Loading...
1/* Framework for configuring and reading PHY devices
2 * Based on code in sungem_phy.c and gianfar_phy.c
3 *
4 * Author: Andy Fleming
5 *
6 * Copyright (c) 2004 Freescale Semiconductor, Inc.
7 * Copyright (c) 2006, 2007 Maciej W. Rozycki
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/kernel.h>
19#include <linux/string.h>
20#include <linux/errno.h>
21#include <linux/unistd.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/mii.h>
30#include <linux/ethtool.h>
31#include <linux/phy.h>
32#include <linux/timer.h>
33#include <linux/workqueue.h>
34#include <linux/mdio.h>
35#include <linux/io.h>
36#include <linux/uaccess.h>
37#include <linux/atomic.h>
38
39#include <asm/irq.h>
40
41static const char *phy_speed_to_str(int speed)
42{
43 switch (speed) {
44 case SPEED_10:
45 return "10Mbps";
46 case SPEED_100:
47 return "100Mbps";
48 case SPEED_1000:
49 return "1Gbps";
50 case SPEED_2500:
51 return "2.5Gbps";
52 case SPEED_10000:
53 return "10Gbps";
54 case SPEED_UNKNOWN:
55 return "Unknown";
56 default:
57 return "Unsupported (update phy.c)";
58 }
59}
60
61/**
62 * phy_print_status - Convenience function to print out the current phy status
63 * @phydev: the phy_device struct
64 */
65void phy_print_status(struct phy_device *phydev)
66{
67 if (phydev->link) {
68 netdev_info(phydev->attached_dev,
69 "Link is Up - %s/%s - flow control %s\n",
70 phy_speed_to_str(phydev->speed),
71 DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 phydev->pause ? "rx/tx" : "off");
73 } else {
74 netdev_info(phydev->attached_dev, "Link is Down\n");
75 }
76}
77EXPORT_SYMBOL(phy_print_status);
78
79/**
80 * phy_clear_interrupt - Ack the phy device's interrupt
81 * @phydev: the phy_device struct
82 *
83 * If the @phydev driver has an ack_interrupt function, call it to
84 * ack and clear the phy device's interrupt.
85 *
86 * Returns 0 on success or < 0 on error.
87 */
88static int phy_clear_interrupt(struct phy_device *phydev)
89{
90 if (phydev->drv->ack_interrupt)
91 return phydev->drv->ack_interrupt(phydev);
92
93 return 0;
94}
95
96/**
97 * phy_config_interrupt - configure the PHY device for the requested interrupts
98 * @phydev: the phy_device struct
99 * @interrupts: interrupt flags to configure for this @phydev
100 *
101 * Returns 0 on success or < 0 on error.
102 */
103static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104{
105 phydev->interrupts = interrupts;
106 if (phydev->drv->config_intr)
107 return phydev->drv->config_intr(phydev);
108
109 return 0;
110}
111
112
113/**
114 * phy_aneg_done - return auto-negotiation status
115 * @phydev: target phy_device struct
116 *
117 * Description: Return the auto-negotiation status from this @phydev
118 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119 * is still pending.
120 */
121static inline int phy_aneg_done(struct phy_device *phydev)
122{
123 if (phydev->drv->aneg_done)
124 return phydev->drv->aneg_done(phydev);
125
126 return genphy_aneg_done(phydev);
127}
128
129/* A structure for mapping a particular speed and duplex
130 * combination to a particular SUPPORTED and ADVERTISED value
131 */
132struct phy_setting {
133 int speed;
134 int duplex;
135 u32 setting;
136};
137
138/* A mapping of all SUPPORTED settings to speed/duplex */
139static const struct phy_setting settings[] = {
140 {
141 .speed = 10000,
142 .duplex = DUPLEX_FULL,
143 .setting = SUPPORTED_10000baseT_Full,
144 },
145 {
146 .speed = SPEED_1000,
147 .duplex = DUPLEX_FULL,
148 .setting = SUPPORTED_1000baseT_Full,
149 },
150 {
151 .speed = SPEED_1000,
152 .duplex = DUPLEX_HALF,
153 .setting = SUPPORTED_1000baseT_Half,
154 },
155 {
156 .speed = SPEED_100,
157 .duplex = DUPLEX_FULL,
158 .setting = SUPPORTED_100baseT_Full,
159 },
160 {
161 .speed = SPEED_100,
162 .duplex = DUPLEX_HALF,
163 .setting = SUPPORTED_100baseT_Half,
164 },
165 {
166 .speed = SPEED_10,
167 .duplex = DUPLEX_FULL,
168 .setting = SUPPORTED_10baseT_Full,
169 },
170 {
171 .speed = SPEED_10,
172 .duplex = DUPLEX_HALF,
173 .setting = SUPPORTED_10baseT_Half,
174 },
175};
176
177#define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
178
179/**
180 * phy_find_setting - find a PHY settings array entry that matches speed & duplex
181 * @speed: speed to match
182 * @duplex: duplex to match
183 *
184 * Description: Searches the settings array for the setting which
185 * matches the desired speed and duplex, and returns the index
186 * of that setting. Returns the index of the last setting if
187 * none of the others match.
188 */
189static inline unsigned int phy_find_setting(int speed, int duplex)
190{
191 unsigned int idx = 0;
192
193 while (idx < ARRAY_SIZE(settings) &&
194 (settings[idx].speed != speed || settings[idx].duplex != duplex))
195 idx++;
196
197 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
198}
199
200/**
201 * phy_find_valid - find a PHY setting that matches the requested features mask
202 * @idx: The first index in settings[] to search
203 * @features: A mask of the valid settings
204 *
205 * Description: Returns the index of the first valid setting less
206 * than or equal to the one pointed to by idx, as determined by
207 * the mask in features. Returns the index of the last setting
208 * if nothing else matches.
209 */
210static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
211{
212 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
213 idx++;
214
215 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
216}
217
218/**
219 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
220 * @phydev: the target phy_device struct
221 *
222 * Description: Make sure the PHY is set to supported speeds and
223 * duplexes. Drop down by one in this order: 1000/FULL,
224 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
225 */
226static void phy_sanitize_settings(struct phy_device *phydev)
227{
228 u32 features = phydev->supported;
229 unsigned int idx;
230
231 /* Sanitize settings based on PHY capabilities */
232 if ((features & SUPPORTED_Autoneg) == 0)
233 phydev->autoneg = AUTONEG_DISABLE;
234
235 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
236 features);
237
238 phydev->speed = settings[idx].speed;
239 phydev->duplex = settings[idx].duplex;
240}
241
242/**
243 * phy_ethtool_sset - generic ethtool sset function, handles all the details
244 * @phydev: target phy_device struct
245 * @cmd: ethtool_cmd
246 *
247 * A few notes about parameter checking:
248 * - We don't set port or transceiver, so we don't care what they
249 * were set to.
250 * - phy_start_aneg() will make sure forced settings are sane, and
251 * choose the next best ones from the ones selected, so we don't
252 * care if ethtool tries to give us bad values.
253 */
254int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
255{
256 u32 speed = ethtool_cmd_speed(cmd);
257
258 if (cmd->phy_address != phydev->addr)
259 return -EINVAL;
260
261 /* We make sure that we don't pass unsupported values in to the PHY */
262 cmd->advertising &= phydev->supported;
263
264 /* Verify the settings we care about. */
265 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
266 return -EINVAL;
267
268 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
269 return -EINVAL;
270
271 if (cmd->autoneg == AUTONEG_DISABLE &&
272 ((speed != SPEED_1000 &&
273 speed != SPEED_100 &&
274 speed != SPEED_10) ||
275 (cmd->duplex != DUPLEX_HALF &&
276 cmd->duplex != DUPLEX_FULL)))
277 return -EINVAL;
278
279 phydev->autoneg = cmd->autoneg;
280
281 phydev->speed = speed;
282
283 phydev->advertising = cmd->advertising;
284
285 if (AUTONEG_ENABLE == cmd->autoneg)
286 phydev->advertising |= ADVERTISED_Autoneg;
287 else
288 phydev->advertising &= ~ADVERTISED_Autoneg;
289
290 phydev->duplex = cmd->duplex;
291
292 /* Restart the PHY */
293 phy_start_aneg(phydev);
294
295 return 0;
296}
297EXPORT_SYMBOL(phy_ethtool_sset);
298
299int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
300{
301 cmd->supported = phydev->supported;
302
303 cmd->advertising = phydev->advertising;
304 cmd->lp_advertising = phydev->lp_advertising;
305
306 ethtool_cmd_speed_set(cmd, phydev->speed);
307 cmd->duplex = phydev->duplex;
308 if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
309 cmd->port = PORT_BNC;
310 else
311 cmd->port = PORT_MII;
312 cmd->phy_address = phydev->addr;
313 cmd->transceiver = phy_is_internal(phydev) ?
