Loading...
1/*
2 * Copyright 2013 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * A code-rewriter that handles unaligned exception.
15 */
16
17#include <linux/smp.h>
18#include <linux/ptrace.h>
19#include <linux/slab.h>
20#include <linux/thread_info.h>
21#include <linux/uaccess.h>
22#include <linux/mman.h>
23#include <linux/types.h>
24#include <linux/err.h>
25#include <linux/module.h>
26#include <linux/compat.h>
27#include <linux/prctl.h>
28#include <asm/cacheflush.h>
29#include <asm/traps.h>
30#include <asm/uaccess.h>
31#include <asm/unaligned.h>
32#include <arch/abi.h>
33#include <arch/spr_def.h>
34#include <arch/opcode.h>
35
36
37/*
38 * This file handles unaligned exception for tile-Gx. The tilepro's unaligned
39 * exception is supported out of single_step.c
40 */
41
42int unaligned_printk;
43
44static int __init setup_unaligned_printk(char *str)
45{
46 long val;
47 if (kstrtol(str, 0, &val) != 0)
48 return 0;
49 unaligned_printk = val;
50 pr_info("Printk for each unaligned data accesses is %s\n",
51 unaligned_printk ? "enabled" : "disabled");
52 return 1;
53}
54__setup("unaligned_printk=", setup_unaligned_printk);
55
56unsigned int unaligned_fixup_count;
57
58#ifdef __tilegx__
59
60/*
61 * Unalign data jit fixup code fragement. Reserved space is 128 bytes.
62 * The 1st 64-bit word saves fault PC address, 2nd word is the fault
63 * instruction bundle followed by 14 JIT bundles.
64 */
65
66struct unaligned_jit_fragment {
67 unsigned long pc;
68 tilegx_bundle_bits bundle;
69 tilegx_bundle_bits insn[14];
70};
71
72/*
73 * Check if a nop or fnop at bundle's pipeline X0.
74 */
75
76static bool is_bundle_x0_nop(tilegx_bundle_bits bundle)
77{
78 return (((get_UnaryOpcodeExtension_X0(bundle) ==
79 NOP_UNARY_OPCODE_X0) &&
80 (get_RRROpcodeExtension_X0(bundle) ==
81 UNARY_RRR_0_OPCODE_X0) &&
82 (get_Opcode_X0(bundle) ==
83 RRR_0_OPCODE_X0)) ||
84 ((get_UnaryOpcodeExtension_X0(bundle) ==
85 FNOP_UNARY_OPCODE_X0) &&
86 (get_RRROpcodeExtension_X0(bundle) ==
87 UNARY_RRR_0_OPCODE_X0) &&
88 (get_Opcode_X0(bundle) ==
89 RRR_0_OPCODE_X0)));
90}
91
92/*
93 * Check if nop or fnop at bundle's pipeline X1.
94 */
95
96static bool is_bundle_x1_nop(tilegx_bundle_bits bundle)
97{
98 return (((get_UnaryOpcodeExtension_X1(bundle) ==
99 NOP_UNARY_OPCODE_X1) &&
100 (get_RRROpcodeExtension_X1(bundle) ==
101 UNARY_RRR_0_OPCODE_X1) &&
102 (get_Opcode_X1(bundle) ==
103 RRR_0_OPCODE_X1)) ||
104 ((get_UnaryOpcodeExtension_X1(bundle) ==
105 FNOP_UNARY_OPCODE_X1) &&
106 (get_RRROpcodeExtension_X1(bundle) ==
107 UNARY_RRR_0_OPCODE_X1) &&
108 (get_Opcode_X1(bundle) ==
109 RRR_0_OPCODE_X1)));
110}
111
112/*
113 * Check if nop or fnop at bundle's Y0 pipeline.
114 */
115
116static bool is_bundle_y0_nop(tilegx_bundle_bits bundle)
117{
118 return (((get_UnaryOpcodeExtension_Y0(bundle) ==
119 NOP_UNARY_OPCODE_Y0) &&
120 (get_RRROpcodeExtension_Y0(bundle) ==
121 UNARY_RRR_1_OPCODE_Y0) &&
122 (get_Opcode_Y0(bundle) ==
123 RRR_1_OPCODE_Y0)) ||
124 ((get_UnaryOpcodeExtension_Y0(bundle) ==
125 FNOP_UNARY_OPCODE_Y0) &&
126 (get_RRROpcodeExtension_Y0(bundle) ==
127 UNARY_RRR_1_OPCODE_Y0) &&
128 (get_Opcode_Y0(bundle) ==
129 RRR_1_OPCODE_Y0)));
130}
131
132/*
133 * Check if nop or fnop at bundle's pipeline Y1.
134 */
135
136static bool is_bundle_y1_nop(tilegx_bundle_bits bundle)
137{
138 return (((get_UnaryOpcodeExtension_Y1(bundle) ==
139 NOP_UNARY_OPCODE_Y1) &&
140 (get_RRROpcodeExtension_Y1(bundle) ==
141 UNARY_RRR_1_OPCODE_Y1) &&
142 (get_Opcode_Y1(bundle) ==
143 RRR_1_OPCODE_Y1)) ||
144 ((get_UnaryOpcodeExtension_Y1(bundle) ==
145 FNOP_UNARY_OPCODE_Y1) &&
146 (get_RRROpcodeExtension_Y1(bundle) ==
147 UNARY_RRR_1_OPCODE_Y1) &&
148 (get_Opcode_Y1(bundle) ==
149 RRR_1_OPCODE_Y1)));
150}
151
152/*
153 * Test if a bundle's y0 and y1 pipelines are both nop or fnop.
154 */
155
156static bool is_y0_y1_nop(tilegx_bundle_bits bundle)
157{
158 return is_bundle_y0_nop(bundle) && is_bundle_y1_nop(bundle);
159}
160
161/*
162 * Test if a bundle's x0 and x1 pipelines are both nop or fnop.
163 */
164
165static bool is_x0_x1_nop(tilegx_bundle_bits bundle)
166{
167 return is_bundle_x0_nop(bundle) && is_bundle_x1_nop(bundle);
168}
169
170/*
171 * Find the destination, source registers of fault unalign access instruction
172 * at X1 or Y2. Also, allocate up to 3 scratch registers clob1, clob2 and
173 * clob3, which are guaranteed different from any register used in the fault
174 * bundle. r_alias is used to return if the other instructions other than the
175 * unalign load/store shares same register with ra, rb and rd.
176 */
177
178static void find_regs(tilegx_bundle_bits bundle, uint64_t *rd, uint64_t *ra,
179 uint64_t *rb, uint64_t *clob1, uint64_t *clob2,
180 uint64_t *clob3, bool *r_alias)
181{
182 int i;
183 uint64_t reg;
184 uint64_t reg_map = 0, alias_reg_map = 0, map;
185 bool alias;
186
187 *ra = -1;
188 *rb = -1;
189
190 if (rd)
191 *rd = -1;
192
193 *clob1 = -1;
194 *clob2 = -1;
195 *clob3 = -1;
196 alias = false;
197
198 /*
199 * Parse fault bundle, find potential used registers and mark
200 * corresponding bits in reg_map and alias_map. These 2 bit maps
201 * are used to find the scratch registers and determine if there
202 * is register alais.
203 */
204 if (bundle & TILEGX_BUNDLE_MODE_MASK) { /* Y Mode Bundle. */
205
206 reg = get_SrcA_Y2(bundle);
207 reg_map |= 1ULL << reg;
208 *ra = reg;
209 reg = get_SrcBDest_Y2(bundle);
210 reg_map |= 1ULL << reg;
211
212 if (rd) {
213 /* Load. */
214 *rd = reg;
215 alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
216 } else {
217 /* Store. */
218 *rb = reg;
219 alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
220 }
221
222 if (!is_bundle_y1_nop(bundle)) {
223 reg = get_SrcA_Y1(bundle);
224 reg_map |= (1ULL << reg);
225 map = (1ULL << reg);
226
227 reg = get_SrcB_Y1(bundle);
228 reg_map |= (1ULL << reg);
229 map |= (1ULL << reg);
230
231 reg = get_Dest_Y1(bundle);
232 reg_map |= (1ULL << reg);
233 map |= (1ULL << reg);
234
235 if (map & alias_reg_map)
236 alias = true;
237 }
238
239 if (!is_bundle_y0_nop(bundle)) {
240 reg = get_SrcA_Y0(bundle);
241 reg_map |= (1ULL << reg);
242 map = (1ULL << reg);
243
244 reg = get_SrcB_Y0(bundle);
245 reg_map |= (1ULL << reg);
246 map |= (1ULL << reg);
247
248 reg = get_Dest_Y0(bundle);
249 reg_map |= (1ULL << reg);
250 map |= (1ULL << reg);
251
252 if (map & alias_reg_map)
253 alias = true;
254 }
255 } else { /* X Mode Bundle. */
256
257 reg = get_SrcA_X1(bundle);
258 reg_map |= (1ULL << reg);
259 *ra = reg;
260 if (rd) {
261 /* Load. */
262 reg = get_Dest_X1(bundle);
263 reg_map |= (1ULL << reg);
264 *rd = reg;
265 alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
266 } else {
267 /* Store. */
268 reg = get_SrcB_X1(bundle);
269 reg_map |= (1ULL << reg);
270 *rb = reg;
271 alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
272 }
273
274 if (!is_bundle_x0_nop(bundle)) {
275 reg = get_SrcA_X0(bundle);
276 reg_map |= (1ULL << reg);
277 map = (1ULL << reg);
278
279 reg = get_SrcB_X0(bundle);
280 reg_map |= (1ULL << reg);
281 map |= (1ULL << reg);
282
283 reg = get_Dest_X0(bundle);
284 reg_map |= (1ULL << reg);
285 map |= (1ULL << reg);
286
287 if (map & alias_reg_map)
288 alias = true;
289 }
290 }
291
292 /*
293 * "alias" indicates if the unalign access registers have collision
294 * with others in the same bundle. We jsut simply test all register
295 * operands case (RRR), ignored the case with immidate. If a bundle
296 * has no register alias, we may do fixup in a simple or fast manner.
297 * So if an immidata field happens to hit with a register, we may end
298 * up fall back to the generic handling.
299 */
300
301 *r_alias = alias;
302
303 /* Flip bits on reg_map. */
304 reg_map ^= -1ULL;
305
306 /* Scan reg_map lower 54(TREG_SP) bits to find 3 set bits. */
307 for (i = 0; i < TREG_SP; i++) {
308 if (reg_map & (0x1ULL << i)) {
309 if (*clob1 == -1) {
310 *clob1 = i;
311 } else if (*clob2 == -1) {
312 *clob2 = i;
313 } else if (*clob3 == -1) {
314 *clob3 = i;
315 return;
316 }
317 }
318 }
319}
320
321/*
322 * Sanity check for register ra, rb, rd, clob1/2/3. Return true if any of them
323 * is unexpected.
324 */
325
326static bool check_regs(uint64_t rd, uint64_t ra, uint64_t rb,
327 uint64_t clob1, uint64_t clob2, uint64_t clob3)
328{
329 bool unexpected = false;
330 if ((ra >= 56) && (ra != TREG_ZERO))
331 unexpected = true;
332
333 if ((clob1 >= 56) || (clob2 >= 56) || (clob3 >= 56))
334 unexpected = true;
335
336 if (rd != -1) {
337 if ((rd >= 56) && (rd != TREG_ZERO))
338 unexpected = true;
339 } else {
340 if ((rb >= 56) && (rb != TREG_ZERO))
341 unexpected = true;
342 }
343 return unexpected;
344}
345
346
347#define GX_INSN_X0_MASK ((1ULL << 31) - 1)
348#define GX_INSN_X1_MASK (((1ULL << 31) - 1) << 31)
349#define GX_INSN_Y0_MASK ((0xFULL << 27) | (0xFFFFFULL))
350#define GX_INSN_Y1_MASK (GX_INSN_Y0_MASK << 31)
351#define GX_INSN_Y2_MASK ((0x7FULL << 51) | (0x7FULL << 20))
352
353#ifdef __LITTLE_ENDIAN
354#define GX_INSN_BSWAP(_bundle_) (_bundle_)
355#else
356#define GX_INSN_BSWAP(_bundle_) swab64(_bundle_)
357#endif /* __LITTLE_ENDIAN */
358
359/*
360 * __JIT_CODE(.) creates template bundles in .rodata.unalign_data section.
361 * The corresponding static function jix_x#_###(.) generates partial or
362 * whole bundle based on the template and given arguments.
