0;
 438	enum hrtimer_restart ret = HRTIMER_NORESTART;
 439
 440	timr = container_of(timer, struct k_itimer, it.real.timer);
 441	spin_lock_irqsave(&timr->it_lock, flags);
 442
 443	if (timr->it.real.interval.tv64 != 0)
 444		si_private = ++timr->it_requeue_pending;
 445
 446	if (posix_timer_event(timr, si_private)) {
 447		/*
 448		 * signal was not sent because of sig_ignor
 449		 * we will not get a call back to restart it AND
 450		 * it should be restarted.
 451		 */
 452		if (timr->it.real.interval.tv64 != 0) {
 453			ktime_t now = hrtimer_cb_get_time(timer);
 454
 455			/*
 456			 * FIXME: What we really want, is to stop this
 457			 * timer completely and restart it in case the
 458			 * SIG_IGN is removed. This is a non trivial
 459			 * change which involves sighand locking
 460			 * (sigh !), which we don't want to do late in
 461			 * the release cycle.
 462			 *
 463			 * For now we just let timers with an interval
 464			 * less than a jiffie expire every jiffie to
 465			 * avoid softirq starvation in case of SIG_IGN
 466			 * and a very small interval, which would put
 467			 * the timer right back on the softirq pending
 468			 * list. By moving now ahead of time we trick
 469			 * hrtimer_forward() to expire the timer
 470			 * later, while we still maintain the overrun
 471			 * accuracy, but have some inconsistency in
 472			 * the timer_gettime() case. This is at least
 473			 * better than a starved softirq. A more
 474			 * complex fix which solves also another related
 475			 * inconsistency is already in the pipeline.
 476			 */
 477#ifdef CONFIG_HIGH_RES_TIMERS
 478			{
 479				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 480
 481				if (timr->it.real.interval.tv64 < kj.tv64)
 482					now = ktime_add(now, kj);
 483			}
 484#endif
 485			timr->it_overrun += (unsigned int)
 486				hrtimer_forward(timer, now,
 487						timr->it.real.interval);
 488			ret = HRTIMER_RESTART;
 489			++timr->it_requeue_pending;
 490		}
 491	}
 492
 493	unlock_timer(timr, flags);
 494	return ret;
 495}
 496
 497static struct pid *good_sigevent(sigevent_t * event)
 498{
 499	struct task_struct *rtn = current->group_leader;
 500
 501	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 502		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 503		 !same_thread_group(rtn, current) ||
 504		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 505		return NULL;
 506
 507	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 508	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 509		return NULL;
 510
 511	return task_pid(rtn);
 512}
 513
 514void posix_timers_register_clock(const clockid_t clock_id,
 515				 struct k_clock *new_clock)
 516{
 517	if ((unsigned) clock_id >= MAX_CLOCKS) {
 518		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
 519		       clock_id);
 520		return;
 521	}
 522
 523	if (!new_clock->clock_get) {
 524		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
 525		       clock_id);
 526		return;
 527	}
 528	if (!new_clock->clock_getres) {
 529		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
 530		       clock_id);
 531		return;
 532	}
 533
 534	posix_clocks[clock_id] = *new_clock;
 535}
 536EXPORT_SYMBOL_GPL(posix_timers_register_clock);
 537
 538static struct k_itimer * alloc_posix_timer(void)
 539{
 540	struct k_itimer *tmr;
 541	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 542	if (!tmr)
 543		return tmr;
 544	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 545		kmem_cache_free(posix_timers_cache, tmr);
 546		return NULL;
 547	}
 548	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 549	return tmr;
 550}
 551
 552static void k_itimer_rcu_free(struct rcu_head *head)
 553{
 554	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 555
 556	kmem_cache_free(posix_timers_cache, tmr);
 557}
 558
 559#define IT_ID_SET	1
 560#define IT_ID_NOT_SET	0
 561static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 562{
 563	if (it_id_set) {
 564		unsigned long flags;
 565		spin_lock_irqsave(&hash_lock, flags);
 566		hlist_del_rcu(&tmr->t_hash);
 567		spin_unlock_irqrestore(&hash_lock, flags);
 568	}
 569	put_pid(tmr->it_pid);
 570	sigqueue_free(tmr->sigq);
 571	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 572}
 573
 574static struct k_clock *clockid_to_kclock(const clockid_t id)
 575{
 576	if (id < 0)
 577		return (id & CLOCKFD_MASK) == CLOCKFD ?