314 XCVR_INTERNAL : XCVR_EXTERNAL;
315 cmd->autoneg = phydev->autoneg;
316
317 return 0;
318}
319EXPORT_SYMBOL(phy_ethtool_gset);
320
321/**
322 * phy_mii_ioctl - generic PHY MII ioctl interface
323 * @phydev: the phy_device struct
324 * @ifr: &struct ifreq for socket ioctl's
325 * @cmd: ioctl cmd to execute
326 *
327 * Note that this function is currently incompatible with the
328 * PHYCONTROL layer. It changes registers without regard to
329 * current state. Use at own risk.
330 */
331int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
332{
333 struct mii_ioctl_data *mii_data = if_mii(ifr);
334 u16 val = mii_data->val_in;
335
336 switch (cmd) {
337 case SIOCGMIIPHY:
338 mii_data->phy_id = phydev->addr;
339 /* fall through */
340
341 case SIOCGMIIREG:
342 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
343 mii_data->reg_num);
344 return 0;
345
346 case SIOCSMIIREG:
347 if (mii_data->phy_id == phydev->addr) {
348 switch (mii_data->reg_num) {
349 case MII_BMCR:
350 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0)
351 phydev->autoneg = AUTONEG_DISABLE;
352 else
353 phydev->autoneg = AUTONEG_ENABLE;
354 if (!phydev->autoneg && (val & BMCR_FULLDPLX))
355 phydev->duplex = DUPLEX_FULL;
356 else
357 phydev->duplex = DUPLEX_HALF;
358 if (!phydev->autoneg && (val & BMCR_SPEED1000))
359 phydev->speed = SPEED_1000;
360 else if (!phydev->autoneg &&
361 (val & BMCR_SPEED100))
362 phydev->speed = SPEED_100;
363 break;
364 case MII_ADVERTISE:
365 phydev->advertising = val;
366 break;
367 default:
368 /* do nothing */
369 break;
370 }
371 }
372
373 mdiobus_write(phydev->bus, mii_data->phy_id,
374 mii_data->reg_num, val);
375
376 if (mii_data->reg_num == MII_BMCR &&
377 val & BMCR_RESET)
378 return phy_init_hw(phydev);
379 return 0;
380
381 case SIOCSHWTSTAMP:
382 if (phydev->drv->hwtstamp)
383 return phydev->drv->hwtstamp(phydev, ifr);
384 /* fall through */
385
386 default:
387 return -EOPNOTSUPP;
388 }
389}
390EXPORT_SYMBOL(phy_mii_ioctl);
391
392/**
393 * phy_start_aneg - start auto-negotiation for this PHY device
394 * @phydev: the phy_device struct
395 *
396 * Description: Sanitizes the settings (if we're not autonegotiating
397 * them), and then calls the driver's config_aneg function.
398 * If the PHYCONTROL Layer is operating, we change the state to
399 * reflect the beginning of Auto-negotiation or forcing.
400 */
401int phy_start_aneg(struct phy_device *phydev)
402{
403 int err;
404
405 mutex_lock(&phydev->lock);
406
407 if (AUTONEG_DISABLE == phydev->autoneg)
408 phy_sanitize_settings(phydev);
409
410 err = phydev->drv->config_aneg(phydev);
411 if (err < 0)
412 goto out_unlock;
413
414 if (phydev->state != PHY_HALTED) {
415 if (AUTONEG_ENABLE == phydev->autoneg) {
416 phydev->state = PHY_AN;
417 phydev->link_timeout = PHY_AN_TIMEOUT;
418 } else {
419 phydev->state = PHY_FORCING;
420 phydev->link_timeout = PHY_FORCE_TIMEOUT;
421 }
422 }
423
424out_unlock:
425 mutex_unlock(&phydev->lock);
426 return err;
427}
428EXPORT_SYMBOL(phy_start_aneg);
429
430/**
431 * phy_start_machine - start PHY state machine tracking
432 * @phydev: the phy_device struct
433 *
434 * Description: The PHY infrastructure can run a state machine
435 * which tracks whether the PHY is starting up, negotiating,
436 * etc. This function starts the timer which tracks the state
437 * of the PHY. If you want to maintain your own state machine,
438 * do not call this function.
439 */
440void phy_start_machine(struct phy_device *phydev)
441{
442 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
443}
444
445/**
446 * phy_stop_machine - stop the PHY state machine tracking
447 * @phydev: target phy_device struct
448 *
449 * Description: Stops the state machine timer, sets the state to UP
450 * (unless it wasn't up yet). This function must be called BEFORE
451 * phy_detach.
452 */
453void phy_stop_machine(struct phy_device *phydev)
454{
455 cancel_delayed_work_sync(&phydev->state_queue);
456
457 mutex_lock(&phydev->lock);
458 if (phydev->state > PHY_UP)
459 phydev->state = PHY_UP;
460 mutex_unlock(&phydev->lock);
461}
462
463/**
464 * phy_error - enter HALTED state for this PHY device
465 * @phydev: target phy_device struct
466 *
467 * Moves the PHY to the HALTED state in response to a read
468 * or write error, and tells the controller the link is down.
469 * Must not be called from interrupt context, or while the
470 * phydev->lock is held.
471 */
472static void phy_error(struct phy_device *phydev)
473{
474 mutex_lock(&phydev->lock);
475 phydev->state = PHY_HALTED;
476 mutex_unlock(&phydev->lock);
477}
478
479/**
480 * phy_interrupt - PHY interrupt handler
481 * @irq: interrupt line
482 * @phy_dat: phy_device pointer
483 *
484 * Description: When a PHY interrupt occurs, the handler disables
485 * interrupts, and schedules a work task to clear the interrupt.
486 */
487static irqreturn_t phy_interrupt(int irq, void *phy_dat)
488{
489 struct phy_device *phydev = phy_dat;
490
491 if (PHY_HALTED == phydev->state)
492 return IRQ_NONE; /* It can't be ours. */
493
494 /* The MDIO bus is not allowed to be written in interrupt
495 * context, so we need to disable the irq here. A work
496 * queue will write the PHY to disable and clear the
497 * interrupt, and then reenable the irq line.
498 */
499 disable_irq_nosync(irq);
500 atomic_inc(&phydev->irq_disable);
501
502 queue_work(system_power_efficient_wq, &phydev->phy_queue);
503
504 return IRQ_HANDLED;
505}
506
507/**
508 * phy_enable_interrupts - Enable the interrupts from the PHY side
509 * @phydev: target phy_device struct
510 */
511static int phy_enable_interrupts(struct phy_device *phydev)
512{
513 int err = phy_clear_interrupt(phydev);
514
515 if (err < 0)
516 return err;
517
518 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
519}
520
521/**
522 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
523 * @phydev: target phy_device struct
524 */
525static int phy_disable_interrupts(struct phy_device *phydev)
526{
527 int err;
528
529 /* Disable PHY interrupts */
530 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
531 if (err)
532 goto phy_err;
533
534 /* Clear the interrupt */
535 err = phy_clear_interrupt(phydev);
536 if (err)
537 goto phy_err;
538
539 return 0;
540
541phy_err:
542 phy_error(phydev);
543
544 return err;
545}
546
547/**
548 * phy_start_interrupts - request and enable interrupts for a PHY device
549 * @phydev: target phy_device struct
550 *
551 * Description: Request the interrupt for the given PHY.
552 * If this fails, then we set irq to PHY_POLL.
553 * Otherwise, we enable the interrupts in the PHY.
554 * This should only be called with a valid IRQ number.
555 * Returns 0 on success or < 0 on error.
556 */
557int phy_start_interrupts(struct phy_device *phydev)
558{
559 atomic_set(&phydev->irq_disable, 0);
560 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
561 phydev) < 0) {
562 pr_warn("%s: Can't get IRQ %d (PHY)\n",
563 phydev->bus->name, phydev->irq);
564 phydev->irq = PHY_POLL;
565 return 0;
566 }
567
568 return phy_enable_interrupts(phydev);
569}
570EXPORT_SYMBOL(phy_start_interrupts);
571
572/**
573 * phy_stop_interrupts - disable interrupts from a PHY device
574 * @phydev: target phy_device struct
575 */
576int phy_stop_interrupts(struct phy_device *phydev)
577{
578 int err = phy_disable_interrupts(phydev);
579
580 if (err)
581 phy_error(phydev);
582
583 free_irq(phydev->irq, phydev);
584
585 /* Cannot call flush_scheduled_work() here as desired because
586 * of rtnl_lock(), but we do not really care about what would
587 * be done, except from enable_irq(), so cancel any work
588 * possibly pending and take care of the matter below.
589 */
590 cancel_work_sync(&phydev->phy_queue);
591 /* If work indeed has been cancelled, disable_irq() will have
592 * been left unbalanced from phy_interrupt() and enable_irq()
593 * has to be called so that other devices on the line work.
