Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 
 105#include <linux/timer.h>
 106#include <linux/string.h>
 107#include <linux/sockios.h>
 108#include <linux/net.h>
 109#include <linux/mm.h>
 110#include <linux/slab.h>
 111#include <linux/interrupt.h>
 112#include <linux/poll.h>
 113#include <linux/tcp.h>
 114#include <linux/init.h>
 115#include <linux/highmem.h>
 116#include <linux/user_namespace.h>
 117#include <linux/static_key.h>
 118#include <linux/memcontrol.h>
 119#include <linux/prefetch.h>
 120
 121#include <asm/uaccess.h>
 122
 123#include <linux/netdevice.h>
 124#include <net/protocol.h>
 125#include <linux/skbuff.h>
 126#include <net/net_namespace.h>
 127#include <net/request_sock.h>
 128#include <net/sock.h>
 129#include <linux/net_tstamp.h>
 130#include <net/xfrm.h>
 131#include <linux/ipsec.h>
 132#include <net/cls_cgroup.h>
 133#include <net/netprio_cgroup.h>
 
 134
 135#include <linux/filter.h>
 
 136
 137#include <trace/events/sock.h>
 138
 139#ifdef CONFIG_INET
 140#include <net/tcp.h>
 141#endif
 142
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 
 
 148/**
 149 * sk_ns_capable - General socket capability test
 150 * @sk: Socket to use a capability on or through
 151 * @user_ns: The user namespace of the capability to use
 152 * @cap: The capability to use
 153 *
 154 * Test to see if the opener of the socket had when the socket was
 155 * created and the current process has the capability @cap in the user
 156 * namespace @user_ns.
 157 */
 158bool sk_ns_capable(const struct sock *sk,
 159		   struct user_namespace *user_ns, int cap)
 160{
 161	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 162		ns_capable(user_ns, cap);
 163}
 164EXPORT_SYMBOL(sk_ns_capable);
 165
 166/**
 167 * sk_capable - Socket global capability test
 168 * @sk: Socket to use a capability on or through
 169 * @cap: The global capbility to use
 170 *
 171 * Test to see if the opener of the socket had when the socket was
 172 * created and the current process has the capability @cap in all user
 173 * namespaces.
 174 */
 175bool sk_capable(const struct sock *sk, int cap)
 176{
 177	return sk_ns_capable(sk, &init_user_ns, cap);
 178}
 179EXPORT_SYMBOL(sk_capable);
 180
 181/**
 182 * sk_net_capable - Network namespace socket capability test
 183 * @sk: Socket to use a capability on or through
 184 * @cap: The capability to use
 185 *
 186 * Test to see if the opener of the socket had when the socke was created
 187 * and the current process has the capability @cap over the network namespace
 188 * the socket is a member of.
 189 */
 190bool sk_net_capable(const struct sock *sk, int cap)
 191{
 192	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 193}
 194EXPORT_SYMBOL(sk_net_capable);
 195
 196
 197#ifdef CONFIG_MEMCG_KMEM
 198int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 199{
 200	struct proto *proto;
 201	int ret = 0;
 202
 203	mutex_lock(&proto_list_mutex);
 204	list_for_each_entry(proto, &proto_list, node) {
 205		if (proto->init_cgroup) {
 206			ret = proto->init_cgroup(memcg, ss);
 207			if (ret)
 208				goto out;
 209		}
 210	}
 211
 212	mutex_unlock(&proto_list_mutex);
 213	return ret;
 214out:
 215	list_for_each_entry_continue_reverse(proto, &proto_list, node)
 216		if (proto->destroy_cgroup)
 217			proto->destroy_cgroup(memcg);
 218	mutex_unlock(&proto_list_mutex);
 219	return ret;
 220}
 221
 222void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
 223{
 224	struct proto *proto;
 225
 226	mutex_lock(&proto_list_mutex);
 227	list_for_each_entry_reverse(proto, &proto_list, node)
 228		if (proto->destroy_cgroup)
 229			proto->destroy_cgroup(memcg);
 230	mutex_unlock(&proto_list_mutex);
 231}
 232#endif
 233
 234/*
 235 * Each address family might have different locking rules, so we have
 236 * one slock key per address family:
 
 237 */
 238static struct lock_class_key af_family_keys[AF_MAX];
 
 239static struct lock_class_key af_family_slock_keys[AF_MAX];
 240
 241#if defined(CONFIG_MEMCG_KMEM)
 242struct static_key memcg_socket_limit_enabled;
 243EXPORT_SYMBOL(memcg_socket_limit_enabled);
 244#endif
 245
 246/*
 247 * Make lock validator output more readable. (we pre-construct these
 248 * strings build-time, so that runtime initialization of socket
 249 * locks is fast):
 250 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251static const char *const af_family_key_strings[AF_MAX+1] = {
 252  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 253  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 254  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 255  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 256  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 257  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 258  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 259  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 260  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 261  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 262  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 263  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 264  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 265  "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
 266};
 267static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 268  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 269  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 270  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 271  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 272  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 273  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 274  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 275  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 276  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 277  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 278  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 279  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 280  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 281  "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
 282};
 283static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 284  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 285  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 286  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 287  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 288  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 289  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 290  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 291  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 292  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 293  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 294  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 295  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 296  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 297  "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298};
 299
 300/*
 301 * sk_callback_lock locking rules are per-address-family,
 302 * so split the lock classes by using a per-AF key:
 303 */
 304static struct lock_class_key af_callback_keys[AF_MAX];
 305
 306/* Take into consideration the size of the struct sk_buff overhead in the
 307 * determination of these values, since that is non-constant across
 308 * platforms.  This makes socket queueing behavior and performance
 309 * not depend upon such differences.
 310 */
 311#define _SK_MEM_PACKETS		256
 312#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
 313#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 314#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 315
 316/* Run time adjustable parameters. */
 317__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 318EXPORT_SYMBOL(sysctl_wmem_max);
 319__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 320EXPORT_SYMBOL(sysctl_rmem_max);
 321__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 322__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 323
 324/* Maximal space eaten by iovec or ancillary data plus some space */
 325int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 326EXPORT_SYMBOL(sysctl_optmem_max);
 327
 
 
 328struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 329EXPORT_SYMBOL_GPL(memalloc_socks);
 330
 331/**
 332 * sk_set_memalloc - sets %SOCK_MEMALLOC
 333 * @sk: socket to set it on
 334 *
 335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 336 * It's the responsibility of the admin to adjust min_free_kbytes
 337 * to meet the requirements
 338 */
 339void sk_set_memalloc(struct sock *sk)
 340{
 341	sock_set_flag(sk, SOCK_MEMALLOC);
 342	sk->sk_allocation |= __GFP_MEMALLOC;
 343	static_key_slow_inc(&memalloc_socks);
 344}
 345EXPORT_SYMBOL_GPL(sk_set_memalloc);
 346
 347void sk_clear_memalloc(struct sock *sk)
 348{
 349	sock_reset_flag(sk, SOCK_MEMALLOC);
 350	sk->sk_allocation &= ~__GFP_MEMALLOC;
 351	static_key_slow_dec(&memalloc_socks);
 352
 353	/*
 354	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 355	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
 356	 * it has rmem allocations there is a risk that the user of the
 357	 * socket cannot make forward progress due to exceeding the rmem
 358	 * limits. By rights, sk_clear_memalloc() should only be called
 359	 * on sockets being torn down but warn and reset the accounting if
 360	 * that assumption breaks.
 361	 */
 362	if (WARN_ON(sk->sk_forward_alloc))
 363		sk_mem_reclaim(sk);
 364}
 365EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 366
 367int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 368{
 369	int ret;
 370	unsigned long pflags = current->flags;
 371
 372	/* these should have been dropped before queueing */
 373	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 374
 375	current->flags |= PF_MEMALLOC;
 376	ret = sk->sk_backlog_rcv(sk, skb);
 377	tsk_restore_flags(current, pflags, PF_MEMALLOC);
 378
 379	return ret;
 380}
 381EXPORT_SYMBOL(__sk_backlog_rcv);
 382
 383static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 384{
 385	struct timeval tv;
 386
 387	if (optlen < sizeof(tv))
 388		return -EINVAL;
 389	if (copy_from_user(&tv, optval, sizeof(tv)))
 390		return -EFAULT;
 391	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 392		return -EDOM;
 393
 394	if (tv.tv_sec < 0) {
 395		static int warned __read_mostly;
 396
 397		*timeo_p = 0;
 398		if (warned < 10 && net_ratelimit()) {
 399			warned++;
 400			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 401				__func__, current->comm, task_pid_nr(current));
 402		}
 403		return 0;
 404	}
 405	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 406	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 407		return 0;
 408	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 409		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 410	return 0;
 411}
 412
 413static void sock_warn_obsolete_bsdism(const char *name)
 414{
 415	static int warned;
 416	static char warncomm[TASK_COMM_LEN];
 417	if (strcmp(warncomm, current->comm) && warned < 5) {
 418		strcpy(warncomm,  current->comm);
 419		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 420			warncomm, name);
 421		warned++;
 422	}
 423}
 424
 425#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 
 
 
 
 
 
 
 
 
 426
 427static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 428{
 429	if (sk->sk_flags & flags) {
 430		sk->sk_flags &= ~flags;
 431		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 
 432			net_disable_timestamp();
 433	}
 434}
 435
 436
 437int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 438{
 439	int err;
 440	int skb_len;
 441	unsigned long flags;
 442	struct sk_buff_head *list = &sk->sk_receive_queue;
 443
 444	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 445		atomic_inc(&sk->sk_drops);
 446		trace_sock_rcvqueue_full(sk, skb);
 447		return -ENOMEM;
 448	}
 449
 450	err = sk_filter(sk, skb);
 451	if (err)
 452		return err;
 453
 454	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 455		atomic_inc(&sk->sk_drops);
 456		return -ENOBUFS;
 457	}
 458
 459	skb->dev = NULL;
 460	skb_set_owner_r(skb, sk);
 461
 462	/* Cache the SKB length before we tack it onto the receive
 463	 * queue.  Once it is added it no longer belongs to us and
 464	 * may be freed by other threads of control pulling packets
 465	 * from the queue.
 466	 */
 467	skb_len = skb->len;
 468
 469	/* we escape from rcu protected region, make sure we dont leak
 470	 * a norefcounted dst
 471	 */
 472	skb_dst_force(skb);
 473
 474	spin_lock_irqsave(&list->lock, flags);
 475	skb->dropcount = atomic_read(&sk->sk_drops);
 476	__skb_queue_tail(list, skb);
 477	spin_unlock_irqrestore(&list->lock, flags);
 478
 479	if (!sock_flag(sk, SOCK_DEAD))
 480		sk->sk_data_ready(sk);
 481	return 0;
 482}
 
 
 
 
 
 
 
 
 
 
 
 
 483EXPORT_SYMBOL(sock_queue_rcv_skb);
 484
 485int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 486{
 487	int rc = NET_RX_SUCCESS;
 488
 489	if (sk_filter(sk, skb))
 490		goto discard_and_relse;
 491
 492	skb->dev = NULL;
 493
 494	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
 495		atomic_inc(&sk->sk_drops);
 496		goto discard_and_relse;
 497	}
 498	if (nested)
 499		bh_lock_sock_nested(sk);
 500	else
 501		bh_lock_sock(sk);
 502	if (!sock_owned_by_user(sk)) {
 503		/*
 504		 * trylock + unlock semantics:
 505		 */
 506		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 507
 508		rc = sk_backlog_rcv(sk, skb);
 509
 510		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 511	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 512		bh_unlock_sock(sk);
 513		atomic_inc(&sk->sk_drops);
 514		goto discard_and_relse;
 515	}
 516
 517	bh_unlock_sock(sk);
 518out:
 519	sock_put(sk);
 
 520	return rc;
 521discard_and_relse:
 522	kfree_skb(skb);
 523	goto out;
 524}
 525EXPORT_SYMBOL(sk_receive_skb);
 526
 527struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 528{
 529	struct dst_entry *dst = __sk_dst_get(sk);
 530
 531	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 532		sk_tx_queue_clear(sk);
 
 533		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 534		dst_release(dst);
 535		return NULL;
 536	}
 537
 538	return dst;
 539}
 540EXPORT_SYMBOL(__sk_dst_check);
 541
 542struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 547		sk_dst_reset(sk);
 548		dst_release(dst);
 549		return NULL;
 550	}
 551
 552	return dst;
 553}
 554EXPORT_SYMBOL(sk_dst_check);
 555
 556static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 557				int optlen)
 558{
 559	int ret = -ENOPROTOOPT;
 560#ifdef CONFIG_NETDEVICES
 561	struct net *net = sock_net(sk);
 562	char devname[IFNAMSIZ];
 563	int index;
 564
 565	/* Sorry... */
 566	ret = -EPERM;
 567	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 568		goto out;
 569
 570	ret = -EINVAL;
 571	if (optlen < 0)
 572		goto out;
 573
 574	/* Bind this socket to a particular device like "eth0",
 575	 * as specified in the passed interface name. If the
 576	 * name is "" or the option length is zero the socket
 577	 * is not bound.
 578	 */
 579	if (optlen > IFNAMSIZ - 1)
 580		optlen = IFNAMSIZ - 1;
 581	memset(devname, 0, sizeof(devname));
 582
 583	ret = -EFAULT;
 584	if (copy_from_user(devname, optval, optlen))
 585		goto out;
 586
 587	index = 0;
 588	if (devname[0] != '\0') {
 589		struct net_device *dev;
 590
 591		rcu_read_lock();
 592		dev = dev_get_by_name_rcu(net, devname);
 593		if (dev)
 594			index = dev->ifindex;
 595		rcu_read_unlock();
 596		ret = -ENODEV;
 597		if (!dev)
 598			goto out;
 599	}
 600
 601	lock_sock(sk);
 602	sk->sk_bound_dev_if = index;
 603	sk_dst_reset(sk);
 604	release_sock(sk);
 605
 606	ret = 0;
 607
 608out:
 609#endif
 610
 611	return ret;
 612}
 613
 614static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 615				int __user *optlen, int len)
 616{
 617	int ret = -ENOPROTOOPT;
 618#ifdef CONFIG_NETDEVICES
 619	struct net *net = sock_net(sk);
 620	char devname[IFNAMSIZ];
 621
 622	if (sk->sk_bound_dev_if == 0) {
 623		len = 0;
 624		goto zero;
 625	}
 626
 627	ret = -EINVAL;
 628	if (len < IFNAMSIZ)
 629		goto out;
 630
 631	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 632	if (ret)
 633		goto out;
 634
 635	len = strlen(devname) + 1;
 636
 637	ret = -EFAULT;
 638	if (copy_to_user(optval, devname, len))
 639		goto out;
 640
 641zero:
 642	ret = -EFAULT;
 643	if (put_user(len, optlen))
 644		goto out;
 645
 646	ret = 0;
 647
 648out:
 649#endif
 650
 651	return ret;
 652}
 653
 654static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 655{
 656	if (valbool)
 657		sock_set_flag(sk, bit);
 658	else
 659		sock_reset_flag(sk, bit);
 660}
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662/*
 663 *	This is meant for all protocols to use and covers goings on
 664 *	at the socket level. Everything here is generic.
 665 */
 666
 667int sock_setsockopt(struct socket *sock, int level, int optname,
 668		    char __user *optval, unsigned int optlen)
 669{
 670	struct sock *sk = sock->sk;
 671	int val;
 672	int valbool;
 673	struct linger ling;
 674	int ret = 0;
 675
 676	/*
 677	 *	Options without arguments
 678	 */
 679
 680	if (optname == SO_BINDTODEVICE)
 681		return sock_setbindtodevice(sk, optval, optlen);
 682
 683	if (optlen < sizeof(int))
 684		return -EINVAL;
 685
 686	if (get_user(val, (int __user *)optval))
 687		return -EFAULT;
 688
 689	valbool = val ? 1 : 0;
 690
 691	lock_sock(sk);
 692
 693	switch (optname) {
 694	case SO_DEBUG:
 695		if (val && !capable(CAP_NET_ADMIN))
 696			ret = -EACCES;
 697		else
 698			sock_valbool_flag(sk, SOCK_DBG, valbool);
 699		break;
 700	case SO_REUSEADDR:
 701		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 702		break;
 703	case SO_REUSEPORT:
 704		sk->sk_reuseport = valbool;
 705		break;
 706	case SO_TYPE:
 707	case SO_PROTOCOL:
 708	case SO_DOMAIN:
 709	case SO_ERROR:
 710		ret = -ENOPROTOOPT;
 711		break;
 712	case SO_DONTROUTE:
 713		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 714		break;
 715	case SO_BROADCAST:
 716		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 717		break;
 718	case SO_SNDBUF:
 719		/* Don't error on this BSD doesn't and if you think
 720		 * about it this is right. Otherwise apps have to
 721		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 722		 * are treated in BSD as hints
 723		 */
 724		val = min_t(u32, val, sysctl_wmem_max);
 725set_sndbuf:
 726		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 727		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
 728		/* Wake up sending tasks if we upped the value. */
 729		sk->sk_write_space(sk);
 730		break;
 731
 732	case SO_SNDBUFFORCE:
 733		if (!capable(CAP_NET_ADMIN)) {
 734			ret = -EPERM;
 735			break;
 736		}
 737		goto set_sndbuf;
 738
 739	case SO_RCVBUF:
 740		/* Don't error on this BSD doesn't and if you think
 741		 * about it this is right. Otherwise apps have to
 742		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 743		 * are treated in BSD as hints
 744		 */
 745		val = min_t(u32, val, sysctl_rmem_max);
 746set_rcvbuf:
 747		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 748		/*
 749		 * We double it on the way in to account for
 750		 * "struct sk_buff" etc. overhead.   Applications
 751		 * assume that the SO_RCVBUF setting they make will
 752		 * allow that much actual data to be received on that
 753		 * socket.
 754		 *
 755		 * Applications are unaware that "struct sk_buff" and
 756		 * other overheads allocate from the receive buffer
 757		 * during socket buffer allocation.
 758		 *
 759		 * And after considering the possible alternatives,
 760		 * returning the value we actually used in getsockopt
 761		 * is the most desirable behavior.
 762		 */
 763		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
 764		break;
 765
 766	case SO_RCVBUFFORCE:
 767		if (!capable(CAP_NET_ADMIN)) {
 768			ret = -EPERM;
 769			break;
 770		}
 771		goto set_rcvbuf;
 772
 773	case SO_KEEPALIVE:
 774#ifdef CONFIG_INET
 775		if (sk->sk_protocol == IPPROTO_TCP &&
 776		    sk->sk_type == SOCK_STREAM)
 777			tcp_set_keepalive(sk, valbool);
 778#endif
 779		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 780		break;
 781
 782	case SO_OOBINLINE:
 783		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 784		break;
 785
 786	case SO_NO_CHECK:
 787		sk->sk_no_check = valbool;
 788		break;
 789
 790	case SO_PRIORITY:
 791		if ((val >= 0 && val <= 6) ||
 792		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 793			sk->sk_priority = val;
 794		else
 795			ret = -EPERM;
 796		break;
 797
 798	case SO_LINGER:
 799		if (optlen < sizeof(ling)) {
 800			ret = -EINVAL;	/* 1003.1g */
 801			break;
 802		}
 803		if (copy_from_user(&ling, optval, sizeof(ling))) {
 804			ret = -EFAULT;
 805			break;
 806		}
 807		if (!ling.l_onoff)
 808			sock_reset_flag(sk, SOCK_LINGER);
 809		else {
 810#if (BITS_PER_LONG == 32)
 811			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 812				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 813			else
 814#endif
 815				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 816			sock_set_flag(sk, SOCK_LINGER);
 817		}
 818		break;
 819
 820	case SO_BSDCOMPAT:
 821		sock_warn_obsolete_bsdism("setsockopt");
 822		break;
 823
 824	case SO_PASSCRED:
 825		if (valbool)
 826			set_bit(SOCK_PASSCRED, &sock->flags);
 827		else
 828			clear_bit(SOCK_PASSCRED, &sock->flags);
 829		break;
 830
 831	case SO_TIMESTAMP:
 832	case SO_TIMESTAMPNS:
 833		if (valbool)  {
 834			if (optname == SO_TIMESTAMP)
 835				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 836			else
 837				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 838			sock_set_flag(sk, SOCK_RCVTSTAMP);
 839			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 840		} else {
 841			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 842			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 843		}
 844		break;
 845
 846	case SO_TIMESTAMPING:
 847		if (val & ~SOF_TIMESTAMPING_MASK) {
 848			ret = -EINVAL;
 849			break;
 850		}
 851		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 852				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 853		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 854				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 855		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 856				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 858			sock_enable_timestamp(sk,
 859					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 860		else
 861			sock_disable_timestamp(sk,
 862					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 863		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 864				  val & SOF_TIMESTAMPING_SOFTWARE);
 865		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 866				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 867		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 868				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 869		break;
 870
 871	case SO_RCVLOWAT:
 872		if (val < 0)
 873			val = INT_MAX;
 874		sk->sk_rcvlowat = val ? : 1;
 875		break;
 876
 877	case SO_RCVTIMEO:
 878		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 879		break;
 880
 881	case SO_SNDTIMEO:
 882		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 883		break;
 884
 885	case SO_ATTACH_FILTER:
 886		ret = -EINVAL;
 887		if (optlen == sizeof(struct sock_fprog)) {
 888			struct sock_fprog fprog;
 889
 890			ret = -EFAULT;
 891			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 892				break;
 893
 894			ret = sk_attach_filter(&fprog, sk);
 895		}
 896		break;
 897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	case SO_DETACH_FILTER:
 899		ret = sk_detach_filter(sk);
 900		break;
 901
 902	case SO_LOCK_FILTER:
 903		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 904			ret = -EPERM;
 905		else
 906			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 907		break;
 908
 909	case SO_PASSSEC:
 910		if (valbool)
 911			set_bit(SOCK_PASSSEC, &sock->flags);
 912		else
 913			clear_bit(SOCK_PASSSEC, &sock->flags);
 914		break;
 915	case SO_MARK:
 916		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 917			ret = -EPERM;
 918		else
 919			sk->sk_mark = val;
 920		break;
 921
 922		/* We implement the SO_SNDLOWAT etc to
 923		   not be settable (1003.1g 5.3) */
 924	case SO_RXQ_OVFL:
 925		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 926		break;
 927
 928	case SO_WIFI_STATUS:
 929		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 930		break;
 931
 932	case SO_PEEK_OFF:
 933		if (sock->ops->set_peek_off)
 934			ret = sock->ops->set_peek_off(sk, val);
 935		else
 936			ret = -EOPNOTSUPP;
 937		break;
 938
 939	case SO_NOFCS:
 940		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
 941		break;
 942
 943	case SO_SELECT_ERR_QUEUE:
 944		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
 945		break;
 946
 947#ifdef CONFIG_NET_RX_BUSY_POLL
 948	case SO_BUSY_POLL:
 949		/* allow unprivileged users to decrease the value */
 950		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
 951			ret = -EPERM;
 952		else {
 953			if (val < 0)
 954				ret = -EINVAL;
 955			else
 956				sk->sk_ll_usec = val;
 957		}
 958		break;
 959#endif
 960
 961	case SO_MAX_PACING_RATE:
 