 578			&clock_posix_dynamic : &clock_posix_cpu;
 579
 580	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
 581		return NULL;
 582	return &posix_clocks[id];
 583}
 584
 585static int common_timer_create(struct k_itimer *new_timer)
 586{
 587	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 588	return 0;
 589}
 590
 591/* Create a POSIX.1b interval timer. */
 592
 593SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 594		struct sigevent __user *, timer_event_spec,
 595		timer_t __user *, created_timer_id)
 596{
 597	struct k_clock *kc = clockid_to_kclock(which_clock);
 598	struct k_itimer *new_timer;
 599	int error, new_timer_id;
 600	sigevent_t event;
 601	int it_id_set = IT_ID_NOT_SET;
 602
 603	if (!kc)
 604		return -EINVAL;
 605	if (!kc->timer_create)
 606		return -EOPNOTSUPP;
 607
 608	new_timer = alloc_posix_timer();
 609	if (unlikely(!new_timer))
 610		return -EAGAIN;
 611
 612	spin_lock_init(&new_timer->it_lock);
 613	new_timer_id = posix_timer_add(new_timer);
 614	if (new_timer_id < 0) {
 615		error = new_timer_id;
 616		goto out;
 617	}
 618
 619	it_id_set = IT_ID_SET;
 620	new_timer->it_id = (timer_t) new_timer_id;
 621	new_timer->it_clock = which_clock;
 622	new_timer->it_overrun = -1;
 623
 624	if (timer_event_spec) {
 625		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 626			error = -EFAULT;
 627			goto out;
 628		}
 629		rcu_read_lock();
 630		new_timer->it_pid = get_pid(good_sigevent(&event));
 631		rcu_read_unlock();
 632		if (!new_timer->it_pid) {
 633			error = -EINVAL;
 634			goto out;
 635		}
 636	} else {
 637		event.sigev_notify = SIGEV_SIGNAL;
 638		event.sigev_signo = SIGALRM;
 639		event.sigev_value.sival_int = new_timer->it_id;
 640		new_timer->it_pid = get_pid(task_tgid(current));
 641	}
 642
 643	new_timer->it_sigev_notify     = event.sigev_notify;
 644	new_timer->sigq->info.si_signo = event.sigev_signo;
 645	new_timer->sigq->info.si_value = event.sigev_value;
 646	new_timer->sigq->info.si_tid   = new_timer->it_id;
 647	new_timer->sigq->info.si_code  = SI_TIMER;
 648
 649	if (copy_to_user(created_timer_id,
 650			 &new_timer_id, sizeof (new_timer_id))) {
 651		error = -EFAULT;
 652		goto out;
 653	}
 654
 655	error = kc->timer_create(new_timer);
 656	if (error)
 657		goto out;
 658
 659	spin_lock_irq(&current->sighand->siglock);
 660	new_timer->it_signal = current->signal;
 661	list_add(&new_timer->list, &current->signal->posix_timers);
 662	spin_unlock_irq(&current->sighand->siglock);
 663
 664	return 0;
 665	/*
 666	 * In the case of the timer belonging to another task, after
 667	 * the task is unlocked, the timer is owned by the other task
 668	 * and may cease to exist at any time.  Don't use or modify
 669	 * new_timer after the unlock call.
 670	 */
 671out:
 672	release_posix_timer(new_timer, it_id_set);
 673	return error;
 674}
 675
 676/*
 677 * Locking issues: We need to protect the result of the id look up until
 678 * we get the timer locked down so it is not deleted under us.  The
 679 * removal is done under the idr spinlock so we use that here to bridge
 680 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 681 * be release with out holding the timer lock.
 682 */
 683static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 684{
 685	struct k_itimer *timr;
 686
 687	/*
 688	 * timer_t could be any type >= int and we want to make sure any
 689	 * @timer_id outside positive int range fails lookup.