594 */
595 while (atomic_dec_return(&phydev->irq_disable) >= 0)
596 enable_irq(phydev->irq);
597
598 return err;
599}
600EXPORT_SYMBOL(phy_stop_interrupts);
601
602/**
603 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
604 * @work: work_struct that describes the work to be done
605 */
606void phy_change(struct work_struct *work)
607{
608 struct phy_device *phydev =
609 container_of(work, struct phy_device, phy_queue);
610
611 if (phydev->drv->did_interrupt &&
612 !phydev->drv->did_interrupt(phydev))
613 goto ignore;
614
615 if (phy_disable_interrupts(phydev))
616 goto phy_err;
617
618 mutex_lock(&phydev->lock);
619 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
620 phydev->state = PHY_CHANGELINK;
621 mutex_unlock(&phydev->lock);
622
623 atomic_dec(&phydev->irq_disable);
624 enable_irq(phydev->irq);
625
626 /* Reenable interrupts */
627 if (PHY_HALTED != phydev->state &&
628 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
629 goto irq_enable_err;
630
631 /* reschedule state queue work to run as soon as possible */
632 cancel_delayed_work_sync(&phydev->state_queue);
633 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
634 return;
635
636ignore:
637 atomic_dec(&phydev->irq_disable);
638 enable_irq(phydev->irq);
639 return;
640
641irq_enable_err:
642 disable_irq(phydev->irq);
643 atomic_inc(&phydev->irq_disable);
644phy_err:
645 phy_error(phydev);
646}
647
648/**
649 * phy_stop - Bring down the PHY link, and stop checking the status
650 * @phydev: target phy_device struct
651 */
652void phy_stop(struct phy_device *phydev)
653{
654 mutex_lock(&phydev->lock);
655
656 if (PHY_HALTED == phydev->state)
657 goto out_unlock;
658
659 if (phy_interrupt_is_valid(phydev)) {
660 /* Disable PHY Interrupts */
661 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
662
663 /* Clear any pending interrupts */
664 phy_clear_interrupt(phydev);
665 }
666
667 phydev->state = PHY_HALTED;
668
669out_unlock:
670 mutex_unlock(&phydev->lock);
671
672 /* Cannot call flush_scheduled_work() here as desired because
673 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
674 * will not reenable interrupts.
675 */
676}
677EXPORT_SYMBOL(phy_stop);
678
679/**
680 * phy_start - start or restart a PHY device
681 * @phydev: target phy_device struct
682 *
683 * Description: Indicates the attached device's readiness to
684 * handle PHY-related work. Used during startup to start the
685 * PHY, and after a call to phy_stop() to resume operation.
686 * Also used to indicate the MDIO bus has cleared an error
687 * condition.
688 */
689void phy_start(struct phy_device *phydev)
690{
691 mutex_lock(&phydev->lock);
692
693 switch (phydev->state) {
694 case PHY_STARTING:
695 phydev->state = PHY_PENDING;
696 break;
697 case PHY_READY:
698 phydev->state = PHY_UP;
699 break;
700 case PHY_HALTED:
701 phydev->state = PHY_RESUMING;
702 default:
703 break;
704 }
705 mutex_unlock(&phydev->lock);
706}
707EXPORT_SYMBOL(phy_start);
708
709/**
710 * phy_state_machine - Handle the state machine
711 * @work: work_struct that describes the work to be done
712 */
713void phy_state_machine(struct work_struct *work)
714{
715 struct delayed_work *dwork = to_delayed_work(work);
716 struct phy_device *phydev =
717 container_of(dwork, struct phy_device, state_queue);
718 bool needs_aneg = false, do_suspend = false, do_resume = false;
719 int err = 0;
720
721 mutex_lock(&phydev->lock);
722
723 switch (phydev->state) {
724 case PHY_DOWN:
725 case PHY_STARTING:
726 case PHY_READY:
727 case PHY_PENDING:
728 break;
729 case PHY_UP:
730 needs_aneg = true;
731
732 phydev->link_timeout = PHY_AN_TIMEOUT;
733
734 break;
735 case PHY_AN:
736 err = phy_read_status(phydev);
737 if (err < 0)
738 break;
739
740 /* If the link is down, give up on negotiation for now */
741 if (!phydev->link) {
742 phydev->state = PHY_NOLINK;
743 netif_carrier_off(phydev->attached_dev);
744 phydev->adjust_link(phydev->attached_dev);
745 break;
746 }
747
748 /* Check if negotiation is done. Break if there's an error */
749 err = phy_aneg_done(phydev);
750 if (err < 0)
751 break;
752
753 /* If AN is done, we're running */
754 if (err > 0) {
755 phydev->state = PHY_RUNNING;
756 netif_carrier_on(phydev->attached_dev);
757 phydev->adjust_link(phydev->attached_dev);
758
759 } else if (0 == phydev->link_timeout--)
760 needs_aneg = true;
761 break;
762 case PHY_NOLINK:
763 err = phy_read_status(phydev);
764 if (err)
765 break;
766
767 if (phydev->link) {
768 if (AUTONEG_ENABLE == phydev->autoneg) {
769 err = phy_aneg_done(phydev);
770 if (err < 0)
771 break;
772
773 if (!err) {
774 phydev->state = PHY_AN;
775 phydev->link_timeout = PHY_AN_TIMEOUT;
776 break;
777 }
778 }
779 phydev->state = PHY_RUNNING;
780 netif_carrier_on(phydev->attached_dev);
781 phydev->adjust_link(phydev->attached_dev);
782 }
783 break;
784 case PHY_FORCING:
785 err = genphy_update_link(phydev);
786 if (err)
787 break;
788
789 if (phydev->link) {
790 phydev->state = PHY_RUNNING;
791 netif_carrier_on(phydev->attached_dev);
792 } else {
793 if (0 == phydev->link_timeout--)
794 needs_aneg = true;
795 }
796
797 phydev->adjust_link(phydev->attached_dev);
798 break;
799 case PHY_RUNNING:
800 /* Only register a CHANGE if we are
801 * polling or ignoring interrupts
802 */
803 if (!phy_interrupt_is_valid(phydev))
804 phydev->state = PHY_CHANGELINK;
805 break;
806 case PHY_CHANGELINK:
807 err = phy_read_status(phydev);
808 if (err)
809 break;
810
811 if (phydev->link) {
812 phydev->state = PHY_RUNNING;
813 netif_carrier_on(phydev->attached_dev);
814 } else {
815 phydev->state = PHY_NOLINK;
816 netif_carrier_off(phydev->attached_dev);
817 }
818
819 phydev->adjust_link(phydev->attached_dev);
820
821 if (phy_interrupt_is_valid(phydev))
822 err = phy_config_interrupt(phydev,
823 PHY_INTERRUPT_ENABLED);
824 break;
825 case PHY_HALTED:
826 if (phydev->link) {
827 phydev->link = 0;
828 netif_carrier_off(phydev->attached_dev);
829 phydev->adjust_link(phydev->attached_dev);
830 do_suspend = true;
831 }
832 break;
833 case PHY_RESUMING:
834 err = phy_clear_interrupt(phydev);
835 if (err)
836 break;
837
838 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
839 if (err)
840 break;
841
842 if (AUTONEG_ENABLE == phydev->autoneg) {
843 err = phy_aneg_done(phydev);
844 if (err < 0)
845 break;
846
847 /* err > 0 if AN is done.
848 * Otherwise, it's 0, and we're still waiting for AN
849 */
850 if (err > 0) {
851 err = phy_read_status(phydev);
852 if (err)
853 break;
854
855 if (phydev->link) {
856 phydev->state = PHY_RUNNING;
857 netif_carrier_on(phydev->attached_dev);
858 } else {
859 phydev->state = PHY_NOLINK;
860 }
861 phydev->adjust_link(phydev->attached_dev);
862 } else {
863 phydev->state = PHY_AN;
864 phydev->link_timeout = PHY_AN_TIMEOUT;
865 }
866 } else {
867 err = phy_read_status(phydev);
868 if (err)
869 break;
870
871 if (phydev->link) {
872 phydev->state = PHY_RUNNING;
873 netif_carrier_on(phydev->attached_dev);
874 } else {
875 phydev->state = PHY_NOLINK;
876 }
877 phydev->adjust_link(phydev->attached_dev);
878 }
879 do_resume = true;
880 break;
881 }
882
883 mutex_unlock(&phydev->lock);
884
885 if (needs_aneg)
886 err = phy_start_aneg(phydev);
887 else if (do_suspend)
888 phy_suspend(phydev);
889 else if (do_resume)
890 phy_resume(phydev);
891
892 if (err < 0)
893 phy_error(phydev);
894
895 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
896 PHY_STATE_TIME * HZ);
897}
898
899void phy_mac_interrupt(struct phy_device *phydev, int new_link)
900{
901 cancel_work_sync(&phydev->phy_queue);
902 phydev->link = new_link;
903 schedule_work(&phydev->phy_queue);
904}
905EXPORT_SYMBOL(phy_mac_interrupt);
906
907static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
908 int addr)
909{
910 /* Write the desired MMD Devad */
911 bus->write(bus, addr, MII_MMD_CTRL, devad);
912
913 /* Write the desired MMD register address */
914 bus->write(bus, addr, MII_MMD_DATA, prtad);
915
916 /* Select the Function : DATA with no post increment */
917 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
918}
919
920/**
921 * phy_read_mmd_indirect - reads data from the MMD registers
922 * @bus: the target MII bus
923 * @prtad: MMD Address
924 * @devad: MMD DEVAD
925 * @addr: PHY address on the MII bus
926 *
927 * Description: it reads data from the MMD registers (clause 22 to access to
928 * clause 45) of the specified phy address.
