Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
 
 
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * manager_mutex to avoid changing binding state while
  69	 * create_worker() is in progress.
  70	 */
  71	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
  72	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  73	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
  74
  75	/* worker flags */
  76	WORKER_STARTED		= 1 << 0,	/* started */
  77	WORKER_DIE		= 1 << 1,	/* die die die */
  78	WORKER_IDLE		= 1 << 2,	/* is idle */
  79	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  80	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  81	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  82	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  83
  84	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  85				  WORKER_UNBOUND | WORKER_REBOUND,
  86
  87	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  88
  89	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  90	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  91
  92	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  93	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  94
  95	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  96						/* call for help after 10ms
  97						   (min two ticks) */
  98	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  99	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 100
 101	/*
 102	 * Rescue workers are used only on emergencies and shared by
 103	 * all cpus.  Give -20.
 104	 */
 105	RESCUER_NICE_LEVEL	= -20,
 106	HIGHPRI_NICE_LEVEL	= -20,
 107
 108	WQ_NAME_LEN		= 24,
 109};
 110
 111/*
 112 * Structure fields follow one of the following exclusion rules.
 113 *
 114 * I: Modifiable by initialization/destruction paths and read-only for
 115 *    everyone else.
 116 *
 117 * P: Preemption protected.  Disabling preemption is enough and should
 118 *    only be modified and accessed from the local cpu.
 119 *
 120 * L: pool->lock protected.  Access with pool->lock held.
 121 *
 122 * X: During normal operation, modification requires pool->lock and should
 123 *    be done only from local cpu.  Either disabling preemption on local
 124 *    cpu or grabbing pool->lock is enough for read access.  If
 125 *    POOL_DISASSOCIATED is set, it's identical to L.
 126 *
 127 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 128 *     locks.  Reads can happen under either lock.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 133 *
 
 
 
 
 
 134 * WQ: wq->mutex protected.
 135 *
 136 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 137 *
 138 * MD: wq_mayday_lock protected.
 139 */
 140
 141/* struct worker is defined in workqueue_internal.h */
 142
 143struct worker_pool {
 144	spinlock_t		lock;		/* the pool lock */
 145	int			cpu;		/* I: the associated cpu */
 146	int			node;		/* I: the associated node ID */
 147	int			id;		/* I: pool ID */
 148	unsigned int		flags;		/* X: flags */
 149
 
 
 150	struct list_head	worklist;	/* L: list of pending works */
 151	int			nr_workers;	/* L: total number of workers */
 152
 153	/* nr_idle includes the ones off idle_list for rebinding */
 154	int			nr_idle;	/* L: currently idle ones */
 155
 156	struct list_head	idle_list;	/* X: list of idle workers */
 157	struct timer_list	idle_timer;	/* L: worker idle timeout */
 158	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 159
 160	/* a workers is either on busy_hash or idle_list, or the manager */
 161	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 162						/* L: hash of busy workers */
 163
 164	/* see manage_workers() for details on the two manager mutexes */
 165	struct mutex		manager_arb;	/* manager arbitration */
 166	struct mutex		manager_mutex;	/* manager exclusion */
 167	struct idr		worker_idr;	/* MG: worker IDs and iteration */
 
 
 168
 169	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 170	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 171	int			refcnt;		/* PL: refcnt for unbound pools */
 172
 173	/*
 174	 * The current concurrency level.  As it's likely to be accessed
 175	 * from other CPUs during try_to_wake_up(), put it in a separate
 176	 * cacheline.
 177	 */
 178	atomic_t		nr_running ____cacheline_aligned_in_smp;
 179
 180	/*
 181	 * Destruction of pool is sched-RCU protected to allow dereferences
 182	 * from get_work_pool().
 183	 */
 184	struct rcu_head		rcu;
 185} ____cacheline_aligned_in_smp;
 186
 187/*
 188 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 189 * of work_struct->data are used for flags and the remaining high bits
 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 191 * number of flag bits.
 192 */
 193struct pool_workqueue {
 194	struct worker_pool	*pool;		/* I: the associated pool */
 195	struct workqueue_struct *wq;		/* I: the owning workqueue */
 196	int			work_color;	/* L: current color */
 197	int			flush_color;	/* L: flushing color */
 198	int			refcnt;		/* L: reference count */
 199	int			nr_in_flight[WORK_NR_COLORS];
 200						/* L: nr of in_flight works */
 201	int			nr_active;	/* L: nr of active works */
 202	int			max_active;	/* L: max active works */
 203	struct list_head	delayed_works;	/* L: delayed works */
 204	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 205	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 206
 207	/*
 208	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 209	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 210	 * itself is also sched-RCU protected so that the first pwq can be
 211	 * determined without grabbing wq->mutex.
 212	 */
 213	struct work_struct	unbound_release_work;
 214	struct rcu_head		rcu;
 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 216
 217/*
 218 * Structure used to wait for workqueue flush.
 219 */
 220struct wq_flusher {
 221	struct list_head	list;		/* WQ: list of flushers */
 222	int			flush_color;	/* WQ: flush color waiting for */
 223	struct completion	done;		/* flush completion */
 224};
 225
 226struct wq_device;
 227
 228/*
 229 * The externally visible workqueue.  It relays the issued work items to
 230 * the appropriate worker_pool through its pool_workqueues.
 231 */
 232struct workqueue_struct {
 233	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 234	struct list_head	list;		/* PL: list of all workqueues */
 235
 236	struct mutex		mutex;		/* protects this wq */
 237	int			work_color;	/* WQ: current work color */
 238	int			flush_color;	/* WQ: current flush color */
 239	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 240	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 241	struct list_head	flusher_queue;	/* WQ: flush waiters */
 242	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 243
 244	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 245	struct worker		*rescuer;	/* I: rescue worker */
 246
 247	int			nr_drainers;	/* WQ: drain in progress */
 248	int			saved_max_active; /* WQ: saved pwq max_active */
 249
 250	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
 251	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
 252
 253#ifdef CONFIG_SYSFS
 254	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 255#endif
 256#ifdef CONFIG_LOCKDEP
 257	struct lockdep_map	lockdep_map;
 258#endif
 259	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 260
 
 
 
 
 
 
 
 261	/* hot fields used during command issue, aligned to cacheline */
 262	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 263	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 264	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
 265};
 266
 267static struct kmem_cache *pwq_cache;
 268
 269static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
 270static cpumask_var_t *wq_numa_possible_cpumask;
 271					/* possible CPUs of each node */
 272
 273static bool wq_disable_numa;
 274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 275
 276/* see the comment above the definition of WQ_POWER_EFFICIENT */
 277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
 278static bool wq_power_efficient = true;
 279#else
 280static bool wq_power_efficient;
 281#endif
 282
 283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 284
 
 
 285static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 286
 287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 289
 290static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 291static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 
 292
 293static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
 294static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296/* the per-cpu worker pools */
 297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 298				     cpu_worker_pools);
 299
 300static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 301
 302/* PL: hash of all unbound pools keyed by pool->attrs */
 303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 304
 305/* I: attributes used when instantiating standard unbound pools on demand */
 306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 307
 308/* I: attributes used when instantiating ordered pools on demand */
 309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 310
 311struct workqueue_struct *system_wq __read_mostly;
 312EXPORT_SYMBOL(system_wq);
 313struct workqueue_struct *system_highpri_wq __read_mostly;
 314EXPORT_SYMBOL_GPL(system_highpri_wq);
 315struct workqueue_struct *system_long_wq __read_mostly;
 316EXPORT_SYMBOL_GPL(system_long_wq);
 317struct workqueue_struct *system_unbound_wq __read_mostly;
 318EXPORT_SYMBOL_GPL(system_unbound_wq);
 319struct workqueue_struct *system_freezable_wq __read_mostly;
 320EXPORT_SYMBOL_GPL(system_freezable_wq);
 321struct workqueue_struct *system_power_efficient_wq __read_mostly;
 322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 325
 326static int worker_thread(void *__worker);
 327static void copy_workqueue_attrs(struct workqueue_attrs *to,
 328				 const struct workqueue_attrs *from);
 329
 330#define CREATE_TRACE_POINTS
 331#include <trace/events/workqueue.h>
 332
 333#define assert_rcu_or_pool_mutex()					\
 334	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
 335			   lockdep_is_held(&wq_pool_mutex),		\
 336			   "sched RCU or wq_pool_mutex should be held")
 337
 338#define assert_rcu_or_wq_mutex(wq)					\
 339	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
 340			   lockdep_is_held(&wq->mutex),			\
 341			   "sched RCU or wq->mutex should be held")
 342
 343#ifdef CONFIG_LOCKDEP
 344#define assert_manager_or_pool_lock(pool)				\
 345	WARN_ONCE(debug_locks &&					\
 346		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
 347		  !lockdep_is_held(&(pool)->lock),			\
 348		  "pool->manager_mutex or ->lock should be held")
 349#else
 350#define assert_manager_or_pool_lock(pool)	do { } while (0)
 351#endif
 352
 353#define for_each_cpu_worker_pool(pool, cpu)				\
 354	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 355	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 356	     (pool)++)
 357
 358/**
 359 * for_each_pool - iterate through all worker_pools in the system
 360 * @pool: iteration cursor
 361 * @pi: integer used for iteration
 362 *
 363 * This must be called either with wq_pool_mutex held or sched RCU read
 364 * locked.  If the pool needs to be used beyond the locking in effect, the
 365 * caller is responsible for guaranteeing that the pool stays online.
 366 *
 367 * The if/else clause exists only for the lockdep assertion and can be
 368 * ignored.
 369 */
 370#define for_each_pool(pool, pi)						\
 371	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 372		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 373		else
 374
 375/**
 376 * for_each_pool_worker - iterate through all workers of a worker_pool
 377 * @worker: iteration cursor
 378 * @wi: integer used for iteration
 379 * @pool: worker_pool to iterate workers of
 380 *
 381 * This must be called with either @pool->manager_mutex or ->lock held.
 382 *
 383 * The if/else clause exists only for the lockdep assertion and can be
 384 * ignored.
 385 */
 386#define for_each_pool_worker(worker, wi, pool)				\
 387	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
 388		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
 389		else
 390
 391/**
 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 393 * @pwq: iteration cursor
 394 * @wq: the target workqueue
 395 *
 396 * This must be called either with wq->mutex held or sched RCU read locked.
 397 * If the pwq needs to be used beyond the locking in effect, the caller is
 398 * responsible for guaranteeing that the pwq stays online.
 399 *
 400 * The if/else clause exists only for the lockdep assertion and can be
 401 * ignored.
 402 */
 403#define for_each_pwq(pwq, wq)						\
 404	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 405		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 406		else
 407
 408#ifdef CONFIG_DEBUG_OBJECTS_WORK
 409
 410static struct debug_obj_descr work_debug_descr;
 411
 412static void *work_debug_hint(void *addr)
 413{
 414	return ((struct work_struct *) addr)->func;
 415}
 416
 417/*
 418 * fixup_init is called when:
 419 * - an active object is initialized
 420 */
 421static int work_fixup_init(void *addr, enum debug_obj_state state)
 422{
 423	struct work_struct *work = addr;
 424
 425	switch (state) {
 426	case ODEBUG_STATE_ACTIVE:
 427		cancel_work_sync(work);
 428		debug_object_init(work, &work_debug_descr);
 429		return 1;
 430	default:
 431		return 0;
 432	}
 433}
 434
 435/*
 436 * fixup_activate is called when:
 437 * - an active object is activated
 438 * - an unknown object is activated (might be a statically initialized object)
 439 */
 440static int work_fixup_activate(void *addr, enum debug_obj_state state)
 441{
 442	struct work_struct *work = addr;
 443
 444	switch (state) {
 445
 446	case ODEBUG_STATE_NOTAVAILABLE:
 447		/*
 448		 * This is not really a fixup. The work struct was
 449		 * statically initialized. We just make sure that it
 450		 * is tracked in the object tracker.
 451		 */
 452		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 453			debug_object_init(work, &work_debug_descr);
 454			debug_object_activate(work, &work_debug_descr);
 455			return 0;
 456		}
 457		WARN_ON_ONCE(1);
 458		return 0;
 459
 460	case ODEBUG_STATE_ACTIVE:
 461		WARN_ON(1);
 462
 
 463	default:
 464		return 0;
 465	}
 466}
 467
 468/*
 469 * fixup_free is called when:
 470 * - an active object is freed
 471 */
 472static int work_fixup_free(void *addr, enum debug_obj_state state)
 473{
 474	struct work_struct *work = addr;
 475
 476	switch (state) {
 477	case ODEBUG_STATE_ACTIVE:
 478		cancel_work_sync(work);
 479		debug_object_free(work, &work_debug_descr);
 480		return 1;
 481	default:
 482		return 0;
 483	}
 484}
 485
 486static struct debug_obj_descr work_debug_descr = {
 487	.name		= "work_struct",
 488	.debug_hint	= work_debug_hint,
 
 489	.fixup_init	= work_fixup_init,
 490	.fixup_activate	= work_fixup_activate,
 491	.fixup_free	= work_fixup_free,
 492};
 493
 494static inline void debug_work_activate(struct work_struct *work)
 495{
 496	debug_object_activate(work, &work_debug_descr);
 497}
 498
 499static inline void debug_work_deactivate(struct work_struct *work)
 500{
 501	debug_object_deactivate(work, &work_debug_descr);
 502}
 503
 504void __init_work(struct work_struct *work, int onstack)
 505{
 506	if (onstack)
 507		debug_object_init_on_stack(work, &work_debug_descr);
 508	else
 509		debug_object_init(work, &work_debug_descr);
 510}
 511EXPORT_SYMBOL_GPL(__init_work);
 512
 513void destroy_work_on_stack(struct work_struct *work)
 514{
 515	debug_object_free(work, &work_debug_descr);
 516}
 517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 518
 519void destroy_delayed_work_on_stack(struct delayed_work *work)
 520{
 521	destroy_timer_on_stack(&work->timer);
 522	debug_object_free(&work->work, &work_debug_descr);
 523}
 524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 525
 526#else
 527static inline void debug_work_activate(struct work_struct *work) { }
 528static inline void debug_work_deactivate(struct work_struct *work) { }
 529#endif
 530
 531/**
 532 * worker_pool_assign_id - allocate ID and assing it to @pool
 533 * @pool: the pool pointer of interest
 534 *
 535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 536 * successfully, -errno on failure.
 537 */
 538static int worker_pool_assign_id(struct worker_pool *pool)
 539{
 540	int ret;
 541
 542	lockdep_assert_held(&wq_pool_mutex);
 543
 544	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 545			GFP_KERNEL);
 546	if (ret >= 0) {
 547		pool->id = ret;
 548		return 0;
 549	}
 550	return ret;
 551}
 552
 553/**
 554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 555 * @wq: the target workqueue
 556 * @node: the node ID
 557 *
 558 * This must be called either with pwq_lock held or sched RCU read locked.
 
 559 * If the pwq needs to be used beyond the locking in effect, the caller is
 560 * responsible for guaranteeing that the pwq stays online.
 561 *
 562 * Return: The unbound pool_workqueue for @node.
 563 */
 564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 565						  int node)
 566{
 567	assert_rcu_or_wq_mutex(wq);
 
 
 
 
 
 
 
 
 
 
 568	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 569}
 570
 571static unsigned int work_color_to_flags(int color)
 572{
 573	return color << WORK_STRUCT_COLOR_SHIFT;
 574}
 575
 576static int get_work_color(struct work_struct *work)
 577{
 578	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 579		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 580}
 581
 582static int work_next_color(int color)
 583{
 584	return (color + 1) % WORK_NR_COLORS;
 585}
 586
 587/*
 588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 589 * contain the pointer to the queued pwq.  Once execution starts, the flag
 590 * is cleared and the high bits contain OFFQ flags and pool ID.
 591 *
 592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 593 * and clear_work_data() can be used to set the pwq, pool or clear
 594 * work->data.  These functions should only be called while the work is
 595 * owned - ie. while the PENDING bit is set.
 596 *
 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 598 * corresponding to a work.  Pool is available once the work has been
 599 * queued anywhere after initialization until it is sync canceled.  pwq is
 600 * available only while the work item is queued.
 601 *
 602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 603 * canceled.  While being canceled, a work item may have its PENDING set
 604 * but stay off timer and worklist for arbitrarily long and nobody should
 605 * try to steal the PENDING bit.
 606 */
 607static inline void set_work_data(struct work_struct *work, unsigned long data,
 608				 unsigned long flags)
 609{
 610	WARN_ON_ONCE(!work_pending(work));
 611	atomic_long_set(&work->data, data | flags | work_static(work));
 612}
 613
 614static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 615			 unsigned long extra_flags)
 616{
 617	set_work_data(work, (unsigned long)pwq,
 618		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 619}
 620
 621static void set_work_pool_and_keep_pending(struct work_struct *work,
 622					   int pool_id)
 623{
 624	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 625		      WORK_STRUCT_PENDING);
 626}
 627
 628static void set_work_pool_and_clear_pending(struct work_struct *work,
 629					    int pool_id)
 630{
 631	/*
 632	 * The following wmb is paired with the implied mb in
 633	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 634	 * here are visible to and precede any updates by the next PENDING
 635	 * owner.
 636	 */
 637	smp_wmb();
 638	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641static void clear_work_data(struct work_struct *work)
 642{
 643	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 644	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 645}
 646
 647static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 648{
 649	unsigned long data = atomic_long_read(&work->data);
 650
 651	if (data & WORK_STRUCT_PWQ)
 652		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 653	else
 654		return NULL;
 655}
 656
 657/**
 658 * get_work_pool - return the worker_pool a given work was associated with
 659 * @work: the work item of interest
 660 *
 661 * Pools are created and destroyed under wq_pool_mutex, and allows read
 662 * access under sched-RCU read lock.  As such, this function should be
 663 * called under wq_pool_mutex or with preemption disabled.
 664 *
 665 * All fields of the returned pool are accessible as long as the above
 666 * mentioned locking is in effect.  If the returned pool needs to be used
 667 * beyond the critical section, the caller is responsible for ensuring the
 668 * returned pool is and stays online.
 669 *
 670 * Return: The worker_pool @work was last associated with.  %NULL if none.
 671 */
 672static struct worker_pool *get_work_pool(struct work_struct *work)
 673{
 674	unsigned long data = atomic_long_read(&work->data);
 675	int pool_id;
 676
 677	assert_rcu_or_pool_mutex();
 678
 679	if (data & WORK_STRUCT_PWQ)
 680		return ((struct pool_workqueue *)
 681			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 682
 683	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 684	if (pool_id == WORK_OFFQ_POOL_NONE)
 685		return NULL;
 686
 687	return idr_find(&worker_pool_idr, pool_id);
 688}
 689
 690/**
 691 * get_work_pool_id - return the worker pool ID a given work is associated with
 692 * @work: the work item of interest
 693 *
 694 * Return: The worker_pool ID @work was last associated with.
 695 * %WORK_OFFQ_POOL_NONE if none.
 696 */
 697static int get_work_pool_id(struct work_struct *work)
 698{
 699	unsigned long data = atomic_long_read(&work->data);
 700
 701	if (data & WORK_STRUCT_PWQ)
 702		return ((struct pool_workqueue *)
 703			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 704
 705	return data >> WORK_OFFQ_POOL_SHIFT;
 706}
 707
 708static void mark_work_canceling(struct work_struct *work)
 709{
 710	unsigned long pool_id = get_work_pool_id(work);
 711
 712	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 713	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 714}
 715
 716static bool work_is_canceling(struct work_struct *work)
 717{
 718	unsigned long data = atomic_long_read(&work->data);
 719
 720	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 721}
 722
 723/*
 724 * Policy functions.  These define the policies on how the global worker
 725 * pools are managed.  Unless noted otherwise, these functions assume that
 726 * they're being called with pool->lock held.
 727 */
 728
 729static bool __need_more_worker(struct worker_pool *pool)
 730{
 731	return !atomic_read(&pool->nr_running);
 732}
 733
 734/*
 735 * Need to wake up a worker?  Called from anything but currently
 736 * running workers.
 737 *
 738 * Note that, because unbound workers never contribute to nr_running, this
 739 * function will always return %true for unbound pools as long as the
 740 * worklist isn't empty.
 741 */
 742static bool need_more_worker(struct worker_pool *pool)
 743{
 744	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 745}
 746
 747/* Can I start working?  Called from busy but !running workers. */
 748static bool may_start_working(struct worker_pool *pool)
 749{
 750	return pool->nr_idle;
 751}
 752
 753/* Do I need to keep working?  Called from currently running workers. */
 754static bool keep_working(struct worker_pool *pool)
 755{
 756	return !list_empty(&pool->worklist) &&
 757		atomic_read(&pool->nr_running) <= 1;
 758}
 759
 760/* Do we need a new worker?  Called from manager. */
 761static bool need_to_create_worker(struct worker_pool *pool)
 762{
 763	return need_more_worker(pool) && !may_start_working(pool);
 764}
 765
 766/* Do I need to be the manager? */
 767static bool need_to_manage_workers(struct worker_pool *pool)
 768{
 769	return need_to_create_worker(pool) ||
 770		(pool->flags & POOL_MANAGE_WORKERS);
 771}
 772
 773/* Do we have too many workers and should some go away? */
 774static bool too_many_workers(struct worker_pool *pool)
 775{
 776	bool managing = mutex_is_locked(&pool->manager_arb);
 777	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 778	int nr_busy = pool->nr_workers - nr_idle;
 779
 780	/*
 781	 * nr_idle and idle_list may disagree if idle rebinding is in
 782	 * progress.  Never return %true if idle_list is empty.
 783	 */
 784	if (list_empty(&pool->idle_list))
 785		return false;
 786
 787	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 788}
 789
 790/*
 791 * Wake up functions.
 792 */
 793
 794/* Return the first worker.  Safe with preemption disabled */
 795static struct worker *first_worker(struct worker_pool *pool)
 796{
 797	if (unlikely(list_empty(&pool->idle_list)))
 798		return NULL;
 799
 800	return list_first_entry(&pool->idle_list, struct worker, entry);
 801}
 802
 803/**
 804 * wake_up_worker - wake up an idle worker
 805 * @pool: worker pool to wake worker from
 806 *
 807 * Wake up the first idle worker of @pool.
 808 *
 809 * CONTEXT:
 810 * spin_lock_irq(pool->lock).
 811 */
 812static void wake_up_worker(struct worker_pool *pool)
 813{
 814	struct worker *worker = first_worker(pool);
 815
 816	if (likely(worker))
 817		wake_up_process(worker->task);
 818}
 819
 820/**
 821 * wq_worker_waking_up - a worker is waking up
 822 * @task: task waking up
 823 * @cpu: CPU @task is waking up to
 824 *
 825 * This function is called during try_to_wake_up() when a worker is
 826 * being awoken.
 827 *
 828 * CONTEXT:
 829 * spin_lock_irq(rq->lock)
 830 */
 831void wq_worker_waking_up(struct task_struct *task, int cpu)
 832{
 833	struct worker *worker = kthread_data(task);
 834
 835	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 836		WARN_ON_ONCE(worker->pool->cpu != cpu);
 837		atomic_inc(&worker->pool->nr_running);
 838	}
 839}
 840
 841/**
 842 * wq_worker_sleeping - a worker is going to sleep
 843 * @task: task going to sleep
 844 * @cpu: CPU in question, must be the current CPU number
 845 *
 846 * This function is called during schedule() when a busy worker is
 847 * going to sleep.  Worker on the same cpu can be woken up by
 848 * returning pointer to its task.
 849 *
 850 * CONTEXT:
 851 * spin_lock_irq(rq->lock)
 852 *
 853 * Return:
 854 * Worker task on @cpu to wake up, %NULL if none.
 855 */
 856struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
 857{
 858	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 859	struct worker_pool *pool;
 860
 861	/*
 862	 * Rescuers, which may not have all the fields set up like normal
 863	 * workers, also reach here, let's not access anything before
 864	 * checking NOT_RUNNING.
 865	 */
 866	if (worker->flags & WORKER_NOT_RUNNING)
 867		return NULL;
 868
 869	pool = worker->pool;
 870
 871	/* this can only happen on the local cpu */
 872	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
 873		return NULL;
 874
 875	/*
 876	 * The counterpart of the following dec_and_test, implied mb,
 877	 * worklist not empty test sequence is in insert_work().
 878	 * Please read comment there.
 879	 *
 880	 * NOT_RUNNING is clear.  This means that we're bound to and
 881	 * running on the local cpu w/ rq lock held and preemption
 882	 * disabled, which in turn means that none else could be
 883	 * manipulating idle_list, so dereferencing idle_list without pool
 884	 * lock is safe.
 885	 */
 886	if (atomic_dec_and_test(&pool->nr_running) &&
 887	    !list_empty(&pool->worklist))
 888		to_wakeup = first_worker(pool);
 889	return to_wakeup ? to_wakeup->task : NULL;
 890}
 891
 892/**
 893 * worker_set_flags - set worker flags and adjust nr_running accordingly
 894 * @worker: self
 895 * @flags: flags to set
 896 * @wakeup: wakeup an idle worker if necessary
 897 *
 898 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 899 * nr_running becomes zero and @wakeup is %true, an idle worker is
 900 * woken up.
 901 *
 902 * CONTEXT:
 903 * spin_lock_irq(pool->lock)
 904 */
 905static inline void worker_set_flags(struct worker *worker, unsigned int flags,
 906				    bool wakeup)
 907{
 908	struct worker_pool *pool = worker->pool;
 909
 910	WARN_ON_ONCE(worker->task != current);
 911
 912	/*
 913	 * If transitioning into NOT_RUNNING, adjust nr_running and
 914	 * wake up an idle worker as necessary if requested by
 915	 * @wakeup.
 916	 */
 917	if ((flags & WORKER_NOT_RUNNING) &&
 918	    !(worker->flags & WORKER_NOT_RUNNING)) {
 919		if (wakeup) {
 920			if (atomic_dec_and_test(&pool->nr_running) &&
 921			    !list_empty(&pool->worklist))
 922				wake_up_worker(pool);
 923		} else
 924			atomic_dec(&pool->nr_running);
 925	}
 926
 927	worker->flags |= flags;
 928}
 929
 930/**
 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 932 * @worker: self
 933 * @flags: flags to clear
 934 *
 935 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 936 *
 937 * CONTEXT:
 938 * spin_lock_irq(pool->lock)
 939 */
 940static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 941{
 942	struct worker_pool *pool = worker->pool;
 943	unsigned int oflags = worker->flags;
 944
 945	WARN_ON_ONCE(worker->task != current);
 946
 947	worker->flags &= ~flags;
 948
 949	/*
 950	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 951	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 952	 * of multiple flags, not a single flag.
 953	 */
 954	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 955		if (!(worker->flags & WORKER_NOT_RUNNING))
 956			atomic_inc(&pool->nr_running);
 957}
 958
 959/**
 960 * find_worker_executing_work - find worker which is executing a work
 961 * @pool: pool of interest
 962 * @work: work to find worker for
 963 *
 964 * Find a worker which is executing @work on @pool by searching
 965 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 966 * to match, its current execution should match the address of @work and
 967 * its work function.  This is to avoid unwanted dependency between
 968 * unrelated work executions through a work item being recycled while still
 969 * being executed.
 970 *
 971 * This is a bit tricky.  A work item may be freed once its execution
 972 * starts and nothing prevents the freed area from being recycled for
 973 * another work item.  If the same work item address ends up being reused
 974 * before the original execution finishes, workqueue will identify the
 975 * recycled work item as currently executing and make it wait until the
 976 * current execution finishes, introducing an unwanted dependency.
 977 *
 978 * This function checks the work item address and work function to avoid
 979 * false positives.  Note that this isn't complete as one may construct a
 980 * work function which can introduce dependency onto itself through a
 981 * recycled work item.  Well, if somebody wants to shoot oneself in the
 982 * foot that badly, there's only so much we can do, and if such deadlock
 983 * actually occurs, it should be easy to locate the culprit work function.
 984 *
 985 * CONTEXT:
 986 * spin_lock_irq(pool->lock).
 987 *
 988 * Return:
 989 * Pointer to worker which is executing @work if found, %NULL
 990 * otherwise.
 991 */
 992static struct worker *find_worker_executing_work(struct worker_pool *pool,
 993						 struct work_struct *work)
 994{
 995	struct worker *worker;
 996
 997	hash_for_each_possible(pool->busy_hash, worker, hentry,
 998			       (unsigned long)work)
 999		if (worker->current_work == work &&
1000		    worker->current_func == work->func)
1001			return worker;
1002
1003	return NULL;
1004}
1005
1006/**
1007 * move_linked_works - move linked works to a list
1008 * @work: start of series of works to be scheduled
1009 * @head: target list to append @work to
1010 * @nextp: out paramter for nested worklist walking
1011 *
1012 * Schedule linked works starting from @work to @head.  Work series to
1013 * be scheduled starts at @work and includes any consecutive work with
1014 * WORK_STRUCT_LINKED set in its predecessor.
1015 *
1016 * If @nextp is not NULL, it's updated to point to the next work of
1017 * the last scheduled work.  This allows move_linked_works() to be
1018 * nested inside outer list_for_each_entry_safe().
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 */
1023static void move_linked_works(struct work_struct *work, struct list_head *head,
1024			      struct work_struct **nextp)
1025{
1026	struct work_struct *n;
1027
1028	/*
1029	 * Linked worklist will always end before the end of the list,
1030	 * use NULL for list head.
1031	 */
1032	list_for_each_entry_safe_from(work, n, NULL, entry) {
1033		list_move_tail(&work->entry, head);
1034		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035			break;
1036	}
1037
1038	/*
1039	 * If we're already inside safe list traversal and have moved
1040	 * multiple works to the scheduled queue, the next position
1041	 * needs to be updated.
1042	 */
1043	if (nextp)
1044		*nextp = n;
1045}
1046
1047/**
1048 * get_pwq - get an extra reference on the specified pool_workqueue
1049 * @pwq: pool_workqueue to get
1050 *
1051 * Obtain an extra reference on @pwq.  The caller should guarantee that
1052 * @pwq has positive refcnt and be holding the matching pool->lock.
1053 */
1054static void get_pwq(struct pool_workqueue *pwq)
1055{
1056	lockdep_assert_held(&pwq->pool->lock);
1057	WARN_ON_ONCE(pwq->refcnt <= 0);
1058	pwq->refcnt++;
1059}
1060
1061/**
1062 * put_pwq - put a pool_workqueue reference
1063 * @pwq: pool_workqueue to put
1064 *
1065 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1066 * destruction.  The caller should be holding the matching pool->lock.
1067 */
1068static void put_pwq(struct pool_workqueue *pwq)
1069{
1070	lockdep_assert_held(&pwq->pool->lock);
1071	if (likely(--pwq->refcnt))
1072		return;
1073	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074		return;
1075	/*
1076	 * @pwq can't be released under pool->lock, bounce to
1077	 * pwq_unbound_release_workfn().  This never recurses on the same
1078	 * pool->lock as this path is taken only for unbound workqueues and
1079	 * the release work item is scheduled on a per-cpu workqueue.  To
1080	 * avoid lockdep warning, unbound pool->locks are given lockdep
1081	 * subclass of 1 in get_unbound_pool().
1082	 */
1083	schedule_work(&pwq->unbound_release_work);
1084}
1085
1086/**
1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088 * @pwq: pool_workqueue to put (can be %NULL)
1089 *
1090 * put_pwq() with locking.  This function also allows %NULL @pwq.
1091 */
1092static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093{
1094	if (pwq) {
1095		/*
1096		 * As both pwqs and pools are sched-RCU protected, the
1097		 * following lock operations are safe.
1098		 */
1099		spin_lock_irq(&pwq->pool->lock);
1100		put_pwq(pwq);
1101		spin_unlock_irq(&pwq->pool->lock);
1102	}
1103}
1104
1105static void pwq_activate_delayed_work(struct work_struct *work)
1106{
1107	struct pool_workqueue *pwq = get_work_pwq(work);
1108
1109	trace_workqueue_activate_work(work);
 
 
1110	move_linked_works(work, &pwq->pool->worklist, NULL);
1111	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112	pwq->nr_active++;
1113}
1114
1115static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116{
1117	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118						    struct work_struct, entry);
1119
1120	pwq_activate_delayed_work(work);
1121}
1122
1123/**
1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125 * @pwq: pwq of interest
1126 * @color: color of work which left the queue
1127 *
1128 * A work either has completed or is removed from pending queue,
1129 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130 *
1131 * CONTEXT:
1132 * spin_lock_irq(pool->lock).
1133 */
1134static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135{
1136	/* uncolored work items don't participate in flushing or nr_active */
1137	if (color == WORK_NO_COLOR)
1138		goto out_put;
1139
1140	pwq->nr_in_flight[color]--;
1141
1142	pwq->nr_active--;
1143	if (!list_empty(&pwq->delayed_works)) {
1144		/* one down, submit a delayed one */
1145		if (pwq->nr_active < pwq->max_active)
1146			pwq_activate_first_delayed(pwq);
1147	}
1148
1149	/* is flush in progress and are we at the flushing tip? */
1150	if (likely(pwq->flush_color != color))
1151		goto out_put;
1152
1153	/* are there still in-flight works? */
1154	if (pwq->nr_in_flight[color])
1155		goto out_put;
1156
1157	/* this pwq is done, clear flush_color */
1158	pwq->flush_color = -1;
1159
1160	/*
1161	 * If this was the last pwq, wake up the first flusher.  It
1162	 * will handle the rest.
1163	 */
1164	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165		complete(&pwq->wq->first_flusher->done);
1166out_put:
1167	put_pwq(pwq);
1168}
1169
1170/**
1171 * try_to_grab_pending - steal work item from worklist and disable irq
1172 * @work: work item to steal
1173 * @is_dwork: @work is a delayed_work
1174 * @flags: place to store irq state
1175 *
1176 * Try to grab PENDING bit of @work.  This function can handle @work in any
1177 * stable state - idle, on timer or on worklist.
1178 *
1179 * Return:
1180 *  1		if @work was pending and we successfully stole PENDING
1181 *  0		if @work was idle and we claimed PENDING
1182 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183 *  -ENOENT	if someone else is canceling @work, this state may persist
1184 *		for arbitrarily long
1185 *
1186 * Note:
1187 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188 * interrupted while holding PENDING and @work off queue, irq must be
1189 * disabled on entry.  This, combined with delayed_work->timer being
1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191 *
1192 * On successful return, >= 0, irq is disabled and the caller is
1193 * responsible for releasing it using local_irq_restore(*@flags).
1194 *
1195 * This function is safe to call from any context including IRQ handler.
1196 */
1197static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198			       unsigned long *flags)
1199{
1200	struct worker_pool *pool;
1201	struct pool_workqueue *pwq;
1202
1203	local_irq_save(*flags);
1204
1205	/* try to steal the timer if it exists */
1206	if (is_dwork) {
1207		struct delayed_work *dwork = to_delayed_work(work);
1208
1209		/*
1210		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1211		 * guaranteed that the timer is not queued anywhere and not
1212		 * running on the local CPU.
1213		 */
1214		if (likely(del_timer(&dwork->timer)))
1215			return 1;
1216	}
1217
1218	/* try to claim PENDING the normal way */
1219	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220		return 0;
1221
1222	/*
1223	 * The queueing is in progress, or it is already queued. Try to
1224	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225	 */
1226	pool = get_work_pool(work);
1227	if (!pool)
1228		goto fail;
1229
1230	spin_lock(&pool->lock);
1231	/*
1232	 * work->data is guaranteed to point to pwq only while the work
1233	 * item is queued on pwq->wq, and both updating work->data to point
1234	 * to pwq on queueing and to pool on dequeueing are done under
1235	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1236	 * points to pwq which is associated with a locked pool, the work
1237	 * item is currently queued on that pool.
1238	 */
1239	pwq = get_work_pwq(work);
1240	if (pwq && pwq->pool == pool) {
1241		debug_work_deactivate(work);
1242
1243		/*
1244		 * A delayed work item cannot be grabbed directly because
1245		 * it might have linked NO_COLOR work items which, if left
1246		 * on the delayed_list, will confuse pwq->nr_active
1247		 * management later on and cause stall.  Make sure the work
1248		 * item is activated before grabbing.
1249		 */
1250		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251			pwq_activate_delayed_work(work);
1252
1253		list_del_init(&work->entry);
1254		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255
1256		/* work->data points to pwq iff queued, point to pool */
1257		set_work_pool_and_keep_pending(work, pool->id);
1258
1259		spin_unlock(&pool->lock);
1260		return 1;
1261	}
1262	spin_unlock(&pool->lock);
1263fail:
1264	local_irq_restore(*flags);
1265	if (work_is_canceling(work))
1266		return -ENOENT;
1267	cpu_relax();
1268	return -EAGAIN;
1269}
1270
1271/**
1272 * insert_work - insert a work into a pool
1273 * @pwq: pwq @work belongs to
1274 * @work: work to insert
1275 * @head: insertion point
1276 * @extra_flags: extra WORK_STRUCT_* flags to set
1277 *
1278 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279 * work_struct flags.
1280 *
1281 * CONTEXT:
1282 * spin_lock_irq(pool->lock).
1283 */
1284static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285			struct list_head *head, unsigned int extra_flags)
1286{
1287	struct worker_pool *pool = pwq->pool;
1288
1289	/* we own @work, set data and link */
1290	set_work_pwq(work, pwq, extra_flags);
1291	list_add_tail(&work->entry, head);
1292	get_pwq(pwq);
1293
1294	/*
1295	 * Ensure either wq_worker_sleeping() sees the above
1296	 * list_add_tail() or we see zero nr_running to avoid workers lying
1297	 * around lazily while there are works to be processed.
1298	 */
1299	smp_mb();
1300
1301	if (__need_more_worker(pool))
1302		wake_up_worker(pool);
1303}
1304
1305/*
1306 * Test whether @work is being queued from another work executing on the
1307 * same workqueue.
1308 */
1309static bool is_chained_work(struct workqueue_struct *wq)
1310{
1311	struct worker *worker;
1312
1313	worker = current_wq_worker();
1314	/*
1315	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1316	 * I'm @worker, it's safe to dereference it without locking.
1317	 */
1318	return worker && worker->current_pwq->wq == wq;
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321static void __queue_work(int cpu, struct workqueue_struct *wq,
1322			 struct work_struct *work)
1323{
1324	struct pool_workqueue *pwq;
1325	struct worker_pool *last_pool;
1326	struct list_head *worklist;
1327	unsigned int work_flags;
1328	unsigned int req_cpu = cpu;
1329
1330	/*
1331	 * While a work item is PENDING && off queue, a task trying to
1332	 * steal the PENDING will busy-loop waiting for it to either get
1333	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1334	 * happen with IRQ disabled.
1335	 */
1336	WARN_ON_ONCE(!irqs_disabled());
1337
1338	debug_work_activate(work);
1339
1340	/* if draining, only works from the same workqueue are allowed */
1341	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342	    WARN_ON_ONCE(!is_chained_work(wq)))
1343		return;
1344retry:
1345	if (req_cpu == WORK_CPU_UNBOUND)
1346		cpu = raw_smp_processor_id();
1347
1348	/* pwq which will be used unless @work is executing elsewhere */
1349	if (!(wq->flags & WQ_UNBOUND))
1350		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351	else
1352		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353
1354	/*
1355	 * If @work was previously on a different pool, it might still be
1356	 * running there, in which case the work needs to be queued on that
1357	 * pool to guarantee non-reentrancy.
1358	 */
1359	last_pool = get_work_pool(work);
1360	if (last_pool && last_pool != pwq->pool) {
1361		struct worker *worker;
1362
1363		spin_lock(&last_pool->lock);
1364
1365		worker = find_worker_executing_work(last_pool, work);
1366
1367		if (worker && worker->current_pwq->wq == wq) {
1368			pwq = worker->current_pwq;
1369		} else {
1370			/* meh... not running there, queue here */
1371			spin_unlock(&last_pool->lock);
1372			spin_lock(&pwq->pool->lock);
1373		}
1374	} else {
1375		spin_lock(&pwq->pool->lock);
1376	}
1377
1378	/*
1379	 * pwq is determined and locked.  For unbound pools, we could have
1380	 * raced with pwq release and it could already be dead.  If its
1381	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382	 * without another pwq replacing it in the numa_pwq_tbl or while
1383	 * work items are executing on it, so the retrying is guaranteed to
1384	 * make forward-progress.
1385	 */
1386	if (unlikely(!pwq->refcnt)) {
1387		if (wq->flags & WQ_UNBOUND) {
1388			spin_unlock(&pwq->pool->lock);
1389			cpu_relax();
1390			goto retry;
1391		}
1392		/* oops */
1393		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394			  wq->name, cpu);
1395	}
1396
1397	/* pwq determined, queue */
1398	trace_workqueue_queue_work(req_cpu, pwq, work);
1399
1400	if (WARN_ON(!list_empty(&work->entry))) {
1401		spin_unlock(&pwq->pool->lock);
1402		return;
1403	}
1404
1405	pwq->nr_in_flight[pwq->work_color]++;
1406	work_flags = work_color_to_flags(pwq->work_color);
1407
1408	if (likely(pwq->nr_active < pwq->max_active)) {
1409		trace_workqueue_activate_work(work);
1410		pwq->nr_active++;
1411		worklist = &pwq->pool->worklist;
 