 690	 */
 691	if ((unsigned long long)timer_id > INT_MAX)
 692		return NULL;
 693
 694	rcu_read_lock();
 695	timr = posix_timer_by_id(timer_id);
 696	if (timr) {
 697		spin_lock_irqsave(&timr->it_lock, *flags);
 698		if (timr->it_signal == current->signal) {
 699			rcu_read_unlock();
 700			return timr;
 701		}
 702		spin_unlock_irqrestore(&timr->it_lock, *flags);
 703	}
 704	rcu_read_unlock();
 705
 706	return NULL;
 707}
 708
 709/*
 710 * Get the time remaining on a POSIX.1b interval timer.  This function
 711 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 712 * mess with irq.
 713 *
 714 * We have a couple of messes to clean up here.  First there is the case
 715 * of a timer that has a requeue pending.  These timers should appear to
 716 * be in the timer list with an expiry as if we were to requeue them
 717 * now.
 718 *
 719 * The second issue is the SIGEV_NONE timer which may be active but is
 720 * not really ever put in the timer list (to save system resources).
 721 * This timer may be expired, and if so, we will do it here.  Otherwise
 722 * it is the same as a requeue pending timer WRT to what we should
 723 * report.
 724 */
 725static void
 726common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 727{
 728	ktime_t now, remaining, iv;
 729	struct hrtimer *timer = &timr->it.real.timer;
 730
 731	memset(cur_setting, 0, sizeof(struct itimerspec));
 732
 733	iv = timr->it.real.interval;
 734
 735	/* interval timer ? */
 736	if (iv.tv64)
 737		cur_setting->it_interval = ktime_to_timespec(iv);
 738	else if (!hrtimer_active(timer) &&
 739		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 740		return;
 741
 742	now = timer->base->get_time();
 743
 744	/*
 745	 * When a requeue is pending or this is a SIGEV_NONE
 746	 * timer move the expiry time forward by intervals, so
 747	 * expiry is > now.
 748	 */
 749	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 750	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 751		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
 752
 753	remaining = ktime_sub(hrtimer_get_expires(timer), now);
 754	/* Return 0 only, when the timer is expired and not pending */
 755	if (remaining.tv64 <= 0) {
 756		/*
 757		 * A single shot SIGEV_NONE timer must return 0, when
 758		 * it is expired !
 759		 */
 760		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 761			cur_setting->it_value.tv_nsec = 1;
 762	} else
 763		cur_setting->it_value = ktime_to_timespec(remaining);
 764}
 765
 766/* Get the time remaining on a POSIX.1b interval timer. */
 767SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 768		struct itimerspec __user *, setting)
 769{
 770	struct itimerspec cur_setting;
 771	struct k_itimer *timr;
 772	struct k_clock *kc;
 773	unsigned long flags;
 774	int ret = 0;
 775
 776	timr = lock_timer(timer_id, &flags);
 777	if (!timr)
 778		return -EINVAL;
 779
 780	kc = clockid_to_kclock(timr->it_clock);
 781	if (WARN_ON_ONCE(!kc || !kc->timer_get))
 782		ret = -EINVAL;
 783	else
 784		kc->timer_get(timr, &cur_setting);
 785
 786	unlock_timer(timr, flags);
 787
 788	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 789		return -EFAULT;
 790
 791	return ret;
 792}
 793
 794/*
 795 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 796 * be the overrun of the timer last delivered.  At the same time we are
 797 * accumulating overruns on the next timer.  The overrun is frozen when
 798 * the signal is delivered, either at the notify time (if the info block
 799 * is not queued) or at the actual delivery time (as we are informed by
 800 * the call back to do_schedule_next_timer().  So all we need to do is
 801 * to pick up the frozen overrun.