 
 
 
 962		sk->sk_max_pacing_rate = val;
 963		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
 964					 sk->sk_max_pacing_rate);
 965		break;
 966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967	default:
 968		ret = -ENOPROTOOPT;
 969		break;
 970	}
 971	release_sock(sk);
 972	return ret;
 973}
 974EXPORT_SYMBOL(sock_setsockopt);
 975
 976
 977static void cred_to_ucred(struct pid *pid, const struct cred *cred,
 978			  struct ucred *ucred)
 979{
 980	ucred->pid = pid_vnr(pid);
 981	ucred->uid = ucred->gid = -1;
 982	if (cred) {
 983		struct user_namespace *current_ns = current_user_ns();
 984
 985		ucred->uid = from_kuid_munged(current_ns, cred->euid);
 986		ucred->gid = from_kgid_munged(current_ns, cred->egid);
 987	}
 988}
 989
 
 
 
 
 
 
 
 
 
 
 
 
 990int sock_getsockopt(struct socket *sock, int level, int optname,
 991		    char __user *optval, int __user *optlen)
 992{
 993	struct sock *sk = sock->sk;
 994
 995	union {
 996		int val;
 
 997		struct linger ling;
 998		struct timeval tm;
 999	} v;
1000
1001	int lv = sizeof(int);
1002	int len;
1003
1004	if (get_user(len, optlen))
1005		return -EFAULT;
1006	if (len < 0)
1007		return -EINVAL;
1008
1009	memset(&v, 0, sizeof(v));
1010
1011	switch (optname) {
1012	case SO_DEBUG:
1013		v.val = sock_flag(sk, SOCK_DBG);
1014		break;
1015
1016	case SO_DONTROUTE:
1017		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1018		break;
1019
1020	case SO_BROADCAST:
1021		v.val = sock_flag(sk, SOCK_BROADCAST);
1022		break;
1023
1024	case SO_SNDBUF:
1025		v.val = sk->sk_sndbuf;
1026		break;
1027
1028	case SO_RCVBUF:
1029		v.val = sk->sk_rcvbuf;
1030		break;
1031
1032	case SO_REUSEADDR:
1033		v.val = sk->sk_reuse;
1034		break;
1035
1036	case SO_REUSEPORT:
1037		v.val = sk->sk_reuseport;
1038		break;
1039
1040	case SO_KEEPALIVE:
1041		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1042		break;
1043
1044	case SO_TYPE:
1045		v.val = sk->sk_type;
1046		break;
1047
1048	case SO_PROTOCOL:
1049		v.val = sk->sk_protocol;
1050		break;
1051
1052	case SO_DOMAIN:
1053		v.val = sk->sk_family;
1054		break;
1055
1056	case SO_ERROR:
1057		v.val = -sock_error(sk);
1058		if (v.val == 0)
1059			v.val = xchg(&sk->sk_err_soft, 0);
1060		break;
1061
1062	case SO_OOBINLINE:
1063		v.val = sock_flag(sk, SOCK_URGINLINE);
1064		break;
1065
1066	case SO_NO_CHECK:
1067		v.val = sk->sk_no_check;
1068		break;
1069
1070	case SO_PRIORITY:
1071		v.val = sk->sk_priority;
1072		break;
1073
1074	case SO_LINGER:
1075		lv		= sizeof(v.ling);
1076		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1077		v.ling.l_linger	= sk->sk_lingertime / HZ;
1078		break;
1079
1080	case SO_BSDCOMPAT:
1081		sock_warn_obsolete_bsdism("getsockopt");
1082		break;
1083
1084	case SO_TIMESTAMP:
1085		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1086				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1087		break;
1088
1089	case SO_TIMESTAMPNS:
1090		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1091		break;
1092
1093	case SO_TIMESTAMPING:
1094		v.val = 0;
1095		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1096			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1097		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1098			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1099		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1100			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1101		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1102			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1103		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1104			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1105		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1106			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1107		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1108			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1109		break;
1110
1111	case SO_RCVTIMEO:
1112		lv = sizeof(struct timeval);
1113		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1114			v.tm.tv_sec = 0;
1115			v.tm.tv_usec = 0;
1116		} else {
1117			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1118			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1119		}
1120		break;
1121
1122	case SO_SNDTIMEO:
1123		lv = sizeof(struct timeval);
1124		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1125			v.tm.tv_sec = 0;
1126			v.tm.tv_usec = 0;
1127		} else {
1128			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1129			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1130		}
1131		break;
1132
1133	case SO_RCVLOWAT:
1134		v.val = sk->sk_rcvlowat;
1135		break;
1136
1137	case SO_SNDLOWAT:
1138		v.val = 1;
1139		break;
1140
1141	case SO_PASSCRED:
1142		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1143		break;
1144
1145	case SO_PEERCRED:
1146	{
1147		struct ucred peercred;
1148		if (len > sizeof(peercred))
1149			len = sizeof(peercred);
1150		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1151		if (copy_to_user(optval, &peercred, len))
1152			return -EFAULT;
1153		goto lenout;
1154	}
1155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156	case SO_PEERNAME:
1157	{
1158		char address[128];
1159
1160		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
1161			return -ENOTCONN;
1162		if (lv < len)
1163			return -EINVAL;
1164		if (copy_to_user(optval, address, len))
1165			return -EFAULT;
1166		goto lenout;
1167	}
1168
1169	/* Dubious BSD thing... Probably nobody even uses it, but
1170	 * the UNIX standard wants it for whatever reason... -DaveM
1171	 */
1172	case SO_ACCEPTCONN:
1173		v.val = sk->sk_state == TCP_LISTEN;
1174		break;
1175
1176	case SO_PASSSEC:
1177		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1178		break;
1179
1180	case SO_PEERSEC:
1181		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1182
1183	case SO_MARK:
1184		v.val = sk->sk_mark;
1185		break;
1186
1187	case SO_RXQ_OVFL:
1188		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1189		break;
1190
1191	case SO_WIFI_STATUS:
1192		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1193		break;
1194
1195	case SO_PEEK_OFF:
1196		if (!sock->ops->set_peek_off)
1197			return -EOPNOTSUPP;
1198
1199		v.val = sk->sk_peek_off;
1200		break;
1201	case SO_NOFCS:
1202		v.val = sock_flag(sk, SOCK_NOFCS);
1203		break;
1204
1205	case SO_BINDTODEVICE:
1206		return sock_getbindtodevice(sk, optval, optlen, len);
1207
1208	case SO_GET_FILTER:
1209		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1210		if (len < 0)
1211			return len;
1212
1213		goto lenout;
1214
1215	case SO_LOCK_FILTER:
1216		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1217		break;
1218
1219	case SO_BPF_EXTENSIONS:
1220		v.val = bpf_tell_extensions();
1221		break;
1222
1223	case SO_SELECT_ERR_QUEUE:
1224		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1225		break;
1226
1227#ifdef CONFIG_NET_RX_BUSY_POLL
1228	case SO_BUSY_POLL:
1229		v.val = sk->sk_ll_usec;
1230		break;
1231#endif
1232
1233	case SO_MAX_PACING_RATE:
1234		v.val = sk->sk_max_pacing_rate;
1235		break;
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	default:
 
 
 
1238		return -ENOPROTOOPT;
1239	}
1240
1241	if (len > lv)
1242		len = lv;
1243	if (copy_to_user(optval, &v, len))
1244		return -EFAULT;
1245lenout:
1246	if (put_user(len, optlen))
1247		return -EFAULT;
1248	return 0;
1249}
1250
1251/*
1252 * Initialize an sk_lock.
1253 *
1254 * (We also register the sk_lock with the lock validator.)
1255 */
1256static inline void sock_lock_init(struct sock *sk)
1257{
1258	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
1259			af_family_slock_key_strings[sk->sk_family],
1260			af_family_slock_keys + sk->sk_family,
1261			af_family_key_strings[sk->sk_family],
1262			af_family_keys + sk->sk_family);
1263}
1264
1265/*
1266 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1267 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1268 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1269 */
1270static void sock_copy(struct sock *nsk, const struct sock *osk)
1271{
1272#ifdef CONFIG_SECURITY_NETWORK
1273	void *sptr = nsk->sk_security;
1274#endif
1275	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1276
1277	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1278	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1279
1280#ifdef CONFIG_SECURITY_NETWORK
1281	nsk->sk_security = sptr;
1282	security_sk_clone(osk, nsk);
1283#endif
1284}
1285
1286void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1287{
1288	unsigned long nulls1, nulls2;
1289
1290	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1291	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1292	if (nulls1 > nulls2)
1293		swap(nulls1, nulls2);
1294
1295	if (nulls1 != 0)
1296		memset((char *)sk, 0, nulls1);
1297	memset((char *)sk + nulls1 + sizeof(void *), 0,
1298	       nulls2 - nulls1 - sizeof(void *));
1299	memset((char *)sk + nulls2 + sizeof(void *), 0,
1300	       size - nulls2 - sizeof(void *));
1301}
1302EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1303
1304static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1305		int family)
1306{
1307	struct sock *sk;
1308	struct kmem_cache *slab;
1309
1310	slab = prot->slab;
1311	if (slab != NULL) {
1312		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1313		if (!sk)
1314			return sk;
1315		if (priority & __GFP_ZERO) {
1316			if (prot->clear_sk)
1317				prot->clear_sk(sk, prot->obj_size);
1318			else
1319				sk_prot_clear_nulls(sk, prot->obj_size);
1320		}
1321	} else
1322		sk = kmalloc(prot->obj_size, priority);
1323
1324	if (sk != NULL) {
1325		kmemcheck_annotate_bitfield(sk, flags);
1326
1327		if (security_sk_alloc(sk, family, priority))
1328			goto out_free;
1329
1330		if (!try_module_get(prot->owner))
1331			goto out_free_sec;
1332		sk_tx_queue_clear(sk);
1333	}
1334
1335	return sk;
1336
1337out_free_sec:
1338	security_sk_free(sk);
1339out_free:
1340	if (slab != NULL)
1341		kmem_cache_free(slab, sk);
1342	else
1343		kfree(sk);
1344	return NULL;
1345}
1346
1347static void sk_prot_free(struct proto *prot, struct sock *sk)
1348{
1349	struct kmem_cache *slab;
1350	struct module *owner;
1351
1352	owner = prot->owner;
1353	slab = prot->slab;
1354
 
 
1355	security_sk_free(sk);
1356	if (slab != NULL)
1357		kmem_cache_free(slab, sk);
1358	else
1359		kfree(sk);
1360	module_put(owner);
1361}
1362
1363#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1364void sock_update_netprioidx(struct sock *sk)
1365{
1366	if (in_interrupt())
1367		return;
1368
1369	sk->sk_cgrp_prioidx = task_netprioidx(current);
1370}
1371EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1372#endif
1373
1374/**
1375 *	sk_alloc - All socket objects are allocated here
1376 *	@net: the applicable net namespace
1377 *	@family: protocol family
1378 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1379 *	@prot: struct proto associated with this new sock instance
 
1380 */
1381struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1382		      struct proto *prot)
1383{
1384	struct sock *sk;
1385
1386	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1387	if (sk) {
1388		sk->sk_family = family;
1389		/*
1390		 * See comment in struct sock definition to understand
1391		 * why we need sk_prot_creator -acme
1392		 */
1393		sk->sk_prot = sk->sk_prot_creator = prot;
 
1394		sock_lock_init(sk);
1395		sock_net_set(sk, get_net(net));
1396		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
1397
1398		sock_update_classid(sk);
1399		sock_update_netprioidx(sk);
 
 
 
 
 
1400	}
1401
1402	return sk;
1403}
1404EXPORT_SYMBOL(sk_alloc);
1405
1406static void __sk_free(struct sock *sk)
 
 
 
1407{
 
1408	struct sk_filter *filter;
1409
1410	if (sk->sk_destruct)
1411		sk->sk_destruct(sk);
1412
1413	filter = rcu_dereference_check(sk->sk_filter,
1414				       atomic_read(&sk->sk_wmem_alloc) == 0);
1415	if (filter) {
1416		sk_filter_uncharge(sk, filter);
1417		RCU_INIT_POINTER(sk->sk_filter, NULL);
1418	}
 
 
1419
1420	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1421
1422	if (atomic_read(&sk->sk_omem_alloc))
1423		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1424			 __func__, atomic_read(&sk->sk_omem_alloc));
1425
 
 
 
 
 
1426	if (sk->sk_peer_cred)
1427		put_cred(sk->sk_peer_cred);
1428	put_pid(sk->sk_peer_pid);
1429	put_net(sock_net(sk));
 
1430	sk_prot_free(sk->sk_prot_creator, sk);
1431}
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433void sk_free(struct sock *sk)
1434{
1435	/*
1436	 * We subtract one from sk_wmem_alloc and can know if
1437	 * some packets are still in some tx queue.
1438	 * If not null, sock_wfree() will call __sk_free(sk) later
1439	 */
1440	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1441		__sk_free(sk);
1442}
1443EXPORT_SYMBOL(sk_free);
1444
1445/*
1446 * Last sock_put should drop reference to sk->sk_net. It has already
1447 * been dropped in sk_change_net. Taking reference to stopping namespace
1448 * is not an option.
1449 * Take reference to a socket to remove it from hash _alive_ and after that
1450 * destroy it in the context of init_net.
1451 */
1452void sk_release_kernel(struct sock *sk)
1453{
1454	if (sk == NULL || sk->sk_socket == NULL)
1455		return;
1456
1457	sock_hold(sk);
1458	sock_release(sk->sk_socket);
1459	release_net(sock_net(sk));
1460	sock_net_set(sk, get_net(&init_net));
1461	sock_put(sk);
1462}
1463EXPORT_SYMBOL(sk_release_kernel);
1464
1465static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1466{
1467	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1468		sock_update_memcg(newsk);
 
 
 
 
 
 
 
 
 
1469}
1470
1471/**
1472 *	sk_clone_lock - clone a socket, and lock its clone
1473 *	@sk: the socket to clone
1474 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1475 *
1476 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1477 */
1478struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1479{
1480	struct sock *newsk;
 
1481
1482	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1483	if (newsk != NULL) {
1484		struct sk_filter *filter;
1485
1486		sock_copy(newsk, sk);
1487
 
 
1488		/* SANITY */
1489		get_net(sock_net(newsk));
 
1490		sk_node_init(&newsk->sk_node);
1491		sock_lock_init(newsk);
1492		bh_lock_sock(newsk);
1493		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1494		newsk->sk_backlog.len = 0;
1495
1496		atomic_set(&newsk->sk_rmem_alloc, 0);
1497		/*
1498		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1499		 */
1500		atomic_set(&newsk->sk_wmem_alloc, 1);
1501		atomic_set(&newsk->sk_omem_alloc, 0);
1502		skb_queue_head_init(&newsk->sk_receive_queue);
1503		skb_queue_head_init(&newsk->sk_write_queue);
1504#ifdef CONFIG_NET_DMA
1505		skb_queue_head_init(&newsk->sk_async_wait_queue);
1506#endif
1507
1508		spin_lock_init(&newsk->sk_dst_lock);
1509		rwlock_init(&newsk->sk_callback_lock);
1510		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1511				af_callback_keys + newsk->sk_family,
1512				af_family_clock_key_strings[newsk->sk_family]);
1513
1514		newsk->sk_dst_cache	= NULL;
 
1515		newsk->sk_wmem_queued	= 0;
1516		newsk->sk_forward_alloc = 0;
 
1517		newsk->sk_send_head	= NULL;
1518		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
 
1519
1520		sock_reset_flag(newsk, SOCK_DONE);
1521		skb_queue_head_init(&newsk->sk_error_queue);
 
1522
1523		filter = rcu_dereference_protected(newsk->sk_filter, 1);
 
1524		if (filter != NULL)
1525			sk_filter_charge(newsk, filter);
 
 
 
 
 
 
1526
1527		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1528			/* It is still raw copy of parent, so invalidate
1529			 * destructor and make plain sk_free() */
1530			newsk->sk_destruct = NULL;
1531			bh_unlock_sock(newsk);
1532			sk_free(newsk);
 
 
1533			newsk = NULL;
1534			goto out;
1535		}
 
1536
1537		newsk->sk_err	   = 0;
 
1538		newsk->sk_priority = 0;
 
 
 
 
 
1539		/*
1540		 * Before updating sk_refcnt, we must commit prior changes to memory
1541		 * (Documentation/RCU/rculist_nulls.txt for details)
1542		 */
1543		smp_wmb();
1544		atomic_set(&newsk->sk_refcnt, 2);
1545
1546		/*
1547		 * Increment the counter in the same struct proto as the master
1548		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1549		 * is the same as sk->sk_prot->socks, as this field was copied
1550		 * with memcpy).
1551		 *
1552		 * This _changes_ the previous behaviour, where
1553		 * tcp_create_openreq_child always was incrementing the
1554		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1555		 * to be taken into account in all callers. -acme
1556		 */
1557		sk_refcnt_debug_inc(newsk);
1558		sk_set_socket(newsk, NULL);
1559		newsk->sk_wq = NULL;
1560
1561		sk_update_clone(sk, newsk);
1562
1563		if (newsk->sk_prot->sockets_allocated)
1564			sk_sockets_allocated_inc(newsk);
1565
1566		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
 
1567			net_enable_timestamp();
1568	}
1569out:
1570	return newsk;
1571}
1572EXPORT_SYMBOL_GPL(sk_clone_lock);
1573
 
 
 
 
 
 
 
 
 
 
1574void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1575{
1576	__sk_dst_set(sk, dst);
1577	sk->sk_route_caps = dst->dev->features;
 
 
1578	if (sk->sk_route_caps & NETIF_F_GSO)
1579		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1580	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1581	if (sk_can_gso(sk)) {
1582		if (dst->header_len) {
1583			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1584		} else {
1585			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1586			sk->sk_gso_max_size = dst->dev->gso_max_size;
1587			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1588		}
1589	}
 
1590}
1591EXPORT_SYMBOL_GPL(sk_setup_caps);
1592
1593/*
1594 *	Simple resource managers for sockets.
1595 */
1596
1597
1598/*
1599 * Write buffer destructor automatically called from kfree_skb.
1600 */
1601void sock_wfree(struct sk_buff *skb)
1602{
1603	struct sock *sk = skb->sk;
1604	unsigned int len = skb->truesize;
1605
1606	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1607		/*
1608		 * Keep a reference on sk_wmem_alloc, this will be released
1609		 * after sk_write_space() call
1610		 */
1611		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1612		sk->sk_write_space(sk);
1613		len = 1;
1614	}
1615	/*
1616	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1617	 * could not do because of in-flight packets
1618	 */
1619	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1620		__sk_free(sk);
1621}
1622EXPORT_SYMBOL(sock_wfree);
1623
1624void skb_orphan_partial(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
1625{
1626	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1627	 * so we do not completely orphan skb, but transfert all
1628	 * accounted bytes but one, to avoid unexpected reorders.
 