929 * To read these register we have:
930 * 1) Write reg 13 // DEVAD
931 * 2) Write reg 14 // MMD Address
932 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
933 * 3) Read reg 14 // Read MMD data
934 */
935static int phy_read_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
936 int addr)
937{
938 mmd_phy_indirect(bus, prtad, devad, addr);
939
940 /* Read the content of the MMD's selected register */
941 return bus->read(bus, addr, MII_MMD_DATA);
942}
943
944/**
945 * phy_write_mmd_indirect - writes data to the MMD registers
946 * @bus: the target MII bus
947 * @prtad: MMD Address
948 * @devad: MMD DEVAD
949 * @addr: PHY address on the MII bus
950 * @data: data to write in the MMD register
951 *
952 * Description: Write data from the MMD registers of the specified
953 * phy address.
954 * To write these register we have:
955 * 1) Write reg 13 // DEVAD
956 * 2) Write reg 14 // MMD Address
957 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
958 * 3) Write reg 14 // Write MMD data
959 */
960static void phy_write_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
961 int addr, u32 data)
962{
963 mmd_phy_indirect(bus, prtad, devad, addr);
964
965 /* Write the data into MMD's selected register */
966 bus->write(bus, addr, MII_MMD_DATA, data);
967}
968
969/**
970 * phy_init_eee - init and check the EEE feature
971 * @phydev: target phy_device struct
972 * @clk_stop_enable: PHY may stop the clock during LPI
973 *
974 * Description: it checks if the Energy-Efficient Ethernet (EEE)
975 * is supported by looking at the MMD registers 3.20 and 7.60/61
976 * and it programs the MMD register 3.0 setting the "Clock stop enable"
977 * bit if required.
978 */
979int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
980{
981 /* According to 802.3az,the EEE is supported only in full duplex-mode.
982 * Also EEE feature is active when core is operating with MII, GMII
983 * or RGMII.
984 */
985 if ((phydev->duplex == DUPLEX_FULL) &&
986 ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
987 (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
988 (phydev->interface == PHY_INTERFACE_MODE_RGMII))) {
989 int eee_lp, eee_cap, eee_adv;
990 u32 lp, cap, adv;
991 int status;
992 unsigned int idx;
993
994 /* Read phy status to properly get the right settings */
995 status = phy_read_status(phydev);
996 if (status)
997 return status;
998
999 /* First check if the EEE ability is supported */
1000 eee_cap = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1001 MDIO_MMD_PCS, phydev->addr);
1002 if (eee_cap < 0)
1003 return eee_cap;
1004
1005 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1006 if (!cap)
1007 return -EPROTONOSUPPORT;
1008
1009 /* Check which link settings negotiated and verify it in
1010 * the EEE advertising registers.
1011 */
1012 eee_lp = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1013 MDIO_MMD_AN, phydev->addr);
1014 if (eee_lp < 0)
1015 return eee_lp;
1016
1017 eee_adv = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1018 MDIO_MMD_AN, phydev->addr);
1019 if (eee_adv < 0)
1020 return eee_adv;
1021
1022 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1023 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1024 idx = phy_find_setting(phydev->speed, phydev->duplex);
1025 if (!(lp & adv & settings[idx].setting))
1026 return -EPROTONOSUPPORT;
1027
1028 if (clk_stop_enable) {
1029 /* Configure the PHY to stop receiving xMII
1030 * clock while it is signaling LPI.
1031 */
1032 int val = phy_read_mmd_indirect(phydev->bus, MDIO_CTRL1,
1033 MDIO_MMD_PCS,
1034 phydev->addr);
1035 if (val < 0)
1036 return val;
1037
1038 val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1039 phy_write_mmd_indirect(phydev->bus, MDIO_CTRL1,
1040 MDIO_MMD_PCS, phydev->addr, val);
1041 }
1042
1043 return 0; /* EEE supported */
1044 }
1045
1046 return -EPROTONOSUPPORT;
1047}
1048EXPORT_SYMBOL(phy_init_eee);
1049
1050/**
1051 * phy_get_eee_err - report the EEE wake error count
1052 * @phydev: target phy_device struct
1053 *
1054 * Description: it is to report the number of time where the PHY
1055 * failed to complete its normal wake sequence.
1056 */
1057int phy_get_eee_err(struct phy_device *phydev)
1058{
1059 return phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_WK_ERR,
1060 MDIO_MMD_PCS, phydev->addr);
1061}
1062EXPORT_SYMBOL(phy_get_eee_err);
1063
1064/**
1065 * phy_ethtool_get_eee - get EEE supported and status
1066 * @phydev: target phy_device struct
1067 * @data: ethtool_eee data
1068 *
1069 * Description: it reportes the Supported/Advertisement/LP Advertisement
1070 * capabilities.
1071 */
1072int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1073{
1074 int val;
1075
1076 /* Get Supported EEE */
1077 val = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1078 MDIO_MMD_PCS, phydev->addr);
1079 if (val < 0)
1080 return val;
1081 data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1082
1083 /* Get advertisement EEE */
1084 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1085 MDIO_MMD_AN, phydev->addr);
1086 if (val < 0)
1087 return val;
1088 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1089
1090 /* Get LP advertisement EEE */
1091 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1092 MDIO_MMD_AN, phydev->addr);
1093 if (val < 0)
1094 return val;
1095 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1096
1097 return 0;
1098}
1099EXPORT_SYMBOL(phy_ethtool_get_eee);
1100
1101/**
1102 * phy_ethtool_set_eee - set EEE supported and status
1103 * @phydev: target phy_device struct
1104 * @data: ethtool_eee data
1105 *
1106 * Description: it is to program the Advertisement EEE register.
1107 */
1108int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1109{
1110 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1111
1112 phy_write_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1113 phydev->addr, val);
1114
1115 return 0;
1116}
1117EXPORT_SYMBOL(phy_ethtool_set_eee);
1118
1119int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1120{
1121 if (phydev->drv->set_wol)
1122 return phydev->drv->set_wol(phydev, wol);
1123
1124 return -EOPNOTSUPP;
1125}
1126EXPORT_SYMBOL(phy_ethtool_set_wol);
1127
1128void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1129{
1130 if (phydev->drv->get_wol)
1131 phydev->drv->get_wol(phydev, wol);
1132}
1133EXPORT_SYMBOL(phy_ethtool_get_wol);
1/* Framework for configuring and reading PHY devices
2 * Based on code in sungem_phy.c and gianfar_phy.c
3 *
4 * Author: Andy Fleming
5 *
6 * Copyright (c) 2004 Freescale Semiconductor, Inc.
7 * Copyright (c) 2006, 2007 Maciej W. Rozycki
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/kernel.h>
19#include <linux/string.h>
20#include <linux/errno.h>
21#include <linux/unistd.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/mii.h>
30#include <linux/ethtool.h>
31#include <linux/phy.h>
32#include <linux/timer.h>
33#include <linux/workqueue.h>
34#include <linux/mdio.h>
35#include <linux/io.h>
36#include <linux/uaccess.h>
37#include <linux/atomic.h>
38
39#include <asm/irq.h>
40
41static const char *phy_speed_to_str(int speed)
42{
43 switch (speed) {
44 case SPEED_10:
45 return "10Mbps";
46 case SPEED_100:
47 return "100Mbps";
48 case SPEED_1000:
49 return "1Gbps";
50 case SPEED_2500:
51 return "2.5Gbps";
52 case SPEED_10000:
53 return "10Gbps";
54 case SPEED_UNKNOWN:
55 return "Unknown";
56 default:
57 return "Unsupported (update phy.c)";
58 }
59}
60
61#define PHY_STATE_STR(_state) \
62 case PHY_##_state: \
63 return __stringify(_state); \
64
65static const char *phy_state_to_str(enum phy_state st)
66{
67 switch (st) {
68 PHY_STATE_STR(DOWN)
69 PHY_STATE_STR(STARTING)
70 PHY_STATE_STR(READY)
71 PHY_STATE_STR(PENDING)
72 PHY_STATE_STR(UP)
73 PHY_STATE_STR(AN)
74 PHY_STATE_STR(RUNNING)
75 PHY_STATE_STR(NOLINK)
76 PHY_STATE_STR(FORCING)
77 PHY_STATE_STR(CHANGELINK)
78 PHY_STATE_STR(HALTED)
79 PHY_STATE_STR(RESUMING)
80 }
81
82 return NULL;
83}
84
85
86/**
87 * phy_print_status - Convenience function to print out the current phy status
88 * @phydev: the phy_device struct
89 */
90void phy_print_status(struct phy_device *phydev)
91{
92 if (phydev->link) {
93 netdev_info(phydev->attached_dev,
94 "Link is Up - %s/%s - flow control %s\n",
95 phy_speed_to_str(phydev->speed),
96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 phydev->pause ? "rx/tx" : "off");
98 } else {
99 netdev_info(phydev->attached_dev, "Link is Down\n");
100 }
101}
102EXPORT_SYMBOL(phy_print_status);
103
104/**
105 * phy_clear_interrupt - Ack the phy device's interrupt
106 * @phydev: the phy_device struct
107 *
108 * If the @phydev driver has an ack_interrupt function, call it to
109 * ack and clear the phy device's interrupt.
