Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v3.15.
   1/*
   2 *   intel_hdmi_audio.c - Intel HDMI audio driver
   3 *
   4 *  Copyright (C) 2016 Intel Corp
   5 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   6 *		Ramesh Babu K V	<ramesh.babu@intel.com>
   7 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   8 *		Jerome Anand <jerome.anand@intel.com>
   9 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10 *
  11 *  This program is free software; you can redistribute it and/or modify
  12 *  it under the terms of the GNU General Public License as published by
  13 *  the Free Software Foundation; version 2 of the License.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but
  16 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  17 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 *  General Public License for more details.
  19 *
  20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  21 * ALSA driver for Intel HDMI audio
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/platform_device.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/module.h>
  29#include <linux/interrupt.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/delay.h>
  33#include <asm/set_memory.h>
  34#include <sound/core.h>
  35#include <sound/asoundef.h>
  36#include <sound/pcm.h>
  37#include <sound/pcm_params.h>
  38#include <sound/initval.h>
  39#include <sound/control.h>
  40#include <sound/jack.h>
  41#include <drm/drm_edid.h>
  42#include <drm/intel_lpe_audio.h>
  43#include "intel_hdmi_audio.h"
  44
  45#define for_each_pipe(card_ctx, pipe) \
  46	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  47#define for_each_port(card_ctx, port) \
  48	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  49
  50/*standard module options for ALSA. This module supports only one card*/
  51static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  52static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  53static bool single_port;
  54
  55module_param_named(index, hdmi_card_index, int, 0444);
  56MODULE_PARM_DESC(index,
  57		"Index value for INTEL Intel HDMI Audio controller.");
  58module_param_named(id, hdmi_card_id, charp, 0444);
  59MODULE_PARM_DESC(id,
  60		"ID string for INTEL Intel HDMI Audio controller.");
  61module_param(single_port, bool, 0444);
  62MODULE_PARM_DESC(single_port,
  63		"Single-port mode (for compatibility)");
  64
  65/*
  66 * ELD SA bits in the CEA Speaker Allocation data block
  67 */
  68static const int eld_speaker_allocation_bits[] = {
  69	[0] = FL | FR,
  70	[1] = LFE,
  71	[2] = FC,
  72	[3] = RL | RR,
  73	[4] = RC,
  74	[5] = FLC | FRC,
  75	[6] = RLC | RRC,
  76	/* the following are not defined in ELD yet */
  77	[7] = 0,
  78};
  79
  80/*
  81 * This is an ordered list!
  82 *
  83 * The preceding ones have better chances to be selected by
  84 * hdmi_channel_allocation().
  85 */
  86static struct cea_channel_speaker_allocation channel_allocations[] = {
  87/*                        channel:   7     6    5    4    3     2    1    0  */
  88{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  89				/* 2.1 */
  90{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  91				/* Dolby Surround */
  92{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  93				/* surround40 */
  94{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  95				/* surround41 */
  96{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  97				/* surround50 */
  98{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  99				/* surround51 */
 100{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
 101				/* 6.1 */
 102{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 103				/* surround71 */
 104{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 105
 106{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
 107{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
 108{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 109{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 110{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 111{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 112{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 113{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 114{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 115{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 116{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 117{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 118{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 119{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 120{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 121{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 122{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 123{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 124{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 125{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 126{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 127{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 128{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 129};
 130
 131static const struct channel_map_table map_tables[] = {
 132	{ SNDRV_CHMAP_FL,       0x00,   FL },
 133	{ SNDRV_CHMAP_FR,       0x01,   FR },
 134	{ SNDRV_CHMAP_RL,       0x04,   RL },
 135	{ SNDRV_CHMAP_RR,       0x05,   RR },
 136	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
 137	{ SNDRV_CHMAP_FC,       0x03,   FC },
 138	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
 139	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
 140	{} /* terminator */
 141};
 142
 143/* hardware capability structure */
 144static const struct snd_pcm_hardware had_pcm_hardware = {
 145	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
 146		SNDRV_PCM_INFO_MMAP |
 147		SNDRV_PCM_INFO_MMAP_VALID |
 148		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 149	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
 150		    SNDRV_PCM_FMTBIT_S24_LE |
 151		    SNDRV_PCM_FMTBIT_S32_LE),
 152	.rates = SNDRV_PCM_RATE_32000 |
 153		SNDRV_PCM_RATE_44100 |
 154		SNDRV_PCM_RATE_48000 |
 155		SNDRV_PCM_RATE_88200 |
 156		SNDRV_PCM_RATE_96000 |
 157		SNDRV_PCM_RATE_176400 |
 158		SNDRV_PCM_RATE_192000,
 159	.rate_min = HAD_MIN_RATE,
 160	.rate_max = HAD_MAX_RATE,
 161	.channels_min = HAD_MIN_CHANNEL,
 162	.channels_max = HAD_MAX_CHANNEL,
 163	.buffer_bytes_max = HAD_MAX_BUFFER,
 164	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
 165	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
 166	.periods_min = HAD_MIN_PERIODS,
 167	.periods_max = HAD_MAX_PERIODS,
 168	.fifo_size = HAD_FIFO_SIZE,
 169};
 170
 171/* Get the active PCM substream;
 172 * Call had_substream_put() for unreferecing.
 173 * Don't call this inside had_spinlock, as it takes by itself
 174 */
 175static struct snd_pcm_substream *
 176had_substream_get(struct snd_intelhad *intelhaddata)
 177{
 178	struct snd_pcm_substream *substream;
 179	unsigned long flags;
 180
 181	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 182	substream = intelhaddata->stream_info.substream;
 183	if (substream)
 184		intelhaddata->stream_info.substream_refcount++;
 185	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 186	return substream;
 187}
 188
 189/* Unref the active PCM substream;
 190 * Don't call this inside had_spinlock, as it takes by itself
 191 */
 192static void had_substream_put(struct snd_intelhad *intelhaddata)
 193{
 194	unsigned long flags;
 195
 196	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 197	intelhaddata->stream_info.substream_refcount--;
 198	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 199}
 200
 201static u32 had_config_offset(int pipe)
 202{
 203	switch (pipe) {
 204	default:
 205	case 0:
 206		return AUDIO_HDMI_CONFIG_A;
 207	case 1:
 208		return AUDIO_HDMI_CONFIG_B;
 209	case 2:
 210		return AUDIO_HDMI_CONFIG_C;
 211	}
 212}
 213
 214/* Register access functions */
 215static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 216				 int pipe, u32 reg)
 217{
 218	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 219}
 220
 221static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 222				   int pipe, u32 reg, u32 val)
 223{
 224	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 225}
 226
 227static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 228{
 229	if (!ctx->connected)
 230		*val = 0;
 231	else
 232		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 233}
 234
 235static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 236{
 237	if (ctx->connected)
 238		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 239}
 240
 241/*
 242 * enable / disable audio configuration
 243 *
 244 * The normal read/modify should not directly be used on VLV2 for
 245 * updating AUD_CONFIG register.
 246 * This is because:
 247 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 248 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
 249 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 250 * register. This field should be 1xy binary for configuration with 6 or
 251 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 252 * causes the "channels" field to be updated as 0xy binary resulting in
 253 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 254 * appropriate value when doing read-modify of AUD_CONFIG register.
 255 */
 256static void had_enable_audio(struct snd_intelhad *intelhaddata,
 257			     bool enable)
 258{
 259	/* update the cached value */
 260	intelhaddata->aud_config.regx.aud_en = enable;
 261	had_write_register(intelhaddata, AUD_CONFIG,
 262			   intelhaddata->aud_config.regval);
 263}
 264
 265/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 266static void had_ack_irqs(struct snd_intelhad *ctx)
 267{
 268	u32 status_reg;
 269
 270	if (!ctx->connected)
 271		return;
 272	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 273	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 274	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 275	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 276}
 277
 278/* Reset buffer pointers */
 279static void had_reset_audio(struct snd_intelhad *intelhaddata)
 280{
 281	had_write_register(intelhaddata, AUD_HDMI_STATUS,
 282			   AUD_HDMI_STATUSG_MASK_FUNCRST);
 283	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 284}
 285
 286/*
 287 * initialize audio channel status registers
 288 * This function is called in the prepare callback
 289 */
 290static int had_prog_status_reg(struct snd_pcm_substream *substream,
 291			struct snd_intelhad *intelhaddata)
 292{
 293	union aud_cfg cfg_val = {.regval = 0};
 294	union aud_ch_status_0 ch_stat0 = {.regval = 0};
 295	union aud_ch_status_1 ch_stat1 = {.regval = 0};
 296
 297	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 298					  IEC958_AES0_NONAUDIO) >> 1;
 299	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 300					  IEC958_AES3_CON_CLOCK) >> 4;
 301	cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
 302
 303	switch (substream->runtime->rate) {
 304	case AUD_SAMPLE_RATE_32:
 305		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 306		break;
 307
 308	case AUD_SAMPLE_RATE_44_1:
 309		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 310		break;
 311	case AUD_SAMPLE_RATE_48:
 312		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 313		break;
 314	case AUD_SAMPLE_RATE_88_2:
 315		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 316		break;
 317	case AUD_SAMPLE_RATE_96:
 318		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 319		break;
 320	case AUD_SAMPLE_RATE_176_4:
 321		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 322		break;
 323	case AUD_SAMPLE_RATE_192:
 324		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 325		break;
 326
 327	default:
 328		/* control should never come here */
 329		return -EINVAL;
 330	}
 331
 332	had_write_register(intelhaddata,
 333			   AUD_CH_STATUS_0, ch_stat0.regval);
 334
 335	switch (substream->runtime->format) {
 336	case SNDRV_PCM_FORMAT_S16_LE:
 337		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 338		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 339		break;
 340	case SNDRV_PCM_FORMAT_S24_LE:
 341	case SNDRV_PCM_FORMAT_S32_LE:
 342		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 343		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 344		break;
 345	default:
 346		return -EINVAL;
 347	}
 348
 349	had_write_register(intelhaddata,
 350			   AUD_CH_STATUS_1, ch_stat1.regval);
 351	return 0;
 352}
 353
 354/*
 355 * function to initialize audio
 356 * registers and buffer confgiuration registers
 357 * This function is called in the prepare callback
 358 */
 359static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 360			       struct snd_intelhad *intelhaddata)
 361{
 362	union aud_cfg cfg_val = {.regval = 0};
 363	union aud_buf_config buf_cfg = {.regval = 0};
 364	u8 channels;
 365
 366	had_prog_status_reg(substream, intelhaddata);
 367
 368	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 369	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 370	buf_cfg.regx.aud_delay = 0;
 371	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 372
 373	channels = substream->runtime->channels;
 374	cfg_val.regx.num_ch = channels - 2;
 375	if (channels <= 2)
 376		cfg_val.regx.layout = LAYOUT0;
 377	else
 378		cfg_val.regx.layout = LAYOUT1;
 379
 380	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 381		cfg_val.regx.packet_mode = 1;
 382
 383	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 384		cfg_val.regx.left_align = 1;
 385
 386	cfg_val.regx.val_bit = 1;
 387
 388	/* fix up the DP bits */
 389	if (intelhaddata->dp_output) {
 390		cfg_val.regx.dp_modei = 1;
 391		cfg_val.regx.set = 1;
 392	}
 393
 394	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 395	intelhaddata->aud_config = cfg_val;
 396	return 0;
 397}
 398
 399/*
 400 * Compute derived values in channel_allocations[].
 401 */
 402static void init_channel_allocations(void)
 403{
 404	int i, j;
 405	struct cea_channel_speaker_allocation *p;
 406
 407	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 408		p = channel_allocations + i;
 409		p->channels = 0;
 410		p->spk_mask = 0;
 411		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 412			if (p->speakers[j]) {
 413				p->channels++;
 414				p->spk_mask |= p->speakers[j];
 415			}
 416	}
 417}
 418
 419/*
 420 * The transformation takes two steps:
 421 *
 422 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 423 *            spk_mask => (channel_allocations[])         => ai->CA
 424 *
 425 * TODO: it could select the wrong CA from multiple candidates.
 426 */
 427static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 428				  int channels)
 429{
 430	int i;
 431	int ca = 0;
 432	int spk_mask = 0;
 433
 434	/*
 435	 * CA defaults to 0 for basic stereo audio
 436	 */
 437	if (channels <= 2)
 438		return 0;
 439
 440	/*
 441	 * expand ELD's speaker allocation mask
 442	 *
 443	 * ELD tells the speaker mask in a compact(paired) form,
 444	 * expand ELD's notions to match the ones used by Audio InfoFrame.
 445	 */
 446
 447	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 448		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 449			spk_mask |= eld_speaker_allocation_bits[i];
 450	}
 451
 452	/* search for the first working match in the CA table */
 453	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 454		if (channels == channel_allocations[i].channels &&
 455		(spk_mask & channel_allocations[i].spk_mask) ==
 456				channel_allocations[i].spk_mask) {
 457			ca = channel_allocations[i].ca_index;
 458			break;
 459		}
 460	}
 461
 462	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 463
 464	return ca;
 465}
 466
 467/* from speaker bit mask to ALSA API channel position */
 468static int spk_to_chmap(int spk)
 469{
 470	const struct channel_map_table *t = map_tables;
 471
 472	for (; t->map; t++) {
 473		if (t->spk_mask == spk)
 474			return t->map;
 475	}
 476	return 0;
 477}
 478
 479static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 480{
 481	int i, c;
 482	int spk_mask = 0;
 483	struct snd_pcm_chmap_elem *chmap;
 484	u8 eld_high, eld_high_mask = 0xF0;
 485	u8 high_msb;
 486
 487	kfree(intelhaddata->chmap->chmap);
 488	intelhaddata->chmap->chmap = NULL;
 489
 490	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 491	if (!chmap)
 492		return;
 493
 494	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 495		intelhaddata->eld[DRM_ELD_SPEAKER]);
 496
 497	/* WA: Fix the max channel supported to 8 */
 498
 499	/*
 500	 * Sink may support more than 8 channels, if eld_high has more than
 501	 * one bit set. SOC supports max 8 channels.
 502	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
 503	 */
 504
 505	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 506	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 507	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 508		/* eld_high & (eld_high-1): if more than 1 bit set */
 509		/* 0x1F: 7 channels */
 510		for (i = 1; i < 4; i++) {
 511			high_msb = eld_high & (0x80 >> i);
 512			if (high_msb) {
 513				intelhaddata->eld[DRM_ELD_SPEAKER] &=
 514					high_msb | 0xF;
 515				break;
 516			}
 517		}
 518	}
 519
 520	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 521		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 522			spk_mask |= eld_speaker_allocation_bits[i];
 523	}
 524
 525	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 526		if (spk_mask == channel_allocations[i].spk_mask) {
 527			for (c = 0; c < channel_allocations[i].channels; c++) {
 528				chmap->map[c] = spk_to_chmap(
 529					channel_allocations[i].speakers[
 530						(MAX_SPEAKERS - 1) - c]);
 531			}
 532			chmap->channels = channel_allocations[i].channels;
 533			intelhaddata->chmap->chmap = chmap;
 534			break;
 535		}
 536	}
 537	if (i >= ARRAY_SIZE(channel_allocations))
 538		kfree(chmap);
 539}
 540
 541/*
 542 * ALSA API channel-map control callbacks
 543 */
 544static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 545				struct snd_ctl_elem_info *uinfo)
 546{
 547	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 548	uinfo->count = HAD_MAX_CHANNEL;
 549	uinfo->value.integer.min = 0;
 550	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 551	return 0;
 552}
 553
 554static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 555				struct snd_ctl_elem_value *ucontrol)
 556{
 557	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 558	struct snd_intelhad *intelhaddata = info->private_data;
 559	int i;
 560	const struct snd_pcm_chmap_elem *chmap;
 561
 562	memset(ucontrol->value.integer.value, 0,
 563	       sizeof(long) * HAD_MAX_CHANNEL);
 564	mutex_lock(&intelhaddata->mutex);
 565	if (!intelhaddata->chmap->chmap) {
 566		mutex_unlock(&intelhaddata->mutex);
 567		return 0;
 568	}
 569
 570	chmap = intelhaddata->chmap->chmap;
 571	for (i = 0; i < chmap->channels; i++)
 572		ucontrol->value.integer.value[i] = chmap->map[i];
 573	mutex_unlock(&intelhaddata->mutex);
 574
 575	return 0;
 576}
 577
 578static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 579						struct snd_pcm *pcm)
 580{
 581	int err;
 582
 583	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 584			NULL, 0, (unsigned long)intelhaddata,
 585			&intelhaddata->chmap);
 586	if (err < 0)
 587		return err;
 588
 589	intelhaddata->chmap->private_data = intelhaddata;
 590	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 591	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 592	intelhaddata->chmap->chmap = NULL;
 593	return 0;
 594}
 595
 596/*
 597 * Initialize Data Island Packets registers
 598 * This function is called in the prepare callback
 599 */
 600static void had_prog_dip(struct snd_pcm_substream *substream,
 601			 struct snd_intelhad *intelhaddata)
 602{
 603	int i;
 604	union aud_ctrl_st ctrl_state = {.regval = 0};
 605	union aud_info_frame2 frame2 = {.regval = 0};
 606	union aud_info_frame3 frame3 = {.regval = 0};
 607	u8 checksum = 0;
 608	u32 info_frame;
 609	int channels;
 610	int ca;
 611
 612	channels = substream->runtime->channels;
 613
 614	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 615
 616	ca = had_channel_allocation(intelhaddata, channels);
 617	if (intelhaddata->dp_output) {
 618		info_frame = DP_INFO_FRAME_WORD1;
 619		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 620	} else {
 621		info_frame = HDMI_INFO_FRAME_WORD1;
 622		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 623		frame3.regx.chnl_alloc = ca;
 624
 625		/* Calculte the byte wide checksum for all valid DIP words */
 626		for (i = 0; i < BYTES_PER_WORD; i++)
 627			checksum += (info_frame >> (i * 8)) & 0xff;
 628		for (i = 0; i < BYTES_PER_WORD; i++)
 629			checksum += (frame2.regval >> (i * 8)) & 0xff;
 630		for (i = 0; i < BYTES_PER_WORD; i++)
 631			checksum += (frame3.regval >> (i * 8)) & 0xff;
 632
 633		frame2.regx.chksum = -(checksum);
 634	}
 635
 636	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 637	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 638	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 639
 640	/* program remaining DIP words with zero */
 641	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 642		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 643
 644	ctrl_state.regx.dip_freq = 1;
 645	ctrl_state.regx.dip_en_sta = 1;
 646	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 647}
 648
 649static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 650{
 651	u32 maud_val;
 652
 653	/* Select maud according to DP 1.2 spec */
 654	if (link_rate == DP_2_7_GHZ) {
 655		switch (aud_samp_freq) {
 656		case AUD_SAMPLE_RATE_32:
 657			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 658			break;
 659
 660		case AUD_SAMPLE_RATE_44_1:
 661			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 662			break;
 663
 664		case AUD_SAMPLE_RATE_48:
 665			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 666			break;
 667
 668		case AUD_SAMPLE_RATE_88_2:
 669			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 670			break;
 671
 672		case AUD_SAMPLE_RATE_96:
 673			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 674			break;
 675
 676		case AUD_SAMPLE_RATE_176_4:
 677			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 678			break;
 679
 680		case HAD_MAX_RATE:
 681			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 682			break;
 683
 684		default:
 685			maud_val = -EINVAL;
 686			break;
 687		}
 688	} else if (link_rate == DP_1_62_GHZ) {
 689		switch (aud_samp_freq) {
 690		case AUD_SAMPLE_RATE_32:
 691			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 692			break;
 693
 694		case AUD_SAMPLE_RATE_44_1:
 695			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 696			break;
 697
 698		case AUD_SAMPLE_RATE_48:
 699			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 700			break;
 701
 702		case AUD_SAMPLE_RATE_88_2:
 703			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 704			break;
 705
 706		case AUD_SAMPLE_RATE_96:
 707			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 708			break;
 709
 710		case AUD_SAMPLE_RATE_176_4:
 711			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 712			break;
 713
 714		case HAD_MAX_RATE:
 715			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 716			break;
 717
 718		default:
 719			maud_val = -EINVAL;
 720			break;
 721		}
 722	} else
 723		maud_val = -EINVAL;
 724
 725	return maud_val;
 726}
 727
 728/*
 729 * Program HDMI audio CTS value
 730 *
 731 * @aud_samp_freq: sampling frequency of audio data
 732 * @tmds: sampling frequency of the display data
 733 * @link_rate: DP link rate
 734 * @n_param: N value, depends on aud_samp_freq
 735 * @intelhaddata: substream private data
 736 *
 737 * Program CTS register based on the audio and display sampling frequency
 738 */
 739static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 740			 u32 n_param, struct snd_intelhad *intelhaddata)
 741{
 742	u32 cts_val;
 743	u64 dividend, divisor;
 744
 745	if (intelhaddata->dp_output) {
 746		/* Substitute cts_val with Maud according to DP 1.2 spec*/
 747		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 748	} else {
 749		/* Calculate CTS according to HDMI 1.3a spec*/
 750		dividend = (u64)tmds * n_param*1000;
 751		divisor = 128 * aud_samp_freq;
 752		cts_val = div64_u64(dividend, divisor);
 753	}
 754	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 755		 tmds, n_param, cts_val);
 756	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 757}
 758
 759static int had_calculate_n_value(u32 aud_samp_freq)
 760{
 761	int n_val;
 762
 763	/* Select N according to HDMI 1.3a spec*/
 764	switch (aud_samp_freq) {
 765	case AUD_SAMPLE_RATE_32:
 766		n_val = 4096;
 767		break;
 768
 769	case AUD_SAMPLE_RATE_44_1:
 770		n_val = 6272;
 771		break;
 772
 773	case AUD_SAMPLE_RATE_48:
 774		n_val = 6144;
 775		break;
 776
 777	case AUD_SAMPLE_RATE_88_2:
 778		n_val = 12544;
 779		break;
 780
 781	case AUD_SAMPLE_RATE_96:
 782		n_val = 12288;
 783		break;
 784
 785	case AUD_SAMPLE_RATE_176_4:
 786		n_val = 25088;
 787		break;
 788
 789	case HAD_MAX_RATE:
 790		n_val = 24576;
 791		break;
 792
 793	default:
 794		n_val = -EINVAL;
 795		break;
 796	}
 797	return n_val;
 798}
 799
 800/*
 801 * Program HDMI audio N value
 802 *
 803 * @aud_samp_freq: sampling frequency of audio data
 804 * @n_param: N value, depends on aud_samp_freq
 805 * @intelhaddata: substream private data
 806 *
 807 * This function is called in the prepare callback.
 808 * It programs based on the audio and display sampling frequency
 809 */
 810static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 811		      struct snd_intelhad *intelhaddata)
 812{
 813	int n_val;
 814
 815	if (intelhaddata->dp_output) {
 816		/*
 817		 * According to DP specs, Maud and Naud values hold
 818		 * a relationship, which is stated as:
 819		 * Maud/Naud = 512 * fs / f_LS_Clk
 820		 * where, fs is the sampling frequency of the audio stream
 821		 * and Naud is 32768 for Async clock.
 822		 */
 823
 824		n_val = DP_NAUD_VAL;
 825	} else
 826		n_val =	had_calculate_n_value(aud_samp_freq);
 827
 828	if (n_val < 0)
 829		return n_val;
 830
 831	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 832	*n_param = n_val;
 833	return 0;
 834}
 835
 836/*
 837 * PCM ring buffer handling
 838 *
 839 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 840 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 841 * moves at each period elapsed.  The below illustrates how it works:
 842 *
 843 * At time=0
 844 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 845 *  BD  | 0 | 1 | 2 | 3 |
 846 *
 847 * At time=1 (period elapsed)
 848 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 849 *  BD      | 1 | 2 | 3 | 0 |
 850 *
 851 * At time=2 (second period elapsed)
 852 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 853 *  BD          | 2 | 3 | 0 | 1 |
 854 *
 855 * The bd_head field points to the index of the BD to be read.  It's also the
 856 * position to be filled at next.  The pcm_head and the pcm_filled fields
 857 * point to the indices of the current position and of the next position to
 858 * be filled, respectively.  For PCM buffer there are both _head and _filled
 859 * because they may be difference when nperiods > 4.  For example, in the
 860 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 861 *
 862 * pcm_head (=1) --v               v-- pcm_filled (=5)
 863 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 864 *       BD      | 1 | 2 | 3 | 0 |
 865 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 866 *
 867 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 868 * the hardware skips those BDs in the loop.
 869 *
 870 * An exceptional setup is the case with nperiods=1.  Since we have to update
 871 * BDs after finishing one BD processing, we'd need at least two BDs, where
 872 * both BDs point to the same content, the same address, the same size of the
 873 * whole PCM buffer.
 874 */
 875
 876#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 877#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 878
 879/* Set up a buffer descriptor at the "filled" position */
 880static void had_prog_bd(struct snd_pcm_substream *substream,
 881			struct snd_intelhad *intelhaddata)
 882{
 883	int idx = intelhaddata->bd_head;
 884	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 885	u32 addr = substream->runtime->dma_addr + ofs;
 886
 887	addr |= AUD_BUF_VALID;
 888	if (!substream->runtime->no_period_wakeup)
 889		addr |= AUD_BUF_INTR_EN;
 890	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 891	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 892			   intelhaddata->period_bytes);
 893
 894	/* advance the indices to the next */
 895	intelhaddata->bd_head++;
 896	intelhaddata->bd_head %= intelhaddata->num_bds;
 897	intelhaddata->pcmbuf_filled++;
 898	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 899}
 900
 901/* invalidate a buffer descriptor with the given index */
 902static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 903			      int idx)
 904{
 905	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 906	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 907}
 908
 909/* Initial programming of ring buffer */
 910static void had_init_ringbuf(struct snd_pcm_substream *substream,
 911			     struct snd_intelhad *intelhaddata)
 912{
 913	struct snd_pcm_runtime *runtime = substream->runtime;
 914	int i, num_periods;
 915
 916	num_periods = runtime->periods;
 917	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 918	/* set the minimum 2 BDs for num_periods=1 */
 919	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 920	intelhaddata->period_bytes =
 921		frames_to_bytes(runtime, runtime->period_size);
 922	WARN_ON(intelhaddata->period_bytes & 0x3f);
 923
 924	intelhaddata->bd_head = 0;
 925	intelhaddata->pcmbuf_head = 0;
 926	intelhaddata->pcmbuf_filled = 0;
 927
 928	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 929		if (i < intelhaddata->num_bds)
 930			had_prog_bd(substream, intelhaddata);
 931		else /* invalidate the rest */
 932			had_invalidate_bd(intelhaddata, i);
 933	}
 934
 935	intelhaddata->bd_head = 0; /* reset at head again before starting */
 936}
 937
 938/* process a bd, advance to the next */
 939static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 940				struct snd_intelhad *intelhaddata)
 941{
 942	int num_periods = substream->runtime->periods;
 943
 944	/* reprogram the next buffer */
 945	had_prog_bd(substream, intelhaddata);
 946
 947	/* proceed to next */
 948	intelhaddata->pcmbuf_head++;
 949	intelhaddata->pcmbuf_head %= num_periods;
 950}
 951
 952/* process the current BD(s);
 953 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 954 */
 955static int had_process_ringbuf(struct snd_pcm_substream *substream,
 956			       struct snd_intelhad *intelhaddata)
 957{
 958	int len, processed;
 959	unsigned long flags;
 960
 961	processed = 0;
 962	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 963	for (;;) {
 964		/* get the remaining bytes on the buffer */
 965		had_read_register(intelhaddata,
 966				  AUD_BUF_LEN(intelhaddata->bd_head),
 967				  &len);
 968		if (len < 0 || len > intelhaddata->period_bytes) {
 969			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 970				len);
 971			len = -EPIPE;
 972			goto out;
 973		}
 974
 975		if (len > 0) /* OK, this is the current buffer */
 976			break;
 977
 978		/* len=0 => already empty, check the next buffer */
 979		if (++processed >= intelhaddata->num_bds) {
 980			len = -EPIPE; /* all empty? - report underrun */
 981			goto out;
 982		}
 983		had_advance_ringbuf(substream, intelhaddata);
 984	}
 985
 986	len = intelhaddata->period_bytes - len;
 987	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 988 out:
 989	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 990	return len;
 991}
 992
 993/* called from irq handler */
 994static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 995{
 996	struct snd_pcm_substream *substream;
 997
 998	substream = had_substream_get(intelhaddata);
 999	if (!substream)
1000		return; /* no stream? - bail out */
1001
1002	if (!intelhaddata->connected) {
1003		snd_pcm_stop_xrun(substream);
1004		goto out; /* disconnected? - bail out */
1005	}
1006
1007	/* process or stop the stream */
1008	if (had_process_ringbuf(substream, intelhaddata) < 0)
1009		snd_pcm_stop_xrun(substream);
1010	else
1011		snd_pcm_period_elapsed(substream);
1012
1013 out:
1014	had_substream_put(intelhaddata);
1015}
1016
1017/*
1018 * The interrupt status 'sticky' bits might not be cleared by
1019 * setting '1' to that bit once...
1020 */
1021static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1022{
1023	int i;
1024	u32 val;
1025
1026	for (i = 0; i < 100; i++) {
1027		/* clear bit30, 31 AUD_HDMI_STATUS */
1028		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1029		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1030			return;
1031		udelay(100);
1032		cond_resched();
1033		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1034	}
1035	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1036}
1037
1038/* Perform some reset procedure but only when need_reset is set;
1039 * this is called from prepare or hw_free callbacks once after trigger STOP
1040 * or underrun has been processed in order to settle down the h/w state.
1041 */
1042static void had_do_reset(struct snd_intelhad *intelhaddata)
1043{
1044	if (!intelhaddata->need_reset || !intelhaddata->connected)
1045		return;
1046
1047	/* Reset buffer pointers */
1048	had_reset_audio(intelhaddata);
1049	wait_clear_underrun_bit(intelhaddata);
1050	intelhaddata->need_reset = false;
1051}
1052
1053/* called from irq handler */
1054static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1055{
1056	struct snd_pcm_substream *substream;
1057
1058	/* Report UNDERRUN error to above layers */
1059	substream = had_substream_get(intelhaddata);
1060	if (substream) {
1061		snd_pcm_stop_xrun(substream);
1062		had_substream_put(intelhaddata);
1063	}
1064	intelhaddata->need_reset = true;
1065}
1066
1067/*
1068 * ALSA PCM open callback
1069 */
1070static int had_pcm_open(struct snd_pcm_substream *substream)
1071{
1072	struct snd_intelhad *intelhaddata;
1073	struct snd_pcm_runtime *runtime;
1074	int retval;
1075
1076	intelhaddata = snd_pcm_substream_chip(substream);
1077	runtime = substream->runtime;
1078
1079	pm_runtime_get_sync(intelhaddata->dev);
1080
1081	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1082	runtime->hw = had_pcm_hardware;
1083
1084	retval = snd_pcm_hw_constraint_integer(runtime,
1085			 SNDRV_PCM_HW_PARAM_PERIODS);
1086	if (retval < 0)
1087		goto error;
1088
1089	/* Make sure, that the period size is always aligned
1090	 * 64byte boundary
1091	 */
1092	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1093			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1094	if (retval < 0)
1095		goto error;
1096
1097	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1098	if (retval < 0)
1099		goto error;
1100
1101	/* expose PCM substream */
1102	spin_lock_irq(&intelhaddata->had_spinlock);
1103	intelhaddata->stream_info.substream = substream;
1104	intelhaddata->stream_info.substream_refcount++;
1105	spin_unlock_irq(&intelhaddata->had_spinlock);
1106
1107	return retval;
1108 error:
1109	pm_runtime_mark_last_busy(intelhaddata->dev);
1110	pm_runtime_put_autosuspend(intelhaddata->dev);
1111	return retval;
1112}
1113
1114/*
1115 * ALSA PCM close callback
1116 */
1117static int had_pcm_close(struct snd_pcm_substream *substream)
1118{
1119	struct snd_intelhad *intelhaddata;
1120
1121	intelhaddata = snd_pcm_substream_chip(substream);
1122
1123	/* unreference and sync with the pending PCM accesses */
1124	spin_lock_irq(&intelhaddata->had_spinlock);
1125	intelhaddata->stream_info.substream = NULL;
1126	intelhaddata->stream_info.substream_refcount--;
1127	while (intelhaddata->stream_info.substream_refcount > 0) {
1128		spin_unlock_irq(&intelhaddata->had_spinlock);
1129		cpu_relax();
1130		spin_lock_irq(&intelhaddata->had_spinlock);
1131	}
1132	spin_unlock_irq(&intelhaddata->had_spinlock);
1133
1134	pm_runtime_mark_last_busy(intelhaddata->dev);
1135	pm_runtime_put_autosuspend(intelhaddata->dev);
1136	return 0;
1137}
1138
1139/*
1140 * ALSA PCM hw_params callback
1141 */
1142static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1143			     struct snd_pcm_hw_params *hw_params)
1144{
1145	struct snd_intelhad *intelhaddata;
1146	unsigned long addr;
1147	int pages, buf_size, retval;
1148
1149	intelhaddata = snd_pcm_substream_chip(substream);
1150	buf_size = params_buffer_bytes(hw_params);
1151	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1152	if (retval < 0)
1153		return retval;
1154	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1155		__func__, buf_size);
1156	/* mark the pages as uncached region */
1157	addr = (unsigned long) substream->runtime->dma_area;
1158	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1159	retval = set_memory_uc(addr, pages);
1160	if (retval) {
1161		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1162			retval);
1163		return retval;
1164	}
1165	memset(substream->runtime->dma_area, 0, buf_size);
1166
1167	return retval;
1168}
1169
1170/*
1171 * ALSA PCM hw_free callback
1172 */
1173static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1174{
1175	struct snd_intelhad *intelhaddata;
1176	unsigned long addr;
1177	u32 pages;
1178
1179	intelhaddata = snd_pcm_substream_chip(substream);
1180	had_do_reset(intelhaddata);
1181
1182	/* mark back the pages as cached/writeback region before the free */
1183	if (substream->runtime->dma_area != NULL) {
1184		addr = (unsigned long) substream->runtime->dma_area;
1185		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1186								PAGE_SIZE;
1187		set_memory_wb(addr, pages);
1188		return snd_pcm_lib_free_pages(substream);
1189	}
1190	return 0;
1191}
1192
1193/*
1194 * ALSA PCM trigger callback
1195 */
1196static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1197{
1198	int retval = 0;
1199	struct snd_intelhad *intelhaddata;
1200
1201	intelhaddata = snd_pcm_substream_chip(substream);
1202
1203	spin_lock(&intelhaddata->had_spinlock);
1204	switch (cmd) {
1205	case SNDRV_PCM_TRIGGER_START:
1206	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1207	case SNDRV_PCM_TRIGGER_RESUME:
1208		/* Enable Audio */
1209		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1210		had_enable_audio(intelhaddata, true);
1211		break;
1212
1213	case SNDRV_PCM_TRIGGER_STOP:
1214	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1215		/* Disable Audio */
1216		had_enable_audio(intelhaddata, false);
1217		intelhaddata->need_reset = true;
1218		break;
1219
1220	default:
1221		retval = -EINVAL;
1222	}
1223	spin_unlock(&intelhaddata->had_spinlock);
1224	return retval;
1225}
1226
1227/*
1228 * ALSA PCM prepare callback
1229 */
1230static int had_pcm_prepare(struct snd_pcm_substream *substream)
1231{
1232	int retval;
1233	u32 disp_samp_freq, n_param;
1234	u32 link_rate = 0;
1235	struct snd_intelhad *intelhaddata;
1236	struct snd_pcm_runtime *runtime;
1237
1238	intelhaddata = snd_pcm_substream_chip(substream);
1239	runtime = substream->runtime;
1240
1241	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1242		(int)frames_to_bytes(runtime, runtime->period_size));
1243	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1244	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1245		(int)snd_pcm_lib_buffer_bytes(substream));
1246	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1247	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1248
1249	had_do_reset(intelhaddata);
1250
1251	/* Get N value in KHz */
1252	disp_samp_freq = intelhaddata->tmds_clock_speed;
1253
1254	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1255	if (retval) {
1256		dev_err(intelhaddata->dev,
1257			"programming N value failed %#x\n", retval);
1258		goto prep_end;
1259	}
1260
1261	if (intelhaddata->dp_output)
1262		link_rate = intelhaddata->link_rate;
1263
1264	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1265		     n_param, intelhaddata);
1266
1267	had_prog_dip(substream, intelhaddata);
1268
1269	retval = had_init_audio_ctrl(substream, intelhaddata);
1270
1271	/* Prog buffer address */
1272	had_init_ringbuf(substream, intelhaddata);
1273
1274	/*
1275	 * Program channel mapping in following order:
1276	 * FL, FR, C, LFE, RL, RR
1277	 */
1278
1279	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1280
1281prep_end:
1282	return retval;
1283}
1284
1285/*
1286 * ALSA PCM pointer callback
1287 */
1288static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1289{
1290	struct snd_intelhad *intelhaddata;
1291	int len;
1292
1293	intelhaddata = snd_pcm_substream_chip(substream);
1294
1295	if (!intelhaddata->connected)
1296		return SNDRV_PCM_POS_XRUN;
1297
1298	len = had_process_ringbuf(substream, intelhaddata);
1299	if (len < 0)
1300		return SNDRV_PCM_POS_XRUN;
1301	len = bytes_to_frames(substream->runtime, len);
1302	/* wrapping may happen when periods=1 */
1303	len %= substream->runtime->buffer_size;
1304	return len;
1305}
1306
1307/*
1308 * ALSA PCM mmap callback
1309 */
1310static int had_pcm_mmap(struct snd_pcm_substream *substream,
1311			struct vm_area_struct *vma)
1312{
1313	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314	return remap_pfn_range(vma, vma->vm_start,
1315			substream->dma_buffer.addr >> PAGE_SHIFT,
1316			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1317}
1318
1319/*
1320 * ALSA PCM ops
1321 */
1322static const struct snd_pcm_ops had_pcm_ops = {
1323	.open =		had_pcm_open,
1324	.close =	had_pcm_close,
1325	.ioctl =	snd_pcm_lib_ioctl,
1326	.hw_params =	had_pcm_hw_params,
1327	.hw_free =	had_pcm_hw_free,
1328	.prepare =	had_pcm_prepare,
1329	.trigger =	had_pcm_trigger,
1330	.pointer =	had_pcm_pointer,
1331	.mmap =		had_pcm_mmap,
1332};
1333
1334/* process mode change of the running stream; called in mutex */
1335static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1336{
1337	struct snd_pcm_substream *substream;
1338	int retval = 0;
1339	u32 disp_samp_freq, n_param;
1340	u32 link_rate = 0;
1341
1342	substream = had_substream_get(intelhaddata);
1343	if (!substream)
1344		return 0;
1345
1346	/* Disable Audio */
1347	had_enable_audio(intelhaddata, false);
1348
1349	/* Update CTS value */
1350	disp_samp_freq = intelhaddata->tmds_clock_speed;
1351
1352	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1353	if (retval) {
1354		dev_err(intelhaddata->dev,
1355			"programming N value failed %#x\n", retval);
1356		goto out;
1357	}
1358
1359	if (intelhaddata->dp_output)
1360		link_rate = intelhaddata->link_rate;
1361
1362	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1363		     n_param, intelhaddata);
1364
1365	/* Enable Audio */
1366	had_enable_audio(intelhaddata, true);
1367
1368out:
1369	had_substream_put(intelhaddata);
1370	return retval;
1371}
1372
1373/* process hot plug, called from wq with mutex locked */
1374static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1375{
1376	struct snd_pcm_substream *substream;
1377
1378	spin_lock_irq(&intelhaddata->had_spinlock);
1379	if (intelhaddata->connected) {
1380		dev_dbg(intelhaddata->dev, "Device already connected\n");
1381		spin_unlock_irq(&intelhaddata->had_spinlock);
1382		return;
1383	}
1384
1385	/* Disable Audio */
1386	had_enable_audio(intelhaddata, false);
1387
1388	intelhaddata->connected = true;
1389	dev_dbg(intelhaddata->dev,
1390		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391			__func__, __LINE__);
1392	spin_unlock_irq(&intelhaddata->had_spinlock);
1393
1394	had_build_channel_allocation_map(intelhaddata);
1395
1396	/* Report to above ALSA layer */
1397	substream = had_substream_get(intelhaddata);
1398	if (substream) {
1399		snd_pcm_stop_xrun(substream);
1400		had_substream_put(intelhaddata);
1401	}
1402
1403	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1404}
1405
1406/* process hot unplug, called from wq with mutex locked */
1407static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1408{
1409	struct snd_pcm_substream *substream;
1410
1411	spin_lock_irq(&intelhaddata->had_spinlock);
1412	if (!intelhaddata->connected) {
1413		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1414		spin_unlock_irq(&intelhaddata->had_spinlock);
1415		return;
1416
1417	}
1418
1419	/* Disable Audio */
1420	had_enable_audio(intelhaddata, false);
1421
1422	intelhaddata->connected = false;
1423	dev_dbg(intelhaddata->dev,
1424		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425			__func__, __LINE__);
1426	spin_unlock_irq(&intelhaddata->had_spinlock);
1427
1428	kfree(intelhaddata->chmap->chmap);
1429	intelhaddata->chmap->chmap = NULL;
1430
1431	/* Report to above ALSA layer */
1432	substream = had_substream_get(intelhaddata);
1433	if (substream) {
1434		snd_pcm_stop_xrun(substream);
1435		had_substream_put(intelhaddata);
1436	}
1437
1438	snd_jack_report(intelhaddata->jack, 0);
1439}
1440
1441/*
1442 * ALSA iec958 and ELD controls
1443 */
1444
1445static int had_iec958_info(struct snd_kcontrol *kcontrol,
1446				struct snd_ctl_elem_info *uinfo)
1447{
1448	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1449	uinfo->count = 1;
1450	return 0;
1451}
1452
1453static int had_iec958_get(struct snd_kcontrol *kcontrol,
1454				struct snd_ctl_elem_value *ucontrol)
1455{
1456	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457
1458	mutex_lock(&intelhaddata->mutex);
1459	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1460	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1461	ucontrol->value.iec958.status[2] =
1462					(intelhaddata->aes_bits >> 16) & 0xff;
1463	ucontrol->value.iec958.status[3] =
1464					(intelhaddata->aes_bits >> 24) & 0xff;
1465	mutex_unlock(&intelhaddata->mutex);
1466	return 0;
1467}
1468
1469static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1470				struct snd_ctl_elem_value *ucontrol)
1471{
1472	ucontrol->value.iec958.status[0] = 0xff;
1473	ucontrol->value.iec958.status[1] = 0xff;
1474	ucontrol->value.iec958.status[2] = 0xff;
1475	ucontrol->value.iec958.status[3] = 0xff;
1476	return 0;
1477}
1478
1479static int had_iec958_put(struct snd_kcontrol *kcontrol,
1480				struct snd_ctl_elem_value *ucontrol)
1481{
1482	unsigned int val;
1483	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484	int changed = 0;
1485
1486	val = (ucontrol->value.iec958.status[0] << 0) |
1487		(ucontrol->value.iec958.status[1] << 8) |
1488		(ucontrol->value.iec958.status[2] << 16) |
1489		(ucontrol->value.iec958.status[3] << 24);
1490	mutex_lock(&intelhaddata->mutex);
1491	if (intelhaddata->aes_bits != val) {
1492		intelhaddata->aes_bits = val;
1493		changed = 1;
1494	}
1495	mutex_unlock(&intelhaddata->mutex);
1496	return changed;
1497}
1498
1499static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1500			    struct snd_ctl_elem_info *uinfo)
1501{
1502	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1503	uinfo->count = HDMI_MAX_ELD_BYTES;
1504	return 0;
1505}
1506
1507static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1508			   struct snd_ctl_elem_value *ucontrol)
1509{
1510	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1511
1512	mutex_lock(&intelhaddata->mutex);
1513	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1514	       HDMI_MAX_ELD_BYTES);
1515	mutex_unlock(&intelhaddata->mutex);
1516	return 0;
1517}
1518
1519static const struct snd_kcontrol_new had_controls[] = {
1520	{
1521		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1522		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1524		.info = had_iec958_info, /* shared */
1525		.get = had_iec958_mask_get,
1526	},
1527	{
1528		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1529		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1530		.info = had_iec958_info,
1531		.get = had_iec958_get,
1532		.put = had_iec958_put,
1533	},
1534	{
1535		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1536			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1537		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1538		.name = "ELD",
1539		.info = had_ctl_eld_info,
1540		.get = had_ctl_eld_get,
1541	},
1542};
1543
1544/*
1545 * audio interrupt handler
1546 */
1547static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1548{
1549	struct snd_intelhad_card *card_ctx = dev_id;
1550	u32 audio_stat[3] = {};
1551	int pipe, port;
1552
1553	for_each_pipe(card_ctx, pipe) {
1554		/* use raw register access to ack IRQs even while disconnected */
1555		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1556							 AUD_HDMI_STATUS) &
1557			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1558
1559		if (audio_stat[pipe])
1560			had_write_register_raw(card_ctx, pipe,
1561					       AUD_HDMI_STATUS, audio_stat[pipe]);
1562	}
1563
1564	for_each_port(card_ctx, port) {
1565		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1566		int pipe = ctx->pipe;
1567
1568		if (pipe < 0)
1569			continue;
1570
1571		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1572			had_process_buffer_done(ctx);
1573		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1574			had_process_buffer_underrun(ctx);
1575	}
1576
1577	return IRQ_HANDLED;
1578}
1579
1580/*
1581 * monitor plug/unplug notification from i915; just kick off the work
1582 */
1583static void notify_audio_lpe(struct platform_device *pdev, int port)
1584{
1585	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1586	struct snd_intelhad *ctx;
1587
1588	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1589	if (single_port)
1590		ctx->port = port;
1591
1592	schedule_work(&ctx->hdmi_audio_wq);
1593}
1594
1595/* the work to handle monitor hot plug/unplug */
1596static void had_audio_wq(struct work_struct *work)
1597{
1598	struct snd_intelhad *ctx =
1599		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1600	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1601	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1602
1603	pm_runtime_get_sync(ctx->dev);
1604	mutex_lock(&ctx->mutex);
1605	if (ppdata->pipe < 0) {
1606		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607			__func__, ctx->port);
1608
1609		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1610
1611		ctx->dp_output = false;
1612		ctx->tmds_clock_speed = 0;
1613		ctx->link_rate = 0;
1614
1615		/* Shut down the stream */
1616		had_process_hot_unplug(ctx);
1617
1618		ctx->pipe = -1;
1619	} else {
1620		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621			__func__, ctx->port, ppdata->ls_clock);
1622
1623		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1624
1625		ctx->dp_output = ppdata->dp_output;
1626		if (ctx->dp_output) {
1627			ctx->tmds_clock_speed = 0;
1628			ctx->link_rate = ppdata->ls_clock;
1629		} else {
1630			ctx->tmds_clock_speed = ppdata->ls_clock;
1631			ctx->link_rate = 0;
1632		}
1633
1634		/*
1635		 * Shut down the stream before we change
1636		 * the pipe assignment for this pcm device
1637		 */
1638		had_process_hot_plug(ctx);
1639
1640		ctx->pipe = ppdata->pipe;
1641
1642		/* Restart the stream if necessary */
1643		had_process_mode_change(ctx);
1644	}
1645
1646	mutex_unlock(&ctx->mutex);
1647	pm_runtime_mark_last_busy(ctx->dev);
1648	pm_runtime_put_autosuspend(ctx->dev);
1649}
1650
1651/*
1652 * Jack interface
1653 */
1654static int had_create_jack(struct snd_intelhad *ctx,
1655			   struct snd_pcm *pcm)
1656{
1657	char hdmi_str[32];
1658	int err;
1659
1660	snprintf(hdmi_str, sizeof(hdmi_str),
1661		 "HDMI/DP,pcm=%d", pcm->device);
1662
1663	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1664			   SND_JACK_AVOUT, &ctx->jack,
1665			   true, false);
1666	if (err < 0)
1667		return err;
1668	ctx->jack->private_data = ctx;
1669	return 0;
1670}
1671
1672/*
1673 * PM callbacks
1674 */
1675
1676static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1677{
1678	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1679	int port;
1680
1681	for_each_port(card_ctx, port) {
1682		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1683		struct snd_pcm_substream *substream;
1684
1685		substream = had_substream_get(ctx);
1686		if (substream) {
1687			snd_pcm_suspend(substream);
1688			had_substream_put(ctx);
1689		}
1690	}
1691
1692	return 0;
1693}
1694
1695static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1696{
1697	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1698	int err;
1699
1700	err = hdmi_lpe_audio_runtime_suspend(dev);
1701	if (!err)
1702		snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1703	return err;
1704}
1705
1706static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1707{
1708	pm_runtime_mark_last_busy(dev);
1709	return 0;
1710}
1711
1712static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1713{
1714	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1715
1716	hdmi_lpe_audio_runtime_resume(dev);
1717	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1718	return 0;
1719}
1720
1721/* release resources */
1722static void hdmi_lpe_audio_free(struct snd_card *card)
1723{
1724	struct snd_intelhad_card *card_ctx = card->private_data;
1725	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1726	int port;
1727
1728	spin_lock_irq(&pdata->lpe_audio_slock);
1729	pdata->notify_audio_lpe = NULL;
1730	spin_unlock_irq(&pdata->lpe_audio_slock);
1731
1732	for_each_port(card_ctx, port) {
1733		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1734
1735		cancel_work_sync(&ctx->hdmi_audio_wq);
1736	}
1737
1738	if (card_ctx->mmio_start)
1739		iounmap(card_ctx->mmio_start);
1740	if (card_ctx->irq >= 0)
1741		free_irq(card_ctx->irq, card_ctx);
1742}
1743
1744/*
1745 * hdmi_lpe_audio_probe - start bridge with i915
1746 *
1747 * This function is called when the i915 driver creates the
1748 * hdmi-lpe-audio platform device.
1749 */
1750static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1751{
1752	struct snd_card *card;
1753	struct snd_intelhad_card *card_ctx;
1754	struct snd_intelhad *ctx;
1755	struct snd_pcm *pcm;
1756	struct intel_hdmi_lpe_audio_pdata *pdata;
1757	int irq;
1758	struct resource *res_mmio;
1759	int port, ret;
1760
1761	pdata = pdev->dev.platform_data;
1762	if (!pdata) {
1763		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1764		return -EINVAL;
1765	}
1766
1767	/* get resources */
1768	irq = platform_get_irq(pdev, 0);
1769	if (irq < 0) {
1770		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1771		return irq;
1772	}
1773
1774	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775	if (!res_mmio) {
1776		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1777		return -ENXIO;
1778	}
1779
1780	/* create a card instance with ALSA framework */
1781	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1782			   THIS_MODULE, sizeof(*card_ctx), &card);
1783	if (ret)
1784		return ret;
1785
1786	card_ctx = card->private_data;
1787	card_ctx->dev = &pdev->dev;
1788	card_ctx->card = card;
1789	strcpy(card->driver, INTEL_HAD);
1790	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1791	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1792
1793	card_ctx->irq = -1;
1794
1795	card->private_free = hdmi_lpe_audio_free;
1796
1797	platform_set_drvdata(pdev, card_ctx);
1798
1799	card_ctx->num_pipes = pdata->num_pipes;
1800	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1801
1802	for_each_port(card_ctx, port) {
1803		ctx = &card_ctx->pcm_ctx[port];
1804		ctx->card_ctx = card_ctx;
1805		ctx->dev = card_ctx->dev;
1806		ctx->port = single_port ? -1 : port;
1807		ctx->pipe = -1;
1808
1809		spin_lock_init(&ctx->had_spinlock);
1810		mutex_init(&ctx->mutex);
1811		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1812	}
1813
1814	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815		__func__, (unsigned int)res_mmio->start,
1816		(unsigned int)res_mmio->end);
1817
1818	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1819					       (size_t)(resource_size(res_mmio)));
1820	if (!card_ctx->mmio_start) {
1821		dev_err(&pdev->dev, "Could not get ioremap\n");
1822		ret = -EACCES;
1823		goto err;
1824	}
1825
1826	/* setup interrupt handler */
1827	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1828			  pdev->name, card_ctx);
1829	if (ret < 0) {
1830		dev_err(&pdev->dev, "request_irq failed\n");
1831		goto err;
1832	}
1833
1834	card_ctx->irq = irq;
1835
1836	/* only 32bit addressable */
1837	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1839
1840	init_channel_allocations();
1841
1842	card_ctx->num_pipes = pdata->num_pipes;
1843	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1844
1845	for_each_port(card_ctx, port) {
1846		int i;
1847
1848		ctx = &card_ctx->pcm_ctx[port];
1849		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1850				  MAX_CAP_STREAMS, &pcm);
1851		if (ret)
1852			goto err;
1853
1854		/* setup private data which can be retrieved when required */
1855		pcm->private_data = ctx;
1856		pcm->info_flags = 0;
1857		strncpy(pcm->name, card->shortname, strlen(card->shortname));
1858		/* setup the ops for playabck */
1859		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1860
1861		/* allocate dma pages;
1862		 * try to allocate 600k buffer as default which is large enough
1863		 */
1864		snd_pcm_lib_preallocate_pages_for_all(pcm,
1865						      SNDRV_DMA_TYPE_DEV, NULL,
1866						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1867
1868		/* create controls */
1869		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1870			struct snd_kcontrol *kctl;
1871
1872			kctl = snd_ctl_new1(&had_controls[i], ctx);
1873			if (!kctl) {
1874				ret = -ENOMEM;
1875				goto err;
1876			}
1877
1878			kctl->id.device = pcm->device;
1879
1880			ret = snd_ctl_add(card, kctl);
1881			if (ret < 0)
1882				goto err;
1883		}
1884
1885		/* Register channel map controls */
1886		ret = had_register_chmap_ctls(ctx, pcm);
1887		if (ret < 0)
1888			goto err;
1889
1890		ret = had_create_jack(ctx, pcm);
1891		if (ret < 0)
1892			goto err;
1893	}
1894
1895	ret = snd_card_register(card);
1896	if (ret)
1897		goto err;
1898
1899	spin_lock_irq(&pdata->lpe_audio_slock);
1900	pdata->notify_audio_lpe = notify_audio_lpe;
1901	spin_unlock_irq(&pdata->lpe_audio_slock);
1902
1903	pm_runtime_use_autosuspend(&pdev->dev);
1904	pm_runtime_mark_last_busy(&pdev->dev);
1905	pm_runtime_set_active(&pdev->dev);
1906
1907	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1908	for_each_port(card_ctx, port) {
1909		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1910
1911		schedule_work(&ctx->hdmi_audio_wq);
1912	}
1913
1914	return 0;
1915
1916err:
1917	snd_card_free(card);
1918	return ret;
1919}
1920
1921/*
1922 * hdmi_lpe_audio_remove - stop bridge with i915
1923 *
1924 * This function is called when the platform device is destroyed.
1925 */
1926static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1927{
1928	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1929
1930	snd_card_free(card_ctx->card);
1931	return 0;
1932}
1933
1934static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1935	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1936	SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1937			   hdmi_lpe_audio_runtime_resume, NULL)
1938};
1939
1940static struct platform_driver hdmi_lpe_audio_driver = {
1941	.driver		= {
1942		.name  = "hdmi-lpe-audio",
1943		.pm = &hdmi_lpe_audio_pm,
1944	},
1945	.probe          = hdmi_lpe_audio_probe,
1946	.remove		= hdmi_lpe_audio_remove,
1947};
1948
1949module_platform_driver(hdmi_lpe_audio_driver);
1950MODULE_ALIAS("platform:hdmi_lpe_audio");
1951
1952MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957MODULE_LICENSE("GPL v2");
1958MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");