 802 */
 803SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 804{
 805	struct k_itimer *timr;
 806	int overrun;
 807	unsigned long flags;
 808
 809	timr = lock_timer(timer_id, &flags);
 810	if (!timr)
 811		return -EINVAL;
 812
 813	overrun = timr->it_overrun_last;
 814	unlock_timer(timr, flags);
 815
 816	return overrun;
 817}
 818
 819/* Set a POSIX.1b interval timer. */
 820/* timr->it_lock is taken. */
 821static int
 822common_timer_set(struct k_itimer *timr, int flags,
 823		 struct itimerspec *new_setting, struct itimerspec *old_setting)
 824{
 825	struct hrtimer *timer = &timr->it.real.timer;
 826	enum hrtimer_mode mode;
 827
 828	if (old_setting)
 829		common_timer_get(timr, old_setting);
 830
 831	/* disable the timer */
 832	timr->it.real.interval.tv64 = 0;
 833	/*
 834	 * careful here.  If smp we could be in the "fire" routine which will
 835	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 836	 */
 837	if (hrtimer_try_to_cancel(timer) < 0)
 838		return TIMER_RETRY;
 839
 840	timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 841		~REQUEUE_PENDING;
 842	timr->it_overrun_last = 0;
 843
 844	/* switch off the timer when it_value is zero */
 845	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 846		return 0;
 847
 848	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 849	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 850	timr->it.real.timer.function = posix_timer_fn;
 851
 852	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
 853
 854	/* Convert interval */
 855	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 856
 857	/* SIGEV_NONE timers are not queued ! See common_timer_get */
 858	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 859		/* Setup correct expiry time for relative timers */
 860		if (mode == HRTIMER_MODE_REL) {
 861			hrtimer_add_expires(timer, timer->base->get_time());
 862		}
 863		return 0;
 864	}
 865
 866	hrtimer_start_expires(timer, mode);
 867	return 0;
 868}
 869
 870/* Set a POSIX.1b interval timer */
 871SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 872		const struct itimerspec __user *, new_setting,
 873		struct itimerspec __user *, old_setting)
 874{
 875	struct k_itimer *timr;
 876	struct itimerspec new_spec, old_spec;
 877	int error = 0;
 878	unsigned long flag;
 879	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 880	struct k_clock *kc;
 881
 882	if (!new_setting)
 883		return -EINVAL;
 884
 885	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 886		return -EFAULT;
 887
 888	if (!timespec_valid(&new_spec.it_interval) ||
 889	    !timespec_valid(&new_spec.it_value))
 890		return -EINVAL;
 891retry:
 892	timr = lock_timer(timer_id, &flag);
 893	if (!timr)
 894		return -EINVAL;
 895
 896	kc = clockid_to_kclock(timr->it_clock);
 897	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 898		error = -EINVAL;
 899	else
 900		error = kc->timer_set(timr, flags, &new_spec, rtn);
 901
 902	unlock_timer(timr, flag);
 903	if (error == TIMER_RETRY) {
 904		rtn = NULL;	// We already got the old time...
 905		goto retry;
 906	}
 907
 908	if (old_setting && !error &&
 909	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 910		error = -EFAULT;
 911
 912	return error;
 913}
 914
 915static int common_timer_del(struct k_itimer *timer)
 916{
 917	timer->it.real.interval.tv64 = 0;
 918
 919	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 920		return TIMER_RETRY;
 921	return 0;
 922}
 923
 924static inline int timer_delete_hook(struct k_itimer *timer)
 925{
 926	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
 927
 928	if (WARN_ON_ONCE(!kc || !kc->timer_del))
 929		return -EINVAL;
 930	return kc->timer_del(timer);
 931}
 932
 933/* Delete a POSIX.1b interval timer. */
 934SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 935{
 936	struct k_itimer *timer;
 937	unsigned long flags;
 938
 939retry_delete:
 940	timer = lock_timer(timer_id, &flags);
 941	if (!timer)
 942		return -EINVAL;
 943
 944	if (timer_delete_hook(timer) == TIMER_RETRY) {
 945		unlock_timer(timer, flags);
 946		goto retry_delete;
 947	}
 948
 949	spin_lock(&current->sighand->siglock);
 950	list_del(&timer->list);
 951	spin_unlock(&current->sighand->siglock);
 952	/*
 953	 * This keeps any tasks waiting on the spin lock from thinking
 954	 * they got something (see the lock code above).