363 */
364
365#define __JIT_CODE(_X_) \
366 asm (".pushsection .rodata.unalign_data, \"a\"\n" \
367 _X_"\n" \
368 ".popsection\n")
369
370__JIT_CODE("__unalign_jit_x1_mtspr: {mtspr 0, r0}");
371static tilegx_bundle_bits jit_x1_mtspr(int spr, int reg)
372{
373 extern tilegx_bundle_bits __unalign_jit_x1_mtspr;
374 return (GX_INSN_BSWAP(__unalign_jit_x1_mtspr) & GX_INSN_X1_MASK) |
375 create_MT_Imm14_X1(spr) | create_SrcA_X1(reg);
376}
377
378__JIT_CODE("__unalign_jit_x1_mfspr: {mfspr r0, 0}");
379static tilegx_bundle_bits jit_x1_mfspr(int reg, int spr)
380{
381 extern tilegx_bundle_bits __unalign_jit_x1_mfspr;
382 return (GX_INSN_BSWAP(__unalign_jit_x1_mfspr) & GX_INSN_X1_MASK) |
383 create_MF_Imm14_X1(spr) | create_Dest_X1(reg);
384}
385
386__JIT_CODE("__unalign_jit_x0_addi: {addi r0, r0, 0; iret}");
387static tilegx_bundle_bits jit_x0_addi(int rd, int ra, int imm8)
388{
389 extern tilegx_bundle_bits __unalign_jit_x0_addi;
390 return (GX_INSN_BSWAP(__unalign_jit_x0_addi) & GX_INSN_X0_MASK) |
391 create_Dest_X0(rd) | create_SrcA_X0(ra) |
392 create_Imm8_X0(imm8);
393}
394
395__JIT_CODE("__unalign_jit_x1_ldna: {ldna r0, r0}");
396static tilegx_bundle_bits jit_x1_ldna(int rd, int ra)
397{
398 extern tilegx_bundle_bits __unalign_jit_x1_ldna;
399 return (GX_INSN_BSWAP(__unalign_jit_x1_ldna) & GX_INSN_X1_MASK) |
400 create_Dest_X1(rd) | create_SrcA_X1(ra);
401}
402
403__JIT_CODE("__unalign_jit_x0_dblalign: {dblalign r0, r0 ,r0}");
404static tilegx_bundle_bits jit_x0_dblalign(int rd, int ra, int rb)
405{
406 extern tilegx_bundle_bits __unalign_jit_x0_dblalign;
407 return (GX_INSN_BSWAP(__unalign_jit_x0_dblalign) & GX_INSN_X0_MASK) |
408 create_Dest_X0(rd) | create_SrcA_X0(ra) |
409 create_SrcB_X0(rb);
410}
411
412__JIT_CODE("__unalign_jit_x1_iret: {iret}");
413static tilegx_bundle_bits jit_x1_iret(void)
414{
415 extern tilegx_bundle_bits __unalign_jit_x1_iret;
416 return GX_INSN_BSWAP(__unalign_jit_x1_iret) & GX_INSN_X1_MASK;
417}
418
419__JIT_CODE("__unalign_jit_x01_fnop: {fnop;fnop}");
420static tilegx_bundle_bits jit_x0_fnop(void)
421{
422 extern tilegx_bundle_bits __unalign_jit_x01_fnop;
423 return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X0_MASK;
424}
425
426static tilegx_bundle_bits jit_x1_fnop(void)
427{
428 extern tilegx_bundle_bits __unalign_jit_x01_fnop;
429 return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X1_MASK;
430}
431
432__JIT_CODE("__unalign_jit_y2_dummy: {fnop; fnop; ld zero, sp}");
433static tilegx_bundle_bits jit_y2_dummy(void)
434{
435 extern tilegx_bundle_bits __unalign_jit_y2_dummy;
436 return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y2_MASK;
437}
438
439static tilegx_bundle_bits jit_y1_fnop(void)
440{
441 extern tilegx_bundle_bits __unalign_jit_y2_dummy;
442 return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y1_MASK;
443}
444
445__JIT_CODE("__unalign_jit_x1_st1_add: {st1_add r1, r0, 0}");
446static tilegx_bundle_bits jit_x1_st1_add(int ra, int rb, int imm8)
447{
448 extern tilegx_bundle_bits __unalign_jit_x1_st1_add;
449 return (GX_INSN_BSWAP(__unalign_jit_x1_st1_add) &
450 (~create_SrcA_X1(-1)) &
451 GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
452 create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
453}
454
455__JIT_CODE("__unalign_jit_x1_st: {crc32_8 r1, r0, r0; st r0, r0}");
456static tilegx_bundle_bits jit_x1_st(int ra, int rb)
457{
458 extern tilegx_bundle_bits __unalign_jit_x1_st;
459 return (GX_INSN_BSWAP(__unalign_jit_x1_st) & GX_INSN_X1_MASK) |
460 create_SrcA_X1(ra) | create_SrcB_X1(rb);
461}
462
463__JIT_CODE("__unalign_jit_x1_st_add: {st_add r1, r0, 0}");
464static tilegx_bundle_bits jit_x1_st_add(int ra, int rb, int imm8)
465{
466 extern tilegx_bundle_bits __unalign_jit_x1_st_add;
467 return (GX_INSN_BSWAP(__unalign_jit_x1_st_add) &
468 (~create_SrcA_X1(-1)) &
469 GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
470 create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
471}
472
473__JIT_CODE("__unalign_jit_x1_ld: {crc32_8 r1, r0, r0; ld r0, r0}");
474static tilegx_bundle_bits jit_x1_ld(int rd, int ra)
475{
476 extern tilegx_bundle_bits __unalign_jit_x1_ld;
477 return (GX_INSN_BSWAP(__unalign_jit_x1_ld) & GX_INSN_X1_MASK) |
478 create_Dest_X1(rd) | create_SrcA_X1(ra);
479}
480
481__JIT_CODE("__unalign_jit_x1_ld_add: {ld_add r1, r0, 0}");
482static tilegx_bundle_bits jit_x1_ld_add(int rd, int ra, int imm8)
483{
484 extern tilegx_bundle_bits __unalign_jit_x1_ld_add;
485 return (GX_INSN_BSWAP(__unalign_jit_x1_ld_add) &
486 (~create_Dest_X1(-1)) &
487 GX_INSN_X1_MASK) | create_Dest_X1(rd) |
488 create_SrcA_X1(ra) | create_Imm8_X1(imm8);
489}
490
491__JIT_CODE("__unalign_jit_x0_bfexts: {bfexts r0, r0, 0, 0}");
492static tilegx_bundle_bits jit_x0_bfexts(int rd, int ra, int bfs, int bfe)
493{
494 extern tilegx_bundle_bits __unalign_jit_x0_bfexts;
495 return (GX_INSN_BSWAP(__unalign_jit_x0_bfexts) &
496 GX_INSN_X0_MASK) |
497 create_Dest_X0(rd) | create_SrcA_X0(ra) |
498 create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
499}
500
501__JIT_CODE("__unalign_jit_x0_bfextu: {bfextu r0, r0, 0, 0}");
502static tilegx_bundle_bits jit_x0_bfextu(int rd, int ra, int bfs, int bfe)
503{
504 extern tilegx_bundle_bits __unalign_jit_x0_bfextu;
505 return (GX_INSN_BSWAP(__unalign_jit_x0_bfextu) &
506 GX_INSN_X0_MASK) |
507 create_Dest_X0(rd) | create_SrcA_X0(ra) |
508 create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
509}
510
511__JIT_CODE("__unalign_jit_x1_addi: {bfextu r1, r1, 0, 0; addi r0, r0, 0}");
512static tilegx_bundle_bits jit_x1_addi(int rd, int ra, int imm8)
513{
514 extern tilegx_bundle_bits __unalign_jit_x1_addi;
515 return (GX_INSN_BSWAP(__unalign_jit_x1_addi) & GX_INSN_X1_MASK) |
516 create_Dest_X1(rd) | create_SrcA_X1(ra) |
517 create_Imm8_X1(imm8);
518}
519
520__JIT_CODE("__unalign_jit_x0_shrui: {shrui r0, r0, 0; iret}");
521static tilegx_bundle_bits jit_x0_shrui(int rd, int ra, int imm6)
522{
523 extern tilegx_bundle_bits __unalign_jit_x0_shrui;
524 return (GX_INSN_BSWAP(__unalign_jit_x0_shrui) &
525 GX_INSN_X0_MASK) |
526 create_Dest_X0(rd) | create_SrcA_X0(ra) |
527 create_ShAmt_X0(imm6);
528}
529
530__JIT_CODE("__unalign_jit_x0_rotli: {rotli r0, r0, 0; iret}");
531static tilegx_bundle_bits jit_x0_rotli(int rd, int ra, int imm6)
532{
533 extern tilegx_bundle_bits __unalign_jit_x0_rotli;
534 return (GX_INSN_BSWAP(__unalign_jit_x0_rotli) &
535 GX_INSN_X0_MASK) |
536 create_Dest_X0(rd) | create_SrcA_X0(ra) |
537 create_ShAmt_X0(imm6);
538}
539
540__JIT_CODE("__unalign_jit_x1_bnezt: {bnezt r0, __unalign_jit_x1_bnezt}");
541static tilegx_bundle_bits jit_x1_bnezt(int ra, int broff)
542{
543 extern tilegx_bundle_bits __unalign_jit_x1_bnezt;
544 return (GX_INSN_BSWAP(__unalign_jit_x1_bnezt) &
545 GX_INSN_X1_MASK) |
546 create_SrcA_X1(ra) | create_BrOff_X1(broff);
547}
548
549#undef __JIT_CODE
550
551/*
552 * This function generates unalign fixup JIT.
553 *
554 * We first find unalign load/store instruction's destination, source
555 * registers: ra, rb and rd. and 3 scratch registers by calling
556 * find_regs(...). 3 scratch clobbers should not alias with any register
557 * used in the fault bundle. Then analyze the fault bundle to determine
558 * if it's a load or store, operand width, branch or address increment etc.
559 * At last generated JIT is copied into JIT code area in user space.
560 */
561
562static
563void jit_bundle_gen(struct pt_regs *regs, tilegx_bundle_bits bundle,
564 int align_ctl)
565{
566 struct thread_info *info = current_thread_info();
567 struct unaligned_jit_fragment frag;
568 struct unaligned_jit_fragment *jit_code_area;
569 tilegx_bundle_bits bundle_2 = 0;
570 /* If bundle_2_enable = false, bundle_2 is fnop/nop operation. */
571 bool bundle_2_enable = true;
572 uint64_t ra, rb, rd = -1, clob1, clob2, clob3;
573 /*
574 * Indicate if the unalign access
575 * instruction's registers hit with
576 * others in the same bundle.
577 */
578 bool alias = false;
579 bool load_n_store = true;
580 bool load_store_signed = false;
581 unsigned int load_store_size = 8;
582 bool y1_br = false; /* True, for a branch in same bundle at Y1.*/
583 int y1_br_reg = 0;
584 /* True for link operation. i.e. jalr or lnk at Y1 */
585 bool y1_lr = false;
586 int y1_lr_reg = 0;
587 bool x1_add = false;/* True, for load/store ADD instruction at X1*/
588 int x1_add_imm8 = 0;
589 bool unexpected = false;
590 int n = 0, k;
591
592 jit_code_area =
593 (struct unaligned_jit_fragment *)(info->unalign_jit_base);
594
595 memset((void *)&frag, 0, sizeof(frag));
596
597 /* 0: X mode, Otherwise: Y mode. */
598 if (bundle & TILEGX_BUNDLE_MODE_MASK) {
599 unsigned int mod, opcode;
600
601 if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 &&
602 get_RRROpcodeExtension_Y1(bundle) ==
603 UNARY_RRR_1_OPCODE_Y1) {
604
605 opcode = get_UnaryOpcodeExtension_Y1(bundle);
606
607 /*
608 * Test "jalr", "jalrp", "jr", "jrp" instruction at Y1
609 * pipeline.
610 */
611 switch (opcode) {
612 case JALR_UNARY_OPCODE_Y1:
613 case JALRP_UNARY_OPCODE_Y1:
614 y1_lr = true;
615 y1_lr_reg = 55; /* Link register. */
616 /* FALLTHROUGH */
617 case JR_UNARY_OPCODE_Y1:
618 case JRP_UNARY_OPCODE_Y1:
619 y1_br = true;
620 y1_br_reg = get_SrcA_Y1(bundle);
621 break;
622 case LNK_UNARY_OPCODE_Y1:
623 /* "lnk" at Y1 pipeline. */
624 y1_lr = true;
625 y1_lr_reg = get_Dest_Y1(bundle);
626 break;
627 }
628 }
629
630 opcode = get_Opcode_Y2(bundle);
631 mod = get_Mode(bundle);
632
633 /*
634 * bundle_2 is bundle after making Y2 as a dummy operation
635 * - ld zero, sp
636 */
637 bundle_2 = (bundle & (~GX_INSN_Y2_MASK)) | jit_y2_dummy();
638
639 /* Make Y1 as fnop if Y1 is a branch or lnk operation. */
640 if (y1_br || y1_lr) {
641 bundle_2 &= ~(GX_INSN_Y1_MASK);
642 bundle_2 |= jit_y1_fnop();
643 }
644
645 if (is_y0_y1_nop(bundle_2))
646 bundle_2_enable = false;
647
648 if (mod == MODE_OPCODE_YC2) {
649 /* Store. */
650 load_n_store = false;
651 load_store_size = 1 << opcode;
652 load_store_signed = false;
653 find_regs(bundle, 0, &ra, &rb, &clob1, &clob2,
654 &clob3, &alias);
655 if (load_store_size > 8)
656 unexpected = true;
657 } else {
658 /* Load. */
659 load_n_store = true;
660 if (mod == MODE_OPCODE_YB2) {
661 switch (opcode) {
662 case LD_OPCODE_Y2:
663 load_store_signed = false;
664 load_store_size = 8;
665 break;
666 case LD4S_OPCODE_Y2:
667 load_store_signed = true;
668 load_store_size = 4;
669 break;
670 case LD4U_OPCODE_Y2:
671 load_store_signed = false;
672 load_store_size = 4;
673 break;
674 default:
675 unexpected = true;
676 }
677 } else if (mod == MODE_OPCODE_YA2) {
678 if (opcode == LD2S_OPCODE_Y2) {
679 load_store_signed = true;
680 load_store_size = 2;
681 } else if (opcode == LD2U_OPCODE_Y2) {
682 load_store_signed = false;
683 load_store_size = 2;
684 } else
685 unexpected = true;
686 } else
687 unexpected = true;
688 find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2,
689 &clob3, &alias);
690 }
691 } else {
692 unsigned int opcode;
693
694 /* bundle_2 is bundle after making X1 as "fnop". */
695 bundle_2 = (bundle & (~GX_INSN_X1_MASK)) | jit_x1_fnop();
696
697 if (is_x0_x1_nop(bundle_2))
698 bundle_2_enable = false;
699
700 if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) {
701 opcode = get_UnaryOpcodeExtension_X1(bundle);
702
703 if (get_RRROpcodeExtension_X1(bundle) ==
704 UNARY_RRR_0_OPCODE_X1) {
705 load_n_store = true;
706 find_regs(bundle, &rd, &ra, &rb, &clob1,
707 &clob2, &clob3, &alias);
708
709 switch (opcode) {
710 case LD_UNARY_OPCODE_X1:
711 load_store_signed = false;
712 load_store_size = 8;
713 break;
714 case LD4S_UNARY_OPCODE_X1:
715 load_store_signed = true;
716 /* FALLTHROUGH */
717 case LD4U_UNARY_OPCODE_X1:
718 load_store_size = 4;
719 break;
720
721 case LD2S_UNARY_OPCODE_X1:
722 load_store_signed = true;
723 /* FALLTHROUGH */
724 case LD2U_UNARY_OPCODE_X1:
725 load_store_size = 2;
726 break;
727 default:
728 unexpected = true;
729 }
730 } else {
731 load_n_store = false;
732 load_store_signed = false;
733 find_regs(bundle, 0, &ra, &rb,
734 &clob1, &clob2, &clob3,
735 &alias);
736
737 opcode = get_RRROpcodeExtension_X1(bundle);
738 switch (opcode) {
739 case ST_RRR_0_OPCODE_X1:
740 load_store_size = 8;
741 break;
742 case ST4_RRR_0_OPCODE_X1:
743 load_store_size = 4;
744 break;
745 case ST2_RRR_0_OPCODE_X1:
746 load_store_size = 2;
747 break;
748 default:
749 unexpected = true;
750 }
751 }
752 } else if (get_Opcode_X1(bundle) == IMM8_OPCODE_X1) {
753 load_n_store = true;
754 opcode = get_Imm8OpcodeExtension_X1(bundle);
755 switch (opcode) {
756 case LD_ADD_IMM8_OPCODE_X1:
757 load_store_size = 8;
758 break;
759
760 case LD4S_ADD_IMM8_OPCODE_X1:
761 load_store_signed = true;
762 /* FALLTHROUGH */
763 case LD4U_ADD_IMM8_OPCODE_X1:
764 load_store_size = 4;
765 break;
766
767 case LD2S_ADD_IMM8_OPCODE_X1:
768 load_store_signed = true;
769 /* FALLTHROUGH */
770 case LD2U_ADD_IMM8_OPCODE_X1:
771 load_store_size = 2;
772 break;
773
774 case ST_ADD_IMM8_OPCODE_X1:
775 load_n_store = false;
776 load_store_size = 8;
777 break;
778 case ST4_ADD_IMM8_OPCODE_X1:
779 load_n_store = false;
780 load_store_size = 4;
781 break;
782 case ST2_ADD_IMM8_OPCODE_X1:
783 load_n_store = false;
784 load_store_size = 2;
785 break;
786 default:
787 unexpected = true;
788 }
789
790 if (!unexpected) {
791 x1_add = true;
792 if (load_n_store)
793 x1_add_imm8 = get_Imm8_X1(bundle);
794 else
795 x1_add_imm8 = get_Dest_Imm8_X1(bundle);
796 }
797
798 find_regs(bundle, load_n_store ? (&rd) : NULL,
799 &ra, &rb, &clob1, &clob2, &clob3, &alias);
800 } else
801 unexpected = true;
802 }
803
804 /*
805 * Some sanity check for register numbers extracted from fault bundle.