110 *
111 * Returns 0 on success or < 0 on error.
112 */
113static int phy_clear_interrupt(struct phy_device *phydev)
114{
115 if (phydev->drv->ack_interrupt)
116 return phydev->drv->ack_interrupt(phydev);
117
118 return 0;
119}
120
121/**
122 * phy_config_interrupt - configure the PHY device for the requested interrupts
123 * @phydev: the phy_device struct
124 * @interrupts: interrupt flags to configure for this @phydev
125 *
126 * Returns 0 on success or < 0 on error.
127 */
128static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129{
130 phydev->interrupts = interrupts;
131 if (phydev->drv->config_intr)
132 return phydev->drv->config_intr(phydev);
133
134 return 0;
135}
136
137
138/**
139 * phy_aneg_done - return auto-negotiation status
140 * @phydev: target phy_device struct
141 *
142 * Description: Return the auto-negotiation status from this @phydev
143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144 * is still pending.
145 */
146static inline int phy_aneg_done(struct phy_device *phydev)
147{
148 if (phydev->drv->aneg_done)
149 return phydev->drv->aneg_done(phydev);
150
151 return genphy_aneg_done(phydev);
152}
153
154/* A structure for mapping a particular speed and duplex
155 * combination to a particular SUPPORTED and ADVERTISED value
156 */
157struct phy_setting {
158 int speed;
159 int duplex;
160 u32 setting;
161};
162
163/* A mapping of all SUPPORTED settings to speed/duplex */
164static const struct phy_setting settings[] = {
165 {
166 .speed = SPEED_10000,
167 .duplex = DUPLEX_FULL,
168 .setting = SUPPORTED_10000baseKR_Full,
169 },
170 {
171 .speed = SPEED_10000,
172 .duplex = DUPLEX_FULL,
173 .setting = SUPPORTED_10000baseKX4_Full,
174 },
175 {
176 .speed = SPEED_10000,
177 .duplex = DUPLEX_FULL,
178 .setting = SUPPORTED_10000baseT_Full,
179 },
180 {
181 .speed = SPEED_2500,
182 .duplex = DUPLEX_FULL,
183 .setting = SUPPORTED_2500baseX_Full,
184 },
185 {
186 .speed = SPEED_1000,
187 .duplex = DUPLEX_FULL,
188 .setting = SUPPORTED_1000baseKX_Full,
189 },
190 {
191 .speed = SPEED_1000,
192 .duplex = DUPLEX_FULL,
193 .setting = SUPPORTED_1000baseT_Full,
194 },
195 {
196 .speed = SPEED_1000,
197 .duplex = DUPLEX_HALF,
198 .setting = SUPPORTED_1000baseT_Half,
199 },
200 {
201 .speed = SPEED_100,
202 .duplex = DUPLEX_FULL,
203 .setting = SUPPORTED_100baseT_Full,
204 },
205 {
206 .speed = SPEED_100,
207 .duplex = DUPLEX_HALF,
208 .setting = SUPPORTED_100baseT_Half,
209 },
210 {
211 .speed = SPEED_10,
212 .duplex = DUPLEX_FULL,
213 .setting = SUPPORTED_10baseT_Full,
214 },
215 {
216 .speed = SPEED_10,
217 .duplex = DUPLEX_HALF,
218 .setting = SUPPORTED_10baseT_Half,
219 },
220};
221
222#define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223
224/**
225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226 * @speed: speed to match
227 * @duplex: duplex to match
228 *
229 * Description: Searches the settings array for the setting which
230 * matches the desired speed and duplex, and returns the index
231 * of that setting. Returns the index of the last setting if
232 * none of the others match.
233 */
234static inline unsigned int phy_find_setting(int speed, int duplex)
235{
236 unsigned int idx = 0;
237
238 while (idx < ARRAY_SIZE(settings) &&
239 (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 idx++;
241
242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243}
244
245/**
246 * phy_find_valid - find a PHY setting that matches the requested features mask
247 * @idx: The first index in settings[] to search
248 * @features: A mask of the valid settings
249 *
250 * Description: Returns the index of the first valid setting less
251 * than or equal to the one pointed to by idx, as determined by
252 * the mask in features. Returns the index of the last setting
253 * if nothing else matches.
254 */
255static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256{
257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 idx++;
259
260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261}
262
263/**
264 * phy_check_valid - check if there is a valid PHY setting which matches
265 * speed, duplex, and feature mask
266 * @speed: speed to match
267 * @duplex: duplex to match
268 * @features: A mask of the valid settings
269 *
270 * Description: Returns true if there is a valid setting, false otherwise.
271 */
272static inline bool phy_check_valid(int speed, int duplex, u32 features)
273{
274 unsigned int idx;
275
276 idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277
278 return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 (settings[idx].setting & features);
280}
281
282/**
283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284 * @phydev: the target phy_device struct
285 *
286 * Description: Make sure the PHY is set to supported speeds and
287 * duplexes. Drop down by one in this order: 1000/FULL,
288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289 */
290static void phy_sanitize_settings(struct phy_device *phydev)
291{
292 u32 features = phydev->supported;
293 unsigned int idx;
294
295 /* Sanitize settings based on PHY capabilities */
296 if ((features & SUPPORTED_Autoneg) == 0)
297 phydev->autoneg = AUTONEG_DISABLE;
298
299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 features);
301
302 phydev->speed = settings[idx].speed;
303 phydev->duplex = settings[idx].duplex;
304}
305
306/**
307 * phy_ethtool_sset - generic ethtool sset function, handles all the details
308 * @phydev: target phy_device struct
309 * @cmd: ethtool_cmd
310 *
311 * A few notes about parameter checking:
312 * - We don't set port or transceiver, so we don't care what they
313 * were set to.
314 * - phy_start_aneg() will make sure forced settings are sane, and
315 * choose the next best ones from the ones selected, so we don't
316 * care if ethtool tries to give us bad values.
317 */
318int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319{
320 u32 speed = ethtool_cmd_speed(cmd);
321
322 if (cmd->phy_address != phydev->mdio.addr)
323 return -EINVAL;
324
325 /* We make sure that we don't pass unsupported values in to the PHY */
326 cmd->advertising &= phydev->supported;
327
328 /* Verify the settings we care about. */
329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 return -EINVAL;
331
332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 return -EINVAL;
334
335 if (cmd->autoneg == AUTONEG_DISABLE &&
336 ((speed != SPEED_1000 &&
337 speed != SPEED_100 &&
338 speed != SPEED_10) ||
339 (cmd->duplex != DUPLEX_HALF &&
340 cmd->duplex != DUPLEX_FULL)))
341 return -EINVAL;
342
343 phydev->autoneg = cmd->autoneg;
344
345 phydev->speed = speed;
346
347 phydev->advertising = cmd->advertising;
348
349 if (AUTONEG_ENABLE == cmd->autoneg)
350 phydev->advertising |= ADVERTISED_Autoneg;
351 else
352 phydev->advertising &= ~ADVERTISED_Autoneg;
353
354 phydev->duplex = cmd->duplex;
355
356 phydev->mdix = cmd->eth_tp_mdix_ctrl;
357
358 /* Restart the PHY */
359 phy_start_aneg(phydev);
360
361 return 0;
362}
363EXPORT_SYMBOL(phy_ethtool_sset);
364
365int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
366{
367 cmd->supported = phydev->supported;
368
369 cmd->advertising = phydev->advertising;
370 cmd->lp_advertising = phydev->lp_advertising;
371
372 ethtool_cmd_speed_set(cmd, phydev->speed);
373 cmd->duplex = phydev->duplex;
374 if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
375 cmd->port = PORT_BNC;
376 else
377 cmd->port = PORT_MII;
378 cmd->phy_address = phydev->mdio.addr;
379 cmd->transceiver = phy_is_internal(phydev) ?