 
 
 
 
 
 
 
 
 
 
 
1629	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630	if (skb->destructor == sock_wfree
1631#ifdef CONFIG_INET
1632	    || skb->destructor == tcp_wfree
1633#endif
1634		) {
1635		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1636		skb->truesize = 1;
 
 
 
 
1637	} else {
1638		skb_orphan(skb);
1639	}
1640}
1641EXPORT_SYMBOL(skb_orphan_partial);
1642
1643/*
1644 * Read buffer destructor automatically called from kfree_skb.
1645 */
1646void sock_rfree(struct sk_buff *skb)
1647{
1648	struct sock *sk = skb->sk;
1649	unsigned int len = skb->truesize;
1650
1651	atomic_sub(len, &sk->sk_rmem_alloc);
1652	sk_mem_uncharge(sk, len);
1653}
1654EXPORT_SYMBOL(sock_rfree);
1655
1656void sock_edemux(struct sk_buff *skb)
 
 
 
 
1657{
1658	struct sock *sk = skb->sk;
1659
1660#ifdef CONFIG_INET
1661	if (sk->sk_state == TCP_TIME_WAIT)
1662		inet_twsk_put(inet_twsk(sk));
1663	else
1664#endif
1665		sock_put(sk);
1666}
1667EXPORT_SYMBOL(sock_edemux);
1668
1669kuid_t sock_i_uid(struct sock *sk)
1670{
1671	kuid_t uid;
1672
1673	read_lock_bh(&sk->sk_callback_lock);
1674	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1675	read_unlock_bh(&sk->sk_callback_lock);
1676	return uid;
1677}
1678EXPORT_SYMBOL(sock_i_uid);
1679
1680unsigned long sock_i_ino(struct sock *sk)
1681{
1682	unsigned long ino;
1683
1684	read_lock_bh(&sk->sk_callback_lock);
1685	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1686	read_unlock_bh(&sk->sk_callback_lock);
1687	return ino;
1688}
1689EXPORT_SYMBOL(sock_i_ino);
1690
1691/*
1692 * Allocate a skb from the socket's send buffer.
1693 */
1694struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1695			     gfp_t priority)
1696{
1697	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1698		struct sk_buff *skb = alloc_skb(size, priority);
1699		if (skb) {
1700			skb_set_owner_w(skb, sk);
1701			return skb;
1702		}
1703	}
1704	return NULL;
1705}
1706EXPORT_SYMBOL(sock_wmalloc);
1707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708/*
1709 * Allocate a memory block from the socket's option memory buffer.
1710 */
1711void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1712{
1713	if ((unsigned int)size <= sysctl_optmem_max &&
1714	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1715		void *mem;
1716		/* First do the add, to avoid the race if kmalloc
1717		 * might sleep.
1718		 */
1719		atomic_add(size, &sk->sk_omem_alloc);
1720		mem = kmalloc(size, priority);
1721		if (mem)
1722			return mem;
1723		atomic_sub(size, &sk->sk_omem_alloc);
1724	}
1725	return NULL;
1726}
1727EXPORT_SYMBOL(sock_kmalloc);
1728
1729/*
1730 * Free an option memory block.
 
1731 */
1732void sock_kfree_s(struct sock *sk, void *mem, int size)
 
1733{
1734	kfree(mem);
 
 
 
 
 
1735	atomic_sub(size, &sk->sk_omem_alloc);
1736}
 
 
 
 
 
1737EXPORT_SYMBOL(sock_kfree_s);
1738
 
 
 
 
 
 
1739/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1740   I think, these locks should be removed for datagram sockets.
1741 */
1742static long sock_wait_for_wmem(struct sock *sk, long timeo)
1743{
1744	DEFINE_WAIT(wait);
1745
1746	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1747	for (;;) {
1748		if (!timeo)
1749			break;
1750		if (signal_pending(current))
1751			break;
1752		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1753		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1754		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1755			break;
1756		if (sk->sk_shutdown & SEND_SHUTDOWN)
1757			break;
1758		if (sk->sk_err)
1759			break;
1760		timeo = schedule_timeout(timeo);
1761	}
1762	finish_wait(sk_sleep(sk), &wait);
1763	return timeo;
1764}
1765
1766
1767/*
1768 *	Generic send/receive buffer handlers
1769 */
1770
1771struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1772				     unsigned long data_len, int noblock,
1773				     int *errcode, int max_page_order)
1774{
1775	struct sk_buff *skb = NULL;
1776	unsigned long chunk;
1777	gfp_t gfp_mask;
1778	long timeo;
1779	int err;
1780	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1781	struct page *page;
1782	int i;
1783
1784	err = -EMSGSIZE;
1785	if (npages > MAX_SKB_FRAGS)
1786		goto failure;
1787
1788	timeo = sock_sndtimeo(sk, noblock);
1789	while (!skb) {
1790		err = sock_error(sk);
1791		if (err != 0)
1792			goto failure;
1793
1794		err = -EPIPE;
1795		if (sk->sk_shutdown & SEND_SHUTDOWN)
1796			goto failure;
1797
1798		if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1799			set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1800			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1801			err = -EAGAIN;
1802			if (!timeo)
1803				goto failure;
1804			if (signal_pending(current))
1805				goto interrupted;
1806			timeo = sock_wait_for_wmem(sk, timeo);
1807			continue;
1808		}
1809
1810		err = -ENOBUFS;
1811		gfp_mask = sk->sk_allocation;
1812		if (gfp_mask & __GFP_WAIT)
1813			gfp_mask |= __GFP_REPEAT;
1814
1815		skb = alloc_skb(header_len, gfp_mask);
1816		if (!skb)
 
 
1817			goto failure;
1818
1819		skb->truesize += data_len;
1820
1821		for (i = 0; npages > 0; i++) {
1822			int order = max_page_order;
1823
1824			while (order) {
1825				if (npages >= 1 << order) {
1826					page = alloc_pages(sk->sk_allocation |
1827							   __GFP_COMP |
1828							   __GFP_NOWARN |
1829							   __GFP_NORETRY,
1830							   order);
1831					if (page)
1832						goto fill_page;
1833				}
1834				order--;
1835			}
1836			page = alloc_page(sk->sk_allocation);
1837			if (!page)
1838				goto failure;
1839fill_page:
1840			chunk = min_t(unsigned long, data_len,
1841				      PAGE_SIZE << order);
1842			skb_fill_page_desc(skb, i, page, 0, chunk);
1843			data_len -= chunk;
1844			npages -= 1 << order;
1845		}
1846	}
1847
1848	skb_set_owner_w(skb, sk);
 
 
1849	return skb;
1850
1851interrupted:
1852	err = sock_intr_errno(timeo);
1853failure:
1854	kfree_skb(skb);
1855	*errcode = err;
1856	return NULL;
1857}
1858EXPORT_SYMBOL(sock_alloc_send_pskb);
1859
1860struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1861				    int noblock, int *errcode)
1862{
1863	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1864}
1865EXPORT_SYMBOL(sock_alloc_send_skb);
1866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867/* On 32bit arches, an skb frag is limited to 2^15 */
1868#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1869
1870/**
1871 * skb_page_frag_refill - check that a page_frag contains enough room
1872 * @sz: minimum size of the fragment we want to get
1873 * @pfrag: pointer to page_frag
1874 * @prio: priority for memory allocation
1875 *
1876 * Note: While this allocator tries to use high order pages, there is
1877 * no guarantee that allocations succeed. Therefore, @sz MUST be
1878 * less or equal than PAGE_SIZE.
1879 */
1880bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1881{
1882	int order;
1883
1884	if (pfrag->page) {
1885		if (atomic_read(&pfrag->page->_count) == 1) {
1886			pfrag->offset = 0;
1887			return true;
1888		}
1889		if (pfrag->offset + sz <= pfrag->size)
1890			return true;
1891		put_page(pfrag->page);
1892	}
1893
1894	order = SKB_FRAG_PAGE_ORDER;
1895	do {
1896		gfp_t gfp = prio;
1897
1898		if (order)
1899			gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1900		pfrag->page = alloc_pages(gfp, order);
1901		if (likely(pfrag->page)) {
1902			pfrag->offset = 0;
1903			pfrag->size = PAGE_SIZE << order;
1904			return true;
1905		}
1906	} while (--order >= 0);
1907
 
 
 
 
1908	return false;
1909}
1910EXPORT_SYMBOL(skb_page_frag_refill);
1911
1912bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1913{
1914	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1915		return true;
1916
1917	sk_enter_memory_pressure(sk);
1918	sk_stream_moderate_sndbuf(sk);
1919	return false;
1920}
1921EXPORT_SYMBOL(sk_page_frag_refill);
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static void __lock_sock(struct sock *sk)
1924	__releases(&sk->sk_lock.slock)
1925	__acquires(&sk->sk_lock.slock)
1926{
1927	DEFINE_WAIT(wait);
1928
1929	for (;;) {
1930		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1931					TASK_UNINTERRUPTIBLE);
1932		spin_unlock_bh(&sk->sk_lock.slock);
1933		schedule();
1934		spin_lock_bh(&sk->sk_lock.slock);
1935		if (!sock_owned_by_user(sk))
1936			break;
1937	}
1938	finish_wait(&sk->sk_lock.wq, &wait);
1939}
1940
1941static void __release_sock(struct sock *sk)
1942	__releases(&sk->sk_lock.slock)
1943	__acquires(&sk->sk_lock.slock)
1944{
1945	struct sk_buff *skb = sk->sk_backlog.head;
1946
1947	do {
1948		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1949		bh_unlock_sock(sk);
1950
1951		do {
1952			struct sk_buff *next = skb->next;
1953
 
 
1954			prefetch(next);
1955			WARN_ON_ONCE(skb_dst_is_noref(skb));
1956			skb->next = NULL;
1957			sk_backlog_rcv(sk, skb);
1958
1959			/*
1960			 * We are in process context here with softirqs
1961			 * disabled, use cond_resched_softirq() to preempt.
1962			 * This is safe to do because we've taken the backlog
1963			 * queue private:
1964			 */
1965			cond_resched_softirq();
1966
1967			skb = next;
1968		} while (skb != NULL);
1969
1970		bh_lock_sock(sk);
1971	} while ((skb = sk->sk_backlog.head) != NULL);
1972
1973	/*
1974	 * Doing the zeroing here guarantee we can not loop forever
1975	 * while a wild producer attempts to flood us.
1976	 */
1977	sk->sk_backlog.len = 0;
1978}
1979
 
 
 
 
 
 
 
1980/**
1981 * sk_wait_data - wait for data to arrive at sk_receive_queue
1982 * @sk:    sock to wait on
1983 * @timeo: for how long
 
1984 *
1985 * Now socket state including sk->sk_err is changed only under lock,
1986 * hence we may omit checks after joining wait queue.
1987 * We check receive queue before schedule() only as optimization;
1988 * it is very likely that release_sock() added new data.
1989 */
1990int sk_wait_data(struct sock *sk, long *timeo)
1991{
 
1992	int rc;
1993	DEFINE_WAIT(wait);
1994
1995	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1996	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1997	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1998	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1999	finish_wait(sk_sleep(sk), &wait);
2000	return rc;
2001}
2002EXPORT_SYMBOL(sk_wait_data);
2003
2004/**
2005 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2006 *	@sk: socket
2007 *	@size: memory size to allocate
 
2008 *	@kind: allocation type
2009 *
2010 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2011 *	rmem allocation. This function assumes that protocols which have
2012 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2013 */
2014int __sk_mem_schedule(struct sock *sk, int size, int kind)
2015{
2016	struct proto *prot = sk->sk_prot;
2017	int amt = sk_mem_pages(size);
2018	long allocated;
2019	int parent_status = UNDER_LIMIT;
2020
2021	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2022
2023	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
 
 
2024
2025	/* Under limit. */
2026	if (parent_status == UNDER_LIMIT &&
2027			allocated <= sk_prot_mem_limits(sk, 0)) {
2028		sk_leave_memory_pressure(sk);
2029		return 1;
2030	}
2031
2032	/* Under pressure. (we or our parents) */
2033	if ((parent_status > SOFT_LIMIT) ||
2034			allocated > sk_prot_mem_limits(sk, 1))
2035		sk_enter_memory_pressure(sk);
2036
2037	/* Over hard limit (we or our parents) */
2038	if ((parent_status == OVER_LIMIT) ||
2039			(allocated > sk_prot_mem_limits(sk, 2)))
2040		goto suppress_allocation;
2041
2042	/* guarantee minimum buffer size under pressure */
2043	if (kind == SK_MEM_RECV) {
2044		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2045			return 1;
2046
2047	} else { /* SK_MEM_SEND */
 
 
2048		if (sk->sk_type == SOCK_STREAM) {
2049			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2050				return 1;
2051		} else if (atomic_read(&sk->sk_wmem_alloc) <
2052			   prot->sysctl_wmem[0])
2053				return 1;
 
2054	}
2055
2056	if (sk_has_memory_pressure(sk)) {
2057		int alloc;
2058
2059		if (!sk_under_memory_pressure(sk))
2060			return 1;
2061		alloc = sk_sockets_allocated_read_positive(sk);
2062		if (sk_prot_mem_limits(sk, 2) > alloc *
2063		    sk_mem_pages(sk->sk_wmem_queued +
2064				 atomic_read(&sk->sk_rmem_alloc) +
2065				 sk->sk_forward_alloc))
2066			return 1;
2067	}
2068
2069suppress_allocation:
2070
2071	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2072		sk_stream_moderate_sndbuf(sk);
2073
2074		/* Fail only if socket is _under_ its sndbuf.
2075		 * In this case we cannot block, so that we have to fail.
2076		 */
2077		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2078			return 1;
2079	}
2080
2081	trace_sock_exceed_buf_limit(sk, prot, allocated);
2082
2083	/* Alas. Undo changes. */
2084	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2085
2086	sk_memory_allocated_sub(sk, amt);
2087
 
 
 
2088	return 0;
2089}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090EXPORT_SYMBOL(__sk_mem_schedule);
2091
2092/**
2093 *	__sk_reclaim - reclaim memory_allocated
2094 *	@sk: socket
 
 
 
2095 */
2096void __sk_mem_reclaim(struct sock *sk)
2097{
2098	sk_memory_allocated_sub(sk,
2099				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2100	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
 
2101
2102	if (sk_under_memory_pressure(sk) &&
2103	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2104		sk_leave_memory_pressure(sk);
2105}
 
 
 
 
 
 
 
 
 
 
 
 
 
2106EXPORT_SYMBOL(__sk_mem_reclaim);
2107
 
 
 
 
 
 
2108
2109/*
2110 * Set of default routines for initialising struct proto_ops when
2111 * the protocol does not support a particular function. In certain
2112 * cases where it makes no sense for a protocol to have a "do nothing"
2113 * function, some default processing is provided.
2114 */
2115
2116int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2117{
2118	return -EOPNOTSUPP;
2119}
2120EXPORT_SYMBOL(sock_no_bind);
2121
2122int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2123		    int len, int flags)
2124{
2125	return -EOPNOTSUPP;
2126}
2127EXPORT_SYMBOL(sock_no_connect);
2128
2129int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2130{
2131	return -EOPNOTSUPP;
2132}
2133EXPORT_SYMBOL(sock_no_socketpair);
2134
2135int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
2136{
2137	return -EOPNOTSUPP;
2138}
2139EXPORT_SYMBOL(sock_no_accept);
2140
2141int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2142		    int *len, int peer)
2143{
2144	return -EOPNOTSUPP;
2145}
2146EXPORT_SYMBOL(sock_no_getname);
2147
2148unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2149{
2150	return 0;
2151}
2152EXPORT_SYMBOL(sock_no_poll);
2153
2154int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2155{
2156	return -EOPNOTSUPP;
2157}
2158EXPORT_SYMBOL(sock_no_ioctl);
2159
2160int sock_no_listen(struct socket *sock, int backlog)
2161{
2162	return -EOPNOTSUPP;
2163}
2164EXPORT_SYMBOL(sock_no_listen);
2165
2166int sock_no_shutdown(struct socket *sock, int how)
2167{
2168	return -EOPNOTSUPP;
2169}
2170EXPORT_SYMBOL(sock_no_shutdown);
2171
2172int sock_no_setsockopt(struct socket *sock, int level, int optname,
2173		    char __user *optval, unsigned int optlen)
2174{
2175	return -EOPNOTSUPP;
2176}
2177EXPORT_SYMBOL(sock_no_setsockopt);
2178
2179int sock_no_getsockopt(struct socket *sock, int level, int optname,
2180		    char __user *optval, int __user *optlen)
2181{
2182	return -EOPNOTSUPP;
2183}
2184EXPORT_SYMBOL(sock_no_getsockopt);
2185
2186int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2187		    size_t len)
2188{
2189	return -EOPNOTSUPP;
2190}
2191EXPORT_SYMBOL(sock_no_sendmsg);
2192
2193int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2194		    size_t len, int flags)
 
 
 
 
 