 
1412	} else {
1413		work_flags |= WORK_STRUCT_DELAYED;
1414		worklist = &pwq->delayed_works;
1415	}
1416
1417	insert_work(pwq, work, worklist, work_flags);
1418
1419	spin_unlock(&pwq->pool->lock);
1420}
1421
1422/**
1423 * queue_work_on - queue work on specific cpu
1424 * @cpu: CPU number to execute work on
1425 * @wq: workqueue to use
1426 * @work: work to queue
1427 *
1428 * We queue the work to a specific CPU, the caller must ensure it
1429 * can't go away.
1430 *
1431 * Return: %false if @work was already on a queue, %true otherwise.
1432 */
1433bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434		   struct work_struct *work)
1435{
1436	bool ret = false;
1437	unsigned long flags;
1438
1439	local_irq_save(flags);
1440
1441	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442		__queue_work(cpu, wq, work);
1443		ret = true;
1444	}
1445
1446	local_irq_restore(flags);
1447	return ret;
1448}
1449EXPORT_SYMBOL(queue_work_on);
1450
1451void delayed_work_timer_fn(unsigned long __data)
1452{
1453	struct delayed_work *dwork = (struct delayed_work *)__data;
1454
1455	/* should have been called from irqsafe timer with irq already off */
1456	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1457}
1458EXPORT_SYMBOL(delayed_work_timer_fn);
1459
1460static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461				struct delayed_work *dwork, unsigned long delay)
1462{
1463	struct timer_list *timer = &dwork->timer;
1464	struct work_struct *work = &dwork->work;
1465
1466	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467		     timer->data != (unsigned long)dwork);
1468	WARN_ON_ONCE(timer_pending(timer));
1469	WARN_ON_ONCE(!list_empty(&work->entry));
1470
1471	/*
1472	 * If @delay is 0, queue @dwork->work immediately.  This is for
1473	 * both optimization and correctness.  The earliest @timer can
1474	 * expire is on the closest next tick and delayed_work users depend
1475	 * on that there's no such delay when @delay is 0.
1476	 */
1477	if (!delay) {
1478		__queue_work(cpu, wq, &dwork->work);
1479		return;
1480	}
1481
1482	timer_stats_timer_set_start_info(&dwork->timer);
1483
1484	dwork->wq = wq;
1485	dwork->cpu = cpu;
1486	timer->expires = jiffies + delay;
1487
1488	if (unlikely(cpu != WORK_CPU_UNBOUND))
1489		add_timer_on(timer, cpu);
1490	else
1491		add_timer(timer);
1492}
1493
1494/**
1495 * queue_delayed_work_on - queue work on specific CPU after delay
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
1498 * @dwork: work to queue
1499 * @delay: number of jiffies to wait before queueing
1500 *
1501 * Return: %false if @work was already on a queue, %true otherwise.  If
1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503 * execution.
1504 */
1505bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506			   struct delayed_work *dwork, unsigned long delay)
1507{
1508	struct work_struct *work = &dwork->work;
1509	bool ret = false;
1510	unsigned long flags;
1511
1512	/* read the comment in __queue_work() */
1513	local_irq_save(flags);
1514
1515	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516		__queue_delayed_work(cpu, wq, dwork, delay);
1517		ret = true;
1518	}
1519
1520	local_irq_restore(flags);
1521	return ret;
1522}
1523EXPORT_SYMBOL(queue_delayed_work_on);
1524
1525/**
1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
1529 * @dwork: work to queue
1530 * @delay: number of jiffies to wait before queueing
1531 *
1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533 * modify @dwork's timer so that it expires after @delay.  If @delay is
1534 * zero, @work is guaranteed to be scheduled immediately regardless of its
1535 * current state.
1536 *
1537 * Return: %false if @dwork was idle and queued, %true if @dwork was
1538 * pending and its timer was modified.
1539 *
1540 * This function is safe to call from any context including IRQ handler.
1541 * See try_to_grab_pending() for details.
1542 */
1543bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544			 struct delayed_work *dwork, unsigned long delay)
1545{
1546	unsigned long flags;
1547	int ret;
1548
1549	do {
1550		ret = try_to_grab_pending(&dwork->work, true, &flags);
1551	} while (unlikely(ret == -EAGAIN));
1552
1553	if (likely(ret >= 0)) {
1554		__queue_delayed_work(cpu, wq, dwork, delay);
1555		local_irq_restore(flags);
1556	}
1557
1558	/* -ENOENT from try_to_grab_pending() becomes %true */
1559	return ret;
1560}
1561EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563/**
1564 * worker_enter_idle - enter idle state
1565 * @worker: worker which is entering idle state
1566 *
1567 * @worker is entering idle state.  Update stats and idle timer if
1568 * necessary.
1569 *
1570 * LOCKING:
1571 * spin_lock_irq(pool->lock).
1572 */
1573static void worker_enter_idle(struct worker *worker)
1574{
1575	struct worker_pool *pool = worker->pool;
1576
1577	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579			 (worker->hentry.next || worker->hentry.pprev)))
1580		return;
1581
1582	/* can't use worker_set_flags(), also called from start_worker() */
1583	worker->flags |= WORKER_IDLE;
1584	pool->nr_idle++;
1585	worker->last_active = jiffies;
1586
1587	/* idle_list is LIFO */
1588	list_add(&worker->entry, &pool->idle_list);
1589
1590	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592
1593	/*
1594	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596	 * nr_running, the warning may trigger spuriously.  Check iff
1597	 * unbind is not in progress.
1598	 */
1599	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600		     pool->nr_workers == pool->nr_idle &&
1601		     atomic_read(&pool->nr_running));
1602}
1603
1604/**
1605 * worker_leave_idle - leave idle state
1606 * @worker: worker which is leaving idle state
1607 *
1608 * @worker is leaving idle state.  Update stats.
1609 *
1610 * LOCKING:
1611 * spin_lock_irq(pool->lock).
1612 */
1613static void worker_leave_idle(struct worker *worker)
1614{
1615	struct worker_pool *pool = worker->pool;
1616
1617	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618		return;
1619	worker_clr_flags(worker, WORKER_IDLE);
1620	pool->nr_idle--;
1621	list_del_init(&worker->entry);
1622}
1623
1624/**
1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626 * @pool: target worker_pool
1627 *
1628 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629 *
1630 * Works which are scheduled while the cpu is online must at least be
1631 * scheduled to a worker which is bound to the cpu so that if they are
1632 * flushed from cpu callbacks while cpu is going down, they are
1633 * guaranteed to execute on the cpu.
1634 *
1635 * This function is to be used by unbound workers and rescuers to bind
1636 * themselves to the target cpu and may race with cpu going down or
1637 * coming online.  kthread_bind() can't be used because it may put the
1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639 * verbatim as it's best effort and blocking and pool may be
1640 * [dis]associated in the meantime.
1641 *
1642 * This function tries set_cpus_allowed() and locks pool and verifies the
1643 * binding against %POOL_DISASSOCIATED which is set during
1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645 * enters idle state or fetches works without dropping lock, it can
1646 * guarantee the scheduling requirement described in the first paragraph.
1647 *
1648 * CONTEXT:
1649 * Might sleep.  Called without any lock but returns with pool->lock
1650 * held.
1651 *
1652 * Return:
1653 * %true if the associated pool is online (@worker is successfully
1654 * bound), %false if offline.
1655 */
1656static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657__acquires(&pool->lock)
1658{
1659	while (true) {
1660		/*
1661		 * The following call may fail, succeed or succeed
1662		 * without actually migrating the task to the cpu if
1663		 * it races with cpu hotunplug operation.  Verify
1664		 * against POOL_DISASSOCIATED.
1665		 */
1666		if (!(pool->flags & POOL_DISASSOCIATED))
1667			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668
1669		spin_lock_irq(&pool->lock);
1670		if (pool->flags & POOL_DISASSOCIATED)
1671			return false;
1672		if (task_cpu(current) == pool->cpu &&
1673		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674			return true;
1675		spin_unlock_irq(&pool->lock);
1676
1677		/*
1678		 * We've raced with CPU hot[un]plug.  Give it a breather
1679		 * and retry migration.  cond_resched() is required here;
1680		 * otherwise, we might deadlock against cpu_stop trying to
1681		 * bring down the CPU on non-preemptive kernel.
1682		 */
1683		cpu_relax();
1684		cond_resched();
1685	}
1686}
1687
1688static struct worker *alloc_worker(void)
1689{
1690	struct worker *worker;
1691
1692	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1693	if (worker) {
1694		INIT_LIST_HEAD(&worker->entry);
1695		INIT_LIST_HEAD(&worker->scheduled);
 
1696		/* on creation a worker is in !idle && prep state */
1697		worker->flags = WORKER_PREP;
1698	}
1699	return worker;
1700}
1701
1702/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703 * create_worker - create a new workqueue worker
1704 * @pool: pool the new worker will belong to
1705 *
1706 * Create a new worker which is bound to @pool.  The returned worker
1707 * can be started by calling start_worker() or destroyed using
1708 * destroy_worker().
1709 *
1710 * CONTEXT:
1711 * Might sleep.  Does GFP_KERNEL allocations.
1712 *
1713 * Return:
1714 * Pointer to the newly created worker.
1715 */
1716static struct worker *create_worker(struct worker_pool *pool)
1717{
1718	struct worker *worker = NULL;
1719	int id = -1;
1720	char id_buf[16];
1721
1722	lockdep_assert_held(&pool->manager_mutex);
1723
1724	/*
1725	 * ID is needed to determine kthread name.  Allocate ID first
1726	 * without installing the pointer.
1727	 */
1728	idr_preload(GFP_KERNEL);
1729	spin_lock_irq(&pool->lock);
1730
1731	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732
1733	spin_unlock_irq(&pool->lock);
1734	idr_preload_end();
1735	if (id < 0)
1736		goto fail;
1737
1738	worker = alloc_worker();
1739	if (!worker)
1740		goto fail;
1741
1742	worker->pool = pool;
1743	worker->id = id;
1744
1745	if (pool->cpu >= 0)
1746		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747			 pool->attrs->nice < 0  ? "H" : "");
1748	else
1749		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
1751	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752					      "kworker/%s", id_buf);
1753	if (IS_ERR(worker->task))
1754		goto fail;
1755
1756	set_user_nice(worker->task, pool->attrs->nice);
 
1757
1758	/* prevent userland from meddling with cpumask of workqueue workers */
1759	worker->task->flags |= PF_NO_SETAFFINITY;
1760
1761	/*
1762	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1764	 */
1765	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766
1767	/*
1768	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769	 * remains stable across this function.  See the comments above the
1770	 * flag definition for details.
1771	 */
1772	if (pool->flags & POOL_DISASSOCIATED)
1773		worker->flags |= WORKER_UNBOUND;
1774
1775	/* successful, commit the pointer to idr */
1776	spin_lock_irq(&pool->lock);
1777	idr_replace(&pool->worker_idr, worker, worker->id);
 
 
1778	spin_unlock_irq(&pool->lock);
1779
1780	return worker;
1781
1782fail:
1783	if (id >= 0) {
1784		spin_lock_irq(&pool->lock);
1785		idr_remove(&pool->worker_idr, id);
1786		spin_unlock_irq(&pool->lock);
1787	}
1788	kfree(worker);
1789	return NULL;
1790}
1791
1792/**
1793 * start_worker - start a newly created worker
1794 * @worker: worker to start
1795 *
1796 * Make the pool aware of @worker and start it.
1797 *
1798 * CONTEXT:
1799 * spin_lock_irq(pool->lock).
1800 */
1801static void start_worker(struct worker *worker)
1802{
1803	worker->flags |= WORKER_STARTED;
1804	worker->pool->nr_workers++;
1805	worker_enter_idle(worker);
1806	wake_up_process(worker->task);
1807}
1808
1809/**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
1813 * Grab the managership of @pool and create and start a new worker for it.
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
1816 */
1817static int create_and_start_worker(struct worker_pool *pool)
1818{
1819	struct worker *worker;
1820
1821	mutex_lock(&pool->manager_mutex);
1822
1823	worker = create_worker(pool);
1824	if (worker) {
1825		spin_lock_irq(&pool->lock);
1826		start_worker(worker);
1827		spin_unlock_irq(&pool->lock);
1828	}
1829
1830	mutex_unlock(&pool->manager_mutex);
1831
1832	return worker ? 0 : -ENOMEM;
1833}
1834
1835/**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
1839 * Destroy @worker and adjust @pool stats accordingly.
 
1840 *
1841 * CONTEXT:
1842 * spin_lock_irq(pool->lock) which is released and regrabbed.
1843 */
1844static void destroy_worker(struct worker *worker)
1845{
1846	struct worker_pool *pool = worker->pool;
1847
1848	lockdep_assert_held(&pool->manager_mutex);
1849	lockdep_assert_held(&pool->lock);
1850
1851	/* sanity check frenzy */
1852	if (WARN_ON(worker->current_work) ||
1853	    WARN_ON(!list_empty(&worker->scheduled)))
 
1854		return;
1855
1856	if (worker->flags & WORKER_STARTED)
1857		pool->nr_workers--;
1858	if (worker->flags & WORKER_IDLE)
1859		pool->nr_idle--;
1860
1861	/*
1862	 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863	 * point.  Pin to ensure the task stays until we're done with it.
1864	 */
1865	get_task_struct(worker->task);
1866
1867	list_del_init(&worker->entry);
1868	worker->flags |= WORKER_DIE;
1869
1870	idr_remove(&pool->worker_idr, worker->id);
1871
1872	spin_unlock_irq(&pool->lock);
1873
1874	kthread_stop(worker->task);
1875	put_task_struct(worker->task);
1876	kfree(worker);
1877
1878	spin_lock_irq(&pool->lock);
1879}
1880
1881static void idle_worker_timeout(unsigned long __pool)
1882{
1883	struct worker_pool *pool = (void *)__pool;
1884
1885	spin_lock_irq(&pool->lock);
1886
1887	if (too_many_workers(pool)) {
1888		struct worker *worker;
1889		unsigned long expires;
1890
1891		/* idle_list is kept in LIFO order, check the last one */
1892		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894
1895		if (time_before(jiffies, expires))
1896			mod_timer(&pool->idle_timer, expires);
1897		else {
1898			/* it's been idle for too long, wake up manager */
1899			pool->flags |= POOL_MANAGE_WORKERS;
1900			wake_up_worker(pool);
1901		}
 
 
1902	}
1903
1904	spin_unlock_irq(&pool->lock);
1905}
1906
1907static void send_mayday(struct work_struct *work)
1908{
1909	struct pool_workqueue *pwq = get_work_pwq(work);
1910	struct workqueue_struct *wq = pwq->wq;
1911
1912	lockdep_assert_held(&wq_mayday_lock);
1913
1914	if (!wq->rescuer)
1915		return;
1916
1917	/* mayday mayday mayday */
1918	if (list_empty(&pwq->mayday_node)) {
1919		/*
1920		 * If @pwq is for an unbound wq, its base ref may be put at
1921		 * any time due to an attribute change.  Pin @pwq until the
1922		 * rescuer is done with it.
1923		 */
1924		get_pwq(pwq);
1925		list_add_tail(&pwq->mayday_node, &wq->maydays);
1926		wake_up_process(wq->rescuer->task);
1927	}
1928}
1929
1930static void pool_mayday_timeout(unsigned long __pool)
1931{
1932	struct worker_pool *pool = (void *)__pool;
1933	struct work_struct *work;
1934
1935	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1936	spin_lock(&pool->lock);
1937
1938	if (need_to_create_worker(pool)) {
1939		/*
1940		 * We've been trying to create a new worker but
1941		 * haven't been successful.  We might be hitting an
1942		 * allocation deadlock.  Send distress signals to
1943		 * rescuers.
1944		 */
1945		list_for_each_entry(work, &pool->worklist, entry)
1946			send_mayday(work);
1947	}
1948
1949	spin_unlock(&pool->lock);
1950	spin_unlock_irq(&wq_mayday_lock);
1951
1952	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1953}
1954
1955/**
1956 * maybe_create_worker - create a new worker if necessary
1957 * @pool: pool to create a new worker for
1958 *
1959 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1960 * have at least one idle worker on return from this function.  If
1961 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1962 * sent to all rescuers with works scheduled on @pool to resolve
1963 * possible allocation deadlock.
1964 *
1965 * On return, need_to_create_worker() is guaranteed to be %false and
1966 * may_start_working() %true.
1967 *
1968 * LOCKING:
1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1971 * manager.
1972 *
1973 * Return:
1974 * %false if no action was taken and pool->lock stayed locked, %true
1975 * otherwise.
1976 */
1977static bool maybe_create_worker(struct worker_pool *pool)
1978__releases(&pool->lock)
1979__acquires(&pool->lock)
1980{
1981	if (!need_to_create_worker(pool))
1982		return false;
1983restart:
1984	spin_unlock_irq(&pool->lock);
1985
1986	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1987	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1988
1989	while (true) {
1990		struct worker *worker;
1991
1992		worker = create_worker(pool);
1993		if (worker) {
1994			del_timer_sync(&pool->mayday_timer);
1995			spin_lock_irq(&pool->lock);
1996			start_worker(worker);
1997			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1998				goto restart;
1999			return true;
2000		}
2001
2002		if (!need_to_create_worker(pool))
2003			break;
2004
2005		__set_current_state(TASK_INTERRUPTIBLE);
2006		schedule_timeout(CREATE_COOLDOWN);
2007
2008		if (!need_to_create_worker(pool))
2009			break;
2010	}
2011
2012	del_timer_sync(&pool->mayday_timer);
2013	spin_lock_irq(&pool->lock);
 
 
 
 
 
2014	if (need_to_create_worker(pool))
2015		goto restart;
2016	return true;
2017}
2018
2019/**
2020 * maybe_destroy_worker - destroy workers which have been idle for a while
2021 * @pool: pool to destroy workers for
2022 *
2023 * Destroy @pool workers which have been idle for longer than
2024 * IDLE_WORKER_TIMEOUT.
2025 *
2026 * LOCKING:
2027 * spin_lock_irq(pool->lock) which may be released and regrabbed
2028 * multiple times.  Called only from manager.
2029 *
2030 * Return:
2031 * %false if no action was taken and pool->lock stayed locked, %true
2032 * otherwise.
2033 */
2034static bool maybe_destroy_workers(struct worker_pool *pool)
2035{
2036	bool ret = false;
2037
2038	while (too_many_workers(pool)) {
2039		struct worker *worker;
2040		unsigned long expires;
2041
2042		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2043		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2044
2045		if (time_before(jiffies, expires)) {
2046			mod_timer(&pool->idle_timer, expires);
2047			break;
2048		}
2049
2050		destroy_worker(worker);
2051		ret = true;
2052	}
2053
2054	return ret;
2055}
2056
2057/**
2058 * manage_workers - manage worker pool
2059 * @worker: self
2060 *
2061 * Assume the manager role and manage the worker pool @worker belongs
2062 * to.  At any given time, there can be only zero or one manager per
2063 * pool.  The exclusion is handled automatically by this function.
2064 *
2065 * The caller can safely start processing works on false return.  On
2066 * true return, it's guaranteed that need_to_create_worker() is false
2067 * and may_start_working() is true.
2068 *
2069 * CONTEXT:
2070 * spin_lock_irq(pool->lock) which may be released and regrabbed
2071 * multiple times.  Does GFP_KERNEL allocations.
2072 *
2073 * Return:
2074 * %false if the pool don't need management and the caller can safely start
2075 * processing works, %true indicates that the function released pool->lock
2076 * and reacquired it to perform some management function and that the
2077 * conditions that the caller verified while holding the lock before
2078 * calling the function might no longer be true.
2079 */
2080static bool manage_workers(struct worker *worker)
2081{
2082	struct worker_pool *pool = worker->pool;
2083	bool ret = false;
2084
2085	/*
2086	 * Managership is governed by two mutexes - manager_arb and
2087	 * manager_mutex.  manager_arb handles arbitration of manager role.
2088	 * Anyone who successfully grabs manager_arb wins the arbitration
2089	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2090	 * failure while holding pool->lock reliably indicates that someone
2091	 * else is managing the pool and the worker which failed trylock
2092	 * can proceed to executing work items.  This means that anyone
2093	 * grabbing manager_arb is responsible for actually performing
2094	 * manager duties.  If manager_arb is grabbed and released without
2095	 * actual management, the pool may stall indefinitely.
2096	 *
2097	 * manager_mutex is used for exclusion of actual management
2098	 * operations.  The holder of manager_mutex can be sure that none
2099	 * of management operations, including creation and destruction of
2100	 * workers, won't take place until the mutex is released.  Because
2101	 * manager_mutex doesn't interfere with manager role arbitration,
2102	 * it is guaranteed that the pool's management, while may be
2103	 * delayed, won't be disturbed by someone else grabbing
2104	 * manager_mutex.
2105	 */
2106	if (!mutex_trylock(&pool->manager_arb))
2107		return ret;
2108
2109	/*
2110	 * With manager arbitration won, manager_mutex would be free in
2111	 * most cases.  trylock first without dropping @pool->lock.
2112	 */
2113	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2114		spin_unlock_irq(&pool->lock);
2115		mutex_lock(&pool->manager_mutex);
2116		spin_lock_irq(&pool->lock);
2117		ret = true;
2118	}
2119
2120	pool->flags &= ~POOL_MANAGE_WORKERS;
 
2121
2122	/*
2123	 * Destroy and then create so that may_start_working() is true
2124	 * on return.
2125	 */
2126	ret |= maybe_destroy_workers(pool);
2127	ret |= maybe_create_worker(pool);
2128
2129	mutex_unlock(&pool->manager_mutex);
2130	mutex_unlock(&pool->manager_arb);
2131	return ret;
 
2132}
2133
2134/**
2135 * process_one_work - process single work
2136 * @worker: self
2137 * @work: work to process
2138 *
2139 * Process @work.  This function contains all the logics necessary to
2140 * process a single work including synchronization against and
2141 * interaction with other workers on the same cpu, queueing and
2142 * flushing.  As long as context requirement is met, any worker can
2143 * call this function to process a work.
2144 *
2145 * CONTEXT:
2146 * spin_lock_irq(pool->lock) which is released and regrabbed.
2147 */
2148static void process_one_work(struct worker *worker, struct work_struct *work)
2149__releases(&pool->lock)
2150__acquires(&pool->lock)
2151{
2152	struct pool_workqueue *pwq = get_work_pwq(work);
2153	struct worker_pool *pool = worker->pool;
2154	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2155	int work_color;
2156	struct worker *collision;
2157#ifdef CONFIG_LOCKDEP
2158	/*
2159	 * It is permissible to free the struct work_struct from
2160	 * inside the function that is called from it, this we need to
2161	 * take into account for lockdep too.  To avoid bogus "held
2162	 * lock freed" warnings as well as problems when looking into
2163	 * work->lockdep_map, make a copy and use that here.
2164	 */
2165	struct lockdep_map lockdep_map;
2166
2167	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168#endif
2169	/*
2170	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2171	 * necessary to avoid spurious warnings from rescuers servicing the
2172	 * unbound or a disassociated pool.
2173	 */
2174	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2175		     !(pool->flags & POOL_DISASSOCIATED) &&
2176		     raw_smp_processor_id() != pool->cpu);
2177
2178	/*
2179	 * A single work shouldn't be executed concurrently by
2180	 * multiple workers on a single cpu.  Check whether anyone is
2181	 * already processing the work.  If so, defer the work to the
2182	 * currently executing one.
2183	 */
2184	collision = find_worker_executing_work(pool, work);
2185	if (unlikely(collision)) {
2186		move_linked_works(work, &collision->scheduled, NULL);
2187		return;
2188	}
2189
2190	/* claim and dequeue */
2191	debug_work_deactivate(work);
2192	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2193	worker->current_work = work;
2194	worker->current_func = work->func;
2195	worker->current_pwq = pwq;
2196	work_color = get_work_color(work);
2197
2198	list_del_init(&work->entry);
2199
2200	/*
2201	 * CPU intensive works don't participate in concurrency
2202	 * management.  They're the scheduler's responsibility.
 
 
2203	 */
2204	if (unlikely(cpu_intensive))
2205		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2206
2207	/*
2208	 * Unbound pool isn't concurrency managed and work items should be
2209	 * executed ASAP.  Wake up another worker if necessary.
 
 
 
2210	 */
2211	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2212		wake_up_worker(pool);
2213
2214	/*
2215	 * Record the last pool and clear PENDING which should be the last
2216	 * update to @work.  Also, do this inside @pool->lock so that
2217	 * PENDING and queued state changes happen together while IRQ is
2218	 * disabled.
2219	 */
2220	set_work_pool_and_clear_pending(work, pool->id);
2221
2222	spin_unlock_irq(&pool->lock);
2223
2224	lock_map_acquire_read(&pwq->wq->lockdep_map);
2225	lock_map_acquire(&lockdep_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226	trace_workqueue_execute_start(work);
2227	worker->current_func(work);
2228	/*
2229	 * While we must be careful to not use "work" after this, the trace
2230	 * point will only record its address.
2231	 */
2232	trace_workqueue_execute_end(work);
2233	lock_map_release(&lockdep_map);
2234	lock_map_release(&pwq->wq->lockdep_map);
2235
2236	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2237		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2238		       "     last function: %pf\n",
2239		       current->comm, preempt_count(), task_pid_nr(current),
2240		       worker->current_func);
2241		debug_show_held_locks(current);
2242		dump_stack();
2243	}
2244
2245	/*
2246	 * The following prevents a kworker from hogging CPU on !PREEMPT
2247	 * kernels, where a requeueing work item waiting for something to
2248	 * happen could deadlock with stop_machine as such work item could
2249	 * indefinitely requeue itself while all other CPUs are trapped in
2250	 * stop_machine.
 
2251	 */
2252	cond_resched();
2253
2254	spin_lock_irq(&pool->lock);
2255
2256	/* clear cpu intensive status */
2257	if (unlikely(cpu_intensive))
2258		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2259
2260	/* we're done with it, release */
2261	hash_del(&worker->hentry);
2262	worker->current_work = NULL;
2263	worker->current_func = NULL;
2264	worker->current_pwq = NULL;
2265	worker->desc_valid = false;
2266	pwq_dec_nr_in_flight(pwq, work_color);
2267}
2268
2269/**
2270 * process_scheduled_works - process scheduled works
2271 * @worker: self
2272 *
2273 * Process all scheduled works.  Please note that the scheduled list
2274 * may change while processing a work, so this function repeatedly
2275 * fetches a work from the top and executes it.
2276 *
2277 * CONTEXT:
2278 * spin_lock_irq(pool->lock) which may be released and regrabbed
2279 * multiple times.
2280 */
2281static void process_scheduled_works(struct worker *worker)
2282{
2283	while (!list_empty(&worker->scheduled)) {
2284		struct work_struct *work = list_first_entry(&worker->scheduled,
2285						struct work_struct, entry);
2286		process_one_work(worker, work);
2287	}
2288}
2289
2290/**
2291 * worker_thread - the worker thread function
2292 * @__worker: self
2293 *
2294 * The worker thread function.  All workers belong to a worker_pool -
2295 * either a per-cpu one or dynamic unbound one.  These workers process all
2296 * work items regardless of their specific target workqueue.  The only
2297 * exception is work items which belong to workqueues with a rescuer which
2298 * will be explained in rescuer_thread().
2299 *
2300 * Return: 0
2301 */
2302static int worker_thread(void *__worker)
2303{
2304	struct worker *worker = __worker;
2305	struct worker_pool *pool = worker->pool;
2306
2307	/* tell the scheduler that this is a workqueue worker */
2308	worker->task->flags |= PF_WQ_WORKER;
2309woke_up:
2310	spin_lock_irq(&pool->lock);
2311
2312	/* am I supposed to die? */
2313	if (unlikely(worker->flags & WORKER_DIE)) {
2314		spin_unlock_irq(&pool->lock);
2315		WARN_ON_ONCE(!list_empty(&worker->entry));
2316		worker->task->flags &= ~PF_WQ_WORKER;
 
 
 
 
 
2317		return 0;
2318	}
2319
2320	worker_leave_idle(worker);
2321recheck:
2322	/* no more worker necessary? */
2323	if (!need_more_worker(pool))
2324		goto sleep;
2325
2326	/* do we need to manage? */
2327	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2328		goto recheck;
2329
2330	/*
2331	 * ->scheduled list can only be filled while a worker is
2332	 * preparing to process a work or actually processing it.
2333	 * Make sure nobody diddled with it while I was sleeping.
2334	 */
2335	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2336
2337	/*
2338	 * Finish PREP stage.  We're guaranteed to have at least one idle
2339	 * worker or that someone else has already assumed the manager
2340	 * role.  This is where @worker starts participating in concurrency
2341	 * management if applicable and concurrency management is restored
2342	 * after being rebound.  See rebind_workers() for details.
2343	 */
2344	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2345
2346	do {
2347		struct work_struct *work =
2348			list_first_entry(&pool->worklist,
2349					 struct work_struct, entry);
2350
 
 
2351		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2352			/* optimization path, not strictly necessary */
2353			process_one_work(worker, work);
2354			if (unlikely(!list_empty(&worker->scheduled)))
2355				process_scheduled_works(worker);
2356		} else {
2357			move_linked_works(work, &worker->scheduled, NULL);
2358			process_scheduled_works(worker);
2359		}
2360	} while (keep_working(pool));
2361
2362	worker_set_flags(worker, WORKER_PREP, false);
2363sleep:
2364	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2365		goto recheck;
2366
2367	/*
2368	 * pool->lock is held and there's no work to process and no need to
2369	 * manage, sleep.  Workers are woken up only while holding
2370	 * pool->lock or from local cpu, so setting the current state
2371	 * before releasing pool->lock is enough to prevent losing any
2372	 * event.
2373	 */
2374	worker_enter_idle(worker);
2375	__set_current_state(TASK_INTERRUPTIBLE);
2376	spin_unlock_irq(&pool->lock);
2377	schedule();
2378	goto woke_up;
2379}
2380
2381/**
2382 * rescuer_thread - the rescuer thread function
2383 * @__rescuer: self
2384 *
2385 * Workqueue rescuer thread function.  There's one rescuer for each
2386 * workqueue which has WQ_MEM_RECLAIM set.
2387 *
2388 * Regular work processing on a pool may block trying to create a new
2389 * worker which uses GFP_KERNEL allocation which has slight chance of
2390 * developing into deadlock if some works currently on the same queue
2391 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2392 * the problem rescuer solves.
2393 *
2394 * When such condition is possible, the pool summons rescuers of all
2395 * workqueues which have works queued on the pool and let them process
2396 * those works so that forward progress can be guaranteed.
2397 *
2398 * This should happen rarely.
2399 *
2400 * Return: 0
2401 */
2402static int rescuer_thread(void *__rescuer)
2403{
2404	struct worker *rescuer = __rescuer;
2405	struct workqueue_struct *wq = rescuer->rescue_wq;
2406	struct list_head *scheduled = &rescuer->scheduled;
2407	bool should_stop;
2408
2409	set_user_nice(current, RESCUER_NICE_LEVEL);
2410
2411	/*
2412	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2413	 * doesn't participate in concurrency management.
2414	 */
2415	rescuer->task->flags |= PF_WQ_WORKER;
2416repeat:
2417	set_current_state(TASK_INTERRUPTIBLE);
2418
2419	/*
2420	 * By the time the rescuer is requested to stop, the workqueue
2421	 * shouldn't have any work pending, but @wq->maydays may still have
2422	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2423	 * all the work items before the rescuer got to them.  Go through
2424	 * @wq->maydays processing before acting on should_stop so that the
2425	 * list is always empty on exit.
2426	 */
2427	should_stop = kthread_should_stop();
2428
2429	/* see whether any pwq is asking for help */
2430	spin_lock_irq(&wq_mayday_lock);
2431
2432	while (!list_empty(&wq->maydays)) {
2433		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2434					struct pool_workqueue, mayday_node);
2435		struct worker_pool *pool = pwq->pool;
2436		struct work_struct *work, *n;
 
2437
2438		__set_current_state(TASK_RUNNING);
2439		list_del_init(&pwq->mayday_node);
2440
2441		spin_unlock_irq(&wq_mayday_lock);
2442
2443		/* migrate to the target cpu if possible */
2444		worker_maybe_bind_and_lock(pool);
 
2445		rescuer->pool = pool;
2446
2447		/*
2448		 * Slurp in all works issued via this workqueue and
2449		 * process'em.
2450		 */
2451		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2452		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2453			if (get_work_pwq(work) == pwq)
 
 
2454				move_linked_works(work, scheduled, &n);
 
 
 
2455
2456		process_scheduled_works(rescuer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457
2458		/*
2459		 * Put the reference grabbed by send_mayday().  @pool won't
2460		 * go away while we're holding its lock.
2461		 */
2462		put_pwq(pwq);
2463
2464		/*
2465		 * Leave this pool.  If keep_working() is %true, notify a
2466		 * regular worker; otherwise, we end up with 0 concurrency
2467		 * and stalling the execution.
2468		 */
2469		if (keep_working(pool))
2470			wake_up_worker(pool);
2471
2472		rescuer->pool = NULL;
2473		spin_unlock(&pool->lock);
2474		spin_lock(&wq_mayday_lock);
 
 
 
2475	}
2476
2477	spin_unlock_irq(&wq_mayday_lock);
2478
2479	if (should_stop) {
2480		__set_current_state(TASK_RUNNING);
2481		rescuer->task->flags &= ~PF_WQ_WORKER;
2482		return 0;
2483	}
2484
2485	/* rescuers should never participate in concurrency management */
2486	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2487	schedule();
2488	goto repeat;
2489}
2490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491struct wq_barrier {
2492	struct work_struct	work;
2493	struct completion	done;
 
2494};
2495
2496static void wq_barrier_func(struct work_struct *work)
2497{
2498	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2499	complete(&barr->done);
2500}
2501
2502/**
2503 * insert_wq_barrier - insert a barrier work
2504 * @pwq: pwq to insert barrier into
2505 * @barr: wq_barrier to insert
2506 * @target: target work to attach @barr to
2507 * @worker: worker currently executing @target, NULL if @target is not executing
2508 *
2509 * @barr is linked to @target such that @barr is completed only after
2510 * @target finishes execution.  Please note that the ordering
2511 * guarantee is observed only with respect to @target and on the local
2512 * cpu.
2513 *
2514 * Currently, a queued barrier can't be canceled.  This is because
2515 * try_to_grab_pending() can't determine whether the work to be
2516 * grabbed is at the head of the queue and thus can't clear LINKED
2517 * flag of the previous work while there must be a valid next work
2518 * after a work with LINKED flag set.
2519 *
2520 * Note that when @worker is non-NULL, @target may be modified
2521 * underneath us, so we can't reliably determine pwq from @target.
2522 *
2523 * CONTEXT:
2524 * spin_lock_irq(pool->lock).
2525 */
2526static void insert_wq_barrier(struct pool_workqueue *pwq,
2527			      struct wq_barrier *barr,
2528			      struct work_struct *target, struct worker *worker)
2529{
2530	struct list_head *head;
2531	unsigned int linked = 0;
2532
2533	/*
2534	 * debugobject calls are safe here even with pool->lock locked
2535	 * as we know for sure that this will not trigger any of the
2536	 * checks and call back into the fixup functions where we
2537	 * might deadlock.
2538	 */
2539	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2540	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2541	init_completion(&barr->done);
 