380 XCVR_INTERNAL : XCVR_EXTERNAL;
381 cmd->autoneg = phydev->autoneg;
382 cmd->eth_tp_mdix_ctrl = phydev->mdix;
383
384 return 0;
385}
386EXPORT_SYMBOL(phy_ethtool_gset);
387
388/**
389 * phy_mii_ioctl - generic PHY MII ioctl interface
390 * @phydev: the phy_device struct
391 * @ifr: &struct ifreq for socket ioctl's
392 * @cmd: ioctl cmd to execute
393 *
394 * Note that this function is currently incompatible with the
395 * PHYCONTROL layer. It changes registers without regard to
396 * current state. Use at own risk.
397 */
398int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
399{
400 struct mii_ioctl_data *mii_data = if_mii(ifr);
401 u16 val = mii_data->val_in;
402 bool change_autoneg = false;
403
404 switch (cmd) {
405 case SIOCGMIIPHY:
406 mii_data->phy_id = phydev->mdio.addr;
407 /* fall through */
408
409 case SIOCGMIIREG:
410 mii_data->val_out = mdiobus_read(phydev->mdio.bus,
411 mii_data->phy_id,
412 mii_data->reg_num);
413 return 0;
414
415 case SIOCSMIIREG:
416 if (mii_data->phy_id == phydev->mdio.addr) {
417 switch (mii_data->reg_num) {
418 case MII_BMCR:
419 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
420 if (phydev->autoneg == AUTONEG_ENABLE)
421 change_autoneg = true;
422 phydev->autoneg = AUTONEG_DISABLE;
423 if (val & BMCR_FULLDPLX)
424 phydev->duplex = DUPLEX_FULL;
425 else
426 phydev->duplex = DUPLEX_HALF;
427 if (val & BMCR_SPEED1000)
428 phydev->speed = SPEED_1000;
429 else if (val & BMCR_SPEED100)
430 phydev->speed = SPEED_100;
431 else phydev->speed = SPEED_10;
432 }
433 else {
434 if (phydev->autoneg == AUTONEG_DISABLE)
435 change_autoneg = true;
436 phydev->autoneg = AUTONEG_ENABLE;
437 }
438 break;
439 case MII_ADVERTISE:
440 phydev->advertising = mii_adv_to_ethtool_adv_t(val);
441 change_autoneg = true;
442 break;
443 default:
444 /* do nothing */
445 break;
446 }
447 }
448
449 mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
450 mii_data->reg_num, val);
451
452 if (mii_data->phy_id == phydev->mdio.addr &&
453 mii_data->reg_num == MII_BMCR &&
454 val & BMCR_RESET)
455 return phy_init_hw(phydev);
456
457 if (change_autoneg)
458 return phy_start_aneg(phydev);
459
460 return 0;
461
462 case SIOCSHWTSTAMP:
463 if (phydev->drv->hwtstamp)
464 return phydev->drv->hwtstamp(phydev, ifr);
465 /* fall through */
466
467 default:
468 return -EOPNOTSUPP;
469 }
470}
471EXPORT_SYMBOL(phy_mii_ioctl);
472
473/**
474 * phy_start_aneg - start auto-negotiation for this PHY device
475 * @phydev: the phy_device struct
476 *
477 * Description: Sanitizes the settings (if we're not autonegotiating
478 * them), and then calls the driver's config_aneg function.
479 * If the PHYCONTROL Layer is operating, we change the state to
480 * reflect the beginning of Auto-negotiation or forcing.
481 */
482int phy_start_aneg(struct phy_device *phydev)
483{
484 int err;
485
486 mutex_lock(&phydev->lock);
487
488 if (AUTONEG_DISABLE == phydev->autoneg)
489 phy_sanitize_settings(phydev);
490
491 /* Invalidate LP advertising flags */
492 phydev->lp_advertising = 0;
493
494 err = phydev->drv->config_aneg(phydev);
495 if (err < 0)
496 goto out_unlock;
497
498 if (phydev->state != PHY_HALTED) {
499 if (AUTONEG_ENABLE == phydev->autoneg) {
500 phydev->state = PHY_AN;
501 phydev->link_timeout = PHY_AN_TIMEOUT;
502 } else {
503 phydev->state = PHY_FORCING;
504 phydev->link_timeout = PHY_FORCE_TIMEOUT;
505 }
506 }
507
508out_unlock:
509 mutex_unlock(&phydev->lock);
510 return err;
511}
512EXPORT_SYMBOL(phy_start_aneg);
513
514/**
515 * phy_start_machine - start PHY state machine tracking
516 * @phydev: the phy_device struct
517 *
518 * Description: The PHY infrastructure can run a state machine
519 * which tracks whether the PHY is starting up, negotiating,
520 * etc. This function starts the timer which tracks the state
521 * of the PHY. If you want to maintain your own state machine,
522 * do not call this function.
523 */
524void phy_start_machine(struct phy_device *phydev)
525{
526 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
527}
528
529/**
530 * phy_stop_machine - stop the PHY state machine tracking
531 * @phydev: target phy_device struct
532 *
533 * Description: Stops the state machine timer, sets the state to UP
534 * (unless it wasn't up yet). This function must be called BEFORE
535 * phy_detach.
536 */
537void phy_stop_machine(struct phy_device *phydev)
538{
539 cancel_delayed_work_sync(&phydev->state_queue);
540
541 mutex_lock(&phydev->lock);
542 if (phydev->state > PHY_UP)
543 phydev->state = PHY_UP;
544 mutex_unlock(&phydev->lock);
545}
546
547/**
548 * phy_error - enter HALTED state for this PHY device
549 * @phydev: target phy_device struct
550 *
551 * Moves the PHY to the HALTED state in response to a read
552 * or write error, and tells the controller the link is down.
553 * Must not be called from interrupt context, or while the
554 * phydev->lock is held.
555 */
556static void phy_error(struct phy_device *phydev)
557{
558 mutex_lock(&phydev->lock);
559 phydev->state = PHY_HALTED;
560 mutex_unlock(&phydev->lock);
561}
562
563/**
564 * phy_interrupt - PHY interrupt handler
565 * @irq: interrupt line
566 * @phy_dat: phy_device pointer
567 *
568 * Description: When a PHY interrupt occurs, the handler disables
569 * interrupts, and schedules a work task to clear the interrupt.
570 */
571static irqreturn_t phy_interrupt(int irq, void *phy_dat)
572{
573 struct phy_device *phydev = phy_dat;
574
575 if (PHY_HALTED == phydev->state)
576 return IRQ_NONE; /* It can't be ours. */
577
578 /* The MDIO bus is not allowed to be written in interrupt
579 * context, so we need to disable the irq here. A work
580 * queue will write the PHY to disable and clear the
581 * interrupt, and then reenable the irq line.
582 */
583 disable_irq_nosync(irq);
584 atomic_inc(&phydev->irq_disable);
585
586 queue_work(system_power_efficient_wq, &phydev->phy_queue);
587
588 return IRQ_HANDLED;
589}
590
591/**
592 * phy_enable_interrupts - Enable the interrupts from the PHY side
593 * @phydev: target phy_device struct
594 */
595static int phy_enable_interrupts(struct phy_device *phydev)
596{
597 int err = phy_clear_interrupt(phydev);
598
599 if (err < 0)
600 return err;
601
602 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
603}
604
605/**
606 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
607 * @phydev: target phy_device struct
608 */
609static int phy_disable_interrupts(struct phy_device *phydev)
610{
611 int err;
612
613 /* Disable PHY interrupts */
614 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
615 if (err)
616 goto phy_err;
617
618 /* Clear the interrupt */
619 err = phy_clear_interrupt(phydev);
620 if (err)
621 goto phy_err;
622
623 return 0;
624
625phy_err:
626 phy_error(phydev);
627
628 return err;
629}
630
631/**
632 * phy_start_interrupts - request and enable interrupts for a PHY device
633 * @phydev: target phy_device struct
634 *
635 * Description: Request the interrupt for the given PHY.
636 * If this fails, then we set irq to PHY_POLL.
637 * Otherwise, we enable the interrupts in the PHY.
638 * This should only be called with a valid IRQ number.
639 * Returns 0 on success or < 0 on error.
640 */
641int phy_start_interrupts(struct phy_device *phydev)
642{
643 atomic_set(&phydev->irq_disable, 0);
644 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
645 phydev) < 0) {
646 pr_warn("%s: Can't get IRQ %d (PHY)\n",
647 phydev->mdio.bus->name, phydev->irq);
648 phydev->irq = PHY_POLL;
649 return 0;
650 }
651
652 return phy_enable_interrupts(phydev);
653}
654EXPORT_SYMBOL(phy_start_interrupts);
655
656/**
657 * phy_stop_interrupts - disable interrupts from a PHY device
658 * @phydev: target phy_device struct
659 */
660int phy_stop_interrupts(struct phy_device *phydev)
661{
662 int err = phy_disable_interrupts(phydev);
663
664 if (err)
665 phy_error(phydev);
666
667 free_irq(phydev->irq, phydev);
668
669 /* Cannot call flush_scheduled_work() here as desired because
670 * of rtnl_lock(), but we do not really care about what would
671 * be done, except from enable_irq(), so cancel any work
672 * possibly pending and take care of the matter below.