806 */
807 if (check_regs(rd, ra, rb, clob1, clob2, clob3) == true)
808 unexpected = true;
809
810 /* Give warning if register ra has an aligned address. */
811 if (!unexpected)
812 WARN_ON(!((load_store_size - 1) & (regs->regs[ra])));
813
814
815 /*
816 * Fault came from kernel space, here we only need take care of
817 * unaligned "get_user/put_user" macros defined in "uaccess.h".
818 * Basically, we will handle bundle like this:
819 * {ld/2u/4s rd, ra; movei rx, 0} or {st/2/4 ra, rb; movei rx, 0}
820 * (Refer to file "arch/tile/include/asm/uaccess.h" for details).
821 * For either load or store, byte-wise operation is performed by calling
822 * get_user() or put_user(). If the macro returns non-zero value,
823 * set the value to rx, otherwise set zero to rx. Finally make pc point
824 * to next bundle and return.
825 */
826
827 if (EX1_PL(regs->ex1) != USER_PL) {
828
829 unsigned long rx = 0;
830 unsigned long x = 0, ret = 0;
831
832 if (y1_br || y1_lr || x1_add ||
833 (load_store_signed !=
834 (load_n_store && load_store_size == 4))) {
835 /* No branch, link, wrong sign-ext or load/store add. */
836 unexpected = true;
837 } else if (!unexpected) {
838 if (bundle & TILEGX_BUNDLE_MODE_MASK) {
839 /*
840 * Fault bundle is Y mode.
841 * Check if the Y1 and Y0 is the form of
842 * { movei rx, 0; nop/fnop }, if yes,
843 * find the rx.
844 */
845
846 if ((get_Opcode_Y1(bundle) == ADDI_OPCODE_Y1)
847 && (get_SrcA_Y1(bundle) == TREG_ZERO) &&
848 (get_Imm8_Y1(bundle) == 0) &&
849 is_bundle_y0_nop(bundle)) {
850 rx = get_Dest_Y1(bundle);
851 } else if ((get_Opcode_Y0(bundle) ==
852 ADDI_OPCODE_Y0) &&
853 (get_SrcA_Y0(bundle) == TREG_ZERO) &&
854 (get_Imm8_Y0(bundle) == 0) &&
855 is_bundle_y1_nop(bundle)) {
856 rx = get_Dest_Y0(bundle);
857 } else {
858 unexpected = true;
859 }
860 } else {
861 /*
862 * Fault bundle is X mode.
863 * Check if the X0 is 'movei rx, 0',
864 * if yes, find the rx.
865 */
866
867 if ((get_Opcode_X0(bundle) == IMM8_OPCODE_X0)
868 && (get_Imm8OpcodeExtension_X0(bundle) ==
869 ADDI_IMM8_OPCODE_X0) &&
870 (get_SrcA_X0(bundle) == TREG_ZERO) &&
871 (get_Imm8_X0(bundle) == 0)) {
872 rx = get_Dest_X0(bundle);
873 } else {
874 unexpected = true;
875 }
876 }
877
878 /* rx should be less than 56. */
879 if (!unexpected && (rx >= 56))
880 unexpected = true;
881 }
882
883 if (!search_exception_tables(regs->pc)) {
884 /* No fixup in the exception tables for the pc. */
885 unexpected = true;
886 }
887
888 if (unexpected) {
889 /* Unexpected unalign kernel fault. */
890 struct task_struct *tsk = validate_current();
891
892 bust_spinlocks(1);
893
894 show_regs(regs);
895
896 if (unlikely(tsk->pid < 2)) {
897 panic("Kernel unalign fault running %s!",
898 tsk->pid ? "init" : "the idle task");
899 }
900#ifdef SUPPORT_DIE
901 die("Oops", regs);
902#endif
903 bust_spinlocks(1);
904
905 do_group_exit(SIGKILL);
906
907 } else {
908 unsigned long i, b = 0;
909 unsigned char *ptr =
910 (unsigned char *)regs->regs[ra];
911 if (load_n_store) {
912 /* handle get_user(x, ptr) */
913 for (i = 0; i < load_store_size; i++) {
914 ret = get_user(b, ptr++);
915 if (!ret) {
916 /* Success! update x. */
917#ifdef __LITTLE_ENDIAN
918 x |= (b << (8 * i));
919#else
920 x <<= 8;
921 x |= b;
922#endif /* __LITTLE_ENDIAN */
923 } else {
924 x = 0;
925 break;
926 }
927 }
928
929 /* Sign-extend 4-byte loads. */
930 if (load_store_size == 4)
931 x = (long)(int)x;
932
933 /* Set register rd. */
934 regs->regs[rd] = x;
935
936 /* Set register rx. */
937 regs->regs[rx] = ret;
938
939 /* Bump pc. */
940 regs->pc += 8;
941
942 } else {
943 /* Handle put_user(x, ptr) */
944 x = regs->regs[rb];
945#ifdef __LITTLE_ENDIAN
946 b = x;
947#else
948 /*
949 * Swap x in order to store x from low
950 * to high memory same as the
951 * little-endian case.
952 */
953 switch (load_store_size) {
954 case 8:
955 b = swab64(x);
956 break;
957 case 4:
958 b = swab32(x);
959 break;
960 case 2:
961 b = swab16(x);
962 break;
963 }
964#endif /* __LITTLE_ENDIAN */
965 for (i = 0; i < load_store_size; i++) {
966 ret = put_user(b, ptr++);
967 if (ret)
968 break;
969 /* Success! shift 1 byte. */
970 b >>= 8;
971 }
972 /* Set register rx. */
973 regs->regs[rx] = ret;
974
975 /* Bump pc. */
976 regs->pc += 8;
977 }
978 }
979
980 unaligned_fixup_count++;
981
982 if (unaligned_printk) {
983 pr_info("%s/%d. Unalign fixup for kernel access "
984 "to userspace %lx.",
985 current->comm, current->pid, regs->regs[ra]);
986 }
987
988 /* Done! Return to the exception handler. */
989 return;
990 }
991
992 if ((align_ctl == 0) || unexpected) {
993 siginfo_t info = {
994 .si_signo = SIGBUS,
995 .si_code = BUS_ADRALN,
996 .si_addr = (unsigned char __user *)0
997 };
998 if (unaligned_printk)
999 pr_info("Unalign bundle: unexp @%llx, %llx",
1000 (unsigned long long)regs->pc,
1001 (unsigned long long)bundle);
1002
1003 if (ra < 56) {
1004 unsigned long uaa = (unsigned long)regs->regs[ra];
1005 /* Set bus Address. */
1006 info.si_addr = (unsigned char __user *)uaa;
1007 }
1008
1009 unaligned_fixup_count++;
1010
1011 trace_unhandled_signal("unaligned fixup trap", regs,
1012 (unsigned long)info.si_addr, SIGBUS);
1013 force_sig_info(info.si_signo, &info, current);
1014 return;
1015 }
1016
1017#ifdef __LITTLE_ENDIAN
1018#define UA_FIXUP_ADDR_DELTA 1
1019#define UA_FIXUP_BFEXT_START(_B_) 0
1020#define UA_FIXUP_BFEXT_END(_B_) (8 * (_B_) - 1)
1021#else /* __BIG_ENDIAN */
1022#define UA_FIXUP_ADDR_DELTA -1
1023#define UA_FIXUP_BFEXT_START(_B_) (64 - 8 * (_B_))
1024#define UA_FIXUP_BFEXT_END(_B_) 63
1025#endif /* __LITTLE_ENDIAN */
1026
1027
1028
1029 if ((ra != rb) && (rd != TREG_SP) && !alias &&
1030 !y1_br && !y1_lr && !x1_add) {
1031 /*
1032 * Simple case: ra != rb and no register alias found,
1033 * and no branch or link. This will be the majority.
1034 * We can do a little better for simplae case than the
1035 * generic scheme below.
1036 */
1037 if (!load_n_store) {
1038 /*
1039 * Simple store: ra != rb, no need for scratch register.
1040 * Just store and rotate to right bytewise.
1041 */
1042#ifdef __BIG_ENDIAN
1043 frag.insn[n++] =
1044 jit_x0_addi(ra, ra, load_store_size - 1) |
1045 jit_x1_fnop();
1046#endif /* __BIG_ENDIAN */
1047 for (k = 0; k < load_store_size; k++) {
1048 /* Store a byte. */
1049 frag.insn[n++] =
1050 jit_x0_rotli(rb, rb, 56) |
1051 jit_x1_st1_add(ra, rb,
1052 UA_FIXUP_ADDR_DELTA);
1053 }
1054#ifdef __BIG_ENDIAN
1055 frag.insn[n] = jit_x1_addi(ra, ra, 1);
1056#else
1057 frag.insn[n] = jit_x1_addi(ra, ra,
1058 -1 * load_store_size);
1059#endif /* __LITTLE_ENDIAN */
1060
1061 if (load_store_size == 8) {
1062 frag.insn[n] |= jit_x0_fnop();
1063 } else if (load_store_size == 4) {
1064 frag.insn[n] |= jit_x0_rotli(rb, rb, 32);
1065 } else { /* = 2 */
1066 frag.insn[n] |= jit_x0_rotli(rb, rb, 16);
1067 }
1068 n++;
1069 if (bundle_2_enable)
1070 frag.insn[n++] = bundle_2;
1071 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1072 } else {
1073 if (rd == ra) {
1074 /* Use two clobber registers: clob1/2. */
1075 frag.insn[n++] =
1076 jit_x0_addi(TREG_SP, TREG_SP, -16) |
1077 jit_x1_fnop();
1078 frag.insn[n++] =
1079 jit_x0_addi(clob1, ra, 7) |
1080 jit_x1_st_add(TREG_SP, clob1, -8);
1081 frag.insn[n++] =
1082 jit_x0_addi(clob2, ra, 0) |
1083 jit_x1_st(TREG_SP, clob2);
1084 frag.insn[n++] =
1085 jit_x0_fnop() |
1086 jit_x1_ldna(rd, ra);
1087 frag.insn[n++] =
1088 jit_x0_fnop() |
1089 jit_x1_ldna(clob1, clob1);
1090 /*
1091 * Note: we must make sure that rd must not
1092 * be sp. Recover clob1/2 from stack.
1093 */
1094 frag.insn[n++] =
1095 jit_x0_dblalign(rd, clob1, clob2) |
1096 jit_x1_ld_add(clob2, TREG_SP, 8);
1097 frag.insn[n++] =
1098 jit_x0_fnop() |
1099 jit_x1_ld_add(clob1, TREG_SP, 16);
1100 } else {
1101 /* Use one clobber register: clob1 only. */
1102 frag.insn[n++] =
1103 jit_x0_addi(TREG_SP, TREG_SP, -16) |
1104 jit_x1_fnop();
1105 frag.insn[n++] =
1106 jit_x0_addi(clob1, ra, 7) |
1107 jit_x1_st(TREG_SP, clob1);
1108 frag.insn[n++] =
1109 jit_x0_fnop() |
1110 jit_x1_ldna(rd, ra);
1111 frag.insn[n++] =
1112 jit_x0_fnop() |
1113 jit_x1_ldna(clob1, clob1);
1114 /*
1115 * Note: we must make sure that rd must not
1116 * be sp. Recover clob1 from stack.
1117 */
1118 frag.insn[n++] =
1119 jit_x0_dblalign(rd, clob1, ra) |
1120 jit_x1_ld_add(clob1, TREG_SP, 16);
1121 }
1122
1123 if (bundle_2_enable)
1124 frag.insn[n++] = bundle_2;
1125 /*
1126 * For non 8-byte load, extract corresponding bytes and
1127 * signed extension.
1128 */
1129 if (load_store_size == 4) {
1130 if (load_store_signed)
1131 frag.insn[n++] =
1132 jit_x0_bfexts(
1133 rd, rd,
1134 UA_FIXUP_BFEXT_START(4),
1135 UA_FIXUP_BFEXT_END(4)) |
1136 jit_x1_fnop();
1137 else
1138 frag.insn[n++] =
1139 jit_x0_bfextu(
1140 rd, rd,
1141 UA_FIXUP_BFEXT_START(4),
1142 UA_FIXUP_BFEXT_END(4)) |
1143 jit_x1_fnop();
1144 } else if (load_store_size == 2) {
1145 if (load_store_signed)
1146 frag.insn[n++] =
1147 jit_x0_bfexts(
1148 rd, rd,
1149 UA_FIXUP_BFEXT_START(2),
1150 UA_FIXUP_BFEXT_END(2)) |
1151 jit_x1_fnop();
1152 else
1153 frag.insn[n++] =
1154 jit_x0_bfextu(
1155 rd, rd,
1156 UA_FIXUP_BFEXT_START(2),
1157 UA_FIXUP_BFEXT_END(2)) |
1158 jit_x1_fnop();
1159 }
1160
1161 frag.insn[n++] =
1162 jit_x0_fnop() |
1163 jit_x1_iret();
1164 }
1165 } else if (!load_n_store) {
1166
1167 /*
1168 * Generic memory store cases: use 3 clobber registers.
1169 *
1170 * Alloc space for saveing clob2,1,3 on user's stack.
1171 * register clob3 points to where clob2 saved, followed by
1172 * clob1 and 3 from high to low memory.
1173 */
1174 frag.insn[n++] =
1175 jit_x0_addi(TREG_SP, TREG_SP, -32) |
1176 jit_x1_fnop();
1177 frag.insn[n++] =
1178 jit_x0_addi(clob3, TREG_SP, 16) |
1179 jit_x1_st_add(TREG_SP, clob3, 8);
1180#ifdef __LITTLE_ENDIAN
1181 frag.insn[n++] =
1182 jit_x0_addi(clob1, ra, 0) |
1183 jit_x1_st_add(TREG_SP, clob1, 8);
1184#else
1185 frag.insn[n++] =
1186 jit_x0_addi(clob1, ra, load_store_size - 1) |
1187 jit_x1_st_add(TREG_SP, clob1, 8);
1188#endif
1189 if (load_store_size == 8) {
1190 /*
1191 * We save one byte a time, not for fast, but compact
1192 * code. After each store, data source register shift
1193 * right one byte. unchanged after 8 stores.
1194 */
1195 frag.insn[n++] =
1196 jit_x0_addi(clob2, TREG_ZERO, 7) |
1197 jit_x1_st_add(TREG_SP, clob2, 16);
1198 frag.insn[n++] =
1199 jit_x0_rotli(rb, rb, 56) |
1200 jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1201 frag.insn[n++] =
1202 jit_x0_addi(clob2, clob2, -1) |
1203 jit_x1_bnezt(clob2, -1);
1204 frag.insn[n++] =
1205 jit_x0_fnop() |
1206 jit_x1_addi(clob2, y1_br_reg, 0);
1207 } else if (load_store_size == 4) {
1208 frag.insn[n++] =
1209 jit_x0_addi(clob2, TREG_ZERO, 3) |
1210 jit_x1_st_add(TREG_SP, clob2, 16);
1211 frag.insn[n++] =
1212 jit_x0_rotli(rb, rb, 56) |
1213 jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1214 frag.insn[n++] =
1215 jit_x0_addi(clob2, clob2, -1) |
1216 jit_x1_bnezt(clob2, -1);
1217 /*
1218 * same as 8-byte case, but need shift another 4
1219 * byte to recover rb for 4-byte store.