 
 
2542
2543	/*
2544	 * If @target is currently being executed, schedule the
2545	 * barrier to the worker; otherwise, put it after @target.
2546	 */
2547	if (worker)
2548		head = worker->scheduled.next;
2549	else {
2550		unsigned long *bits = work_data_bits(target);
2551
2552		head = target->entry.next;
2553		/* there can already be other linked works, inherit and set */
2554		linked = *bits & WORK_STRUCT_LINKED;
2555		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2556	}
2557
2558	debug_work_activate(&barr->work);
2559	insert_work(pwq, &barr->work, head,
2560		    work_color_to_flags(WORK_NO_COLOR) | linked);
2561}
2562
2563/**
2564 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2565 * @wq: workqueue being flushed
2566 * @flush_color: new flush color, < 0 for no-op
2567 * @work_color: new work color, < 0 for no-op
2568 *
2569 * Prepare pwqs for workqueue flushing.
2570 *
2571 * If @flush_color is non-negative, flush_color on all pwqs should be
2572 * -1.  If no pwq has in-flight commands at the specified color, all
2573 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2574 * has in flight commands, its pwq->flush_color is set to
2575 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2576 * wakeup logic is armed and %true is returned.
2577 *
2578 * The caller should have initialized @wq->first_flusher prior to
2579 * calling this function with non-negative @flush_color.  If
2580 * @flush_color is negative, no flush color update is done and %false
2581 * is returned.
2582 *
2583 * If @work_color is non-negative, all pwqs should have the same
2584 * work_color which is previous to @work_color and all will be
2585 * advanced to @work_color.
2586 *
2587 * CONTEXT:
2588 * mutex_lock(wq->mutex).
2589 *
2590 * Return:
2591 * %true if @flush_color >= 0 and there's something to flush.  %false
2592 * otherwise.
2593 */
2594static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2595				      int flush_color, int work_color)
2596{
2597	bool wait = false;
2598	struct pool_workqueue *pwq;
2599
2600	if (flush_color >= 0) {
2601		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2602		atomic_set(&wq->nr_pwqs_to_flush, 1);
2603	}
2604
2605	for_each_pwq(pwq, wq) {
2606		struct worker_pool *pool = pwq->pool;
2607
2608		spin_lock_irq(&pool->lock);
2609
2610		if (flush_color >= 0) {
2611			WARN_ON_ONCE(pwq->flush_color != -1);
2612
2613			if (pwq->nr_in_flight[flush_color]) {
2614				pwq->flush_color = flush_color;
2615				atomic_inc(&wq->nr_pwqs_to_flush);
2616				wait = true;
2617			}
2618		}
2619
2620		if (work_color >= 0) {
2621			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2622			pwq->work_color = work_color;
2623		}
2624
2625		spin_unlock_irq(&pool->lock);
2626	}
2627
2628	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2629		complete(&wq->first_flusher->done);
2630
2631	return wait;
2632}
2633
2634/**
2635 * flush_workqueue - ensure that any scheduled work has run to completion.
2636 * @wq: workqueue to flush
2637 *
2638 * This function sleeps until all work items which were queued on entry
2639 * have finished execution, but it is not livelocked by new incoming ones.
2640 */
2641void flush_workqueue(struct workqueue_struct *wq)
2642{
2643	struct wq_flusher this_flusher = {
2644		.list = LIST_HEAD_INIT(this_flusher.list),
2645		.flush_color = -1,
2646		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2647	};
2648	int next_color;
2649
2650	lock_map_acquire(&wq->lockdep_map);
2651	lock_map_release(&wq->lockdep_map);
2652
2653	mutex_lock(&wq->mutex);
2654
2655	/*
2656	 * Start-to-wait phase
2657	 */
2658	next_color = work_next_color(wq->work_color);
2659
2660	if (next_color != wq->flush_color) {
2661		/*
2662		 * Color space is not full.  The current work_color
2663		 * becomes our flush_color and work_color is advanced
2664		 * by one.
2665		 */
2666		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2667		this_flusher.flush_color = wq->work_color;
2668		wq->work_color = next_color;
2669
2670		if (!wq->first_flusher) {
2671			/* no flush in progress, become the first flusher */
2672			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673
2674			wq->first_flusher = &this_flusher;
2675
2676			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2677						       wq->work_color)) {
2678				/* nothing to flush, done */
2679				wq->flush_color = next_color;
2680				wq->first_flusher = NULL;
2681				goto out_unlock;
2682			}
2683		} else {
2684			/* wait in queue */
2685			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2686			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2687			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2688		}
2689	} else {
2690		/*
2691		 * Oops, color space is full, wait on overflow queue.
2692		 * The next flush completion will assign us
2693		 * flush_color and transfer to flusher_queue.
2694		 */
2695		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2696	}
2697
 
 
2698	mutex_unlock(&wq->mutex);
2699
2700	wait_for_completion(&this_flusher.done);
2701
2702	/*
2703	 * Wake-up-and-cascade phase
2704	 *
2705	 * First flushers are responsible for cascading flushes and
2706	 * handling overflow.  Non-first flushers can simply return.
2707	 */
2708	if (wq->first_flusher != &this_flusher)
2709		return;
2710
2711	mutex_lock(&wq->mutex);
2712
2713	/* we might have raced, check again with mutex held */
2714	if (wq->first_flusher != &this_flusher)
2715		goto out_unlock;
2716
2717	wq->first_flusher = NULL;
2718
2719	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2720	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2721
2722	while (true) {
2723		struct wq_flusher *next, *tmp;
2724
2725		/* complete all the flushers sharing the current flush color */
2726		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2727			if (next->flush_color != wq->flush_color)
2728				break;
2729			list_del_init(&next->list);
2730			complete(&next->done);
2731		}
2732
2733		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2734			     wq->flush_color != work_next_color(wq->work_color));
2735
2736		/* this flush_color is finished, advance by one */
2737		wq->flush_color = work_next_color(wq->flush_color);
2738
2739		/* one color has been freed, handle overflow queue */
2740		if (!list_empty(&wq->flusher_overflow)) {
2741			/*
2742			 * Assign the same color to all overflowed
2743			 * flushers, advance work_color and append to
2744			 * flusher_queue.  This is the start-to-wait
2745			 * phase for these overflowed flushers.
2746			 */
2747			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2748				tmp->flush_color = wq->work_color;
2749
2750			wq->work_color = work_next_color(wq->work_color);
2751
2752			list_splice_tail_init(&wq->flusher_overflow,
2753					      &wq->flusher_queue);
2754			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2755		}
2756
2757		if (list_empty(&wq->flusher_queue)) {
2758			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2759			break;
2760		}
2761
2762		/*
2763		 * Need to flush more colors.  Make the next flusher
2764		 * the new first flusher and arm pwqs.
2765		 */
2766		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2767		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2768
2769		list_del_init(&next->list);
2770		wq->first_flusher = next;
2771
2772		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2773			break;
2774
2775		/*
2776		 * Meh... this color is already done, clear first
2777		 * flusher and repeat cascading.
2778		 */
2779		wq->first_flusher = NULL;
2780	}
2781
2782out_unlock:
2783	mutex_unlock(&wq->mutex);
2784}
2785EXPORT_SYMBOL_GPL(flush_workqueue);
2786
2787/**
2788 * drain_workqueue - drain a workqueue
2789 * @wq: workqueue to drain
2790 *
2791 * Wait until the workqueue becomes empty.  While draining is in progress,
2792 * only chain queueing is allowed.  IOW, only currently pending or running
2793 * work items on @wq can queue further work items on it.  @wq is flushed
2794 * repeatedly until it becomes empty.  The number of flushing is detemined
2795 * by the depth of chaining and should be relatively short.  Whine if it
2796 * takes too long.
2797 */
2798void drain_workqueue(struct workqueue_struct *wq)
2799{
2800	unsigned int flush_cnt = 0;
2801	struct pool_workqueue *pwq;
2802
2803	/*
2804	 * __queue_work() needs to test whether there are drainers, is much
2805	 * hotter than drain_workqueue() and already looks at @wq->flags.
2806	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2807	 */
2808	mutex_lock(&wq->mutex);
2809	if (!wq->nr_drainers++)
2810		wq->flags |= __WQ_DRAINING;
2811	mutex_unlock(&wq->mutex);
2812reflush:
2813	flush_workqueue(wq);
2814
2815	mutex_lock(&wq->mutex);
2816
2817	for_each_pwq(pwq, wq) {
2818		bool drained;
2819
2820		spin_lock_irq(&pwq->pool->lock);
2821		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2822		spin_unlock_irq(&pwq->pool->lock);
2823
2824		if (drained)
2825			continue;
2826
2827		if (++flush_cnt == 10 ||
2828		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2829			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2830				wq->name, flush_cnt);
2831
2832		mutex_unlock(&wq->mutex);
2833		goto reflush;
2834	}
2835
2836	if (!--wq->nr_drainers)
2837		wq->flags &= ~__WQ_DRAINING;
2838	mutex_unlock(&wq->mutex);
2839}
2840EXPORT_SYMBOL_GPL(drain_workqueue);
2841
2842static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2843{
2844	struct worker *worker = NULL;
2845	struct worker_pool *pool;
2846	struct pool_workqueue *pwq;
2847
2848	might_sleep();
2849
2850	local_irq_disable();
2851	pool = get_work_pool(work);
2852	if (!pool) {
2853		local_irq_enable();
2854		return false;
2855	}
2856
2857	spin_lock(&pool->lock);
2858	/* see the comment in try_to_grab_pending() with the same code */
2859	pwq = get_work_pwq(work);
2860	if (pwq) {
2861		if (unlikely(pwq->pool != pool))
2862			goto already_gone;
2863	} else {
2864		worker = find_worker_executing_work(pool, work);
2865		if (!worker)
2866			goto already_gone;
2867		pwq = worker->current_pwq;
2868	}
2869
 
 
2870	insert_wq_barrier(pwq, barr, work, worker);
2871	spin_unlock_irq(&pool->lock);
2872
2873	/*
2874	 * If @max_active is 1 or rescuer is in use, flushing another work
2875	 * item on the same workqueue may lead to deadlock.  Make sure the
2876	 * flusher is not running on the same workqueue by verifying write
2877	 * access.
 
 
 
2878	 */
2879	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2880		lock_map_acquire(&pwq->wq->lockdep_map);
2881	else
2882		lock_map_acquire_read(&pwq->wq->lockdep_map);
2883	lock_map_release(&pwq->wq->lockdep_map);
2884
2885	return true;
2886already_gone:
2887	spin_unlock_irq(&pool->lock);
2888	return false;
2889}
2890
2891/**
2892 * flush_work - wait for a work to finish executing the last queueing instance
2893 * @work: the work to flush
2894 *
2895 * Wait until @work has finished execution.  @work is guaranteed to be idle
2896 * on return if it hasn't been requeued since flush started.
2897 *
2898 * Return:
2899 * %true if flush_work() waited for the work to finish execution,
2900 * %false if it was already idle.
2901 */
2902bool flush_work(struct work_struct *work)
2903{
2904	struct wq_barrier barr;
2905
2906	lock_map_acquire(&work->lockdep_map);
2907	lock_map_release(&work->lockdep_map);
2908
2909	if (start_flush_work(work, &barr)) {
2910		wait_for_completion(&barr.done);
2911		destroy_work_on_stack(&barr.work);
2912		return true;
2913	} else {
2914		return false;
2915	}
2916}
2917EXPORT_SYMBOL_GPL(flush_work);
2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2919static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2920{
 
2921	unsigned long flags;
2922	int ret;
2923
2924	do {
2925		ret = try_to_grab_pending(work, is_dwork, &flags);
2926		/*
2927		 * If someone else is canceling, wait for the same event it
2928		 * would be waiting for before retrying.
 
 
 
 
 
 
 
 
 
 
 
 
2929		 */
2930		if (unlikely(ret == -ENOENT))
2931			flush_work(work);
 
 
 
 
 
 
 
 
 
 
 
2932	} while (unlikely(ret < 0));
2933
2934	/* tell other tasks trying to grab @work to back off */
2935	mark_work_canceling(work);
2936	local_irq_restore(flags);
2937
2938	flush_work(work);
 
 
 
 
 
 
2939	clear_work_data(work);
 
 
 
 
 
 
 
 
 
 
2940	return ret;
2941}
2942
2943/**
2944 * cancel_work_sync - cancel a work and wait for it to finish
2945 * @work: the work to cancel
2946 *
2947 * Cancel @work and wait for its execution to finish.  This function
2948 * can be used even if the work re-queues itself or migrates to
2949 * another workqueue.  On return from this function, @work is
2950 * guaranteed to be not pending or executing on any CPU.
2951 *
2952 * cancel_work_sync(&delayed_work->work) must not be used for
2953 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2954 *
2955 * The caller must ensure that the workqueue on which @work was last
2956 * queued can't be destroyed before this function returns.
2957 *
2958 * Return:
2959 * %true if @work was pending, %false otherwise.
2960 */
2961bool cancel_work_sync(struct work_struct *work)
2962{
2963	return __cancel_work_timer(work, false);
2964}
2965EXPORT_SYMBOL_GPL(cancel_work_sync);
2966
2967/**
2968 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2969 * @dwork: the delayed work to flush
2970 *
2971 * Delayed timer is cancelled and the pending work is queued for
2972 * immediate execution.  Like flush_work(), this function only
2973 * considers the last queueing instance of @dwork.
2974 *
2975 * Return:
2976 * %true if flush_work() waited for the work to finish execution,
2977 * %false if it was already idle.
2978 */
2979bool flush_delayed_work(struct delayed_work *dwork)
2980{
2981	local_irq_disable();
2982	if (del_timer_sync(&dwork->timer))
2983		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2984	local_irq_enable();
2985	return flush_work(&dwork->work);
2986}
2987EXPORT_SYMBOL(flush_delayed_work);
2988
2989/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990 * cancel_delayed_work - cancel a delayed work
2991 * @dwork: delayed_work to cancel
2992 *
2993 * Kill off a pending delayed_work.
2994 *
2995 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2996 * pending.
2997 *
2998 * Note:
2999 * The work callback function may still be running on return, unless
3000 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3001 * use cancel_delayed_work_sync() to wait on it.
3002 *
3003 * This function is safe to call from any context including IRQ handler.
3004 */
3005bool cancel_delayed_work(struct delayed_work *dwork)
3006{
3007	unsigned long flags;
3008	int ret;
3009
3010	do {
3011		ret = try_to_grab_pending(&dwork->work, true, &flags);
3012	} while (unlikely(ret == -EAGAIN));
3013
3014	if (unlikely(ret < 0))
3015		return false;
3016
3017	set_work_pool_and_clear_pending(&dwork->work,
3018					get_work_pool_id(&dwork->work));
3019	local_irq_restore(flags);
3020	return ret;
3021}
3022EXPORT_SYMBOL(cancel_delayed_work);
3023
3024/**
3025 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026 * @dwork: the delayed work cancel
3027 *
3028 * This is cancel_work_sync() for delayed works.
3029 *
3030 * Return:
3031 * %true if @dwork was pending, %false otherwise.
3032 */
3033bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034{
3035	return __cancel_work_timer(&dwork->work, true);
3036}
3037EXPORT_SYMBOL(cancel_delayed_work_sync);
3038
3039/**
3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041 * @func: the function to call
3042 *
3043 * schedule_on_each_cpu() executes @func on each online CPU using the
3044 * system workqueue and blocks until all CPUs have completed.
3045 * schedule_on_each_cpu() is very slow.
3046 *
3047 * Return:
3048 * 0 on success, -errno on failure.
3049 */
3050int schedule_on_each_cpu(work_func_t func)
3051{
3052	int cpu;
3053	struct work_struct __percpu *works;
3054
3055	works = alloc_percpu(struct work_struct);
3056	if (!works)
3057		return -ENOMEM;
3058
3059	get_online_cpus();
3060
3061	for_each_online_cpu(cpu) {
3062		struct work_struct *work = per_cpu_ptr(works, cpu);
3063
3064		INIT_WORK(work, func);
3065		schedule_work_on(cpu, work);
3066	}
3067
3068	for_each_online_cpu(cpu)
3069		flush_work(per_cpu_ptr(works, cpu));
3070
3071	put_online_cpus();
3072	free_percpu(works);
3073	return 0;
3074}
3075
3076/**
3077 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3078 *
3079 * Forces execution of the kernel-global workqueue and blocks until its
3080 * completion.
3081 *
3082 * Think twice before calling this function!  It's very easy to get into
3083 * trouble if you don't take great care.  Either of the following situations
3084 * will lead to deadlock:
3085 *
3086 *	One of the work items currently on the workqueue needs to acquire
3087 *	a lock held by your code or its caller.
3088 *
3089 *	Your code is running in the context of a work routine.
3090 *
3091 * They will be detected by lockdep when they occur, but the first might not
3092 * occur very often.  It depends on what work items are on the workqueue and
3093 * what locks they need, which you have no control over.
3094 *
3095 * In most situations flushing the entire workqueue is overkill; you merely
3096 * need to know that a particular work item isn't queued and isn't running.
3097 * In such cases you should use cancel_delayed_work_sync() or
3098 * cancel_work_sync() instead.
3099 */
3100void flush_scheduled_work(void)
3101{
3102	flush_workqueue(system_wq);
3103}
3104EXPORT_SYMBOL(flush_scheduled_work);
3105
3106/**
3107 * execute_in_process_context - reliably execute the routine with user context
3108 * @fn:		the function to execute
3109 * @ew:		guaranteed storage for the execute work structure (must
3110 *		be available when the work executes)
3111 *
3112 * Executes the function immediately if process context is available,
3113 * otherwise schedules the function for delayed execution.
3114 *
3115 * Return:	0 - function was executed
3116 *		1 - function was scheduled for execution
3117 */
3118int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3119{
3120	if (!in_interrupt()) {
3121		fn(&ew->work);
3122		return 0;
3123	}
3124
3125	INIT_WORK(&ew->work, fn);
3126	schedule_work(&ew->work);
3127
3128	return 1;
3129}
3130EXPORT_SYMBOL_GPL(execute_in_process_context);
3131
3132#ifdef CONFIG_SYSFS
3133/*
3134 * Workqueues with WQ_SYSFS flag set is visible to userland via
3135 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3136 * following attributes.
3137 *
3138 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3139 *  max_active	RW int	: maximum number of in-flight work items
3140 *
3141 * Unbound workqueues have the following extra attributes.
3142 *
3143 *  id		RO int	: the associated pool ID
3144 *  nice	RW int	: nice value of the workers
3145 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3146 */
3147struct wq_device {
3148	struct workqueue_struct		*wq;
3149	struct device			dev;
3150};
3151
3152static struct workqueue_struct *dev_to_wq(struct device *dev)
3153{
3154	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3155
3156	return wq_dev->wq;
3157}
3158
3159static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3160			    char *buf)
3161{
3162	struct workqueue_struct *wq = dev_to_wq(dev);
3163
3164	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3165}
3166static DEVICE_ATTR_RO(per_cpu);
3167
3168static ssize_t max_active_show(struct device *dev,
3169			       struct device_attribute *attr, char *buf)
3170{
3171	struct workqueue_struct *wq = dev_to_wq(dev);
3172
3173	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3174}
3175
3176static ssize_t max_active_store(struct device *dev,
3177				struct device_attribute *attr, const char *buf,
3178				size_t count)
3179{
3180	struct workqueue_struct *wq = dev_to_wq(dev);
3181	int val;
3182
3183	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3184		return -EINVAL;
3185
3186	workqueue_set_max_active(wq, val);
3187	return count;
3188}
3189static DEVICE_ATTR_RW(max_active);
3190
3191static struct attribute *wq_sysfs_attrs[] = {
3192	&dev_attr_per_cpu.attr,
3193	&dev_attr_max_active.attr,
3194	NULL,
3195};
3196ATTRIBUTE_GROUPS(wq_sysfs);
3197
3198static ssize_t wq_pool_ids_show(struct device *dev,
3199				struct device_attribute *attr, char *buf)
3200{
3201	struct workqueue_struct *wq = dev_to_wq(dev);
3202	const char *delim = "";
3203	int node, written = 0;
3204
3205	rcu_read_lock_sched();
3206	for_each_node(node) {
3207		written += scnprintf(buf + written, PAGE_SIZE - written,
3208				     "%s%d:%d", delim, node,
3209				     unbound_pwq_by_node(wq, node)->pool->id);
3210		delim = " ";
3211	}
3212	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3213	rcu_read_unlock_sched();
3214
3215	return written;
3216}
3217
3218static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3219			    char *buf)
3220{
3221	struct workqueue_struct *wq = dev_to_wq(dev);
3222	int written;
3223
3224	mutex_lock(&wq->mutex);
3225	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3226	mutex_unlock(&wq->mutex);
3227
3228	return written;
3229}
3230
3231/* prepare workqueue_attrs for sysfs store operations */
3232static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3233{
3234	struct workqueue_attrs *attrs;
3235
3236	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3237	if (!attrs)
3238		return NULL;
3239
3240	mutex_lock(&wq->mutex);
3241	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3242	mutex_unlock(&wq->mutex);
3243	return attrs;
3244}
3245
3246static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3247			     const char *buf, size_t count)
3248{
3249	struct workqueue_struct *wq = dev_to_wq(dev);
3250	struct workqueue_attrs *attrs;
3251	int ret;
3252
3253	attrs = wq_sysfs_prep_attrs(wq);
3254	if (!attrs)
3255		return -ENOMEM;
3256
3257	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3258	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3259		ret = apply_workqueue_attrs(wq, attrs);
3260	else
3261		ret = -EINVAL;
3262
3263	free_workqueue_attrs(attrs);
3264	return ret ?: count;
3265}
3266
3267static ssize_t wq_cpumask_show(struct device *dev,
3268			       struct device_attribute *attr, char *buf)
3269{
3270	struct workqueue_struct *wq = dev_to_wq(dev);
3271	int written;
3272
3273	mutex_lock(&wq->mutex);
3274	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3275	mutex_unlock(&wq->mutex);
3276
3277	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3278	return written;
3279}
3280
3281static ssize_t wq_cpumask_store(struct device *dev,
3282				struct device_attribute *attr,
3283				const char *buf, size_t count)
3284{
3285	struct workqueue_struct *wq = dev_to_wq(dev);
3286	struct workqueue_attrs *attrs;
3287	int ret;
3288
3289	attrs = wq_sysfs_prep_attrs(wq);
3290	if (!attrs)
3291		return -ENOMEM;
3292
3293	ret = cpumask_parse(buf, attrs->cpumask);
3294	if (!ret)
3295		ret = apply_workqueue_attrs(wq, attrs);
3296
3297	free_workqueue_attrs(attrs);
3298	return ret ?: count;
3299}
3300
3301static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3302			    char *buf)
3303{
3304	struct workqueue_struct *wq = dev_to_wq(dev);
3305	int written;
3306
3307	mutex_lock(&wq->mutex);
3308	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3309			    !wq->unbound_attrs->no_numa);
3310	mutex_unlock(&wq->mutex);
3311
3312	return written;
3313}
3314
3315static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3316			     const char *buf, size_t count)
3317{
3318	struct workqueue_struct *wq = dev_to_wq(dev);
3319	struct workqueue_attrs *attrs;
3320	int v, ret;
3321
3322	attrs = wq_sysfs_prep_attrs(wq);
3323	if (!attrs)
3324		return -ENOMEM;
3325
3326	ret = -EINVAL;
3327	if (sscanf(buf, "%d", &v) == 1) {
3328		attrs->no_numa = !v;
3329		ret = apply_workqueue_attrs(wq, attrs);
3330	}
3331
3332	free_workqueue_attrs(attrs);
3333	return ret ?: count;
3334}
3335
3336static struct device_attribute wq_sysfs_unbound_attrs[] = {
3337	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3338	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3339	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3340	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3341	__ATTR_NULL,
3342};
3343
3344static struct bus_type wq_subsys = {
3345	.name				= "workqueue",
3346	.dev_groups			= wq_sysfs_groups,
3347};
3348
3349static int __init wq_sysfs_init(void)
3350{
3351	return subsys_virtual_register(&wq_subsys, NULL);
3352}
3353core_initcall(wq_sysfs_init);
3354
3355static void wq_device_release(struct device *dev)
3356{
3357	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3358
3359	kfree(wq_dev);
3360}
3361
3362/**
3363 * workqueue_sysfs_register - make a workqueue visible in sysfs
3364 * @wq: the workqueue to register
3365 *
3366 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3367 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3368 * which is the preferred method.
3369 *
3370 * Workqueue user should use this function directly iff it wants to apply
3371 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3372 * apply_workqueue_attrs() may race against userland updating the
3373 * attributes.
3374 *
3375 * Return: 0 on success, -errno on failure.
3376 */
3377int workqueue_sysfs_register(struct workqueue_struct *wq)
3378{
3379	struct wq_device *wq_dev;
3380	int ret;
3381
3382	/*
3383	 * Adjusting max_active or creating new pwqs by applyting
3384	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3385	 * workqueues.
3386	 */
3387	if (WARN_ON(wq->flags & __WQ_ORDERED))
3388		return -EINVAL;
3389
3390	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3391	if (!wq_dev)
3392		return -ENOMEM;
3393
3394	wq_dev->wq = wq;
3395	wq_dev->dev.bus = &wq_subsys;
3396	wq_dev->dev.init_name = wq->name;
3397	wq_dev->dev.release = wq_device_release;
3398
3399	/*
3400	 * unbound_attrs are created separately.  Suppress uevent until
3401	 * everything is ready.
3402	 */
3403	dev_set_uevent_suppress(&wq_dev->dev, true);
3404
3405	ret = device_register(&wq_dev->dev);
3406	if (ret) {
3407		kfree(wq_dev);
3408		wq->wq_dev = NULL;
3409		return ret;
3410	}
3411
3412	if (wq->flags & WQ_UNBOUND) {
3413		struct device_attribute *attr;
3414
3415		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3416			ret = device_create_file(&wq_dev->dev, attr);
3417			if (ret) {
3418				device_unregister(&wq_dev->dev);
3419				wq->wq_dev = NULL;
3420				return ret;
3421			}
3422		}
3423	}
3424
3425	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3426	return 0;
3427}
3428
3429/**
3430 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3431 * @wq: the workqueue to unregister
3432 *
3433 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3434 */
3435static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3436{
3437	struct wq_device *wq_dev = wq->wq_dev;
3438
3439	if (!wq->wq_dev)
3440		return;
3441
3442	wq->wq_dev = NULL;
3443	device_unregister(&wq_dev->dev);
3444}
3445#else	/* CONFIG_SYSFS */
3446static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3447#endif	/* CONFIG_SYSFS */
3448
3449/**
3450 * free_workqueue_attrs - free a workqueue_attrs
3451 * @attrs: workqueue_attrs to free
3452 *
3453 * Undo alloc_workqueue_attrs().
3454 */
3455void free_workqueue_attrs(struct workqueue_attrs *attrs)
3456{
3457	if (attrs) {
3458		free_cpumask_var(attrs->cpumask);
3459		kfree(attrs);
3460	}
3461}
3462
3463/**
3464 * alloc_workqueue_attrs - allocate a workqueue_attrs
3465 * @gfp_mask: allocation mask to use
3466 *
3467 * Allocate a new workqueue_attrs, initialize with default settings and
3468 * return it.
3469 *
3470 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3471 */
3472struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3473{
3474	struct workqueue_attrs *attrs;
3475
3476	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3477	if (!attrs)
3478		goto fail;
3479	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3480		goto fail;
3481
3482	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3483	return attrs;
3484fail:
3485	free_workqueue_attrs(attrs);
3486	return NULL;
3487}
3488
3489static void copy_workqueue_attrs(struct workqueue_attrs *to,
3490				 const struct workqueue_attrs *from)
3491{
3492	to->nice = from->nice;
3493	cpumask_copy(to->cpumask, from->cpumask);
3494	/*
3495	 * Unlike hash and equality test, this function doesn't ignore
3496	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3497	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3498	 */
3499	to->no_numa = from->no_numa;
3500}
3501
3502/* hash value of the content of @attr */
3503static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3504{
3505	u32 hash = 0;
3506
3507	hash = jhash_1word(attrs->nice, hash);
3508	hash = jhash(cpumask_bits(attrs->cpumask),
3509		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3510	return hash;
3511}
3512
3513/* content equality test */
3514static bool wqattrs_equal(const struct workqueue_attrs *a,
3515			  const struct workqueue_attrs *b)
3516{
3517	if (a->nice != b->nice)
3518		return false;
3519	if (!cpumask_equal(a->cpumask, b->cpumask))
3520		return false;
3521	return true;
3522}
3523
3524/**
3525 * init_worker_pool - initialize a newly zalloc'd worker_pool
3526 * @pool: worker_pool to initialize
3527 *
3528 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3529 *
3530 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3531 * inside @pool proper are initialized and put_unbound_pool() can be called
3532 * on @pool safely to release it.
3533 */
3534static int init_worker_pool(struct worker_pool *pool)
3535{
3536	spin_lock_init(&pool->lock);
3537	pool->id = -1;
3538	pool->cpu = -1;
3539	pool->node = NUMA_NO_NODE;
3540	pool->flags |= POOL_DISASSOCIATED;
 
3541	INIT_LIST_HEAD(&pool->worklist);
3542	INIT_LIST_HEAD(&pool->idle_list);
3543	hash_init(pool->busy_hash);
3544
3545	init_timer_deferrable(&pool->idle_timer);
3546	pool->idle_timer.function = idle_worker_timeout;
3547	pool->idle_timer.data = (unsigned long)pool;
3548
3549	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3550		    (unsigned long)pool);
3551
3552	mutex_init(&pool->manager_arb);
3553	mutex_init(&pool->manager_mutex);
3554	idr_init(&pool->worker_idr);
3555
 
3556	INIT_HLIST_NODE(&pool->hash_node);
3557	pool->refcnt = 1;
3558
3559	/* shouldn't fail above this point */
3560	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3561	if (!pool->attrs)
3562		return -ENOMEM;
3563	return 0;
3564}
3565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566static void rcu_free_pool(struct rcu_head *rcu)
3567{
3568	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3569
3570	idr_destroy(&pool->worker_idr);
3571	free_workqueue_attrs(pool->attrs);
3572	kfree(pool);
3573}
3574
3575/**
3576 * put_unbound_pool - put a worker_pool
3577 * @pool: worker_pool to put
3578 *
3579 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3580 * safe manner.  get_unbound_pool() calls this function on its failure path
3581 * and this function should be able to release pools which went through,
3582 * successfully or not, init_worker_pool().
3583 *
3584 * Should be called with wq_pool_mutex held.
3585 */
3586static void put_unbound_pool(struct worker_pool *pool)
3587{
 
3588	struct worker *worker;
3589
3590	lockdep_assert_held(&wq_pool_mutex);
3591
3592	if (--pool->refcnt)
3593		return;
3594
3595	/* sanity checks */
3596	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3597	    WARN_ON(!list_empty(&pool->worklist)))
3598		return;
3599
3600	/* release id and unhash */
3601	if (pool->id >= 0)
3602		idr_remove(&worker_pool_idr, pool->id);
3603	hash_del(&pool->hash_node);
3604
3605	/*
3606	 * Become the manager and destroy all workers.  Grabbing
3607	 * manager_arb prevents @pool's workers from blocking on
3608	 * manager_mutex.
3609	 */
3610	mutex_lock(&pool->manager_arb);
3611	mutex_lock(&pool->manager_mutex);
3612	spin_lock_irq(&pool->lock);
 
 
 
3613
3614	while ((worker = first_worker(pool)))
3615		destroy_worker(worker);
3616	WARN_ON(pool->nr_workers || pool->nr_idle);
3617
3618	spin_unlock_irq(&pool->lock);
3619	mutex_unlock(&pool->manager_mutex);
3620	mutex_unlock(&pool->manager_arb);
 
 
 
 
 
 
3621
3622	/* shut down the timers */
3623	del_timer_sync(&pool->idle_timer);
3624	del_timer_sync(&pool->mayday_timer);
3625
3626	/* sched-RCU protected to allow dereferences from get_work_pool() */
3627	call_rcu_sched(&pool->rcu, rcu_free_pool);
3628}
3629
3630/**
3631 * get_unbound_pool - get a worker_pool with the specified attributes
3632 * @attrs: the attributes of the worker_pool to get
3633 *
3634 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3635 * reference count and return it.  If there already is a matching
3636 * worker_pool, it will be used; otherwise, this function attempts to
3637 * create a new one.
3638 *
3639 * Should be called with wq_pool_mutex held.
3640 *
3641 * Return: On success, a worker_pool with the same attributes as @attrs.
3642 * On failure, %NULL.
3643 */
3644static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3645{
3646	u32 hash = wqattrs_hash(attrs);
3647	struct worker_pool *pool;
3648	int node;
 
3649
3650	lockdep_assert_held(&wq_pool_mutex);
3651
3652	/* do we already have a matching pool? */
3653	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654		if (wqattrs_equal(pool->attrs, attrs)) {
3655			pool->refcnt++;
3656			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
3657		}
3658	}
3659
3660	/* nope, create a new one */
3661	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3662	if (!pool || init_worker_pool(pool) < 0)
3663		goto fail;
3664
3665	if (workqueue_freezing)
3666		pool->flags |= POOL_FREEZING;
3667
3668	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3669	copy_workqueue_attrs(pool->attrs, attrs);
 
3670
3671	/*
3672	 * no_numa isn't a worker_pool attribute, always clear it.  See
3673	 * 'struct workqueue_attrs' comments for detail.
3674	 */
3675	pool->attrs->no_numa = false;
3676
3677	/* if cpumask is contained inside a NUMA node, we belong to that node */
3678	if (wq_numa_enabled) {
3679		for_each_node(node) {
3680			if (cpumask_subset(pool->attrs->cpumask,
3681					   wq_numa_possible_cpumask[node])) {
3682				pool->node = node;
3683				break;
3684			}
3685		}
3686	}
3687
3688	if (worker_pool_assign_id(pool) < 0)
3689		goto fail;
3690
3691	/* create and start the initial worker */
3692	if (create_and_start_worker(pool) < 0)
3693		goto fail;
3694
3695	/* install */
3696	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3697out_unlock:
3698	return pool;
3699fail:
3700	if (pool)
3701		put_unbound_pool(pool);
3702	return NULL;
3703}
3704
3705static void rcu_free_pwq(struct rcu_head *rcu)
3706{
3707	kmem_cache_free(pwq_cache,
3708			container_of(rcu, struct pool_workqueue, rcu));
3709}
3710
3711/*
3712 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3713 * and needs to be destroyed.
3714 */
3715static void pwq_unbound_release_workfn(struct work_struct *work)
3716{
3717	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3718						  unbound_release_work);
3719	struct workqueue_struct *wq = pwq->wq;
3720	struct worker_pool *pool = pwq->pool;
3721	bool is_last;
3722
3723	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3724		return;
3725
3726	/*
3727	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3728	 * necessary on release but do it anyway.  It's easier to verify
3729	 * and consistent with the linking path.
3730	 */
3731	mutex_lock(&wq->mutex);
3732	list_del_rcu(&pwq->pwqs_node);
3733	is_last = list_empty(&wq->pwqs);
3734	mutex_unlock(&wq->mutex);
3735
3736	mutex_lock(&wq_pool_mutex);
3737	put_unbound_pool(pool);
3738	mutex_unlock(&wq_pool_mutex);
3739
3740	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3741
3742	/*
3743	 * If we're the last pwq going away, @wq is already dead and no one
3744	 * is gonna access it anymore.  Free it.
3745	 */
3746	if (is_last) {
3747		free_workqueue_attrs(wq->unbound_attrs);
3748		kfree(wq);
3749	}
3750}
3751
3752/**
3753 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3754 * @pwq: target pool_workqueue
3755 *
3756 * If @pwq isn't freezing, set @pwq->max_active to the associated
3757 * workqueue's saved_max_active and activate delayed work items
3758 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3759 */
3760static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3761{
3762	struct workqueue_struct *wq = pwq->wq;
3763	bool freezable = wq->flags & WQ_FREEZABLE;
 
3764
3765	/* for @wq->saved_max_active */
3766	lockdep_assert_held(&wq->mutex);
3767
3768	/* fast exit for non-freezable wqs */
3769	if (!freezable && pwq->max_active == wq->saved_max_active)
3770		return;
3771
3772	spin_lock_irq(&pwq->pool->lock);
 
3773
3774	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
 
 
 
 
 
3775		pwq->max_active = wq->saved_max_active;
3776
3777		while (!list_empty(&pwq->delayed_works) &&
3778		       pwq->nr_active < pwq->max_active)
3779			pwq_activate_first_delayed(pwq);
3780
3781		/*
3782		 * Need to kick a worker after thawed or an unbound wq's
3783		 * max_active is bumped.  It's a slow path.  Do it always.
3784		 */
3785		wake_up_worker(pwq->pool);
3786	} else {
3787		pwq->max_active = 0;
3788	}
3789
3790	spin_unlock_irq(&pwq->pool->lock);
3791}
3792
3793/* initialize newly alloced @pwq which is associated with @wq and @pool */
3794static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3795		     struct worker_pool *pool)
3796{
3797	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3798
3799	memset(pwq, 0, sizeof(*pwq));
3800
3801	pwq->pool = pool;
3802	pwq->wq = wq;
3803	pwq->flush_color = -1;
3804	pwq->refcnt = 1;
3805	INIT_LIST_HEAD(&pwq->delayed_works);
3806	INIT_LIST_HEAD(&pwq->pwqs_node);
3807	INIT_LIST_HEAD(&pwq->mayday_node);
3808	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3809}
3810
3811/* sync @pwq with the current state of its associated wq and link it */
3812static void link_pwq(struct pool_workqueue *pwq)
3813{
3814	struct workqueue_struct *wq = pwq->wq;
3815
3816	lockdep_assert_held(&wq->mutex);
3817
3818	/* may be called multiple times, ignore if already linked */
3819	if (!list_empty(&pwq->pwqs_node))
3820		return;
3821
3822	/*
3823	 * Set the matching work_color.  This is synchronized with
3824	 * wq->mutex to avoid confusing flush_workqueue().
3825	 */
3826	pwq->work_color = wq->work_color;
3827
3828	/* sync max_active to the current setting */
3829	pwq_adjust_max_active(pwq);
3830
3831	/* link in @pwq */
3832	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833}
3834
3835/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837					const struct workqueue_attrs *attrs)
3838{
3839	struct worker_pool *pool;
3840	struct pool_workqueue *pwq;
3841
3842	lockdep_assert_held(&wq_pool_mutex);
3843
3844	pool = get_unbound_pool(attrs);
3845	if (!pool)
3846		return NULL;
3847
3848	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849	if (!pwq) {
3850		put_unbound_pool(pool);
3851		return NULL;
3852	}
3853
3854	init_pwq(pwq, wq, pool);
3855	return pwq;
3856}
3857
3858/* undo alloc_unbound_pwq(), used only in the error path */
3859static void free_unbound_pwq(struct pool_workqueue *pwq)
3860{
3861	lockdep_assert_held(&wq_pool_mutex);
3862
3863	if (pwq) {
3864		put_unbound_pool(pwq->pool);
3865		kmem_cache_free(pwq_cache, pwq);
3866	}
3867}
3868
3869/**
3870 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3871 * @attrs: the wq_attrs of interest
3872 * @node: the target NUMA node
3873 * @cpu_going_down: if >= 0, the CPU to consider as offline
3874 * @cpumask: outarg, the resulting cpumask
3875 *
3876 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3877 * @cpu_going_down is >= 0, that cpu is considered offline during
3878 * calculation.  The result is stored in @cpumask.
3879 *
3880 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3881 * enabled and @node has online CPUs requested by @attrs, the returned
3882 * cpumask is the intersection of the possible CPUs of @node and
3883 * @attrs->cpumask.
3884 *
3885 * The caller is responsible for ensuring that the cpumask of @node stays
3886 * stable.
3887 *
3888 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3889 * %false if equal.
3890 */
3891static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3892				 int cpu_going_down, cpumask_t *cpumask)
3893{
3894	if (!wq_numa_enabled || attrs->no_numa)
3895		goto use_dfl;
3896
3897	/* does @node have any online CPUs @attrs wants? */
3898	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3899	if (cpu_going_down >= 0)
3900		cpumask_clear_cpu(cpu_going_down, cpumask);
3901
3902	if (cpumask_empty(cpumask))
3903		goto use_dfl;
3904
3905	/* yeap, return possible CPUs in @node that @attrs wants */
3906	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
 
 
 
 
 
 
 
3907	return !cpumask_equal(cpumask, attrs->cpumask);
3908
3909use_dfl:
3910	cpumask_copy(cpumask, attrs->cpumask);
3911	return false;
3912}
3913
3914/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3915static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3916						   int node,
3917						   struct pool_workqueue *pwq)
3918{
3919	struct pool_workqueue *old_pwq;
3920
 
3921	lockdep_assert_held(&wq->mutex);
3922
3923	/* link_pwq() can handle duplicate calls */
3924	link_pwq(pwq);
3925
3926	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3927	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3928	return old_pwq;
3929}
3930
3931/**
3932 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3933 * @wq: the target workqueue
3934 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3935 *
3936 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3937 * machines, this function maps a separate pwq to each NUMA node with
3938 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3939 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3940 * items finish.  Note that a work item which repeatedly requeues itself
3941 * back-to-back will stay on its current pwq.
3942 *
3943 * Performs GFP_KERNEL allocations.
3944 *
3945 * Return: 0 on success and -errno on failure.
3946 */
3947int apply_workqueue_attrs(struct workqueue_struct *wq,
3948			  const struct workqueue_attrs *attrs)
3949{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3950	struct workqueue_attrs *new_attrs, *tmp_attrs;
3951	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3952	int node, ret;
3953
3954	/* only unbound workqueues can change attributes */
3955	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3956		return -EINVAL;
3957
3958	/* creating multiple pwqs breaks ordering guarantee */
3959	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3960		return -EINVAL;
3961
3962	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3963	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3964	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3965	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3966		goto enomem;
3967
3968	/* make a copy of @attrs and sanitize it */
 
 
 
 
3969	copy_workqueue_attrs(new_attrs, attrs);
3970	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
 
 
3971
3972	/*
3973	 * We may create multiple pwqs with differing cpumasks.  Make a
3974	 * copy of @new_attrs which will be modified and used to obtain
3975	 * pools.
3976	 */
3977	copy_workqueue_attrs(tmp_attrs, new_attrs);
3978
3979	/*
3980	 * CPUs should stay stable across pwq creations and installations.
3981	 * Pin CPUs, determine the target cpumask for each node and create
3982	 * pwqs accordingly.
3983	 */
3984	get_online_cpus();
3985
3986	mutex_lock(&wq_pool_mutex);
3987
3988	/*
3989	 * If something goes wrong during CPU up/down, we'll fall back to
3990	 * the default pwq covering whole @attrs->cpumask.  Always create
3991	 * it even if we don't use it immediately.
3992	 */
3993	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994	if (!dfl_pwq)
3995		goto enomem_pwq;
3996
3997	for_each_node(node) {
3998		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3999			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000			if (!pwq_tbl[node])
4001				goto enomem_pwq;
4002		} else {
4003			dfl_pwq->refcnt++;
4004			pwq_tbl[node] = dfl_pwq;
4005		}
4006	}
4007
4008	mutex_unlock(&wq_pool_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4009
4010	/* all pwqs have been created successfully, let's install'em */
4011	mutex_lock(&wq->mutex);
4012
4013	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4014
4015	/* save the previous pwq and install the new one */
4016	for_each_node(node)
4017		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
 
4018
4019	/* @dfl_pwq might not have been used, ensure it's linked */
4020	link_pwq(dfl_pwq);
4021	swap(wq->dfl_pwq, dfl_pwq);
4022
4023	mutex_unlock(&wq->mutex);
4024
4025	/* put the old pwqs */
4026	for_each_node(node)
4027		put_pwq_unlocked(pwq_tbl[node]);
4028	put_pwq_unlocked(dfl_pwq);
4029
4030	put_online_cpus();
4031	ret = 0;
4032	/* fall through */
4033out_free:
4034	free_workqueue_attrs(tmp_attrs);
4035	free_workqueue_attrs(new_attrs);
4036	kfree(pwq_tbl);
4037	return ret;
4038
4039enomem_pwq:
4040	free_unbound_pwq(dfl_pwq);
4041	for_each_node(node)
4042		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4043			free_unbound_pwq(pwq_tbl[node]);
4044	mutex_unlock(&wq_pool_mutex);
4045	put_online_cpus();
4046enomem:
4047	ret = -ENOMEM;
4048	goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049}
4050
4051/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053 * @wq: the target workqueue
4054 * @cpu: the CPU coming up or going down
4055 * @online: whether @cpu is coming up or going down
4056 *
4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4059 * @wq accordingly.
4060 *
4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062 * falls back to @wq->dfl_pwq which may not be optimal but is always
4063 * correct.
4064 *
4065 * Note that when the last allowed CPU of a NUMA node goes offline for a
4066 * workqueue with a cpumask spanning multiple nodes, the workers which were
4067 * already executing the work items for the workqueue will lose their CPU
4068 * affinity and may execute on any CPU.  This is similar to how per-cpu
4069 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4070 * affinity, it's the user's responsibility to flush the work item from
4071 * CPU_DOWN_PREPARE.
4072 */
4073static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074				   bool online)
4075{
4076	int node = cpu_to_node(cpu);
4077	int cpu_off = online ? -1 : cpu;
4078	struct pool_workqueue *old_pwq = NULL, *pwq;
4079	struct workqueue_attrs *target_attrs;
4080	cpumask_t *cpumask;
4081
4082	lockdep_assert_held(&wq_pool_mutex);
4083
4084	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
 
4085		return;
4086
4087	/*
4088	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4089	 * Let's use a preallocated one.  The following buf is protected by
4090	 * CPU hotplug exclusion.
4091	 */
4092	target_attrs = wq_update_unbound_numa_attrs_buf;
4093	cpumask = target_attrs->cpumask;
4094
4095	mutex_lock(&wq->mutex);
4096	if (wq->unbound_attrs->no_numa)
4097		goto out_unlock;
4098
4099	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100	pwq = unbound_pwq_by_node(wq, node);
4101
4102	/*
4103	 * Let's determine what needs to be done.  If the target cpumask is
4104	 * different from wq's, we need to compare it to @pwq's and create
4105	 * a new one if they don't match.  If the target cpumask equals
4106	 * wq's, the default pwq should be used.  If @pwq is already the
4107	 * default one, nothing to do; otherwise, install the default one.
4108	 */
4109	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4110		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4111			goto out_unlock;
4112	} else {
4113		if (pwq == wq->dfl_pwq)
4114			goto out_unlock;
4115		else
4116			goto use_dfl_pwq;
4117	}
4118
4119	mutex_unlock(&wq->mutex);
4120
4121	/* create a new pwq */
4122	pwq = alloc_unbound_pwq(wq, target_attrs);
4123	if (!pwq) {
4124		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4125			   wq->name);
4126		mutex_lock(&wq->mutex);
4127		goto use_dfl_pwq;
4128	}
4129
4130	/*
4131	 * Install the new pwq.  As this function is called only from CPU
4132	 * hotplug callbacks and applying a new attrs is wrapped with
4133	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4134	 * inbetween.
4135	 */
4136	mutex_lock(&wq->mutex);
4137	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4138	goto out_unlock;
4139
4140use_dfl_pwq:
 
4141	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4142	get_pwq(wq->dfl_pwq);
4143	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4144	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4145out_unlock:
4146	mutex_unlock(&wq->mutex);
4147	put_pwq_unlocked(old_pwq);
4148}
4149
4150static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4151{
4152	bool highpri = wq->flags & WQ_HIGHPRI;
4153	int cpu, ret;
4154
4155	if (!(wq->flags & WQ_UNBOUND)) {
4156		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4157		if (!wq->cpu_pwqs)
4158			return -ENOMEM;
4159
4160		for_each_possible_cpu(cpu) {
4161			struct pool_workqueue *pwq =
4162				per_cpu_ptr(wq->cpu_pwqs, cpu);
4163			struct worker_pool *cpu_pools =
4164				per_cpu(cpu_worker_pools, cpu);
4165
4166			init_pwq(pwq, wq, &cpu_pools[highpri]);
4167
4168			mutex_lock(&wq->mutex);
4169			link_pwq(pwq);
4170			mutex_unlock(&wq->mutex);
4171		}
4172		return 0;
4173	} else if (wq->flags & __WQ_ORDERED) {
4174		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4175		/* there should only be single pwq for ordering guarantee */
4176		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4177			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4178		     "ordering guarantee broken for workqueue %s\n", wq->name);
4179		return ret;
4180	} else {
4181		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4182	}
4183}
4184
4185static int wq_clamp_max_active(int max_active, unsigned int flags,
4186			       const char *name)
4187{
4188	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4189
4190	if (max_active < 1 || max_active > lim)
4191		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4192			max_active, name, 1, lim);
4193
4194	return clamp_val(max_active, 1, lim);
4195}
4196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4197struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4198					       unsigned int flags,
4199					       int max_active,
4200					       struct lock_class_key *key,
4201					       const char *lock_name, ...)
4202{
4203	size_t tbl_size = 0;
4204	va_list args;
4205	struct workqueue_struct *wq;
4206	struct pool_workqueue *pwq;
4207
 
 
 
 
 
 
 
 
 
 
4208	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4209	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4210		flags |= WQ_UNBOUND;
4211
4212	/* allocate wq and format name */
4213	if (flags & WQ_UNBOUND)
4214		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4215
4216	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4217	if (!wq)
4218		return NULL;
4219
4220	if (flags & WQ_UNBOUND) {
4221		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4222		if (!wq->unbound_attrs)
4223			goto err_free_wq;
4224	}
4225
4226	va_start(args, lock_name);
4227	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4228	va_end(args);
4229
4230	max_active = max_active ?: WQ_DFL_ACTIVE;
4231	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4232
4233	/* init wq */
4234	wq->flags = flags;
4235	wq->saved_max_active = max_active;
4236	mutex_init(&wq->mutex);
4237	atomic_set(&wq->nr_pwqs_to_flush, 0);
4238	INIT_LIST_HEAD(&wq->pwqs);
4239	INIT_LIST_HEAD(&wq->flusher_queue);
4240	INIT_LIST_HEAD(&wq->flusher_overflow);
4241	INIT_LIST_HEAD(&wq->maydays);
4242
4243	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4244	INIT_LIST_HEAD(&wq->list);
4245
4246	if (alloc_and_link_pwqs(wq) < 0)
4247		goto err_free_wq;
4248
4249	/*
4250	 * Workqueues which may be used during memory reclaim should
4251	 * have a rescuer to guarantee forward progress.
4252	 */
4253	if (flags & WQ_MEM_RECLAIM) {
4254		struct worker *rescuer;
4255
4256		rescuer = alloc_worker();
4257		if (!rescuer)
4258			goto err_destroy;
4259
4260		rescuer->rescue_wq = wq;
4261		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4262					       wq->name);
4263		if (IS_ERR(rescuer->task)) {
4264			kfree(rescuer);
4265			goto err_destroy;
4266		}
4267
4268		wq->rescuer = rescuer;
4269		rescuer->task->flags |= PF_NO_SETAFFINITY;
4270		wake_up_process(rescuer->task);
4271	}
4272
4273	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4274		goto err_destroy;
4275
4276	/*
4277	 * wq_pool_mutex protects global freeze state and workqueues list.
4278	 * Grab it, adjust max_active and add the new @wq to workqueues
4279	 * list.
4280	 */
4281	mutex_lock(&wq_pool_mutex);
4282
4283	mutex_lock(&wq->mutex);
4284	for_each_pwq(pwq, wq)
4285		pwq_adjust_max_active(pwq);
4286	mutex_unlock(&wq->mutex);
4287
4288	list_add(&wq->list, &workqueues);
4289
4290	mutex_unlock(&wq_pool_mutex);
4291
4292	return wq;
4293
4294err_free_wq:
4295	free_workqueue_attrs(wq->unbound_attrs);
4296	kfree(wq);
4297	return NULL;
4298err_destroy:
4299	destroy_workqueue(wq);
4300	return NULL;
4301}
4302EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4303
4304/**
4305 * destroy_workqueue - safely terminate a workqueue
4306 * @wq: target workqueue
4307 *
4308 * Safely destroy a workqueue. All work currently pending will be done first.
4309 */
4310void destroy_workqueue(struct workqueue_struct *wq)
4311{
4312	struct pool_workqueue *pwq;
4313	int node;
4314
4315	/* drain it before proceeding with destruction */
4316	drain_workqueue(wq);
4317
4318	/* sanity checks */
4319	mutex_lock(&wq->mutex);
4320	for_each_pwq(pwq, wq) {
4321		int i;
4322
4323		for (i = 0; i < WORK_NR_COLORS; i++) {
4324			if (WARN_ON(pwq->nr_in_flight[i])) {
4325				mutex_unlock(&wq->mutex);
 
4326				return;
4327			}
4328		}
4329
4330		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4331		    WARN_ON(pwq->nr_active) ||
4332		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4333			mutex_unlock(&wq->mutex);
 
4334			return;
4335		}
4336	}
4337	mutex_unlock(&wq->mutex);
4338
4339	/*
4340	 * wq list is used to freeze wq, remove from list after
4341	 * flushing is complete in case freeze races us.
4342	 */
4343	mutex_lock(&wq_pool_mutex);
4344	list_del_init(&wq->list);
4345	mutex_unlock(&wq_pool_mutex);
4346
4347	workqueue_sysfs_unregister(wq);
4348
4349	if (wq->rescuer) {
4350		kthread_stop(wq->rescuer->task);
4351		kfree(wq->rescuer);
4352		wq->rescuer = NULL;
4353	}
4354
4355	if (!(wq->flags & WQ_UNBOUND)) {
4356		/*
4357		 * The base ref is never dropped on per-cpu pwqs.  Directly
4358		 * free the pwqs and wq.
4359		 */
4360		free_percpu(wq->cpu_pwqs);
4361		kfree(wq);
4362	} else {
4363		/*
4364		 * We're the sole accessor of @wq at this point.  Directly
4365		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4366		 * @wq will be freed when the last pwq is released.
4367		 */
4368		for_each_node(node) {
4369			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4370			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4371			put_pwq_unlocked(pwq);
4372		}
4373
4374		/*
4375		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4376		 * put.  Don't access it afterwards.
4377		 */
4378		pwq = wq->dfl_pwq;
4379		wq->dfl_pwq = NULL;
4380		put_pwq_unlocked(pwq);
4381	}
4382}
4383EXPORT_SYMBOL_GPL(destroy_workqueue);
4384
4385/**
4386 * workqueue_set_max_active - adjust max_active of a workqueue
4387 * @wq: target workqueue
4388 * @max_active: new max_active value.
4389 *
4390 * Set max_active of @wq to @max_active.
4391 *
4392 * CONTEXT:
4393 * Don't call from IRQ context.
4394 */
4395void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4396{
4397	struct pool_workqueue *pwq;
4398
4399	/* disallow meddling with max_active for ordered workqueues */
4400	if (WARN_ON(wq->flags & __WQ_ORDERED))
4401		return;
4402
4403	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4404
4405	mutex_lock(&wq->mutex);
4406
 
4407	wq->saved_max_active = max_active;
4408
4409	for_each_pwq(pwq, wq)
4410		pwq_adjust_max_active(pwq);
4411
4412	mutex_unlock(&wq->mutex);
4413}
4414EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4415
4416/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4417 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4418 *
4419 * Determine whether %current is a workqueue rescuer.  Can be used from
4420 * work functions to determine whether it's being run off the rescuer task.
4421 *
4422 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4423 */
4424bool current_is_workqueue_rescuer(void)
4425{
4426	struct worker *worker = current_wq_worker();
4427
4428	return worker && worker->rescue_wq;
4429}
4430
4431/**
4432 * workqueue_congested - test whether a workqueue is congested
4433 * @cpu: CPU in question
4434 * @wq: target workqueue
4435 *
4436 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4437 * no synchronization around this function and the test result is
4438 * unreliable and only useful as advisory hints or for debugging.
4439 *
4440 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4441 * Note that both per-cpu and unbound workqueues may be associated with
4442 * multiple pool_workqueues which have separate congested states.  A
4443 * workqueue being congested on one CPU doesn't mean the workqueue is also
4444 * contested on other CPUs / NUMA nodes.
4445 *
4446 * Return:
4447 * %true if congested, %false otherwise.
4448 */
4449bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4450{
4451	struct pool_workqueue *pwq;
4452	bool ret;
4453
4454	rcu_read_lock_sched();
4455
4456	if (cpu == WORK_CPU_UNBOUND)
4457		cpu = smp_processor_id();
4458
4459	if (!(wq->flags & WQ_UNBOUND))
4460		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4461	else
4462		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4463
4464	ret = !list_empty(&pwq->delayed_works);
4465	rcu_read_unlock_sched();
4466
4467	return ret;
4468}
4469EXPORT_SYMBOL_GPL(workqueue_congested);
4470
4471/**
4472 * work_busy - test whether a work is currently pending or running
4473 * @work: the work to be tested
4474 *
4475 * Test whether @work is currently pending or running.  There is no
4476 * synchronization around this function and the test result is
4477 * unreliable and only useful as advisory hints or for debugging.
4478 *
4479 * Return:
4480 * OR'd bitmask of WORK_BUSY_* bits.
4481 */
4482unsigned int work_busy(struct work_struct *work)
4483{
4484	struct worker_pool *pool;
4485	unsigned long flags;
4486	unsigned int ret = 0;
4487
4488	if (work_pending(work))
4489		ret |= WORK_BUSY_PENDING;
4490
4491	local_irq_save(flags);
4492	pool = get_work_pool(work);
4493	if (pool) {
4494		spin_lock(&pool->lock);
4495		if (find_worker_executing_work(pool, work))
4496			ret |= WORK_BUSY_RUNNING;
4497		spin_unlock(&pool->lock);
4498	}
4499	local_irq_restore(flags);
4500
4501	return ret;
4502}
4503EXPORT_SYMBOL_GPL(work_busy);
4504
4505/**
4506 * set_worker_desc - set description for the current work item
4507 * @fmt: printf-style format string
4508 * @...: arguments for the format string
4509 *
4510 * This function can be called by a running work function to describe what
4511 * the work item is about.  If the worker task gets dumped, this
4512 * information will be printed out together to help debugging.  The
4513 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4514 */
4515void set_worker_desc(const char *fmt, ...)
4516{
4517	struct worker *worker = current_wq_worker();
4518	va_list args;
4519
4520	if (worker) {
4521		va_start(args, fmt);
4522		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4523		va_end(args);
4524		worker->desc_valid = true;
4525	}
4526}
4527
4528/**
4529 * print_worker_info - print out worker information and description
4530 * @log_lvl: the log level to use when printing
4531 * @task: target task
4532 *
4533 * If @task is a worker and currently executing a work item, print out the
4534 * name of the workqueue being serviced and worker description set with
4535 * set_worker_desc() by the currently executing work item.
4536 *
4537 * This function can be safely called on any task as long as the
4538 * task_struct itself is accessible.  While safe, this function isn't
4539 * synchronized and may print out mixups or garbages of limited length.
4540 */
4541void print_worker_info(const char *log_lvl, struct task_struct *task)
4542{
4543	work_func_t *fn = NULL;
4544	char name[WQ_NAME_LEN] = { };
4545	char desc[WORKER_DESC_LEN] = { };
4546	struct pool_workqueue *pwq = NULL;
4547	struct workqueue_struct *wq = NULL;
4548	bool desc_valid = false;
4549	struct worker *worker;
4550
4551	if (!(task->flags & PF_WQ_WORKER))
4552		return;
4553
4554	/*
4555	 * This function is called without any synchronization and @task
4556	 * could be in any state.  Be careful with dereferences.
4557	 */
4558	worker = probe_kthread_data(task);
4559
4560	/*
4561	 * Carefully copy the associated workqueue's workfn and name.  Keep
4562	 * the original last '\0' in case the original contains garbage.
4563	 */
4564	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4565	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4566	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4567	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4568
4569	/* copy worker description */
4570	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4571	if (desc_valid)
4572		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4573
4574	if (fn || name[0] || desc[0]) {
4575		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4576		if (desc[0])
4577			pr_cont(" (%s)", desc);
4578		pr_cont("\n");
4579	}
4580}
4581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4582/*
4583 * CPU hotplug.
4584 *
4585 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586 * are a lot of assumptions on strong associations among work, pwq and
4587 * pool which make migrating pending and scheduled works very
4588 * difficult to implement without impacting hot paths.  Secondly,
4589 * worker pools serve mix of short, long and very long running works making
4590 * blocked draining impractical.
4591 *
4592 * This is solved by allowing the pools to be disassociated from the CPU
4593 * running as an unbound one and allowing it to be reattached later if the
4594 * cpu comes back online.
4595 */
4596
4597static void wq_unbind_fn(struct work_struct *work)
4598{
4599	int cpu = smp_processor_id();
4600	struct worker_pool *pool;
4601	struct worker *worker;
4602	int wi;
4603
4604	for_each_cpu_worker_pool(pool, cpu) {
4605		WARN_ON_ONCE(cpu != smp_processor_id());
4606
4607		mutex_lock(&pool->manager_mutex);
4608		spin_lock_irq(&pool->lock);
4609
4610		/*
4611		 * We've blocked all manager operations.  Make all workers
4612		 * unbound and set DISASSOCIATED.  Before this, all workers
4613		 * except for the ones which are still executing works from
4614		 * before the last CPU down must be on the cpu.  After
4615		 * this, they may become diasporas.
4616		 */
4617		for_each_pool_worker(worker, wi, pool)
4618			worker->flags |= WORKER_UNBOUND;
4619
4620		pool->flags |= POOL_DISASSOCIATED;
4621
4622		spin_unlock_irq(&pool->lock);
4623		mutex_unlock(&pool->manager_mutex);
4624
4625		/*
4626		 * Call schedule() so that we cross rq->lock and thus can
4627		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4628		 * This is necessary as scheduler callbacks may be invoked
4629		 * from other cpus.
4630		 */
4631		schedule();
4632
4633		/*
4634		 * Sched callbacks are disabled now.  Zap nr_running.
4635		 * After this, nr_running stays zero and need_more_worker()
4636		 * and keep_working() are always true as long as the
4637		 * worklist is not empty.  This pool now behaves as an
4638		 * unbound (in terms of concurrency management) pool which
4639		 * are served by workers tied to the pool.
4640		 */
4641		atomic_set(&pool->nr_running, 0);
4642
4643		/*
4644		 * With concurrency management just turned off, a busy
4645		 * worker blocking could lead to lengthy stalls.  Kick off
4646		 * unbound chain execution of currently pending work items.
4647		 */
4648		spin_lock_irq(&pool->lock);
4649		wake_up_worker(pool);
4650		spin_unlock_irq(&pool->lock);
4651	}
4652}
4653
4654/**
4655 * rebind_workers - rebind all workers of a pool to the associated CPU
4656 * @pool: pool of interest
4657 *
4658 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4659 */
4660static void rebind_workers(struct worker_pool *pool)
4661{
4662	struct worker *worker;
4663	int wi;
4664
4665	lockdep_assert_held(&pool->manager_mutex);
4666
4667	/*
4668	 * Restore CPU affinity of all workers.  As all idle workers should
4669	 * be on the run-queue of the associated CPU before any local
4670	 * wake-ups for concurrency management happen, restore CPU affinty
4671	 * of all workers first and then clear UNBOUND.  As we're called
4672	 * from CPU_ONLINE, the following shouldn't fail.
4673	 */
4674	for_each_pool_worker(worker, wi, pool)
4675		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4676						  pool->attrs->cpumask) < 0);
4677
4678	spin_lock_irq(&pool->lock);
4679
4680	for_each_pool_worker(worker, wi, pool) {
 
 
4681		unsigned int worker_flags = worker->flags;
4682
4683		/*
4684		 * A bound idle worker should actually be on the runqueue
4685		 * of the associated CPU for local wake-ups targeting it to
4686		 * work.  Kick all idle workers so that they migrate to the
4687		 * associated CPU.  Doing this in the same loop as
4688		 * replacing UNBOUND with REBOUND is safe as no worker will
4689		 * be bound before @pool->lock is released.
4690		 */
4691		if (worker_flags & WORKER_IDLE)
4692			wake_up_process(worker->task);
4693
4694		/*
4695		 * We want to clear UNBOUND but can't directly call
4696		 * worker_clr_flags() or adjust nr_running.  Atomically
4697		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4698		 * @worker will clear REBOUND using worker_clr_flags() when
4699		 * it initiates the next execution cycle thus restoring
4700		 * concurrency management.  Note that when or whether
4701		 * @worker clears REBOUND doesn't affect correctness.
4702		 *
4703		 * ACCESS_ONCE() is necessary because @worker->flags may be
4704		 * tested without holding any lock in
4705		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4706		 * fail incorrectly leading to premature concurrency
4707		 * management operations.
4708		 */
4709		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4710		worker_flags |= WORKER_REBOUND;
4711		worker_flags &= ~WORKER_UNBOUND;
4712		ACCESS_ONCE(worker->flags) = worker_flags;
4713	}
4714
4715	spin_unlock_irq(&pool->lock);
4716}
4717
4718/**
4719 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4720 * @pool: unbound pool of interest
4721 * @cpu: the CPU which is coming up
4722 *
4723 * An unbound pool may end up with a cpumask which doesn't have any online
4724 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4725 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4726 * online CPU before, cpus_allowed of all its workers should be restored.
4727 */
4728static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4729{
4730	static cpumask_t cpumask;
4731	struct worker *worker;
4732	int wi;
4733
4734	lockdep_assert_held(&pool->manager_mutex);
4735
4736	/* is @cpu allowed for @pool? */
4737	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4738		return;
4739
4740	/* is @cpu the only online CPU? */
4741	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4742	if (cpumask_weight(&cpumask) != 1)
4743		return;
4744
4745	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4746	for_each_pool_worker(worker, wi, pool)
4747		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4748						  pool->attrs->cpumask) < 0);
4749}
4750
4751/*
4752 * Workqueues should be brought up before normal priority CPU notifiers.
4753 * This will be registered high priority CPU notifier.
4754 */
4755static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4756					       unsigned long action,
4757					       void *hcpu)
 
 
 
 
 
 
 
4758{
4759	int cpu = (unsigned long)hcpu;
4760	struct worker_pool *pool;
4761	struct workqueue_struct *wq;
4762	int pi;
4763
4764	switch (action & ~CPU_TASKS_FROZEN) {
4765	case CPU_UP_PREPARE:
4766		for_each_cpu_worker_pool(pool, cpu) {
4767			if (pool->nr_workers)
4768				continue;
4769			if (create_and_start_worker(pool) < 0)
4770				return NOTIFY_BAD;
4771		}
4772		break;
4773
4774	case CPU_DOWN_FAILED:
4775	case CPU_ONLINE:
4776		mutex_lock(&wq_pool_mutex);
4777
4778		for_each_pool(pool, pi) {
4779			mutex_lock(&pool->manager_mutex);
4780
4781			if (pool->cpu == cpu) {
4782				spin_lock_irq(&pool->lock);
4783				pool->flags &= ~POOL_DISASSOCIATED;
4784				spin_unlock_irq(&pool->lock);
4785
4786				rebind_workers(pool);
4787			} else if (pool->cpu < 0) {
4788				restore_unbound_workers_cpumask(pool, cpu);
4789			}
4790
4791			mutex_unlock(&pool->manager_mutex);
4792		}
4793
4794		/* update NUMA affinity of unbound workqueues */
4795		list_for_each_entry(wq, &workqueues, list)
4796			wq_update_unbound_numa(wq, cpu, true);
 
4797
4798		mutex_unlock(&wq_pool_mutex);
4799		break;
4800	}
4801	return NOTIFY_OK;
 
 
 
 
 
 
4802}
4803
4804/*
4805 * Workqueues should be brought down after normal priority CPU notifiers.
4806 * This will be registered as low priority CPU notifier.
4807 */
4808static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4809						 unsigned long action,
4810						 void *hcpu)
4811{
4812	int cpu = (unsigned long)hcpu;
4813	struct work_struct unbind_work;
4814	struct workqueue_struct *wq;
4815
4816	switch (action & ~CPU_TASKS_FROZEN) {
4817	case CPU_DOWN_PREPARE:
4818		/* unbinding per-cpu workers should happen on the local CPU */
4819		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4820		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4821
4822		/* update NUMA affinity of unbound workqueues */
4823		mutex_lock(&wq_pool_mutex);
4824		list_for_each_entry(wq, &workqueues, list)
4825			wq_update_unbound_numa(wq, cpu, false);
4826		mutex_unlock(&wq_pool_mutex);
4827
4828		/* wait for per-cpu unbinding to finish */
4829		flush_work(&unbind_work);
4830		destroy_work_on_stack(&unbind_work);
4831		break;
4832	}
4833	return NOTIFY_OK;
4834}
4835
4836#ifdef CONFIG_SMP
4837
4838struct work_for_cpu {
4839	struct work_struct work;
4840	long (*fn)(void *);
4841	void *arg;
4842	long ret;
4843};
4844
4845static void work_for_cpu_fn(struct work_struct *work)
4846{
4847	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4848
4849	wfc->ret = wfc->fn(wfc->arg);
4850}
4851
4852/**
4853 * work_on_cpu - run a function in user context on a particular cpu
4854 * @cpu: the cpu to run on
4855 * @fn: the function to run
4856 * @arg: the function arg
4857 *
4858 * It is up to the caller to ensure that the cpu doesn't go offline.
4859 * The caller must not hold any locks which would prevent @fn from completing.
4860 *
4861 * Return: The value @fn returns.
4862 */
4863long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4864{
4865	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4866
4867	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4868	schedule_work_on(cpu, &wfc.work);
4869	flush_work(&wfc.work);
4870	destroy_work_on_stack(&wfc.work);
4871	return wfc.ret;
4872}
4873EXPORT_SYMBOL_GPL(work_on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4874#endif /* CONFIG_SMP */
4875
4876#ifdef CONFIG_FREEZER
4877
4878/**
4879 * freeze_workqueues_begin - begin freezing workqueues
4880 *
4881 * Start freezing workqueues.  After this function returns, all freezable
4882 * workqueues will queue new works to their delayed_works list instead of
4883 * pool->worklist.
4884 *
4885 * CONTEXT:
4886 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4887 */
4888void freeze_workqueues_begin(void)
4889{
4890	struct worker_pool *pool;
4891	struct workqueue_struct *wq;
4892	struct pool_workqueue *pwq;
4893	int pi;
4894
4895	mutex_lock(&wq_pool_mutex);
4896
4897	WARN_ON_ONCE(workqueue_freezing);
4898	workqueue_freezing = true;
4899
4900	/* set FREEZING */
4901	for_each_pool(pool, pi) {
4902		spin_lock_irq(&pool->lock);
4903		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4904		pool->flags |= POOL_FREEZING;
4905		spin_unlock_irq(&pool->lock);
4906	}
4907
4908	list_for_each_entry(wq, &workqueues, list) {
4909		mutex_lock(&wq->mutex);
4910		for_each_pwq(pwq, wq)
4911			pwq_adjust_max_active(pwq);
4912		mutex_unlock(&wq->mutex);
4913	}
4914
4915	mutex_unlock(&wq_pool_mutex);
4916}
4917
4918/**
4919 * freeze_workqueues_busy - are freezable workqueues still busy?
4920 *
4921 * Check whether freezing is complete.  This function must be called
4922 * between freeze_workqueues_begin() and thaw_workqueues().
4923 *
4924 * CONTEXT:
4925 * Grabs and releases wq_pool_mutex.
4926 *
4927 * Return:
4928 * %true if some freezable workqueues are still busy.  %false if freezing
4929 * is complete.
4930 */
4931bool freeze_workqueues_busy(void)
4932{
4933	bool busy = false;
4934	struct workqueue_struct *wq;
4935	struct pool_workqueue *pwq;
4936
4937	mutex_lock(&wq_pool_mutex);
4938
4939	WARN_ON_ONCE(!workqueue_freezing);
4940
4941	list_for_each_entry(wq, &workqueues, list) {
4942		if (!(wq->flags & WQ_FREEZABLE))
4943			continue;
4944		/*
4945		 * nr_active is monotonically decreasing.  It's safe
4946		 * to peek without lock.
4947		 */
4948		rcu_read_lock_sched();
4949		for_each_pwq(pwq, wq) {
4950			WARN_ON_ONCE(pwq->nr_active < 0);
4951			if (pwq->nr_active) {
4952				busy = true;
4953				rcu_read_unlock_sched();
4954				goto out_unlock;
4955			}
4956		}
4957		rcu_read_unlock_sched();
4958	}
4959out_unlock:
4960	mutex_unlock(&wq_pool_mutex);
4961	return busy;
4962}
4963
4964/**
4965 * thaw_workqueues - thaw workqueues
4966 *
4967 * Thaw workqueues.  Normal queueing is restored and all collected
4968 * frozen works are transferred to their respective pool worklists.
4969 *
4970 * CONTEXT:
4971 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4972 */
4973void thaw_workqueues(void)
4974{
4975	struct workqueue_struct *wq;
4976	struct pool_workqueue *pwq;
4977	struct worker_pool *pool;
4978	int pi;
4979
4980	mutex_lock(&wq_pool_mutex);
4981
4982	if (!workqueue_freezing)
4983		goto out_unlock;
4984
4985	/* clear FREEZING */
4986	for_each_pool(pool, pi) {
4987		spin_lock_irq(&pool->lock);
4988		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4989		pool->flags &= ~POOL_FREEZING;
4990		spin_unlock_irq(&pool->lock);
4991	}
4992
4993	/* restore max_active and repopulate worklist */
4994	list_for_each_entry(wq, &workqueues, list) {
4995		mutex_lock(&wq->mutex);
4996		for_each_pwq(pwq, wq)
4997			pwq_adjust_max_active(pwq);
4998		mutex_unlock(&wq->mutex);
4999	}
5000
5001	workqueue_freezing = false;
5002out_unlock:
5003	mutex_unlock(&wq_pool_mutex);
5004}
5005#endif /* CONFIG_FREEZER */
5006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5007static void __init wq_numa_init(void)
5008{
5009	cpumask_var_t *tbl;
5010	int node, cpu;
5011
5012	/* determine NUMA pwq table len - highest node id + 1 */
5013	for_each_node(node)
5014		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5015
5016	if (num_possible_nodes() <= 1)
5017		return;
5018
5019	if (wq_disable_numa) {
5020		pr_info("workqueue: NUMA affinity support disabled\n");
5021		return;
5022	}
5023
5024	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5025	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5026
5027	/*
5028	 * We want masks of possible CPUs of each node which isn't readily
5029	 * available.  Build one from cpu_to_node() which should have been
5030	 * fully initialized by now.
5031	 */
5032	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5033	BUG_ON(!tbl);
5034
5035	for_each_node(node)
5036		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5037				node_online(node) ? node : NUMA_NO_NODE));
5038
5039	for_each_possible_cpu(cpu) {
5040		node = cpu_to_node(cpu);
5041		if (WARN_ON(node == NUMA_NO_NODE)) {
5042			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5043			/* happens iff arch is bonkers, let's just proceed */
5044			return;
5045		}
5046		cpumask_set_cpu(cpu, tbl[node]);
5047	}
5048
5049	wq_numa_possible_cpumask = tbl;
5050	wq_numa_enabled = true;
5051}
5052
5053static int __init init_workqueues(void)
 
 
 
 
 
 
 
 
 
 
5054{
5055	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
 
5056	int i, cpu;
5057
5058	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5059
5060	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5061
5062	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5063	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5064
5065	wq_numa_init();
5066
5067	/* initialize CPU pools */
5068	for_each_possible_cpu(cpu) {
5069		struct worker_pool *pool;
5070
5071		i = 0;
5072		for_each_cpu_worker_pool(pool, cpu) {
5073			BUG_ON(init_worker_pool(pool));
5074			pool->cpu = cpu;
5075			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5076			pool->attrs->nice = std_nice[i++];
5077			pool->node = cpu_to_node(cpu);
5078
5079			/* alloc pool ID */
5080			mutex_lock(&wq_pool_mutex);
5081			BUG_ON(worker_pool_assign_id(pool));
5082			mutex_unlock(&wq_pool_mutex);
5083		}
5084	}
5085
5086	/* create the initial worker */
5087	for_each_online_cpu(cpu) {
5088		struct worker_pool *pool;
5089
5090		for_each_cpu_worker_pool(pool, cpu) {
5091			pool->flags &= ~POOL_DISASSOCIATED;
5092			BUG_ON(create_and_start_worker(pool) < 0);
5093		}
5094	}
5095
5096	/* create default unbound and ordered wq attrs */
5097	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5098		struct workqueue_attrs *attrs;
5099
5100		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5101		attrs->nice = std_nice[i];
5102		unbound_std_wq_attrs[i] = attrs;
5103
5104		/*
5105		 * An ordered wq should have only one pwq as ordering is
5106		 * guaranteed by max_active which is enforced by pwqs.
5107		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5108		 */
5109		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5110		attrs->nice = std_nice[i];
5111		attrs->no_numa = true;
5112		ordered_wq_attrs[i] = attrs;
5113	}
5114
5115	system_wq = alloc_workqueue("events", 0, 0);
5116	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5117	system_long_wq = alloc_workqueue("events_long", 0, 0);
5118	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5119					    WQ_UNBOUND_MAX_ACTIVE);
5120	system_freezable_wq = alloc_workqueue("events_freezable",
5121					      WQ_FREEZABLE, 0);
5122	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5123					      WQ_POWER_EFFICIENT, 0);
5124	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5125					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5126					      0);
5127	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5128	       !system_unbound_wq || !system_freezable_wq ||
5129	       !system_power_efficient_wq ||
5130	       !system_freezable_power_efficient_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5131	return 0;
5132}
5133early_initcall(init_workqueues);
v4.17
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/core-api/workqueue.rst for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
 
  41#include <linux/debug_locks.h>
  42#include <linux/lockdep.h>
  43#include <linux/idr.h>
  44#include <linux/jhash.h>
  45#include <linux/hashtable.h>
  46#include <linux/rculist.h>
  47#include <linux/nodemask.h>
  48#include <linux/moduleparam.h>
  49#include <linux/uaccess.h>
  50#include <linux/sched/isolation.h>
  51#include <linux/nmi.h>
  52
  53#include "workqueue_internal.h"
  54
  55enum {
  56	/*
  57	 * worker_pool flags
  58	 *
  59	 * A bound pool is either associated or disassociated with its CPU.
  60	 * While associated (!DISASSOCIATED), all workers are bound to the
  61	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  62	 * is in effect.
  63	 *
  64	 * While DISASSOCIATED, the cpu may be offline and all workers have
  65	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  66	 * be executing on any CPU.  The pool behaves as an unbound one.
  67	 *
  68	 * Note that DISASSOCIATED should be flipped only while holding
  69	 * attach_mutex to avoid changing binding state while
  70	 * worker_attach_to_pool() is in progress.
  71	 */
  72	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  73	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
 
  74
  75	/* worker flags */
 
  76	WORKER_DIE		= 1 << 1,	/* die die die */
  77	WORKER_IDLE		= 1 << 2,	/* is idle */
  78	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  79	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  80	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  81	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  82
  83	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  84				  WORKER_UNBOUND | WORKER_REBOUND,
  85
  86	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  87
  88	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  89	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  90
  91	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  92	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  93
  94	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  95						/* call for help after 10ms
  96						   (min two ticks) */
  97	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  98	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  99
 100	/*
 101	 * Rescue workers are used only on emergencies and shared by
 102	 * all cpus.  Give MIN_NICE.
 103	 */
 104	RESCUER_NICE_LEVEL	= MIN_NICE,
 105	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 106
 107	WQ_NAME_LEN		= 24,
 108};
 109
 110/*
 111 * Structure fields follow one of the following exclusion rules.
 112 *
 113 * I: Modifiable by initialization/destruction paths and read-only for
 114 *    everyone else.
 115 *
 116 * P: Preemption protected.  Disabling preemption is enough and should
 117 *    only be modified and accessed from the local cpu.
 118 *
 119 * L: pool->lock protected.  Access with pool->lock held.
 120 *
 121 * X: During normal operation, modification requires pool->lock and should
 122 *    be done only from local cpu.  Either disabling preemption on local
 123 *    cpu or grabbing pool->lock is enough for read access.  If
 124 *    POOL_DISASSOCIATED is set, it's identical to L.
 125 *
 126 * A: pool->attach_mutex protected.
 
 127 *
 128 * PL: wq_pool_mutex protected.
 129 *
 130 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 131 *
 132 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 133 *
 134 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 135 *      sched-RCU for reads.
 136 *
 137 * WQ: wq->mutex protected.
 138 *
 139 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 140 *
 141 * MD: wq_mayday_lock protected.
 142 */
 143
 144/* struct worker is defined in workqueue_internal.h */
 145
 146struct worker_pool {
 147	spinlock_t		lock;		/* the pool lock */
 148	int			cpu;		/* I: the associated cpu */
 149	int			node;		/* I: the associated node ID */
 150	int			id;		/* I: pool ID */
 151	unsigned int		flags;		/* X: flags */
 152
 153	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 154
 155	struct list_head	worklist;	/* L: list of pending works */
 
 156
 157	int			nr_workers;	/* L: total number of workers */
 158	int			nr_idle;	/* L: currently idle workers */
 159
 160	struct list_head	idle_list;	/* X: list of idle workers */
 161	struct timer_list	idle_timer;	/* L: worker idle timeout */
 162	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 163
 164	/* a workers is either on busy_hash or idle_list, or the manager */
 165	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 166						/* L: hash of busy workers */
 167
 168	struct worker		*manager;	/* L: purely informational */
 169	struct mutex		attach_mutex;	/* attach/detach exclusion */
 170	struct list_head	workers;	/* A: attached workers */
 171	struct completion	*detach_completion; /* all workers detached */
 172
 173	struct ida		worker_ida;	/* worker IDs for task name */
 174
 175	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 176	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 177	int			refcnt;		/* PL: refcnt for unbound pools */
 178
 179	/*
 180	 * The current concurrency level.  As it's likely to be accessed
 181	 * from other CPUs during try_to_wake_up(), put it in a separate
 182	 * cacheline.
 183	 */
 184	atomic_t		nr_running ____cacheline_aligned_in_smp;
 185
 186	/*
 187	 * Destruction of pool is sched-RCU protected to allow dereferences
 188	 * from get_work_pool().
 189	 */
 190	struct rcu_head		rcu;
 191} ____cacheline_aligned_in_smp;
 192
 193/*
 194 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 195 * of work_struct->data are used for flags and the remaining high bits
 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 197 * number of flag bits.
 198 */
 199struct pool_workqueue {
 200	struct worker_pool	*pool;		/* I: the associated pool */
 201	struct workqueue_struct *wq;		/* I: the owning workqueue */
 202	int			work_color;	/* L: current color */
 203	int			flush_color;	/* L: flushing color */
 204	int			refcnt;		/* L: reference count */
 205	int			nr_in_flight[WORK_NR_COLORS];
 206						/* L: nr of in_flight works */
 207	int			nr_active;	/* L: nr of active works */
 208	int			max_active;	/* L: max active works */
 209	struct list_head	delayed_works;	/* L: delayed works */
 210	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 211	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 212
 213	/*
 214	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 215	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 216	 * itself is also sched-RCU protected so that the first pwq can be
 217	 * determined without grabbing wq->mutex.
 218	 */
 219	struct work_struct	unbound_release_work;
 220	struct rcu_head		rcu;
 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 222
 223/*
 224 * Structure used to wait for workqueue flush.
 225 */
 226struct wq_flusher {
 227	struct list_head	list;		/* WQ: list of flushers */
 228	int			flush_color;	/* WQ: flush color waiting for */
 229	struct completion	done;		/* flush completion */
 230};
 231
 232struct wq_device;
 233
 234/*
 235 * The externally visible workqueue.  It relays the issued work items to
 236 * the appropriate worker_pool through its pool_workqueues.
 237 */
 238struct workqueue_struct {
 239	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 240	struct list_head	list;		/* PR: list of all workqueues */
 241
 242	struct mutex		mutex;		/* protects this wq */
 243	int			work_color;	/* WQ: current work color */
 244	int			flush_color;	/* WQ: current flush color */
 245	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 246	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 247	struct list_head	flusher_queue;	/* WQ: flush waiters */
 248	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 249
 250	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 251	struct worker		*rescuer;	/* I: rescue worker */
 252
 253	int			nr_drainers;	/* WQ: drain in progress */
 254	int			saved_max_active; /* WQ: saved pwq max_active */
 255
 256	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 257	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 258
 259#ifdef CONFIG_SYSFS
 260	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 261#endif
 262#ifdef CONFIG_LOCKDEP
 263	struct lockdep_map	lockdep_map;
 264#endif
 265	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 266
 267	/*
 268	 * Destruction of workqueue_struct is sched-RCU protected to allow
 269	 * walking the workqueues list without grabbing wq_pool_mutex.
 270	 * This is used to dump all workqueues from sysrq.
 271	 */
 272	struct rcu_head		rcu;
 273
 274	/* hot fields used during command issue, aligned to cacheline */
 275	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 276	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 277	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 278};
 279
 280static struct kmem_cache *pwq_cache;
 281
 
 282static cpumask_var_t *wq_numa_possible_cpumask;
 283					/* possible CPUs of each node */
 284
 285static bool wq_disable_numa;
 286module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 287
 288/* see the comment above the definition of WQ_POWER_EFFICIENT */
 289static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 
 
 
 
 
 290module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 291
 292static bool wq_online;			/* can kworkers be created yet? */
 293
 294static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 295
 296/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 297static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 298
 299static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 300static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
 302
 303static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 304static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 
 326
 327static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()					\
 360	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 361			 !lockdep_is_held(&wq_pool_mutex),		\
 362			 "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)					\
 365	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 366			 !lockdep_is_held(&wq->mutex),			\
 367			 "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 370	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 371			 !lockdep_is_held(&wq->mutex) &&		\
 372			 !lockdep_is_held(&wq_pool_mutex),		\
 373			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 
 
 
 
 374
 375#define for_each_cpu_worker_pool(pool, cpu)				\
 376	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 377	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378	     (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)						\
 393	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 394		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 395		else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)				\
 408	list_for_each_entry((worker), &(pool)->workers, node)		\
 409		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410		else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)						\
 425	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 426		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 427		else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435	return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 
 
 
 
 439{
 440	struct work_struct *work = addr;
 441
 442	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451	struct work_struct *work = addr;
 452
 453	switch (state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454	case ODEBUG_STATE_ACTIVE:
 455		cancel_work_sync(work);
 456		debug_object_init(work, &work_debug_descr);
 457		return true;
 458	default:
 459		return false;
 460	}
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469	struct work_struct *work = addr;
 470
 471	switch (state) {
 472	case ODEBUG_STATE_ACTIVE:
 473		cancel_work_sync(work);
 474		debug_object_free(work, &work_debug_descr);
 475		return true;
 476	default:
 477		return false;
 478	}
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482	.name		= "work_struct",
 483	.debug_hint	= work_debug_hint,
 484	.is_static_object = work_is_static_object,
 485	.fixup_init	= work_fixup_init,
 
 486	.fixup_free	= work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491	debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496	debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501	if (onstack)
 502		debug_object_init_on_stack(work, &work_debug_descr);
 503	else
 504		debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510	debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516	destroy_timer_on_stack(&work->timer);
 517	debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535	int ret;
 536
 537	lockdep_assert_held(&wq_pool_mutex);
 538
 539	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540			GFP_KERNEL);
 541	if (ret >= 0) {
 542		pool->id = ret;
 543		return 0;
 544	}
 545	return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561						  int node)
 562{
 563	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565	/*
 566	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567	 * delayed item is pending.  The plan is to keep CPU -> NODE
 568	 * mapping valid and stable across CPU on/offlines.  Once that
 569	 * happens, this workaround can be removed.
 570	 */
 571	if (unlikely(node == NUMA_NO_NODE))
 572		return wq->dfl_pwq;
 573
 574	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579	return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590	return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614				 unsigned long flags)
 615{
 616	WARN_ON_ONCE(!work_pending(work));
 617	atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621			 unsigned long extra_flags)
 622{
 623	set_work_data(work, (unsigned long)pwq,
 624		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628					   int pool_id)
 629{
 630	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631		      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635					    int pool_id)
 636{
 637	/*
 638	 * The following wmb is paired with the implied mb in
 639	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 640	 * here are visible to and precede any updates by the next PENDING
 641	 * owner.
 642	 */
 643	smp_wmb();
 644	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645	/*
 646	 * The following mb guarantees that previous clear of a PENDING bit
 647	 * will not be reordered with any speculative LOADS or STORES from
 648	 * work->current_func, which is executed afterwards.  This possible
 649	 * reordering can lead to a missed execution on attempt to qeueue
 650	 * the same @work.  E.g. consider this case:
 651	 *
 652	 *   CPU#0                         CPU#1
 653	 *   ----------------------------  --------------------------------
 654	 *
 655	 * 1  STORE event_indicated
 656	 * 2  queue_work_on() {
 657	 * 3    test_and_set_bit(PENDING)
 658	 * 4 }                             set_..._and_clear_pending() {
 659	 * 5                                 set_work_data() # clear bit
 660	 * 6                                 smp_mb()
 661	 * 7                               work->current_func() {
 662	 * 8				      LOAD event_indicated
 663	 *				   }
 664	 *
 665	 * Without an explicit full barrier speculative LOAD on line 8 can
 666	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 667	 * CPU#0 observes the PENDING bit is still set and new execution of
 668	 * a @work is not queued in a hope, that CPU#1 will eventually
 669	 * finish the queued @work.  Meanwhile CPU#1 does not see
 670	 * event_indicated is set, because speculative LOAD was executed
 671	 * before actual STORE.
 672	 */
 673	smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 679	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684	unsigned long data = atomic_long_read(&work->data);
 685
 686	if (data & WORK_STRUCT_PWQ)
 687		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688	else
 689		return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709	unsigned long data = atomic_long_read(&work->data);
 710	int pool_id;
 711
 712	assert_rcu_or_pool_mutex();
 713
 714	if (data & WORK_STRUCT_PWQ)
 715		return ((struct pool_workqueue *)
 716			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719	if (pool_id == WORK_OFFQ_POOL_NONE)
 720		return NULL;
 721
 722	return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734	unsigned long data = atomic_long_read(&work->data);
 735
 736	if (data & WORK_STRUCT_PWQ)
 737		return ((struct pool_workqueue *)
 738			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740	return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745	unsigned long pool_id = get_work_pool_id(work);
 746
 747	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766	return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785	return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791	return !list_empty(&pool->worklist) &&
 792		atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798	return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 
 
 
 
 
 
 
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 805	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806	int nr_busy = pool->nr_workers - nr_idle;
 807
 
 
 
 
 
 
 
 808	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818	if (unlikely(list_empty(&pool->idle_list)))
 819		return NULL;
 820
 821	return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835	struct worker *worker = first_idle_worker(pool);
 836
 837	if (likely(worker))
 838		wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854	struct worker *worker = kthread_data(task);
 855
 856	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857		WARN_ON_ONCE(worker->pool->cpu != cpu);
 858		atomic_inc(&worker->pool->nr_running);
 859	}
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879	struct worker_pool *pool;
 880
 881	/*
 882	 * Rescuers, which may not have all the fields set up like normal
 883	 * workers, also reach here, let's not access anything before
 884	 * checking NOT_RUNNING.
 885	 */
 886	if (worker->flags & WORKER_NOT_RUNNING)
 887		return NULL;
 888
 889	pool = worker->pool;
 890
 891	/* this can only happen on the local cpu */
 892	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893		return NULL;
 894
 895	/*
 896	 * The counterpart of the following dec_and_test, implied mb,
 897	 * worklist not empty test sequence is in insert_work().
 898	 * Please read comment there.
 899	 *
 900	 * NOT_RUNNING is clear.  This means that we're bound to and
 901	 * running on the local cpu w/ rq lock held and preemption
 902	 * disabled, which in turn means that none else could be
 903	 * manipulating idle_list, so dereferencing idle_list without pool
 904	 * lock is safe.
 905	 */
 906	if (atomic_dec_and_test(&pool->nr_running) &&
 907	    !list_empty(&pool->worklist))
 908		to_wakeup = first_idle_worker(pool);
 909	return to_wakeup ? to_wakeup->task : NULL;
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 
 
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 
 923{
 924	struct worker_pool *pool = worker->pool;
 925
 926	WARN_ON_ONCE(worker->task != current);
 927
 928	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 
 
 
 
 929	if ((flags & WORKER_NOT_RUNNING) &&
 930	    !(worker->flags & WORKER_NOT_RUNNING)) {
 931		atomic_dec(&pool->nr_running);
 
 
 
 
 
 932	}
 933
 934	worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949	struct worker_pool *pool = worker->pool;
 950	unsigned int oflags = worker->flags;
 951
 952	WARN_ON_ONCE(worker->task != current);
 953
 954	worker->flags &= ~flags;
 955
 956	/*
 957	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959	 * of multiple flags, not a single flag.
 960	 */
 961	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962		if (!(worker->flags & WORKER_NOT_RUNNING))
 963			atomic_inc(&pool->nr_running);
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000						 struct work_struct *work)
1001{
1002	struct worker *worker;
1003
1004	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005			       (unsigned long)work)
1006		if (worker->current_work == work &&
1007		    worker->current_func == work->func)
1008			return worker;
1009
1010	return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031			      struct work_struct **nextp)
1032{
1033	struct work_struct *n;
1034
1035	/*
1036	 * Linked worklist will always end before the end of the list,
1037	 * use NULL for list head.
1038	 */
1039	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040		list_move_tail(&work->entry, head);
1041		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042			break;
1043	}
1044
1045	/*
1046	 * If we're already inside safe list traversal and have moved
1047	 * multiple works to the scheduled queue, the next position
1048	 * needs to be updated.
1049	 */
1050	if (nextp)
1051		*nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063	lockdep_assert_held(&pwq->pool->lock);
1064	WARN_ON_ONCE(pwq->refcnt <= 0);
1065	pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077	lockdep_assert_held(&pwq->pool->lock);
1078	if (likely(--pwq->refcnt))
1079		return;
1080	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081		return;
1082	/*
1083	 * @pwq can't be released under pool->lock, bounce to
1084	 * pwq_unbound_release_workfn().  This never recurses on the same
1085	 * pool->lock as this path is taken only for unbound workqueues and
1086	 * the release work item is scheduled on a per-cpu workqueue.  To
1087	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088	 * subclass of 1 in get_unbound_pool().
1089	 */
1090	schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101	if (pwq) {
1102		/*
1103		 * As both pwqs and pools are sched-RCU protected, the
1104		 * following lock operations are safe.
1105		 */
1106		spin_lock_irq(&pwq->pool->lock);
1107		put_pwq(pwq);
1108		spin_unlock_irq(&pwq->pool->lock);
1109	}
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114	struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116	trace_workqueue_activate_work(work);
1117	if (list_empty(&pwq->pool->worklist))
1118		pwq->pool->watchdog_ts = jiffies;
1119	move_linked_works(work, &pwq->pool->worklist, NULL);
1120	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121	pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127						    struct work_struct, entry);
1128
1129	pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145	/* uncolored work items don't participate in flushing or nr_active */
1146	if (color == WORK_NO_COLOR)
1147		goto out_put;
1148
1149	pwq->nr_in_flight[color]--;
1150
1151	pwq->nr_active--;
1152	if (!list_empty(&pwq->delayed_works)) {
1153		/* one down, submit a delayed one */
1154		if (pwq->nr_active < pwq->max_active)
1155			pwq_activate_first_delayed(pwq);
1156	}
1157
1158	/* is flush in progress and are we at the flushing tip? */
1159	if (likely(pwq->flush_color != color))
1160		goto out_put;
1161
1162	/* are there still in-flight works? */
1163	if (pwq->nr_in_flight[color])
1164		goto out_put;
1165
1166	/* this pwq is done, clear flush_color */
1167	pwq->flush_color = -1;
1168
1169	/*
1170	 * If this was the last pwq, wake up the first flusher.  It
1171	 * will handle the rest.
1172	 */
1173	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174		complete(&pwq->wq->first_flusher->done);
1175out_put:
1176	put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 *  1		if @work was pending and we successfully stole PENDING
1190 *  0		if @work was idle and we claimed PENDING
1191 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT	if someone else is canceling @work, this state may persist
1193 *		for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207			       unsigned long *flags)
1208{
1209	struct worker_pool *pool;
1210	struct pool_workqueue *pwq;
1211
1212	local_irq_save(*flags);
1213
1214	/* try to steal the timer if it exists */
1215	if (is_dwork) {
1216		struct delayed_work *dwork = to_delayed_work(work);
1217
1218		/*
1219		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220		 * guaranteed that the timer is not queued anywhere and not
1221		 * running on the local CPU.
1222		 */
1223		if (likely(del_timer(&dwork->timer)))
1224			return 1;
1225	}
1226
1227	/* try to claim PENDING the normal way */
1228	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229		return 0;
1230
1231	/*
1232	 * The queueing is in progress, or it is already queued. Try to
1233	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234	 */
1235	pool = get_work_pool(work);
1236	if (!pool)
1237		goto fail;
1238
1239	spin_lock(&pool->lock);
1240	/*
1241	 * work->data is guaranteed to point to pwq only while the work
1242	 * item is queued on pwq->wq, and both updating work->data to point
1243	 * to pwq on queueing and to pool on dequeueing are done under
1244	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245	 * points to pwq which is associated with a locked pool, the work
1246	 * item is currently queued on that pool.
1247	 */
1248	pwq = get_work_pwq(work);
1249	if (pwq && pwq->pool == pool) {
1250		debug_work_deactivate(work);
1251
1252		/*
1253		 * A delayed work item cannot be grabbed directly because
1254		 * it might have linked NO_COLOR work items which, if left
1255		 * on the delayed_list, will confuse pwq->nr_active
1256		 * management later on and cause stall.  Make sure the work
1257		 * item is activated before grabbing.
1258		 */
1259		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260			pwq_activate_delayed_work(work);
1261
1262		list_del_init(&work->entry);
1263		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265		/* work->data points to pwq iff queued, point to pool */
1266		set_work_pool_and_keep_pending(work, pool->id);
1267
1268		spin_unlock(&pool->lock);
1269		return 1;
1270	}
1271	spin_unlock(&pool->lock);
1272fail:
1273	local_irq_restore(*flags);
1274	if (work_is_canceling(work))
1275		return -ENOENT;
1276	cpu_relax();
1277	return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294			struct list_head *head, unsigned int extra_flags)
1295{
1296	struct worker_pool *pool = pwq->pool;
1297
1298	/* we own @work, set data and link */
1299	set_work_pwq(work, pwq, extra_flags);
1300	list_add_tail(&work->entry, head);
1301	get_pwq(pwq);
1302
1303	/*
1304	 * Ensure either wq_worker_sleeping() sees the above
1305	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306	 * around lazily while there are works to be processed.
1307	 */
1308	smp_mb();
1309
1310	if (__need_more_worker(pool))
1311		wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320	struct worker *worker;
1321
1322	worker = current_wq_worker();
1323	/*
1324	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325	 * I'm @worker, it's safe to dereference it without locking.
1326	 */
1327	return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337	static bool printed_dbg_warning;
1338	int new_cpu;
1339
1340	if (likely(!wq_debug_force_rr_cpu)) {
1341		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342			return cpu;
1343	} else if (!printed_dbg_warning) {
1344		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345		printed_dbg_warning = true;
1346	}
1347
1348	if (cpumask_empty(wq_unbound_cpumask))
1349		return cpu;
1350
1351	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355		if (unlikely(new_cpu >= nr_cpu_ids))
1356			return cpu;
1357	}
1358	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360	return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364			 struct work_struct *work)
1365{
1366	struct pool_workqueue *pwq;
1367	struct worker_pool *last_pool;
1368	struct list_head *worklist;
1369	unsigned int work_flags;
1370	unsigned int req_cpu = cpu;
1371
1372	/*
1373	 * While a work item is PENDING && off queue, a task trying to
1374	 * steal the PENDING will busy-loop waiting for it to either get
1375	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376	 * happen with IRQ disabled.
1377	 */
1378	lockdep_assert_irqs_disabled();
1379
1380	debug_work_activate(work);
1381
1382	/* if draining, only works from the same workqueue are allowed */
1383	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384	    WARN_ON_ONCE(!is_chained_work(wq)))
1385		return;
1386retry:
1387	if (req_cpu == WORK_CPU_UNBOUND)
1388		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390	/* pwq which will be used unless @work is executing elsewhere */
1391	if (!(wq->flags & WQ_UNBOUND))
1392		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393	else
1394		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396	/*
1397	 * If @work was previously on a different pool, it might still be
1398	 * running there, in which case the work needs to be queued on that
1399	 * pool to guarantee non-reentrancy.
1400	 */
1401	last_pool = get_work_pool(work);
1402	if (last_pool && last_pool != pwq->pool) {
1403		struct worker *worker;
1404
1405		spin_lock(&last_pool->lock);
1406
1407		worker = find_worker_executing_work(last_pool, work);
1408
1409		if (worker && worker->current_pwq->wq == wq) {
1410			pwq = worker->current_pwq;
1411		} else {
1412			/* meh... not running there, queue here */
1413			spin_unlock(&last_pool->lock);
1414			spin_lock(&pwq->pool->lock);
1415		}
1416	} else {
1417		spin_lock(&pwq->pool->lock);
1418	}
1419
1420	/*
1421	 * pwq is determined and locked.  For unbound pools, we could have
1422	 * raced with pwq release and it could already be dead.  If its
1423	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424	 * without another pwq replacing it in the numa_pwq_tbl or while
1425	 * work items are executing on it, so the retrying is guaranteed to
1426	 * make forward-progress.
1427	 */
1428	if (unlikely(!pwq->refcnt)) {
1429		if (wq->flags & WQ_UNBOUND) {
1430			spin_unlock(&pwq->pool->lock);
1431			cpu_relax();
1432			goto retry;
1433		}
1434		/* oops */
1435		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436			  wq->name, cpu);
1437	}
1438
1439	/* pwq determined, queue */
1440	trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442	if (WARN_ON(!list_empty(&work->entry))) {
1443		spin_unlock(&pwq->pool->lock);
1444		return;
1445	}
1446
1447	pwq->nr_in_flight[pwq->work_color]++;
1448	work_flags = work_color_to_flags(pwq->work_color);
1449
1450	if (likely(pwq->nr_active < pwq->max_active)) {
1451		trace_workqueue_activate_work(work);
1452		pwq->nr_active++;
1453		worklist = &pwq->pool->worklist;
1454		if (list_empty(worklist))
1455			pwq->pool->watchdog_ts = jiffies;
1456	} else {
1457		work_flags |= WORK_STRUCT_DELAYED;
1458		worklist = &pwq->delayed_works;
1459	}
1460
1461	insert_work(pwq, work, worklist, work_flags);
1462
1463	spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478		   struct work_struct *work)
1479{
1480	bool ret = false;
1481	unsigned long flags;
1482
1483	local_irq_save(flags);
1484
1485	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486		__queue_work(cpu, wq, work);
1487		ret = true;
1488	}
1489
1490	local_irq_restore(flags);
1491	return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(struct timer_list *t)
1496{
1497	struct delayed_work *dwork = from_timer(dwork, t, timer);
1498
1499	/* should have been called from irqsafe timer with irq already off */
1500	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505				struct delayed_work *dwork, unsigned long delay)
1506{
1507	struct timer_list *timer = &dwork->timer;
1508	struct work_struct *work = &dwork->work;
1509
1510	WARN_ON_ONCE(!wq);
1511	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512	WARN_ON_ONCE(timer_pending(timer));
1513	WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515	/*
1516	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517	 * both optimization and correctness.  The earliest @timer can
1518	 * expire is on the closest next tick and delayed_work users depend
1519	 * on that there's no such delay when @delay is 0.
1520	 */
1521	if (!delay) {
1522		__queue_work(cpu, wq, &dwork->work);
1523		return;
1524	}
1525
 
 
1526	dwork->wq = wq;
1527	dwork->cpu = cpu;
1528	timer->expires = jiffies + delay;
1529
1530	if (unlikely(cpu != WORK_CPU_UNBOUND))
1531		add_timer_on(timer, cpu);
1532	else
1533		add_timer(timer);
1534}
1535
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise.  If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548			   struct delayed_work *dwork, unsigned long delay)
1549{
1550	struct work_struct *work = &dwork->work;
1551	bool ret = false;
1552	unsigned long flags;
1553
1554	/* read the comment in __queue_work() */
1555	local_irq_save(flags);
1556
1557	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558		__queue_delayed_work(cpu, wq, dwork, delay);
1559		ret = true;
1560	}
1561
1562	local_irq_restore(flags);
1563	return ret;
1564}
1565EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay.  If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586			 struct delayed_work *dwork, unsigned long delay)
1587{
1588	unsigned long flags;
1589	int ret;
1590
1591	do {
1592		ret = try_to_grab_pending(&dwork->work, true, &flags);
1593	} while (unlikely(ret == -EAGAIN));
1594
1595	if (likely(ret >= 0)) {
1596		__queue_delayed_work(cpu, wq, dwork, delay);
1597		local_irq_restore(flags);
1598	}
1599
1600	/* -ENOENT from try_to_grab_pending() becomes %true */
1601	return ret;
1602}
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609	/* read the comment in __queue_work() */
1610	local_irq_disable();
1611	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612	local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise.  Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627	struct work_struct *work = &rwork->work;
1628
1629	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630		rwork->wq = wq;
1631		call_rcu(&rwork->rcu, rcu_work_rcufn);
1632		return true;
1633	}
1634
1635	return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state.  Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
1647 * spin_lock_irq(pool->lock).
1648 */
1649static void worker_enter_idle(struct worker *worker)
1650{
1651	struct worker_pool *pool = worker->pool;
1652
1653	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655			 (worker->hentry.next || worker->hentry.pprev)))
1656		return;
1657
1658	/* can't use worker_set_flags(), also called from create_worker() */
1659	worker->flags |= WORKER_IDLE;
1660	pool->nr_idle++;
1661	worker->last_active = jiffies;
1662
1663	/* idle_list is LIFO */
1664	list_add(&worker->entry, &pool->idle_list);
1665
1666	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668
1669	/*
1670	 * Sanity check nr_running.  Because unbind_workers() releases
1671	 * pool->lock between setting %WORKER_UNBOUND and zapping
1672	 * nr_running, the warning may trigger spuriously.  Check iff
1673	 * unbind is not in progress.
1674	 */
1675	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676		     pool->nr_workers == pool->nr_idle &&
1677		     atomic_read(&pool->nr_running));
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state.  Update stats.
1685 *
1686 * LOCKING:
1687 * spin_lock_irq(pool->lock).
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
1691	struct worker_pool *pool = worker->pool;
1692
1693	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694		return;
1695	worker_clr_flags(worker, WORKER_IDLE);
1696	pool->nr_idle--;
1697	list_del_init(&worker->entry);
1698}
1699
1700static struct worker *alloc_worker(int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701{
1702	struct worker *worker;
1703
1704	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705	if (worker) {
1706		INIT_LIST_HEAD(&worker->entry);
1707		INIT_LIST_HEAD(&worker->scheduled);
1708		INIT_LIST_HEAD(&worker->node);
1709		/* on creation a worker is in !idle && prep state */
1710		worker->flags = WORKER_PREP;
1711	}
1712	return worker;
1713}
1714
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725				   struct worker_pool *pool)
1726{
1727	mutex_lock(&pool->attach_mutex);
1728
1729	/*
1730	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1732	 */
1733	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735	/*
1736	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1737	 * stable across this function.  See the comments above the
1738	 * flag definition for details.
1739	 */
1740	if (pool->flags & POOL_DISASSOCIATED)
1741		worker->flags |= WORKER_UNBOUND;
1742
1743	list_add_tail(&worker->node, &pool->workers);
1744
1745	mutex_unlock(&pool->attach_mutex);
1746}
1747
1748/**
1749 * worker_detach_from_pool() - detach a worker from its pool
1750 * @worker: worker which is attached to its pool
1751 * @pool: the pool @worker is attached to
1752 *
1753 * Undo the attaching which had been done in worker_attach_to_pool().  The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
1756 */
1757static void worker_detach_from_pool(struct worker *worker,
1758				    struct worker_pool *pool)
1759{
1760	struct completion *detach_completion = NULL;
1761
1762	mutex_lock(&pool->attach_mutex);
1763	list_del(&worker->node);
1764	if (list_empty(&pool->workers))
1765		detach_completion = pool->detach_completion;
1766	mutex_unlock(&pool->attach_mutex);
1767
1768	/* clear leftover flags without pool->lock after it is detached */
1769	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1770
1771	if (detach_completion)
1772		complete(detach_completion);
1773}
1774
1775/**
1776 * create_worker - create a new workqueue worker
1777 * @pool: pool the new worker will belong to
1778 *
1779 * Create and start a new worker which is attached to @pool.
 
 
1780 *
1781 * CONTEXT:
1782 * Might sleep.  Does GFP_KERNEL allocations.
1783 *
1784 * Return:
1785 * Pointer to the newly created worker.
1786 */
1787static struct worker *create_worker(struct worker_pool *pool)
1788{
1789	struct worker *worker = NULL;
1790	int id = -1;
1791	char id_buf[16];
1792
1793	/* ID is needed to determine kthread name */
1794	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
1795	if (id < 0)
1796		goto fail;
1797
1798	worker = alloc_worker(pool->node);
1799	if (!worker)
1800		goto fail;
1801
1802	worker->pool = pool;
1803	worker->id = id;
1804
1805	if (pool->cpu >= 0)
1806		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1807			 pool->attrs->nice < 0  ? "H" : "");
1808	else
1809		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1810
1811	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1812					      "kworker/%s", id_buf);
1813	if (IS_ERR(worker->task))
1814		goto fail;
1815
1816	set_user_nice(worker->task, pool->attrs->nice);
1817	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1818
1819	/* successful, attach the worker to the pool */
1820	worker_attach_to_pool(worker, pool);
 
 
 
 
 
 
1821
1822	/* start the newly created worker */
 
 
 
 
 
 
 
 
1823	spin_lock_irq(&pool->lock);
1824	worker->pool->nr_workers++;
1825	worker_enter_idle(worker);
1826	wake_up_process(worker->task);
1827	spin_unlock_irq(&pool->lock);
1828
1829	return worker;
1830
1831fail:
1832	if (id >= 0)
1833		ida_simple_remove(&pool->worker_ida, id);
 
 
 
1834	kfree(worker);
1835	return NULL;
1836}
1837
1838/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839 * destroy_worker - destroy a workqueue worker
1840 * @worker: worker to be destroyed
1841 *
1842 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1843 * be idle.
1844 *
1845 * CONTEXT:
1846 * spin_lock_irq(pool->lock).
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
1850	struct worker_pool *pool = worker->pool;
1851
 
1852	lockdep_assert_held(&pool->lock);
1853
1854	/* sanity check frenzy */
1855	if (WARN_ON(worker->current_work) ||
1856	    WARN_ON(!list_empty(&worker->scheduled)) ||
1857	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1858		return;
1859
1860	pool->nr_workers--;
1861	pool->nr_idle--;
 
 
 
 
 
 
 
 
1862
1863	list_del_init(&worker->entry);
1864	worker->flags |= WORKER_DIE;
1865	wake_up_process(worker->task);
 
 
 
 
 
 
 
 
 
1866}
1867
1868static void idle_worker_timeout(struct timer_list *t)
1869{
1870	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1871
1872	spin_lock_irq(&pool->lock);
1873
1874	while (too_many_workers(pool)) {
1875		struct worker *worker;
1876		unsigned long expires;
1877
1878		/* idle_list is kept in LIFO order, check the last one */
1879		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1880		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1881
1882		if (time_before(jiffies, expires)) {
1883			mod_timer(&pool->idle_timer, expires);
1884			break;
 
 
 
1885		}
1886
1887		destroy_worker(worker);
1888	}
1889
1890	spin_unlock_irq(&pool->lock);
1891}
1892
1893static void send_mayday(struct work_struct *work)
1894{
1895	struct pool_workqueue *pwq = get_work_pwq(work);
1896	struct workqueue_struct *wq = pwq->wq;
1897
1898	lockdep_assert_held(&wq_mayday_lock);
1899
1900	if (!wq->rescuer)
1901		return;
1902
1903	/* mayday mayday mayday */
1904	if (list_empty(&pwq->mayday_node)) {
1905		/*
1906		 * If @pwq is for an unbound wq, its base ref may be put at
1907		 * any time due to an attribute change.  Pin @pwq until the
1908		 * rescuer is done with it.
1909		 */
1910		get_pwq(pwq);
1911		list_add_tail(&pwq->mayday_node, &wq->maydays);
1912		wake_up_process(wq->rescuer->task);
1913	}
1914}
1915
1916static void pool_mayday_timeout(struct timer_list *t)
1917{
1918	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1919	struct work_struct *work;
1920
1921	spin_lock_irq(&pool->lock);
1922	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1923
1924	if (need_to_create_worker(pool)) {
1925		/*
1926		 * We've been trying to create a new worker but
1927		 * haven't been successful.  We might be hitting an
1928		 * allocation deadlock.  Send distress signals to
1929		 * rescuers.
1930		 */
1931		list_for_each_entry(work, &pool->worklist, entry)
1932			send_mayday(work);
1933	}
1934
1935	spin_unlock(&wq_mayday_lock);
1936	spin_unlock_irq(&pool->lock);
1937
1938	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1939}
1940
1941/**
1942 * maybe_create_worker - create a new worker if necessary
1943 * @pool: pool to create a new worker for
1944 *
1945 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1946 * have at least one idle worker on return from this function.  If
1947 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1948 * sent to all rescuers with works scheduled on @pool to resolve
1949 * possible allocation deadlock.
1950 *
1951 * On return, need_to_create_worker() is guaranteed to be %false and
1952 * may_start_working() %true.
1953 *
1954 * LOCKING:
1955 * spin_lock_irq(pool->lock) which may be released and regrabbed
1956 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1957 * manager.
 
 
 
 
1958 */
1959static void maybe_create_worker(struct worker_pool *pool)
1960__releases(&pool->lock)
1961__acquires(&pool->lock)
1962{
 
 
1963restart:
1964	spin_unlock_irq(&pool->lock);
1965
1966	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968
1969	while (true) {
1970		if (create_worker(pool) || !need_to_create_worker(pool))
 
 
 
 
 
 
 
 
 
 
 
 
1971			break;
1972
1973		schedule_timeout_interruptible(CREATE_COOLDOWN);
 
1974
1975		if (!need_to_create_worker(pool))
1976			break;
1977	}
1978
1979	del_timer_sync(&pool->mayday_timer);
1980	spin_lock_irq(&pool->lock);
1981	/*
1982	 * This is necessary even after a new worker was just successfully
1983	 * created as @pool->lock was dropped and the new worker might have
1984	 * already become busy.
1985	 */
1986	if (need_to_create_worker(pool))
1987		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988}
1989
1990/**
1991 * manage_workers - manage worker pool
1992 * @worker: self
1993 *
1994 * Assume the manager role and manage the worker pool @worker belongs
1995 * to.  At any given time, there can be only zero or one manager per
1996 * pool.  The exclusion is handled automatically by this function.
1997 *
1998 * The caller can safely start processing works on false return.  On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
2001 *
2002 * CONTEXT:
2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 * multiple times.  Does GFP_KERNEL allocations.
2005 *
2006 * Return:
2007 * %false if the pool doesn't need management and the caller can safely
2008 * start processing works, %true if management function was performed and
2009 * the conditions that the caller verified before calling the function may
2010 * no longer be true.
 
2011 */
2012static bool manage_workers(struct worker *worker)
2013{
2014	struct worker_pool *pool = worker->pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015
2016	if (pool->flags & POOL_MANAGER_ACTIVE)
2017		return false;
 
 
 
 
 
 
 
 
2018
2019	pool->flags |= POOL_MANAGER_ACTIVE;
2020	pool->manager = worker;
2021
2022	maybe_create_worker(pool);
 
 
 
 
 
2023
2024	pool->manager = NULL;
2025	pool->flags &= ~POOL_MANAGER_ACTIVE;
2026	wake_up(&wq_manager_wait);
2027	return true;
2028}
2029
2030/**
2031 * process_one_work - process single work
2032 * @worker: self
2033 * @work: work to process
2034 *
2035 * Process @work.  This function contains all the logics necessary to
2036 * process a single work including synchronization against and
2037 * interaction with other workers on the same cpu, queueing and
2038 * flushing.  As long as context requirement is met, any worker can
2039 * call this function to process a work.
2040 *
2041 * CONTEXT:
2042 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 */
2044static void process_one_work(struct worker *worker, struct work_struct *work)
2045__releases(&pool->lock)
2046__acquires(&pool->lock)
2047{
2048	struct pool_workqueue *pwq = get_work_pwq(work);
2049	struct worker_pool *pool = worker->pool;
2050	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051	int work_color;
2052	struct worker *collision;
2053#ifdef CONFIG_LOCKDEP
2054	/*
2055	 * It is permissible to free the struct work_struct from
2056	 * inside the function that is called from it, this we need to
2057	 * take into account for lockdep too.  To avoid bogus "held
2058	 * lock freed" warnings as well as problems when looking into
2059	 * work->lockdep_map, make a copy and use that here.
2060	 */
2061	struct lockdep_map lockdep_map;
2062
2063	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064#endif
2065	/* ensure we're on the correct CPU */
2066	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
 
 
 
 
 
2067		     raw_smp_processor_id() != pool->cpu);
2068
2069	/*
2070	 * A single work shouldn't be executed concurrently by
2071	 * multiple workers on a single cpu.  Check whether anyone is
2072	 * already processing the work.  If so, defer the work to the
2073	 * currently executing one.
2074	 */
2075	collision = find_worker_executing_work(pool, work);
2076	if (unlikely(collision)) {
2077		move_linked_works(work, &collision->scheduled, NULL);
2078		return;
2079	}
2080
2081	/* claim and dequeue */
2082	debug_work_deactivate(work);
2083	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084	worker->current_work = work;
2085	worker->current_func = work->func;
2086	worker->current_pwq = pwq;
2087	work_color = get_work_color(work);
2088
2089	list_del_init(&work->entry);
2090
2091	/*
2092	 * CPU intensive works don't participate in concurrency management.
2093	 * They're the scheduler's responsibility.  This takes @worker out
2094	 * of concurrency management and the next code block will chain
2095	 * execution of the pending work items.
2096	 */
2097	if (unlikely(cpu_intensive))
2098		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099
2100	/*
2101	 * Wake up another worker if necessary.  The condition is always
2102	 * false for normal per-cpu workers since nr_running would always
2103	 * be >= 1 at this point.  This is used to chain execution of the
2104	 * pending work items for WORKER_NOT_RUNNING workers such as the
2105	 * UNBOUND and CPU_INTENSIVE ones.
2106	 */
2107	if (need_more_worker(pool))
2108		wake_up_worker(pool);
2109
2110	/*
2111	 * Record the last pool and clear PENDING which should be the last
2112	 * update to @work.  Also, do this inside @pool->lock so that
2113	 * PENDING and queued state changes happen together while IRQ is
2114	 * disabled.
2115	 */
2116	set_work_pool_and_clear_pending(work, pool->id);
2117
2118	spin_unlock_irq(&pool->lock);
2119
2120	lock_map_acquire(&pwq->wq->lockdep_map);
2121	lock_map_acquire(&lockdep_map);
2122	/*
2123	 * Strictly speaking we should mark the invariant state without holding
2124	 * any locks, that is, before these two lock_map_acquire()'s.
2125	 *
2126	 * However, that would result in:
2127	 *
2128	 *   A(W1)
2129	 *   WFC(C)
2130	 *		A(W1)
2131	 *		C(C)
2132	 *
2133	 * Which would create W1->C->W1 dependencies, even though there is no
2134	 * actual deadlock possible. There are two solutions, using a
2135	 * read-recursive acquire on the work(queue) 'locks', but this will then
2136	 * hit the lockdep limitation on recursive locks, or simply discard
2137	 * these locks.
2138	 *
2139	 * AFAICT there is no possible deadlock scenario between the
2140	 * flush_work() and complete() primitives (except for single-threaded
2141	 * workqueues), so hiding them isn't a problem.
2142	 */
2143	lockdep_invariant_state(true);
2144	trace_workqueue_execute_start(work);
2145	worker->current_func(work);
2146	/*
2147	 * While we must be careful to not use "work" after this, the trace
2148	 * point will only record its address.
2149	 */
2150	trace_workqueue_execute_end(work);
2151	lock_map_release(&lockdep_map);
2152	lock_map_release(&pwq->wq->lockdep_map);
2153
2154	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2155		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2156		       "     last function: %pf\n",
2157		       current->comm, preempt_count(), task_pid_nr(current),
2158		       worker->current_func);
2159		debug_show_held_locks(current);
2160		dump_stack();
2161	}
2162
2163	/*
2164	 * The following prevents a kworker from hogging CPU on !PREEMPT
2165	 * kernels, where a requeueing work item waiting for something to
2166	 * happen could deadlock with stop_machine as such work item could
2167	 * indefinitely requeue itself while all other CPUs are trapped in
2168	 * stop_machine. At the same time, report a quiescent RCU state so
2169	 * the same condition doesn't freeze RCU.
2170	 */
2171	cond_resched();
2172
2173	spin_lock_irq(&pool->lock);
2174
2175	/* clear cpu intensive status */
2176	if (unlikely(cpu_intensive))
2177		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2178
2179	/* we're done with it, release */
2180	hash_del(&worker->hentry);
2181	worker->current_work = NULL;
2182	worker->current_func = NULL;
2183	worker->current_pwq = NULL;
2184	worker->desc_valid = false;
2185	pwq_dec_nr_in_flight(pwq, work_color);
2186}
2187
2188/**
2189 * process_scheduled_works - process scheduled works
2190 * @worker: self
2191 *
2192 * Process all scheduled works.  Please note that the scheduled list
2193 * may change while processing a work, so this function repeatedly
2194 * fetches a work from the top and executes it.
2195 *
2196 * CONTEXT:
2197 * spin_lock_irq(pool->lock) which may be released and regrabbed
2198 * multiple times.
2199 */
2200static void process_scheduled_works(struct worker *worker)
2201{
2202	while (!list_empty(&worker->scheduled)) {
2203		struct work_struct *work = list_first_entry(&worker->scheduled,
2204						struct work_struct, entry);
2205		process_one_work(worker, work);
2206	}
2207}
2208
2209/**
2210 * worker_thread - the worker thread function
2211 * @__worker: self
2212 *
2213 * The worker thread function.  All workers belong to a worker_pool -
2214 * either a per-cpu one or dynamic unbound one.  These workers process all
2215 * work items regardless of their specific target workqueue.  The only
2216 * exception is work items which belong to workqueues with a rescuer which
2217 * will be explained in rescuer_thread().
2218 *
2219 * Return: 0
2220 */
2221static int worker_thread(void *__worker)
2222{
2223	struct worker *worker = __worker;
2224	struct worker_pool *pool = worker->pool;
2225
2226	/* tell the scheduler that this is a workqueue worker */
2227	worker->task->flags |= PF_WQ_WORKER;
2228woke_up:
2229	spin_lock_irq(&pool->lock);
2230
2231	/* am I supposed to die? */
2232	if (unlikely(worker->flags & WORKER_DIE)) {
2233		spin_unlock_irq(&pool->lock);
2234		WARN_ON_ONCE(!list_empty(&worker->entry));
2235		worker->task->flags &= ~PF_WQ_WORKER;
2236
2237		set_task_comm(worker->task, "kworker/dying");
2238		ida_simple_remove(&pool->worker_ida, worker->id);
2239		worker_detach_from_pool(worker, pool);
2240		kfree(worker);
2241		return 0;
2242	}
2243
2244	worker_leave_idle(worker);
2245recheck:
2246	/* no more worker necessary? */
2247	if (!need_more_worker(pool))
2248		goto sleep;
2249
2250	/* do we need to manage? */
2251	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252		goto recheck;
2253
2254	/*
2255	 * ->scheduled list can only be filled while a worker is
2256	 * preparing to process a work or actually processing it.
2257	 * Make sure nobody diddled with it while I was sleeping.
2258	 */
2259	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2260
2261	/*
2262	 * Finish PREP stage.  We're guaranteed to have at least one idle
2263	 * worker or that someone else has already assumed the manager
2264	 * role.  This is where @worker starts participating in concurrency
2265	 * management if applicable and concurrency management is restored
2266	 * after being rebound.  See rebind_workers() for details.
2267	 */
2268	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269
2270	do {
2271		struct work_struct *work =
2272			list_first_entry(&pool->worklist,
2273					 struct work_struct, entry);
2274
2275		pool->watchdog_ts = jiffies;
2276
2277		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278			/* optimization path, not strictly necessary */
2279			process_one_work(worker, work);
2280			if (unlikely(!list_empty(&worker->scheduled)))
2281				process_scheduled_works(worker);
2282		} else {
2283			move_linked_works(work, &worker->scheduled, NULL);
2284			process_scheduled_works(worker);
2285		}
2286	} while (keep_working(pool));
2287
2288	worker_set_flags(worker, WORKER_PREP);
2289sleep:
 
 
 
2290	/*
2291	 * pool->lock is held and there's no work to process and no need to
2292	 * manage, sleep.  Workers are woken up only while holding
2293	 * pool->lock or from local cpu, so setting the current state
2294	 * before releasing pool->lock is enough to prevent losing any
2295	 * event.
2296	 */
2297	worker_enter_idle(worker);
2298	__set_current_state(TASK_IDLE);
2299	spin_unlock_irq(&pool->lock);
2300	schedule();
2301	goto woke_up;
2302}
2303
2304/**
2305 * rescuer_thread - the rescuer thread function
2306 * @__rescuer: self
2307 *
2308 * Workqueue rescuer thread function.  There's one rescuer for each
2309 * workqueue which has WQ_MEM_RECLAIM set.
2310 *
2311 * Regular work processing on a pool may block trying to create a new
2312 * worker which uses GFP_KERNEL allocation which has slight chance of
2313 * developing into deadlock if some works currently on the same queue
2314 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2315 * the problem rescuer solves.
2316 *
2317 * When such condition is possible, the pool summons rescuers of all
2318 * workqueues which have works queued on the pool and let them process
2319 * those works so that forward progress can be guaranteed.
2320 *
2321 * This should happen rarely.
2322 *
2323 * Return: 0
2324 */
2325static int rescuer_thread(void *__rescuer)
2326{
2327	struct worker *rescuer = __rescuer;
2328	struct workqueue_struct *wq = rescuer->rescue_wq;
2329	struct list_head *scheduled = &rescuer->scheduled;
2330	bool should_stop;
2331
2332	set_user_nice(current, RESCUER_NICE_LEVEL);
2333
2334	/*
2335	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2336	 * doesn't participate in concurrency management.
2337	 */
2338	rescuer->task->flags |= PF_WQ_WORKER;
2339repeat:
2340	set_current_state(TASK_IDLE);
2341
2342	/*
2343	 * By the time the rescuer is requested to stop, the workqueue
2344	 * shouldn't have any work pending, but @wq->maydays may still have
2345	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2346	 * all the work items before the rescuer got to them.  Go through
2347	 * @wq->maydays processing before acting on should_stop so that the
2348	 * list is always empty on exit.
2349	 */
2350	should_stop = kthread_should_stop();
2351
2352	/* see whether any pwq is asking for help */
2353	spin_lock_irq(&wq_mayday_lock);
2354
2355	while (!list_empty(&wq->maydays)) {
2356		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2357					struct pool_workqueue, mayday_node);
2358		struct worker_pool *pool = pwq->pool;
2359		struct work_struct *work, *n;
2360		bool first = true;
2361
2362		__set_current_state(TASK_RUNNING);
2363		list_del_init(&pwq->mayday_node);
2364
2365		spin_unlock_irq(&wq_mayday_lock);
2366
2367		worker_attach_to_pool(rescuer, pool);
2368
2369		spin_lock_irq(&pool->lock);
2370		rescuer->pool = pool;
2371
2372		/*
2373		 * Slurp in all works issued via this workqueue and
2374		 * process'em.
2375		 */
2376		WARN_ON_ONCE(!list_empty(scheduled));
2377		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2378			if (get_work_pwq(work) == pwq) {
2379				if (first)
2380					pool->watchdog_ts = jiffies;
2381				move_linked_works(work, scheduled, &n);
2382			}
2383			first = false;
2384		}
2385
2386		if (!list_empty(scheduled)) {
2387			process_scheduled_works(rescuer);
2388
2389			/*
2390			 * The above execution of rescued work items could
2391			 * have created more to rescue through
2392			 * pwq_activate_first_delayed() or chained
2393			 * queueing.  Let's put @pwq back on mayday list so
2394			 * that such back-to-back work items, which may be
2395			 * being used to relieve memory pressure, don't
2396			 * incur MAYDAY_INTERVAL delay inbetween.
2397			 */
2398			if (need_to_create_worker(pool)) {
2399				spin_lock(&wq_mayday_lock);
2400				get_pwq(pwq);
2401				list_move_tail(&pwq->mayday_node, &wq->maydays);
2402				spin_unlock(&wq_mayday_lock);
2403			}
2404		}
2405
2406		/*
2407		 * Put the reference grabbed by send_mayday().  @pool won't
2408		 * go away while we're still attached to it.
2409		 */
2410		put_pwq(pwq);
2411
2412		/*
2413		 * Leave this pool.  If need_more_worker() is %true, notify a
2414		 * regular worker; otherwise, we end up with 0 concurrency
2415		 * and stalling the execution.
2416		 */
2417		if (need_more_worker(pool))
2418			wake_up_worker(pool);
2419
2420		rescuer->pool = NULL;
2421		spin_unlock_irq(&pool->lock);
2422
2423		worker_detach_from_pool(rescuer, pool);
2424
2425		spin_lock_irq(&wq_mayday_lock);
2426	}
2427
2428	spin_unlock_irq(&wq_mayday_lock);
2429
2430	if (should_stop) {
2431		__set_current_state(TASK_RUNNING);
2432		rescuer->task->flags &= ~PF_WQ_WORKER;
2433		return 0;
2434	}
2435
2436	/* rescuers should never participate in concurrency management */
2437	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438	schedule();
2439	goto repeat;
2440}
2441
2442/**
2443 * check_flush_dependency - check for flush dependency sanity
2444 * @target_wq: workqueue being flushed
2445 * @target_work: work item being flushed (NULL for workqueue flushes)
2446 *
2447 * %current is trying to flush the whole @target_wq or @target_work on it.
2448 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449 * reclaiming memory or running on a workqueue which doesn't have
2450 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451 * a deadlock.
2452 */
2453static void check_flush_dependency(struct workqueue_struct *target_wq,
2454				   struct work_struct *target_work)
2455{
2456	work_func_t target_func = target_work ? target_work->func : NULL;
2457	struct worker *worker;
2458
2459	if (target_wq->flags & WQ_MEM_RECLAIM)
2460		return;
2461
2462	worker = current_wq_worker();
2463
2464	WARN_ONCE(current->flags & PF_MEMALLOC,
2465		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466		  current->pid, current->comm, target_wq->name, target_func);
2467	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470		  worker->current_pwq->wq->name, worker->current_func,
2471		  target_wq->name, target_func);
2472}
2473
2474struct wq_barrier {
2475	struct work_struct	work;
2476	struct completion	done;
2477	struct task_struct	*task;	/* purely informational */
2478};
2479
2480static void wq_barrier_func(struct work_struct *work)
2481{
2482	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483	complete(&barr->done);
2484}
2485
2486/**
2487 * insert_wq_barrier - insert a barrier work
2488 * @pwq: pwq to insert barrier into
2489 * @barr: wq_barrier to insert
2490 * @target: target work to attach @barr to
2491 * @worker: worker currently executing @target, NULL if @target is not executing
2492 *
2493 * @barr is linked to @target such that @barr is completed only after
2494 * @target finishes execution.  Please note that the ordering
2495 * guarantee is observed only with respect to @target and on the local
2496 * cpu.
2497 *
2498 * Currently, a queued barrier can't be canceled.  This is because
2499 * try_to_grab_pending() can't determine whether the work to be
2500 * grabbed is at the head of the queue and thus can't clear LINKED
2501 * flag of the previous work while there must be a valid next work
2502 * after a work with LINKED flag set.
2503 *
2504 * Note that when @worker is non-NULL, @target may be modified
2505 * underneath us, so we can't reliably determine pwq from @target.
2506 *
2507 * CONTEXT:
2508 * spin_lock_irq(pool->lock).
2509 */
2510static void insert_wq_barrier(struct pool_workqueue *pwq,
2511			      struct wq_barrier *barr,
2512			      struct work_struct *target, struct worker *worker)
2513{
2514	struct list_head *head;
2515	unsigned int linked = 0;
2516
2517	/*
2518	 * debugobject calls are safe here even with pool->lock locked
2519	 * as we know for sure that this will not trigger any of the
2520	 * checks and call back into the fixup functions where we
2521	 * might deadlock.
2522	 */
2523	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525
2526	init_completion_map(&barr->done, &target->lockdep_map);
2527
2528	barr->task = current;
2529
2530	/*
2531	 * If @target is currently being executed, schedule the
2532	 * barrier to the worker; otherwise, put it after @target.
2533	 */
2534	if (worker)
2535		head = worker->scheduled.next;
2536	else {
2537		unsigned long *bits = work_data_bits(target);
2538
2539		head = target->entry.next;
2540		/* there can already be other linked works, inherit and set */
2541		linked = *bits & WORK_STRUCT_LINKED;
2542		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2543	}
2544
2545	debug_work_activate(&barr->work);
2546	insert_work(pwq, &barr->work, head,
2547		    work_color_to_flags(WORK_NO_COLOR) | linked);
2548}
2549
2550/**
2551 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2552 * @wq: workqueue being flushed
2553 * @flush_color: new flush color, < 0 for no-op
2554 * @work_color: new work color, < 0 for no-op
2555 *
2556 * Prepare pwqs for workqueue flushing.
2557 *
2558 * If @flush_color is non-negative, flush_color on all pwqs should be
2559 * -1.  If no pwq has in-flight commands at the specified color, all
2560 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2561 * has in flight commands, its pwq->flush_color is set to
2562 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2563 * wakeup logic is armed and %true is returned.
2564 *
2565 * The caller should have initialized @wq->first_flusher prior to
2566 * calling this function with non-negative @flush_color.  If
2567 * @flush_color is negative, no flush color update is done and %false
2568 * is returned.
2569 *
2570 * If @work_color is non-negative, all pwqs should have the same
2571 * work_color which is previous to @work_color and all will be
2572 * advanced to @work_color.
2573 *
2574 * CONTEXT:
2575 * mutex_lock(wq->mutex).
2576 *
2577 * Return:
2578 * %true if @flush_color >= 0 and there's something to flush.  %false
2579 * otherwise.
2580 */
2581static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2582				      int flush_color, int work_color)
2583{
2584	bool wait = false;
2585	struct pool_workqueue *pwq;
2586
2587	if (flush_color >= 0) {
2588		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2589		atomic_set(&wq->nr_pwqs_to_flush, 1);
2590	}
2591
2592	for_each_pwq(pwq, wq) {
2593		struct worker_pool *pool = pwq->pool;
2594
2595		spin_lock_irq(&pool->lock);
2596
2597		if (flush_color >= 0) {
2598			WARN_ON_ONCE(pwq->flush_color != -1);
2599
2600			if (pwq->nr_in_flight[flush_color]) {
2601				pwq->flush_color = flush_color;
2602				atomic_inc(&wq->nr_pwqs_to_flush);
2603				wait = true;
2604			}
2605		}
2606
2607		if (work_color >= 0) {
2608			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2609			pwq->work_color = work_color;
2610		}
2611
2612		spin_unlock_irq(&pool->lock);
2613	}
2614
2615	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2616		complete(&wq->first_flusher->done);
2617
2618	return wait;
2619}
2620
2621/**
2622 * flush_workqueue - ensure that any scheduled work has run to completion.
2623 * @wq: workqueue to flush
2624 *
2625 * This function sleeps until all work items which were queued on entry
2626 * have finished execution, but it is not livelocked by new incoming ones.
2627 */
2628void flush_workqueue(struct workqueue_struct *wq)
2629{
2630	struct wq_flusher this_flusher = {
2631		.list = LIST_HEAD_INIT(this_flusher.list),
2632		.flush_color = -1,
2633		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2634	};
2635	int next_color;
2636
2637	if (WARN_ON(!wq_online))
2638		return;
2639
2640	mutex_lock(&wq->mutex);
2641
2642	/*
2643	 * Start-to-wait phase
2644	 */
2645	next_color = work_next_color(wq->work_color);
2646
2647	if (next_color != wq->flush_color) {
2648		/*
2649		 * Color space is not full.  The current work_color
2650		 * becomes our flush_color and work_color is advanced
2651		 * by one.
2652		 */
2653		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2654		this_flusher.flush_color = wq->work_color;
2655		wq->work_color = next_color;
2656
2657		if (!wq->first_flusher) {
2658			/* no flush in progress, become the first flusher */
2659			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2660
2661			wq->first_flusher = &this_flusher;
2662
2663			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2664						       wq->work_color)) {
2665				/* nothing to flush, done */
2666				wq->flush_color = next_color;
2667				wq->first_flusher = NULL;
2668				goto out_unlock;
2669			}
2670		} else {
2671			/* wait in queue */
2672			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2673			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2674			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2675		}
2676	} else {
2677		/*
2678		 * Oops, color space is full, wait on overflow queue.
2679		 * The next flush completion will assign us
2680		 * flush_color and transfer to flusher_queue.
2681		 */
2682		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2683	}
2684
2685	check_flush_dependency(wq, NULL);
2686
2687	mutex_unlock(&wq->mutex);
2688
2689	wait_for_completion(&this_flusher.done);
2690
2691	/*
2692	 * Wake-up-and-cascade phase
2693	 *
2694	 * First flushers are responsible for cascading flushes and
2695	 * handling overflow.  Non-first flushers can simply return.
2696	 */
2697	if (wq->first_flusher != &this_flusher)
2698		return;
2699
2700	mutex_lock(&wq->mutex);
2701
2702	/* we might have raced, check again with mutex held */
2703	if (wq->first_flusher != &this_flusher)
2704		goto out_unlock;
2705
2706	wq->first_flusher = NULL;
2707
2708	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2709	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2710
2711	while (true) {
2712		struct wq_flusher *next, *tmp;
2713
2714		/* complete all the flushers sharing the current flush color */
2715		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2716			if (next->flush_color != wq->flush_color)
2717				break;
2718			list_del_init(&next->list);
2719			complete(&next->done);
2720		}
2721
2722		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2723			     wq->flush_color != work_next_color(wq->work_color));
2724
2725		/* this flush_color is finished, advance by one */
2726		wq->flush_color = work_next_color(wq->flush_color);
2727
2728		/* one color has been freed, handle overflow queue */
2729		if (!list_empty(&wq->flusher_overflow)) {
2730			/*
2731			 * Assign the same color to all overflowed
2732			 * flushers, advance work_color and append to
2733			 * flusher_queue.  This is the start-to-wait
2734			 * phase for these overflowed flushers.
2735			 */
2736			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2737				tmp->flush_color = wq->work_color;
2738
2739			wq->work_color = work_next_color(wq->work_color);
2740
2741			list_splice_tail_init(&wq->flusher_overflow,
2742					      &wq->flusher_queue);
2743			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2744		}
2745
2746		if (list_empty(&wq->flusher_queue)) {
2747			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2748			break;
2749		}
2750
2751		/*
2752		 * Need to flush more colors.  Make the next flusher
2753		 * the new first flusher and arm pwqs.
2754		 */
2755		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2756		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2757
2758		list_del_init(&next->list);
2759		wq->first_flusher = next;
2760
2761		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2762			break;
2763
2764		/*
2765		 * Meh... this color is already done, clear first
2766		 * flusher and repeat cascading.
2767		 */
2768		wq->first_flusher = NULL;
2769	}
2770
2771out_unlock:
2772	mutex_unlock(&wq->mutex);
2773}
2774EXPORT_SYMBOL(flush_workqueue);
2775
2776/**
2777 * drain_workqueue - drain a workqueue
2778 * @wq: workqueue to drain
2779 *
2780 * Wait until the workqueue becomes empty.  While draining is in progress,
2781 * only chain queueing is allowed.  IOW, only currently pending or running
2782 * work items on @wq can queue further work items on it.  @wq is flushed
2783 * repeatedly until it becomes empty.  The number of flushing is determined
2784 * by the depth of chaining and should be relatively short.  Whine if it
2785 * takes too long.
2786 */
2787void drain_workqueue(struct workqueue_struct *wq)
2788{
2789	unsigned int flush_cnt = 0;
2790	struct pool_workqueue *pwq;
2791
2792	/*
2793	 * __queue_work() needs to test whether there are drainers, is much
2794	 * hotter than drain_workqueue() and already looks at @wq->flags.
2795	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2796	 */
2797	mutex_lock(&wq->mutex);
2798	if (!wq->nr_drainers++)
2799		wq->flags |= __WQ_DRAINING;
2800	mutex_unlock(&wq->mutex);
2801reflush:
2802	flush_workqueue(wq);
2803
2804	mutex_lock(&wq->mutex);
2805
2806	for_each_pwq(pwq, wq) {
2807		bool drained;
2808
2809		spin_lock_irq(&pwq->pool->lock);
2810		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2811		spin_unlock_irq(&pwq->pool->lock);
2812
2813		if (drained)
2814			continue;
2815
2816		if (++flush_cnt == 10 ||
2817		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2818			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2819				wq->name, flush_cnt);
2820
2821		mutex_unlock(&wq->mutex);
2822		goto reflush;
2823	}
2824
2825	if (!--wq->nr_drainers)
2826		wq->flags &= ~__WQ_DRAINING;
2827	mutex_unlock(&wq->mutex);
2828}
2829EXPORT_SYMBOL_GPL(drain_workqueue);
2830
2831static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2832{
2833	struct worker *worker = NULL;
2834	struct worker_pool *pool;
2835	struct pool_workqueue *pwq;
2836
2837	might_sleep();
2838
2839	local_irq_disable();
2840	pool = get_work_pool(work);
2841	if (!pool) {
2842		local_irq_enable();
2843		return false;
2844	}
2845
2846	spin_lock(&pool->lock);
2847	/* see the comment in try_to_grab_pending() with the same code */
2848	pwq = get_work_pwq(work);
2849	if (pwq) {
2850		if (unlikely(pwq->pool != pool))
2851			goto already_gone;
2852	} else {
2853		worker = find_worker_executing_work(pool, work);
2854		if (!worker)
2855			goto already_gone;
2856		pwq = worker->current_pwq;
2857	}
2858
2859	check_flush_dependency(pwq->wq, work);
2860
2861	insert_wq_barrier(pwq, barr, work, worker);
2862	spin_unlock_irq(&pool->lock);
2863
2864	/*
2865	 * Force a lock recursion deadlock when using flush_work() inside a
2866	 * single-threaded or rescuer equipped workqueue.
2867	 *
2868	 * For single threaded workqueues the deadlock happens when the work
2869	 * is after the work issuing the flush_work(). For rescuer equipped
2870	 * workqueues the deadlock happens when the rescuer stalls, blocking
2871	 * forward progress.
2872	 */
2873	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2874		lock_map_acquire(&pwq->wq->lockdep_map);
2875		lock_map_release(&pwq->wq->lockdep_map);
2876	}
 
2877
2878	return true;
2879already_gone:
2880	spin_unlock_irq(&pool->lock);
2881	return false;
2882}
2883
2884/**
2885 * flush_work - wait for a work to finish executing the last queueing instance
2886 * @work: the work to flush
2887 *
2888 * Wait until @work has finished execution.  @work is guaranteed to be idle
2889 * on return if it hasn't been requeued since flush started.
2890 *
2891 * Return:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895bool flush_work(struct work_struct *work)
2896{
2897	struct wq_barrier barr;
2898
2899	if (WARN_ON(!wq_online))
2900		return false;
2901
2902	if (start_flush_work(work, &barr)) {
2903		wait_for_completion(&barr.done);
2904		destroy_work_on_stack(&barr.work);
2905		return true;
2906	} else {
2907		return false;
2908	}
2909}
2910EXPORT_SYMBOL_GPL(flush_work);
2911
2912struct cwt_wait {
2913	wait_queue_entry_t		wait;
2914	struct work_struct	*work;
2915};
2916
2917static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2918{
2919	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2920
2921	if (cwait->work != key)
2922		return 0;
2923	return autoremove_wake_function(wait, mode, sync, key);
2924}
2925
2926static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927{
2928	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2929	unsigned long flags;
2930	int ret;
2931
2932	do {
2933		ret = try_to_grab_pending(work, is_dwork, &flags);
2934		/*
2935		 * If someone else is already canceling, wait for it to
2936		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2937		 * because we may get scheduled between @work's completion
2938		 * and the other canceling task resuming and clearing
2939		 * CANCELING - flush_work() will return false immediately
2940		 * as @work is no longer busy, try_to_grab_pending() will
2941		 * return -ENOENT as @work is still being canceled and the
2942		 * other canceling task won't be able to clear CANCELING as
2943		 * we're hogging the CPU.
2944		 *
2945		 * Let's wait for completion using a waitqueue.  As this
2946		 * may lead to the thundering herd problem, use a custom
2947		 * wake function which matches @work along with exclusive
2948		 * wait and wakeup.
2949		 */
2950		if (unlikely(ret == -ENOENT)) {
2951			struct cwt_wait cwait;
2952
2953			init_wait(&cwait.wait);
2954			cwait.wait.func = cwt_wakefn;
2955			cwait.work = work;
2956
2957			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2958						  TASK_UNINTERRUPTIBLE);
2959			if (work_is_canceling(work))
2960				schedule();
2961			finish_wait(&cancel_waitq, &cwait.wait);
2962		}
2963	} while (unlikely(ret < 0));
2964
2965	/* tell other tasks trying to grab @work to back off */
2966	mark_work_canceling(work);
2967	local_irq_restore(flags);
2968
2969	/*
2970	 * This allows canceling during early boot.  We know that @work
2971	 * isn't executing.
2972	 */
2973	if (wq_online)
2974		flush_work(work);
2975
2976	clear_work_data(work);
2977
2978	/*
2979	 * Paired with prepare_to_wait() above so that either
2980	 * waitqueue_active() is visible here or !work_is_canceling() is
2981	 * visible there.
2982	 */
2983	smp_mb();
2984	if (waitqueue_active(&cancel_waitq))
2985		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2986
2987	return ret;
2988}
2989
2990/**
2991 * cancel_work_sync - cancel a work and wait for it to finish
2992 * @work: the work to cancel
2993 *
2994 * Cancel @work and wait for its execution to finish.  This function
2995 * can be used even if the work re-queues itself or migrates to
2996 * another workqueue.  On return from this function, @work is
2997 * guaranteed to be not pending or executing on any CPU.
2998 *
2999 * cancel_work_sync(&delayed_work->work) must not be used for
3000 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3001 *
3002 * The caller must ensure that the workqueue on which @work was last
3003 * queued can't be destroyed before this function returns.
3004 *
3005 * Return:
3006 * %true if @work was pending, %false otherwise.
3007 */
3008bool cancel_work_sync(struct work_struct *work)
3009{
3010	return __cancel_work_timer(work, false);
3011}
3012EXPORT_SYMBOL_GPL(cancel_work_sync);
3013
3014/**
3015 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3016 * @dwork: the delayed work to flush
3017 *
3018 * Delayed timer is cancelled and the pending work is queued for
3019 * immediate execution.  Like flush_work(), this function only
3020 * considers the last queueing instance of @dwork.
3021 *
3022 * Return:
3023 * %true if flush_work() waited for the work to finish execution,
3024 * %false if it was already idle.
3025 */
3026bool flush_delayed_work(struct delayed_work *dwork)
3027{
3028	local_irq_disable();
3029	if (del_timer_sync(&dwork->timer))
3030		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3031	local_irq_enable();
3032	return flush_work(&dwork->work);
3033}
3034EXPORT_SYMBOL(flush_delayed_work);
3035
3036/**
3037 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3038 * @rwork: the rcu work to flush
3039 *
3040 * Return:
3041 * %true if flush_rcu_work() waited for the work to finish execution,
3042 * %false if it was already idle.
3043 */
3044bool flush_rcu_work(struct rcu_work *rwork)
3045{
3046	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3047		rcu_barrier();
3048		flush_work(&rwork->work);
3049		return true;
3050	} else {
3051		return flush_work(&rwork->work);
3052	}
3053}
3054EXPORT_SYMBOL(flush_rcu_work);
3055
3056static bool __cancel_work(struct work_struct *work, bool is_dwork)
3057{
3058	unsigned long flags;
3059	int ret;
3060
3061	do {
3062		ret = try_to_grab_pending(work, is_dwork, &flags);
3063	} while (unlikely(ret == -EAGAIN));
3064
3065	if (unlikely(ret < 0))
3066		return false;
3067
3068	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3069	local_irq_restore(flags);
3070	return ret;
3071}
3072
3073/**
3074 * cancel_delayed_work - cancel a delayed work
3075 * @dwork: delayed_work to cancel
3076 *
3077 * Kill off a pending delayed_work.
3078 *
3079 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3080 * pending.
3081 *
3082 * Note:
3083 * The work callback function may still be running on return, unless
3084 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3085 * use cancel_delayed_work_sync() to wait on it.
3086 *
3087 * This function is safe to call from any context including IRQ handler.
3088 */
3089bool cancel_delayed_work(struct delayed_work *dwork)
3090{
3091	return __cancel_work(&dwork->work, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
3092}
3093EXPORT_SYMBOL(cancel_delayed_work);
3094
3095/**
3096 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3097 * @dwork: the delayed work cancel
3098 *
3099 * This is cancel_work_sync() for delayed works.
3100 *
3101 * Return:
3102 * %true if @dwork was pending, %false otherwise.
3103 */
3104bool cancel_delayed_work_sync(struct delayed_work *dwork)
3105{
3106	return __cancel_work_timer(&dwork->work, true);
3107}
3108EXPORT_SYMBOL(cancel_delayed_work_sync);
3109
3110/**
3111 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3112 * @func: the function to call
3113 *
3114 * schedule_on_each_cpu() executes @func on each online CPU using the
3115 * system workqueue and blocks until all CPUs have completed.
3116 * schedule_on_each_cpu() is very slow.
3117 *
3118 * Return:
3119 * 0 on success, -errno on failure.
3120 */
3121int schedule_on_each_cpu(work_func_t func)
3122{
3123	int cpu;
3124	struct work_struct __percpu *works;
3125
3126	works = alloc_percpu(struct work_struct);
3127	if (!works)
3128		return -ENOMEM;
3129
3130	get_online_cpus();
3131
3132	for_each_online_cpu(cpu) {
3133		struct work_struct *work = per_cpu_ptr(works, cpu);
3134
3135		INIT_WORK(work, func);
3136		schedule_work_on(cpu, work);
3137	}
3138
3139	for_each_online_cpu(cpu)
3140		flush_work(per_cpu_ptr(works, cpu));
3141
3142	put_online_cpus();
3143	free_percpu(works);
3144	return 0;
3145}
3146
3147/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3148 * execute_in_process_context - reliably execute the routine with user context
3149 * @fn:		the function to execute
3150 * @ew:		guaranteed storage for the execute work structure (must
3151 *		be available when the work executes)
3152 *
3153 * Executes the function immediately if process context is available,
3154 * otherwise schedules the function for delayed execution.
3155 *
3156 * Return:	0 - function was executed
3157 *		1 - function was scheduled for execution
3158 */
3159int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3160{
3161	if (!in_interrupt()) {
3162		fn(&ew->work);
3163		return 0;
3164	}
3165
3166	INIT_WORK(&ew->work, fn);
3167	schedule_work(&ew->work);
3168
3169	return 1;
3170}
3171EXPORT_SYMBOL_GPL(execute_in_process_context);
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/**
3174 * free_workqueue_attrs - free a workqueue_attrs
3175 * @attrs: workqueue_attrs to free
3176 *
3177 * Undo alloc_workqueue_attrs().
3178 */
3179void free_workqueue_attrs(struct workqueue_attrs *attrs)
3180{
3181	if (attrs) {
3182		free_cpumask_var(attrs->cpumask);
3183		kfree(attrs);
3184	}
3185}
3186
3187/**
3188 * alloc_workqueue_attrs - allocate a workqueue_attrs
3189 * @gfp_mask: allocation mask to use
3190 *
3191 * Allocate a new workqueue_attrs, initialize with default settings and
3192 * return it.
3193 *
3194 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3195 */
3196struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3197{
3198	struct workqueue_attrs *attrs;
3199
3200	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3201	if (!attrs)
3202		goto fail;
3203	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3204		goto fail;
3205
3206	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3207	return attrs;
3208fail:
3209	free_workqueue_attrs(attrs);
3210	return NULL;
3211}
3212
3213static void copy_workqueue_attrs(struct workqueue_attrs *to,
3214				 const struct workqueue_attrs *from)
3215{
3216	to->nice = from->nice;
3217	cpumask_copy(to->cpumask, from->cpumask);
3218	/*
3219	 * Unlike hash and equality test, this function doesn't ignore
3220	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3221	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3222	 */
3223	to->no_numa = from->no_numa;
3224}
3225
3226/* hash value of the content of @attr */
3227static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3228{
3229	u32 hash = 0;
3230
3231	hash = jhash_1word(attrs->nice, hash);
3232	hash = jhash(cpumask_bits(attrs->cpumask),
3233		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3234	return hash;
3235}
3236
3237/* content equality test */
3238static bool wqattrs_equal(const struct workqueue_attrs *a,
3239			  const struct workqueue_attrs *b)
3240{
3241	if (a->nice != b->nice)
3242		return false;
3243	if (!cpumask_equal(a->cpumask, b->cpumask))
3244		return false;
3245	return true;
3246}
3247
3248/**
3249 * init_worker_pool - initialize a newly zalloc'd worker_pool
3250 * @pool: worker_pool to initialize
3251 *
3252 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3253 *
3254 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3255 * inside @pool proper are initialized and put_unbound_pool() can be called
3256 * on @pool safely to release it.
3257 */
3258static int init_worker_pool(struct worker_pool *pool)
3259{
3260	spin_lock_init(&pool->lock);
3261	pool->id = -1;
3262	pool->cpu = -1;
3263	pool->node = NUMA_NO_NODE;
3264	pool->flags |= POOL_DISASSOCIATED;
3265	pool->watchdog_ts = jiffies;
3266	INIT_LIST_HEAD(&pool->worklist);
3267	INIT_LIST_HEAD(&pool->idle_list);
3268	hash_init(pool->busy_hash);
3269
3270	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3271
3272	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3273
3274	mutex_init(&pool->attach_mutex);
3275	INIT_LIST_HEAD(&pool->workers);
 
 
 
 
3276
3277	ida_init(&pool->worker_ida);
3278	INIT_HLIST_NODE(&pool->hash_node);
3279	pool->refcnt = 1;
3280
3281	/* shouldn't fail above this point */
3282	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3283	if (!pool->attrs)
3284		return -ENOMEM;
3285	return 0;
3286}
3287
3288static void rcu_free_wq(struct rcu_head *rcu)
3289{
3290	struct workqueue_struct *wq =
3291		container_of(rcu, struct workqueue_struct, rcu);
3292
3293	if (!(wq->flags & WQ_UNBOUND))
3294		free_percpu(wq->cpu_pwqs);
3295	else
3296		free_workqueue_attrs(wq->unbound_attrs);
3297
3298	kfree(wq->rescuer);
3299	kfree(wq);
3300}
3301
3302static void rcu_free_pool(struct rcu_head *rcu)
3303{
3304	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3305
3306	ida_destroy(&pool->worker_ida);
3307	free_workqueue_attrs(pool->attrs);
3308	kfree(pool);
3309}
3310
3311/**
3312 * put_unbound_pool - put a worker_pool
3313 * @pool: worker_pool to put
3314 *
3315 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3316 * safe manner.  get_unbound_pool() calls this function on its failure path
3317 * and this function should be able to release pools which went through,
3318 * successfully or not, init_worker_pool().
3319 *
3320 * Should be called with wq_pool_mutex held.
3321 */
3322static void put_unbound_pool(struct worker_pool *pool)
3323{
3324	DECLARE_COMPLETION_ONSTACK(detach_completion);
3325	struct worker *worker;
3326
3327	lockdep_assert_held(&wq_pool_mutex);
3328
3329	if (--pool->refcnt)
3330		return;
3331
3332	/* sanity checks */
3333	if (WARN_ON(!(pool->cpu < 0)) ||
3334	    WARN_ON(!list_empty(&pool->worklist)))
3335		return;
3336
3337	/* release id and unhash */
3338	if (pool->id >= 0)
3339		idr_remove(&worker_pool_idr, pool->id);
3340	hash_del(&pool->hash_node);
3341
3342	/*
3343	 * Become the manager and destroy all workers.  This prevents
3344	 * @pool's workers from blocking on attach_mutex.  We're the last
3345	 * manager and @pool gets freed with the flag set.
3346	 */
 
 
3347	spin_lock_irq(&pool->lock);
3348	wait_event_lock_irq(wq_manager_wait,
3349			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3350	pool->flags |= POOL_MANAGER_ACTIVE;
3351
3352	while ((worker = first_idle_worker(pool)))
3353		destroy_worker(worker);
3354	WARN_ON(pool->nr_workers || pool->nr_idle);
 
3355	spin_unlock_irq(&pool->lock);
3356
3357	mutex_lock(&pool->attach_mutex);
3358	if (!list_empty(&pool->workers))
3359		pool->detach_completion = &detach_completion;
3360	mutex_unlock(&pool->attach_mutex);
3361
3362	if (pool->detach_completion)
3363		wait_for_completion(pool->detach_completion);
3364
3365	/* shut down the timers */
3366	del_timer_sync(&pool->idle_timer);
3367	del_timer_sync(&pool->mayday_timer);
3368
3369	/* sched-RCU protected to allow dereferences from get_work_pool() */
3370	call_rcu_sched(&pool->rcu, rcu_free_pool);
3371}
3372
3373/**
3374 * get_unbound_pool - get a worker_pool with the specified attributes
3375 * @attrs: the attributes of the worker_pool to get
3376 *
3377 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3378 * reference count and return it.  If there already is a matching
3379 * worker_pool, it will be used; otherwise, this function attempts to
3380 * create a new one.
3381 *
3382 * Should be called with wq_pool_mutex held.
3383 *
3384 * Return: On success, a worker_pool with the same attributes as @attrs.
3385 * On failure, %NULL.
3386 */
3387static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3388{
3389	u32 hash = wqattrs_hash(attrs);
3390	struct worker_pool *pool;
3391	int node;
3392	int target_node = NUMA_NO_NODE;
3393
3394	lockdep_assert_held(&wq_pool_mutex);
3395
3396	/* do we already have a matching pool? */
3397	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3398		if (wqattrs_equal(pool->attrs, attrs)) {
3399			pool->refcnt++;
3400			return pool;
3401		}
3402	}
3403
3404	/* if cpumask is contained inside a NUMA node, we belong to that node */
3405	if (wq_numa_enabled) {
3406		for_each_node(node) {
3407			if (cpumask_subset(attrs->cpumask,
3408					   wq_numa_possible_cpumask[node])) {
3409				target_node = node;
3410				break;
3411			}
3412		}
3413	}
3414
3415	/* nope, create a new one */
3416	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3417	if (!pool || init_worker_pool(pool) < 0)
3418		goto fail;
3419
 
 
 
3420	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3421	copy_workqueue_attrs(pool->attrs, attrs);
3422	pool->node = target_node;
3423
3424	/*
3425	 * no_numa isn't a worker_pool attribute, always clear it.  See
3426	 * 'struct workqueue_attrs' comments for detail.
3427	 */
3428	pool->attrs->no_numa = false;
3429
 
 
 
 
 
 
 
 
 
 
 
3430	if (worker_pool_assign_id(pool) < 0)
3431		goto fail;
3432
3433	/* create and start the initial worker */
3434	if (wq_online && !create_worker(pool))
3435		goto fail;
3436
3437	/* install */
3438	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3439
3440	return pool;
3441fail:
3442	if (pool)
3443		put_unbound_pool(pool);
3444	return NULL;
3445}
3446
3447static void rcu_free_pwq(struct rcu_head *rcu)
3448{
3449	kmem_cache_free(pwq_cache,
3450			container_of(rcu, struct pool_workqueue, rcu));
3451}
3452
3453/*
3454 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3455 * and needs to be destroyed.
3456 */
3457static void pwq_unbound_release_workfn(struct work_struct *work)
3458{
3459	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3460						  unbound_release_work);
3461	struct workqueue_struct *wq = pwq->wq;
3462	struct worker_pool *pool = pwq->pool;
3463	bool is_last;
3464
3465	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3466		return;
3467
 
 
 
 
 
3468	mutex_lock(&wq->mutex);
3469	list_del_rcu(&pwq->pwqs_node);
3470	is_last = list_empty(&wq->pwqs);
3471	mutex_unlock(&wq->mutex);
3472
3473	mutex_lock(&wq_pool_mutex);
3474	put_unbound_pool(pool);
3475	mutex_unlock(&wq_pool_mutex);
3476
3477	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3478
3479	/*
3480	 * If we're the last pwq going away, @wq is already dead and no one
3481	 * is gonna access it anymore.  Schedule RCU free.
3482	 */
3483	if (is_last)
3484		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
 
3485}
3486
3487/**
3488 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3489 * @pwq: target pool_workqueue
3490 *
3491 * If @pwq isn't freezing, set @pwq->max_active to the associated
3492 * workqueue's saved_max_active and activate delayed work items
3493 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3494 */
3495static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3496{
3497	struct workqueue_struct *wq = pwq->wq;
3498	bool freezable = wq->flags & WQ_FREEZABLE;
3499	unsigned long flags;
3500
3501	/* for @wq->saved_max_active */
3502	lockdep_assert_held(&wq->mutex);
3503
3504	/* fast exit for non-freezable wqs */
3505	if (!freezable && pwq->max_active == wq->saved_max_active)
3506		return;
3507
3508	/* this function can be called during early boot w/ irq disabled */
3509	spin_lock_irqsave(&pwq->pool->lock, flags);
3510
3511	/*
3512	 * During [un]freezing, the caller is responsible for ensuring that
3513	 * this function is called at least once after @workqueue_freezing
3514	 * is updated and visible.
3515	 */
3516	if (!freezable || !workqueue_freezing) {
3517		pwq->max_active = wq->saved_max_active;
3518
3519		while (!list_empty(&pwq->delayed_works) &&
3520		       pwq->nr_active < pwq->max_active)
3521			pwq_activate_first_delayed(pwq);
3522
3523		/*
3524		 * Need to kick a worker after thawed or an unbound wq's
3525		 * max_active is bumped.  It's a slow path.  Do it always.
3526		 */
3527		wake_up_worker(pwq->pool);
3528	} else {
3529		pwq->max_active = 0;
3530	}
3531
3532	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3533}
3534
3535/* initialize newly alloced @pwq which is associated with @wq and @pool */
3536static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3537		     struct worker_pool *pool)
3538{
3539	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3540
3541	memset(pwq, 0, sizeof(*pwq));
3542
3543	pwq->pool = pool;
3544	pwq->wq = wq;
3545	pwq->flush_color = -1;
3546	pwq->refcnt = 1;
3547	INIT_LIST_HEAD(&pwq->delayed_works);
3548	INIT_LIST_HEAD(&pwq->pwqs_node);
3549	INIT_LIST_HEAD(&pwq->mayday_node);
3550	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3551}
3552
3553/* sync @pwq with the current state of its associated wq and link it */
3554static void link_pwq(struct pool_workqueue *pwq)
3555{
3556	struct workqueue_struct *wq = pwq->wq;
3557
3558	lockdep_assert_held(&wq->mutex);
3559
3560	/* may be called multiple times, ignore if already linked */
3561	if (!list_empty(&pwq->pwqs_node))
3562		return;
3563
3564	/* set the matching work_color */
 
 
 
3565	pwq->work_color = wq->work_color;
3566
3567	/* sync max_active to the current setting */
3568	pwq_adjust_max_active(pwq);
3569
3570	/* link in @pwq */
3571	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3572}
3573
3574/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3575static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3576					const struct workqueue_attrs *attrs)
3577{
3578	struct worker_pool *pool;
3579	struct pool_workqueue *pwq;
3580
3581	lockdep_assert_held(&wq_pool_mutex);
3582
3583	pool = get_unbound_pool(attrs);
3584	if (!pool)
3585		return NULL;
3586
3587	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3588	if (!pwq) {
3589		put_unbound_pool(pool);
3590		return NULL;
3591	}
3592
3593	init_pwq(pwq, wq, pool);
3594	return pwq;
3595}
3596
 
 
 
 
 
 
 
 
 
 
 
3597/**
3598 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3599 * @attrs: the wq_attrs of the default pwq of the target workqueue
3600 * @node: the target NUMA node
3601 * @cpu_going_down: if >= 0, the CPU to consider as offline
3602 * @cpumask: outarg, the resulting cpumask
3603 *
3604 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3605 * @cpu_going_down is >= 0, that cpu is considered offline during
3606 * calculation.  The result is stored in @cpumask.
3607 *
3608 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3609 * enabled and @node has online CPUs requested by @attrs, the returned
3610 * cpumask is the intersection of the possible CPUs of @node and
3611 * @attrs->cpumask.
3612 *
3613 * The caller is responsible for ensuring that the cpumask of @node stays
3614 * stable.
3615 *
3616 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3617 * %false if equal.
3618 */
3619static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3620				 int cpu_going_down, cpumask_t *cpumask)
3621{
3622	if (!wq_numa_enabled || attrs->no_numa)
3623		goto use_dfl;
3624
3625	/* does @node have any online CPUs @attrs wants? */
3626	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3627	if (cpu_going_down >= 0)
3628		cpumask_clear_cpu(cpu_going_down, cpumask);
3629
3630	if (cpumask_empty(cpumask))
3631		goto use_dfl;
3632
3633	/* yeap, return possible CPUs in @node that @attrs wants */
3634	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3635
3636	if (cpumask_empty(cpumask)) {
3637		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3638				"possible intersect\n");
3639		return false;
3640	}
3641
3642	return !cpumask_equal(cpumask, attrs->cpumask);
3643
3644use_dfl:
3645	cpumask_copy(cpumask, attrs->cpumask);
3646	return false;
3647}
3648
3649/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3650static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3651						   int node,
3652						   struct pool_workqueue *pwq)
3653{
3654	struct pool_workqueue *old_pwq;
3655
3656	lockdep_assert_held(&wq_pool_mutex);
3657	lockdep_assert_held(&wq->mutex);
3658
3659	/* link_pwq() can handle duplicate calls */
3660	link_pwq(pwq);
3661
3662	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3663	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3664	return old_pwq;
3665}
3666
3667/* context to store the prepared attrs & pwqs before applying */
3668struct apply_wqattrs_ctx {
3669	struct workqueue_struct	*wq;		/* target workqueue */
3670	struct workqueue_attrs	*attrs;		/* attrs to apply */
3671	struct list_head	list;		/* queued for batching commit */
3672	struct pool_workqueue	*dfl_pwq;
3673	struct pool_workqueue	*pwq_tbl[];
3674};
3675
3676/* free the resources after success or abort */
3677static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
 
 
 
 
 
 
 
3678{
3679	if (ctx) {
3680		int node;
3681
3682		for_each_node(node)
3683			put_pwq_unlocked(ctx->pwq_tbl[node]);
3684		put_pwq_unlocked(ctx->dfl_pwq);
3685
3686		free_workqueue_attrs(ctx->attrs);
3687
3688		kfree(ctx);
3689	}
3690}
3691
3692/* allocate the attrs and pwqs for later installation */
3693static struct apply_wqattrs_ctx *
3694apply_wqattrs_prepare(struct workqueue_struct *wq,
3695		      const struct workqueue_attrs *attrs)
3696{
3697	struct apply_wqattrs_ctx *ctx;
3698	struct workqueue_attrs *new_attrs, *tmp_attrs;
3699	int node;
 
3700
3701	lockdep_assert_held(&wq_pool_mutex);
 
 
3702
3703	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3704		      GFP_KERNEL);
 
3705
 
3706	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3707	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3708	if (!ctx || !new_attrs || !tmp_attrs)
3709		goto out_free;
3710
3711	/*
3712	 * Calculate the attrs of the default pwq.
3713	 * If the user configured cpumask doesn't overlap with the
3714	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3715	 */
3716	copy_workqueue_attrs(new_attrs, attrs);
3717	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3718	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3719		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3720
3721	/*
3722	 * We may create multiple pwqs with differing cpumasks.  Make a
3723	 * copy of @new_attrs which will be modified and used to obtain
3724	 * pools.
3725	 */
3726	copy_workqueue_attrs(tmp_attrs, new_attrs);
3727
3728	/*
 
 
 
 
 
 
 
 
 
3729	 * If something goes wrong during CPU up/down, we'll fall back to
3730	 * the default pwq covering whole @attrs->cpumask.  Always create
3731	 * it even if we don't use it immediately.
3732	 */
3733	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3734	if (!ctx->dfl_pwq)
3735		goto out_free;
3736
3737	for_each_node(node) {
3738		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3739			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3740			if (!ctx->pwq_tbl[node])
3741				goto out_free;
3742		} else {
3743			ctx->dfl_pwq->refcnt++;
3744			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3745		}
3746	}
3747
3748	/* save the user configured attrs and sanitize it. */
3749	copy_workqueue_attrs(new_attrs, attrs);
3750	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3751	ctx->attrs = new_attrs;
3752
3753	ctx->wq = wq;
3754	free_workqueue_attrs(tmp_attrs);
3755	return ctx;
3756
3757out_free:
3758	free_workqueue_attrs(tmp_attrs);
3759	free_workqueue_attrs(new_attrs);
3760	apply_wqattrs_cleanup(ctx);
3761	return NULL;
3762}
3763
3764/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3765static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3766{
3767	int node;
3768
3769	/* all pwqs have been created successfully, let's install'em */
3770	mutex_lock(&ctx->wq->mutex);
3771
3772	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3773
3774	/* save the previous pwq and install the new one */
3775	for_each_node(node)
3776		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3777							  ctx->pwq_tbl[node]);
3778
3779	/* @dfl_pwq might not have been used, ensure it's linked */
3780	link_pwq(ctx->dfl_pwq);
3781	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
 
 
3782
3783	mutex_unlock(&ctx->wq->mutex);
3784}
 
 
3785
3786static void apply_wqattrs_lock(void)
3787{
3788	/* CPUs should stay stable across pwq creations and installations */
3789	get_online_cpus();
3790	mutex_lock(&wq_pool_mutex);
3791}
 
 
3792
3793static void apply_wqattrs_unlock(void)
3794{
 
 
 
3795	mutex_unlock(&wq_pool_mutex);
3796	put_online_cpus();
3797}
3798
3799static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3800					const struct workqueue_attrs *attrs)
3801{
3802	struct apply_wqattrs_ctx *ctx;
3803
3804	/* only unbound workqueues can change attributes */
3805	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3806		return -EINVAL;
3807
3808	/* creating multiple pwqs breaks ordering guarantee */
3809	if (!list_empty(&wq->pwqs)) {
3810		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3811			return -EINVAL;
3812
3813		wq->flags &= ~__WQ_ORDERED;
3814	}
3815
3816	ctx = apply_wqattrs_prepare(wq, attrs);
3817	if (!ctx)
3818		return -ENOMEM;
3819
3820	/* the ctx has been prepared successfully, let's commit it */
3821	apply_wqattrs_commit(ctx);
3822	apply_wqattrs_cleanup(ctx);
3823
3824	return 0;
3825}
3826
3827/**
3828 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3829 * @wq: the target workqueue
3830 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3831 *
3832 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3833 * machines, this function maps a separate pwq to each NUMA node with
3834 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3835 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3836 * items finish.  Note that a work item which repeatedly requeues itself
3837 * back-to-back will stay on its current pwq.
3838 *
3839 * Performs GFP_KERNEL allocations.
3840 *
3841 * Return: 0 on success and -errno on failure.
3842 */
3843int apply_workqueue_attrs(struct workqueue_struct *wq,
3844			  const struct workqueue_attrs *attrs)
3845{
3846	int ret;
3847
3848	apply_wqattrs_lock();
3849	ret = apply_workqueue_attrs_locked(wq, attrs);
3850	apply_wqattrs_unlock();
3851
3852	return ret;
3853}
3854EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3855
3856/**
3857 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3858 * @wq: the target workqueue
3859 * @cpu: the CPU coming up or going down
3860 * @online: whether @cpu is coming up or going down
3861 *
3862 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3863 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3864 * @wq accordingly.
3865 *
3866 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3867 * falls back to @wq->dfl_pwq which may not be optimal but is always
3868 * correct.
3869 *
3870 * Note that when the last allowed CPU of a NUMA node goes offline for a
3871 * workqueue with a cpumask spanning multiple nodes, the workers which were
3872 * already executing the work items for the workqueue will lose their CPU
3873 * affinity and may execute on any CPU.  This is similar to how per-cpu
3874 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3875 * affinity, it's the user's responsibility to flush the work item from
3876 * CPU_DOWN_PREPARE.
3877 */
3878static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3879				   bool online)
3880{
3881	int node = cpu_to_node(cpu);
3882	int cpu_off = online ? -1 : cpu;
3883	struct pool_workqueue *old_pwq = NULL, *pwq;
3884	struct workqueue_attrs *target_attrs;
3885	cpumask_t *cpumask;
3886
3887	lockdep_assert_held(&wq_pool_mutex);
3888
3889	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3890	    wq->unbound_attrs->no_numa)
3891		return;
3892
3893	/*
3894	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3895	 * Let's use a preallocated one.  The following buf is protected by
3896	 * CPU hotplug exclusion.
3897	 */
3898	target_attrs = wq_update_unbound_numa_attrs_buf;
3899	cpumask = target_attrs->cpumask;
3900
 
 
 
 
3901	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3902	pwq = unbound_pwq_by_node(wq, node);
3903
3904	/*
3905	 * Let's determine what needs to be done.  If the target cpumask is
3906	 * different from the default pwq's, we need to compare it to @pwq's
3907	 * and create a new one if they don't match.  If the target cpumask
3908	 * equals the default pwq's, the default pwq should be used.
 
3909	 */
3910	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3911		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3912			return;
3913	} else {
3914		goto use_dfl_pwq;
 
 
 
3915	}
3916
 
 
3917	/* create a new pwq */
3918	pwq = alloc_unbound_pwq(wq, target_attrs);
3919	if (!pwq) {
3920		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3921			wq->name);
 
3922		goto use_dfl_pwq;
3923	}
3924
3925	/* Install the new pwq. */
 
 
 
 
 
3926	mutex_lock(&wq->mutex);
3927	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3928	goto out_unlock;
3929
3930use_dfl_pwq:
3931	mutex_lock(&wq->mutex);
3932	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3933	get_pwq(wq->dfl_pwq);
3934	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3935	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3936out_unlock:
3937	mutex_unlock(&wq->mutex);
3938	put_pwq_unlocked(old_pwq);
3939}
3940
3941static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3942{
3943	bool highpri = wq->flags & WQ_HIGHPRI;
3944	int cpu, ret;
3945
3946	if (!(wq->flags & WQ_UNBOUND)) {
3947		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3948		if (!wq->cpu_pwqs)
3949			return -ENOMEM;
3950
3951		for_each_possible_cpu(cpu) {
3952			struct pool_workqueue *pwq =
3953				per_cpu_ptr(wq->cpu_pwqs, cpu);
3954			struct worker_pool *cpu_pools =
3955				per_cpu(cpu_worker_pools, cpu);
3956
3957			init_pwq(pwq, wq, &cpu_pools[highpri]);
3958
3959			mutex_lock(&wq->mutex);
3960			link_pwq(pwq);
3961			mutex_unlock(&wq->mutex);
3962		}
3963		return 0;
3964	} else if (wq->flags & __WQ_ORDERED) {
3965		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3966		/* there should only be single pwq for ordering guarantee */
3967		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3968			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3969		     "ordering guarantee broken for workqueue %s\n", wq->name);
3970		return ret;
3971	} else {
3972		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3973	}
3974}
3975
3976static int wq_clamp_max_active(int max_active, unsigned int flags,
3977			       const char *name)
3978{
3979	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3980
3981	if (max_active < 1 || max_active > lim)
3982		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3983			max_active, name, 1, lim);
3984
3985	return clamp_val(max_active, 1, lim);
3986}
3987
3988/*
3989 * Workqueues which may be used during memory reclaim should have a rescuer
3990 * to guarantee forward progress.
3991 */
3992static int init_rescuer(struct workqueue_struct *wq)
3993{
3994	struct worker *rescuer;
3995	int ret;
3996
3997	if (!(wq->flags & WQ_MEM_RECLAIM))
3998		return 0;
3999
4000	rescuer = alloc_worker(NUMA_NO_NODE);
4001	if (!rescuer)
4002		return -ENOMEM;
4003
4004	rescuer->rescue_wq = wq;
4005	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4006	ret = PTR_ERR_OR_ZERO(rescuer->task);
4007	if (ret) {
4008		kfree(rescuer);
4009		return ret;
4010	}
4011
4012	wq->rescuer = rescuer;
4013	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4014	wake_up_process(rescuer->task);
4015
4016	return 0;
4017}
4018
4019struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4020					       unsigned int flags,
4021					       int max_active,
4022					       struct lock_class_key *key,
4023					       const char *lock_name, ...)
4024{
4025	size_t tbl_size = 0;
4026	va_list args;
4027	struct workqueue_struct *wq;
4028	struct pool_workqueue *pwq;
4029
4030	/*
4031	 * Unbound && max_active == 1 used to imply ordered, which is no
4032	 * longer the case on NUMA machines due to per-node pools.  While
4033	 * alloc_ordered_workqueue() is the right way to create an ordered
4034	 * workqueue, keep the previous behavior to avoid subtle breakages
4035	 * on NUMA.
4036	 */
4037	if ((flags & WQ_UNBOUND) && max_active == 1)
4038		flags |= __WQ_ORDERED;
4039
4040	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4041	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4042		flags |= WQ_UNBOUND;
4043
4044	/* allocate wq and format name */
4045	if (flags & WQ_UNBOUND)
4046		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4047
4048	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4049	if (!wq)
4050		return NULL;
4051
4052	if (flags & WQ_UNBOUND) {
4053		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4054		if (!wq->unbound_attrs)
4055			goto err_free_wq;
4056	}
4057
4058	va_start(args, lock_name);
4059	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4060	va_end(args);
4061
4062	max_active = max_active ?: WQ_DFL_ACTIVE;
4063	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4064
4065	/* init wq */
4066	wq->flags = flags;
4067	wq->saved_max_active = max_active;
4068	mutex_init(&wq->mutex);
4069	atomic_set(&wq->nr_pwqs_to_flush, 0);
4070	INIT_LIST_HEAD(&wq->pwqs);
4071	INIT_LIST_HEAD(&wq->flusher_queue);
4072	INIT_LIST_HEAD(&wq->flusher_overflow);
4073	INIT_LIST_HEAD(&wq->maydays);
4074
4075	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4076	INIT_LIST_HEAD(&wq->list);
4077
4078	if (alloc_and_link_pwqs(wq) < 0)
4079		goto err_free_wq;
4080
4081	if (wq_online && init_rescuer(wq) < 0)
4082		goto err_destroy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4083
4084	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4085		goto err_destroy;
4086
4087	/*
4088	 * wq_pool_mutex protects global freeze state and workqueues list.
4089	 * Grab it, adjust max_active and add the new @wq to workqueues
4090	 * list.
4091	 */
4092	mutex_lock(&wq_pool_mutex);
4093
4094	mutex_lock(&wq->mutex);
4095	for_each_pwq(pwq, wq)
4096		pwq_adjust_max_active(pwq);
4097	mutex_unlock(&wq->mutex);
4098
4099	list_add_tail_rcu(&wq->list, &workqueues);
4100
4101	mutex_unlock(&wq_pool_mutex);
4102
4103	return wq;
4104
4105err_free_wq:
4106	free_workqueue_attrs(wq->unbound_attrs);
4107	kfree(wq);
4108	return NULL;
4109err_destroy:
4110	destroy_workqueue(wq);
4111	return NULL;
4112}
4113EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4114
4115/**
4116 * destroy_workqueue - safely terminate a workqueue
4117 * @wq: target workqueue
4118 *
4119 * Safely destroy a workqueue. All work currently pending will be done first.
4120 */
4121void destroy_workqueue(struct workqueue_struct *wq)
4122{
4123	struct pool_workqueue *pwq;
4124	int node;
4125
4126	/* drain it before proceeding with destruction */
4127	drain_workqueue(wq);
4128
4129	/* sanity checks */
4130	mutex_lock(&wq->mutex);
4131	for_each_pwq(pwq, wq) {
4132		int i;
4133
4134		for (i = 0; i < WORK_NR_COLORS; i++) {
4135			if (WARN_ON(pwq->nr_in_flight[i])) {
4136				mutex_unlock(&wq->mutex);
4137				show_workqueue_state();
4138				return;
4139			}
4140		}
4141
4142		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4143		    WARN_ON(pwq->nr_active) ||
4144		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4145			mutex_unlock(&wq->mutex);
4146			show_workqueue_state();
4147			return;
4148		}
4149	}
4150	mutex_unlock(&wq->mutex);
4151
4152	/*
4153	 * wq list is used to freeze wq, remove from list after
4154	 * flushing is complete in case freeze races us.
4155	 */
4156	mutex_lock(&wq_pool_mutex);
4157	list_del_rcu(&wq->list);
4158	mutex_unlock(&wq_pool_mutex);
4159
4160	workqueue_sysfs_unregister(wq);
4161
4162	if (wq->rescuer)
4163		kthread_stop(wq->rescuer->task);
 
 
 
4164
4165	if (!(wq->flags & WQ_UNBOUND)) {
4166		/*
4167		 * The base ref is never dropped on per-cpu pwqs.  Directly
4168		 * schedule RCU free.
4169		 */
4170		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
4171	} else {
4172		/*
4173		 * We're the sole accessor of @wq at this point.  Directly
4174		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4175		 * @wq will be freed when the last pwq is released.
4176		 */
4177		for_each_node(node) {
4178			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4179			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4180			put_pwq_unlocked(pwq);
4181		}
4182
4183		/*
4184		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4185		 * put.  Don't access it afterwards.
4186		 */
4187		pwq = wq->dfl_pwq;
4188		wq->dfl_pwq = NULL;
4189		put_pwq_unlocked(pwq);
4190	}
4191}
4192EXPORT_SYMBOL_GPL(destroy_workqueue);
4193
4194/**
4195 * workqueue_set_max_active - adjust max_active of a workqueue
4196 * @wq: target workqueue
4197 * @max_active: new max_active value.
4198 *
4199 * Set max_active of @wq to @max_active.
4200 *
4201 * CONTEXT:
4202 * Don't call from IRQ context.
4203 */
4204void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4205{
4206	struct pool_workqueue *pwq;
4207
4208	/* disallow meddling with max_active for ordered workqueues */
4209	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4210		return;
4211
4212	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4213
4214	mutex_lock(&wq->mutex);
4215
4216	wq->flags &= ~__WQ_ORDERED;
4217	wq->saved_max_active = max_active;
4218
4219	for_each_pwq(pwq, wq)
4220		pwq_adjust_max_active(pwq);
4221
4222	mutex_unlock(&wq->mutex);
4223}
4224EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4225
4226/**
4227 * current_work - retrieve %current task's work struct
4228 *
4229 * Determine if %current task is a workqueue worker and what it's working on.
4230 * Useful to find out the context that the %current task is running in.
4231 *
4232 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4233 */
4234struct work_struct *current_work(void)
4235{
4236	struct worker *worker = current_wq_worker();
4237
4238	return worker ? worker->current_work : NULL;
4239}
4240EXPORT_SYMBOL(current_work);
4241
4242/**
4243 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4244 *
4245 * Determine whether %current is a workqueue rescuer.  Can be used from
4246 * work functions to determine whether it's being run off the rescuer task.
4247 *
4248 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4249 */
4250bool current_is_workqueue_rescuer(void)
4251{
4252	struct worker *worker = current_wq_worker();
4253
4254	return worker && worker->rescue_wq;
4255}
4256
4257/**
4258 * workqueue_congested - test whether a workqueue is congested
4259 * @cpu: CPU in question
4260 * @wq: target workqueue
4261 *
4262 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4263 * no synchronization around this function and the test result is
4264 * unreliable and only useful as advisory hints or for debugging.
4265 *
4266 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4267 * Note that both per-cpu and unbound workqueues may be associated with
4268 * multiple pool_workqueues which have separate congested states.  A
4269 * workqueue being congested on one CPU doesn't mean the workqueue is also
4270 * contested on other CPUs / NUMA nodes.
4271 *
4272 * Return:
4273 * %true if congested, %false otherwise.
4274 */
4275bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4276{
4277	struct pool_workqueue *pwq;
4278	bool ret;
4279
4280	rcu_read_lock_sched();
4281
4282	if (cpu == WORK_CPU_UNBOUND)
4283		cpu = smp_processor_id();
4284
4285	if (!(wq->flags & WQ_UNBOUND))
4286		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4287	else
4288		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4289
4290	ret = !list_empty(&pwq->delayed_works);
4291	rcu_read_unlock_sched();
4292
4293	return ret;
4294}
4295EXPORT_SYMBOL_GPL(workqueue_congested);
4296
4297/**
4298 * work_busy - test whether a work is currently pending or running
4299 * @work: the work to be tested
4300 *
4301 * Test whether @work is currently pending or running.  There is no
4302 * synchronization around this function and the test result is
4303 * unreliable and only useful as advisory hints or for debugging.
4304 *
4305 * Return:
4306 * OR'd bitmask of WORK_BUSY_* bits.
4307 */
4308unsigned int work_busy(struct work_struct *work)
4309{
4310	struct worker_pool *pool;
4311	unsigned long flags;
4312	unsigned int ret = 0;
4313
4314	if (work_pending(work))
4315		ret |= WORK_BUSY_PENDING;
4316
4317	local_irq_save(flags);
4318	pool = get_work_pool(work);
4319	if (pool) {
4320		spin_lock(&pool->lock);
4321		if (find_worker_executing_work(pool, work))
4322			ret |= WORK_BUSY_RUNNING;
4323		spin_unlock(&pool->lock);
4324	}
4325	local_irq_restore(flags);
4326
4327	return ret;
4328}
4329EXPORT_SYMBOL_GPL(work_busy);
4330
4331/**
4332 * set_worker_desc - set description for the current work item
4333 * @fmt: printf-style format string
4334 * @...: arguments for the format string
4335 *
4336 * This function can be called by a running work function to describe what
4337 * the work item is about.  If the worker task gets dumped, this
4338 * information will be printed out together to help debugging.  The
4339 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4340 */
4341void set_worker_desc(const char *fmt, ...)
4342{
4343	struct worker *worker = current_wq_worker();
4344	va_list args;
4345
4346	if (worker) {
4347		va_start(args, fmt);
4348		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4349		va_end(args);
4350		worker->desc_valid = true;
4351	}
4352}
4353
4354/**
4355 * print_worker_info - print out worker information and description
4356 * @log_lvl: the log level to use when printing
4357 * @task: target task
4358 *
4359 * If @task is a worker and currently executing a work item, print out the
4360 * name of the workqueue being serviced and worker description set with
4361 * set_worker_desc() by the currently executing work item.
4362 *
4363 * This function can be safely called on any task as long as the
4364 * task_struct itself is accessible.  While safe, this function isn't
4365 * synchronized and may print out mixups or garbages of limited length.
4366 */
4367void print_worker_info(const char *log_lvl, struct task_struct *task)
4368{
4369	work_func_t *fn = NULL;
4370	char name[WQ_NAME_LEN] = { };
4371	char desc[WORKER_DESC_LEN] = { };
4372	struct pool_workqueue *pwq = NULL;
4373	struct workqueue_struct *wq = NULL;
4374	bool desc_valid = false;
4375	struct worker *worker;
4376
4377	if (!(task->flags & PF_WQ_WORKER))
4378		return;
4379
4380	/*
4381	 * This function is called without any synchronization and @task
4382	 * could be in any state.  Be careful with dereferences.
4383	 */
4384	worker = kthread_probe_data(task);
4385
4386	/*
4387	 * Carefully copy the associated workqueue's workfn and name.  Keep
4388	 * the original last '\0' in case the original contains garbage.
4389	 */
4390	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4391	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4392	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4393	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4394
4395	/* copy worker description */
4396	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4397	if (desc_valid)
4398		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4399
4400	if (fn || name[0] || desc[0]) {
4401		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4402		if (desc[0])
4403			pr_cont(" (%s)", desc);
4404		pr_cont("\n");
4405	}
4406}
4407
4408static void pr_cont_pool_info(struct worker_pool *pool)
4409{
4410	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4411	if (pool->node != NUMA_NO_NODE)
4412		pr_cont(" node=%d", pool->node);
4413	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4414}
4415
4416static void pr_cont_work(bool comma, struct work_struct *work)
4417{
4418	if (work->func == wq_barrier_func) {
4419		struct wq_barrier *barr;
4420
4421		barr = container_of(work, struct wq_barrier, work);
4422
4423		pr_cont("%s BAR(%d)", comma ? "," : "",
4424			task_pid_nr(barr->task));
4425	} else {
4426		pr_cont("%s %pf", comma ? "," : "", work->func);
4427	}
4428}
4429
4430static void show_pwq(struct pool_workqueue *pwq)
4431{
4432	struct worker_pool *pool = pwq->pool;
4433	struct work_struct *work;
4434	struct worker *worker;
4435	bool has_in_flight = false, has_pending = false;
4436	int bkt;
4437
4438	pr_info("  pwq %d:", pool->id);
4439	pr_cont_pool_info(pool);
4440
4441	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4442		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4443
4444	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4445		if (worker->current_pwq == pwq) {
4446			has_in_flight = true;
4447			break;
4448		}
4449	}
4450	if (has_in_flight) {
4451		bool comma = false;
4452
4453		pr_info("    in-flight:");
4454		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4455			if (worker->current_pwq != pwq)
4456				continue;
4457
4458			pr_cont("%s %d%s:%pf", comma ? "," : "",
4459				task_pid_nr(worker->task),
4460				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4461				worker->current_func);
4462			list_for_each_entry(work, &worker->scheduled, entry)
4463				pr_cont_work(false, work);
4464			comma = true;
4465		}
4466		pr_cont("\n");
4467	}
4468
4469	list_for_each_entry(work, &pool->worklist, entry) {
4470		if (get_work_pwq(work) == pwq) {
4471			has_pending = true;
4472			break;
4473		}
4474	}
4475	if (has_pending) {
4476		bool comma = false;
4477
4478		pr_info("    pending:");
4479		list_for_each_entry(work, &pool->worklist, entry) {
4480			if (get_work_pwq(work) != pwq)
4481				continue;
4482
4483			pr_cont_work(comma, work);
4484			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4485		}
4486		pr_cont("\n");
4487	}
4488
4489	if (!list_empty(&pwq->delayed_works)) {
4490		bool comma = false;
4491
4492		pr_info("    delayed:");
4493		list_for_each_entry(work, &pwq->delayed_works, entry) {
4494			pr_cont_work(comma, work);
4495			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4496		}
4497		pr_cont("\n");
4498	}
4499}
4500
4501/**
4502 * show_workqueue_state - dump workqueue state
4503 *
4504 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4505 * all busy workqueues and pools.
4506 */
4507void show_workqueue_state(void)
4508{
4509	struct workqueue_struct *wq;
4510	struct worker_pool *pool;
4511	unsigned long flags;
4512	int pi;
4513
4514	rcu_read_lock_sched();
4515
4516	pr_info("Showing busy workqueues and worker pools:\n");
4517
4518	list_for_each_entry_rcu(wq, &workqueues, list) {
4519		struct pool_workqueue *pwq;
4520		bool idle = true;
4521
4522		for_each_pwq(pwq, wq) {
4523			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4524				idle = false;
4525				break;
4526			}
4527		}
4528		if (idle)
4529			continue;
4530
4531		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4532
4533		for_each_pwq(pwq, wq) {
4534			spin_lock_irqsave(&pwq->pool->lock, flags);
4535			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4536				show_pwq(pwq);
4537			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4538			/*
4539			 * We could be printing a lot from atomic context, e.g.
4540			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4541			 * hard lockup.
4542			 */
4543			touch_nmi_watchdog();
4544		}
4545	}
4546
4547	for_each_pool(pool, pi) {
4548		struct worker *worker;
4549		bool first = true;
4550
4551		spin_lock_irqsave(&pool->lock, flags);
4552		if (pool->nr_workers == pool->nr_idle)
4553			goto next_pool;
4554
4555		pr_info("pool %d:", pool->id);
4556		pr_cont_pool_info(pool);
4557		pr_cont(" hung=%us workers=%d",
4558			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4559			pool->nr_workers);
4560		if (pool->manager)
4561			pr_cont(" manager: %d",
4562				task_pid_nr(pool->manager->task));
4563		list_for_each_entry(worker, &pool->idle_list, entry) {
4564			pr_cont(" %s%d", first ? "idle: " : "",
4565				task_pid_nr(worker->task));
4566			first = false;
4567		}
4568		pr_cont("\n");
4569	next_pool:
4570		spin_unlock_irqrestore(&pool->lock, flags);
4571		/*
4572		 * We could be printing a lot from atomic context, e.g.
4573		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4574		 * hard lockup.
4575		 */
4576		touch_nmi_watchdog();
4577	}
4578
4579	rcu_read_unlock_sched();
4580}
4581
4582/*
4583 * CPU hotplug.
4584 *
4585 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586 * are a lot of assumptions on strong associations among work, pwq and
4587 * pool which make migrating pending and scheduled works very
4588 * difficult to implement without impacting hot paths.  Secondly,
4589 * worker pools serve mix of short, long and very long running works making
4590 * blocked draining impractical.
4591 *
4592 * This is solved by allowing the pools to be disassociated from the CPU
4593 * running as an unbound one and allowing it to be reattached later if the
4594 * cpu comes back online.
4595 */
4596
4597static void unbind_workers(int cpu)
4598{
 
4599	struct worker_pool *pool;
4600	struct worker *worker;
 
4601
4602	for_each_cpu_worker_pool(pool, cpu) {
4603		mutex_lock(&pool->attach_mutex);
 
 
4604		spin_lock_irq(&pool->lock);
4605
4606		/*
4607		 * We've blocked all attach/detach operations. Make all workers
4608		 * unbound and set DISASSOCIATED.  Before this, all workers
4609		 * except for the ones which are still executing works from
4610		 * before the last CPU down must be on the cpu.  After
4611		 * this, they may become diasporas.
4612		 */
4613		for_each_pool_worker(worker, pool)
4614			worker->flags |= WORKER_UNBOUND;
4615
4616		pool->flags |= POOL_DISASSOCIATED;
4617
4618		spin_unlock_irq(&pool->lock);
4619		mutex_unlock(&pool->attach_mutex);
4620
4621		/*
4622		 * Call schedule() so that we cross rq->lock and thus can
4623		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4624		 * This is necessary as scheduler callbacks may be invoked
4625		 * from other cpus.
4626		 */
4627		schedule();
4628
4629		/*
4630		 * Sched callbacks are disabled now.  Zap nr_running.
4631		 * After this, nr_running stays zero and need_more_worker()
4632		 * and keep_working() are always true as long as the
4633		 * worklist is not empty.  This pool now behaves as an
4634		 * unbound (in terms of concurrency management) pool which
4635		 * are served by workers tied to the pool.
4636		 */
4637		atomic_set(&pool->nr_running, 0);
4638
4639		/*
4640		 * With concurrency management just turned off, a busy
4641		 * worker blocking could lead to lengthy stalls.  Kick off
4642		 * unbound chain execution of currently pending work items.
4643		 */
4644		spin_lock_irq(&pool->lock);
4645		wake_up_worker(pool);
4646		spin_unlock_irq(&pool->lock);
4647	}
4648}
4649
4650/**
4651 * rebind_workers - rebind all workers of a pool to the associated CPU
4652 * @pool: pool of interest
4653 *
4654 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4655 */
4656static void rebind_workers(struct worker_pool *pool)
4657{
4658	struct worker *worker;
 
4659
4660	lockdep_assert_held(&pool->attach_mutex);
4661
4662	/*
4663	 * Restore CPU affinity of all workers.  As all idle workers should
4664	 * be on the run-queue of the associated CPU before any local
4665	 * wake-ups for concurrency management happen, restore CPU affinity
4666	 * of all workers first and then clear UNBOUND.  As we're called
4667	 * from CPU_ONLINE, the following shouldn't fail.
4668	 */
4669	for_each_pool_worker(worker, pool)
4670		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4671						  pool->attrs->cpumask) < 0);
4672
4673	spin_lock_irq(&pool->lock);
4674
4675	pool->flags &= ~POOL_DISASSOCIATED;
4676
4677	for_each_pool_worker(worker, pool) {
4678		unsigned int worker_flags = worker->flags;
4679
4680		/*
4681		 * A bound idle worker should actually be on the runqueue
4682		 * of the associated CPU for local wake-ups targeting it to
4683		 * work.  Kick all idle workers so that they migrate to the
4684		 * associated CPU.  Doing this in the same loop as
4685		 * replacing UNBOUND with REBOUND is safe as no worker will
4686		 * be bound before @pool->lock is released.
4687		 */
4688		if (worker_flags & WORKER_IDLE)
4689			wake_up_process(worker->task);
4690
4691		/*
4692		 * We want to clear UNBOUND but can't directly call
4693		 * worker_clr_flags() or adjust nr_running.  Atomically
4694		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4695		 * @worker will clear REBOUND using worker_clr_flags() when
4696		 * it initiates the next execution cycle thus restoring
4697		 * concurrency management.  Note that when or whether
4698		 * @worker clears REBOUND doesn't affect correctness.
4699		 *
4700		 * WRITE_ONCE() is necessary because @worker->flags may be
4701		 * tested without holding any lock in
4702		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4703		 * fail incorrectly leading to premature concurrency
4704		 * management operations.
4705		 */
4706		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4707		worker_flags |= WORKER_REBOUND;
4708		worker_flags &= ~WORKER_UNBOUND;
4709		WRITE_ONCE(worker->flags, worker_flags);
4710	}
4711
4712	spin_unlock_irq(&pool->lock);
4713}
4714
4715/**
4716 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4717 * @pool: unbound pool of interest
4718 * @cpu: the CPU which is coming up
4719 *
4720 * An unbound pool may end up with a cpumask which doesn't have any online
4721 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4722 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4723 * online CPU before, cpus_allowed of all its workers should be restored.
4724 */
4725static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4726{
4727	static cpumask_t cpumask;
4728	struct worker *worker;
 
4729
4730	lockdep_assert_held(&pool->attach_mutex);
4731
4732	/* is @cpu allowed for @pool? */
4733	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4734		return;
4735
 
4736	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
 
 
4737
4738	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4739	for_each_pool_worker(worker, pool)
4740		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
 
4741}
4742
4743int workqueue_prepare_cpu(unsigned int cpu)
4744{
4745	struct worker_pool *pool;
4746
4747	for_each_cpu_worker_pool(pool, cpu) {
4748		if (pool->nr_workers)
4749			continue;
4750		if (!create_worker(pool))
4751			return -ENOMEM;
4752	}
4753	return 0;
4754}
4755
4756int workqueue_online_cpu(unsigned int cpu)
4757{
 
4758	struct worker_pool *pool;
4759	struct workqueue_struct *wq;
4760	int pi;
4761
4762	mutex_lock(&wq_pool_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4763
4764	for_each_pool(pool, pi) {
4765		mutex_lock(&pool->attach_mutex);
4766
4767		if (pool->cpu == cpu)
4768			rebind_workers(pool);
4769		else if (pool->cpu < 0)
4770			restore_unbound_workers_cpumask(pool, cpu);
4771
4772		mutex_unlock(&pool->attach_mutex);
 
4773	}
4774
4775	/* update NUMA affinity of unbound workqueues */
4776	list_for_each_entry(wq, &workqueues, list)
4777		wq_update_unbound_numa(wq, cpu, true);
4778
4779	mutex_unlock(&wq_pool_mutex);
4780	return 0;
4781}
4782
4783int workqueue_offline_cpu(unsigned int cpu)
 
 
 
 
 
 
4784{
 
 
4785	struct workqueue_struct *wq;
4786
4787	/* unbinding per-cpu workers should happen on the local CPU */
4788	if (WARN_ON(cpu != smp_processor_id()))
4789		return -1;
4790
4791	unbind_workers(cpu);
4792
4793	/* update NUMA affinity of unbound workqueues */
4794	mutex_lock(&wq_pool_mutex);
4795	list_for_each_entry(wq, &workqueues, list)
4796		wq_update_unbound_numa(wq, cpu, false);
4797	mutex_unlock(&wq_pool_mutex);
4798
4799	return 0;
 
 
 
 
 
4800}
4801
4802#ifdef CONFIG_SMP
4803
4804struct work_for_cpu {
4805	struct work_struct work;
4806	long (*fn)(void *);
4807	void *arg;
4808	long ret;
4809};
4810
4811static void work_for_cpu_fn(struct work_struct *work)
4812{
4813	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814
4815	wfc->ret = wfc->fn(wfc->arg);
4816}
4817
4818/**
4819 * work_on_cpu - run a function in thread context on a particular cpu
4820 * @cpu: the cpu to run on
4821 * @fn: the function to run
4822 * @arg: the function arg
4823 *
4824 * It is up to the caller to ensure that the cpu doesn't go offline.
4825 * The caller must not hold any locks which would prevent @fn from completing.
4826 *
4827 * Return: The value @fn returns.
4828 */
4829long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830{
4831	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832
4833	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834	schedule_work_on(cpu, &wfc.work);
4835	flush_work(&wfc.work);
4836	destroy_work_on_stack(&wfc.work);
4837	return wfc.ret;
4838}
4839EXPORT_SYMBOL_GPL(work_on_cpu);
4840
4841/**
4842 * work_on_cpu_safe - run a function in thread context on a particular cpu
4843 * @cpu: the cpu to run on
4844 * @fn:  the function to run
4845 * @arg: the function argument
4846 *
4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848 * any locks which would prevent @fn from completing.
4849 *
4850 * Return: The value @fn returns.
4851 */
4852long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853{
4854	long ret = -ENODEV;
4855
4856	get_online_cpus();
4857	if (cpu_online(cpu))
4858		ret = work_on_cpu(cpu, fn, arg);
4859	put_online_cpus();
4860	return ret;
4861}
4862EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4863#endif /* CONFIG_SMP */
4864
4865#ifdef CONFIG_FREEZER
4866
4867/**
4868 * freeze_workqueues_begin - begin freezing workqueues
4869 *
4870 * Start freezing workqueues.  After this function returns, all freezable
4871 * workqueues will queue new works to their delayed_works list instead of
4872 * pool->worklist.
4873 *
4874 * CONTEXT:
4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876 */
4877void freeze_workqueues_begin(void)
4878{
 
4879	struct workqueue_struct *wq;
4880	struct pool_workqueue *pwq;
 
4881
4882	mutex_lock(&wq_pool_mutex);
4883
4884	WARN_ON_ONCE(workqueue_freezing);
4885	workqueue_freezing = true;
4886
 
 
 
 
 
 
 
 
4887	list_for_each_entry(wq, &workqueues, list) {
4888		mutex_lock(&wq->mutex);
4889		for_each_pwq(pwq, wq)
4890			pwq_adjust_max_active(pwq);
4891		mutex_unlock(&wq->mutex);
4892	}
4893
4894	mutex_unlock(&wq_pool_mutex);
4895}
4896
4897/**
4898 * freeze_workqueues_busy - are freezable workqueues still busy?
4899 *
4900 * Check whether freezing is complete.  This function must be called
4901 * between freeze_workqueues_begin() and thaw_workqueues().
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex.
4905 *
4906 * Return:
4907 * %true if some freezable workqueues are still busy.  %false if freezing
4908 * is complete.
4909 */
4910bool freeze_workqueues_busy(void)
4911{
4912	bool busy = false;
4913	struct workqueue_struct *wq;
4914	struct pool_workqueue *pwq;
4915
4916	mutex_lock(&wq_pool_mutex);
4917
4918	WARN_ON_ONCE(!workqueue_freezing);
4919
4920	list_for_each_entry(wq, &workqueues, list) {
4921		if (!(wq->flags & WQ_FREEZABLE))
4922			continue;
4923		/*
4924		 * nr_active is monotonically decreasing.  It's safe
4925		 * to peek without lock.
4926		 */
4927		rcu_read_lock_sched();
4928		for_each_pwq(pwq, wq) {
4929			WARN_ON_ONCE(pwq->nr_active < 0);
4930			if (pwq->nr_active) {
4931				busy = true;
4932				rcu_read_unlock_sched();
4933				goto out_unlock;
4934			}
4935		}
4936		rcu_read_unlock_sched();
4937	}
4938out_unlock:
4939	mutex_unlock(&wq_pool_mutex);
4940	return busy;
4941}
4942
4943/**
4944 * thaw_workqueues - thaw workqueues
4945 *
4946 * Thaw workqueues.  Normal queueing is restored and all collected
4947 * frozen works are transferred to their respective pool worklists.
4948 *
4949 * CONTEXT:
4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951 */
4952void thaw_workqueues(void)
4953{
4954	struct workqueue_struct *wq;
4955	struct pool_workqueue *pwq;
 
 
4956
4957	mutex_lock(&wq_pool_mutex);
4958
4959	if (!workqueue_freezing)
4960		goto out_unlock;
4961
4962	workqueue_freezing = false;
 
 
 
 
 
 
4963
4964	/* restore max_active and repopulate worklist */
4965	list_for_each_entry(wq, &workqueues, list) {
4966		mutex_lock(&wq->mutex);
4967		for_each_pwq(pwq, wq)
4968			pwq_adjust_max_active(pwq);
4969		mutex_unlock(&wq->mutex);
4970	}
4971
 
4972out_unlock:
4973	mutex_unlock(&wq_pool_mutex);
4974}
4975#endif /* CONFIG_FREEZER */
4976
4977static int workqueue_apply_unbound_cpumask(void)
4978{
4979	LIST_HEAD(ctxs);
4980	int ret = 0;
4981	struct workqueue_struct *wq;
4982	struct apply_wqattrs_ctx *ctx, *n;
4983
4984	lockdep_assert_held(&wq_pool_mutex);
4985
4986	list_for_each_entry(wq, &workqueues, list) {
4987		if (!(wq->flags & WQ_UNBOUND))
4988			continue;
4989		/* creating multiple pwqs breaks ordering guarantee */
4990		if (wq->flags & __WQ_ORDERED)
4991			continue;
4992
4993		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994		if (!ctx) {
4995			ret = -ENOMEM;
4996			break;
4997		}
4998
4999		list_add_tail(&ctx->list, &ctxs);
5000	}
5001
5002	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003		if (!ret)
5004			apply_wqattrs_commit(ctx);
5005		apply_wqattrs_cleanup(ctx);
5006	}
5007
5008	return ret;
5009}
5010
5011/**
5012 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013 *  @cpumask: the cpumask to set
5014 *
5015 *  The low-level workqueues cpumask is a global cpumask that limits
5016 *  the affinity of all unbound workqueues.  This function check the @cpumask
5017 *  and apply it to all unbound workqueues and updates all pwqs of them.
5018 *
5019 *  Retun:	0	- Success
5020 *  		-EINVAL	- Invalid @cpumask
5021 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5022 */
5023int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024{
5025	int ret = -EINVAL;
5026	cpumask_var_t saved_cpumask;
5027
5028	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029		return -ENOMEM;
5030
5031	/*
5032	 * Not excluding isolated cpus on purpose.
5033	 * If the user wishes to include them, we allow that.
5034	 */
5035	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5036	if (!cpumask_empty(cpumask)) {
5037		apply_wqattrs_lock();
5038
5039		/* save the old wq_unbound_cpumask. */
5040		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5041
5042		/* update wq_unbound_cpumask at first and apply it to wqs. */
5043		cpumask_copy(wq_unbound_cpumask, cpumask);
5044		ret = workqueue_apply_unbound_cpumask();
5045
5046		/* restore the wq_unbound_cpumask when failed. */
5047		if (ret < 0)
5048			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5049
5050		apply_wqattrs_unlock();
5051	}
5052
5053	free_cpumask_var(saved_cpumask);
5054	return ret;
5055}
5056
5057#ifdef CONFIG_SYSFS
5058/*
5059 * Workqueues with WQ_SYSFS flag set is visible to userland via
5060 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5061 * following attributes.
5062 *
5063 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5064 *  max_active	RW int	: maximum number of in-flight work items
5065 *
5066 * Unbound workqueues have the following extra attributes.
5067 *
5068 *  pool_ids	RO int	: the associated pool IDs for each node
5069 *  nice	RW int	: nice value of the workers
5070 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5071 *  numa	RW bool	: whether enable NUMA affinity
5072 */
5073struct wq_device {
5074	struct workqueue_struct		*wq;
5075	struct device			dev;
5076};
5077
5078static struct workqueue_struct *dev_to_wq(struct device *dev)
5079{
5080	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5081
5082	return wq_dev->wq;
5083}
5084
5085static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5086			    char *buf)
5087{
5088	struct workqueue_struct *wq = dev_to_wq(dev);
5089
5090	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5091}
5092static DEVICE_ATTR_RO(per_cpu);
5093
5094static ssize_t max_active_show(struct device *dev,
5095			       struct device_attribute *attr, char *buf)
5096{
5097	struct workqueue_struct *wq = dev_to_wq(dev);
5098
5099	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5100}
5101
5102static ssize_t max_active_store(struct device *dev,
5103				struct device_attribute *attr, const char *buf,
5104				size_t count)
5105{
5106	struct workqueue_struct *wq = dev_to_wq(dev);
5107	int val;
5108
5109	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5110		return -EINVAL;
5111
5112	workqueue_set_max_active(wq, val);
5113	return count;
5114}
5115static DEVICE_ATTR_RW(max_active);
5116
5117static struct attribute *wq_sysfs_attrs[] = {
5118	&dev_attr_per_cpu.attr,
5119	&dev_attr_max_active.attr,
5120	NULL,
5121};
5122ATTRIBUTE_GROUPS(wq_sysfs);
5123
5124static ssize_t wq_pool_ids_show(struct device *dev,
5125				struct device_attribute *attr, char *buf)
5126{
5127	struct workqueue_struct *wq = dev_to_wq(dev);
5128	const char *delim = "";
5129	int node, written = 0;
5130
5131	rcu_read_lock_sched();
5132	for_each_node(node) {
5133		written += scnprintf(buf + written, PAGE_SIZE - written,
5134				     "%s%d:%d", delim, node,
5135				     unbound_pwq_by_node(wq, node)->pool->id);
5136		delim = " ";
5137	}
5138	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5139	rcu_read_unlock_sched();
5140
5141	return written;
5142}
5143
5144static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5145			    char *buf)
5146{
5147	struct workqueue_struct *wq = dev_to_wq(dev);
5148	int written;
5149
5150	mutex_lock(&wq->mutex);
5151	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5152	mutex_unlock(&wq->mutex);
5153
5154	return written;
5155}
5156
5157/* prepare workqueue_attrs for sysfs store operations */
5158static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5159{
5160	struct workqueue_attrs *attrs;
5161
5162	lockdep_assert_held(&wq_pool_mutex);
5163
5164	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5165	if (!attrs)
5166		return NULL;
5167
5168	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5169	return attrs;
5170}
5171
5172static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5173			     const char *buf, size_t count)
5174{
5175	struct workqueue_struct *wq = dev_to_wq(dev);
5176	struct workqueue_attrs *attrs;
5177	int ret = -ENOMEM;
5178
5179	apply_wqattrs_lock();
5180
5181	attrs = wq_sysfs_prep_attrs(wq);
5182	if (!attrs)
5183		goto out_unlock;
5184
5185	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5186	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5187		ret = apply_workqueue_attrs_locked(wq, attrs);
5188	else
5189		ret = -EINVAL;
5190
5191out_unlock:
5192	apply_wqattrs_unlock();
5193	free_workqueue_attrs(attrs);
5194	return ret ?: count;
5195}
5196
5197static ssize_t wq_cpumask_show(struct device *dev,
5198			       struct device_attribute *attr, char *buf)
5199{
5200	struct workqueue_struct *wq = dev_to_wq(dev);
5201	int written;
5202
5203	mutex_lock(&wq->mutex);
5204	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5205			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5206	mutex_unlock(&wq->mutex);
5207	return written;
5208}
5209
5210static ssize_t wq_cpumask_store(struct device *dev,
5211				struct device_attribute *attr,
5212				const char *buf, size_t count)
5213{
5214	struct workqueue_struct *wq = dev_to_wq(dev);
5215	struct workqueue_attrs *attrs;
5216	int ret = -ENOMEM;
5217
5218	apply_wqattrs_lock();
5219
5220	attrs = wq_sysfs_prep_attrs(wq);
5221	if (!attrs)
5222		goto out_unlock;
5223
5224	ret = cpumask_parse(buf, attrs->cpumask);
5225	if (!ret)
5226		ret = apply_workqueue_attrs_locked(wq, attrs);
5227
5228out_unlock:
5229	apply_wqattrs_unlock();
5230	free_workqueue_attrs(attrs);
5231	return ret ?: count;
5232}
5233
5234static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5235			    char *buf)
5236{
5237	struct workqueue_struct *wq = dev_to_wq(dev);
5238	int written;
5239
5240	mutex_lock(&wq->mutex);
5241	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5242			    !wq->unbound_attrs->no_numa);
5243	mutex_unlock(&wq->mutex);
5244
5245	return written;
5246}
5247
5248static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5249			     const char *buf, size_t count)
5250{
5251	struct workqueue_struct *wq = dev_to_wq(dev);
5252	struct workqueue_attrs *attrs;
5253	int v, ret = -ENOMEM;
5254
5255	apply_wqattrs_lock();
5256
5257	attrs = wq_sysfs_prep_attrs(wq);
5258	if (!attrs)
5259		goto out_unlock;
5260
5261	ret = -EINVAL;
5262	if (sscanf(buf, "%d", &v) == 1) {
5263		attrs->no_numa = !v;
5264		ret = apply_workqueue_attrs_locked(wq, attrs);
5265	}
5266
5267out_unlock:
5268	apply_wqattrs_unlock();
5269	free_workqueue_attrs(attrs);
5270	return ret ?: count;
5271}
5272
5273static struct device_attribute wq_sysfs_unbound_attrs[] = {
5274	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5275	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5276	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5277	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5278	__ATTR_NULL,
5279};
5280
5281static struct bus_type wq_subsys = {
5282	.name				= "workqueue",
5283	.dev_groups			= wq_sysfs_groups,
5284};
5285
5286static ssize_t wq_unbound_cpumask_show(struct device *dev,
5287		struct device_attribute *attr, char *buf)
5288{
5289	int written;
5290
5291	mutex_lock(&wq_pool_mutex);
5292	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5293			    cpumask_pr_args(wq_unbound_cpumask));
5294	mutex_unlock(&wq_pool_mutex);
5295
5296	return written;
5297}
5298
5299static ssize_t wq_unbound_cpumask_store(struct device *dev,
5300		struct device_attribute *attr, const char *buf, size_t count)
5301{
5302	cpumask_var_t cpumask;
5303	int ret;
5304
5305	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5306		return -ENOMEM;
5307
5308	ret = cpumask_parse(buf, cpumask);
5309	if (!ret)
5310		ret = workqueue_set_unbound_cpumask(cpumask);
5311
5312	free_cpumask_var(cpumask);
5313	return ret ? ret : count;
5314}
5315
5316static struct device_attribute wq_sysfs_cpumask_attr =
5317	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5318	       wq_unbound_cpumask_store);
5319
5320static int __init wq_sysfs_init(void)
5321{
5322	int err;
5323
5324	err = subsys_virtual_register(&wq_subsys, NULL);
5325	if (err)
5326		return err;
5327
5328	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5329}
5330core_initcall(wq_sysfs_init);
5331
5332static void wq_device_release(struct device *dev)
5333{
5334	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5335
5336	kfree(wq_dev);
5337}
5338
5339/**
5340 * workqueue_sysfs_register - make a workqueue visible in sysfs
5341 * @wq: the workqueue to register
5342 *
5343 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5345 * which is the preferred method.
5346 *
5347 * Workqueue user should use this function directly iff it wants to apply
5348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5349 * apply_workqueue_attrs() may race against userland updating the
5350 * attributes.
5351 *
5352 * Return: 0 on success, -errno on failure.
5353 */
5354int workqueue_sysfs_register(struct workqueue_struct *wq)
5355{
5356	struct wq_device *wq_dev;
5357	int ret;
5358
5359	/*
5360	 * Adjusting max_active or creating new pwqs by applying
5361	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5362	 * workqueues.
5363	 */
5364	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5365		return -EINVAL;
5366
5367	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5368	if (!wq_dev)
5369		return -ENOMEM;
5370
5371	wq_dev->wq = wq;
5372	wq_dev->dev.bus = &wq_subsys;
5373	wq_dev->dev.release = wq_device_release;
5374	dev_set_name(&wq_dev->dev, "%s", wq->name);
5375
5376	/*
5377	 * unbound_attrs are created separately.  Suppress uevent until
5378	 * everything is ready.
5379	 */
5380	dev_set_uevent_suppress(&wq_dev->dev, true);
5381
5382	ret = device_register(&wq_dev->dev);
5383	if (ret) {
5384		put_device(&wq_dev->dev);
5385		wq->wq_dev = NULL;
5386		return ret;
5387	}
5388
5389	if (wq->flags & WQ_UNBOUND) {
5390		struct device_attribute *attr;
5391
5392		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5393			ret = device_create_file(&wq_dev->dev, attr);
5394			if (ret) {
5395				device_unregister(&wq_dev->dev);
5396				wq->wq_dev = NULL;
5397				return ret;
5398			}
5399		}
5400	}
5401
5402	dev_set_uevent_suppress(&wq_dev->dev, false);
5403	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5404	return 0;
5405}
5406
5407/**
5408 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5409 * @wq: the workqueue to unregister
5410 *
5411 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5412 */
5413static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5414{
5415	struct wq_device *wq_dev = wq->wq_dev;
5416
5417	if (!wq->wq_dev)
5418		return;
5419
5420	wq->wq_dev = NULL;
5421	device_unregister(&wq_dev->dev);
5422}
5423#else	/* CONFIG_SYSFS */
5424static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5425#endif	/* CONFIG_SYSFS */
5426
5427/*
5428 * Workqueue watchdog.
5429 *
5430 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5431 * flush dependency, a concurrency managed work item which stays RUNNING
5432 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5433 * usual warning mechanisms don't trigger and internal workqueue state is
5434 * largely opaque.
5435 *
5436 * Workqueue watchdog monitors all worker pools periodically and dumps
5437 * state if some pools failed to make forward progress for a while where
5438 * forward progress is defined as the first item on ->worklist changing.
5439 *
5440 * This mechanism is controlled through the kernel parameter
5441 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5442 * corresponding sysfs parameter file.
5443 */
5444#ifdef CONFIG_WQ_WATCHDOG
5445
5446static unsigned long wq_watchdog_thresh = 30;
5447static struct timer_list wq_watchdog_timer;
5448
5449static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5450static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5451
5452static void wq_watchdog_reset_touched(void)
5453{
5454	int cpu;
5455
5456	wq_watchdog_touched = jiffies;
5457	for_each_possible_cpu(cpu)
5458		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5459}
5460
5461static void wq_watchdog_timer_fn(struct timer_list *unused)
5462{
5463	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5464	bool lockup_detected = false;
5465	struct worker_pool *pool;
5466	int pi;
5467
5468	if (!thresh)
5469		return;
5470
5471	rcu_read_lock();
5472
5473	for_each_pool(pool, pi) {
5474		unsigned long pool_ts, touched, ts;
5475
5476		if (list_empty(&pool->worklist))
5477			continue;
5478
5479		/* get the latest of pool and touched timestamps */
5480		pool_ts = READ_ONCE(pool->watchdog_ts);
5481		touched = READ_ONCE(wq_watchdog_touched);
5482
5483		if (time_after(pool_ts, touched))
5484			ts = pool_ts;
5485		else
5486			ts = touched;
5487
5488		if (pool->cpu >= 0) {
5489			unsigned long cpu_touched =
5490				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5491						  pool->cpu));
5492			if (time_after(cpu_touched, ts))
5493				ts = cpu_touched;
5494		}
5495
5496		/* did we stall? */
5497		if (time_after(jiffies, ts + thresh)) {
5498			lockup_detected = true;
5499			pr_emerg("BUG: workqueue lockup - pool");
5500			pr_cont_pool_info(pool);
5501			pr_cont(" stuck for %us!\n",
5502				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5503		}
5504	}
5505
5506	rcu_read_unlock();
5507
5508	if (lockup_detected)
5509		show_workqueue_state();
5510
5511	wq_watchdog_reset_touched();
5512	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5513}
5514
5515void wq_watchdog_touch(int cpu)
5516{
5517	if (cpu >= 0)
5518		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5519	else
5520		wq_watchdog_touched = jiffies;
5521}
5522
5523static void wq_watchdog_set_thresh(unsigned long thresh)
5524{
5525	wq_watchdog_thresh = 0;
5526	del_timer_sync(&wq_watchdog_timer);
5527
5528	if (thresh) {
5529		wq_watchdog_thresh = thresh;
5530		wq_watchdog_reset_touched();
5531		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5532	}
5533}
5534
5535static int wq_watchdog_param_set_thresh(const char *val,
5536					const struct kernel_param *kp)
5537{
5538	unsigned long thresh;
5539	int ret;
5540
5541	ret = kstrtoul(val, 0, &thresh);
5542	if (ret)
5543		return ret;
5544
5545	if (system_wq)
5546		wq_watchdog_set_thresh(thresh);
5547	else
5548		wq_watchdog_thresh = thresh;
5549
5550	return 0;
5551}
5552
5553static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5554	.set	= wq_watchdog_param_set_thresh,
5555	.get	= param_get_ulong,
5556};
5557
5558module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5559		0644);
5560
5561static void wq_watchdog_init(void)
5562{
5563	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5564	wq_watchdog_set_thresh(wq_watchdog_thresh);
5565}
5566
5567#else	/* CONFIG_WQ_WATCHDOG */
5568
5569static inline void wq_watchdog_init(void) { }
5570
5571#endif	/* CONFIG_WQ_WATCHDOG */
5572
5573static void __init wq_numa_init(void)
5574{
5575	cpumask_var_t *tbl;
5576	int node, cpu;
5577
 
 
 
 
5578	if (num_possible_nodes() <= 1)
5579		return;
5580
5581	if (wq_disable_numa) {
5582		pr_info("workqueue: NUMA affinity support disabled\n");
5583		return;
5584	}
5585
5586	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5587	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5588
5589	/*
5590	 * We want masks of possible CPUs of each node which isn't readily
5591	 * available.  Build one from cpu_to_node() which should have been
5592	 * fully initialized by now.
5593	 */
5594	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5595	BUG_ON(!tbl);
5596
5597	for_each_node(node)
5598		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5599				node_online(node) ? node : NUMA_NO_NODE));
5600
5601	for_each_possible_cpu(cpu) {
5602		node = cpu_to_node(cpu);
5603		if (WARN_ON(node == NUMA_NO_NODE)) {
5604			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5605			/* happens iff arch is bonkers, let's just proceed */
5606			return;
5607		}
5608		cpumask_set_cpu(cpu, tbl[node]);
5609	}
5610
5611	wq_numa_possible_cpumask = tbl;
5612	wq_numa_enabled = true;
5613}
5614
5615/**
5616 * workqueue_init_early - early init for workqueue subsystem
5617 *
5618 * This is the first half of two-staged workqueue subsystem initialization
5619 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5620 * idr are up.  It sets up all the data structures and system workqueues
5621 * and allows early boot code to create workqueues and queue/cancel work
5622 * items.  Actual work item execution starts only after kthreads can be
5623 * created and scheduled right before early initcalls.
5624 */
5625int __init workqueue_init_early(void)
5626{
5627	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5628	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5629	int i, cpu;
5630
5631	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5632
5633	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5634	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
 
 
5635
5636	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5637
5638	/* initialize CPU pools */
5639	for_each_possible_cpu(cpu) {
5640		struct worker_pool *pool;
5641
5642		i = 0;
5643		for_each_cpu_worker_pool(pool, cpu) {
5644			BUG_ON(init_worker_pool(pool));
5645			pool->cpu = cpu;
5646			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5647			pool->attrs->nice = std_nice[i++];
5648			pool->node = cpu_to_node(cpu);
5649
5650			/* alloc pool ID */
5651			mutex_lock(&wq_pool_mutex);
5652			BUG_ON(worker_pool_assign_id(pool));
5653			mutex_unlock(&wq_pool_mutex);
5654		}
5655	}
5656
 
 
 
 
 
 
 
 
 
 
5657	/* create default unbound and ordered wq attrs */
5658	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5659		struct workqueue_attrs *attrs;
5660
5661		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5662		attrs->nice = std_nice[i];
5663		unbound_std_wq_attrs[i] = attrs;
5664
5665		/*
5666		 * An ordered wq should have only one pwq as ordering is
5667		 * guaranteed by max_active which is enforced by pwqs.
5668		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5669		 */
5670		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5671		attrs->nice = std_nice[i];
5672		attrs->no_numa = true;
5673		ordered_wq_attrs[i] = attrs;
5674	}
5675
5676	system_wq = alloc_workqueue("events", 0, 0);
5677	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5678	system_long_wq = alloc_workqueue("events_long", 0, 0);
5679	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5680					    WQ_UNBOUND_MAX_ACTIVE);
5681	system_freezable_wq = alloc_workqueue("events_freezable",
5682					      WQ_FREEZABLE, 0);
5683	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5684					      WQ_POWER_EFFICIENT, 0);
5685	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5686					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5687					      0);
5688	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5689	       !system_unbound_wq || !system_freezable_wq ||
5690	       !system_power_efficient_wq ||
5691	       !system_freezable_power_efficient_wq);
5692
5693	return 0;
5694}
5695
5696/**
5697 * workqueue_init - bring workqueue subsystem fully online
5698 *
5699 * This is the latter half of two-staged workqueue subsystem initialization
5700 * and invoked as soon as kthreads can be created and scheduled.
5701 * Workqueues have been created and work items queued on them, but there
5702 * are no kworkers executing the work items yet.  Populate the worker pools
5703 * with the initial workers and enable future kworker creations.
5704 */
5705int __init workqueue_init(void)
5706{
5707	struct workqueue_struct *wq;
5708	struct worker_pool *pool;
5709	int cpu, bkt;
5710
5711	/*
5712	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5713	 * CPU to node mapping may not be available that early on some
5714	 * archs such as power and arm64.  As per-cpu pools created
5715	 * previously could be missing node hint and unbound pools NUMA
5716	 * affinity, fix them up.
5717	 *
5718	 * Also, while iterating workqueues, create rescuers if requested.
5719	 */
5720	wq_numa_init();
5721
5722	mutex_lock(&wq_pool_mutex);
5723
5724	for_each_possible_cpu(cpu) {
5725		for_each_cpu_worker_pool(pool, cpu) {
5726			pool->node = cpu_to_node(cpu);
5727		}
5728	}
5729
5730	list_for_each_entry(wq, &workqueues, list) {
5731		wq_update_unbound_numa(wq, smp_processor_id(), true);
5732		WARN(init_rescuer(wq),
5733		     "workqueue: failed to create early rescuer for %s",
5734		     wq->name);
5735	}
5736
5737	mutex_unlock(&wq_pool_mutex);
5738
5739	/* create the initial workers */
5740	for_each_online_cpu(cpu) {
5741		for_each_cpu_worker_pool(pool, cpu) {
5742			pool->flags &= ~POOL_DISASSOCIATED;
5743			BUG_ON(!create_worker(pool));
5744		}
5745	}
5746
5747	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5748		BUG_ON(!create_worker(pool));
5749
5750	wq_online = true;
5751	wq_watchdog_init();
5752
5753	return 0;
5754}