673 */
674 cancel_work_sync(&phydev->phy_queue);
675 /* If work indeed has been cancelled, disable_irq() will have
676 * been left unbalanced from phy_interrupt() and enable_irq()
677 * has to be called so that other devices on the line work.
678 */
679 while (atomic_dec_return(&phydev->irq_disable) >= 0)
680 enable_irq(phydev->irq);
681
682 return err;
683}
684EXPORT_SYMBOL(phy_stop_interrupts);
685
686/**
687 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
688 * @work: work_struct that describes the work to be done
689 */
690void phy_change(struct work_struct *work)
691{
692 struct phy_device *phydev =
693 container_of(work, struct phy_device, phy_queue);
694
695 if (phy_interrupt_is_valid(phydev)) {
696 if (phydev->drv->did_interrupt &&
697 !phydev->drv->did_interrupt(phydev))
698 goto ignore;
699
700 if (phy_disable_interrupts(phydev))
701 goto phy_err;
702 }
703
704 mutex_lock(&phydev->lock);
705 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
706 phydev->state = PHY_CHANGELINK;
707 mutex_unlock(&phydev->lock);
708
709 if (phy_interrupt_is_valid(phydev)) {
710 atomic_dec(&phydev->irq_disable);
711 enable_irq(phydev->irq);
712
713 /* Reenable interrupts */
714 if (PHY_HALTED != phydev->state &&
715 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
716 goto irq_enable_err;
717 }
718
719 /* reschedule state queue work to run as soon as possible */
720 cancel_delayed_work_sync(&phydev->state_queue);
721 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
722 return;
723
724ignore:
725 atomic_dec(&phydev->irq_disable);
726 enable_irq(phydev->irq);
727 return;
728
729irq_enable_err:
730 disable_irq(phydev->irq);
731 atomic_inc(&phydev->irq_disable);
732phy_err:
733 phy_error(phydev);
734}
735
736/**
737 * phy_stop - Bring down the PHY link, and stop checking the status
738 * @phydev: target phy_device struct
739 */
740void phy_stop(struct phy_device *phydev)
741{
742 mutex_lock(&phydev->lock);
743
744 if (PHY_HALTED == phydev->state)
745 goto out_unlock;
746
747 if (phy_interrupt_is_valid(phydev)) {
748 /* Disable PHY Interrupts */
749 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
750
751 /* Clear any pending interrupts */
752 phy_clear_interrupt(phydev);
753 }
754
755 phydev->state = PHY_HALTED;
756
757out_unlock:
758 mutex_unlock(&phydev->lock);
759
760 /* Cannot call flush_scheduled_work() here as desired because
761 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
762 * will not reenable interrupts.
763 */
764}
765EXPORT_SYMBOL(phy_stop);
766
767/**
768 * phy_start - start or restart a PHY device
769 * @phydev: target phy_device struct
770 *
771 * Description: Indicates the attached device's readiness to
772 * handle PHY-related work. Used during startup to start the
773 * PHY, and after a call to phy_stop() to resume operation.
774 * Also used to indicate the MDIO bus has cleared an error
775 * condition.
776 */
777void phy_start(struct phy_device *phydev)
778{
779 bool do_resume = false;
780 int err = 0;
781
782 mutex_lock(&phydev->lock);
783
784 switch (phydev->state) {
785 case PHY_STARTING:
786 phydev->state = PHY_PENDING;
787 break;
788 case PHY_READY:
789 phydev->state = PHY_UP;
790 break;
791 case PHY_HALTED:
792 /* make sure interrupts are re-enabled for the PHY */
793 if (phydev->irq != PHY_POLL) {
794 err = phy_enable_interrupts(phydev);
795 if (err < 0)
796 break;
797 }
798
799 phydev->state = PHY_RESUMING;
800 do_resume = true;
801 break;
802 default:
803 break;
804 }
805 mutex_unlock(&phydev->lock);
806
807 /* if phy was suspended, bring the physical link up again */
808 if (do_resume)
809 phy_resume(phydev);
810}
811EXPORT_SYMBOL(phy_start);
812
813/**
814 * phy_state_machine - Handle the state machine
815 * @work: work_struct that describes the work to be done
816 */
817void phy_state_machine(struct work_struct *work)
818{
819 struct delayed_work *dwork = to_delayed_work(work);
820 struct phy_device *phydev =
821 container_of(dwork, struct phy_device, state_queue);
822 bool needs_aneg = false, do_suspend = false;
823 enum phy_state old_state;
824 int err = 0;
825 int old_link;
826
827 mutex_lock(&phydev->lock);
828
829 old_state = phydev->state;
830
831 if (phydev->drv->link_change_notify)
832 phydev->drv->link_change_notify(phydev);
833
834 switch (phydev->state) {
835 case PHY_DOWN:
836 case PHY_STARTING:
837 case PHY_READY:
838 case PHY_PENDING:
839 break;
840 case PHY_UP:
841 needs_aneg = true;
842
843 phydev->link_timeout = PHY_AN_TIMEOUT;
844
845 break;
846 case PHY_AN:
847 err = phy_read_status(phydev);
848 if (err < 0)
849 break;
850
851 /* If the link is down, give up on negotiation for now */
852 if (!phydev->link) {
853 phydev->state = PHY_NOLINK;
854 netif_carrier_off(phydev->attached_dev);
855 phydev->adjust_link(phydev->attached_dev);
856 break;
857 }
858
859 /* Check if negotiation is done. Break if there's an error */
860 err = phy_aneg_done(phydev);
861 if (err < 0)
862 break;
863
864 /* If AN is done, we're running */
865 if (err > 0) {
866 phydev->state = PHY_RUNNING;
867 netif_carrier_on(phydev->attached_dev);
868 phydev->adjust_link(phydev->attached_dev);
869
870 } else if (0 == phydev->link_timeout--)
871 needs_aneg = true;
872 break;
873 case PHY_NOLINK:
874 if (phy_interrupt_is_valid(phydev))
875 break;
876
877 err = phy_read_status(phydev);
878 if (err)
879 break;
880
881 if (phydev->link) {
882 if (AUTONEG_ENABLE == phydev->autoneg) {
883 err = phy_aneg_done(phydev);
884 if (err < 0)
885 break;
886
887 if (!err) {
888 phydev->state = PHY_AN;
889 phydev->link_timeout = PHY_AN_TIMEOUT;
890 break;
891 }
892 }
893 phydev->state = PHY_RUNNING;
894 netif_carrier_on(phydev->attached_dev);
895 phydev->adjust_link(phydev->attached_dev);
896 }
897 break;
898 case PHY_FORCING:
899 err = genphy_update_link(phydev);
900 if (err)
901 break;
902
903 if (phydev->link) {
904 phydev->state = PHY_RUNNING;
905 netif_carrier_on(phydev->attached_dev);
906 } else {
907 if (0 == phydev->link_timeout--)
908 needs_aneg = true;
909 }
910
911 phydev->adjust_link(phydev->attached_dev);
912 break;
913 case PHY_RUNNING:
914 /* Only register a CHANGE if we are polling and link changed
915 * since latest checking.
916 */
917 if (phydev->irq == PHY_POLL) {
918 old_link = phydev->link;
919 err = phy_read_status(phydev);
920 if (err)
921 break;
922
923 if (old_link != phydev->link)
924 phydev->state = PHY_CHANGELINK;
925 }
926 break;
927 case PHY_CHANGELINK:
928 err = phy_read_status(phydev);
929 if (err)
930 break;
931
932 if (phydev->link) {
933 phydev->state = PHY_RUNNING;
934 netif_carrier_on(phydev->attached_dev);
935 } else {
936 phydev->state = PHY_NOLINK;
937 netif_carrier_off(phydev->attached_dev);
938 }
939
940 phydev->adjust_link(phydev->attached_dev);
941
942 if (phy_interrupt_is_valid(phydev))
943 err = phy_config_interrupt(phydev,
944 PHY_INTERRUPT_ENABLED);
945 break;
946 case PHY_HALTED:
947 if (phydev->link) {
948 phydev->link = 0;
949 netif_carrier_off(phydev->attached_dev);
950 phydev->adjust_link(phydev->attached_dev);
951 do_suspend = true;
952 }
953 break;
954 case PHY_RESUMING:
955 if (AUTONEG_ENABLE == phydev->autoneg) {
956 err = phy_aneg_done(phydev);
957 if (err < 0)
958 break;
959
960 /* err > 0 if AN is done.