1220 */
1221 frag.insn[n++] = jit_x0_rotli(rb, rb, 32) |
1222 jit_x1_addi(clob2, y1_br_reg, 0);
1223 } else { /* =2 */
1224 frag.insn[n++] =
1225 jit_x0_addi(clob2, rb, 0) |
1226 jit_x1_st_add(TREG_SP, clob2, 16);
1227 for (k = 0; k < 2; k++) {
1228 frag.insn[n++] =
1229 jit_x0_shrui(rb, rb, 8) |
1230 jit_x1_st1_add(clob1, rb,
1231 UA_FIXUP_ADDR_DELTA);
1232 }
1233 frag.insn[n++] =
1234 jit_x0_addi(rb, clob2, 0) |
1235 jit_x1_addi(clob2, y1_br_reg, 0);
1236 }
1237
1238 if (bundle_2_enable)
1239 frag.insn[n++] = bundle_2;
1240
1241 if (y1_lr) {
1242 frag.insn[n++] =
1243 jit_x0_fnop() |
1244 jit_x1_mfspr(y1_lr_reg,
1245 SPR_EX_CONTEXT_0_0);
1246 }
1247 if (y1_br) {
1248 frag.insn[n++] =
1249 jit_x0_fnop() |
1250 jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1251 clob2);
1252 }
1253 if (x1_add) {
1254 frag.insn[n++] =
1255 jit_x0_addi(ra, ra, x1_add_imm8) |
1256 jit_x1_ld_add(clob2, clob3, -8);
1257 } else {
1258 frag.insn[n++] =
1259 jit_x0_fnop() |
1260 jit_x1_ld_add(clob2, clob3, -8);
1261 }
1262 frag.insn[n++] =
1263 jit_x0_fnop() |
1264 jit_x1_ld_add(clob1, clob3, -8);
1265 frag.insn[n++] = jit_x0_fnop() | jit_x1_ld(clob3, clob3);
1266 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1267
1268 } else {
1269 /*
1270 * Generic memory load cases.
1271 *
1272 * Alloc space for saveing clob1,2,3 on user's stack.
1273 * register clob3 points to where clob1 saved, followed
1274 * by clob2 and 3 from high to low memory.
1275 */
1276
1277 frag.insn[n++] =
1278 jit_x0_addi(TREG_SP, TREG_SP, -32) |
1279 jit_x1_fnop();
1280 frag.insn[n++] =
1281 jit_x0_addi(clob3, TREG_SP, 16) |
1282 jit_x1_st_add(TREG_SP, clob3, 8);
1283 frag.insn[n++] =
1284 jit_x0_addi(clob2, ra, 0) |
1285 jit_x1_st_add(TREG_SP, clob2, 8);
1286
1287 if (y1_br) {
1288 frag.insn[n++] =
1289 jit_x0_addi(clob1, y1_br_reg, 0) |
1290 jit_x1_st_add(TREG_SP, clob1, 16);
1291 } else {
1292 frag.insn[n++] =
1293 jit_x0_fnop() |
1294 jit_x1_st_add(TREG_SP, clob1, 16);
1295 }
1296
1297 if (bundle_2_enable)
1298 frag.insn[n++] = bundle_2;
1299
1300 if (y1_lr) {
1301 frag.insn[n++] =
1302 jit_x0_fnop() |
1303 jit_x1_mfspr(y1_lr_reg,
1304 SPR_EX_CONTEXT_0_0);
1305 }
1306
1307 if (y1_br) {
1308 frag.insn[n++] =
1309 jit_x0_fnop() |
1310 jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1311 clob1);
1312 }
1313
1314 frag.insn[n++] =
1315 jit_x0_addi(clob1, clob2, 7) |
1316 jit_x1_ldna(rd, clob2);
1317 frag.insn[n++] =
1318 jit_x0_fnop() |
1319 jit_x1_ldna(clob1, clob1);
1320 frag.insn[n++] =
1321 jit_x0_dblalign(rd, clob1, clob2) |
1322 jit_x1_ld_add(clob1, clob3, -8);
1323 if (x1_add) {
1324 frag.insn[n++] =
1325 jit_x0_addi(ra, ra, x1_add_imm8) |
1326 jit_x1_ld_add(clob2, clob3, -8);
1327 } else {
1328 frag.insn[n++] =
1329 jit_x0_fnop() |
1330 jit_x1_ld_add(clob2, clob3, -8);
1331 }
1332
1333 frag.insn[n++] =
1334 jit_x0_fnop() |
1335 jit_x1_ld(clob3, clob3);
1336
1337 if (load_store_size == 4) {
1338 if (load_store_signed)
1339 frag.insn[n++] =
1340 jit_x0_bfexts(
1341 rd, rd,
1342 UA_FIXUP_BFEXT_START(4),
1343 UA_FIXUP_BFEXT_END(4)) |
1344 jit_x1_fnop();
1345 else
1346 frag.insn[n++] =
1347 jit_x0_bfextu(
1348 rd, rd,
1349 UA_FIXUP_BFEXT_START(4),
1350 UA_FIXUP_BFEXT_END(4)) |
1351 jit_x1_fnop();
1352 } else if (load_store_size == 2) {
1353 if (load_store_signed)
1354 frag.insn[n++] =
1355 jit_x0_bfexts(
1356 rd, rd,
1357 UA_FIXUP_BFEXT_START(2),
1358 UA_FIXUP_BFEXT_END(2)) |
1359 jit_x1_fnop();
1360 else
1361 frag.insn[n++] =
1362 jit_x0_bfextu(
1363 rd, rd,
1364 UA_FIXUP_BFEXT_START(2),
1365 UA_FIXUP_BFEXT_END(2)) |
1366 jit_x1_fnop();
1367 }
1368
1369 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1370 }
1371
1372 /* Max JIT bundle count is 14. */
1373 WARN_ON(n > 14);
1374
1375 if (!unexpected) {
1376 int status = 0;
1377 int idx = (regs->pc >> 3) &
1378 ((1ULL << (PAGE_SHIFT - UNALIGN_JIT_SHIFT)) - 1);
1379
1380 frag.pc = regs->pc;
1381 frag.bundle = bundle;
1382
1383 if (unaligned_printk) {
1384 pr_info("%s/%d, Unalign fixup: pc=%lx "
1385 "bundle=%lx %d %d %d %d %d %d %d %d.",
1386 current->comm, current->pid,
1387 (unsigned long)frag.pc,
1388 (unsigned long)frag.bundle,
1389 (int)alias, (int)rd, (int)ra,
1390 (int)rb, (int)bundle_2_enable,
1391 (int)y1_lr, (int)y1_br, (int)x1_add);
1392
1393 for (k = 0; k < n; k += 2)
1394 pr_info("[%d] %016llx %016llx", k,
1395 (unsigned long long)frag.insn[k],
1396 (unsigned long long)frag.insn[k+1]);
1397 }
1398
1399 /* Swap bundle byte order for big endian sys. */
1400#ifdef __BIG_ENDIAN
1401 frag.bundle = GX_INSN_BSWAP(frag.bundle);
1402 for (k = 0; k < n; k++)
1403 frag.insn[k] = GX_INSN_BSWAP(frag.insn[k]);
1404#endif /* __BIG_ENDIAN */
1405
1406 status = copy_to_user((void __user *)&jit_code_area[idx],
1407 &frag, sizeof(frag));
1408 if (status) {
1409 /* Fail to copy JIT into user land. send SIGSEGV. */
1410 siginfo_t info = {
1411 .si_signo = SIGSEGV,
1412 .si_code = SEGV_MAPERR,
1413 .si_addr = (void __user *)&jit_code_area[idx]
1414 };
1415
1416 pr_warn("Unalign fixup: pid=%d %s jit_code_area=%llx",
1417 current->pid, current->comm,
1418 (unsigned long long)&jit_code_area[idx]);
1419
1420 trace_unhandled_signal("segfault in unalign fixup",
1421 regs,
1422 (unsigned long)info.si_addr,
1423 SIGSEGV);
1424 force_sig_info(info.si_signo, &info, current);
1425 return;
1426 }
1427
1428
1429 /* Do a cheaper increment, not accurate. */
1430 unaligned_fixup_count++;
1431 __flush_icache_range((unsigned long)&jit_code_area[idx],
1432 (unsigned long)&jit_code_area[idx] +
1433 sizeof(frag));
1434
1435 /* Setup SPR_EX_CONTEXT_0_0/1 for returning to user program.*/
1436 __insn_mtspr(SPR_EX_CONTEXT_0_0, regs->pc + 8);
1437 __insn_mtspr(SPR_EX_CONTEXT_0_1, PL_ICS_EX1(USER_PL, 0));
1438
1439 /* Modify pc at the start of new JIT. */
1440 regs->pc = (unsigned long)&jit_code_area[idx].insn[0];
1441 /* Set ICS in SPR_EX_CONTEXT_K_1. */
1442 regs->ex1 = PL_ICS_EX1(USER_PL, 1);
1443 }
1444}
1445
1446
1447/*
1448 * C function to generate unalign data JIT. Called from unalign data
1449 * interrupt handler.
1450 *
1451 * First check if unalign fix is disabled or exception did not not come from
1452 * user space or sp register points to unalign address, if true, generate a
1453 * SIGBUS. Then map a page into user space as JIT area if it is not mapped
1454 * yet. Genenerate JIT code by calling jit_bundle_gen(). After that return
1455 * back to exception handler.
1456 *
1457 * The exception handler will "iret" to new generated JIT code after
1458 * restoring caller saved registers. In theory, the JIT code will perform
1459 * another "iret" to resume user's program.
1460 */
1461
1462void do_unaligned(struct pt_regs *regs, int vecnum)
1463{
1464 tilegx_bundle_bits __user *pc;
1465 tilegx_bundle_bits bundle;
1466 struct thread_info *info = current_thread_info();
1467 int align_ctl;
1468
1469 /* Checks the per-process unaligned JIT flags */
1470 align_ctl = unaligned_fixup;
1471 switch (task_thread_info(current)->align_ctl) {
1472 case PR_UNALIGN_NOPRINT:
1473 align_ctl = 1;
1474 break;
1475 case PR_UNALIGN_SIGBUS:
1476 align_ctl = 0;
1477 break;
1478 }
1479
1480 /* Enable iterrupt in order to access user land. */
1481 local_irq_enable();
1482
1483 /*
1484 * The fault came from kernel space. Two choices:
1485 * (a) unaligned_fixup < 1, we will first call get/put_user fixup
1486 * to return -EFAULT. If no fixup, simply panic the kernel.
1487 * (b) unaligned_fixup >=1, we will try to fix the unaligned access
1488 * if it was triggered by get_user/put_user() macros. Panic the
1489 * kernel if it is not fixable.
1490 */
1491
1492 if (EX1_PL(regs->ex1) != USER_PL) {
1493
1494 if (align_ctl < 1) {
1495 unaligned_fixup_count++;
1496 /* If exception came from kernel, try fix it up. */
1497 if (fixup_exception(regs)) {
1498 if (unaligned_printk)
1499 pr_info("Unalign fixup: %d %llx @%llx",
1500 (int)unaligned_fixup,
1501 (unsigned long long)regs->ex1,
1502 (unsigned long long)regs->pc);
1503 return;
1504 }
1505 /* Not fixable. Go panic. */
1506 panic("Unalign exception in Kernel. pc=%lx",
1507 regs->pc);
1508 return;
1509 } else {
1510 /*
1511 * Try to fix the exception. If we can't, panic the
1512 * kernel.
1513 */
1514 bundle = GX_INSN_BSWAP(
1515 *((tilegx_bundle_bits *)(regs->pc)));
1516 jit_bundle_gen(regs, bundle, align_ctl);
1517 return;
1518 }
1519 }
1520
1521 /*
1522 * Fault came from user with ICS or stack is not aligned.
1523 * If so, we will trigger SIGBUS.
1524 */
1525 if ((regs->sp & 0x7) || (regs->ex1) || (align_ctl < 0)) {
1526 siginfo_t info = {
1527 .si_signo = SIGBUS,
1528 .si_code = BUS_ADRALN,
1529 .si_addr = (unsigned char __user *)0
1530 };
1531
1532 if (unaligned_printk)
1533 pr_info("Unalign fixup: %d %llx @%llx",
1534 (int)unaligned_fixup,
1535 (unsigned long long)regs->ex1,
1536 (unsigned long long)regs->pc);
1537
1538 unaligned_fixup_count++;
1539
1540 trace_unhandled_signal("unaligned fixup trap", regs, 0, SIGBUS);
1541 force_sig_info(info.si_signo, &info, current);
1542 return;
1543 }
1544
1545
1546 /* Read the bundle casued the exception! */
1547 pc = (tilegx_bundle_bits __user *)(regs->pc);
1548 if (get_user(bundle, pc) != 0) {
1549 /* Probably never be here since pc is valid user address.*/
1550 siginfo_t info = {
1551 .si_signo = SIGSEGV,
1552 .si_code = SEGV_MAPERR,
1553 .si_addr = (void __user *)pc
1554 };
1555 pr_err("Couldn't read instruction at %p trying to step\n", pc);
1556 trace_unhandled_signal("segfault in unalign fixup", regs,
1557 (unsigned long)info.si_addr, SIGSEGV);
1558 force_sig_info(info.si_signo, &info, current);
1559 return;
1560 }
1561
1562 if (!info->unalign_jit_base) {
1563 void __user *user_page;
1564
1565 /*
1566 * Allocate a page in userland.
1567 * For 64-bit processes we try to place the mapping far
1568 * from anything else that might be going on (specifically
1569 * 64 GB below the top of the user address space). If it
1570 * happens not to be possible to put it there, it's OK;
1571 * the kernel will choose another location and we'll
1572 * remember it for later.
1573 */
1574 if (is_compat_task())
1575 user_page = NULL;
1576 else
1577 user_page = (void __user *)(TASK_SIZE - (1UL << 36)) +
1578 (current->pid << PAGE_SHIFT);
1579
1580 user_page = (void __user *) vm_mmap(NULL,
1581 (unsigned long)user_page,
1582 PAGE_SIZE,
1583 PROT_EXEC | PROT_READ |
1584 PROT_WRITE,
1585#ifdef CONFIG_HOMECACHE
1586 MAP_CACHE_HOME_TASK |
1587#endif
1588 MAP_PRIVATE |
1589 MAP_ANONYMOUS,
1590 0);
1591
1592 if (IS_ERR((void __force *)user_page)) {
1593 pr_err("Out of kernel pages trying do_mmap.\n");
1594 return;
1595 }
1596
1597 /* Save the address in the thread_info struct */
1598 info->unalign_jit_base = user_page;
1599 if (unaligned_printk)
1600 pr_info("Unalign bundle: %d:%d, allocate page @%llx",
1601 raw_smp_processor_id(), current->pid,
1602 (unsigned long long)user_page);
1603 }
1604
1605 /* Generate unalign JIT */
1606 jit_bundle_gen(regs, GX_INSN_BSWAP(bundle), align_ctl);
1607}
1608
1609#endif /* __tilegx__ */
1/*
2 * Copyright 2013 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * A code-rewriter that handles unaligned exception.