 955	 */
 956	timer->it_signal = NULL;
 957
 958	unlock_timer(timer, flags);
 959	release_posix_timer(timer, IT_ID_SET);
 960	return 0;
 961}
 962
 963/*
 964 * return timer owned by the process, used by exit_itimers
 965 */
 966static void itimer_delete(struct k_itimer *timer)
 967{
 968	unsigned long flags;
 969
 970retry_delete:
 971	spin_lock_irqsave(&timer->it_lock, flags);
 972
 973	if (timer_delete_hook(timer) == TIMER_RETRY) {
 974		unlock_timer(timer, flags);
 975		goto retry_delete;
 976	}
 977	list_del(&timer->list);
 978	/*
 979	 * This keeps any tasks waiting on the spin lock from thinking
 980	 * they got something (see the lock code above).
 981	 */
 982	timer->it_signal = NULL;
 983
 984	unlock_timer(timer, flags);
 985	release_posix_timer(timer, IT_ID_SET);
 986}
 987
 988/*
 989 * This is called by do_exit or de_thread, only when there are no more
 990 * references to the shared signal_struct.
 991 */
 992void exit_itimers(struct signal_struct *sig)
 993{
 994	struct k_itimer *tmr;
 995
 996	while (!list_empty(&sig->posix_timers)) {
 997		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 998		itimer_delete(tmr);
 999	}
1000}
1001
1002SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1003		const struct timespec __user *, tp)
1004{
1005	struct k_clock *kc = clockid_to_kclock(which_clock);
1006	struct timespec new_tp;
1007
1008	if (!kc || !kc->clock_set)
1009		return -EINVAL;
1010
1011	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1012		return -EFAULT;
1013
1014	return kc->clock_set(which_clock, &new_tp);
1015}
1016
1017SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1018		struct timespec __user *,tp)
1019{
1020	struct k_clock *kc = clockid_to_kclock(which_clock);
1021	struct timespec kernel_tp;
1022	int error;
1023
1024	if (!kc)
1025		return -EINVAL;
1026
1027	error = kc->clock_get(which_clock, &kernel_tp);
1028
1029	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1030		error = -EFAULT;
1031
1032	return error;
1033}
1034
1035SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1036		struct timex __user *, utx)
1037{
1038	struct k_clock *kc = clockid_to_kclock(which_clock);
1039	struct timex ktx;
1040	int err;
1041
1042	if (!kc)
1043		return -EINVAL;
1044	if (!kc->clock_adj)
1045		return -EOPNOTSUPP;
1046
1047	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1048		return -EFAULT;
1049
1050	err = kc->clock_adj(which_clock, &ktx);
1051
1052	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1053		return -EFAULT;
1054
1055	return err;
1056}
1057
1058SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1059		struct timespec __user *, tp)
1060{
1061	struct k_clock *kc = clockid_to_kclock(which_clock);
1062	struct timespec rtn_tp;
1063	int error;
1064
1065	if (!kc)
1066		return -EINVAL;
1067
1068	error = kc->clock_getres(which_clock, &rtn_tp);
1069
1070	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1071		error = -EFAULT;
1072
1073	return error;
1074}
1075
1076/*
1077 * nanosleep for monotonic and realtime clocks
1078 */
1079static int common_nsleep(const clockid_t which_clock, int flags,
1080			 struct timespec *tsave, struct timespec __user *rmtp)
1081{
1082	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1083				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1084				 which_clock);
1085}
1086
1087SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1088		const struct timespec __user *, rqtp,
1089		struct timespec __user *, rmtp)
1090{
1091	struct k_clock *kc = clockid_to_kclock(which_clock);
1092	struct timespec t;
1093
1094	if (!kc)
1095		return -EINVAL;
1096	if (!kc->nsleep)
1097		return -ENANOSLEEP_NOTSUP;
1098
1099	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1100		return -EFAULT;
1101
1102	if (!timespec_valid(&t))
1103		return -EINVAL;
1104
1105	return kc->nsleep(which_clock, flags, &t, rmtp);
1106}
1107
1108/*
1109 * This will restart clock_nanosleep. This is required only by
1110 * compat_clock_nanosleep_restart for now.
1111 */
1112long clock_nanosleep_restart(struct restart_block *restart_block)
1113{
1114	clockid_t which_clock = restart_block->nanosleep.clockid;
1115	struct k_clock *kc = clockid_to_kclock(which_clock);
1116
1117	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1118		return -EINVAL;
1119
1120	return kc->nsleep_restart(restart_block);
1121}