 
2195{
2196	return -EOPNOTSUPP;
2197}
2198EXPORT_SYMBOL(sock_no_recvmsg);
2199
2200int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2201{
2202	/* Mirror missing mmap method error code */
2203	return -ENODEV;
2204}
2205EXPORT_SYMBOL(sock_no_mmap);
2206
2207ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2208{
2209	ssize_t res;
2210	struct msghdr msg = {.msg_flags = flags};
2211	struct kvec iov;
2212	char *kaddr = kmap(page);
2213	iov.iov_base = kaddr + offset;
2214	iov.iov_len = size;
2215	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2216	kunmap(page);
2217	return res;
2218}
2219EXPORT_SYMBOL(sock_no_sendpage);
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/*
2222 *	Default Socket Callbacks
2223 */
2224
2225static void sock_def_wakeup(struct sock *sk)
2226{
2227	struct socket_wq *wq;
2228
2229	rcu_read_lock();
2230	wq = rcu_dereference(sk->sk_wq);
2231	if (wq_has_sleeper(wq))
2232		wake_up_interruptible_all(&wq->wait);
2233	rcu_read_unlock();
2234}
2235
2236static void sock_def_error_report(struct sock *sk)
2237{
2238	struct socket_wq *wq;
2239
2240	rcu_read_lock();
2241	wq = rcu_dereference(sk->sk_wq);
2242	if (wq_has_sleeper(wq))
2243		wake_up_interruptible_poll(&wq->wait, POLLERR);
2244	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2245	rcu_read_unlock();
2246}
2247
2248static void sock_def_readable(struct sock *sk)
2249{
2250	struct socket_wq *wq;
2251
2252	rcu_read_lock();
2253	wq = rcu_dereference(sk->sk_wq);
2254	if (wq_has_sleeper(wq))
2255		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2256						POLLRDNORM | POLLRDBAND);
2257	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2258	rcu_read_unlock();
2259}
2260
2261static void sock_def_write_space(struct sock *sk)
2262{
2263	struct socket_wq *wq;
2264
2265	rcu_read_lock();
2266
2267	/* Do not wake up a writer until he can make "significant"
2268	 * progress.  --DaveM
2269	 */
2270	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2271		wq = rcu_dereference(sk->sk_wq);
2272		if (wq_has_sleeper(wq))
2273			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2274						POLLWRNORM | POLLWRBAND);
2275
2276		/* Should agree with poll, otherwise some programs break */
2277		if (sock_writeable(sk))
2278			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2279	}
2280
2281	rcu_read_unlock();
2282}
2283
2284static void sock_def_destruct(struct sock *sk)
2285{
2286	kfree(sk->sk_protinfo);
2287}
2288
2289void sk_send_sigurg(struct sock *sk)
2290{
2291	if (sk->sk_socket && sk->sk_socket->file)
2292		if (send_sigurg(&sk->sk_socket->file->f_owner))
2293			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2294}
2295EXPORT_SYMBOL(sk_send_sigurg);
2296
2297void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2298		    unsigned long expires)
2299{
2300	if (!mod_timer(timer, expires))
2301		sock_hold(sk);
2302}
2303EXPORT_SYMBOL(sk_reset_timer);
2304
2305void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2306{
2307	if (del_timer(timer))
2308		__sock_put(sk);
2309}
2310EXPORT_SYMBOL(sk_stop_timer);
2311
2312void sock_init_data(struct socket *sock, struct sock *sk)
2313{
2314	skb_queue_head_init(&sk->sk_receive_queue);
2315	skb_queue_head_init(&sk->sk_write_queue);
2316	skb_queue_head_init(&sk->sk_error_queue);
2317#ifdef CONFIG_NET_DMA
2318	skb_queue_head_init(&sk->sk_async_wait_queue);
2319#endif
2320
2321	sk->sk_send_head	=	NULL;
2322
2323	init_timer(&sk->sk_timer);
2324
2325	sk->sk_allocation	=	GFP_KERNEL;
2326	sk->sk_rcvbuf		=	sysctl_rmem_default;
2327	sk->sk_sndbuf		=	sysctl_wmem_default;
2328	sk->sk_state		=	TCP_CLOSE;
2329	sk_set_socket(sk, sock);
2330
2331	sock_set_flag(sk, SOCK_ZAPPED);
2332
2333	if (sock) {
2334		sk->sk_type	=	sock->type;
2335		sk->sk_wq	=	sock->wq;
2336		sock->sk	=	sk;
2337	} else
 
2338		sk->sk_wq	=	NULL;
 
 
2339
2340	spin_lock_init(&sk->sk_dst_lock);
2341	rwlock_init(&sk->sk_callback_lock);
2342	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
 
 
2343			af_callback_keys + sk->sk_family,
2344			af_family_clock_key_strings[sk->sk_family]);
2345
2346	sk->sk_state_change	=	sock_def_wakeup;
2347	sk->sk_data_ready	=	sock_def_readable;
2348	sk->sk_write_space	=	sock_def_write_space;
2349	sk->sk_error_report	=	sock_def_error_report;
2350	sk->sk_destruct		=	sock_def_destruct;
2351
2352	sk->sk_frag.page	=	NULL;
2353	sk->sk_frag.offset	=	0;
2354	sk->sk_peek_off		=	-1;
2355
2356	sk->sk_peer_pid 	=	NULL;
2357	sk->sk_peer_cred	=	NULL;
2358	sk->sk_write_pending	=	0;
2359	sk->sk_rcvlowat		=	1;
2360	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2361	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2362
2363	sk->sk_stamp = ktime_set(-1L, 0);
 
2364
2365#ifdef CONFIG_NET_RX_BUSY_POLL
2366	sk->sk_napi_id		=	0;
2367	sk->sk_ll_usec		=	sysctl_net_busy_read;
2368#endif
2369
2370	sk->sk_max_pacing_rate = ~0U;
2371	sk->sk_pacing_rate = ~0U;
 
 
2372	/*
2373	 * Before updating sk_refcnt, we must commit prior changes to memory
2374	 * (Documentation/RCU/rculist_nulls.txt for details)
2375	 */
2376	smp_wmb();
2377	atomic_set(&sk->sk_refcnt, 1);
2378	atomic_set(&sk->sk_drops, 0);
2379}
2380EXPORT_SYMBOL(sock_init_data);
2381
2382void lock_sock_nested(struct sock *sk, int subclass)
2383{
2384	might_sleep();
2385	spin_lock_bh(&sk->sk_lock.slock);
2386	if (sk->sk_lock.owned)
2387		__lock_sock(sk);
2388	sk->sk_lock.owned = 1;
2389	spin_unlock(&sk->sk_lock.slock);
2390	/*
2391	 * The sk_lock has mutex_lock() semantics here:
2392	 */
2393	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2394	local_bh_enable();
2395}
2396EXPORT_SYMBOL(lock_sock_nested);
2397
2398void release_sock(struct sock *sk)
2399{
2400	/*
2401	 * The sk_lock has mutex_unlock() semantics:
2402	 */
2403	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2404
2405	spin_lock_bh(&sk->sk_lock.slock);
2406	if (sk->sk_backlog.tail)
2407		__release_sock(sk);
2408
2409	/* Warning : release_cb() might need to release sk ownership,
2410	 * ie call sock_release_ownership(sk) before us.
2411	 */
2412	if (sk->sk_prot->release_cb)
2413		sk->sk_prot->release_cb(sk);
2414
2415	sock_release_ownership(sk);
2416	if (waitqueue_active(&sk->sk_lock.wq))
2417		wake_up(&sk->sk_lock.wq);
2418	spin_unlock_bh(&sk->sk_lock.slock);
2419}
2420EXPORT_SYMBOL(release_sock);
2421
2422/**
2423 * lock_sock_fast - fast version of lock_sock
2424 * @sk: socket
2425 *
2426 * This version should be used for very small section, where process wont block
2427 * return false if fast path is taken
 
2428 *   sk_lock.slock locked, owned = 0, BH disabled
2429 * return true if slow path is taken
 
 
2430 *   sk_lock.slock unlocked, owned = 1, BH enabled
2431 */
2432bool lock_sock_fast(struct sock *sk)
2433{
2434	might_sleep();
2435	spin_lock_bh(&sk->sk_lock.slock);
2436
2437	if (!sk->sk_lock.owned)
2438		/*
2439		 * Note : We must disable BH
2440		 */
2441		return false;
2442
2443	__lock_sock(sk);
2444	sk->sk_lock.owned = 1;
2445	spin_unlock(&sk->sk_lock.slock);
2446	/*
2447	 * The sk_lock has mutex_lock() semantics here:
2448	 */
2449	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2450	local_bh_enable();
2451	return true;
2452}
2453EXPORT_SYMBOL(lock_sock_fast);
2454
2455int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2456{
2457	struct timeval tv;
2458	if (!sock_flag(sk, SOCK_TIMESTAMP))
2459		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460	tv = ktime_to_timeval(sk->sk_stamp);
2461	if (tv.tv_sec == -1)
2462		return -ENOENT;
2463	if (tv.tv_sec == 0) {
2464		sk->sk_stamp = ktime_get_real();
2465		tv = ktime_to_timeval(sk->sk_stamp);
2466	}
2467	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2468}
2469EXPORT_SYMBOL(sock_get_timestamp);
2470
2471int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2472{
2473	struct timespec ts;
2474	if (!sock_flag(sk, SOCK_TIMESTAMP))
2475		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2476	ts = ktime_to_timespec(sk->sk_stamp);
2477	if (ts.tv_sec == -1)
2478		return -ENOENT;
2479	if (ts.tv_sec == 0) {
2480		sk->sk_stamp = ktime_get_real();
2481		ts = ktime_to_timespec(sk->sk_stamp);
2482	}
2483	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2484}
2485EXPORT_SYMBOL(sock_get_timestampns);
2486
2487void sock_enable_timestamp(struct sock *sk, int flag)
2488{
2489	if (!sock_flag(sk, flag)) {
2490		unsigned long previous_flags = sk->sk_flags;
2491
2492		sock_set_flag(sk, flag);
2493		/*
2494		 * we just set one of the two flags which require net
2495		 * time stamping, but time stamping might have been on
2496		 * already because of the other one
2497		 */
2498		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
 
2499			net_enable_timestamp();
2500	}
2501}
2502
2503int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2504		       int level, int type)
2505{
2506	struct sock_exterr_skb *serr;
2507	struct sk_buff *skb, *skb2;
2508	int copied, err;
2509
2510	err = -EAGAIN;
2511	skb = skb_dequeue(&sk->sk_error_queue);
2512	if (skb == NULL)
2513		goto out;
2514
2515	copied = skb->len;
2516	if (copied > len) {
2517		msg->msg_flags |= MSG_TRUNC;
2518		copied = len;
2519	}
2520	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2521	if (err)
2522		goto out_free_skb;
2523
2524	sock_recv_timestamp(msg, sk, skb);
2525
2526	serr = SKB_EXT_ERR(skb);
2527	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2528
2529	msg->msg_flags |= MSG_ERRQUEUE;
2530	err = copied;
2531
2532	/* Reset and regenerate socket error */
2533	spin_lock_bh(&sk->sk_error_queue.lock);
2534	sk->sk_err = 0;
2535	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2536		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2537		spin_unlock_bh(&sk->sk_error_queue.lock);
2538		sk->sk_error_report(sk);
2539	} else
2540		spin_unlock_bh(&sk->sk_error_queue.lock);
2541
2542out_free_skb:
2543	kfree_skb(skb);
2544out:
2545	return err;
2546}
2547EXPORT_SYMBOL(sock_recv_errqueue);
2548
2549/*
2550 *	Get a socket option on an socket.
2551 *
2552 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2553 *	asynchronous errors should be reported by getsockopt. We assume
2554 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2555 */
2556int sock_common_getsockopt(struct socket *sock, int level, int optname,
2557			   char __user *optval, int __user *optlen)
2558{
2559	struct sock *sk = sock->sk;
2560
2561	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2562}
2563EXPORT_SYMBOL(sock_common_getsockopt);
2564
2565#ifdef CONFIG_COMPAT
2566int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2567				  char __user *optval, int __user *optlen)
2568{
2569	struct sock *sk = sock->sk;
2570
2571	if (sk->sk_prot->compat_getsockopt != NULL)
2572		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2573						      optval, optlen);
2574	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2575}
2576EXPORT_SYMBOL(compat_sock_common_getsockopt);
2577#endif
2578
2579int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2580			struct msghdr *msg, size_t size, int flags)
2581{
2582	struct sock *sk = sock->sk;
2583	int addr_len = 0;
2584	int err;
2585
2586	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2587				   flags & ~MSG_DONTWAIT, &addr_len);
2588	if (err >= 0)
2589		msg->msg_namelen = addr_len;
2590	return err;
2591}
2592EXPORT_SYMBOL(sock_common_recvmsg);
2593
2594/*
2595 *	Set socket options on an inet socket.
2596 */
2597int sock_common_setsockopt(struct socket *sock, int level, int optname,
2598			   char __user *optval, unsigned int optlen)
2599{
2600	struct sock *sk = sock->sk;
2601
2602	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2603}
2604EXPORT_SYMBOL(sock_common_setsockopt);
2605
2606#ifdef CONFIG_COMPAT
2607int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2608				  char __user *optval, unsigned int optlen)
2609{
2610	struct sock *sk = sock->sk;
2611
2612	if (sk->sk_prot->compat_setsockopt != NULL)
2613		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2614						      optval, optlen);
2615	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2616}
2617EXPORT_SYMBOL(compat_sock_common_setsockopt);
2618#endif
2619
2620void sk_common_release(struct sock *sk)
2621{
2622	if (sk->sk_prot->destroy)
2623		sk->sk_prot->destroy(sk);
2624
2625	/*
2626	 * Observation: when sock_common_release is called, processes have
2627	 * no access to socket. But net still has.
2628	 * Step one, detach it from networking:
2629	 *
2630	 * A. Remove from hash tables.
2631	 */
2632
2633	sk->sk_prot->unhash(sk);
2634
2635	/*
2636	 * In this point socket cannot receive new packets, but it is possible
2637	 * that some packets are in flight because some CPU runs receiver and
2638	 * did hash table lookup before we unhashed socket. They will achieve
2639	 * receive queue and will be purged by socket destructor.
2640	 *
2641	 * Also we still have packets pending on receive queue and probably,
2642	 * our own packets waiting in device queues. sock_destroy will drain
2643	 * receive queue, but transmitted packets will delay socket destruction
2644	 * until the last reference will be released.
2645	 */
2646
2647	sock_orphan(sk);
2648
2649	xfrm_sk_free_policy(sk);
2650
2651	sk_refcnt_debug_release(sk);
2652
2653	if (sk->sk_frag.page) {
2654		put_page(sk->sk_frag.page);
2655		sk->sk_frag.page = NULL;
2656	}
2657
2658	sock_put(sk);
2659}
2660EXPORT_SYMBOL(sk_common_release);
2661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662#ifdef CONFIG_PROC_FS
2663#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2664struct prot_inuse {
2665	int val[PROTO_INUSE_NR];
2666};
2667
2668static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2669
2670#ifdef CONFIG_NET_NS
2671void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2672{
2673	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2674}
2675EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2676
2677int sock_prot_inuse_get(struct net *net, struct proto *prot)
2678{
2679	int cpu, idx = prot->inuse_idx;
2680	int res = 0;
2681
2682	for_each_possible_cpu(cpu)
2683		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2684
2685	return res >= 0 ? res : 0;
2686}
2687EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2689static int __net_init sock_inuse_init_net(struct net *net)
2690{
2691	net->core.inuse = alloc_percpu(struct prot_inuse);
2692	return net->core.inuse ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2693}
2694
2695static void __net_exit sock_inuse_exit_net(struct net *net)
2696{
2697	free_percpu(net->core.inuse);
 
2698}
2699
2700static struct pernet_operations net_inuse_ops = {
2701	.init = sock_inuse_init_net,
2702	.exit = sock_inuse_exit_net,
2703};
2704
2705static __init int net_inuse_init(void)
2706{
2707	if (register_pernet_subsys(&net_inuse_ops))
2708		panic("Cannot initialize net inuse counters");
2709
2710	return 0;
2711}
2712
2713core_initcall(net_inuse_init);
2714#else
2715static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2716
2717void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2718{
2719	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2720}
2721EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2722
2723int sock_prot_inuse_get(struct net *net, struct proto *prot)
2724{
2725	int cpu, idx = prot->inuse_idx;
2726	int res = 0;
2727
2728	for_each_possible_cpu(cpu)
2729		res += per_cpu(prot_inuse, cpu).val[idx];
2730
2731	return res >= 0 ? res : 0;
2732}
2733EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2734#endif
2735
2736static void assign_proto_idx(struct proto *prot)
2737{
2738	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2739
2740	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2741		pr_err("PROTO_INUSE_NR exhausted\n");
2742		return;
2743	}
2744
2745	set_bit(prot->inuse_idx, proto_inuse_idx);
2746}
2747
2748static void release_proto_idx(struct proto *prot)
2749{
2750	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2751		clear_bit(prot->inuse_idx, proto_inuse_idx);
2752}
2753#else
2754static inline void assign_proto_idx(struct proto *prot)
2755{
2756}
2757
2758static inline void release_proto_idx(struct proto *prot)
2759{
2760}
 
 
 
 
2761#endif
2762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763int proto_register(struct proto *prot, int alloc_slab)
2764{
2765	if (alloc_slab) {
2766		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
 