15 */
16
17#include <linux/smp.h>
18#include <linux/ptrace.h>
19#include <linux/slab.h>
20#include <linux/thread_info.h>
21#include <linux/uaccess.h>
22#include <linux/mman.h>
23#include <linux/types.h>
24#include <linux/err.h>
25#include <linux/module.h>
26#include <linux/compat.h>
27#include <linux/prctl.h>
28#include <asm/cacheflush.h>
29#include <asm/traps.h>
30#include <asm/uaccess.h>
31#include <asm/unaligned.h>
32#include <arch/abi.h>
33#include <arch/spr_def.h>
34#include <arch/opcode.h>
35
36
37/*
38 * This file handles unaligned exception for tile-Gx. The tilepro's unaligned
39 * exception is supported out of single_step.c
40 */
41
42int unaligned_printk;
43
44static int __init setup_unaligned_printk(char *str)
45{
46 long val;
47 if (kstrtol(str, 0, &val) != 0)
48 return 0;
49 unaligned_printk = val;
50 pr_info("Printk for each unaligned data accesses is %s\n",
51 unaligned_printk ? "enabled" : "disabled");
52 return 1;
53}
54__setup("unaligned_printk=", setup_unaligned_printk);
55
56unsigned int unaligned_fixup_count;
57
58#ifdef __tilegx__
59
60/*
61 * Unalign data jit fixup code fragement. Reserved space is 128 bytes.
62 * The 1st 64-bit word saves fault PC address, 2nd word is the fault
63 * instruction bundle followed by 14 JIT bundles.
64 */
65
66struct unaligned_jit_fragment {
67 unsigned long pc;
68 tilegx_bundle_bits bundle;
69 tilegx_bundle_bits insn[14];
70};
71
72/*
73 * Check if a nop or fnop at bundle's pipeline X0.
74 */
75
76static bool is_bundle_x0_nop(tilegx_bundle_bits bundle)
77{
78 return (((get_UnaryOpcodeExtension_X0(bundle) ==
79 NOP_UNARY_OPCODE_X0) &&
80 (get_RRROpcodeExtension_X0(bundle) ==
81 UNARY_RRR_0_OPCODE_X0) &&
82 (get_Opcode_X0(bundle) ==
83 RRR_0_OPCODE_X0)) ||
84 ((get_UnaryOpcodeExtension_X0(bundle) ==
85 FNOP_UNARY_OPCODE_X0) &&
86 (get_RRROpcodeExtension_X0(bundle) ==
87 UNARY_RRR_0_OPCODE_X0) &&
88 (get_Opcode_X0(bundle) ==
89 RRR_0_OPCODE_X0)));
90}
91
92/*
93 * Check if nop or fnop at bundle's pipeline X1.
94 */
95
96static bool is_bundle_x1_nop(tilegx_bundle_bits bundle)
97{
98 return (((get_UnaryOpcodeExtension_X1(bundle) ==
99 NOP_UNARY_OPCODE_X1) &&
100 (get_RRROpcodeExtension_X1(bundle) ==
101 UNARY_RRR_0_OPCODE_X1) &&
102 (get_Opcode_X1(bundle) ==
103 RRR_0_OPCODE_X1)) ||
104 ((get_UnaryOpcodeExtension_X1(bundle) ==
105 FNOP_UNARY_OPCODE_X1) &&
106 (get_RRROpcodeExtension_X1(bundle) ==
107 UNARY_RRR_0_OPCODE_X1) &&
108 (get_Opcode_X1(bundle) ==
109 RRR_0_OPCODE_X1)));
110}
111
112/*
113 * Check if nop or fnop at bundle's Y0 pipeline.
114 */
115
116static bool is_bundle_y0_nop(tilegx_bundle_bits bundle)
117{
118 return (((get_UnaryOpcodeExtension_Y0(bundle) ==
119 NOP_UNARY_OPCODE_Y0) &&
120 (get_RRROpcodeExtension_Y0(bundle) ==
121 UNARY_RRR_1_OPCODE_Y0) &&
122 (get_Opcode_Y0(bundle) ==
123 RRR_1_OPCODE_Y0)) ||
124 ((get_UnaryOpcodeExtension_Y0(bundle) ==
125 FNOP_UNARY_OPCODE_Y0) &&
126 (get_RRROpcodeExtension_Y0(bundle) ==
127 UNARY_RRR_1_OPCODE_Y0) &&
128 (get_Opcode_Y0(bundle) ==
129 RRR_1_OPCODE_Y0)));
130}
131
132/*
133 * Check if nop or fnop at bundle's pipeline Y1.
134 */
135
136static bool is_bundle_y1_nop(tilegx_bundle_bits bundle)
137{
138 return (((get_UnaryOpcodeExtension_Y1(bundle) ==
139 NOP_UNARY_OPCODE_Y1) &&
140 (get_RRROpcodeExtension_Y1(bundle) ==
141 UNARY_RRR_1_OPCODE_Y1) &&
142 (get_Opcode_Y1(bundle) ==
143 RRR_1_OPCODE_Y1)) ||
144 ((get_UnaryOpcodeExtension_Y1(bundle) ==
145 FNOP_UNARY_OPCODE_Y1) &&
146 (get_RRROpcodeExtension_Y1(bundle) ==
147 UNARY_RRR_1_OPCODE_Y1) &&
148 (get_Opcode_Y1(bundle) ==
149 RRR_1_OPCODE_Y1)));
150}
151
152/*
153 * Test if a bundle's y0 and y1 pipelines are both nop or fnop.
154 */
155
156static bool is_y0_y1_nop(tilegx_bundle_bits bundle)
157{
158 return is_bundle_y0_nop(bundle) && is_bundle_y1_nop(bundle);
159}
160
161/*
162 * Test if a bundle's x0 and x1 pipelines are both nop or fnop.
163 */
164
165static bool is_x0_x1_nop(tilegx_bundle_bits bundle)
166{
167 return is_bundle_x0_nop(bundle) && is_bundle_x1_nop(bundle);
168}
169
170/*
171 * Find the destination, source registers of fault unalign access instruction
172 * at X1 or Y2. Also, allocate up to 3 scratch registers clob1, clob2 and
173 * clob3, which are guaranteed different from any register used in the fault
174 * bundle. r_alias is used to return if the other instructions other than the
175 * unalign load/store shares same register with ra, rb and rd.
176 */
177
178static void find_regs(tilegx_bundle_bits bundle, uint64_t *rd, uint64_t *ra,
179 uint64_t *rb, uint64_t *clob1, uint64_t *clob2,
180 uint64_t *clob3, bool *r_alias)
181{
182 int i;
183 uint64_t reg;
184 uint64_t reg_map = 0, alias_reg_map = 0, map;
185 bool alias = false;
186
187 /*
188 * Parse fault bundle, find potential used registers and mark
189 * corresponding bits in reg_map and alias_map. These 2 bit maps
190 * are used to find the scratch registers and determine if there
191 * is register alais.
192 */
193 if (bundle & TILEGX_BUNDLE_MODE_MASK) { /* Y Mode Bundle. */
194
195 reg = get_SrcA_Y2(bundle);
196 reg_map |= 1ULL << reg;
197 *ra = reg;
198 reg = get_SrcBDest_Y2(bundle);
199 reg_map |= 1ULL << reg;
200
201 if (rd) {
202 /* Load. */
203 *rd = reg;
204 alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
205 } else {
206 /* Store. */
207 *rb = reg;
208 alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
209 }
210
211 if (!is_bundle_y1_nop(bundle)) {
212 reg = get_SrcA_Y1(bundle);
213 reg_map |= (1ULL << reg);
214 map = (1ULL << reg);
215
216 reg = get_SrcB_Y1(bundle);
217 reg_map |= (1ULL << reg);
218 map |= (1ULL << reg);
219
220 reg = get_Dest_Y1(bundle);
221 reg_map |= (1ULL << reg);
222 map |= (1ULL << reg);
223
224 if (map & alias_reg_map)
225 alias = true;
226 }
227
228 if (!is_bundle_y0_nop(bundle)) {
229 reg = get_SrcA_Y0(bundle);
230 reg_map |= (1ULL << reg);
231 map = (1ULL << reg);
232
233 reg = get_SrcB_Y0(bundle);
234 reg_map |= (1ULL << reg);
235 map |= (1ULL << reg);
236
237 reg = get_Dest_Y0(bundle);
238 reg_map |= (1ULL << reg);
239 map |= (1ULL << reg);
240
241 if (map & alias_reg_map)
242 alias = true;
243 }
244 } else { /* X Mode Bundle. */
245
246 reg = get_SrcA_X1(bundle);
247 reg_map |= (1ULL << reg);
248 *ra = reg;
249 if (rd) {
250 /* Load. */
251 reg = get_Dest_X1(bundle);
252 reg_map |= (1ULL << reg);
253 *rd = reg;
254 alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
255 } else {
256 /* Store. */
257 reg = get_SrcB_X1(bundle);
258 reg_map |= (1ULL << reg);
259 *rb = reg;
260 alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
261 }
262
263 if (!is_bundle_x0_nop(bundle)) {
264 reg = get_SrcA_X0(bundle);
265 reg_map |= (1ULL << reg);
266 map = (1ULL << reg);
267
268 reg = get_SrcB_X0(bundle);
269 reg_map |= (1ULL << reg);
270 map |= (1ULL << reg);
271
272 reg = get_Dest_X0(bundle);
273 reg_map |= (1ULL << reg);
274 map |= (1ULL << reg);
275
276 if (map & alias_reg_map)
277 alias = true;
278 }
279 }
280
281 /*
282 * "alias" indicates if the unalign access registers have collision
283 * with others in the same bundle. We jsut simply test all register
284 * operands case (RRR), ignored the case with immidate. If a bundle
285 * has no register alias, we may do fixup in a simple or fast manner.
286 * So if an immidata field happens to hit with a register, we may end
287 * up fall back to the generic handling.
288 */
289
290 *r_alias = alias;
291
292 /* Flip bits on reg_map. */
293 reg_map ^= -1ULL;
294
295 /* Scan reg_map lower 54(TREG_SP) bits to find 3 set bits. */
296 for (i = 0; i < TREG_SP; i++) {
297 if (reg_map & (0x1ULL << i)) {
298 if (*clob1 == -1) {
299 *clob1 = i;
300 } else if (*clob2 == -1) {
301 *clob2 = i;
302 } else if (*clob3 == -1) {
303 *clob3 = i;
304 return;
305 }
306 }
307 }
308}
309
310/*
311 * Sanity check for register ra, rb, rd, clob1/2/3. Return true if any of them
312 * is unexpected.
313 */
314
315static bool check_regs(uint64_t rd, uint64_t ra, uint64_t rb,
316 uint64_t clob1, uint64_t clob2, uint64_t clob3)
317{
318 bool unexpected = false;
319 if ((ra >= 56) && (ra != TREG_ZERO))
320 unexpected = true;
321
322 if ((clob1 >= 56) || (clob2 >= 56) || (clob3 >= 56))
323 unexpected = true;
324
325 if (rd != -1) {
326 if ((rd >= 56) && (rd != TREG_ZERO))
327 unexpected = true;
328 } else {
329 if ((rb >= 56) && (rb != TREG_ZERO))
330 unexpected = true;
331 }
332 return unexpected;
333}
334
335
336#define GX_INSN_X0_MASK ((1ULL << 31) - 1)
337#define GX_INSN_X1_MASK (((1ULL << 31) - 1) << 31)
338#define GX_INSN_Y0_MASK ((0xFULL << 27) | (0xFFFFFULL))
339#define GX_INSN_Y1_MASK (GX_INSN_Y0_MASK << 31)
340#define GX_INSN_Y2_MASK ((0x7FULL << 51) | (0x7FULL << 20))
341
342#ifdef __LITTLE_ENDIAN
343#define GX_INSN_BSWAP(_bundle_) (_bundle_)
344#else
345#define GX_INSN_BSWAP(_bundle_) swab64(_bundle_)
346#endif /* __LITTLE_ENDIAN */
347
348/*
349 * __JIT_CODE(.) creates template bundles in .rodata.unalign_data section.
350 * The corresponding static function jix_x#_###(.) generates partial or
351 * whole bundle based on the template and given arguments.