961 * Otherwise, it's 0, and we're still waiting for AN
962 */
963 if (err > 0) {
964 err = phy_read_status(phydev);
965 if (err)
966 break;
967
968 if (phydev->link) {
969 phydev->state = PHY_RUNNING;
970 netif_carrier_on(phydev->attached_dev);
971 } else {
972 phydev->state = PHY_NOLINK;
973 }
974 phydev->adjust_link(phydev->attached_dev);
975 } else {
976 phydev->state = PHY_AN;
977 phydev->link_timeout = PHY_AN_TIMEOUT;
978 }
979 } else {
980 err = phy_read_status(phydev);
981 if (err)
982 break;
983
984 if (phydev->link) {
985 phydev->state = PHY_RUNNING;
986 netif_carrier_on(phydev->attached_dev);
987 } else {
988 phydev->state = PHY_NOLINK;
989 }
990 phydev->adjust_link(phydev->attached_dev);
991 }
992 break;
993 }
994
995 mutex_unlock(&phydev->lock);
996
997 if (needs_aneg)
998 err = phy_start_aneg(phydev);
999 else if (do_suspend)
1000 phy_suspend(phydev);
1001
1002 if (err < 0)
1003 phy_error(phydev);
1004
1005 phydev_dbg(phydev, "PHY state change %s -> %s\n",
1006 phy_state_to_str(old_state),
1007 phy_state_to_str(phydev->state));
1008
1009 /* Only re-schedule a PHY state machine change if we are polling the
1010 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
1011 * between states from phy_mac_interrupt()
1012 */
1013 if (phydev->irq == PHY_POLL)
1014 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
1015 PHY_STATE_TIME * HZ);
1016}
1017
1018void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1019{
1020 phydev->link = new_link;
1021
1022 /* Trigger a state machine change */
1023 queue_work(system_power_efficient_wq, &phydev->phy_queue);
1024}
1025EXPORT_SYMBOL(phy_mac_interrupt);
1026
1027static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1028 int addr)
1029{
1030 /* Write the desired MMD Devad */
1031 bus->write(bus, addr, MII_MMD_CTRL, devad);
1032
1033 /* Write the desired MMD register address */
1034 bus->write(bus, addr, MII_MMD_DATA, prtad);
1035
1036 /* Select the Function : DATA with no post increment */
1037 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1038}
1039
1040/**
1041 * phy_read_mmd_indirect - reads data from the MMD registers
1042 * @phydev: The PHY device bus
1043 * @prtad: MMD Address
1044 * @devad: MMD DEVAD
1045 *
1046 * Description: it reads data from the MMD registers (clause 22 to access to
1047 * clause 45) of the specified phy address.
1048 * To read these register we have:
1049 * 1) Write reg 13 // DEVAD
1050 * 2) Write reg 14 // MMD Address
1051 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1052 * 3) Read reg 14 // Read MMD data
1053 */
1054int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
1055{
1056 struct phy_driver *phydrv = phydev->drv;
1057 int addr = phydev->mdio.addr;
1058 int value = -1;
1059
1060 if (!phydrv->read_mmd_indirect) {
1061 struct mii_bus *bus = phydev->mdio.bus;
1062
1063 mutex_lock(&bus->mdio_lock);
1064 mmd_phy_indirect(bus, prtad, devad, addr);
1065
1066 /* Read the content of the MMD's selected register */
1067 value = bus->read(bus, addr, MII_MMD_DATA);
1068 mutex_unlock(&bus->mdio_lock);
1069 } else {
1070 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1071 }
1072 return value;
1073}
1074EXPORT_SYMBOL(phy_read_mmd_indirect);
1075
1076/**
1077 * phy_write_mmd_indirect - writes data to the MMD registers
1078 * @phydev: The PHY device
1079 * @prtad: MMD Address
1080 * @devad: MMD DEVAD
1081 * @data: data to write in the MMD register
1082 *
1083 * Description: Write data from the MMD registers of the specified
1084 * phy address.
1085 * To write these register we have:
1086 * 1) Write reg 13 // DEVAD
1087 * 2) Write reg 14 // MMD Address
1088 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1089 * 3) Write reg 14 // Write MMD data
1090 */
1091void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1092 int devad, u32 data)
1093{
1094 struct phy_driver *phydrv = phydev->drv;
1095 int addr = phydev->mdio.addr;
1096
1097 if (!phydrv->write_mmd_indirect) {
1098 struct mii_bus *bus = phydev->mdio.bus;
1099
1100 mutex_lock(&bus->mdio_lock);
1101 mmd_phy_indirect(bus, prtad, devad, addr);
1102
1103 /* Write the data into MMD's selected register */
1104 bus->write(bus, addr, MII_MMD_DATA, data);
1105 mutex_unlock(&bus->mdio_lock);
1106 } else {
1107 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1108 }
1109}
1110EXPORT_SYMBOL(phy_write_mmd_indirect);
1111
1112/**
1113 * phy_init_eee - init and check the EEE feature
1114 * @phydev: target phy_device struct
1115 * @clk_stop_enable: PHY may stop the clock during LPI
1116 *
1117 * Description: it checks if the Energy-Efficient Ethernet (EEE)
1118 * is supported by looking at the MMD registers 3.20 and 7.60/61
1119 * and it programs the MMD register 3.0 setting the "Clock stop enable"
1120 * bit if required.
1121 */
1122int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1123{
1124 /* According to 802.3az,the EEE is supported only in full duplex-mode.
1125 * Also EEE feature is active when core is operating with MII, GMII
1126 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1127 * should return an error if they do not support EEE.
1128 */
1129 if ((phydev->duplex == DUPLEX_FULL) &&
1130 ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1131 (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1132 phy_interface_is_rgmii(phydev) ||
1133 phy_is_internal(phydev))) {
1134 int eee_lp, eee_cap, eee_adv;
1135 u32 lp, cap, adv;
1136 int status;
1137
1138 /* Read phy status to properly get the right settings */
1139 status = phy_read_status(phydev);
1140 if (status)
1141 return status;
1142
1143 /* First check if the EEE ability is supported */
1144 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1145 MDIO_MMD_PCS);
1146 if (eee_cap <= 0)
1147 goto eee_exit_err;
1148
1149 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1150 if (!cap)
1151 goto eee_exit_err;
1152
1153 /* Check which link settings negotiated and verify it in
1154 * the EEE advertising registers.
1155 */
1156 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1157 MDIO_MMD_AN);
1158 if (eee_lp <= 0)
1159 goto eee_exit_err;
1160
1161 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1162 MDIO_MMD_AN);
1163 if (eee_adv <= 0)
1164 goto eee_exit_err;
1165
1166 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1167 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1168 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1169 goto eee_exit_err;
1170
1171 if (clk_stop_enable) {
1172 /* Configure the PHY to stop receiving xMII
1173 * clock while it is signaling LPI.
1174 */
1175 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1176 MDIO_MMD_PCS);
1177 if (val < 0)
1178 return val;
1179
1180 val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1181 phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1182 MDIO_MMD_PCS, val);
1183 }
1184
1185 return 0; /* EEE supported */
1186 }
1187eee_exit_err:
1188 return -EPROTONOSUPPORT;
1189}
1190EXPORT_SYMBOL(phy_init_eee);
1191
1192/**
1193 * phy_get_eee_err - report the EEE wake error count
1194 * @phydev: target phy_device struct
1195 *
1196 * Description: it is to report the number of time where the PHY
1197 * failed to complete its normal wake sequence.
1198 */
1199int phy_get_eee_err(struct phy_device *phydev)
1200{
1201 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
1202}
1203EXPORT_SYMBOL(phy_get_eee_err);
1204
1205/**
1206 * phy_ethtool_get_eee - get EEE supported and status
1207 * @phydev: target phy_device struct
1208 * @data: ethtool_eee data
1209 *
1210 * Description: it reportes the Supported/Advertisement/LP Advertisement
1211 * capabilities.
1212 */
1213int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1214{
1215 int val;
1216
1217 /* Get Supported EEE */
1218 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
1219 if (val < 0)
1220 return val;
1221 data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1222
1223 /* Get advertisement EEE */
1224 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
1225 if (val < 0)
1226 return val;
1227 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1228
1229 /* Get LP advertisement EEE */
1230 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
1231 if (val < 0)
1232 return val;
1233 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1234
1235 return 0;
1236}
1237EXPORT_SYMBOL(phy_ethtool_get_eee);
1238
1239/**
1240 * phy_ethtool_set_eee - set EEE supported and status
1241 * @phydev: target phy_device struct
1242 * @data: ethtool_eee data
1243 *
1244 * Description: it is to program the Advertisement EEE register.
1245 */
1246int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1247{
1248 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1249
1250 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
1251
1252 return 0;
1253}
1254EXPORT_SYMBOL(phy_ethtool_set_eee);
1255
1256int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1257{
1258 if (phydev->drv->set_wol)
1259 return phydev->drv->set_wol(phydev, wol);
1260
1261 return -EOPNOTSUPP;
1262}
1263EXPORT_SYMBOL(phy_ethtool_set_wol);
1264
1265void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1266{
1267 if (phydev->drv->get_wol)
1268 phydev->drv->get_wol(phydev, wol);
1269}
1270EXPORT_SYMBOL(phy_ethtool_get_wol);