2767					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
2768					NULL);
2769
2770		if (prot->slab == NULL) {
2771			pr_crit("%s: Can't create sock SLAB cache!\n",
2772				prot->name);
2773			goto out;
2774		}
2775
2776		if (prot->rsk_prot != NULL) {
2777			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2778			if (prot->rsk_prot->slab_name == NULL)
2779				goto out_free_sock_slab;
2780
2781			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2782								 prot->rsk_prot->obj_size, 0,
2783								 SLAB_HWCACHE_ALIGN, NULL);
2784
2785			if (prot->rsk_prot->slab == NULL) {
2786				pr_crit("%s: Can't create request sock SLAB cache!\n",
2787					prot->name);
2788				goto out_free_request_sock_slab_name;
2789			}
2790		}
2791
2792		if (prot->twsk_prot != NULL) {
2793			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2794
2795			if (prot->twsk_prot->twsk_slab_name == NULL)
2796				goto out_free_request_sock_slab;
2797
2798			prot->twsk_prot->twsk_slab =
2799				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2800						  prot->twsk_prot->twsk_obj_size,
2801						  0,
2802						  SLAB_HWCACHE_ALIGN |
2803							prot->slab_flags,
2804						  NULL);
2805			if (prot->twsk_prot->twsk_slab == NULL)
2806				goto out_free_timewait_sock_slab_name;
2807		}
2808	}
2809
2810	mutex_lock(&proto_list_mutex);
2811	list_add(&prot->node, &proto_list);
2812	assign_proto_idx(prot);
2813	mutex_unlock(&proto_list_mutex);
2814	return 0;
2815
2816out_free_timewait_sock_slab_name:
2817	kfree(prot->twsk_prot->twsk_slab_name);
2818out_free_request_sock_slab:
2819	if (prot->rsk_prot && prot->rsk_prot->slab) {
2820		kmem_cache_destroy(prot->rsk_prot->slab);
2821		prot->rsk_prot->slab = NULL;
2822	}
2823out_free_request_sock_slab_name:
2824	if (prot->rsk_prot)
2825		kfree(prot->rsk_prot->slab_name);
2826out_free_sock_slab:
2827	kmem_cache_destroy(prot->slab);
2828	prot->slab = NULL;
2829out:
2830	return -ENOBUFS;
2831}
2832EXPORT_SYMBOL(proto_register);
2833
2834void proto_unregister(struct proto *prot)
2835{
2836	mutex_lock(&proto_list_mutex);
2837	release_proto_idx(prot);
2838	list_del(&prot->node);
2839	mutex_unlock(&proto_list_mutex);
2840
2841	if (prot->slab != NULL) {
2842		kmem_cache_destroy(prot->slab);
2843		prot->slab = NULL;
2844	}
2845
2846	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2847		kmem_cache_destroy(prot->rsk_prot->slab);
2848		kfree(prot->rsk_prot->slab_name);
2849		prot->rsk_prot->slab = NULL;
2850	}
2851
2852	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2853		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2854		kfree(prot->twsk_prot->twsk_slab_name);
2855		prot->twsk_prot->twsk_slab = NULL;
2856	}
2857}
2858EXPORT_SYMBOL(proto_unregister);
2859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860#ifdef CONFIG_PROC_FS
2861static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2862	__acquires(proto_list_mutex)
2863{
2864	mutex_lock(&proto_list_mutex);
2865	return seq_list_start_head(&proto_list, *pos);
2866}
2867
2868static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2869{
2870	return seq_list_next(v, &proto_list, pos);
2871}
2872
2873static void proto_seq_stop(struct seq_file *seq, void *v)
2874	__releases(proto_list_mutex)
2875{
2876	mutex_unlock(&proto_list_mutex);
2877}
2878
2879static char proto_method_implemented(const void *method)
2880{
2881	return method == NULL ? 'n' : 'y';
2882}
2883static long sock_prot_memory_allocated(struct proto *proto)
2884{
2885	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2886}
2887
2888static char *sock_prot_memory_pressure(struct proto *proto)
2889{
2890	return proto->memory_pressure != NULL ?
2891	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2892}
2893
2894static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2895{
2896
2897	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2898			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2899		   proto->name,
2900		   proto->obj_size,
2901		   sock_prot_inuse_get(seq_file_net(seq), proto),
2902		   sock_prot_memory_allocated(proto),
2903		   sock_prot_memory_pressure(proto),
2904		   proto->max_header,
2905		   proto->slab == NULL ? "no" : "yes",
2906		   module_name(proto->owner),
2907		   proto_method_implemented(proto->close),
2908		   proto_method_implemented(proto->connect),
2909		   proto_method_implemented(proto->disconnect),
2910		   proto_method_implemented(proto->accept),
2911		   proto_method_implemented(proto->ioctl),
2912		   proto_method_implemented(proto->init),
2913		   proto_method_implemented(proto->destroy),
2914		   proto_method_implemented(proto->shutdown),
2915		   proto_method_implemented(proto->setsockopt),
2916		   proto_method_implemented(proto->getsockopt),
2917		   proto_method_implemented(proto->sendmsg),
2918		   proto_method_implemented(proto->recvmsg),
2919		   proto_method_implemented(proto->sendpage),
2920		   proto_method_implemented(proto->bind),
2921		   proto_method_implemented(proto->backlog_rcv),
2922		   proto_method_implemented(proto->hash),
2923		   proto_method_implemented(proto->unhash),
2924		   proto_method_implemented(proto->get_port),
2925		   proto_method_implemented(proto->enter_memory_pressure));
2926}
2927
2928static int proto_seq_show(struct seq_file *seq, void *v)
2929{
2930	if (v == &proto_list)
2931		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2932			   "protocol",
2933			   "size",
2934			   "sockets",
2935			   "memory",
2936			   "press",
2937			   "maxhdr",
2938			   "slab",
2939			   "module",
2940			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2941	else
2942		proto_seq_printf(seq, list_entry(v, struct proto, node));
2943	return 0;
2944}
2945
2946static const struct seq_operations proto_seq_ops = {
2947	.start  = proto_seq_start,
2948	.next   = proto_seq_next,
2949	.stop   = proto_seq_stop,
2950	.show   = proto_seq_show,
2951};
2952
2953static int proto_seq_open(struct inode *inode, struct file *file)
2954{
2955	return seq_open_net(inode, file, &proto_seq_ops,
2956			    sizeof(struct seq_net_private));
2957}
2958
2959static const struct file_operations proto_seq_fops = {
2960	.owner		= THIS_MODULE,
2961	.open		= proto_seq_open,
2962	.read		= seq_read,
2963	.llseek		= seq_lseek,
2964	.release	= seq_release_net,
2965};
2966
2967static __net_init int proto_init_net(struct net *net)
2968{
2969	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2970		return -ENOMEM;
2971
2972	return 0;
2973}
2974
2975static __net_exit void proto_exit_net(struct net *net)
2976{
2977	remove_proc_entry("protocols", net->proc_net);
2978}
2979
2980
2981static __net_initdata struct pernet_operations proto_net_ops = {
2982	.init = proto_init_net,
2983	.exit = proto_exit_net,
2984};
2985
2986static int __init proto_init(void)
2987{
2988	return register_pernet_subsys(&proto_net_ops);
2989}
2990
2991subsys_initcall(proto_init);
2992
2993#endif /* PROC_FS */
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 139
 140#include <trace/events/sock.h>
 141
 
 142#include <net/tcp.h>
 
 
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148static void sock_inuse_add(struct net *net, int val);
 149
 150/**
 151 * sk_ns_capable - General socket capability test
 152 * @sk: Socket to use a capability on or through
 153 * @user_ns: The user namespace of the capability to use
 154 * @cap: The capability to use
 155 *
 156 * Test to see if the opener of the socket had when the socket was
 157 * created and the current process has the capability @cap in the user
 158 * namespace @user_ns.
 159 */
 160bool sk_ns_capable(const struct sock *sk,
 161		   struct user_namespace *user_ns, int cap)
 162{
 163	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 164		ns_capable(user_ns, cap);
 165}
 166EXPORT_SYMBOL(sk_ns_capable);
 167
 168/**
 169 * sk_capable - Socket global capability test
 170 * @sk: Socket to use a capability on or through
 171 * @cap: The global capability to use
 172 *
 173 * Test to see if the opener of the socket had when the socket was
 174 * created and the current process has the capability @cap in all user
 175 * namespaces.
 176 */
 177bool sk_capable(const struct sock *sk, int cap)
 178{
 179	return sk_ns_capable(sk, &init_user_ns, cap);
 180}
 181EXPORT_SYMBOL(sk_capable);
 182
 183/**
 184 * sk_net_capable - Network namespace socket capability test
 185 * @sk: Socket to use a capability on or through
 186 * @cap: The capability to use
 187 *
 188 * Test to see if the opener of the socket had when the socket was created
 189 * and the current process has the capability @cap over the network namespace
 190 * the socket is a member of.
 191 */
 192bool sk_net_capable(const struct sock *sk, int cap)
 193{
 194	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 195}
 196EXPORT_SYMBOL(sk_net_capable);
 197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198/*
 199 * Each address family might have different locking rules, so we have
 200 * one slock key per address family and separate keys for internal and
 201 * userspace sockets.
 202 */
 203static struct lock_class_key af_family_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_keys[AF_MAX];
 205static struct lock_class_key af_family_slock_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 
 
 
 
 207
 208/*
 209 * Make lock validator output more readable. (we pre-construct these
 210 * strings build-time, so that runtime initialization of socket
 211 * locks is fast):
 212 */
 213
 214#define _sock_locks(x)						  \
 215  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 216  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 217  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 218  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 219  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 220  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 221  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 222  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 223  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 224  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 225  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 226  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 227  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 228  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 229  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 252  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 253  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 254  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 255  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 256  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 257  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 258  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 259  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 260  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 261  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 262  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 263  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 264  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 265  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 266};
 267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 268  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 269  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 270  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 271  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 272  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 273  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 274  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 275  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 276  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 277  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 278  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 279  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 280  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 281  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 282  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 283};
 284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 285  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 286  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 287  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 288  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 289  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 290  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 291  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 292  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 293  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 294  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 295  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 296  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 297  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 298  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 299  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 300};
 301
 302/*
 303 * sk_callback_lock and sk queues locking rules are per-address-family,
 304 * so split the lock classes by using a per-AF key:
 305 */
 306static struct lock_class_key af_callback_keys[AF_MAX];
 307static struct lock_class_key af_rlock_keys[AF_MAX];
 308static struct lock_class_key af_wlock_keys[AF_MAX];
 309static struct lock_class_key af_elock_keys[AF_MAX];
 310static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 311
 312/* Run time adjustable parameters. */
 313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 314EXPORT_SYMBOL(sysctl_wmem_max);
 315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 316EXPORT_SYMBOL(sysctl_rmem_max);
 317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 319
 320/* Maximal space eaten by iovec or ancillary data plus some space */
 321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 322EXPORT_SYMBOL(sysctl_optmem_max);
 323
 324int sysctl_tstamp_allow_data __read_mostly = 1;
 325
 326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 327EXPORT_SYMBOL_GPL(memalloc_socks);
 328
 329/**
 330 * sk_set_memalloc - sets %SOCK_MEMALLOC
 331 * @sk: socket to set it on
 332 *
 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 334 * It's the responsibility of the admin to adjust min_free_kbytes
 335 * to meet the requirements
 336 */
 337void sk_set_memalloc(struct sock *sk)
 338{
 339	sock_set_flag(sk, SOCK_MEMALLOC);
 340	sk->sk_allocation |= __GFP_MEMALLOC;
 341	static_key_slow_inc(&memalloc_socks);
 342}
 343EXPORT_SYMBOL_GPL(sk_set_memalloc);
 344
 345void sk_clear_memalloc(struct sock *sk)
 346{
 347	sock_reset_flag(sk, SOCK_MEMALLOC);
 348	sk->sk_allocation &= ~__GFP_MEMALLOC;
 349	static_key_slow_dec(&memalloc_socks);
 350
 351	/*
 352	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 353	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 354	 * it has rmem allocations due to the last swapfile being deactivated
 355	 * but there is a risk that the socket is unusable due to exceeding
 356	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 
 
 357	 */
 358	sk_mem_reclaim(sk);
 
 359}
 360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 361
 362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 363{
 364	int ret;
 365	unsigned int noreclaim_flag;
 366
 367	/* these should have been dropped before queueing */
 368	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 369
 370	noreclaim_flag = memalloc_noreclaim_save();
 371	ret = sk->sk_backlog_rcv(sk, skb);
 372	memalloc_noreclaim_restore(noreclaim_flag);
 373
 374	return ret;
 375}
 376EXPORT_SYMBOL(__sk_backlog_rcv);
 377
 378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 379{
 380	struct timeval tv;
 381
 382	if (optlen < sizeof(tv))
 383		return -EINVAL;
 384	if (copy_from_user(&tv, optval, sizeof(tv)))
 385		return -EFAULT;
 386	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 387		return -EDOM;
 388
 389	if (tv.tv_sec < 0) {
 390		static int warned __read_mostly;
 391
 392		*timeo_p = 0;
 393		if (warned < 10 && net_ratelimit()) {
 394			warned++;
 395			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 396				__func__, current->comm, task_pid_nr(current));
 397		}
 398		return 0;
 399	}
 400	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 401	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 402		return 0;
 403	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 404		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 405	return 0;
 406}
 407
 408static void sock_warn_obsolete_bsdism(const char *name)
 409{
 410	static int warned;
 411	static char warncomm[TASK_COMM_LEN];
 412	if (strcmp(warncomm, current->comm) && warned < 5) {
 413		strcpy(warncomm,  current->comm);
 414		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 415			warncomm, name);
 416		warned++;
 417	}
 418}
 419
 420static bool sock_needs_netstamp(const struct sock *sk)
 421{
 422	switch (sk->sk_family) {
 423	case AF_UNSPEC:
 424	case AF_UNIX:
 425		return false;
 426	default:
 427		return true;
 428	}
 429}
 430
 431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 432{
 433	if (sk->sk_flags & flags) {
 434		sk->sk_flags &= ~flags;
 435		if (sock_needs_netstamp(sk) &&
 436		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 437			net_disable_timestamp();
 438	}
 439}
 440
 441
 442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 443{
 
 
 444	unsigned long flags;
 445	struct sk_buff_head *list = &sk->sk_receive_queue;
 446
 447	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 448		atomic_inc(&sk->sk_drops);
 449		trace_sock_rcvqueue_full(sk, skb);
 450		return -ENOMEM;
 451	}
 452
 
 
 
 
 453	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 454		atomic_inc(&sk->sk_drops);
 455		return -ENOBUFS;
 456	}
 457
 458	skb->dev = NULL;
 459	skb_set_owner_r(skb, sk);
 460
 
 
 
 
 
 
 
 461	/* we escape from rcu protected region, make sure we dont leak
 462	 * a norefcounted dst
 463	 */
 464	skb_dst_force(skb);
 465
 466	spin_lock_irqsave(&list->lock, flags);
 467	sock_skb_set_dropcount(sk, skb);
 468	__skb_queue_tail(list, skb);
 469	spin_unlock_irqrestore(&list->lock, flags);
 470
 471	if (!sock_flag(sk, SOCK_DEAD))
 472		sk->sk_data_ready(sk);
 473	return 0;
 474}
 475EXPORT_SYMBOL(__sock_queue_rcv_skb);
 476
 477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 478{
 479	int err;
 480
 481	err = sk_filter(sk, skb);
 482	if (err)
 483		return err;
 484
 485	return __sock_queue_rcv_skb(sk, skb);
 486}
 487EXPORT_SYMBOL(sock_queue_rcv_skb);
 488
 489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 490		     const int nested, unsigned int trim_cap, bool refcounted)
 491{
 492	int rc = NET_RX_SUCCESS;
 493
 494	if (sk_filter_trim_cap(sk, skb, trim_cap))
 495		goto discard_and_relse;
 496
 497	skb->dev = NULL;
 498
 499	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 500		atomic_inc(&sk->sk_drops);
 501		goto discard_and_relse;
 502	}
 503	if (nested)
 504		bh_lock_sock_nested(sk);
 505	else
 506		bh_lock_sock(sk);
 507	if (!sock_owned_by_user(sk)) {
 508		/*
 509		 * trylock + unlock semantics:
 510		 */
 511		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 512
 513		rc = sk_backlog_rcv(sk, skb);
 514
 515		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 516	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 517		bh_unlock_sock(sk);
 518		atomic_inc(&sk->sk_drops);
 519		goto discard_and_relse;
 520	}
 521
 522	bh_unlock_sock(sk);
 523out:
 524	if (refcounted)
 525		sock_put(sk);
 526	return rc;
 527discard_and_relse:
 528	kfree_skb(skb);
 529	goto out;
 530}
 531EXPORT_SYMBOL(__sk_receive_skb);
 532
 533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 534{
 535	struct dst_entry *dst = __sk_dst_get(sk);
 536
 537	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 538		sk_tx_queue_clear(sk);
 539		sk->sk_dst_pending_confirm = 0;
 540		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 541		dst_release(dst);
 542		return NULL;
 543	}
 544
 545	return dst;
 546}
 547EXPORT_SYMBOL(__sk_dst_check);
 548
 549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 550{
 551	struct dst_entry *dst = sk_dst_get(sk);
 552
 553	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 554		sk_dst_reset(sk);
 555		dst_release(dst);
 556		return NULL;
 557	}
 558
 559	return dst;
 560}
 561EXPORT_SYMBOL(sk_dst_check);
 562
 563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 564				int optlen)
 565{
 566	int ret = -ENOPROTOOPT;
 567#ifdef CONFIG_NETDEVICES
 568	struct net *net = sock_net(sk);
 569	char devname[IFNAMSIZ];
 570	int index;
 571
 572	/* Sorry... */
 573	ret = -EPERM;
 574	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 575		goto out;
 576
 577	ret = -EINVAL;
 578	if (optlen < 0)
 579		goto out;
 580
 581	/* Bind this socket to a particular device like "eth0",
 582	 * as specified in the passed interface name. If the
 583	 * name is "" or the option length is zero the socket
 584	 * is not bound.
 585	 */
 586	if (optlen > IFNAMSIZ - 1)
 587		optlen = IFNAMSIZ - 1;
 588	memset(devname, 0, sizeof(devname));
 589
 590	ret = -EFAULT;
 591	if (copy_from_user(devname, optval, optlen))
 592		goto out;
 593
 594	index = 0;
 595	if (devname[0] != '\0') {
 596		struct net_device *dev;
 597
 598		rcu_read_lock();
 599		dev = dev_get_by_name_rcu(net, devname);
 600		if (dev)
 601			index = dev->ifindex;
 602		rcu_read_unlock();
 603		ret = -ENODEV;
 604		if (!dev)
 605			goto out;
 606	}
 607
 608	lock_sock(sk);
 609	sk->sk_bound_dev_if = index;
 610	sk_dst_reset(sk);
 611	release_sock(sk);
 612
 613	ret = 0;
 614
 615out:
 616#endif
 617
 618	return ret;
 619}
 620
 621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 622				int __user *optlen, int len)
 623{
 624	int ret = -ENOPROTOOPT;
 625#ifdef CONFIG_NETDEVICES
 626	struct net *net = sock_net(sk);
 627	char devname[IFNAMSIZ];
 628
 629	if (sk->sk_bound_dev_if == 0) {
 630		len = 0;
 631		goto zero;
 632	}
 633
 634	ret = -EINVAL;
 635	if (len < IFNAMSIZ)
 636		goto out;
 637
 638	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 639	if (ret)
 640		goto out;
 641
 642	len = strlen(devname) + 1;
 643
 644	ret = -EFAULT;
 645	if (copy_to_user(optval, devname, len))
 646		goto out;
 647
 648zero:
 649	ret = -EFAULT;
 650	if (put_user(len, optlen))
 651		goto out;
 652
 653	ret = 0;
 654
 655out:
 656#endif
 657
 658	return ret;
 659}
 660
 661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 662{
 663	if (valbool)
 664		sock_set_flag(sk, bit);
 665	else
 666		sock_reset_flag(sk, bit);
 667}
 668
 669bool sk_mc_loop(struct sock *sk)
 670{
 671	if (dev_recursion_level())
 672		return false;
 673	if (!sk)
 674		return true;
 675	switch (sk->sk_family) {
 676	case AF_INET:
 677		return inet_sk(sk)->mc_loop;
 678#if IS_ENABLED(CONFIG_IPV6)
 679	case AF_INET6:
 680		return inet6_sk(sk)->mc_loop;
 681#endif
 682	}
 683	WARN_ON(1);
 684	return true;
 685}
 686EXPORT_SYMBOL(sk_mc_loop);
 687
 688/*
 689 *	This is meant for all protocols to use and covers goings on
 690 *	at the socket level. Everything here is generic.
 691 */
 692
 693int sock_setsockopt(struct socket *sock, int level, int optname,
 694		    char __user *optval, unsigned int optlen)
 695{
 696	struct sock *sk = sock->sk;
 697	int val;
 698	int valbool;
 699	struct linger ling;
 700	int ret = 0;
 701
 702	/*
 703	 *	Options without arguments
 704	 */
 705
 706	if (optname == SO_BINDTODEVICE)
 707		return sock_setbindtodevice(sk, optval, optlen);
 708
 709	if (optlen < sizeof(int))
 710		return -EINVAL;
 711
 712	if (get_user(val, (int __user *)optval))
 713		return -EFAULT;
 714
 715	valbool = val ? 1 : 0;
 716
 717	lock_sock(sk);
 718
 719	switch (optname) {
 720	case SO_DEBUG:
 721		if (val && !capable(CAP_NET_ADMIN))
 722			ret = -EACCES;
 723		else
 724			sock_valbool_flag(sk, SOCK_DBG, valbool);
 725		break;
 726	case SO_REUSEADDR:
 727		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 728		break;
 729	case SO_REUSEPORT:
 730		sk->sk_reuseport = valbool;
 731		break;
 732	case SO_TYPE:
 733	case SO_PROTOCOL:
 734	case SO_DOMAIN:
 735	case SO_ERROR:
 736		ret = -ENOPROTOOPT;
 737		break;
 738	case SO_DONTROUTE:
 739		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 740		break;
 741	case SO_BROADCAST:
 742		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 743		break;
 744	case SO_SNDBUF:
 745		/* Don't error on this BSD doesn't and if you think
 746		 * about it this is right. Otherwise apps have to
 747		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 748		 * are treated in BSD as hints
 749		 */
 750		val = min_t(u32, val, sysctl_wmem_max);
 751set_sndbuf:
 752		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 753		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 754		/* Wake up sending tasks if we upped the value. */
 755		sk->sk_write_space(sk);
 756		break;
 757
 758	case SO_SNDBUFFORCE:
 759		if (!capable(CAP_NET_ADMIN)) {
 760			ret = -EPERM;
 761			break;
 762		}
 763		goto set_sndbuf;
 764
 765	case SO_RCVBUF:
 766		/* Don't error on this BSD doesn't and if you think
 767		 * about it this is right. Otherwise apps have to
 768		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 769		 * are treated in BSD as hints
 770		 */
 771		val = min_t(u32, val, sysctl_rmem_max);
 772set_rcvbuf:
 773		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 774		/*
 775		 * We double it on the way in to account for
 776		 * "struct sk_buff" etc. overhead.   Applications
 777		 * assume that the SO_RCVBUF setting they make will
 778		 * allow that much actual data to be received on that
 779		 * socket.
 780		 *
 781		 * Applications are unaware that "struct sk_buff" and
 782		 * other overheads allocate from the receive buffer
 783		 * during socket buffer allocation.
 784		 *
 785		 * And after considering the possible alternatives,
 786		 * returning the value we actually used in getsockopt
 787		 * is the most desirable behavior.
 788		 */
 789		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 790		break;
 791
 792	case SO_RCVBUFFORCE:
 793		if (!capable(CAP_NET_ADMIN)) {
 794			ret = -EPERM;
 795			break;
 796		}
 797		goto set_rcvbuf;
 798
 799	case SO_KEEPALIVE:
 800		if (sk->sk_prot->keepalive)
 801			sk->sk_prot->keepalive(sk, valbool);
 