352 */
353
354#define __JIT_CODE(_X_) \
355 asm (".pushsection .rodata.unalign_data, \"a\"\n" \
356 _X_"\n" \
357 ".popsection\n")
358
359__JIT_CODE("__unalign_jit_x1_mtspr: {mtspr 0, r0}");
360static tilegx_bundle_bits jit_x1_mtspr(int spr, int reg)
361{
362 extern tilegx_bundle_bits __unalign_jit_x1_mtspr;
363 return (GX_INSN_BSWAP(__unalign_jit_x1_mtspr) & GX_INSN_X1_MASK) |
364 create_MT_Imm14_X1(spr) | create_SrcA_X1(reg);
365}
366
367__JIT_CODE("__unalign_jit_x1_mfspr: {mfspr r0, 0}");
368static tilegx_bundle_bits jit_x1_mfspr(int reg, int spr)
369{
370 extern tilegx_bundle_bits __unalign_jit_x1_mfspr;
371 return (GX_INSN_BSWAP(__unalign_jit_x1_mfspr) & GX_INSN_X1_MASK) |
372 create_MF_Imm14_X1(spr) | create_Dest_X1(reg);
373}
374
375__JIT_CODE("__unalign_jit_x0_addi: {addi r0, r0, 0; iret}");
376static tilegx_bundle_bits jit_x0_addi(int rd, int ra, int imm8)
377{
378 extern tilegx_bundle_bits __unalign_jit_x0_addi;
379 return (GX_INSN_BSWAP(__unalign_jit_x0_addi) & GX_INSN_X0_MASK) |
380 create_Dest_X0(rd) | create_SrcA_X0(ra) |
381 create_Imm8_X0(imm8);
382}
383
384__JIT_CODE("__unalign_jit_x1_ldna: {ldna r0, r0}");
385static tilegx_bundle_bits jit_x1_ldna(int rd, int ra)
386{
387 extern tilegx_bundle_bits __unalign_jit_x1_ldna;
388 return (GX_INSN_BSWAP(__unalign_jit_x1_ldna) & GX_INSN_X1_MASK) |
389 create_Dest_X1(rd) | create_SrcA_X1(ra);
390}
391
392__JIT_CODE("__unalign_jit_x0_dblalign: {dblalign r0, r0 ,r0}");
393static tilegx_bundle_bits jit_x0_dblalign(int rd, int ra, int rb)
394{
395 extern tilegx_bundle_bits __unalign_jit_x0_dblalign;
396 return (GX_INSN_BSWAP(__unalign_jit_x0_dblalign) & GX_INSN_X0_MASK) |
397 create_Dest_X0(rd) | create_SrcA_X0(ra) |
398 create_SrcB_X0(rb);
399}
400
401__JIT_CODE("__unalign_jit_x1_iret: {iret}");
402static tilegx_bundle_bits jit_x1_iret(void)
403{
404 extern tilegx_bundle_bits __unalign_jit_x1_iret;
405 return GX_INSN_BSWAP(__unalign_jit_x1_iret) & GX_INSN_X1_MASK;
406}
407
408__JIT_CODE("__unalign_jit_x01_fnop: {fnop;fnop}");
409static tilegx_bundle_bits jit_x0_fnop(void)
410{
411 extern tilegx_bundle_bits __unalign_jit_x01_fnop;
412 return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X0_MASK;
413}
414
415static tilegx_bundle_bits jit_x1_fnop(void)
416{
417 extern tilegx_bundle_bits __unalign_jit_x01_fnop;
418 return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X1_MASK;
419}
420
421__JIT_CODE("__unalign_jit_y2_dummy: {fnop; fnop; ld zero, sp}");
422static tilegx_bundle_bits jit_y2_dummy(void)
423{
424 extern tilegx_bundle_bits __unalign_jit_y2_dummy;
425 return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y2_MASK;
426}
427
428static tilegx_bundle_bits jit_y1_fnop(void)
429{
430 extern tilegx_bundle_bits __unalign_jit_y2_dummy;
431 return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y1_MASK;
432}
433
434__JIT_CODE("__unalign_jit_x1_st1_add: {st1_add r1, r0, 0}");
435static tilegx_bundle_bits jit_x1_st1_add(int ra, int rb, int imm8)
436{
437 extern tilegx_bundle_bits __unalign_jit_x1_st1_add;
438 return (GX_INSN_BSWAP(__unalign_jit_x1_st1_add) &
439 (~create_SrcA_X1(-1)) &
440 GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
441 create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
442}
443
444__JIT_CODE("__unalign_jit_x1_st: {crc32_8 r1, r0, r0; st r0, r0}");
445static tilegx_bundle_bits jit_x1_st(int ra, int rb)
446{
447 extern tilegx_bundle_bits __unalign_jit_x1_st;
448 return (GX_INSN_BSWAP(__unalign_jit_x1_st) & GX_INSN_X1_MASK) |
449 create_SrcA_X1(ra) | create_SrcB_X1(rb);
450}
451
452__JIT_CODE("__unalign_jit_x1_st_add: {st_add r1, r0, 0}");
453static tilegx_bundle_bits jit_x1_st_add(int ra, int rb, int imm8)
454{
455 extern tilegx_bundle_bits __unalign_jit_x1_st_add;
456 return (GX_INSN_BSWAP(__unalign_jit_x1_st_add) &
457 (~create_SrcA_X1(-1)) &
458 GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
459 create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
460}
461
462__JIT_CODE("__unalign_jit_x1_ld: {crc32_8 r1, r0, r0; ld r0, r0}");
463static tilegx_bundle_bits jit_x1_ld(int rd, int ra)
464{
465 extern tilegx_bundle_bits __unalign_jit_x1_ld;
466 return (GX_INSN_BSWAP(__unalign_jit_x1_ld) & GX_INSN_X1_MASK) |
467 create_Dest_X1(rd) | create_SrcA_X1(ra);
468}
469
470__JIT_CODE("__unalign_jit_x1_ld_add: {ld_add r1, r0, 0}");
471static tilegx_bundle_bits jit_x1_ld_add(int rd, int ra, int imm8)
472{
473 extern tilegx_bundle_bits __unalign_jit_x1_ld_add;
474 return (GX_INSN_BSWAP(__unalign_jit_x1_ld_add) &
475 (~create_Dest_X1(-1)) &
476 GX_INSN_X1_MASK) | create_Dest_X1(rd) |
477 create_SrcA_X1(ra) | create_Imm8_X1(imm8);
478}
479
480__JIT_CODE("__unalign_jit_x0_bfexts: {bfexts r0, r0, 0, 0}");
481static tilegx_bundle_bits jit_x0_bfexts(int rd, int ra, int bfs, int bfe)
482{
483 extern tilegx_bundle_bits __unalign_jit_x0_bfexts;
484 return (GX_INSN_BSWAP(__unalign_jit_x0_bfexts) &
485 GX_INSN_X0_MASK) |
486 create_Dest_X0(rd) | create_SrcA_X0(ra) |
487 create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
488}
489
490__JIT_CODE("__unalign_jit_x0_bfextu: {bfextu r0, r0, 0, 0}");
491static tilegx_bundle_bits jit_x0_bfextu(int rd, int ra, int bfs, int bfe)
492{
493 extern tilegx_bundle_bits __unalign_jit_x0_bfextu;
494 return (GX_INSN_BSWAP(__unalign_jit_x0_bfextu) &
495 GX_INSN_X0_MASK) |
496 create_Dest_X0(rd) | create_SrcA_X0(ra) |
497 create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
498}
499
500__JIT_CODE("__unalign_jit_x1_addi: {bfextu r1, r1, 0, 0; addi r0, r0, 0}");
501static tilegx_bundle_bits jit_x1_addi(int rd, int ra, int imm8)
502{
503 extern tilegx_bundle_bits __unalign_jit_x1_addi;
504 return (GX_INSN_BSWAP(__unalign_jit_x1_addi) & GX_INSN_X1_MASK) |
505 create_Dest_X1(rd) | create_SrcA_X1(ra) |
506 create_Imm8_X1(imm8);
507}
508
509__JIT_CODE("__unalign_jit_x0_shrui: {shrui r0, r0, 0; iret}");
510static tilegx_bundle_bits jit_x0_shrui(int rd, int ra, int imm6)
511{
512 extern tilegx_bundle_bits __unalign_jit_x0_shrui;
513 return (GX_INSN_BSWAP(__unalign_jit_x0_shrui) &
514 GX_INSN_X0_MASK) |
515 create_Dest_X0(rd) | create_SrcA_X0(ra) |
516 create_ShAmt_X0(imm6);
517}
518
519__JIT_CODE("__unalign_jit_x0_rotli: {rotli r0, r0, 0; iret}");
520static tilegx_bundle_bits jit_x0_rotli(int rd, int ra, int imm6)
521{
522 extern tilegx_bundle_bits __unalign_jit_x0_rotli;
523 return (GX_INSN_BSWAP(__unalign_jit_x0_rotli) &
524 GX_INSN_X0_MASK) |
525 create_Dest_X0(rd) | create_SrcA_X0(ra) |
526 create_ShAmt_X0(imm6);
527}
528
529__JIT_CODE("__unalign_jit_x1_bnezt: {bnezt r0, __unalign_jit_x1_bnezt}");
530static tilegx_bundle_bits jit_x1_bnezt(int ra, int broff)
531{
532 extern tilegx_bundle_bits __unalign_jit_x1_bnezt;
533 return (GX_INSN_BSWAP(__unalign_jit_x1_bnezt) &
534 GX_INSN_X1_MASK) |
535 create_SrcA_X1(ra) | create_BrOff_X1(broff);
536}
537
538#undef __JIT_CODE
539
540/*
541 * This function generates unalign fixup JIT.
542 *
543 * We first find unalign load/store instruction's destination, source
544 * registers: ra, rb and rd. and 3 scratch registers by calling
545 * find_regs(...). 3 scratch clobbers should not alias with any register
546 * used in the fault bundle. Then analyze the fault bundle to determine
547 * if it's a load or store, operand width, branch or address increment etc.
548 * At last generated JIT is copied into JIT code area in user space.
549 */
550
551static
552void jit_bundle_gen(struct pt_regs *regs, tilegx_bundle_bits bundle,
553 int align_ctl)
554{
555 struct thread_info *info = current_thread_info();
556 struct unaligned_jit_fragment frag;
557 struct unaligned_jit_fragment *jit_code_area;
558 tilegx_bundle_bits bundle_2 = 0;
559 /* If bundle_2_enable = false, bundle_2 is fnop/nop operation. */
560 bool bundle_2_enable = true;
561 uint64_t ra = -1, rb = -1, rd = -1, clob1 = -1, clob2 = -1, clob3 = -1;
562 /*
563 * Indicate if the unalign access
564 * instruction's registers hit with
565 * others in the same bundle.
566 */
567 bool alias = false;
568 bool load_n_store = true;
569 bool load_store_signed = false;
570 unsigned int load_store_size = 8;
571 bool y1_br = false; /* True, for a branch in same bundle at Y1.*/
572 int y1_br_reg = 0;
573 /* True for link operation. i.e. jalr or lnk at Y1 */
574 bool y1_lr = false;
575 int y1_lr_reg = 0;
576 bool x1_add = false;/* True, for load/store ADD instruction at X1*/
577 int x1_add_imm8 = 0;
578 bool unexpected = false;
579 int n = 0, k;
580
581 jit_code_area =
582 (struct unaligned_jit_fragment *)(info->unalign_jit_base);
583
584 memset((void *)&frag, 0, sizeof(frag));
585
586 /* 0: X mode, Otherwise: Y mode. */
587 if (bundle & TILEGX_BUNDLE_MODE_MASK) {
588 unsigned int mod, opcode;
589
590 if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 &&
591 get_RRROpcodeExtension_Y1(bundle) ==
592 UNARY_RRR_1_OPCODE_Y1) {
593
594 opcode = get_UnaryOpcodeExtension_Y1(bundle);
595
596 /*
597 * Test "jalr", "jalrp", "jr", "jrp" instruction at Y1
598 * pipeline.
599 */
600 switch (opcode) {
601 case JALR_UNARY_OPCODE_Y1:
602 case JALRP_UNARY_OPCODE_Y1:
603 y1_lr = true;
604 y1_lr_reg = 55; /* Link register. */
605 /* FALLTHROUGH */
606 case JR_UNARY_OPCODE_Y1:
607 case JRP_UNARY_OPCODE_Y1:
608 y1_br = true;
609 y1_br_reg = get_SrcA_Y1(bundle);
610 break;
611 case LNK_UNARY_OPCODE_Y1:
612 /* "lnk" at Y1 pipeline. */
613 y1_lr = true;
614 y1_lr_reg = get_Dest_Y1(bundle);
615 break;
616 }
617 }
618
619 opcode = get_Opcode_Y2(bundle);
620 mod = get_Mode(bundle);
621
622 /*
623 * bundle_2 is bundle after making Y2 as a dummy operation
624 * - ld zero, sp
625 */
626 bundle_2 = (bundle & (~GX_INSN_Y2_MASK)) | jit_y2_dummy();
627
628 /* Make Y1 as fnop if Y1 is a branch or lnk operation. */
629 if (y1_br || y1_lr) {
630 bundle_2 &= ~(GX_INSN_Y1_MASK);
631 bundle_2 |= jit_y1_fnop();
632 }
633
634 if (is_y0_y1_nop(bundle_2))
635 bundle_2_enable = false;
636
637 if (mod == MODE_OPCODE_YC2) {
638 /* Store. */
639 load_n_store = false;
640 load_store_size = 1 << opcode;
641 load_store_signed = false;
642 find_regs(bundle, 0, &ra, &rb, &clob1, &clob2,
643 &clob3, &alias);
644 if (load_store_size > 8)
645 unexpected = true;
646 } else {
647 /* Load. */
648 load_n_store = true;
649 if (mod == MODE_OPCODE_YB2) {
650 switch (opcode) {
651 case LD_OPCODE_Y2:
652 load_store_signed = false;
653 load_store_size = 8;
654 break;
655 case LD4S_OPCODE_Y2:
656 load_store_signed = true;
657 load_store_size = 4;
658 break;
659 case LD4U_OPCODE_Y2:
660 load_store_signed = false;
661 load_store_size = 4;
662 break;
663 default:
664 unexpected = true;
665 }
666 } else if (mod == MODE_OPCODE_YA2) {
667 if (opcode == LD2S_OPCODE_Y2) {
668 load_store_signed = true;
669 load_store_size = 2;
670 } else if (opcode == LD2U_OPCODE_Y2) {
671 load_store_signed = false;
672 load_store_size = 2;
673 } else
674 unexpected = true;
675 } else
676 unexpected = true;
677 find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2,
678 &clob3, &alias);
679 }
680 } else {
681 unsigned int opcode;
682
683 /* bundle_2 is bundle after making X1 as "fnop". */
684 bundle_2 = (bundle & (~GX_INSN_X1_MASK)) | jit_x1_fnop();
685
686 if (is_x0_x1_nop(bundle_2))
687 bundle_2_enable = false;
688
689 if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) {
690 opcode = get_UnaryOpcodeExtension_X1(bundle);
691
692 if (get_RRROpcodeExtension_X1(bundle) ==
693 UNARY_RRR_0_OPCODE_X1) {
694 load_n_store = true;
695 find_regs(bundle, &rd, &ra, &rb, &clob1,
696 &clob2, &clob3, &alias);
697
698 switch (opcode) {
699 case LD_UNARY_OPCODE_X1:
700 load_store_signed = false;
701 load_store_size = 8;
702 break;
703 case LD4S_UNARY_OPCODE_X1:
704 load_store_signed = true;
705 /* FALLTHROUGH */
706 case LD4U_UNARY_OPCODE_X1:
707 load_store_size = 4;
708 break;
709
710 case LD2S_UNARY_OPCODE_X1:
711 load_store_signed = true;
712 /* FALLTHROUGH */
713 case LD2U_UNARY_OPCODE_X1:
714 load_store_size = 2;
715 break;
716 default:
717 unexpected = true;
718 }
719 } else {
720 load_n_store = false;
721 load_store_signed = false;
722 find_regs(bundle, 0, &ra, &rb,
723 &clob1, &clob2, &clob3,
724 &alias);
725
726 opcode = get_RRROpcodeExtension_X1(bundle);
727 switch (opcode) {
728 case ST_RRR_0_OPCODE_X1:
729 load_store_size = 8;
730 break;
731 case ST4_RRR_0_OPCODE_X1:
732 load_store_size = 4;
733 break;
734 case ST2_RRR_0_OPCODE_X1:
735 load_store_size = 2;
736 break;
737 default:
738 unexpected = true;
739 }
740 }
741 } else if (get_Opcode_X1(bundle) == IMM8_OPCODE_X1) {
742 load_n_store = true;
743 opcode = get_Imm8OpcodeExtension_X1(bundle);
744 switch (opcode) {
745 case LD_ADD_IMM8_OPCODE_X1:
746 load_store_size = 8;
747 break;
748
749 case LD4S_ADD_IMM8_OPCODE_X1:
750 load_store_signed = true;
751 /* FALLTHROUGH */
752 case LD4U_ADD_IMM8_OPCODE_X1:
753 load_store_size = 4;
754 break;
755
756 case LD2S_ADD_IMM8_OPCODE_X1:
757 load_store_signed = true;
758 /* FALLTHROUGH */
759 case LD2U_ADD_IMM8_OPCODE_X1:
760 load_store_size = 2;
761 break;
762
763 case ST_ADD_IMM8_OPCODE_X1:
764 load_n_store = false;
765 load_store_size = 8;
766 break;
767 case ST4_ADD_IMM8_OPCODE_X1:
768 load_n_store = false;
769 load_store_size = 4;
770 break;
771 case ST2_ADD_IMM8_OPCODE_X1:
772 load_n_store = false;
773 load_store_size = 2;
774 break;
775 default:
776 unexpected = true;
777 }
778
779 if (!unexpected) {
780 x1_add = true;
781 if (load_n_store)
782 x1_add_imm8 = get_Imm8_X1(bundle);
783 else
784 x1_add_imm8 = get_Dest_Imm8_X1(bundle);
785 }
786
787 find_regs(bundle, load_n_store ? (&rd) : NULL,
788 &ra, &rb, &clob1, &clob2, &clob3, &alias);
789 } else
790 unexpected = true;
791 }
792
793 /*
794 * Some sanity check for register numbers extracted from fault bundle.