 
 
 802		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 803		break;
 804
 805	case SO_OOBINLINE:
 806		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 807		break;
 808
 809	case SO_NO_CHECK:
 810		sk->sk_no_check_tx = valbool;
 811		break;
 812
 813	case SO_PRIORITY:
 814		if ((val >= 0 && val <= 6) ||
 815		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 816			sk->sk_priority = val;
 817		else
 818			ret = -EPERM;
 819		break;
 820
 821	case SO_LINGER:
 822		if (optlen < sizeof(ling)) {
 823			ret = -EINVAL;	/* 1003.1g */
 824			break;
 825		}
 826		if (copy_from_user(&ling, optval, sizeof(ling))) {
 827			ret = -EFAULT;
 828			break;
 829		}
 830		if (!ling.l_onoff)
 831			sock_reset_flag(sk, SOCK_LINGER);
 832		else {
 833#if (BITS_PER_LONG == 32)
 834			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 835				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 836			else
 837#endif
 838				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 839			sock_set_flag(sk, SOCK_LINGER);
 840		}
 841		break;
 842
 843	case SO_BSDCOMPAT:
 844		sock_warn_obsolete_bsdism("setsockopt");
 845		break;
 846
 847	case SO_PASSCRED:
 848		if (valbool)
 849			set_bit(SOCK_PASSCRED, &sock->flags);
 850		else
 851			clear_bit(SOCK_PASSCRED, &sock->flags);
 852		break;
 853
 854	case SO_TIMESTAMP:
 855	case SO_TIMESTAMPNS:
 856		if (valbool)  {
 857			if (optname == SO_TIMESTAMP)
 858				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 859			else
 860				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 861			sock_set_flag(sk, SOCK_RCVTSTAMP);
 862			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 863		} else {
 864			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 865			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 866		}
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		if (val & ~SOF_TIMESTAMPING_MASK) {
 871			ret = -EINVAL;
 872			break;
 873		}
 874
 875		if (val & SOF_TIMESTAMPING_OPT_ID &&
 876		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 877			if (sk->sk_protocol == IPPROTO_TCP &&
 878			    sk->sk_type == SOCK_STREAM) {
 879				if ((1 << sk->sk_state) &
 880				    (TCPF_CLOSE | TCPF_LISTEN)) {
 881					ret = -EINVAL;
 882					break;
 883				}
 884				sk->sk_tskey = tcp_sk(sk)->snd_una;
 885			} else {
 886				sk->sk_tskey = 0;
 887			}
 888		}
 889
 890		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 891		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 892			ret = -EINVAL;
 893			break;
 894		}
 895
 896		sk->sk_tsflags = val;
 897		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 898			sock_enable_timestamp(sk,
 899					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 900		else
 901			sock_disable_timestamp(sk,
 902					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 
 
 
 
 
 
 903		break;
 904
 905	case SO_RCVLOWAT:
 906		if (val < 0)
 907			val = INT_MAX;
 908		sk->sk_rcvlowat = val ? : 1;
 909		break;
 910
 911	case SO_RCVTIMEO:
 912		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 913		break;
 914
 915	case SO_SNDTIMEO:
 916		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 917		break;
 918
 919	case SO_ATTACH_FILTER:
 920		ret = -EINVAL;
 921		if (optlen == sizeof(struct sock_fprog)) {
 922			struct sock_fprog fprog;
 923
 924			ret = -EFAULT;
 925			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 926				break;
 927
 928			ret = sk_attach_filter(&fprog, sk);
 929		}
 930		break;
 931
 932	case SO_ATTACH_BPF:
 933		ret = -EINVAL;
 934		if (optlen == sizeof(u32)) {
 935			u32 ufd;
 936
 937			ret = -EFAULT;
 938			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 939				break;
 940
 941			ret = sk_attach_bpf(ufd, sk);
 942		}
 943		break;
 944
 945	case SO_ATTACH_REUSEPORT_CBPF:
 946		ret = -EINVAL;
 947		if (optlen == sizeof(struct sock_fprog)) {
 948			struct sock_fprog fprog;
 949
 950			ret = -EFAULT;
 951			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 952				break;
 953
 954			ret = sk_reuseport_attach_filter(&fprog, sk);
 955		}
 956		break;
 957
 958	case SO_ATTACH_REUSEPORT_EBPF:
 959		ret = -EINVAL;
 960		if (optlen == sizeof(u32)) {
 961			u32 ufd;
 962
 963			ret = -EFAULT;
 964			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 965				break;
 966
 967			ret = sk_reuseport_attach_bpf(ufd, sk);
 968		}
 969		break;
 970
 971	case SO_DETACH_FILTER:
 972		ret = sk_detach_filter(sk);
 973		break;
 974
 975	case SO_LOCK_FILTER:
 976		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 977			ret = -EPERM;
 978		else
 979			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 980		break;
 981
 982	case SO_PASSSEC:
 983		if (valbool)
 984			set_bit(SOCK_PASSSEC, &sock->flags);
 985		else
 986			clear_bit(SOCK_PASSSEC, &sock->flags);
 987		break;
 988	case SO_MARK:
 989		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 990			ret = -EPERM;
 991		else
 992			sk->sk_mark = val;
 993		break;
 994
 
 
 995	case SO_RXQ_OVFL:
 996		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 997		break;
 998
 999	case SO_WIFI_STATUS:
1000		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001		break;
1002
1003	case SO_PEEK_OFF:
1004		if (sock->ops->set_peek_off)
1005			ret = sock->ops->set_peek_off(sk, val);
1006		else
1007			ret = -EOPNOTSUPP;
1008		break;
1009
1010	case SO_NOFCS:
1011		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012		break;
1013
1014	case SO_SELECT_ERR_QUEUE:
1015		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016		break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019	case SO_BUSY_POLL:
1020		/* allow unprivileged users to decrease the value */
1021		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022			ret = -EPERM;
1023		else {
1024			if (val < 0)
1025				ret = -EINVAL;
1026			else
1027				sk->sk_ll_usec = val;
1028		}
1029		break;
1030#endif
1031
1032	case SO_MAX_PACING_RATE:
1033		if (val != ~0U)
1034			cmpxchg(&sk->sk_pacing_status,
1035				SK_PACING_NONE,
1036				SK_PACING_NEEDED);
1037		sk->sk_max_pacing_rate = val;
1038		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039					 sk->sk_max_pacing_rate);
1040		break;
1041
1042	case SO_INCOMING_CPU:
1043		sk->sk_incoming_cpu = val;
1044		break;
1045
1046	case SO_CNX_ADVICE:
1047		if (val == 1)
1048			dst_negative_advice(sk);
1049		break;
1050
1051	case SO_ZEROCOPY:
1052		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053			if (sk->sk_protocol != IPPROTO_TCP)
1054				ret = -ENOTSUPP;
1055		} else if (sk->sk_family != PF_RDS) {
1056			ret = -ENOTSUPP;
1057		}
1058		if (!ret) {
1059			if (val < 0 || val > 1)
1060				ret = -EINVAL;
1061			else
1062				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063		}
1064		break;
1065
1066	default:
1067		ret = -ENOPROTOOPT;
1068		break;
1069	}
1070	release_sock(sk);
1071	return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077			  struct ucred *ucred)
1078{
1079	ucred->pid = pid_vnr(pid);
1080	ucred->uid = ucred->gid = -1;
1081	if (cred) {
1082		struct user_namespace *current_ns = current_user_ns();
1083
1084		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086	}
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091	struct user_namespace *user_ns = current_user_ns();
1092	int i;
1093
1094	for (i = 0; i < src->ngroups; i++)
1095		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096			return -EFAULT;
1097
1098	return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102		    char __user *optval, int __user *optlen)
1103{
1104	struct sock *sk = sock->sk;
1105
1106	union {
1107		int val;
1108		u64 val64;
1109		struct linger ling;
1110		struct timeval tm;
1111	} v;
1112
1113	int lv = sizeof(int);
1114	int len;
1115
1116	if (get_user(len, optlen))
1117		return -EFAULT;
1118	if (len < 0)
1119		return -EINVAL;
1120
1121	memset(&v, 0, sizeof(v));
1122
1123	switch (optname) {
1124	case SO_DEBUG:
1125		v.val = sock_flag(sk, SOCK_DBG);
1126		break;
1127
1128	case SO_DONTROUTE:
1129		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130		break;
1131
1132	case SO_BROADCAST:
1133		v.val = sock_flag(sk, SOCK_BROADCAST);
1134		break;
1135
1136	case SO_SNDBUF:
1137		v.val = sk->sk_sndbuf;
1138		break;
1139
1140	case SO_RCVBUF:
1141		v.val = sk->sk_rcvbuf;
1142		break;
1143
1144	case SO_REUSEADDR:
1145		v.val = sk->sk_reuse;
1146		break;
1147
1148	case SO_REUSEPORT:
1149		v.val = sk->sk_reuseport;
1150		break;
1151
1152	case SO_KEEPALIVE:
1153		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154		break;
1155
1156	case SO_TYPE:
1157		v.val = sk->sk_type;
1158		break;
1159
1160	case SO_PROTOCOL:
1161		v.val = sk->sk_protocol;
1162		break;
1163
1164	case SO_DOMAIN:
1165		v.val = sk->sk_family;
1166		break;
1167
1168	case SO_ERROR:
1169		v.val = -sock_error(sk);
1170		if (v.val == 0)
1171			v.val = xchg(&sk->sk_err_soft, 0);
1172		break;
1173
1174	case SO_OOBINLINE:
1175		v.val = sock_flag(sk, SOCK_URGINLINE);
1176		break;
1177
1178	case SO_NO_CHECK:
1179		v.val = sk->sk_no_check_tx;
1180		break;
1181
1182	case SO_PRIORITY:
1183		v.val = sk->sk_priority;
1184		break;
1185
1186	case SO_LINGER:
1187		lv		= sizeof(v.ling);
1188		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1189		v.ling.l_linger	= sk->sk_lingertime / HZ;
1190		break;
1191
1192	case SO_BSDCOMPAT:
1193		sock_warn_obsolete_bsdism("getsockopt");
1194		break;
1195
1196	case SO_TIMESTAMP:
1197		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1198				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1199		break;
1200
1201	case SO_TIMESTAMPNS:
1202		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203		break;
1204
1205	case SO_TIMESTAMPING:
1206		v.val = sk->sk_tsflags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207		break;
1208
1209	case SO_RCVTIMEO:
1210		lv = sizeof(struct timeval);
1211		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212			v.tm.tv_sec = 0;
1213			v.tm.tv_usec = 0;
1214		} else {
1215			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217		}
1218		break;
1219
1220	case SO_SNDTIMEO:
1221		lv = sizeof(struct timeval);
1222		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223			v.tm.tv_sec = 0;
1224			v.tm.tv_usec = 0;
1225		} else {
1226			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228		}
1229		break;
1230
1231	case SO_RCVLOWAT:
1232		v.val = sk->sk_rcvlowat;
1233		break;
1234
1235	case SO_SNDLOWAT:
1236		v.val = 1;
1237		break;
1238
1239	case SO_PASSCRED:
1240		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241		break;
1242
1243	case SO_PEERCRED:
1244	{
1245		struct ucred peercred;
1246		if (len > sizeof(peercred))
1247			len = sizeof(peercred);
1248		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249		if (copy_to_user(optval, &peercred, len))
1250			return -EFAULT;
1251		goto lenout;
1252	}
1253
1254	case SO_PEERGROUPS:
1255	{
1256		int ret, n;
1257
1258		if (!sk->sk_peer_cred)
1259			return -ENODATA;
1260
1261		n = sk->sk_peer_cred->group_info->ngroups;
1262		if (len < n * sizeof(gid_t)) {
1263			len = n * sizeof(gid_t);
1264			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265		}
1266		len = n * sizeof(gid_t);
1267
1268		ret = groups_to_user((gid_t __user *)optval,
1269				     sk->sk_peer_cred->group_info);
1270		if (ret)
1271			return ret;
1272		goto lenout;
1273	}
1274
1275	case SO_PEERNAME:
1276	{
1277		char address[128];
1278
1279		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280		if (lv < 0)
1281			return -ENOTCONN;
1282		if (lv < len)
1283			return -EINVAL;
1284		if (copy_to_user(optval, address, len))
1285			return -EFAULT;
1286		goto lenout;
1287	}
1288
1289	/* Dubious BSD thing... Probably nobody even uses it, but
1290	 * the UNIX standard wants it for whatever reason... -DaveM
1291	 */
1292	case SO_ACCEPTCONN:
1293		v.val = sk->sk_state == TCP_LISTEN;
1294		break;
1295
1296	case SO_PASSSEC:
1297		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298		break;
1299
1300	case SO_PEERSEC:
1301		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303	case SO_MARK:
1304		v.val = sk->sk_mark;
1305		break;
1306
1307	case SO_RXQ_OVFL:
1308		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309		break;
1310
1311	case SO_WIFI_STATUS:
1312		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313		break;
1314
1315	case SO_PEEK_OFF:
1316		if (!sock->ops->set_peek_off)
1317			return -EOPNOTSUPP;
1318
1319		v.val = sk->sk_peek_off;
1320		break;
1321	case SO_NOFCS:
1322		v.val = sock_flag(sk, SOCK_NOFCS);
1323		break;
1324
1325	case SO_BINDTODEVICE:
1326		return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328	case SO_GET_FILTER:
1329		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330		if (len < 0)
1331			return len;
1332
1333		goto lenout;
1334
1335	case SO_LOCK_FILTER:
1336		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337		break;
1338
1339	case SO_BPF_EXTENSIONS:
1340		v.val = bpf_tell_extensions();
1341		break;
1342
1343	case SO_SELECT_ERR_QUEUE:
1344		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345		break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348	case SO_BUSY_POLL:
1349		v.val = sk->sk_ll_usec;
1350		break;
1351#endif
1352
1353	case SO_MAX_PACING_RATE:
1354		v.val = sk->sk_max_pacing_rate;
1355		break;
1356
1357	case SO_INCOMING_CPU:
1358		v.val = sk->sk_incoming_cpu;
1359		break;
1360
1361	case SO_MEMINFO:
1362	{
1363		u32 meminfo[SK_MEMINFO_VARS];
1364
1365		if (get_user(len, optlen))
1366			return -EFAULT;
1367
1368		sk_get_meminfo(sk, meminfo);
1369
1370		len = min_t(unsigned int, len, sizeof(meminfo));
1371		if (copy_to_user(optval, &meminfo, len))
1372			return -EFAULT;
1373
1374		goto lenout;
1375	}
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378	case SO_INCOMING_NAPI_ID:
1379		v.val = READ_ONCE(sk->sk_napi_id);
1380
1381		/* aggregate non-NAPI IDs down to 0 */
1382		if (v.val < MIN_NAPI_ID)
1383			v.val = 0;
1384
1385		break;
1386#endif
1387
1388	case SO_COOKIE:
1389		lv = sizeof(u64);
1390		if (len < lv)
1391			return -EINVAL;
1392		v.val64 = sock_gen_cookie(sk);
1393		break;
1394
1395	case SO_ZEROCOPY:
1396		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397		break;
1398
1399	default:
1400		/* We implement the SO_SNDLOWAT etc to not be settable
1401		 * (1003.1g 7).
1402		 */
1403		return -ENOPROTOOPT;
1404	}
1405
1406	if (len > lv)
1407		len = lv;
1408	if (copy_to_user(optval, &v, len))
1409		return -EFAULT;
1410lenout:
1411	if (put_user(len, optlen))
1412		return -EFAULT;
1413	return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423	if (sk->sk_kern_sock)
1424		sock_lock_init_class_and_name(
1425			sk,
1426			af_family_kern_slock_key_strings[sk->sk_family],
1427			af_family_kern_slock_keys + sk->sk_family,
1428			af_family_kern_key_strings[sk->sk_family],
1429			af_family_kern_keys + sk->sk_family);
1430	else
1431		sock_lock_init_class_and_name(
1432			sk,
1433			af_family_slock_key_strings[sk->sk_family],
1434			af_family_slock_keys + sk->sk_family,
1435			af_family_key_strings[sk->sk_family],
1436			af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447	void *sptr = nsk->sk_security;
1448#endif
1449	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455	nsk->sk_security = sptr;
1456	security_sk_clone(osk, nsk);
1457#endif
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461		int family)
1462{
1463	struct sock *sk;
1464	struct kmem_cache *slab;
1465
1466	slab = prot->slab;
1467	if (slab != NULL) {
1468		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469		if (!sk)
1470			return sk;
1471		if (priority & __GFP_ZERO)
1472			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
1473	} else
1474		sk = kmalloc(prot->obj_size, priority);
1475
1476	if (sk != NULL) {
 
 
1477		if (security_sk_alloc(sk, family, priority))
1478			goto out_free;
1479
1480		if (!try_module_get(prot->owner))
1481			goto out_free_sec;
1482		sk_tx_queue_clear(sk);
1483	}
1484
1485	return sk;
1486
1487out_free_sec:
1488	security_sk_free(sk);
1489out_free:
1490	if (slab != NULL)
1491		kmem_cache_free(slab, sk);
1492	else
1493		kfree(sk);
1494	return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499	struct kmem_cache *slab;
1500	struct module *owner;
1501
1502	owner = prot->owner;
1503	slab = prot->slab;
1504
1505	cgroup_sk_free(&sk->sk_cgrp_data);
1506	mem_cgroup_sk_free(sk);
1507	security_sk_free(sk);
1508	if (slab != NULL)
1509		kmem_cache_free(slab, sk);
1510	else
1511		kfree(sk);
1512	module_put(owner);
1513}
1514
 
 
 
 
 
 
 
 
 
 
 