795 */
796 if (check_regs(rd, ra, rb, clob1, clob2, clob3) == true)
797 unexpected = true;
798
799 /* Give warning if register ra has an aligned address. */
800 if (!unexpected)
801 WARN_ON(!((load_store_size - 1) & (regs->regs[ra])));
802
803
804 /*
805 * Fault came from kernel space, here we only need take care of
806 * unaligned "get_user/put_user" macros defined in "uaccess.h".
807 * Basically, we will handle bundle like this:
808 * {ld/2u/4s rd, ra; movei rx, 0} or {st/2/4 ra, rb; movei rx, 0}
809 * (Refer to file "arch/tile/include/asm/uaccess.h" for details).
810 * For either load or store, byte-wise operation is performed by calling
811 * get_user() or put_user(). If the macro returns non-zero value,
812 * set the value to rx, otherwise set zero to rx. Finally make pc point
813 * to next bundle and return.
814 */
815
816 if (EX1_PL(regs->ex1) != USER_PL) {
817
818 unsigned long rx = 0;
819 unsigned long x = 0, ret = 0;
820
821 if (y1_br || y1_lr || x1_add ||
822 (load_store_signed !=
823 (load_n_store && load_store_size == 4))) {
824 /* No branch, link, wrong sign-ext or load/store add. */
825 unexpected = true;
826 } else if (!unexpected) {
827 if (bundle & TILEGX_BUNDLE_MODE_MASK) {
828 /*
829 * Fault bundle is Y mode.
830 * Check if the Y1 and Y0 is the form of
831 * { movei rx, 0; nop/fnop }, if yes,
832 * find the rx.
833 */
834
835 if ((get_Opcode_Y1(bundle) == ADDI_OPCODE_Y1)
836 && (get_SrcA_Y1(bundle) == TREG_ZERO) &&
837 (get_Imm8_Y1(bundle) == 0) &&
838 is_bundle_y0_nop(bundle)) {
839 rx = get_Dest_Y1(bundle);
840 } else if ((get_Opcode_Y0(bundle) ==
841 ADDI_OPCODE_Y0) &&
842 (get_SrcA_Y0(bundle) == TREG_ZERO) &&
843 (get_Imm8_Y0(bundle) == 0) &&
844 is_bundle_y1_nop(bundle)) {
845 rx = get_Dest_Y0(bundle);
846 } else {
847 unexpected = true;
848 }
849 } else {
850 /*
851 * Fault bundle is X mode.
852 * Check if the X0 is 'movei rx, 0',
853 * if yes, find the rx.
854 */
855
856 if ((get_Opcode_X0(bundle) == IMM8_OPCODE_X0)
857 && (get_Imm8OpcodeExtension_X0(bundle) ==
858 ADDI_IMM8_OPCODE_X0) &&
859 (get_SrcA_X0(bundle) == TREG_ZERO) &&
860 (get_Imm8_X0(bundle) == 0)) {
861 rx = get_Dest_X0(bundle);
862 } else {
863 unexpected = true;
864 }
865 }
866
867 /* rx should be less than 56. */
868 if (!unexpected && (rx >= 56))
869 unexpected = true;
870 }
871
872 if (!search_exception_tables(regs->pc)) {
873 /* No fixup in the exception tables for the pc. */
874 unexpected = true;
875 }
876
877 if (unexpected) {
878 /* Unexpected unalign kernel fault. */
879 struct task_struct *tsk = validate_current();
880
881 bust_spinlocks(1);
882
883 show_regs(regs);
884
885 if (unlikely(tsk->pid < 2)) {
886 panic("Kernel unalign fault running %s!",
887 tsk->pid ? "init" : "the idle task");
888 }
889#ifdef SUPPORT_DIE
890 die("Oops", regs);
891#endif
892 bust_spinlocks(1);
893
894 do_group_exit(SIGKILL);
895
896 } else {
897 unsigned long i, b = 0;
898 unsigned char *ptr =
899 (unsigned char *)regs->regs[ra];
900 if (load_n_store) {
901 /* handle get_user(x, ptr) */
902 for (i = 0; i < load_store_size; i++) {
903 ret = get_user(b, ptr++);
904 if (!ret) {
905 /* Success! update x. */
906#ifdef __LITTLE_ENDIAN
907 x |= (b << (8 * i));
908#else
909 x <<= 8;
910 x |= b;
911#endif /* __LITTLE_ENDIAN */
912 } else {
913 x = 0;
914 break;
915 }
916 }
917
918 /* Sign-extend 4-byte loads. */
919 if (load_store_size == 4)
920 x = (long)(int)x;
921
922 /* Set register rd. */
923 regs->regs[rd] = x;
924
925 /* Set register rx. */
926 regs->regs[rx] = ret;
927
928 /* Bump pc. */
929 regs->pc += 8;
930
931 } else {
932 /* Handle put_user(x, ptr) */
933 x = regs->regs[rb];
934#ifdef __LITTLE_ENDIAN
935 b = x;
936#else
937 /*
938 * Swap x in order to store x from low
939 * to high memory same as the
940 * little-endian case.
941 */
942 switch (load_store_size) {
943 case 8:
944 b = swab64(x);
945 break;
946 case 4:
947 b = swab32(x);
948 break;
949 case 2:
950 b = swab16(x);
951 break;
952 }
953#endif /* __LITTLE_ENDIAN */
954 for (i = 0; i < load_store_size; i++) {
955 ret = put_user(b, ptr++);
956 if (ret)
957 break;
958 /* Success! shift 1 byte. */
959 b >>= 8;
960 }
961 /* Set register rx. */
962 regs->regs[rx] = ret;
963
964 /* Bump pc. */
965 regs->pc += 8;
966 }
967 }
968
969 unaligned_fixup_count++;
970
971 if (unaligned_printk) {
972 pr_info("%s/%d - Unalign fixup for kernel access to userspace %lx\n",
973 current->comm, current->pid, regs->regs[ra]);
974 }
975
976 /* Done! Return to the exception handler. */
977 return;
978 }
979
980 if ((align_ctl == 0) || unexpected) {
981 siginfo_t info = {
982 .si_signo = SIGBUS,
983 .si_code = BUS_ADRALN,
984 .si_addr = (unsigned char __user *)0
985 };
986 if (unaligned_printk)
987 pr_info("Unalign bundle: unexp @%llx, %llx\n",
988 (unsigned long long)regs->pc,
989 (unsigned long long)bundle);
990
991 if (ra < 56) {
992 unsigned long uaa = (unsigned long)regs->regs[ra];
993 /* Set bus Address. */
994 info.si_addr = (unsigned char __user *)uaa;
995 }
996
997 unaligned_fixup_count++;
998
999 trace_unhandled_signal("unaligned fixup trap", regs,
1000 (unsigned long)info.si_addr, SIGBUS);
1001 force_sig_info(info.si_signo, &info, current);
1002 return;
1003 }
1004
1005#ifdef __LITTLE_ENDIAN
1006#define UA_FIXUP_ADDR_DELTA 1
1007#define UA_FIXUP_BFEXT_START(_B_) 0
1008#define UA_FIXUP_BFEXT_END(_B_) (8 * (_B_) - 1)
1009#else /* __BIG_ENDIAN */
1010#define UA_FIXUP_ADDR_DELTA -1
1011#define UA_FIXUP_BFEXT_START(_B_) (64 - 8 * (_B_))
1012#define UA_FIXUP_BFEXT_END(_B_) 63
1013#endif /* __LITTLE_ENDIAN */
1014
1015
1016
1017 if ((ra != rb) && (rd != TREG_SP) && !alias &&
1018 !y1_br && !y1_lr && !x1_add) {
1019 /*
1020 * Simple case: ra != rb and no register alias found,
1021 * and no branch or link. This will be the majority.
1022 * We can do a little better for simplae case than the
1023 * generic scheme below.
1024 */
1025 if (!load_n_store) {
1026 /*
1027 * Simple store: ra != rb, no need for scratch register.
1028 * Just store and rotate to right bytewise.
1029 */
1030#ifdef __BIG_ENDIAN
1031 frag.insn[n++] =
1032 jit_x0_addi(ra, ra, load_store_size - 1) |
1033 jit_x1_fnop();
1034#endif /* __BIG_ENDIAN */
1035 for (k = 0; k < load_store_size; k++) {
1036 /* Store a byte. */
1037 frag.insn[n++] =
1038 jit_x0_rotli(rb, rb, 56) |
1039 jit_x1_st1_add(ra, rb,
1040 UA_FIXUP_ADDR_DELTA);
1041 }
1042#ifdef __BIG_ENDIAN
1043 frag.insn[n] = jit_x1_addi(ra, ra, 1);
1044#else
1045 frag.insn[n] = jit_x1_addi(ra, ra,
1046 -1 * load_store_size);
1047#endif /* __LITTLE_ENDIAN */
1048
1049 if (load_store_size == 8) {
1050 frag.insn[n] |= jit_x0_fnop();
1051 } else if (load_store_size == 4) {
1052 frag.insn[n] |= jit_x0_rotli(rb, rb, 32);
1053 } else { /* = 2 */
1054 frag.insn[n] |= jit_x0_rotli(rb, rb, 16);
1055 }
1056 n++;
1057 if (bundle_2_enable)
1058 frag.insn[n++] = bundle_2;
1059 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1060 } else {
1061 if (rd == ra) {
1062 /* Use two clobber registers: clob1/2. */
1063 frag.insn[n++] =
1064 jit_x0_addi(TREG_SP, TREG_SP, -16) |
1065 jit_x1_fnop();
1066 frag.insn[n++] =
1067 jit_x0_addi(clob1, ra, 7) |
1068 jit_x1_st_add(TREG_SP, clob1, -8);
1069 frag.insn[n++] =
1070 jit_x0_addi(clob2, ra, 0) |
1071 jit_x1_st(TREG_SP, clob2);
1072 frag.insn[n++] =
1073 jit_x0_fnop() |
1074 jit_x1_ldna(rd, ra);
1075 frag.insn[n++] =
1076 jit_x0_fnop() |
1077 jit_x1_ldna(clob1, clob1);
1078 /*
1079 * Note: we must make sure that rd must not
1080 * be sp. Recover clob1/2 from stack.
1081 */
1082 frag.insn[n++] =
1083 jit_x0_dblalign(rd, clob1, clob2) |
1084 jit_x1_ld_add(clob2, TREG_SP, 8);
1085 frag.insn[n++] =
1086 jit_x0_fnop() |
1087 jit_x1_ld_add(clob1, TREG_SP, 16);
1088 } else {
1089 /* Use one clobber register: clob1 only. */
1090 frag.insn[n++] =
1091 jit_x0_addi(TREG_SP, TREG_SP, -16) |
1092 jit_x1_fnop();
1093 frag.insn[n++] =
1094 jit_x0_addi(clob1, ra, 7) |
1095 jit_x1_st(TREG_SP, clob1);
1096 frag.insn[n++] =
1097 jit_x0_fnop() |
1098 jit_x1_ldna(rd, ra);
1099 frag.insn[n++] =
1100 jit_x0_fnop() |
1101 jit_x1_ldna(clob1, clob1);
1102 /*
1103 * Note: we must make sure that rd must not
1104 * be sp. Recover clob1 from stack.
1105 */
1106 frag.insn[n++] =
1107 jit_x0_dblalign(rd, clob1, ra) |
1108 jit_x1_ld_add(clob1, TREG_SP, 16);
1109 }
1110
1111 if (bundle_2_enable)
1112 frag.insn[n++] = bundle_2;
1113 /*
1114 * For non 8-byte load, extract corresponding bytes and
1115 * signed extension.
1116 */
1117 if (load_store_size == 4) {
1118 if (load_store_signed)
1119 frag.insn[n++] =
1120 jit_x0_bfexts(
1121 rd, rd,
1122 UA_FIXUP_BFEXT_START(4),
1123 UA_FIXUP_BFEXT_END(4)) |
1124 jit_x1_fnop();
1125 else
1126 frag.insn[n++] =
1127 jit_x0_bfextu(
1128 rd, rd,
1129 UA_FIXUP_BFEXT_START(4),
1130 UA_FIXUP_BFEXT_END(4)) |
1131 jit_x1_fnop();
1132 } else if (load_store_size == 2) {
1133 if (load_store_signed)
1134 frag.insn[n++] =
1135 jit_x0_bfexts(
1136 rd, rd,
1137 UA_FIXUP_BFEXT_START(2),
1138 UA_FIXUP_BFEXT_END(2)) |
1139 jit_x1_fnop();
1140 else
1141 frag.insn[n++] =
1142 jit_x0_bfextu(
1143 rd, rd,
1144 UA_FIXUP_BFEXT_START(2),
1145 UA_FIXUP_BFEXT_END(2)) |
1146 jit_x1_fnop();
1147 }
1148
1149 frag.insn[n++] =
1150 jit_x0_fnop() |
1151 jit_x1_iret();
1152 }
1153 } else if (!load_n_store) {
1154
1155 /*
1156 * Generic memory store cases: use 3 clobber registers.
1157 *
1158 * Alloc space for saveing clob2,1,3 on user's stack.
1159 * register clob3 points to where clob2 saved, followed by
1160 * clob1 and 3 from high to low memory.
1161 */
1162 frag.insn[n++] =
1163 jit_x0_addi(TREG_SP, TREG_SP, -32) |
1164 jit_x1_fnop();
1165 frag.insn[n++] =
1166 jit_x0_addi(clob3, TREG_SP, 16) |
1167 jit_x1_st_add(TREG_SP, clob3, 8);
1168#ifdef __LITTLE_ENDIAN
1169 frag.insn[n++] =
1170 jit_x0_addi(clob1, ra, 0) |
1171 jit_x1_st_add(TREG_SP, clob1, 8);
1172#else
1173 frag.insn[n++] =
1174 jit_x0_addi(clob1, ra, load_store_size - 1) |
1175 jit_x1_st_add(TREG_SP, clob1, 8);
1176#endif
1177 if (load_store_size == 8) {
1178 /*
1179 * We save one byte a time, not for fast, but compact
1180 * code. After each store, data source register shift
1181 * right one byte. unchanged after 8 stores.
1182 */
1183 frag.insn[n++] =
1184 jit_x0_addi(clob2, TREG_ZERO, 7) |
1185 jit_x1_st_add(TREG_SP, clob2, 16);
1186 frag.insn[n++] =
1187 jit_x0_rotli(rb, rb, 56) |
1188 jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1189 frag.insn[n++] =
1190 jit_x0_addi(clob2, clob2, -1) |
1191 jit_x1_bnezt(clob2, -1);
1192 frag.insn[n++] =
1193 jit_x0_fnop() |
1194 jit_x1_addi(clob2, y1_br_reg, 0);
1195 } else if (load_store_size == 4) {
1196 frag.insn[n++] =
1197 jit_x0_addi(clob2, TREG_ZERO, 3) |
1198 jit_x1_st_add(TREG_SP, clob2, 16);
1199 frag.insn[n++] =
1200 jit_x0_rotli(rb, rb, 56) |
1201 jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1202 frag.insn[n++] =
1203 jit_x0_addi(clob2, clob2, -1) |
1204 jit_x1_bnezt(clob2, -1);
1205 /*
1206 * same as 8-byte case, but need shift another 4
1207 * byte to recover rb for 4-byte store.
1208 */
1209 frag.insn[n++] = jit_x0_rotli(rb, rb, 32) |
1210 jit_x1_addi(clob2, y1_br_reg, 0);
1211 } else { /* =2 */
1212 frag.insn[n++] =
1213 jit_x0_addi(clob2, rb, 0) |
1214 jit_x1_st_add(TREG_SP, clob2, 16);
1215 for (k = 0; k < 2; k++) {
1216 frag.insn[n++] =
1217 jit_x0_shrui(rb, rb, 8) |
1218 jit_x1_st1_add(clob1, rb,
1219 UA_FIXUP_ADDR_DELTA);
1220 }
1221 frag.insn[n++] =
1222 jit_x0_addi(rb, clob2, 0) |
1223 jit_x1_addi(clob2, y1_br_reg, 0);
1224 }
1225
1226 if (bundle_2_enable)
1227 frag.insn[n++] = bundle_2;
1228
1229 if (y1_lr) {
1230 frag.insn[n++] =
1231 jit_x0_fnop() |
1232 jit_x1_mfspr(y1_lr_reg,
1233 SPR_EX_CONTEXT_0_0);
1234 }
1235 if (y1_br) {
1236 frag.insn[n++] =
1237 jit_x0_fnop() |
1238 jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1239 clob2);
1240 }
1241 if (x1_add) {
1242 frag.insn[n++] =
1243 jit_x0_addi(ra, ra, x1_add_imm8) |
1244 jit_x1_ld_add(clob2, clob3, -8);
1245 } else {
1246 frag.insn[n++] =
1247 jit_x0_fnop() |
1248 jit_x1_ld_add(clob2, clob3, -8);
1249 }
1250 frag.insn[n++] =
1251 jit_x0_fnop() |
1252 jit_x1_ld_add(clob1, clob3, -8);
1253 frag.insn[n++] = jit_x0_fnop() | jit_x1_ld(clob3, clob3);
1254 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1255
1256 } else {
1257 /*
1258 * Generic memory load cases.
1259 *
1260 * Alloc space for saveing clob1,2,3 on user's stack.
1261 * register clob3 points to where clob1 saved, followed
1262 * by clob2 and 3 from high to low memory.
1263 */
1264
1265 frag.insn[n++] =
1266 jit_x0_addi(TREG_SP, TREG_SP, -32) |
1267 jit_x1_fnop();
1268 frag.insn[n++] =
1269 jit_x0_addi(clob3, TREG_SP, 16) |
1270 jit_x1_st_add(TREG_SP, clob3, 8);
1271 frag.insn[n++] =
1272 jit_x0_addi(clob2, ra, 0) |
1273 jit_x1_st_add(TREG_SP, clob2, 8);
1274
1275 if (y1_br) {
1276 frag.insn[n++] =
1277 jit_x0_addi(clob1, y1_br_reg, 0) |
1278 jit_x1_st_add(TREG_SP, clob1, 16);
1279 } else {
1280 frag.insn[n++] =
1281 jit_x0_fnop() |
1282 jit_x1_st_add(TREG_SP, clob1, 16);
1283 }
1284
1285 if (bundle_2_enable)
1286 frag.insn[n++] = bundle_2;
1287
1288 if (y1_lr) {
1289 frag.insn[n++] =
1290 jit_x0_fnop() |
1291 jit_x1_mfspr(y1_lr_reg,
1292 SPR_EX_CONTEXT_0_0);
1293 }
1294
1295 if (y1_br) {
1296 frag.insn[n++] =
1297 jit_x0_fnop() |
1298 jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1299 clob1);
1300 }
1301
1302 frag.insn[n++] =
1303 jit_x0_addi(clob1, clob2, 7) |
1304 jit_x1_ldna(rd, clob2);
1305 frag.insn[n++] =
1306 jit_x0_fnop() |
1307 jit_x1_ldna(clob1, clob1);
1308 frag.insn[n++] =
1309 jit_x0_dblalign(rd, clob1, clob2) |
1310 jit_x1_ld_add(clob1, clob3, -8);
1311 if (x1_add) {
1312 frag.insn[n++] =
1313 jit_x0_addi(ra, ra, x1_add_imm8) |
1314 jit_x1_ld_add(clob2, clob3, -8);
1315 } else {
1316 frag.insn[n++] =
1317 jit_x0_fnop() |
1318 jit_x1_ld_add(clob2, clob3, -8);
1319 }
1320
1321 frag.insn[n++] =
1322 jit_x0_fnop() |
1323 jit_x1_ld(clob3, clob3);
1324
1325 if (load_store_size == 4) {
1326 if (load_store_signed)
1327 frag.insn[n++] =
1328 jit_x0_bfexts(
1329 rd, rd,
1330 UA_FIXUP_BFEXT_START(4),
1331 UA_FIXUP_BFEXT_END(4)) |
1332 jit_x1_fnop();
1333 else
1334 frag.insn[n++] =
1335 jit_x0_bfextu(
1336 rd, rd,
1337 UA_FIXUP_BFEXT_START(4),
1338 UA_FIXUP_BFEXT_END(4)) |
1339 jit_x1_fnop();
1340 } else if (load_store_size == 2) {
1341 if (load_store_signed)
1342 frag.insn[n++] =
1343 jit_x0_bfexts(
1344 rd, rd,
1345 UA_FIXUP_BFEXT_START(2),
1346 UA_FIXUP_BFEXT_END(2)) |
1347 jit_x1_fnop();
1348 else
1349 frag.insn[n++] =
1350 jit_x0_bfextu(
1351 rd, rd,
1352 UA_FIXUP_BFEXT_START(2),
1353 UA_FIXUP_BFEXT_END(2)) |
1354 jit_x1_fnop();
1355 }
1356
1357 frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1358 }
1359
1360 /* Max JIT bundle count is 14. */
1361 WARN_ON(n > 14);
1362
1363 if (!unexpected) {
1364 int status = 0;
1365 int idx = (regs->pc >> 3) &
1366 ((1ULL << (PAGE_SHIFT - UNALIGN_JIT_SHIFT)) - 1);
1367
1368 frag.pc = regs->pc;
1369 frag.bundle = bundle;
1370
1371 if (unaligned_printk) {
1372 pr_info("%s/%d, Unalign fixup: pc=%lx bundle=%lx %d %d %d %d %d %d %d %d\n",
1373 current->comm, current->pid,
1374 (unsigned long)frag.pc,
1375 (unsigned long)frag.bundle,
1376 (int)alias, (int)rd, (int)ra,
1377 (int)rb, (int)bundle_2_enable,
1378 (int)y1_lr, (int)y1_br, (int)x1_add);
1379
1380 for (k = 0; k < n; k += 2)
1381 pr_info("[%d] %016llx %016llx\n",
1382 k, (unsigned long long)frag.insn[k],
1383 (unsigned long long)frag.insn[k+1]);
1384 }
1385
1386 /* Swap bundle byte order for big endian sys. */
1387#ifdef __BIG_ENDIAN
1388 frag.bundle = GX_INSN_BSWAP(frag.bundle);
1389 for (k = 0; k < n; k++)
1390 frag.insn[k] = GX_INSN_BSWAP(frag.insn[k]);
1391#endif /* __BIG_ENDIAN */
1392
1393 status = copy_to_user((void __user *)&jit_code_area[idx],
1394 &frag, sizeof(frag));
1395 if (status) {
1396 /* Fail to copy JIT into user land. send SIGSEGV. */
1397 siginfo_t info = {
1398 .si_signo = SIGSEGV,
1399 .si_code = SEGV_MAPERR,
1400 .si_addr = (void __user *)&jit_code_area[idx]
1401 };
1402
1403 pr_warn("Unalign fixup: pid=%d %s jit_code_area=%llx\n",
1404 current->pid, current->comm,
1405 (unsigned long long)&jit_code_area[idx]);
1406
1407 trace_unhandled_signal("segfault in unalign fixup",
1408 regs,
1409 (unsigned long)info.si_addr,
1410 SIGSEGV);
1411 force_sig_info(info.si_signo, &info, current);
1412 return;
1413 }
1414
1415
1416 /* Do a cheaper increment, not accurate. */
1417 unaligned_fixup_count++;
1418 __flush_icache_range((unsigned long)&jit_code_area[idx],
1419 (unsigned long)&jit_code_area[idx] +
1420 sizeof(frag));
1421
1422 /* Setup SPR_EX_CONTEXT_0_0/1 for returning to user program.*/
1423 __insn_mtspr(SPR_EX_CONTEXT_0_0, regs->pc + 8);
1424 __insn_mtspr(SPR_EX_CONTEXT_0_1, PL_ICS_EX1(USER_PL, 0));
1425
1426 /* Modify pc at the start of new JIT. */
1427 regs->pc = (unsigned long)&jit_code_area[idx].insn[0];
1428 /* Set ICS in SPR_EX_CONTEXT_K_1. */
1429 regs->ex1 = PL_ICS_EX1(USER_PL, 1);
1430 }
1431}
1432
1433
1434/*
1435 * C function to generate unalign data JIT. Called from unalign data
1436 * interrupt handler.
1437 *
1438 * First check if unalign fix is disabled or exception did not not come from
1439 * user space or sp register points to unalign address, if true, generate a
1440 * SIGBUS. Then map a page into user space as JIT area if it is not mapped
1441 * yet. Genenerate JIT code by calling jit_bundle_gen(). After that return
1442 * back to exception handler.
1443 *
1444 * The exception handler will "iret" to new generated JIT code after
1445 * restoring caller saved registers. In theory, the JIT code will perform
1446 * another "iret" to resume user's program.
1447 */
1448
1449void do_unaligned(struct pt_regs *regs, int vecnum)
1450{
1451 tilegx_bundle_bits __user *pc;
1452 tilegx_bundle_bits bundle;
1453 struct thread_info *info = current_thread_info();
1454 int align_ctl;
1455
1456 /* Checks the per-process unaligned JIT flags */
1457 align_ctl = unaligned_fixup;
1458 switch (task_thread_info(current)->align_ctl) {
1459 case PR_UNALIGN_NOPRINT:
1460 align_ctl = 1;
1461 break;
1462 case PR_UNALIGN_SIGBUS:
1463 align_ctl = 0;
1464 break;
1465 }
1466
1467 /* Enable iterrupt in order to access user land. */
1468 local_irq_enable();
1469
1470 /*
1471 * The fault came from kernel space. Two choices:
1472 * (a) unaligned_fixup < 1, we will first call get/put_user fixup
1473 * to return -EFAULT. If no fixup, simply panic the kernel.
1474 * (b) unaligned_fixup >=1, we will try to fix the unaligned access
1475 * if it was triggered by get_user/put_user() macros. Panic the
1476 * kernel if it is not fixable.
1477 */
1478
1479 if (EX1_PL(regs->ex1) != USER_PL) {
1480
1481 if (align_ctl < 1) {
1482 unaligned_fixup_count++;
1483 /* If exception came from kernel, try fix it up. */
1484 if (fixup_exception(regs)) {
1485 if (unaligned_printk)
1486 pr_info("Unalign fixup: %d %llx @%llx\n",
1487 (int)unaligned_fixup,
1488 (unsigned long long)regs->ex1,
1489 (unsigned long long)regs->pc);
1490 } else {
1491 /* Not fixable. Go panic. */
1492 panic("Unalign exception in Kernel. pc=%lx",
1493 regs->pc);
1494 }
1495 } else {
1496 /*
1497 * Try to fix the exception. If we can't, panic the
1498 * kernel.
1499 */
1500 bundle = GX_INSN_BSWAP(
1501 *((tilegx_bundle_bits *)(regs->pc)));
1502 jit_bundle_gen(regs, bundle, align_ctl);
1503 }
1504 return;
1505 }
1506
1507 /*
1508 * Fault came from user with ICS or stack is not aligned.
1509 * If so, we will trigger SIGBUS.
1510 */
1511 if ((regs->sp & 0x7) || (regs->ex1) || (align_ctl < 0)) {
1512 siginfo_t info = {
1513 .si_signo = SIGBUS,
1514 .si_code = BUS_ADRALN,
1515 .si_addr = (unsigned char __user *)0
1516 };
1517
1518 if (unaligned_printk)
1519 pr_info("Unalign fixup: %d %llx @%llx\n",
1520 (int)unaligned_fixup,
1521 (unsigned long long)regs->ex1,
1522 (unsigned long long)regs->pc);
1523
1524 unaligned_fixup_count++;
1525
1526 trace_unhandled_signal("unaligned fixup trap", regs, 0, SIGBUS);
1527 force_sig_info(info.si_signo, &info, current);
1528 return;
1529 }
1530
1531
1532 /* Read the bundle casued the exception! */
1533 pc = (tilegx_bundle_bits __user *)(regs->pc);
1534 if (get_user(bundle, pc) != 0) {
1535 /* Probably never be here since pc is valid user address.*/
1536 siginfo_t info = {
1537 .si_signo = SIGSEGV,
1538 .si_code = SEGV_MAPERR,
1539 .si_addr = (void __user *)pc
1540 };
1541 pr_err("Couldn't read instruction at %p trying to step\n", pc);
1542 trace_unhandled_signal("segfault in unalign fixup", regs,
1543 (unsigned long)info.si_addr, SIGSEGV);
1544 force_sig_info(info.si_signo, &info, current);
1545 return;
1546 }
1547
1548 if (!info->unalign_jit_base) {
1549 void __user *user_page;
1550
1551 /*
1552 * Allocate a page in userland.
1553 * For 64-bit processes we try to place the mapping far
1554 * from anything else that might be going on (specifically
1555 * 64 GB below the top of the user address space). If it
1556 * happens not to be possible to put it there, it's OK;
1557 * the kernel will choose another location and we'll
1558 * remember it for later.
1559 */
1560 if (is_compat_task())
1561 user_page = NULL;
1562 else
1563 user_page = (void __user *)(TASK_SIZE - (1UL << 36)) +
1564 (current->pid << PAGE_SHIFT);
1565
1566 user_page = (void __user *) vm_mmap(NULL,
1567 (unsigned long)user_page,
1568 PAGE_SIZE,
1569 PROT_EXEC | PROT_READ |
1570 PROT_WRITE,
1571#ifdef CONFIG_HOMECACHE
1572 MAP_CACHE_HOME_TASK |
1573#endif
1574 MAP_PRIVATE |
1575 MAP_ANONYMOUS,
1576 0);
1577
1578 if (IS_ERR((void __force *)user_page)) {
1579 pr_err("Out of kernel pages trying do_mmap\n");
1580 return;
1581 }
1582
1583 /* Save the address in the thread_info struct */
1584 info->unalign_jit_base = user_page;
1585 if (unaligned_printk)
1586 pr_info("Unalign bundle: %d:%d, allocate page @%llx\n",
1587 raw_smp_processor_id(), current->pid,
1588 (unsigned long long)user_page);
1589 }
1590
1591 /* Generate unalign JIT */
1592 jit_bundle_gen(regs, GX_INSN_BSWAP(bundle), align_ctl);
1593}
1594
1595#endif /* __tilegx__ */