1515/**
1516 *	sk_alloc - All socket objects are allocated here
1517 *	@net: the applicable net namespace
1518 *	@family: protocol family
1519 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 *	@prot: struct proto associated with this new sock instance
1521 *	@kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524		      struct proto *prot, int kern)
1525{
1526	struct sock *sk;
1527
1528	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529	if (sk) {
1530		sk->sk_family = family;
1531		/*
1532		 * See comment in struct sock definition to understand
1533		 * why we need sk_prot_creator -acme
1534		 */
1535		sk->sk_prot = sk->sk_prot_creator = prot;
1536		sk->sk_kern_sock = kern;
1537		sock_lock_init(sk);
1538		sk->sk_net_refcnt = kern ? 0 : 1;
1539		if (likely(sk->sk_net_refcnt)) {
1540			get_net(net);
1541			sock_inuse_add(net, 1);
1542		}
1543
1544		sock_net_set(sk, net);
1545		refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547		mem_cgroup_sk_alloc(sk);
1548		cgroup_sk_alloc(&sk->sk_cgrp_data);
1549		sock_update_classid(&sk->sk_cgrp_data);
1550		sock_update_netprioidx(&sk->sk_cgrp_data);
1551	}
1552
1553	return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562	struct sock *sk = container_of(head, struct sock, sk_rcu);
1563	struct sk_filter *filter;
1564
1565	if (sk->sk_destruct)
1566		sk->sk_destruct(sk);
1567
1568	filter = rcu_dereference_check(sk->sk_filter,
1569				       refcount_read(&sk->sk_wmem_alloc) == 0);
1570	if (filter) {
1571		sk_filter_uncharge(sk, filter);
1572		RCU_INIT_POINTER(sk->sk_filter, NULL);
1573	}
1574	if (rcu_access_pointer(sk->sk_reuseport_cb))
1575		reuseport_detach_sock(sk);
1576
1577	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
1579	if (atomic_read(&sk->sk_omem_alloc))
1580		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581			 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583	if (sk->sk_frag.page) {
1584		put_page(sk->sk_frag.page);
1585		sk->sk_frag.page = NULL;
1586	}
1587
1588	if (sk->sk_peer_cred)
1589		put_cred(sk->sk_peer_cred);
1590	put_pid(sk->sk_peer_pid);
1591	if (likely(sk->sk_net_refcnt))
1592		put_net(sock_net(sk));
1593	sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598	if (sock_flag(sk, SOCK_RCU_FREE))
1599		call_rcu(&sk->sk_rcu, __sk_destruct);
1600	else
1601		__sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606	if (likely(sk->sk_net_refcnt))
1607		sock_inuse_add(sock_net(sk), -1);
1608
1609	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610		sock_diag_broadcast_destroy(sk);
1611	else
1612		sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617	/*
1618	 * We subtract one from sk_wmem_alloc and can know if
1619	 * some packets are still in some tx queue.
1620	 * If not null, sock_wfree() will call __sk_free(sk) later
1621	 */
1622	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623		__sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
1628{
1629	skb_queue_head_init(&sk->sk_receive_queue);
1630	skb_queue_head_init(&sk->sk_write_queue);
1631	skb_queue_head_init(&sk->sk_error_queue);
 
 
 
 
 
 
 
1632
1633	rwlock_init(&sk->sk_callback_lock);
1634	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635			af_rlock_keys + sk->sk_family,
1636			af_family_rlock_key_strings[sk->sk_family]);
1637	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638			af_wlock_keys + sk->sk_family,
1639			af_family_wlock_key_strings[sk->sk_family]);
1640	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641			af_elock_keys + sk->sk_family,
1642			af_family_elock_key_strings[sk->sk_family]);
1643	lockdep_set_class_and_name(&sk->sk_callback_lock,
1644			af_callback_keys + sk->sk_family,
1645			af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 *	sk_clone_lock - clone a socket, and lock its clone
1650 *	@sk: the socket to clone
1651 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657	struct sock *newsk;
1658	bool is_charged = true;
1659
1660	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661	if (newsk != NULL) {
1662		struct sk_filter *filter;
1663
1664		sock_copy(newsk, sk);
1665
1666		newsk->sk_prot_creator = sk->sk_prot;
1667
1668		/* SANITY */
1669		if (likely(newsk->sk_net_refcnt))
1670			get_net(sock_net(newsk));
1671		sk_node_init(&newsk->sk_node);
1672		sock_lock_init(newsk);
1673		bh_lock_sock(newsk);
1674		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1675		newsk->sk_backlog.len = 0;
1676
1677		atomic_set(&newsk->sk_rmem_alloc, 0);
1678		/*
1679		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680		 */
1681		refcount_set(&newsk->sk_wmem_alloc, 1);
1682		atomic_set(&newsk->sk_omem_alloc, 0);
1683		sk_init_common(newsk);
 
 
 
 
 
 
 
 
 
 
1684
1685		newsk->sk_dst_cache	= NULL;
1686		newsk->sk_dst_pending_confirm = 0;
1687		newsk->sk_wmem_queued	= 0;
1688		newsk->sk_forward_alloc = 0;
1689		atomic_set(&newsk->sk_drops, 0);
1690		newsk->sk_send_head	= NULL;
1691		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692		atomic_set(&newsk->sk_zckey, 0);
1693
1694		sock_reset_flag(newsk, SOCK_DONE);
1695		mem_cgroup_sk_alloc(newsk);
1696		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698		rcu_read_lock();
1699		filter = rcu_dereference(sk->sk_filter);
1700		if (filter != NULL)
1701			/* though it's an empty new sock, the charging may fail
1702			 * if sysctl_optmem_max was changed between creation of
1703			 * original socket and cloning
1704			 */
1705			is_charged = sk_filter_charge(newsk, filter);
1706		RCU_INIT_POINTER(newsk->sk_filter, filter);
1707		rcu_read_unlock();
1708
1709		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710			/* We need to make sure that we don't uncharge the new
1711			 * socket if we couldn't charge it in the first place
1712			 * as otherwise we uncharge the parent's filter.
1713			 */
1714			if (!is_charged)
1715				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716			sk_free_unlock_clone(newsk);
1717			newsk = NULL;
1718			goto out;
1719		}
1720		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722		newsk->sk_err	   = 0;
1723		newsk->sk_err_soft = 0;
1724		newsk->sk_priority = 0;
1725		newsk->sk_incoming_cpu = raw_smp_processor_id();
1726		atomic64_set(&newsk->sk_cookie, 0);
1727		if (likely(newsk->sk_net_refcnt))
1728			sock_inuse_add(sock_net(newsk), 1);
1729
1730		/*
1731		 * Before updating sk_refcnt, we must commit prior changes to memory
1732		 * (Documentation/RCU/rculist_nulls.txt for details)
1733		 */
1734		smp_wmb();
1735		refcount_set(&newsk->sk_refcnt, 2);
1736
1737		/*
1738		 * Increment the counter in the same struct proto as the master
1739		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740		 * is the same as sk->sk_prot->socks, as this field was copied
1741		 * with memcpy).
1742		 *
1743		 * This _changes_ the previous behaviour, where
1744		 * tcp_create_openreq_child always was incrementing the
1745		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746		 * to be taken into account in all callers. -acme
1747		 */
1748		sk_refcnt_debug_inc(newsk);
1749		sk_set_socket(newsk, NULL);
1750		newsk->sk_wq = NULL;
1751
 
 
1752		if (newsk->sk_prot->sockets_allocated)
1753			sk_sockets_allocated_inc(newsk);
1754
1755		if (sock_needs_netstamp(sk) &&
1756		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757			net_enable_timestamp();
1758	}
1759out:
1760	return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766	/* It is still raw copy of parent, so invalidate
1767	 * destructor and make plain sk_free() */
1768	sk->sk_destruct = NULL;
1769	bh_unlock_sock(sk);
1770	sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776	u32 max_segs = 1;
1777
1778	sk_dst_set(sk, dst);
1779	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780	if (sk->sk_route_caps & NETIF_F_GSO)
1781		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783	if (sk_can_gso(sk)) {
1784		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786		} else {
1787			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788			sk->sk_gso_max_size = dst->dev->gso_max_size;
1789			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790		}
1791	}
1792	sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 *	Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806	struct sock *sk = skb->sk;
1807	unsigned int len = skb->truesize;
1808
1809	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810		/*
1811		 * Keep a reference on sk_wmem_alloc, this will be released
1812		 * after sk_write_space() call
1813		 */
1814		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815		sk->sk_write_space(sk);
1816		len = 1;
1817	}
1818	/*
1819	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820	 * could not do because of in-flight packets
1821	 */
1822	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823		__sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832	struct sock *sk = skb->sk;
1833
1834	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835		__sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840	skb_orphan(skb);
1841	skb->sk = sk;
1842#ifdef CONFIG_INET
1843	if (unlikely(!sk_fullsock(sk))) {
1844		skb->destructor = sock_edemux;
1845		sock_hold(sk);
1846		return;
1847	}
1848#endif
1849	skb->destructor = sock_wfree;
1850	skb_set_hash_from_sk(skb, sk);
1851	/*
1852	 * We used to take a refcount on sk, but following operation
1853	 * is enough to guarantee sk_free() wont free this sock until
1854	 * all in-flight packets are completed
1855	 */
1856	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868	if (skb_is_tcp_pure_ack(skb))
1869		return;
1870
1871	if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873	    || skb->destructor == tcp_wfree
1874#endif
1875		) {
1876		struct sock *sk = skb->sk;
1877
1878		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880			skb->destructor = sock_efree;
1881		}
1882	} else {
1883		skb_orphan(skb);
1884	}
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893	struct sock *sk = skb->sk;
1894	unsigned int len = skb->truesize;
1895
1896	atomic_sub(len, &sk->sk_rmem_alloc);
1897	sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907	sock_put(skb->sk);
 
 
 
 
 
 
 
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913	kuid_t uid;
1914
1915	read_lock_bh(&sk->sk_callback_lock);
1916	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917	read_unlock_bh(&sk->sk_callback_lock);
1918	return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924	unsigned long ino;
1925
1926	read_lock_bh(&sk->sk_callback_lock);
1927	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928	read_unlock_bh(&sk->sk_callback_lock);
1929	return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937			     gfp_t priority)
1938{
1939	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1940		struct sk_buff *skb = alloc_skb(size, priority);
1941		if (skb) {
1942			skb_set_owner_w(skb, sk);
1943			return skb;
1944		}
1945	}
1946	return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952	struct sock *sk = skb->sk;
1953
1954	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958			     gfp_t priority)
1959{
1960	struct sk_buff *skb;
1961
1962	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964	    sysctl_optmem_max)
1965		return NULL;
1966
1967	skb = alloc_skb(size, priority);
1968	if (!skb)
1969		return NULL;
1970
1971	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972	skb->sk = sk;
1973	skb->destructor = sock_ofree;
1974	return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982	if ((unsigned int)size <= sysctl_optmem_max &&
1983	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984		void *mem;
1985		/* First do the add, to avoid the race if kmalloc
1986		 * might sleep.
1987		 */
1988		atomic_add(size, &sk->sk_omem_alloc);
1989		mem = kmalloc(size, priority);
1990		if (mem)
1991			return mem;
1992		atomic_sub(size, &sk->sk_omem_alloc);
1993	}
1994	return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003				  const bool nullify)
2004{
2005	if (WARN_ON_ONCE(!mem))
2006		return;
2007	if (nullify)
2008		kzfree(mem);
2009	else
2010		kfree(mem);
2011	atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016	__sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022	__sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027   I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031	DEFINE_WAIT(wait);
2032
2033	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034	for (;;) {
2035		if (!timeo)
2036			break;
2037		if (signal_pending(current))
2038			break;
2039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042			break;
2043		if (sk->sk_shutdown & SEND_SHUTDOWN)
2044			break;
2045		if (sk->sk_err)
2046			break;
2047		timeo = schedule_timeout(timeo);
2048	}
2049	finish_wait(sk_sleep(sk), &wait);
2050	return timeo;
2051}
2052
2053
2054/*
2055 *	Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059				     unsigned long data_len, int noblock,
2060				     int *errcode, int max_page_order)
2061{
2062	struct sk_buff *skb;
 
 
2063	long timeo;
2064	int err;
 
 
 
 
 
 
 
2065
2066	timeo = sock_sndtimeo(sk, noblock);
2067	for (;;) {
2068		err = sock_error(sk);
2069		if (err != 0)
2070			goto failure;
2071
2072		err = -EPIPE;
2073		if (sk->sk_shutdown & SEND_SHUTDOWN)
2074			goto failure;
2075
2076		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078
2079		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081		err = -EAGAIN;
2082		if (!timeo)
2083			goto failure;
2084		if (signal_pending(current))
2085			goto interrupted;
2086		timeo = sock_wait_for_wmem(sk, timeo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087	}
2088	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089				   errcode, sk->sk_allocation);
2090	if (skb)
2091		skb_set_owner_w(skb, sk);
2092	return skb;
2093
2094interrupted:
2095	err = sock_intr_errno(timeo);
2096failure:
 
2097	*errcode = err;
2098	return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103				    int noblock, int *errcode)
2104{
2105	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110		     struct sockcm_cookie *sockc)
2111{
2112	u32 tsflags;
2113
2114	switch (cmsg->cmsg_type) {
2115	case SO_MARK:
2116		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117			return -EPERM;
2118		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119			return -EINVAL;
2120		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121		break;
2122	case SO_TIMESTAMPING:
2123		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124			return -EINVAL;
2125
2126		tsflags = *(u32 *)CMSG_DATA(cmsg);
2127		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128			return -EINVAL;
2129
2130		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131		sockc->tsflags |= tsflags;
2132		break;
2133	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134	case SCM_RIGHTS:
2135	case SCM_CREDENTIALS:
2136		break;
2137	default:
2138		return -EINVAL;
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145		   struct sockcm_cookie *sockc)
2146{
2147	struct cmsghdr *cmsg;
2148	int ret;
2149
2150	for_each_cmsghdr(cmsg, msg) {
2151		if (!CMSG_OK(msg, cmsg))
2152			return -EINVAL;
2153		if (cmsg->cmsg_level != SOL_SOCKET)
2154			continue;
2155		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156		if (ret)
2157			return ret;
2158	}
2159	return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165	if (!sk->sk_prot->enter_memory_pressure)
2166		return;
2167
2168	sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173	if (sk->sk_prot->leave_memory_pressure) {
2174		sk->sk_prot->leave_memory_pressure(sk);
2175	} else {
2176		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178		if (memory_pressure && *memory_pressure)
2179			*memory_pressure = 0;
2180	}
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
 
 
2198	if (pfrag->page) {
2199		if (page_ref_count(pfrag->page) == 1) {
2200			pfrag->offset = 0;
2201			return true;
2202		}
2203		if (pfrag->offset + sz <= pfrag->size)
2204			return true;
2205		put_page(pfrag->page);
2206	}
2207
2208	pfrag->offset = 0;
2209	if (SKB_FRAG_PAGE_ORDER) {
2210		/* Avoid direct reclaim but allow kswapd to wake */
2211		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212					  __GFP_COMP | __GFP_NOWARN |
2213					  __GFP_NORETRY,
2214					  SKB_FRAG_PAGE_ORDER);
2215		if (likely(pfrag->page)) {
2216			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
 
2217			return true;
2218		}
2219	}
2220	pfrag->page = alloc_page(gfp);
2221	if (likely(pfrag->page)) {
2222		pfrag->size = PAGE_SIZE;
2223		return true;
2224	}
2225	return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232		return true;
2233
2234	sk_enter_memory_pressure(sk);
2235	sk_stream_moderate_sndbuf(sk);
2236	return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242		int first_coalesce)
2243{
2244	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245	unsigned int size = *sg_curr_size;
2246	struct page_frag *pfrag;
2247	struct scatterlist *sge;
2248
2249	len -= size;
2250	pfrag = sk_page_frag(sk);
2251
2252	while (len > 0) {
2253		unsigned int orig_offset;
2254
2255		if (!sk_page_frag_refill(sk, pfrag)) {
2256			rc = -ENOMEM;
2257			goto out;
2258		}
2259
2260		use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262		if (!sk_wmem_schedule(sk, use)) {
2263			rc = -ENOMEM;
2264			goto out;
2265		}
2266
2267		sk_mem_charge(sk, use);
2268		size += use;
2269		orig_offset = pfrag->offset;
2270		pfrag->offset += use;
2271
2272		sge = sg + sg_curr - 1;
2273		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274		    sg->offset + sg->length == orig_offset) {
2275			sg->length += use;
2276		} else {
2277			sge = sg + sg_curr;
2278			sg_unmark_end(sge);
2279			sg_set_page(sge, pfrag->page, use, orig_offset);
2280			get_page(pfrag->page);
2281			sg_curr++;
2282
2283			if (sg_curr == MAX_SKB_FRAGS)
2284				sg_curr = 0;
2285
2286			if (sg_curr == sg_start) {
2287				rc = -ENOSPC;
2288				break;
2289			}
2290		}
2291
2292		len -= use;
2293	}
2294out:
2295	*sg_curr_size = size;
2296	*sg_curr_index = sg_curr;
2297	return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302	__releases(&sk->sk_lock.slock)
2303	__acquires(&sk->sk_lock.slock)
2304{
2305	DEFINE_WAIT(wait);
2306
2307	for (;;) {
2308		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309					TASK_UNINTERRUPTIBLE);
2310		spin_unlock_bh(&sk->sk_lock.slock);
2311		schedule();
2312		spin_lock_bh(&sk->sk_lock.slock);
2313		if (!sock_owned_by_user(sk))
2314			break;
2315	}
2316	finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320	__releases(&sk->sk_lock.slock)
2321	__acquires(&sk->sk_lock.slock)
2322{
2323	struct sk_buff *skb, *next;
2324
2325	while ((skb = sk->sk_backlog.head) != NULL) {
2326		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
 
2327
2328		spin_unlock_bh(&sk->sk_lock.slock);
 
2329
2330		do {
2331			next = skb->next;
2332			prefetch(next);
2333			WARN_ON_ONCE(skb_dst_is_noref(skb));
2334			skb->next = NULL;
2335			sk_backlog_rcv(sk, skb);
2336
2337			cond_resched();
 
 
 
 
 
 
2338
2339			skb = next;
2340		} while (skb != NULL);
2341
2342		spin_lock_bh(&sk->sk_lock.slock);
2343	}
2344
2345	/*
2346	 * Doing the zeroing here guarantee we can not loop forever
2347	 * while a wild producer attempts to flood us.
2348	 */
2349	sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354	spin_lock_bh(&sk->sk_lock.slock);
2355	__release_sock(sk);
2356	spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk:    sock to wait on
2362 * @timeo: for how long
2363 * @skb:   last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373	int rc;
 
2374
2375	add_wait_queue(sk_sleep(sk), &wait);
2376	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379	remove_wait_queue(sk_sleep(sk), &wait);
2380	return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 *	__sk_mem_raise_allocated - increase memory_allocated
2386 *	@sk: socket
2387 *	@size: memory size to allocate
2388 *	@amt: pages to allocate
2389 *	@kind: allocation type
2390 *
2391 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395	struct proto *prot = sk->sk_prot;
2396	long allocated = sk_memory_allocated_add(sk, amt);
 
 
 
 
2397
2398	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400		goto suppress_allocation;
2401
2402	/* Under limit. */
2403	if (allocated <= sk_prot_mem_limits(sk, 0)) {
 
2404		sk_leave_memory_pressure(sk);
2405		return 1;
2406	}
2407
2408	/* Under pressure. */
2409	if (allocated > sk_prot_mem_limits(sk, 1))
 
2410		sk_enter_memory_pressure(sk);
2411
2412	/* Over hard limit. */
2413	if (allocated > sk_prot_mem_limits(sk, 2))
 
2414		goto suppress_allocation;
2415
2416	/* guarantee minimum buffer size under pressure */
2417	if (kind == SK_MEM_RECV) {
2418		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419			return 1;
2420
2421	} else { /* SK_MEM_SEND */
2422		int wmem0 = sk_get_wmem0(sk, prot);
2423
2424		if (sk->sk_type == SOCK_STREAM) {
2425			if (sk->sk_wmem_queued < wmem0)
2426				return 1;
2427		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
2428				return 1;
2429		}
2430	}
2431
2432	if (sk_has_memory_pressure(sk)) {
2433		int alloc;
2434
2435		if (!sk_under_memory_pressure(sk))
2436			return 1;
2437		alloc = sk_sockets_allocated_read_positive(sk);
2438		if (sk_prot_mem_limits(sk, 2) > alloc *
2439		    sk_mem_pages(sk->sk_wmem_queued +
2440				 atomic_read(&sk->sk_rmem_alloc) +
2441				 sk->sk_forward_alloc))
2442			return 1;
2443	}
2444
2445suppress_allocation:
2446
2447	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448		sk_stream_moderate_sndbuf(sk);
2449
2450		/* Fail only if socket is _under_ its sndbuf.
2451		 * In this case we cannot block, so that we have to fail.
2452		 */
2453		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454			return 1;
2455	}
2456
2457	trace_sock_exceed_buf_limit(sk, prot, allocated);
2458
 
 
 
2459	sk_memory_allocated_sub(sk, amt);
2460
2461	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 *	@sk: socket
2471 *	@size: memory size to allocate
2472 *	@kind: allocation type
2473 *
2474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 *	rmem allocation. This function assumes that protocols which have
2476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480	int ret, amt = sk_mem_pages(size);
2481
2482	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484	if (!ret)
2485		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486	return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2492 *	@sk: socket
2493 *	@amount: number of quanta
2494 *
2495 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499	sk_memory_allocated_sub(sk, amount);
2500
2501	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504	if (sk_under_memory_pressure(sk) &&
2505	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506		sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 *	@sk: socket
2513 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517	amount >>= SK_MEM_QUANTUM_SHIFT;
2518	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519	__sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525	sk->sk_peek_off = val;
2526	return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539	return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544		    int len, int flags)
2545{
2546	return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552	return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557		   bool kern)
2558{
2559	return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564		    int peer)
2565{
2566	return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572	return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578	return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584	return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590	return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595		    char __user *optval, unsigned int optlen)
2596{
2597	return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602		    char __user *optval, int __user *optlen)
2603{
2604	return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
2609{
2610	return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616	return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621		    int flags)
2622{
2623	return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629	/* Mirror missing mmap method error code */
2630	return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636	ssize_t res;
2637	struct msghdr msg = {.msg_flags = flags};
2638	struct kvec iov;
2639	char *kaddr = kmap(page);
2640	iov.iov_base = kaddr + offset;
2641	iov.iov_len = size;
2642	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643	kunmap(page);
2644	return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649				int offset, size_t size, int flags)
2650{
2651	ssize_t res;
2652	struct msghdr msg = {.msg_flags = flags};
2653	struct kvec iov;
2654	char *kaddr = kmap(page);
2655
2656	iov.iov_base = kaddr + offset;
2657	iov.iov_len = size;
2658	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659	kunmap(page);
2660	return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 *	Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670	struct socket_wq *wq;
2671
2672	rcu_read_lock();
2673	wq = rcu_dereference(sk->sk_wq);
2674	if (skwq_has_sleeper(wq))
2675		wake_up_interruptible_all(&wq->wait);
2676	rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681	struct socket_wq *wq;
2682
2683	rcu_read_lock();
2684	wq = rcu_dereference(sk->sk_wq);
2685	if (skwq_has_sleeper(wq))
2686		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688	rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693	struct socket_wq *wq;
2694
2695	rcu_read_lock();
2696	wq = rcu_dereference(sk->sk_wq);
2697	if (skwq_has_sleeper(wq))
2698		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699						EPOLLRDNORM | EPOLLRDBAND);
2700	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701	rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706	struct socket_wq *wq;
2707
2708	rcu_read_lock();
2709
2710	/* Do not wake up a writer until he can make "significant"
2711	 * progress.  --DaveM
2712	 */
2713	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714		wq = rcu_dereference(sk->sk_wq);
2715		if (skwq_has_sleeper(wq))
2716			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717						EPOLLWRNORM | EPOLLWRBAND);
2718
2719		/* Should agree with poll, otherwise some programs break */
2720		if (sock_writeable(sk))
2721			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722	}
2723
2724	rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
 
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733	if (sk->sk_socket && sk->sk_socket->file)
2734		if (send_sigurg(&sk->sk_socket->file->f_owner))
2735			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740		    unsigned long expires)
2741{
2742	if (!mod_timer(timer, expires))
2743		sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749	if (del_timer(timer))
2750		__sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756	sk_init_common(sk);
 
 
 
 
 
 
2757	sk->sk_send_head	=	NULL;
2758
2759	timer_setup(&sk->sk_timer, NULL, 0);
2760
2761	sk->sk_allocation	=	GFP_KERNEL;
2762	sk->sk_rcvbuf		=	sysctl_rmem_default;
2763	sk->sk_sndbuf		=	sysctl_wmem_default;
2764	sk->sk_state		=	TCP_CLOSE;
2765	sk_set_socket(sk, sock);
2766
2767	sock_set_flag(sk, SOCK_ZAPPED);
2768
2769	if (sock) {
2770		sk->sk_type	=	sock->type;
2771		sk->sk_wq	=	sock->wq;
2772		sock->sk	=	sk;
2773		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2774	} else {
2775		sk->sk_wq	=	NULL;
2776		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2777	}
2778
 
2779	rwlock_init(&sk->sk_callback_lock);
2780	if (sk->sk_kern_sock)
2781		lockdep_set_class_and_name(
2782			&sk->sk_callback_lock,
2783			af_kern_callback_keys + sk->sk_family,
2784			af_family_kern_clock_key_strings[sk->sk_family]);
2785	else
2786		lockdep_set_class_and_name(
2787			&sk->sk_callback_lock,
2788			af_callback_keys + sk->sk_family,
2789			af_family_clock_key_strings[sk->sk_family]);
2790
2791	sk->sk_state_change	=	sock_def_wakeup;
2792	sk->sk_data_ready	=	sock_def_readable;
2793	sk->sk_write_space	=	sock_def_write_space;
2794	sk->sk_error_report	=	sock_def_error_report;
2795	sk->sk_destruct		=	sock_def_destruct;
2796
2797	sk->sk_frag.page	=	NULL;
2798	sk->sk_frag.offset	=	0;
2799	sk->sk_peek_off		=	-1;
2800
2801	sk->sk_peer_pid 	=	NULL;
2802	sk->sk_peer_cred	=	NULL;
2803	sk->sk_write_pending	=	0;
2804	sk->sk_rcvlowat		=	1;
2805	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2806	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2807
2808	sk->sk_stamp = SK_DEFAULT_STAMP;
2809	atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812	sk->sk_napi_id		=	0;
2813	sk->sk_ll_usec		=	sysctl_net_busy_read;
2814#endif
2815
2816	sk->sk_max_pacing_rate = ~0U;
2817	sk->sk_pacing_rate = ~0U;
2818	sk->sk_pacing_shift = 10;
2819	sk->sk_incoming_cpu = -1;
2820	/*
2821	 * Before updating sk_refcnt, we must commit prior changes to memory
2822	 * (Documentation/RCU/rculist_nulls.txt for details)
2823	 */
2824	smp_wmb();
2825	refcount_set(&sk->sk_refcnt, 1);
2826	atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832	might_sleep();
2833	spin_lock_bh(&sk->sk_lock.slock);
2834	if (sk->sk_lock.owned)
2835		__lock_sock(sk);
2836	sk->sk_lock.owned = 1;
2837	spin_unlock(&sk->sk_lock.slock);
2838	/*
2839	 * The sk_lock has mutex_lock() semantics here:
2840	 */
2841	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842	local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
 
 
 
 
 
2848	spin_lock_bh(&sk->sk_lock.slock);
2849	if (sk->sk_backlog.tail)
2850		__release_sock(sk);
2851
2852	/* Warning : release_cb() might need to release sk ownership,
2853	 * ie call sock_release_ownership(sk) before us.
2854	 */
2855	if (sk->sk_prot->release_cb)
2856		sk->sk_prot->release_cb(sk);
2857
2858	sock_release_ownership(sk);
2859	if (waitqueue_active(&sk->sk_lock.wq))
2860		wake_up(&sk->sk_lock.wq);
2861	spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 *   sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 *   sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880	might_sleep();
2881	spin_lock_bh(&sk->sk_lock.slock);
2882
2883	if (!sk->sk_lock.owned)
2884		/*
2885		 * Note : We must disable BH
2886		 */
2887		return false;
2888
2889	__lock_sock(sk);
2890	sk->sk_lock.owned = 1;
2891	spin_unlock(&sk->sk_lock.slock);
2892	/*
2893	 * The sk_lock has mutex_lock() semantics here:
2894	 */
2895	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896	local_bh_enable();
2897	return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2902{
2903	struct timeval tv;
2904	if (!sock_flag(sk, SOCK_TIMESTAMP))
2905		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906	tv = ktime_to_timeval(sk->sk_stamp);
2907	if (tv.tv_sec == -1)
2908		return -ENOENT;
2909	if (tv.tv_sec == 0) {
2910		sk->sk_stamp = ktime_get_real();
2911		tv = ktime_to_timeval(sk->sk_stamp);
2912	}
2913	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919	struct timespec ts;
2920	if (!sock_flag(sk, SOCK_TIMESTAMP))
2921		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922	ts = ktime_to_timespec(sk->sk_stamp);
2923	if (ts.tv_sec == -1)
2924		return -ENOENT;
2925	if (ts.tv_sec == 0) {
2926		sk->sk_stamp = ktime_get_real();
2927		ts = ktime_to_timespec(sk->sk_stamp);
2928	}
2929	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935	if (!sock_flag(sk, flag)) {
2936		unsigned long previous_flags = sk->sk_flags;
2937
2938		sock_set_flag(sk, flag);
2939		/*
2940		 * we just set one of the two flags which require net
2941		 * time stamping, but time stamping might have been on
2942		 * already because of the other one
2943		 */
2944		if (sock_needs_netstamp(sk) &&
2945		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2946			net_enable_timestamp();
2947	}
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951		       int level, int type)
2952{
2953	struct sock_exterr_skb *serr;
2954	struct sk_buff *skb;
2955	int copied, err;
2956
2957	err = -EAGAIN;
2958	skb = sock_dequeue_err_skb(sk);
2959	if (skb == NULL)
2960		goto out;
2961
2962	copied = skb->len;
2963	if (copied > len) {
2964		msg->msg_flags |= MSG_TRUNC;
2965		copied = len;
2966	}
2967	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968	if (err)
2969		goto out_free_skb;
2970
2971	sock_recv_timestamp(msg, sk, skb);
2972
2973	serr = SKB_EXT_ERR(skb);
2974	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976	msg->msg_flags |= MSG_ERRQUEUE;
2977	err = copied;
2978
 
 
 
 
 
 
 
 
 
 
2979out_free_skb:
2980	kfree_skb(skb);
2981out:
2982	return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 *	Get a socket option on an socket.
2988 *
2989 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 *	asynchronous errors should be reported by getsockopt. We assume
2991 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994			   char __user *optval, int __user *optlen)
2995{
2996	struct sock *sk = sock->sk;
2997
2998	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004				  char __user *optval, int __user *optlen)
3005{
3006	struct sock *sk = sock->sk;
3007
3008	if (sk->sk_prot->compat_getsockopt != NULL)
3009		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010						      optval, optlen);
3011	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017			int flags)
3018{
3019	struct sock *sk = sock->sk;
3020	int addr_len = 0;
3021	int err;
3022
3023	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024				   flags & ~MSG_DONTWAIT, &addr_len);
3025	if (err >= 0)
3026		msg->msg_namelen = addr_len;
3027	return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 *	Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035			   char __user *optval, unsigned int optlen)
3036{
3037	struct sock *sk = sock->sk;
3038
3039	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045				  char __user *optval, unsigned int optlen)
3046{
3047	struct sock *sk = sock->sk;
3048
3049	if (sk->sk_prot->compat_setsockopt != NULL)
3050		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051						      optval, optlen);
3052	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059	if (sk->sk_prot->destroy)
3060		sk->sk_prot->destroy(sk);
3061
3062	/*
3063	 * Observation: when sock_common_release is called, processes have
3064	 * no access to socket. But net still has.
3065	 * Step one, detach it from networking:
3066	 *
3067	 * A. Remove from hash tables.
3068	 */
3069
3070	sk->sk_prot->unhash(sk);
3071
3072	/*
3073	 * In this point socket cannot receive new packets, but it is possible
3074	 * that some packets are in flight because some CPU runs receiver and
3075	 * did hash table lookup before we unhashed socket. They will achieve
3076	 * receive queue and will be purged by socket destructor.
3077	 *
3078	 * Also we still have packets pending on receive queue and probably,
3079	 * our own packets waiting in device queues. sock_destroy will drain
3080	 * receive queue, but transmitted packets will delay socket destruction
3081	 * until the last reference will be released.
3082	 */
3083
3084	sock_orphan(sk);
3085
3086	xfrm_sk_free_policy(sk);
3087
3088	sk_refcnt_debug_release(sk);
3089
 
 
 
 
 
3090	sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3111struct prot_inuse {
3112	int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
 
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125	int cpu, idx = prot->inuse_idx;
3126	int res = 0;
3127
3128	for_each_possible_cpu(cpu)
3129		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131	return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137	this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142	int cpu, res = 0;
3143
3144	for_each_possible_cpu(cpu)
3145		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147	return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155	if (net->core.prot_inuse == NULL)
3156		return -ENOMEM;
3157
3158	net->core.sock_inuse = alloc_percpu(int);
3159	if (net->core.sock_inuse == NULL)
3160		goto out;
3161
3162	return 0;
3163
3164out:
3165	free_percpu(net->core.prot_inuse);
3166	return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171	free_percpu(net->core.prot_inuse);
3172	free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176	.init = sock_inuse_init_net,
3177	.exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182	if (register_pernet_subsys(&net_inuse_ops))
3183		panic("Cannot initialize net inuse counters");
3184
3185	return 0;
3186}
3187
3188core_initcall(net_inuse_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195		pr_err("PROTO_INUSE_NR exhausted\n");
3196		return;
3197	}
3198
3199	set_bit(prot->inuse_idx, proto_inuse_idx);
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205		clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223	if (!rsk_prot)
3224		return;
3225	kfree(rsk_prot->slab_name);
3226	rsk_prot->slab_name = NULL;
3227	kmem_cache_destroy(rsk_prot->slab);
3228	rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235	if (!rsk_prot)
3236		return 0;
3237
3238	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239					prot->name);
3240	if (!rsk_prot->slab_name)
3241		return -ENOMEM;
3242
3243	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244					   rsk_prot->obj_size, 0,
3245					   prot->slab_flags, NULL);
3246
3247	if (!rsk_prot->slab) {
3248		pr_crit("%s: Can't create request sock SLAB cache!\n",
3249			prot->name);
3250		return -ENOMEM;
3251	}
3252	return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
3257	if (alloc_slab) {
3258		prot->slab = kmem_cache_create_usercopy(prot->name,
3259					prot->obj_size, 0,
3260					SLAB_HWCACHE_ALIGN | prot->slab_flags,
3261					prot->useroffset, prot->usersize,
3262					NULL);
3263
3264		if (prot->slab == NULL) {
3265			pr_crit("%s: Can't create sock SLAB cache!\n",
3266				prot->name);
3267			goto out;
3268		}
3269
3270		if (req_prot_init(prot))
3271			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
3272
3273		if (prot->twsk_prot != NULL) {
3274			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276			if (prot->twsk_prot->twsk_slab_name == NULL)
3277				goto out_free_request_sock_slab;
3278
3279			prot->twsk_prot->twsk_slab =
3280				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281						  prot->twsk_prot->twsk_obj_size,
3282						  0,
3283						  prot->slab_flags,
 
3284						  NULL);
3285			if (prot->twsk_prot->twsk_slab == NULL)
3286				goto out_free_timewait_sock_slab_name;
3287		}
3288	}
3289
3290	mutex_lock(&proto_list_mutex);
3291	list_add(&prot->node, &proto_list);
3292	assign_proto_idx(prot);
3293	mutex_unlock(&proto_list_mutex);
3294	return 0;
3295
3296out_free_timewait_sock_slab_name:
3297	kfree(prot->twsk_prot->twsk_slab_name);
3298out_free_request_sock_slab:
3299	req_prot_cleanup(prot->rsk_prot);
3300
 
 
 
 
 
 
3301	kmem_cache_destroy(prot->slab);
3302	prot->slab = NULL;
3303out:
3304	return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310	mutex_lock(&proto_list_mutex);
3311	release_proto_idx(prot);
3312	list_del(&prot->node);
3313	mutex_unlock(&proto_list_mutex);
3314
3315	kmem_cache_destroy(prot->slab);
3316	prot->slab = NULL;
 
 
3317
3318	req_prot_cleanup(prot->rsk_prot);
 
 
 
 
3319
3320	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322		kfree(prot->twsk_prot->twsk_slab_name);
3323		prot->twsk_prot->twsk_slab = NULL;
3324	}
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330	if (!protocol) {
3331		if (!sock_is_registered(family))
3332			return -ENOENT;
3333
3334		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335				      NETLINK_SOCK_DIAG, family);
3336	}
3337
3338#ifdef CONFIG_INET
3339	if (family == AF_INET &&
3340	    !rcu_access_pointer(inet_protos[protocol]))
3341		return -ENOENT;
3342#endif
3343
3344	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345			      NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351	__acquires(proto_list_mutex)
3352{
3353	mutex_lock(&proto_list_mutex);
3354	return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359	return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363	__releases(proto_list_mutex)
3364{
3365	mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370	return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379	return proto->memory_pressure != NULL ?
3380	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3387			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388		   proto->name,
3389		   proto->obj_size,
3390		   sock_prot_inuse_get(seq_file_net(seq), proto),
3391		   sock_prot_memory_allocated(proto),
3392		   sock_prot_memory_pressure(proto),
3393		   proto->max_header,
3394		   proto->slab == NULL ? "no" : "yes",
3395		   module_name(proto->owner),
3396		   proto_method_implemented(proto->close),
3397		   proto_method_implemented(proto->connect),
3398		   proto_method_implemented(proto->disconnect),
3399		   proto_method_implemented(proto->accept),
3400		   proto_method_implemented(proto->ioctl),
3401		   proto_method_implemented(proto->init),
3402		   proto_method_implemented(proto->destroy),
3403		   proto_method_implemented(proto->shutdown),
3404		   proto_method_implemented(proto->setsockopt),
3405		   proto_method_implemented(proto->getsockopt),
3406		   proto_method_implemented(proto->sendmsg),
3407		   proto_method_implemented(proto->recvmsg),
3408		   proto_method_implemented(proto->sendpage),
3409		   proto_method_implemented(proto->bind),
3410		   proto_method_implemented(proto->backlog_rcv),
3411		   proto_method_implemented(proto->hash),
3412		   proto_method_implemented(proto->unhash),
3413		   proto_method_implemented(proto->get_port),
3414		   proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419	if (v == &proto_list)
3420		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421			   "protocol",
3422			   "size",
3423			   "sockets",
3424			   "memory",
3425			   "press",
3426			   "maxhdr",
3427			   "slab",
3428			   "module",
3429			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430	else
3431		proto_seq_printf(seq, list_entry(v, struct proto, node));
3432	return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436	.start  = proto_seq_start,
3437	.next   = proto_seq_next,
3438	.stop   = proto_seq_stop,
3439	.show   = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444	return seq_open_net(inode, file, &proto_seq_ops,
3445			    sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
 
3449	.open		= proto_seq_open,
3450	.read		= seq_read,
3451	.llseek		= seq_lseek,
3452	.release	= seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457	if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3458		return -ENOMEM;
3459
3460	return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465	remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470	.init = proto_init_net,
3471	.exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476	return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486	struct sock *sk = p;
3487
3488	return !skb_queue_empty(&sk->sk_receive_queue) ||
3489	       sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */