Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 struct kprobe_insn_cache *cache;
116 int nused;
117 int ngarbage;
118 char slot_used[];
119};
120
121#define KPROBE_INSN_PAGE_SIZE(slots) \
122 (offsetof(struct kprobe_insn_page, slot_used) + \
123 (sizeof(char) * (slots)))
124
125static int slots_per_page(struct kprobe_insn_cache *c)
126{
127 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
128}
129
130enum kprobe_slot_state {
131 SLOT_CLEAN = 0,
132 SLOT_DIRTY = 1,
133 SLOT_USED = 2,
134};
135
136static void *alloc_insn_page(void)
137{
138 return module_alloc(PAGE_SIZE);
139}
140
141static void free_insn_page(void *page)
142{
143 module_free(NULL, page);
144}
145
146struct kprobe_insn_cache kprobe_insn_slots = {
147 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
148 .alloc = alloc_insn_page,
149 .free = free_insn_page,
150 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
151 .insn_size = MAX_INSN_SIZE,
152 .nr_garbage = 0,
153};
154static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
155
156/**
157 * __get_insn_slot() - Find a slot on an executable page for an instruction.
158 * We allocate an executable page if there's no room on existing ones.
159 */
160kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
161{
162 struct kprobe_insn_page *kip;
163 kprobe_opcode_t *slot = NULL;
164
165 mutex_lock(&c->mutex);
166 retry:
167 list_for_each_entry(kip, &c->pages, list) {
168 if (kip->nused < slots_per_page(c)) {
169 int i;
170 for (i = 0; i < slots_per_page(c); i++) {
171 if (kip->slot_used[i] == SLOT_CLEAN) {
172 kip->slot_used[i] = SLOT_USED;
173 kip->nused++;
174 slot = kip->insns + (i * c->insn_size);
175 goto out;
176 }
177 }
178 /* kip->nused is broken. Fix it. */
179 kip->nused = slots_per_page(c);
180 WARN_ON(1);
181 }
182 }
183
184 /* If there are any garbage slots, collect it and try again. */
185 if (c->nr_garbage && collect_garbage_slots(c) == 0)
186 goto retry;
187
188 /* All out of space. Need to allocate a new page. */
189 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
190 if (!kip)
191 goto out;
192
193 /*
194 * Use module_alloc so this page is within +/- 2GB of where the
195 * kernel image and loaded module images reside. This is required
196 * so x86_64 can correctly handle the %rip-relative fixups.
197 */
198 kip->insns = c->alloc();
199 if (!kip->insns) {
200 kfree(kip);
201 goto out;
202 }
203 INIT_LIST_HEAD(&kip->list);
204 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
205 kip->slot_used[0] = SLOT_USED;
206 kip->nused = 1;
207 kip->ngarbage = 0;
208 kip->cache = c;
209 list_add(&kip->list, &c->pages);
210 slot = kip->insns;
211out:
212 mutex_unlock(&c->mutex);
213 return slot;
214}
215
216/* Return 1 if all garbages are collected, otherwise 0. */
217static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
218{
219 kip->slot_used[idx] = SLOT_CLEAN;
220 kip->nused--;
221 if (kip->nused == 0) {
222 /*
223 * Page is no longer in use. Free it unless
224 * it's the last one. We keep the last one
225 * so as not to have to set it up again the
226 * next time somebody inserts a probe.
227 */
228 if (!list_is_singular(&kip->list)) {
229 list_del(&kip->list);
230 kip->cache->free(kip->insns);
231 kfree(kip);
232 }
233 return 1;
234 }
235 return 0;
236}
237
238static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
239{
240 struct kprobe_insn_page *kip, *next;
241
242 /* Ensure no-one is interrupted on the garbages */
243 synchronize_sched();
244
245 list_for_each_entry_safe(kip, next, &c->pages, list) {
246 int i;
247 if (kip->ngarbage == 0)
248 continue;
249 kip->ngarbage = 0; /* we will collect all garbages */
250 for (i = 0; i < slots_per_page(c); i++) {
251 if (kip->slot_used[i] == SLOT_DIRTY &&
252 collect_one_slot(kip, i))
253 break;
254 }
255 }
256 c->nr_garbage = 0;
257 return 0;
258}
259
260void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
261 kprobe_opcode_t *slot, int dirty)
262{
263 struct kprobe_insn_page *kip;
264
265 mutex_lock(&c->mutex);
266 list_for_each_entry(kip, &c->pages, list) {
267 long idx = ((long)slot - (long)kip->insns) /
268 (c->insn_size * sizeof(kprobe_opcode_t));
269 if (idx >= 0 && idx < slots_per_page(c)) {
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else
277 collect_one_slot(kip, idx);
278 goto out;
279 }
280 }
281 /* Could not free this slot. */
282 WARN_ON(1);
283out:
284 mutex_unlock(&c->mutex);
285}
286
287#ifdef CONFIG_OPTPROBES
288/* For optimized_kprobe buffer */
289struct kprobe_insn_cache kprobe_optinsn_slots = {
290 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
291 .alloc = alloc_insn_page,
292 .free = free_insn_page,
293 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
294 /* .insn_size is initialized later */
295 .nr_garbage = 0,
296};
297#endif
298#endif
299
300/* We have preemption disabled.. so it is safe to use __ versions */
301static inline void set_kprobe_instance(struct kprobe *kp)
302{
303 __this_cpu_write(kprobe_instance, kp);
304}
305
306static inline void reset_kprobe_instance(void)
307{
308 __this_cpu_write(kprobe_instance, NULL);
309}
310
311/*
312 * This routine is called either:
313 * - under the kprobe_mutex - during kprobe_[un]register()
314 * OR
315 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
316 */
317struct kprobe __kprobes *get_kprobe(void *addr)
318{
319 struct hlist_head *head;
320 struct kprobe *p;
321
322 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
323 hlist_for_each_entry_rcu(p, head, hlist) {
324 if (p->addr == addr)
325 return p;
326 }
327
328 return NULL;
329}
330
331static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
332
333/* Return true if the kprobe is an aggregator */
334static inline int kprobe_aggrprobe(struct kprobe *p)
335{
336 return p->pre_handler == aggr_pre_handler;
337}
338
339/* Return true(!0) if the kprobe is unused */
340static inline int kprobe_unused(struct kprobe *p)
341{
342 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
343 list_empty(&p->list);
344}
345
346/*
347 * Keep all fields in the kprobe consistent
348 */
349static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
350{
351 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
352 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
353}
354
355#ifdef CONFIG_OPTPROBES
356/* NOTE: change this value only with kprobe_mutex held */
357static bool kprobes_allow_optimization;
358
359/*
360 * Call all pre_handler on the list, but ignores its return value.
361 * This must be called from arch-dep optimized caller.
362 */
363void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
364{
365 struct kprobe *kp;
366
367 list_for_each_entry_rcu(kp, &p->list, list) {
368 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
369 set_kprobe_instance(kp);
370 kp->pre_handler(kp, regs);
371 }
372 reset_kprobe_instance();
373 }
374}
375
376/* Free optimized instructions and optimized_kprobe */
377static __kprobes void free_aggr_kprobe(struct kprobe *p)
378{
379 struct optimized_kprobe *op;
380
381 op = container_of(p, struct optimized_kprobe, kp);
382 arch_remove_optimized_kprobe(op);
383 arch_remove_kprobe(p);
384 kfree(op);
385}
386
387/* Return true(!0) if the kprobe is ready for optimization. */
388static inline int kprobe_optready(struct kprobe *p)
389{
390 struct optimized_kprobe *op;
391
392 if (kprobe_aggrprobe(p)) {
393 op = container_of(p, struct optimized_kprobe, kp);
394 return arch_prepared_optinsn(&op->optinsn);
395 }
396
397 return 0;
398}
399
400/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
401static inline int kprobe_disarmed(struct kprobe *p)
402{
403 struct optimized_kprobe *op;
404
405 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
406 if (!kprobe_aggrprobe(p))
407 return kprobe_disabled(p);
408
409 op = container_of(p, struct optimized_kprobe, kp);
410
411 return kprobe_disabled(p) && list_empty(&op->list);
412}
413
414/* Return true(!0) if the probe is queued on (un)optimizing lists */
415static int __kprobes kprobe_queued(struct kprobe *p)
416{
417 struct optimized_kprobe *op;
418
419 if (kprobe_aggrprobe(p)) {
420 op = container_of(p, struct optimized_kprobe, kp);
421 if (!list_empty(&op->list))
422 return 1;
423 }
424 return 0;
425}
426
427/*
428 * Return an optimized kprobe whose optimizing code replaces
429 * instructions including addr (exclude breakpoint).
430 */
431static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
432{
433 int i;
434 struct kprobe *p = NULL;
435 struct optimized_kprobe *op;
436
437 /* Don't check i == 0, since that is a breakpoint case. */
438 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
439 p = get_kprobe((void *)(addr - i));
440
441 if (p && kprobe_optready(p)) {
442 op = container_of(p, struct optimized_kprobe, kp);
443 if (arch_within_optimized_kprobe(op, addr))
444 return p;
445 }
446
447 return NULL;
448}
449
450/* Optimization staging list, protected by kprobe_mutex */
451static LIST_HEAD(optimizing_list);
452static LIST_HEAD(unoptimizing_list);
453static LIST_HEAD(freeing_list);
454
455static void kprobe_optimizer(struct work_struct *work);
456static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
457#define OPTIMIZE_DELAY 5
458
459/*
460 * Optimize (replace a breakpoint with a jump) kprobes listed on
461 * optimizing_list.
462 */
463static __kprobes void do_optimize_kprobes(void)
464{
465 /* Optimization never be done when disarmed */
466 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
467 list_empty(&optimizing_list))
468 return;
469
470 /*
471 * The optimization/unoptimization refers online_cpus via
472 * stop_machine() and cpu-hotplug modifies online_cpus.
473 * And same time, text_mutex will be held in cpu-hotplug and here.
474 * This combination can cause a deadlock (cpu-hotplug try to lock
475 * text_mutex but stop_machine can not be done because online_cpus
476 * has been changed)
477 * To avoid this deadlock, we need to call get_online_cpus()
478 * for preventing cpu-hotplug outside of text_mutex locking.
479 */
480 get_online_cpus();
481 mutex_lock(&text_mutex);
482 arch_optimize_kprobes(&optimizing_list);
483 mutex_unlock(&text_mutex);
484 put_online_cpus();
485}
486
487/*
488 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
489 * if need) kprobes listed on unoptimizing_list.
490 */
491static __kprobes void do_unoptimize_kprobes(void)
492{
493 struct optimized_kprobe *op, *tmp;
494
495 /* Unoptimization must be done anytime */
496 if (list_empty(&unoptimizing_list))
497 return;
498
499 /* Ditto to do_optimize_kprobes */
500 get_online_cpus();
501 mutex_lock(&text_mutex);
502 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
503 /* Loop free_list for disarming */
504 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
505 /* Disarm probes if marked disabled */
506 if (kprobe_disabled(&op->kp))
507 arch_disarm_kprobe(&op->kp);
508 if (kprobe_unused(&op->kp)) {
509 /*
510 * Remove unused probes from hash list. After waiting
511 * for synchronization, these probes are reclaimed.
512 * (reclaiming is done by do_free_cleaned_kprobes.)
513 */
514 hlist_del_rcu(&op->kp.hlist);
515 } else
516 list_del_init(&op->list);
517 }
518 mutex_unlock(&text_mutex);
519 put_online_cpus();
520}
521
522/* Reclaim all kprobes on the free_list */
523static __kprobes void do_free_cleaned_kprobes(void)
524{
525 struct optimized_kprobe *op, *tmp;
526
527 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
528 BUG_ON(!kprobe_unused(&op->kp));
529 list_del_init(&op->list);
530 free_aggr_kprobe(&op->kp);
531 }
532}
533
534/* Start optimizer after OPTIMIZE_DELAY passed */
535static __kprobes void kick_kprobe_optimizer(void)
536{
537 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
538}
539
540/* Kprobe jump optimizer */
541static __kprobes void kprobe_optimizer(struct work_struct *work)
542{
543 mutex_lock(&kprobe_mutex);
544 /* Lock modules while optimizing kprobes */
545 mutex_lock(&module_mutex);
546
547 /*
548 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
549 * kprobes before waiting for quiesence period.
550 */
551 do_unoptimize_kprobes();
552
553 /*
554 * Step 2: Wait for quiesence period to ensure all running interrupts
555 * are done. Because optprobe may modify multiple instructions
556 * there is a chance that Nth instruction is interrupted. In that
557 * case, running interrupt can return to 2nd-Nth byte of jump
558 * instruction. This wait is for avoiding it.
559 */
560 synchronize_sched();
561
562 /* Step 3: Optimize kprobes after quiesence period */
563 do_optimize_kprobes();
564
565 /* Step 4: Free cleaned kprobes after quiesence period */
566 do_free_cleaned_kprobes();
567
568 mutex_unlock(&module_mutex);
569 mutex_unlock(&kprobe_mutex);
570
571 /* Step 5: Kick optimizer again if needed */
572 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
573 kick_kprobe_optimizer();
574}
575
576/* Wait for completing optimization and unoptimization */
577static __kprobes void wait_for_kprobe_optimizer(void)
578{
579 mutex_lock(&kprobe_mutex);
580
581 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
582 mutex_unlock(&kprobe_mutex);
583
584 /* this will also make optimizing_work execute immmediately */
585 flush_delayed_work(&optimizing_work);
586 /* @optimizing_work might not have been queued yet, relax */
587 cpu_relax();
588
589 mutex_lock(&kprobe_mutex);
590 }
591
592 mutex_unlock(&kprobe_mutex);
593}
594
595/* Optimize kprobe if p is ready to be optimized */
596static __kprobes void optimize_kprobe(struct kprobe *p)
597{
598 struct optimized_kprobe *op;
599
600 /* Check if the kprobe is disabled or not ready for optimization. */
601 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
602 (kprobe_disabled(p) || kprobes_all_disarmed))
603 return;
604
605 /* Both of break_handler and post_handler are not supported. */
606 if (p->break_handler || p->post_handler)
607 return;
608
609 op = container_of(p, struct optimized_kprobe, kp);
610
611 /* Check there is no other kprobes at the optimized instructions */
612 if (arch_check_optimized_kprobe(op) < 0)
613 return;
614
615 /* Check if it is already optimized. */
616 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
617 return;
618 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
619
620 if (!list_empty(&op->list))
621 /* This is under unoptimizing. Just dequeue the probe */
622 list_del_init(&op->list);
623 else {
624 list_add(&op->list, &optimizing_list);
625 kick_kprobe_optimizer();
626 }
627}
628
629/* Short cut to direct unoptimizing */
630static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
631{
632 get_online_cpus();
633 arch_unoptimize_kprobe(op);
634 put_online_cpus();
635 if (kprobe_disabled(&op->kp))
636 arch_disarm_kprobe(&op->kp);
637}
638
639/* Unoptimize a kprobe if p is optimized */
640static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
641{
642 struct optimized_kprobe *op;
643
644 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
645 return; /* This is not an optprobe nor optimized */
646
647 op = container_of(p, struct optimized_kprobe, kp);
648 if (!kprobe_optimized(p)) {
649 /* Unoptimized or unoptimizing case */
650 if (force && !list_empty(&op->list)) {
651 /*
652 * Only if this is unoptimizing kprobe and forced,
653 * forcibly unoptimize it. (No need to unoptimize
654 * unoptimized kprobe again :)
655 */
656 list_del_init(&op->list);
657 force_unoptimize_kprobe(op);
658 }
659 return;
660 }
661
662 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
663 if (!list_empty(&op->list)) {
664 /* Dequeue from the optimization queue */
665 list_del_init(&op->list);
666 return;
667 }
668 /* Optimized kprobe case */
669 if (force)
670 /* Forcibly update the code: this is a special case */
671 force_unoptimize_kprobe(op);
672 else {
673 list_add(&op->list, &unoptimizing_list);
674 kick_kprobe_optimizer();
675 }
676}
677
678/* Cancel unoptimizing for reusing */
679static void reuse_unused_kprobe(struct kprobe *ap)
680{
681 struct optimized_kprobe *op;
682
683 BUG_ON(!kprobe_unused(ap));
684 /*
685 * Unused kprobe MUST be on the way of delayed unoptimizing (means
686 * there is still a relative jump) and disabled.
687 */
688 op = container_of(ap, struct optimized_kprobe, kp);
689 if (unlikely(list_empty(&op->list)))
690 printk(KERN_WARNING "Warning: found a stray unused "
691 "aggrprobe@%p\n", ap->addr);
692 /* Enable the probe again */
693 ap->flags &= ~KPROBE_FLAG_DISABLED;
694 /* Optimize it again (remove from op->list) */
695 BUG_ON(!kprobe_optready(ap));
696 optimize_kprobe(ap);
697}
698
699/* Remove optimized instructions */
700static void __kprobes kill_optimized_kprobe(struct kprobe *p)
701{
702 struct optimized_kprobe *op;
703
704 op = container_of(p, struct optimized_kprobe, kp);
705 if (!list_empty(&op->list))
706 /* Dequeue from the (un)optimization queue */
707 list_del_init(&op->list);
708 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
709
710 if (kprobe_unused(p)) {
711 /* Enqueue if it is unused */
712 list_add(&op->list, &freeing_list);
713 /*
714 * Remove unused probes from the hash list. After waiting
715 * for synchronization, this probe is reclaimed.
716 * (reclaiming is done by do_free_cleaned_kprobes().)
717 */
718 hlist_del_rcu(&op->kp.hlist);
719 }
720
721 /* Don't touch the code, because it is already freed. */
722 arch_remove_optimized_kprobe(op);
723}
724
725/* Try to prepare optimized instructions */
726static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
727{
728 struct optimized_kprobe *op;
729
730 op = container_of(p, struct optimized_kprobe, kp);
731 arch_prepare_optimized_kprobe(op);
732}
733
734/* Allocate new optimized_kprobe and try to prepare optimized instructions */
735static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
736{
737 struct optimized_kprobe *op;
738
739 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
740 if (!op)
741 return NULL;
742
743 INIT_LIST_HEAD(&op->list);
744 op->kp.addr = p->addr;
745 arch_prepare_optimized_kprobe(op);
746
747 return &op->kp;
748}
749
750static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
751
752/*
753 * Prepare an optimized_kprobe and optimize it
754 * NOTE: p must be a normal registered kprobe
755 */
756static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
757{
758 struct kprobe *ap;
759 struct optimized_kprobe *op;
760
761 /* Impossible to optimize ftrace-based kprobe */
762 if (kprobe_ftrace(p))
763 return;
764
765 /* For preparing optimization, jump_label_text_reserved() is called */
766 jump_label_lock();
767 mutex_lock(&text_mutex);
768
769 ap = alloc_aggr_kprobe(p);
770 if (!ap)
771 goto out;
772
773 op = container_of(ap, struct optimized_kprobe, kp);
774 if (!arch_prepared_optinsn(&op->optinsn)) {
775 /* If failed to setup optimizing, fallback to kprobe */
776 arch_remove_optimized_kprobe(op);
777 kfree(op);
778 goto out;
779 }
780
781 init_aggr_kprobe(ap, p);
782 optimize_kprobe(ap); /* This just kicks optimizer thread */
783
784out:
785 mutex_unlock(&text_mutex);
786 jump_label_unlock();
787}
788
789#ifdef CONFIG_SYSCTL
790static void __kprobes optimize_all_kprobes(void)
791{
792 struct hlist_head *head;
793 struct kprobe *p;
794 unsigned int i;
795
796 mutex_lock(&kprobe_mutex);
797 /* If optimization is already allowed, just return */
798 if (kprobes_allow_optimization)
799 goto out;
800
801 kprobes_allow_optimization = true;
802 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
803 head = &kprobe_table[i];
804 hlist_for_each_entry_rcu(p, head, hlist)
805 if (!kprobe_disabled(p))
806 optimize_kprobe(p);
807 }
808 printk(KERN_INFO "Kprobes globally optimized\n");
809out:
810 mutex_unlock(&kprobe_mutex);
811}
812
813static void __kprobes unoptimize_all_kprobes(void)
814{
815 struct hlist_head *head;
816 struct kprobe *p;
817 unsigned int i;
818
819 mutex_lock(&kprobe_mutex);
820 /* If optimization is already prohibited, just return */
821 if (!kprobes_allow_optimization) {
822 mutex_unlock(&kprobe_mutex);
823 return;
824 }
825
826 kprobes_allow_optimization = false;
827 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
828 head = &kprobe_table[i];
829 hlist_for_each_entry_rcu(p, head, hlist) {
830 if (!kprobe_disabled(p))
831 unoptimize_kprobe(p, false);
832 }
833 }
834 mutex_unlock(&kprobe_mutex);
835
836 /* Wait for unoptimizing completion */
837 wait_for_kprobe_optimizer();
838 printk(KERN_INFO "Kprobes globally unoptimized\n");
839}
840
841static DEFINE_MUTEX(kprobe_sysctl_mutex);
842int sysctl_kprobes_optimization;
843int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
844 void __user *buffer, size_t *length,
845 loff_t *ppos)
846{
847 int ret;
848
849 mutex_lock(&kprobe_sysctl_mutex);
850 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
851 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
852
853 if (sysctl_kprobes_optimization)
854 optimize_all_kprobes();
855 else
856 unoptimize_all_kprobes();
857 mutex_unlock(&kprobe_sysctl_mutex);
858
859 return ret;
860}
861#endif /* CONFIG_SYSCTL */
862
863/* Put a breakpoint for a probe. Must be called with text_mutex locked */
864static void __kprobes __arm_kprobe(struct kprobe *p)
865{
866 struct kprobe *_p;
867
868 /* Check collision with other optimized kprobes */
869 _p = get_optimized_kprobe((unsigned long)p->addr);
870 if (unlikely(_p))
871 /* Fallback to unoptimized kprobe */
872 unoptimize_kprobe(_p, true);
873
874 arch_arm_kprobe(p);
875 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
876}
877
878/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
879static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
880{
881 struct kprobe *_p;
882
883 unoptimize_kprobe(p, false); /* Try to unoptimize */
884
885 if (!kprobe_queued(p)) {
886 arch_disarm_kprobe(p);
887 /* If another kprobe was blocked, optimize it. */
888 _p = get_optimized_kprobe((unsigned long)p->addr);
889 if (unlikely(_p) && reopt)
890 optimize_kprobe(_p);
891 }
892 /* TODO: reoptimize others after unoptimized this probe */
893}
894
895#else /* !CONFIG_OPTPROBES */
896
897#define optimize_kprobe(p) do {} while (0)
898#define unoptimize_kprobe(p, f) do {} while (0)
899#define kill_optimized_kprobe(p) do {} while (0)
900#define prepare_optimized_kprobe(p) do {} while (0)
901#define try_to_optimize_kprobe(p) do {} while (0)
902#define __arm_kprobe(p) arch_arm_kprobe(p)
903#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
904#define kprobe_disarmed(p) kprobe_disabled(p)
905#define wait_for_kprobe_optimizer() do {} while (0)
906
907/* There should be no unused kprobes can be reused without optimization */
908static void reuse_unused_kprobe(struct kprobe *ap)
909{
910 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
911 BUG_ON(kprobe_unused(ap));
912}
913
914static __kprobes void free_aggr_kprobe(struct kprobe *p)
915{
916 arch_remove_kprobe(p);
917 kfree(p);
918}
919
920static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
921{
922 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
923}
924#endif /* CONFIG_OPTPROBES */
925
926#ifdef CONFIG_KPROBES_ON_FTRACE
927static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
928 .func = kprobe_ftrace_handler,
929 .flags = FTRACE_OPS_FL_SAVE_REGS,
930};
931static int kprobe_ftrace_enabled;
932
933/* Must ensure p->addr is really on ftrace */
934static int __kprobes prepare_kprobe(struct kprobe *p)
935{
936 if (!kprobe_ftrace(p))
937 return arch_prepare_kprobe(p);
938
939 return arch_prepare_kprobe_ftrace(p);
940}
941
942/* Caller must lock kprobe_mutex */
943static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
944{
945 int ret;
946
947 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
948 (unsigned long)p->addr, 0, 0);
949 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
950 kprobe_ftrace_enabled++;
951 if (kprobe_ftrace_enabled == 1) {
952 ret = register_ftrace_function(&kprobe_ftrace_ops);
953 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
954 }
955}
956
957/* Caller must lock kprobe_mutex */
958static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
959{
960 int ret;
961
962 kprobe_ftrace_enabled--;
963 if (kprobe_ftrace_enabled == 0) {
964 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
965 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
966 }
967 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
968 (unsigned long)p->addr, 1, 0);
969 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
970}
971#else /* !CONFIG_KPROBES_ON_FTRACE */
972#define prepare_kprobe(p) arch_prepare_kprobe(p)
973#define arm_kprobe_ftrace(p) do {} while (0)
974#define disarm_kprobe_ftrace(p) do {} while (0)
975#endif
976
977/* Arm a kprobe with text_mutex */
978static void __kprobes arm_kprobe(struct kprobe *kp)
979{
980 if (unlikely(kprobe_ftrace(kp))) {
981 arm_kprobe_ftrace(kp);
982 return;
983 }
984 /*
985 * Here, since __arm_kprobe() doesn't use stop_machine(),
986 * this doesn't cause deadlock on text_mutex. So, we don't
987 * need get_online_cpus().
988 */
989 mutex_lock(&text_mutex);
990 __arm_kprobe(kp);
991 mutex_unlock(&text_mutex);
992}
993
994/* Disarm a kprobe with text_mutex */
995static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
996{
997 if (unlikely(kprobe_ftrace(kp))) {
998 disarm_kprobe_ftrace(kp);
999 return;
1000 }
1001 /* Ditto */
1002 mutex_lock(&text_mutex);
1003 __disarm_kprobe(kp, reopt);
1004 mutex_unlock(&text_mutex);
1005}
1006
1007/*
1008 * Aggregate handlers for multiple kprobes support - these handlers
1009 * take care of invoking the individual kprobe handlers on p->list
1010 */
1011static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1012{
1013 struct kprobe *kp;
1014
1015 list_for_each_entry_rcu(kp, &p->list, list) {
1016 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1017 set_kprobe_instance(kp);
1018 if (kp->pre_handler(kp, regs))
1019 return 1;
1020 }
1021 reset_kprobe_instance();
1022 }
1023 return 0;
1024}
1025
1026static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1027 unsigned long flags)
1028{
1029 struct kprobe *kp;
1030
1031 list_for_each_entry_rcu(kp, &p->list, list) {
1032 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1033 set_kprobe_instance(kp);
1034 kp->post_handler(kp, regs, flags);
1035 reset_kprobe_instance();
1036 }
1037 }
1038}
1039
1040static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041 int trapnr)
1042{
1043 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045 /*
1046 * if we faulted "during" the execution of a user specified
1047 * probe handler, invoke just that probe's fault handler
1048 */
1049 if (cur && cur->fault_handler) {
1050 if (cur->fault_handler(cur, regs, trapnr))
1051 return 1;
1052 }
1053 return 0;
1054}
1055
1056static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1057{
1058 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1059 int ret = 0;
1060
1061 if (cur && cur->break_handler) {
1062 if (cur->break_handler(cur, regs))
1063 ret = 1;
1064 }
1065 reset_kprobe_instance();
1066 return ret;
1067}
1068
1069/* Walks the list and increments nmissed count for multiprobe case */
1070void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1071{
1072 struct kprobe *kp;
1073 if (!kprobe_aggrprobe(p)) {
1074 p->nmissed++;
1075 } else {
1076 list_for_each_entry_rcu(kp, &p->list, list)
1077 kp->nmissed++;
1078 }
1079 return;
1080}
1081
1082void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1083 struct hlist_head *head)
1084{
1085 struct kretprobe *rp = ri->rp;
1086
1087 /* remove rp inst off the rprobe_inst_table */
1088 hlist_del(&ri->hlist);
1089 INIT_HLIST_NODE(&ri->hlist);
1090 if (likely(rp)) {
1091 raw_spin_lock(&rp->lock);
1092 hlist_add_head(&ri->hlist, &rp->free_instances);
1093 raw_spin_unlock(&rp->lock);
1094 } else
1095 /* Unregistering */
1096 hlist_add_head(&ri->hlist, head);
1097}
1098
1099void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1100 struct hlist_head **head, unsigned long *flags)
1101__acquires(hlist_lock)
1102{
1103 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1104 raw_spinlock_t *hlist_lock;
1105
1106 *head = &kretprobe_inst_table[hash];
1107 hlist_lock = kretprobe_table_lock_ptr(hash);
1108 raw_spin_lock_irqsave(hlist_lock, *flags);
1109}
1110
1111static void __kprobes kretprobe_table_lock(unsigned long hash,
1112 unsigned long *flags)
1113__acquires(hlist_lock)
1114{
1115 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1116 raw_spin_lock_irqsave(hlist_lock, *flags);
1117}
1118
1119void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1120 unsigned long *flags)
1121__releases(hlist_lock)
1122{
1123 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1124 raw_spinlock_t *hlist_lock;
1125
1126 hlist_lock = kretprobe_table_lock_ptr(hash);
1127 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1128}
1129
1130static void __kprobes kretprobe_table_unlock(unsigned long hash,
1131 unsigned long *flags)
1132__releases(hlist_lock)
1133{
1134 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1135 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136}
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void __kprobes kprobe_flush_task(struct task_struct *tk)
1145{
1146 struct kretprobe_instance *ri;
1147 struct hlist_head *head, empty_rp;
1148 struct hlist_node *tmp;
1149 unsigned long hash, flags = 0;
1150
1151 if (unlikely(!kprobes_initialized))
1152 /* Early boot. kretprobe_table_locks not yet initialized. */
1153 return;
1154
1155 INIT_HLIST_HEAD(&empty_rp);
1156 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 head = &kretprobe_inst_table[hash];
1158 kretprobe_table_lock(hash, &flags);
1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 if (ri->task == tk)
1161 recycle_rp_inst(ri, &empty_rp);
1162 }
1163 kretprobe_table_unlock(hash, &flags);
1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 hlist_del(&ri->hlist);
1166 kfree(ri);
1167 }
1168}
1169
1170static inline void free_rp_inst(struct kretprobe *rp)
1171{
1172 struct kretprobe_instance *ri;
1173 struct hlist_node *next;
1174
1175 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 hlist_del(&ri->hlist);
1177 kfree(ri);
1178 }
1179}
1180
1181static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1182{
1183 unsigned long flags, hash;
1184 struct kretprobe_instance *ri;
1185 struct hlist_node *next;
1186 struct hlist_head *head;
1187
1188 /* No race here */
1189 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 kretprobe_table_lock(hash, &flags);
1191 head = &kretprobe_inst_table[hash];
1192 hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 if (ri->rp == rp)
1194 ri->rp = NULL;
1195 }
1196 kretprobe_table_unlock(hash, &flags);
1197 }
1198 free_rp_inst(rp);
1199}
1200
1201/*
1202* Add the new probe to ap->list. Fail if this is the
1203* second jprobe at the address - two jprobes can't coexist
1204*/
1205static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1206{
1207 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1208
1209 if (p->break_handler || p->post_handler)
1210 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1211
1212 if (p->break_handler) {
1213 if (ap->break_handler)
1214 return -EEXIST;
1215 list_add_tail_rcu(&p->list, &ap->list);
1216 ap->break_handler = aggr_break_handler;
1217 } else
1218 list_add_rcu(&p->list, &ap->list);
1219 if (p->post_handler && !ap->post_handler)
1220 ap->post_handler = aggr_post_handler;
1221
1222 return 0;
1223}
1224
1225/*
1226 * Fill in the required fields of the "manager kprobe". Replace the
1227 * earlier kprobe in the hlist with the manager kprobe
1228 */
1229static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1230{
1231 /* Copy p's insn slot to ap */
1232 copy_kprobe(p, ap);
1233 flush_insn_slot(ap);
1234 ap->addr = p->addr;
1235 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1236 ap->pre_handler = aggr_pre_handler;
1237 ap->fault_handler = aggr_fault_handler;
1238 /* We don't care the kprobe which has gone. */
1239 if (p->post_handler && !kprobe_gone(p))
1240 ap->post_handler = aggr_post_handler;
1241 if (p->break_handler && !kprobe_gone(p))
1242 ap->break_handler = aggr_break_handler;
1243
1244 INIT_LIST_HEAD(&ap->list);
1245 INIT_HLIST_NODE(&ap->hlist);
1246
1247 list_add_rcu(&p->list, &ap->list);
1248 hlist_replace_rcu(&p->hlist, &ap->hlist);
1249}
1250
1251/*
1252 * This is the second or subsequent kprobe at the address - handle
1253 * the intricacies
1254 */
1255static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1256 struct kprobe *p)
1257{
1258 int ret = 0;
1259 struct kprobe *ap = orig_p;
1260
1261 /* For preparing optimization, jump_label_text_reserved() is called */
1262 jump_label_lock();
1263 /*
1264 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 */
1267 get_online_cpus();
1268 mutex_lock(&text_mutex);
1269
1270 if (!kprobe_aggrprobe(orig_p)) {
1271 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 ap = alloc_aggr_kprobe(orig_p);
1273 if (!ap) {
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277 init_aggr_kprobe(ap, orig_p);
1278 } else if (kprobe_unused(ap))
1279 /* This probe is going to die. Rescue it */
1280 reuse_unused_kprobe(ap);
1281
1282 if (kprobe_gone(ap)) {
1283 /*
1284 * Attempting to insert new probe at the same location that
1285 * had a probe in the module vaddr area which already
1286 * freed. So, the instruction slot has already been
1287 * released. We need a new slot for the new probe.
1288 */
1289 ret = arch_prepare_kprobe(ap);
1290 if (ret)
1291 /*
1292 * Even if fail to allocate new slot, don't need to
1293 * free aggr_probe. It will be used next time, or
1294 * freed by unregister_kprobe.
1295 */
1296 goto out;
1297
1298 /* Prepare optimized instructions if possible. */
1299 prepare_optimized_kprobe(ap);
1300
1301 /*
1302 * Clear gone flag to prevent allocating new slot again, and
1303 * set disabled flag because it is not armed yet.
1304 */
1305 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 | KPROBE_FLAG_DISABLED;
1307 }
1308
1309 /* Copy ap's insn slot to p */
1310 copy_kprobe(ap, p);
1311 ret = add_new_kprobe(ap, p);
1312
1313out:
1314 mutex_unlock(&text_mutex);
1315 put_online_cpus();
1316 jump_label_unlock();
1317
1318 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 if (!kprobes_all_disarmed)
1321 /* Arm the breakpoint again. */
1322 arm_kprobe(ap);
1323 }
1324 return ret;
1325}
1326
1327static int __kprobes in_kprobes_functions(unsigned long addr)
1328{
1329 struct kprobe_blackpoint *kb;
1330
1331 if (addr >= (unsigned long)__kprobes_text_start &&
1332 addr < (unsigned long)__kprobes_text_end)
1333 return -EINVAL;
1334 /*
1335 * If there exists a kprobe_blacklist, verify and
1336 * fail any probe registration in the prohibited area
1337 */
1338 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1339 if (kb->start_addr) {
1340 if (addr >= kb->start_addr &&
1341 addr < (kb->start_addr + kb->range))
1342 return -EINVAL;
1343 }
1344 }
1345 return 0;
1346}
1347
1348/*
1349 * If we have a symbol_name argument, look it up and add the offset field
1350 * to it. This way, we can specify a relative address to a symbol.
1351 * This returns encoded errors if it fails to look up symbol or invalid
1352 * combination of parameters.
1353 */
1354static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1355{
1356 kprobe_opcode_t *addr = p->addr;
1357
1358 if ((p->symbol_name && p->addr) ||
1359 (!p->symbol_name && !p->addr))
1360 goto invalid;
1361
1362 if (p->symbol_name) {
1363 kprobe_lookup_name(p->symbol_name, addr);
1364 if (!addr)
1365 return ERR_PTR(-ENOENT);
1366 }
1367
1368 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1369 if (addr)
1370 return addr;
1371
1372invalid:
1373 return ERR_PTR(-EINVAL);
1374}
1375
1376/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1377static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1378{
1379 struct kprobe *ap, *list_p;
1380
1381 ap = get_kprobe(p->addr);
1382 if (unlikely(!ap))
1383 return NULL;
1384
1385 if (p != ap) {
1386 list_for_each_entry_rcu(list_p, &ap->list, list)
1387 if (list_p == p)
1388 /* kprobe p is a valid probe */
1389 goto valid;
1390 return NULL;
1391 }
1392valid:
1393 return ap;
1394}
1395
1396/* Return error if the kprobe is being re-registered */
1397static inline int check_kprobe_rereg(struct kprobe *p)
1398{
1399 int ret = 0;
1400
1401 mutex_lock(&kprobe_mutex);
1402 if (__get_valid_kprobe(p))
1403 ret = -EINVAL;
1404 mutex_unlock(&kprobe_mutex);
1405
1406 return ret;
1407}
1408
1409static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1410 struct module **probed_mod)
1411{
1412 int ret = 0;
1413 unsigned long ftrace_addr;
1414
1415 /*
1416 * If the address is located on a ftrace nop, set the
1417 * breakpoint to the following instruction.
1418 */
1419 ftrace_addr = ftrace_location((unsigned long)p->addr);
1420 if (ftrace_addr) {
1421#ifdef CONFIG_KPROBES_ON_FTRACE
1422 /* Given address is not on the instruction boundary */
1423 if ((unsigned long)p->addr != ftrace_addr)
1424 return -EILSEQ;
1425 p->flags |= KPROBE_FLAG_FTRACE;
1426#else /* !CONFIG_KPROBES_ON_FTRACE */
1427 return -EINVAL;
1428#endif
1429 }
1430
1431 jump_label_lock();
1432 preempt_disable();
1433
1434 /* Ensure it is not in reserved area nor out of text */
1435 if (!kernel_text_address((unsigned long) p->addr) ||
1436 in_kprobes_functions((unsigned long) p->addr) ||
1437 jump_label_text_reserved(p->addr, p->addr)) {
1438 ret = -EINVAL;
1439 goto out;
1440 }
1441
1442 /* Check if are we probing a module */
1443 *probed_mod = __module_text_address((unsigned long) p->addr);
1444 if (*probed_mod) {
1445 /*
1446 * We must hold a refcount of the probed module while updating
1447 * its code to prohibit unexpected unloading.
1448 */
1449 if (unlikely(!try_module_get(*probed_mod))) {
1450 ret = -ENOENT;
1451 goto out;
1452 }
1453
1454 /*
1455 * If the module freed .init.text, we couldn't insert
1456 * kprobes in there.
1457 */
1458 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1459 (*probed_mod)->state != MODULE_STATE_COMING) {
1460 module_put(*probed_mod);
1461 *probed_mod = NULL;
1462 ret = -ENOENT;
1463 }
1464 }
1465out:
1466 preempt_enable();
1467 jump_label_unlock();
1468
1469 return ret;
1470}
1471
1472int __kprobes register_kprobe(struct kprobe *p)
1473{
1474 int ret;
1475 struct kprobe *old_p;
1476 struct module *probed_mod;
1477 kprobe_opcode_t *addr;
1478
1479 /* Adjust probe address from symbol */
1480 addr = kprobe_addr(p);
1481 if (IS_ERR(addr))
1482 return PTR_ERR(addr);
1483 p->addr = addr;
1484
1485 ret = check_kprobe_rereg(p);
1486 if (ret)
1487 return ret;
1488
1489 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1490 p->flags &= KPROBE_FLAG_DISABLED;
1491 p->nmissed = 0;
1492 INIT_LIST_HEAD(&p->list);
1493
1494 ret = check_kprobe_address_safe(p, &probed_mod);
1495 if (ret)
1496 return ret;
1497
1498 mutex_lock(&kprobe_mutex);
1499
1500 old_p = get_kprobe(p->addr);
1501 if (old_p) {
1502 /* Since this may unoptimize old_p, locking text_mutex. */
1503 ret = register_aggr_kprobe(old_p, p);
1504 goto out;
1505 }
1506
1507 mutex_lock(&text_mutex); /* Avoiding text modification */
1508 ret = prepare_kprobe(p);
1509 mutex_unlock(&text_mutex);
1510 if (ret)
1511 goto out;
1512
1513 INIT_HLIST_NODE(&p->hlist);
1514 hlist_add_head_rcu(&p->hlist,
1515 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1516
1517 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1518 arm_kprobe(p);
1519
1520 /* Try to optimize kprobe */
1521 try_to_optimize_kprobe(p);
1522
1523out:
1524 mutex_unlock(&kprobe_mutex);
1525
1526 if (probed_mod)
1527 module_put(probed_mod);
1528
1529 return ret;
1530}
1531EXPORT_SYMBOL_GPL(register_kprobe);
1532
1533/* Check if all probes on the aggrprobe are disabled */
1534static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1535{
1536 struct kprobe *kp;
1537
1538 list_for_each_entry_rcu(kp, &ap->list, list)
1539 if (!kprobe_disabled(kp))
1540 /*
1541 * There is an active probe on the list.
1542 * We can't disable this ap.
1543 */
1544 return 0;
1545
1546 return 1;
1547}
1548
1549/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1550static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1551{
1552 struct kprobe *orig_p;
1553
1554 /* Get an original kprobe for return */
1555 orig_p = __get_valid_kprobe(p);
1556 if (unlikely(orig_p == NULL))
1557 return NULL;
1558
1559 if (!kprobe_disabled(p)) {
1560 /* Disable probe if it is a child probe */
1561 if (p != orig_p)
1562 p->flags |= KPROBE_FLAG_DISABLED;
1563
1564 /* Try to disarm and disable this/parent probe */
1565 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1566 disarm_kprobe(orig_p, true);
1567 orig_p->flags |= KPROBE_FLAG_DISABLED;
1568 }
1569 }
1570
1571 return orig_p;
1572}
1573
1574/*
1575 * Unregister a kprobe without a scheduler synchronization.
1576 */
1577static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1578{
1579 struct kprobe *ap, *list_p;
1580
1581 /* Disable kprobe. This will disarm it if needed. */
1582 ap = __disable_kprobe(p);
1583 if (ap == NULL)
1584 return -EINVAL;
1585
1586 if (ap == p)
1587 /*
1588 * This probe is an independent(and non-optimized) kprobe
1589 * (not an aggrprobe). Remove from the hash list.
1590 */
1591 goto disarmed;
1592
1593 /* Following process expects this probe is an aggrprobe */
1594 WARN_ON(!kprobe_aggrprobe(ap));
1595
1596 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1597 /*
1598 * !disarmed could be happen if the probe is under delayed
1599 * unoptimizing.
1600 */
1601 goto disarmed;
1602 else {
1603 /* If disabling probe has special handlers, update aggrprobe */
1604 if (p->break_handler && !kprobe_gone(p))
1605 ap->break_handler = NULL;
1606 if (p->post_handler && !kprobe_gone(p)) {
1607 list_for_each_entry_rcu(list_p, &ap->list, list) {
1608 if ((list_p != p) && (list_p->post_handler))
1609 goto noclean;
1610 }
1611 ap->post_handler = NULL;
1612 }
1613noclean:
1614 /*
1615 * Remove from the aggrprobe: this path will do nothing in
1616 * __unregister_kprobe_bottom().
1617 */
1618 list_del_rcu(&p->list);
1619 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1620 /*
1621 * Try to optimize this probe again, because post
1622 * handler may have been changed.
1623 */
1624 optimize_kprobe(ap);
1625 }
1626 return 0;
1627
1628disarmed:
1629 BUG_ON(!kprobe_disarmed(ap));
1630 hlist_del_rcu(&ap->hlist);
1631 return 0;
1632}
1633
1634static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1635{
1636 struct kprobe *ap;
1637
1638 if (list_empty(&p->list))
1639 /* This is an independent kprobe */
1640 arch_remove_kprobe(p);
1641 else if (list_is_singular(&p->list)) {
1642 /* This is the last child of an aggrprobe */
1643 ap = list_entry(p->list.next, struct kprobe, list);
1644 list_del(&p->list);
1645 free_aggr_kprobe(ap);
1646 }
1647 /* Otherwise, do nothing. */
1648}
1649
1650int __kprobes register_kprobes(struct kprobe **kps, int num)
1651{
1652 int i, ret = 0;
1653
1654 if (num <= 0)
1655 return -EINVAL;
1656 for (i = 0; i < num; i++) {
1657 ret = register_kprobe(kps[i]);
1658 if (ret < 0) {
1659 if (i > 0)
1660 unregister_kprobes(kps, i);
1661 break;
1662 }
1663 }
1664 return ret;
1665}
1666EXPORT_SYMBOL_GPL(register_kprobes);
1667
1668void __kprobes unregister_kprobe(struct kprobe *p)
1669{
1670 unregister_kprobes(&p, 1);
1671}
1672EXPORT_SYMBOL_GPL(unregister_kprobe);
1673
1674void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1675{
1676 int i;
1677
1678 if (num <= 0)
1679 return;
1680 mutex_lock(&kprobe_mutex);
1681 for (i = 0; i < num; i++)
1682 if (__unregister_kprobe_top(kps[i]) < 0)
1683 kps[i]->addr = NULL;
1684 mutex_unlock(&kprobe_mutex);
1685
1686 synchronize_sched();
1687 for (i = 0; i < num; i++)
1688 if (kps[i]->addr)
1689 __unregister_kprobe_bottom(kps[i]);
1690}
1691EXPORT_SYMBOL_GPL(unregister_kprobes);
1692
1693static struct notifier_block kprobe_exceptions_nb = {
1694 .notifier_call = kprobe_exceptions_notify,
1695 .priority = 0x7fffffff /* we need to be notified first */
1696};
1697
1698unsigned long __weak arch_deref_entry_point(void *entry)
1699{
1700 return (unsigned long)entry;
1701}
1702
1703int __kprobes register_jprobes(struct jprobe **jps, int num)
1704{
1705 struct jprobe *jp;
1706 int ret = 0, i;
1707
1708 if (num <= 0)
1709 return -EINVAL;
1710 for (i = 0; i < num; i++) {
1711 unsigned long addr, offset;
1712 jp = jps[i];
1713 addr = arch_deref_entry_point(jp->entry);
1714
1715 /* Verify probepoint is a function entry point */
1716 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1717 offset == 0) {
1718 jp->kp.pre_handler = setjmp_pre_handler;
1719 jp->kp.break_handler = longjmp_break_handler;
1720 ret = register_kprobe(&jp->kp);
1721 } else
1722 ret = -EINVAL;
1723
1724 if (ret < 0) {
1725 if (i > 0)
1726 unregister_jprobes(jps, i);
1727 break;
1728 }
1729 }
1730 return ret;
1731}
1732EXPORT_SYMBOL_GPL(register_jprobes);
1733
1734int __kprobes register_jprobe(struct jprobe *jp)
1735{
1736 return register_jprobes(&jp, 1);
1737}
1738EXPORT_SYMBOL_GPL(register_jprobe);
1739
1740void __kprobes unregister_jprobe(struct jprobe *jp)
1741{
1742 unregister_jprobes(&jp, 1);
1743}
1744EXPORT_SYMBOL_GPL(unregister_jprobe);
1745
1746void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1747{
1748 int i;
1749
1750 if (num <= 0)
1751 return;
1752 mutex_lock(&kprobe_mutex);
1753 for (i = 0; i < num; i++)
1754 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1755 jps[i]->kp.addr = NULL;
1756 mutex_unlock(&kprobe_mutex);
1757
1758 synchronize_sched();
1759 for (i = 0; i < num; i++) {
1760 if (jps[i]->kp.addr)
1761 __unregister_kprobe_bottom(&jps[i]->kp);
1762 }
1763}
1764EXPORT_SYMBOL_GPL(unregister_jprobes);
1765
1766#ifdef CONFIG_KRETPROBES
1767/*
1768 * This kprobe pre_handler is registered with every kretprobe. When probe
1769 * hits it will set up the return probe.
1770 */
1771static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1772 struct pt_regs *regs)
1773{
1774 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1775 unsigned long hash, flags = 0;
1776 struct kretprobe_instance *ri;
1777
1778 /*TODO: consider to only swap the RA after the last pre_handler fired */
1779 hash = hash_ptr(current, KPROBE_HASH_BITS);
1780 raw_spin_lock_irqsave(&rp->lock, flags);
1781 if (!hlist_empty(&rp->free_instances)) {
1782 ri = hlist_entry(rp->free_instances.first,
1783 struct kretprobe_instance, hlist);
1784 hlist_del(&ri->hlist);
1785 raw_spin_unlock_irqrestore(&rp->lock, flags);
1786
1787 ri->rp = rp;
1788 ri->task = current;
1789
1790 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1791 raw_spin_lock_irqsave(&rp->lock, flags);
1792 hlist_add_head(&ri->hlist, &rp->free_instances);
1793 raw_spin_unlock_irqrestore(&rp->lock, flags);
1794 return 0;
1795 }
1796
1797 arch_prepare_kretprobe(ri, regs);
1798
1799 /* XXX(hch): why is there no hlist_move_head? */
1800 INIT_HLIST_NODE(&ri->hlist);
1801 kretprobe_table_lock(hash, &flags);
1802 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1803 kretprobe_table_unlock(hash, &flags);
1804 } else {
1805 rp->nmissed++;
1806 raw_spin_unlock_irqrestore(&rp->lock, flags);
1807 }
1808 return 0;
1809}
1810
1811int __kprobes register_kretprobe(struct kretprobe *rp)
1812{
1813 int ret = 0;
1814 struct kretprobe_instance *inst;
1815 int i;
1816 void *addr;
1817
1818 if (kretprobe_blacklist_size) {
1819 addr = kprobe_addr(&rp->kp);
1820 if (IS_ERR(addr))
1821 return PTR_ERR(addr);
1822
1823 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1824 if (kretprobe_blacklist[i].addr == addr)
1825 return -EINVAL;
1826 }
1827 }
1828
1829 rp->kp.pre_handler = pre_handler_kretprobe;
1830 rp->kp.post_handler = NULL;
1831 rp->kp.fault_handler = NULL;
1832 rp->kp.break_handler = NULL;
1833
1834 /* Pre-allocate memory for max kretprobe instances */
1835 if (rp->maxactive <= 0) {
1836#ifdef CONFIG_PREEMPT
1837 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1838#else
1839 rp->maxactive = num_possible_cpus();
1840#endif
1841 }
1842 raw_spin_lock_init(&rp->lock);
1843 INIT_HLIST_HEAD(&rp->free_instances);
1844 for (i = 0; i < rp->maxactive; i++) {
1845 inst = kmalloc(sizeof(struct kretprobe_instance) +
1846 rp->data_size, GFP_KERNEL);
1847 if (inst == NULL) {
1848 free_rp_inst(rp);
1849 return -ENOMEM;
1850 }
1851 INIT_HLIST_NODE(&inst->hlist);
1852 hlist_add_head(&inst->hlist, &rp->free_instances);
1853 }
1854
1855 rp->nmissed = 0;
1856 /* Establish function entry probe point */
1857 ret = register_kprobe(&rp->kp);
1858 if (ret != 0)
1859 free_rp_inst(rp);
1860 return ret;
1861}
1862EXPORT_SYMBOL_GPL(register_kretprobe);
1863
1864int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1865{
1866 int ret = 0, i;
1867
1868 if (num <= 0)
1869 return -EINVAL;
1870 for (i = 0; i < num; i++) {
1871 ret = register_kretprobe(rps[i]);
1872 if (ret < 0) {
1873 if (i > 0)
1874 unregister_kretprobes(rps, i);
1875 break;
1876 }
1877 }
1878 return ret;
1879}
1880EXPORT_SYMBOL_GPL(register_kretprobes);
1881
1882void __kprobes unregister_kretprobe(struct kretprobe *rp)
1883{
1884 unregister_kretprobes(&rp, 1);
1885}
1886EXPORT_SYMBOL_GPL(unregister_kretprobe);
1887
1888void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1889{
1890 int i;
1891
1892 if (num <= 0)
1893 return;
1894 mutex_lock(&kprobe_mutex);
1895 for (i = 0; i < num; i++)
1896 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1897 rps[i]->kp.addr = NULL;
1898 mutex_unlock(&kprobe_mutex);
1899
1900 synchronize_sched();
1901 for (i = 0; i < num; i++) {
1902 if (rps[i]->kp.addr) {
1903 __unregister_kprobe_bottom(&rps[i]->kp);
1904 cleanup_rp_inst(rps[i]);
1905 }
1906 }
1907}
1908EXPORT_SYMBOL_GPL(unregister_kretprobes);
1909
1910#else /* CONFIG_KRETPROBES */
1911int __kprobes register_kretprobe(struct kretprobe *rp)
1912{
1913 return -ENOSYS;
1914}
1915EXPORT_SYMBOL_GPL(register_kretprobe);
1916
1917int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1918{
1919 return -ENOSYS;
1920}
1921EXPORT_SYMBOL_GPL(register_kretprobes);
1922
1923void __kprobes unregister_kretprobe(struct kretprobe *rp)
1924{
1925}
1926EXPORT_SYMBOL_GPL(unregister_kretprobe);
1927
1928void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1929{
1930}
1931EXPORT_SYMBOL_GPL(unregister_kretprobes);
1932
1933static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1934 struct pt_regs *regs)
1935{
1936 return 0;
1937}
1938
1939#endif /* CONFIG_KRETPROBES */
1940
1941/* Set the kprobe gone and remove its instruction buffer. */
1942static void __kprobes kill_kprobe(struct kprobe *p)
1943{
1944 struct kprobe *kp;
1945
1946 p->flags |= KPROBE_FLAG_GONE;
1947 if (kprobe_aggrprobe(p)) {
1948 /*
1949 * If this is an aggr_kprobe, we have to list all the
1950 * chained probes and mark them GONE.
1951 */
1952 list_for_each_entry_rcu(kp, &p->list, list)
1953 kp->flags |= KPROBE_FLAG_GONE;
1954 p->post_handler = NULL;
1955 p->break_handler = NULL;
1956 kill_optimized_kprobe(p);
1957 }
1958 /*
1959 * Here, we can remove insn_slot safely, because no thread calls
1960 * the original probed function (which will be freed soon) any more.
1961 */
1962 arch_remove_kprobe(p);
1963}
1964
1965/* Disable one kprobe */
1966int __kprobes disable_kprobe(struct kprobe *kp)
1967{
1968 int ret = 0;
1969
1970 mutex_lock(&kprobe_mutex);
1971
1972 /* Disable this kprobe */
1973 if (__disable_kprobe(kp) == NULL)
1974 ret = -EINVAL;
1975
1976 mutex_unlock(&kprobe_mutex);
1977 return ret;
1978}
1979EXPORT_SYMBOL_GPL(disable_kprobe);
1980
1981/* Enable one kprobe */
1982int __kprobes enable_kprobe(struct kprobe *kp)
1983{
1984 int ret = 0;
1985 struct kprobe *p;
1986
1987 mutex_lock(&kprobe_mutex);
1988
1989 /* Check whether specified probe is valid. */
1990 p = __get_valid_kprobe(kp);
1991 if (unlikely(p == NULL)) {
1992 ret = -EINVAL;
1993 goto out;
1994 }
1995
1996 if (kprobe_gone(kp)) {
1997 /* This kprobe has gone, we couldn't enable it. */
1998 ret = -EINVAL;
1999 goto out;
2000 }
2001
2002 if (p != kp)
2003 kp->flags &= ~KPROBE_FLAG_DISABLED;
2004
2005 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2006 p->flags &= ~KPROBE_FLAG_DISABLED;
2007 arm_kprobe(p);
2008 }
2009out:
2010 mutex_unlock(&kprobe_mutex);
2011 return ret;
2012}
2013EXPORT_SYMBOL_GPL(enable_kprobe);
2014
2015void __kprobes dump_kprobe(struct kprobe *kp)
2016{
2017 printk(KERN_WARNING "Dumping kprobe:\n");
2018 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2019 kp->symbol_name, kp->addr, kp->offset);
2020}
2021
2022/* Module notifier call back, checking kprobes on the module */
2023static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2024 unsigned long val, void *data)
2025{
2026 struct module *mod = data;
2027 struct hlist_head *head;
2028 struct kprobe *p;
2029 unsigned int i;
2030 int checkcore = (val == MODULE_STATE_GOING);
2031
2032 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2033 return NOTIFY_DONE;
2034
2035 /*
2036 * When MODULE_STATE_GOING was notified, both of module .text and
2037 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2038 * notified, only .init.text section would be freed. We need to
2039 * disable kprobes which have been inserted in the sections.
2040 */
2041 mutex_lock(&kprobe_mutex);
2042 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2043 head = &kprobe_table[i];
2044 hlist_for_each_entry_rcu(p, head, hlist)
2045 if (within_module_init((unsigned long)p->addr, mod) ||
2046 (checkcore &&
2047 within_module_core((unsigned long)p->addr, mod))) {
2048 /*
2049 * The vaddr this probe is installed will soon
2050 * be vfreed buy not synced to disk. Hence,
2051 * disarming the breakpoint isn't needed.
2052 */
2053 kill_kprobe(p);
2054 }
2055 }
2056 mutex_unlock(&kprobe_mutex);
2057 return NOTIFY_DONE;
2058}
2059
2060static struct notifier_block kprobe_module_nb = {
2061 .notifier_call = kprobes_module_callback,
2062 .priority = 0
2063};
2064
2065static int __init init_kprobes(void)
2066{
2067 int i, err = 0;
2068 unsigned long offset = 0, size = 0;
2069 char *modname, namebuf[KSYM_NAME_LEN];
2070 const char *symbol_name;
2071 void *addr;
2072 struct kprobe_blackpoint *kb;
2073
2074 /* FIXME allocate the probe table, currently defined statically */
2075 /* initialize all list heads */
2076 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2077 INIT_HLIST_HEAD(&kprobe_table[i]);
2078 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2079 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2080 }
2081
2082 /*
2083 * Lookup and populate the kprobe_blacklist.
2084 *
2085 * Unlike the kretprobe blacklist, we'll need to determine
2086 * the range of addresses that belong to the said functions,
2087 * since a kprobe need not necessarily be at the beginning
2088 * of a function.
2089 */
2090 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2091 kprobe_lookup_name(kb->name, addr);
2092 if (!addr)
2093 continue;
2094
2095 kb->start_addr = (unsigned long)addr;
2096 symbol_name = kallsyms_lookup(kb->start_addr,
2097 &size, &offset, &modname, namebuf);
2098 if (!symbol_name)
2099 kb->range = 0;
2100 else
2101 kb->range = size;
2102 }
2103
2104 if (kretprobe_blacklist_size) {
2105 /* lookup the function address from its name */
2106 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2107 kprobe_lookup_name(kretprobe_blacklist[i].name,
2108 kretprobe_blacklist[i].addr);
2109 if (!kretprobe_blacklist[i].addr)
2110 printk("kretprobe: lookup failed: %s\n",
2111 kretprobe_blacklist[i].name);
2112 }
2113 }
2114
2115#if defined(CONFIG_OPTPROBES)
2116#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2117 /* Init kprobe_optinsn_slots */
2118 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2119#endif
2120 /* By default, kprobes can be optimized */
2121 kprobes_allow_optimization = true;
2122#endif
2123
2124 /* By default, kprobes are armed */
2125 kprobes_all_disarmed = false;
2126
2127 err = arch_init_kprobes();
2128 if (!err)
2129 err = register_die_notifier(&kprobe_exceptions_nb);
2130 if (!err)
2131 err = register_module_notifier(&kprobe_module_nb);
2132
2133 kprobes_initialized = (err == 0);
2134
2135 if (!err)
2136 init_test_probes();
2137 return err;
2138}
2139
2140#ifdef CONFIG_DEBUG_FS
2141static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2142 const char *sym, int offset, char *modname, struct kprobe *pp)
2143{
2144 char *kprobe_type;
2145
2146 if (p->pre_handler == pre_handler_kretprobe)
2147 kprobe_type = "r";
2148 else if (p->pre_handler == setjmp_pre_handler)
2149 kprobe_type = "j";
2150 else
2151 kprobe_type = "k";
2152
2153 if (sym)
2154 seq_printf(pi, "%p %s %s+0x%x %s ",
2155 p->addr, kprobe_type, sym, offset,
2156 (modname ? modname : " "));
2157 else
2158 seq_printf(pi, "%p %s %p ",
2159 p->addr, kprobe_type, p->addr);
2160
2161 if (!pp)
2162 pp = p;
2163 seq_printf(pi, "%s%s%s%s\n",
2164 (kprobe_gone(p) ? "[GONE]" : ""),
2165 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2166 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2167 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2168}
2169
2170static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2171{
2172 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2173}
2174
2175static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2176{
2177 (*pos)++;
2178 if (*pos >= KPROBE_TABLE_SIZE)
2179 return NULL;
2180 return pos;
2181}
2182
2183static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2184{
2185 /* Nothing to do */
2186}
2187
2188static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2189{
2190 struct hlist_head *head;
2191 struct kprobe *p, *kp;
2192 const char *sym = NULL;
2193 unsigned int i = *(loff_t *) v;
2194 unsigned long offset = 0;
2195 char *modname, namebuf[KSYM_NAME_LEN];
2196
2197 head = &kprobe_table[i];
2198 preempt_disable();
2199 hlist_for_each_entry_rcu(p, head, hlist) {
2200 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2201 &offset, &modname, namebuf);
2202 if (kprobe_aggrprobe(p)) {
2203 list_for_each_entry_rcu(kp, &p->list, list)
2204 report_probe(pi, kp, sym, offset, modname, p);
2205 } else
2206 report_probe(pi, p, sym, offset, modname, NULL);
2207 }
2208 preempt_enable();
2209 return 0;
2210}
2211
2212static const struct seq_operations kprobes_seq_ops = {
2213 .start = kprobe_seq_start,
2214 .next = kprobe_seq_next,
2215 .stop = kprobe_seq_stop,
2216 .show = show_kprobe_addr
2217};
2218
2219static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2220{
2221 return seq_open(filp, &kprobes_seq_ops);
2222}
2223
2224static const struct file_operations debugfs_kprobes_operations = {
2225 .open = kprobes_open,
2226 .read = seq_read,
2227 .llseek = seq_lseek,
2228 .release = seq_release,
2229};
2230
2231static void __kprobes arm_all_kprobes(void)
2232{
2233 struct hlist_head *head;
2234 struct kprobe *p;
2235 unsigned int i;
2236
2237 mutex_lock(&kprobe_mutex);
2238
2239 /* If kprobes are armed, just return */
2240 if (!kprobes_all_disarmed)
2241 goto already_enabled;
2242
2243 /* Arming kprobes doesn't optimize kprobe itself */
2244 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 head = &kprobe_table[i];
2246 hlist_for_each_entry_rcu(p, head, hlist)
2247 if (!kprobe_disabled(p))
2248 arm_kprobe(p);
2249 }
2250
2251 kprobes_all_disarmed = false;
2252 printk(KERN_INFO "Kprobes globally enabled\n");
2253
2254already_enabled:
2255 mutex_unlock(&kprobe_mutex);
2256 return;
2257}
2258
2259static void __kprobes disarm_all_kprobes(void)
2260{
2261 struct hlist_head *head;
2262 struct kprobe *p;
2263 unsigned int i;
2264
2265 mutex_lock(&kprobe_mutex);
2266
2267 /* If kprobes are already disarmed, just return */
2268 if (kprobes_all_disarmed) {
2269 mutex_unlock(&kprobe_mutex);
2270 return;
2271 }
2272
2273 kprobes_all_disarmed = true;
2274 printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277 head = &kprobe_table[i];
2278 hlist_for_each_entry_rcu(p, head, hlist) {
2279 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280 disarm_kprobe(p, false);
2281 }
2282 }
2283 mutex_unlock(&kprobe_mutex);
2284
2285 /* Wait for disarming all kprobes by optimizer */
2286 wait_for_kprobe_optimizer();
2287}
2288
2289/*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294static ssize_t read_enabled_file_bool(struct file *file,
2295 char __user *user_buf, size_t count, loff_t *ppos)
2296{
2297 char buf[3];
2298
2299 if (!kprobes_all_disarmed)
2300 buf[0] = '1';
2301 else
2302 buf[0] = '0';
2303 buf[1] = '\n';
2304 buf[2] = 0x00;
2305 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306}
2307
2308static ssize_t write_enabled_file_bool(struct file *file,
2309 const char __user *user_buf, size_t count, loff_t *ppos)
2310{
2311 char buf[32];
2312 size_t buf_size;
2313
2314 buf_size = min(count, (sizeof(buf)-1));
2315 if (copy_from_user(buf, user_buf, buf_size))
2316 return -EFAULT;
2317
2318 buf[buf_size] = '\0';
2319 switch (buf[0]) {
2320 case 'y':
2321 case 'Y':
2322 case '1':
2323 arm_all_kprobes();
2324 break;
2325 case 'n':
2326 case 'N':
2327 case '0':
2328 disarm_all_kprobes();
2329 break;
2330 default:
2331 return -EINVAL;
2332 }
2333
2334 return count;
2335}
2336
2337static const struct file_operations fops_kp = {
2338 .read = read_enabled_file_bool,
2339 .write = write_enabled_file_bool,
2340 .llseek = default_llseek,
2341};
2342
2343static int __kprobes debugfs_kprobe_init(void)
2344{
2345 struct dentry *dir, *file;
2346 unsigned int value = 1;
2347
2348 dir = debugfs_create_dir("kprobes", NULL);
2349 if (!dir)
2350 return -ENOMEM;
2351
2352 file = debugfs_create_file("list", 0444, dir, NULL,
2353 &debugfs_kprobes_operations);
2354 if (!file) {
2355 debugfs_remove(dir);
2356 return -ENOMEM;
2357 }
2358
2359 file = debugfs_create_file("enabled", 0600, dir,
2360 &value, &fops_kp);
2361 if (!file) {
2362 debugfs_remove(dir);
2363 return -ENOMEM;
2364 }
2365
2366 return 0;
2367}
2368
2369late_initcall(debugfs_kprobe_init);
2370#endif /* CONFIG_DEBUG_FS */
2371
2372module_init(init_kprobes);
2373
2374/* defined in arch/.../kernel/kprobes.c */
2375EXPORT_SYMBOL_GPL(jprobe_return);
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61static int kprobes_initialized;
62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65/* NOTE: change this value only with kprobe_mutex held */
66static bool kprobes_all_disarmed;
67
68/* This protects kprobe_table and optimizing_list */
69static DEFINE_MUTEX(kprobe_mutex);
70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77{
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79}
80
81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82{
83 return &(kretprobe_table_locks[hash].lock);
84}
85
86/* Blacklist -- list of struct kprobe_blacklist_entry */
87static LIST_HEAD(kprobe_blacklist);
88
89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90/*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103};
104
105#define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109static int slots_per_page(struct kprobe_insn_cache *c)
110{
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112}
113
114enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118};
119
120void __weak *alloc_insn_page(void)
121{
122 return module_alloc(PAGE_SIZE);
123}
124
125void __weak free_insn_page(void *page)
126{
127 module_memfree(page);
128}
129
130struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return 1 if all garbages are collected, otherwise 0. */
205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225}
226
227static int collect_garbage_slots(struct kprobe_insn_cache *c)
228{
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246}
247
248void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250{
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281}
282
283/*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289{
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304}
305
306#ifdef CONFIG_OPTPROBES
307/* For optimized_kprobe buffer */
308struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315};
316#endif
317#endif
318
319/* We have preemption disabled.. so it is safe to use __ versions */
320static inline void set_kprobe_instance(struct kprobe *kp)
321{
322 __this_cpu_write(kprobe_instance, kp);
323}
324
325static inline void reset_kprobe_instance(void)
326{
327 __this_cpu_write(kprobe_instance, NULL);
328}
329
330/*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336struct kprobe *get_kprobe(void *addr)
337{
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348}
349NOKPROBE_SYMBOL(get_kprobe);
350
351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353/* Return true if the kprobe is an aggregator */
354static inline int kprobe_aggrprobe(struct kprobe *p)
355{
356 return p->pre_handler == aggr_pre_handler;
357}
358
359/* Return true(!0) if the kprobe is unused */
360static inline int kprobe_unused(struct kprobe *p)
361{
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364}
365
366/*
367 * Keep all fields in the kprobe consistent
368 */
369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370{
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373}
374
375#ifdef CONFIG_OPTPROBES
376/* NOTE: change this value only with kprobe_mutex held */
377static bool kprobes_allow_optimization;
378
379/*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384{
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394}
395NOKPROBE_SYMBOL(opt_pre_handler);
396
397/* Free optimized instructions and optimized_kprobe */
398static void free_aggr_kprobe(struct kprobe *p)
399{
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406}
407
408/* Return true(!0) if the kprobe is ready for optimization. */
409static inline int kprobe_optready(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419}
420
421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422static inline int kprobe_disarmed(struct kprobe *p)
423{
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433}
434
435/* Return true(!0) if the probe is queued on (un)optimizing lists */
436static int kprobe_queued(struct kprobe *p)
437{
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446}
447
448/*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452static struct kprobe *get_optimized_kprobe(unsigned long addr)
453{
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469}
470
471/* Optimization staging list, protected by kprobe_mutex */
472static LIST_HEAD(optimizing_list);
473static LIST_HEAD(unoptimizing_list);
474static LIST_HEAD(freeing_list);
475
476static void kprobe_optimizer(struct work_struct *work);
477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478#define OPTIMIZE_DELAY 5
479
480/*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484static void do_optimize_kprobes(void)
485{
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506}
507
508/*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512static void do_unoptimize_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541}
542
543/* Reclaim all kprobes on the free_list */
544static void do_free_cleaned_kprobes(void)
545{
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553}
554
555/* Start optimizer after OPTIMIZE_DELAY passed */
556static void kick_kprobe_optimizer(void)
557{
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559}
560
561/* Kprobe jump optimizer */
562static void kprobe_optimizer(struct work_struct *work)
563{
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599}
600
601/* Wait for completing optimization and unoptimization */
602void wait_for_kprobe_optimizer(void)
603{
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618}
619
620/* Optimize kprobe if p is ready to be optimized */
621static void optimize_kprobe(struct kprobe *p)
622{
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652}
653
654/* Short cut to direct unoptimizing */
655static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656{
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661}
662
663/* Unoptimize a kprobe if p is optimized */
664static void unoptimize_kprobe(struct kprobe *p, bool force)
665{
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700}
701
702/* Cancel unoptimizing for reusing */
703static void reuse_unused_kprobe(struct kprobe *ap)
704{
705 struct optimized_kprobe *op;
706
707 BUG_ON(!kprobe_unused(ap));
708 /*
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
711 */
712 op = container_of(ap, struct optimized_kprobe, kp);
713 if (unlikely(list_empty(&op->list)))
714 printk(KERN_WARNING "Warning: found a stray unused "
715 "aggrprobe@%p\n", ap->addr);
716 /* Enable the probe again */
717 ap->flags &= ~KPROBE_FLAG_DISABLED;
718 /* Optimize it again (remove from op->list) */
719 BUG_ON(!kprobe_optready(ap));
720 optimize_kprobe(ap);
721}
722
723/* Remove optimized instructions */
724static void kill_optimized_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!list_empty(&op->list))
730 /* Dequeue from the (un)optimization queue */
731 list_del_init(&op->list);
732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734 if (kprobe_unused(p)) {
735 /* Enqueue if it is unused */
736 list_add(&op->list, &freeing_list);
737 /*
738 * Remove unused probes from the hash list. After waiting
739 * for synchronization, this probe is reclaimed.
740 * (reclaiming is done by do_free_cleaned_kprobes().)
741 */
742 hlist_del_rcu(&op->kp.hlist);
743 }
744
745 /* Don't touch the code, because it is already freed. */
746 arch_remove_optimized_kprobe(op);
747}
748
749static inline
750void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751{
752 if (!kprobe_ftrace(p))
753 arch_prepare_optimized_kprobe(op, p);
754}
755
756/* Try to prepare optimized instructions */
757static void prepare_optimized_kprobe(struct kprobe *p)
758{
759 struct optimized_kprobe *op;
760
761 op = container_of(p, struct optimized_kprobe, kp);
762 __prepare_optimized_kprobe(op, p);
763}
764
765/* Allocate new optimized_kprobe and try to prepare optimized instructions */
766static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767{
768 struct optimized_kprobe *op;
769
770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 if (!op)
772 return NULL;
773
774 INIT_LIST_HEAD(&op->list);
775 op->kp.addr = p->addr;
776 __prepare_optimized_kprobe(op, p);
777
778 return &op->kp;
779}
780
781static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782
783/*
784 * Prepare an optimized_kprobe and optimize it
785 * NOTE: p must be a normal registered kprobe
786 */
787static void try_to_optimize_kprobe(struct kprobe *p)
788{
789 struct kprobe *ap;
790 struct optimized_kprobe *op;
791
792 /* Impossible to optimize ftrace-based kprobe */
793 if (kprobe_ftrace(p))
794 return;
795
796 /* For preparing optimization, jump_label_text_reserved() is called */
797 cpus_read_lock();
798 jump_label_lock();
799 mutex_lock(&text_mutex);
800
801 ap = alloc_aggr_kprobe(p);
802 if (!ap)
803 goto out;
804
805 op = container_of(ap, struct optimized_kprobe, kp);
806 if (!arch_prepared_optinsn(&op->optinsn)) {
807 /* If failed to setup optimizing, fallback to kprobe */
808 arch_remove_optimized_kprobe(op);
809 kfree(op);
810 goto out;
811 }
812
813 init_aggr_kprobe(ap, p);
814 optimize_kprobe(ap); /* This just kicks optimizer thread */
815
816out:
817 mutex_unlock(&text_mutex);
818 jump_label_unlock();
819 cpus_read_unlock();
820}
821
822#ifdef CONFIG_SYSCTL
823static void optimize_all_kprobes(void)
824{
825 struct hlist_head *head;
826 struct kprobe *p;
827 unsigned int i;
828
829 mutex_lock(&kprobe_mutex);
830 /* If optimization is already allowed, just return */
831 if (kprobes_allow_optimization)
832 goto out;
833
834 cpus_read_lock();
835 kprobes_allow_optimization = true;
836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 head = &kprobe_table[i];
838 hlist_for_each_entry_rcu(p, head, hlist)
839 if (!kprobe_disabled(p))
840 optimize_kprobe(p);
841 }
842 cpus_read_unlock();
843 printk(KERN_INFO "Kprobes globally optimized\n");
844out:
845 mutex_unlock(&kprobe_mutex);
846}
847
848static void unoptimize_all_kprobes(void)
849{
850 struct hlist_head *head;
851 struct kprobe *p;
852 unsigned int i;
853
854 mutex_lock(&kprobe_mutex);
855 /* If optimization is already prohibited, just return */
856 if (!kprobes_allow_optimization) {
857 mutex_unlock(&kprobe_mutex);
858 return;
859 }
860
861 cpus_read_lock();
862 kprobes_allow_optimization = false;
863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 head = &kprobe_table[i];
865 hlist_for_each_entry_rcu(p, head, hlist) {
866 if (!kprobe_disabled(p))
867 unoptimize_kprobe(p, false);
868 }
869 }
870 cpus_read_unlock();
871 mutex_unlock(&kprobe_mutex);
872
873 /* Wait for unoptimizing completion */
874 wait_for_kprobe_optimizer();
875 printk(KERN_INFO "Kprobes globally unoptimized\n");
876}
877
878static DEFINE_MUTEX(kprobe_sysctl_mutex);
879int sysctl_kprobes_optimization;
880int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 void __user *buffer, size_t *length,
882 loff_t *ppos)
883{
884 int ret;
885
886 mutex_lock(&kprobe_sysctl_mutex);
887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889
890 if (sysctl_kprobes_optimization)
891 optimize_all_kprobes();
892 else
893 unoptimize_all_kprobes();
894 mutex_unlock(&kprobe_sysctl_mutex);
895
896 return ret;
897}
898#endif /* CONFIG_SYSCTL */
899
900/* Put a breakpoint for a probe. Must be called with text_mutex locked */
901static void __arm_kprobe(struct kprobe *p)
902{
903 struct kprobe *_p;
904
905 /* Check collision with other optimized kprobes */
906 _p = get_optimized_kprobe((unsigned long)p->addr);
907 if (unlikely(_p))
908 /* Fallback to unoptimized kprobe */
909 unoptimize_kprobe(_p, true);
910
911 arch_arm_kprobe(p);
912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
913}
914
915/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916static void __disarm_kprobe(struct kprobe *p, bool reopt)
917{
918 struct kprobe *_p;
919
920 /* Try to unoptimize */
921 unoptimize_kprobe(p, kprobes_all_disarmed);
922
923 if (!kprobe_queued(p)) {
924 arch_disarm_kprobe(p);
925 /* If another kprobe was blocked, optimize it. */
926 _p = get_optimized_kprobe((unsigned long)p->addr);
927 if (unlikely(_p) && reopt)
928 optimize_kprobe(_p);
929 }
930 /* TODO: reoptimize others after unoptimized this probe */
931}
932
933#else /* !CONFIG_OPTPROBES */
934
935#define optimize_kprobe(p) do {} while (0)
936#define unoptimize_kprobe(p, f) do {} while (0)
937#define kill_optimized_kprobe(p) do {} while (0)
938#define prepare_optimized_kprobe(p) do {} while (0)
939#define try_to_optimize_kprobe(p) do {} while (0)
940#define __arm_kprobe(p) arch_arm_kprobe(p)
941#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
942#define kprobe_disarmed(p) kprobe_disabled(p)
943#define wait_for_kprobe_optimizer() do {} while (0)
944
945/* There should be no unused kprobes can be reused without optimization */
946static void reuse_unused_kprobe(struct kprobe *ap)
947{
948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 BUG_ON(kprobe_unused(ap));
950}
951
952static void free_aggr_kprobe(struct kprobe *p)
953{
954 arch_remove_kprobe(p);
955 kfree(p);
956}
957
958static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959{
960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961}
962#endif /* CONFIG_OPTPROBES */
963
964#ifdef CONFIG_KPROBES_ON_FTRACE
965static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 .func = kprobe_ftrace_handler,
967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968};
969static int kprobe_ftrace_enabled;
970
971/* Must ensure p->addr is really on ftrace */
972static int prepare_kprobe(struct kprobe *p)
973{
974 if (!kprobe_ftrace(p))
975 return arch_prepare_kprobe(p);
976
977 return arch_prepare_kprobe_ftrace(p);
978}
979
980/* Caller must lock kprobe_mutex */
981static int arm_kprobe_ftrace(struct kprobe *p)
982{
983 int ret = 0;
984
985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 (unsigned long)p->addr, 0, 0);
987 if (ret) {
988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 return ret;
990 }
991
992 if (kprobe_ftrace_enabled == 0) {
993 ret = register_ftrace_function(&kprobe_ftrace_ops);
994 if (ret) {
995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 goto err_ftrace;
997 }
998 }
999
1000 kprobe_ftrace_enabled++;
1001 return ret;
1002
1003err_ftrace:
1004 /*
1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 * empty filter_hash which would undesirably trace all functions.
1008 */
1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 return ret;
1011}
1012
1013/* Caller must lock kprobe_mutex */
1014static int disarm_kprobe_ftrace(struct kprobe *p)
1015{
1016 int ret = 0;
1017
1018 if (kprobe_ftrace_enabled == 1) {
1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 return ret;
1022 }
1023
1024 kprobe_ftrace_enabled--;
1025
1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 (unsigned long)p->addr, 1, 0);
1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 return ret;
1030}
1031#else /* !CONFIG_KPROBES_ON_FTRACE */
1032#define prepare_kprobe(p) arch_prepare_kprobe(p)
1033#define arm_kprobe_ftrace(p) (-ENODEV)
1034#define disarm_kprobe_ftrace(p) (-ENODEV)
1035#endif
1036
1037/* Arm a kprobe with text_mutex */
1038static int arm_kprobe(struct kprobe *kp)
1039{
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048
1049 return 0;
1050}
1051
1052/* Disarm a kprobe with text_mutex */
1053static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054{
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1057
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063
1064 return 0;
1065}
1066
1067/*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072{
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1080 }
1081 reset_kprobe_instance();
1082 }
1083 return 0;
1084}
1085NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1089{
1090 struct kprobe *kp;
1091
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1097 }
1098 }
1099}
1100NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1104{
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107 /*
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1110 */
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1114 }
1115 return 0;
1116}
1117NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120{
1121 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 int ret = 0;
1123
1124 if (cur && cur->break_handler) {
1125 if (cur->break_handler(cur, regs))
1126 ret = 1;
1127 }
1128 reset_kprobe_instance();
1129 return ret;
1130}
1131NOKPROBE_SYMBOL(aggr_break_handler);
1132
1133/* Walks the list and increments nmissed count for multiprobe case */
1134void kprobes_inc_nmissed_count(struct kprobe *p)
1135{
1136 struct kprobe *kp;
1137 if (!kprobe_aggrprobe(p)) {
1138 p->nmissed++;
1139 } else {
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->nmissed++;
1142 }
1143 return;
1144}
1145NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147void recycle_rp_inst(struct kretprobe_instance *ri,
1148 struct hlist_head *head)
1149{
1150 struct kretprobe *rp = ri->rp;
1151
1152 /* remove rp inst off the rprobe_inst_table */
1153 hlist_del(&ri->hlist);
1154 INIT_HLIST_NODE(&ri->hlist);
1155 if (likely(rp)) {
1156 raw_spin_lock(&rp->lock);
1157 hlist_add_head(&ri->hlist, &rp->free_instances);
1158 raw_spin_unlock(&rp->lock);
1159 } else
1160 /* Unregistering */
1161 hlist_add_head(&ri->hlist, head);
1162}
1163NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165void kretprobe_hash_lock(struct task_struct *tsk,
1166 struct hlist_head **head, unsigned long *flags)
1167__acquires(hlist_lock)
1168{
1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 raw_spinlock_t *hlist_lock;
1171
1172 *head = &kretprobe_inst_table[hash];
1173 hlist_lock = kretprobe_table_lock_ptr(hash);
1174 raw_spin_lock_irqsave(hlist_lock, *flags);
1175}
1176NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178static void kretprobe_table_lock(unsigned long hash,
1179 unsigned long *flags)
1180__acquires(hlist_lock)
1181{
1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 raw_spin_lock_irqsave(hlist_lock, *flags);
1184}
1185NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187void kretprobe_hash_unlock(struct task_struct *tsk,
1188 unsigned long *flags)
1189__releases(hlist_lock)
1190{
1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 raw_spinlock_t *hlist_lock;
1193
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196}
1197NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199static void kretprobe_table_unlock(unsigned long hash,
1200 unsigned long *flags)
1201__releases(hlist_lock)
1202{
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205}
1206NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
1208/*
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1213 */
1214void kprobe_flush_task(struct task_struct *tk)
1215{
1216 struct kretprobe_instance *ri;
1217 struct hlist_head *head, empty_rp;
1218 struct hlist_node *tmp;
1219 unsigned long hash, flags = 0;
1220
1221 if (unlikely(!kprobes_initialized))
1222 /* Early boot. kretprobe_table_locks not yet initialized. */
1223 return;
1224
1225 INIT_HLIST_HEAD(&empty_rp);
1226 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 head = &kretprobe_inst_table[hash];
1228 kretprobe_table_lock(hash, &flags);
1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 if (ri->task == tk)
1231 recycle_rp_inst(ri, &empty_rp);
1232 }
1233 kretprobe_table_unlock(hash, &flags);
1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 hlist_del(&ri->hlist);
1236 kfree(ri);
1237 }
1238}
1239NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241static inline void free_rp_inst(struct kretprobe *rp)
1242{
1243 struct kretprobe_instance *ri;
1244 struct hlist_node *next;
1245
1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1249 }
1250}
1251
1252static void cleanup_rp_inst(struct kretprobe *rp)
1253{
1254 unsigned long flags, hash;
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257 struct hlist_head *head;
1258
1259 /* No race here */
1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 kretprobe_table_lock(hash, &flags);
1262 head = &kretprobe_inst_table[hash];
1263 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 if (ri->rp == rp)
1265 ri->rp = NULL;
1266 }
1267 kretprobe_table_unlock(hash, &flags);
1268 }
1269 free_rp_inst(rp);
1270}
1271NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273/*
1274* Add the new probe to ap->list. Fail if this is the
1275* second jprobe at the address - two jprobes can't coexist
1276*/
1277static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280
1281 if (p->break_handler || p->post_handler)
1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1283
1284 if (p->break_handler) {
1285 if (ap->break_handler)
1286 return -EEXIST;
1287 list_add_tail_rcu(&p->list, &ap->list);
1288 ap->break_handler = aggr_break_handler;
1289 } else
1290 list_add_rcu(&p->list, &ap->list);
1291 if (p->post_handler && !ap->post_handler)
1292 ap->post_handler = aggr_post_handler;
1293
1294 return 0;
1295}
1296
1297/*
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1300 */
1301static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302{
1303 /* Copy p's insn slot to ap */
1304 copy_kprobe(p, ap);
1305 flush_insn_slot(ap);
1306 ap->addr = p->addr;
1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 ap->pre_handler = aggr_pre_handler;
1309 ap->fault_handler = aggr_fault_handler;
1310 /* We don't care the kprobe which has gone. */
1311 if (p->post_handler && !kprobe_gone(p))
1312 ap->post_handler = aggr_post_handler;
1313 if (p->break_handler && !kprobe_gone(p))
1314 ap->break_handler = aggr_break_handler;
1315
1316 INIT_LIST_HEAD(&ap->list);
1317 INIT_HLIST_NODE(&ap->hlist);
1318
1319 list_add_rcu(&p->list, &ap->list);
1320 hlist_replace_rcu(&p->hlist, &ap->hlist);
1321}
1322
1323/*
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1326 */
1327static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328{
1329 int ret = 0;
1330 struct kprobe *ap = orig_p;
1331
1332 cpus_read_lock();
1333
1334 /* For preparing optimization, jump_label_text_reserved() is called */
1335 jump_label_lock();
1336 mutex_lock(&text_mutex);
1337
1338 if (!kprobe_aggrprobe(orig_p)) {
1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 ap = alloc_aggr_kprobe(orig_p);
1341 if (!ap) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345 init_aggr_kprobe(ap, orig_p);
1346 } else if (kprobe_unused(ap))
1347 /* This probe is going to die. Rescue it */
1348 reuse_unused_kprobe(ap);
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_sched();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408bool within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422
1423 return false;
1424}
1425
1426/*
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1431 */
1432static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 const char *symbol_name, unsigned int offset)
1434{
1435 if ((symbol_name && addr) || (!symbol_name && !addr))
1436 goto invalid;
1437
1438 if (symbol_name) {
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1442 }
1443
1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 if (addr)
1446 return addr;
1447
1448invalid:
1449 return ERR_PTR(-EINVAL);
1450}
1451
1452static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453{
1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455}
1456
1457/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459{
1460 struct kprobe *ap, *list_p;
1461
1462 ap = get_kprobe(p->addr);
1463 if (unlikely(!ap))
1464 return NULL;
1465
1466 if (p != ap) {
1467 list_for_each_entry_rcu(list_p, &ap->list, list)
1468 if (list_p == p)
1469 /* kprobe p is a valid probe */
1470 goto valid;
1471 return NULL;
1472 }
1473valid:
1474 return ap;
1475}
1476
1477/* Return error if the kprobe is being re-registered */
1478static inline int check_kprobe_rereg(struct kprobe *p)
1479{
1480 int ret = 0;
1481
1482 mutex_lock(&kprobe_mutex);
1483 if (__get_valid_kprobe(p))
1484 ret = -EINVAL;
1485 mutex_unlock(&kprobe_mutex);
1486
1487 return ret;
1488}
1489
1490int __weak arch_check_ftrace_location(struct kprobe *p)
1491{
1492 unsigned long ftrace_addr;
1493
1494 ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 if (ftrace_addr) {
1496#ifdef CONFIG_KPROBES_ON_FTRACE
1497 /* Given address is not on the instruction boundary */
1498 if ((unsigned long)p->addr != ftrace_addr)
1499 return -EILSEQ;
1500 p->flags |= KPROBE_FLAG_FTRACE;
1501#else /* !CONFIG_KPROBES_ON_FTRACE */
1502 return -EINVAL;
1503#endif
1504 }
1505 return 0;
1506}
1507
1508static int check_kprobe_address_safe(struct kprobe *p,
1509 struct module **probed_mod)
1510{
1511 int ret;
1512
1513 ret = arch_check_ftrace_location(p);
1514 if (ret)
1515 return ret;
1516 jump_label_lock();
1517 preempt_disable();
1518
1519 /* Ensure it is not in reserved area nor out of text */
1520 if (!kernel_text_address((unsigned long) p->addr) ||
1521 within_kprobe_blacklist((unsigned long) p->addr) ||
1522 jump_label_text_reserved(p->addr, p->addr)) {
1523 ret = -EINVAL;
1524 goto out;
1525 }
1526
1527 /* Check if are we probing a module */
1528 *probed_mod = __module_text_address((unsigned long) p->addr);
1529 if (*probed_mod) {
1530 /*
1531 * We must hold a refcount of the probed module while updating
1532 * its code to prohibit unexpected unloading.
1533 */
1534 if (unlikely(!try_module_get(*probed_mod))) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
1538
1539 /*
1540 * If the module freed .init.text, we couldn't insert
1541 * kprobes in there.
1542 */
1543 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 (*probed_mod)->state != MODULE_STATE_COMING) {
1545 module_put(*probed_mod);
1546 *probed_mod = NULL;
1547 ret = -ENOENT;
1548 }
1549 }
1550out:
1551 preempt_enable();
1552 jump_label_unlock();
1553
1554 return ret;
1555}
1556
1557int register_kprobe(struct kprobe *p)
1558{
1559 int ret;
1560 struct kprobe *old_p;
1561 struct module *probed_mod;
1562 kprobe_opcode_t *addr;
1563
1564 /* Adjust probe address from symbol */
1565 addr = kprobe_addr(p);
1566 if (IS_ERR(addr))
1567 return PTR_ERR(addr);
1568 p->addr = addr;
1569
1570 ret = check_kprobe_rereg(p);
1571 if (ret)
1572 return ret;
1573
1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 p->flags &= KPROBE_FLAG_DISABLED;
1576 p->nmissed = 0;
1577 INIT_LIST_HEAD(&p->list);
1578
1579 ret = check_kprobe_address_safe(p, &probed_mod);
1580 if (ret)
1581 return ret;
1582
1583 mutex_lock(&kprobe_mutex);
1584
1585 old_p = get_kprobe(p->addr);
1586 if (old_p) {
1587 /* Since this may unoptimize old_p, locking text_mutex. */
1588 ret = register_aggr_kprobe(old_p, p);
1589 goto out;
1590 }
1591
1592 cpus_read_lock();
1593 /* Prevent text modification */
1594 mutex_lock(&text_mutex);
1595 ret = prepare_kprobe(p);
1596 mutex_unlock(&text_mutex);
1597 cpus_read_unlock();
1598 if (ret)
1599 goto out;
1600
1601 INIT_HLIST_NODE(&p->hlist);
1602 hlist_add_head_rcu(&p->hlist,
1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604
1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 ret = arm_kprobe(p);
1607 if (ret) {
1608 hlist_del_rcu(&p->hlist);
1609 synchronize_sched();
1610 goto out;
1611 }
1612 }
1613
1614 /* Try to optimize kprobe */
1615 try_to_optimize_kprobe(p);
1616out:
1617 mutex_unlock(&kprobe_mutex);
1618
1619 if (probed_mod)
1620 module_put(probed_mod);
1621
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(register_kprobe);
1625
1626/* Check if all probes on the aggrprobe are disabled */
1627static int aggr_kprobe_disabled(struct kprobe *ap)
1628{
1629 struct kprobe *kp;
1630
1631 list_for_each_entry_rcu(kp, &ap->list, list)
1632 if (!kprobe_disabled(kp))
1633 /*
1634 * There is an active probe on the list.
1635 * We can't disable this ap.
1636 */
1637 return 0;
1638
1639 return 1;
1640}
1641
1642/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643static struct kprobe *__disable_kprobe(struct kprobe *p)
1644{
1645 struct kprobe *orig_p;
1646 int ret;
1647
1648 /* Get an original kprobe for return */
1649 orig_p = __get_valid_kprobe(p);
1650 if (unlikely(orig_p == NULL))
1651 return ERR_PTR(-EINVAL);
1652
1653 if (!kprobe_disabled(p)) {
1654 /* Disable probe if it is a child probe */
1655 if (p != orig_p)
1656 p->flags |= KPROBE_FLAG_DISABLED;
1657
1658 /* Try to disarm and disable this/parent probe */
1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660 /*
1661 * If kprobes_all_disarmed is set, orig_p
1662 * should have already been disarmed, so
1663 * skip unneed disarming process.
1664 */
1665 if (!kprobes_all_disarmed) {
1666 ret = disarm_kprobe(orig_p, true);
1667 if (ret) {
1668 p->flags &= ~KPROBE_FLAG_DISABLED;
1669 return ERR_PTR(ret);
1670 }
1671 }
1672 orig_p->flags |= KPROBE_FLAG_DISABLED;
1673 }
1674 }
1675
1676 return orig_p;
1677}
1678
1679/*
1680 * Unregister a kprobe without a scheduler synchronization.
1681 */
1682static int __unregister_kprobe_top(struct kprobe *p)
1683{
1684 struct kprobe *ap, *list_p;
1685
1686 /* Disable kprobe. This will disarm it if needed. */
1687 ap = __disable_kprobe(p);
1688 if (IS_ERR(ap))
1689 return PTR_ERR(ap);
1690
1691 if (ap == p)
1692 /*
1693 * This probe is an independent(and non-optimized) kprobe
1694 * (not an aggrprobe). Remove from the hash list.
1695 */
1696 goto disarmed;
1697
1698 /* Following process expects this probe is an aggrprobe */
1699 WARN_ON(!kprobe_aggrprobe(ap));
1700
1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702 /*
1703 * !disarmed could be happen if the probe is under delayed
1704 * unoptimizing.
1705 */
1706 goto disarmed;
1707 else {
1708 /* If disabling probe has special handlers, update aggrprobe */
1709 if (p->break_handler && !kprobe_gone(p))
1710 ap->break_handler = NULL;
1711 if (p->post_handler && !kprobe_gone(p)) {
1712 list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 if ((list_p != p) && (list_p->post_handler))
1714 goto noclean;
1715 }
1716 ap->post_handler = NULL;
1717 }
1718noclean:
1719 /*
1720 * Remove from the aggrprobe: this path will do nothing in
1721 * __unregister_kprobe_bottom().
1722 */
1723 list_del_rcu(&p->list);
1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725 /*
1726 * Try to optimize this probe again, because post
1727 * handler may have been changed.
1728 */
1729 optimize_kprobe(ap);
1730 }
1731 return 0;
1732
1733disarmed:
1734 BUG_ON(!kprobe_disarmed(ap));
1735 hlist_del_rcu(&ap->hlist);
1736 return 0;
1737}
1738
1739static void __unregister_kprobe_bottom(struct kprobe *p)
1740{
1741 struct kprobe *ap;
1742
1743 if (list_empty(&p->list))
1744 /* This is an independent kprobe */
1745 arch_remove_kprobe(p);
1746 else if (list_is_singular(&p->list)) {
1747 /* This is the last child of an aggrprobe */
1748 ap = list_entry(p->list.next, struct kprobe, list);
1749 list_del(&p->list);
1750 free_aggr_kprobe(ap);
1751 }
1752 /* Otherwise, do nothing. */
1753}
1754
1755int register_kprobes(struct kprobe **kps, int num)
1756{
1757 int i, ret = 0;
1758
1759 if (num <= 0)
1760 return -EINVAL;
1761 for (i = 0; i < num; i++) {
1762 ret = register_kprobe(kps[i]);
1763 if (ret < 0) {
1764 if (i > 0)
1765 unregister_kprobes(kps, i);
1766 break;
1767 }
1768 }
1769 return ret;
1770}
1771EXPORT_SYMBOL_GPL(register_kprobes);
1772
1773void unregister_kprobe(struct kprobe *p)
1774{
1775 unregister_kprobes(&p, 1);
1776}
1777EXPORT_SYMBOL_GPL(unregister_kprobe);
1778
1779void unregister_kprobes(struct kprobe **kps, int num)
1780{
1781 int i;
1782
1783 if (num <= 0)
1784 return;
1785 mutex_lock(&kprobe_mutex);
1786 for (i = 0; i < num; i++)
1787 if (__unregister_kprobe_top(kps[i]) < 0)
1788 kps[i]->addr = NULL;
1789 mutex_unlock(&kprobe_mutex);
1790
1791 synchronize_sched();
1792 for (i = 0; i < num; i++)
1793 if (kps[i]->addr)
1794 __unregister_kprobe_bottom(kps[i]);
1795}
1796EXPORT_SYMBOL_GPL(unregister_kprobes);
1797
1798int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 unsigned long val, void *data)
1800{
1801 return NOTIFY_DONE;
1802}
1803NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804
1805static struct notifier_block kprobe_exceptions_nb = {
1806 .notifier_call = kprobe_exceptions_notify,
1807 .priority = 0x7fffffff /* we need to be notified first */
1808};
1809
1810unsigned long __weak arch_deref_entry_point(void *entry)
1811{
1812 return (unsigned long)entry;
1813}
1814
1815#if 0
1816int register_jprobes(struct jprobe **jps, int num)
1817{
1818 int ret = 0, i;
1819
1820 if (num <= 0)
1821 return -EINVAL;
1822
1823 for (i = 0; i < num; i++) {
1824 ret = register_jprobe(jps[i]);
1825
1826 if (ret < 0) {
1827 if (i > 0)
1828 unregister_jprobes(jps, i);
1829 break;
1830 }
1831 }
1832
1833 return ret;
1834}
1835EXPORT_SYMBOL_GPL(register_jprobes);
1836
1837int register_jprobe(struct jprobe *jp)
1838{
1839 unsigned long addr, offset;
1840 struct kprobe *kp = &jp->kp;
1841
1842 /*
1843 * Verify probepoint as well as the jprobe handler are
1844 * valid function entry points.
1845 */
1846 addr = arch_deref_entry_point(jp->entry);
1847
1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 kp->pre_handler = setjmp_pre_handler;
1851 kp->break_handler = longjmp_break_handler;
1852 return register_kprobe(kp);
1853 }
1854
1855 return -EINVAL;
1856}
1857EXPORT_SYMBOL_GPL(register_jprobe);
1858
1859void unregister_jprobe(struct jprobe *jp)
1860{
1861 unregister_jprobes(&jp, 1);
1862}
1863EXPORT_SYMBOL_GPL(unregister_jprobe);
1864
1865void unregister_jprobes(struct jprobe **jps, int num)
1866{
1867 int i;
1868
1869 if (num <= 0)
1870 return;
1871 mutex_lock(&kprobe_mutex);
1872 for (i = 0; i < num; i++)
1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 jps[i]->kp.addr = NULL;
1875 mutex_unlock(&kprobe_mutex);
1876
1877 synchronize_sched();
1878 for (i = 0; i < num; i++) {
1879 if (jps[i]->kp.addr)
1880 __unregister_kprobe_bottom(&jps[i]->kp);
1881 }
1882}
1883EXPORT_SYMBOL_GPL(unregister_jprobes);
1884#endif
1885
1886#ifdef CONFIG_KRETPROBES
1887/*
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1890 */
1891static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892{
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1896
1897 /*
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1902 */
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1906 }
1907
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917 ri->rp = rp;
1918 ri->task = current;
1919
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1925 }
1926
1927 arch_prepare_kretprobe(ri, regs);
1928
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 }
1938 return 0;
1939}
1940NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943{
1944 return !offset;
1945}
1946
1947bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948{
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951 if (IS_ERR(kp_addr))
1952 return false;
1953
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1957
1958 return true;
1959}
1960
1961int register_kretprobe(struct kretprobe *rp)
1962{
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1967
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1970
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1975
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1979 }
1980 }
1981
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1985 rp->kp.break_handler = NULL;
1986
1987 /* Pre-allocate memory for max kretprobe instances */
1988 if (rp->maxactive <= 0) {
1989#ifdef CONFIG_PREEMPT
1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991#else
1992 rp->maxactive = num_possible_cpus();
1993#endif
1994 }
1995 raw_spin_lock_init(&rp->lock);
1996 INIT_HLIST_HEAD(&rp->free_instances);
1997 for (i = 0; i < rp->maxactive; i++) {
1998 inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 rp->data_size, GFP_KERNEL);
2000 if (inst == NULL) {
2001 free_rp_inst(rp);
2002 return -ENOMEM;
2003 }
2004 INIT_HLIST_NODE(&inst->hlist);
2005 hlist_add_head(&inst->hlist, &rp->free_instances);
2006 }
2007
2008 rp->nmissed = 0;
2009 /* Establish function entry probe point */
2010 ret = register_kprobe(&rp->kp);
2011 if (ret != 0)
2012 free_rp_inst(rp);
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(register_kretprobe);
2016
2017int register_kretprobes(struct kretprobe **rps, int num)
2018{
2019 int ret = 0, i;
2020
2021 if (num <= 0)
2022 return -EINVAL;
2023 for (i = 0; i < num; i++) {
2024 ret = register_kretprobe(rps[i]);
2025 if (ret < 0) {
2026 if (i > 0)
2027 unregister_kretprobes(rps, i);
2028 break;
2029 }
2030 }
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(register_kretprobes);
2034
2035void unregister_kretprobe(struct kretprobe *rp)
2036{
2037 unregister_kretprobes(&rp, 1);
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040
2041void unregister_kretprobes(struct kretprobe **rps, int num)
2042{
2043 int i;
2044
2045 if (num <= 0)
2046 return;
2047 mutex_lock(&kprobe_mutex);
2048 for (i = 0; i < num; i++)
2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 rps[i]->kp.addr = NULL;
2051 mutex_unlock(&kprobe_mutex);
2052
2053 synchronize_sched();
2054 for (i = 0; i < num; i++) {
2055 if (rps[i]->kp.addr) {
2056 __unregister_kprobe_bottom(&rps[i]->kp);
2057 cleanup_rp_inst(rps[i]);
2058 }
2059 }
2060}
2061EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062
2063#else /* CONFIG_KRETPROBES */
2064int register_kretprobe(struct kretprobe *rp)
2065{
2066 return -ENOSYS;
2067}
2068EXPORT_SYMBOL_GPL(register_kretprobe);
2069
2070int register_kretprobes(struct kretprobe **rps, int num)
2071{
2072 return -ENOSYS;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078}
2079EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081void unregister_kretprobes(struct kretprobe **rps, int num)
2082{
2083}
2084EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085
2086static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087{
2088 return 0;
2089}
2090NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091
2092#endif /* CONFIG_KRETPROBES */
2093
2094/* Set the kprobe gone and remove its instruction buffer. */
2095static void kill_kprobe(struct kprobe *p)
2096{
2097 struct kprobe *kp;
2098
2099 p->flags |= KPROBE_FLAG_GONE;
2100 if (kprobe_aggrprobe(p)) {
2101 /*
2102 * If this is an aggr_kprobe, we have to list all the
2103 * chained probes and mark them GONE.
2104 */
2105 list_for_each_entry_rcu(kp, &p->list, list)
2106 kp->flags |= KPROBE_FLAG_GONE;
2107 p->post_handler = NULL;
2108 p->break_handler = NULL;
2109 kill_optimized_kprobe(p);
2110 }
2111 /*
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2114 */
2115 arch_remove_kprobe(p);
2116}
2117
2118/* Disable one kprobe */
2119int disable_kprobe(struct kprobe *kp)
2120{
2121 int ret = 0;
2122 struct kprobe *p;
2123
2124 mutex_lock(&kprobe_mutex);
2125
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2130
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136/* Enable one kprobe */
2137int enable_kprobe(struct kprobe *kp)
2138{
2139 int ret = 0;
2140 struct kprobe *p;
2141
2142 mutex_lock(&kprobe_mutex);
2143
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2155 }
2156
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2165 }
2166out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2169}
2170EXPORT_SYMBOL_GPL(enable_kprobe);
2171
2172void dump_kprobe(struct kprobe *kp)
2173{
2174 printk(KERN_WARNING "Dumping kprobe:\n");
2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 kp->symbol_name, kp->addr, kp->offset);
2177}
2178NOKPROBE_SYMBOL(dump_kprobe);
2179
2180/*
2181 * Lookup and populate the kprobe_blacklist.
2182 *
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2187 */
2188static int __init populate_kprobe_blacklist(unsigned long *start,
2189 unsigned long *end)
2190{
2191 unsigned long *iter;
2192 struct kprobe_blacklist_entry *ent;
2193 unsigned long entry, offset = 0, size = 0;
2194
2195 for (iter = start; iter < end; iter++) {
2196 entry = arch_deref_entry_point((void *)*iter);
2197
2198 if (!kernel_text_address(entry) ||
2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 pr_err("Failed to find blacklist at %p\n",
2201 (void *)entry);
2202 continue;
2203 }
2204
2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 if (!ent)
2207 return -ENOMEM;
2208 ent->start_addr = entry;
2209 ent->end_addr = entry + size;
2210 INIT_LIST_HEAD(&ent->list);
2211 list_add_tail(&ent->list, &kprobe_blacklist);
2212 }
2213 return 0;
2214}
2215
2216/* Module notifier call back, checking kprobes on the module */
2217static int kprobes_module_callback(struct notifier_block *nb,
2218 unsigned long val, void *data)
2219{
2220 struct module *mod = data;
2221 struct hlist_head *head;
2222 struct kprobe *p;
2223 unsigned int i;
2224 int checkcore = (val == MODULE_STATE_GOING);
2225
2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 return NOTIFY_DONE;
2228
2229 /*
2230 * When MODULE_STATE_GOING was notified, both of module .text and
2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 * notified, only .init.text section would be freed. We need to
2233 * disable kprobes which have been inserted in the sections.
2234 */
2235 mutex_lock(&kprobe_mutex);
2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 head = &kprobe_table[i];
2238 hlist_for_each_entry_rcu(p, head, hlist)
2239 if (within_module_init((unsigned long)p->addr, mod) ||
2240 (checkcore &&
2241 within_module_core((unsigned long)p->addr, mod))) {
2242 /*
2243 * The vaddr this probe is installed will soon
2244 * be vfreed buy not synced to disk. Hence,
2245 * disarming the breakpoint isn't needed.
2246 *
2247 * Note, this will also move any optimized probes
2248 * that are pending to be removed from their
2249 * corresponding lists to the freeing_list and
2250 * will not be touched by the delayed
2251 * kprobe_optimizer work handler.
2252 */
2253 kill_kprobe(p);
2254 }
2255 }
2256 mutex_unlock(&kprobe_mutex);
2257 return NOTIFY_DONE;
2258}
2259
2260static struct notifier_block kprobe_module_nb = {
2261 .notifier_call = kprobes_module_callback,
2262 .priority = 0
2263};
2264
2265/* Markers of _kprobe_blacklist section */
2266extern unsigned long __start_kprobe_blacklist[];
2267extern unsigned long __stop_kprobe_blacklist[];
2268
2269static int __init init_kprobes(void)
2270{
2271 int i, err = 0;
2272
2273 /* FIXME allocate the probe table, currently defined statically */
2274 /* initialize all list heads */
2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 INIT_HLIST_HEAD(&kprobe_table[i]);
2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279 }
2280
2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 __stop_kprobe_blacklist);
2283 if (err) {
2284 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 pr_err("Please take care of using kprobes.\n");
2286 }
2287
2288 if (kretprobe_blacklist_size) {
2289 /* lookup the function address from its name */
2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 kretprobe_blacklist[i].addr =
2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 if (!kretprobe_blacklist[i].addr)
2294 printk("kretprobe: lookup failed: %s\n",
2295 kretprobe_blacklist[i].name);
2296 }
2297 }
2298
2299#if defined(CONFIG_OPTPROBES)
2300#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 /* Init kprobe_optinsn_slots */
2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303#endif
2304 /* By default, kprobes can be optimized */
2305 kprobes_allow_optimization = true;
2306#endif
2307
2308 /* By default, kprobes are armed */
2309 kprobes_all_disarmed = false;
2310
2311 err = arch_init_kprobes();
2312 if (!err)
2313 err = register_die_notifier(&kprobe_exceptions_nb);
2314 if (!err)
2315 err = register_module_notifier(&kprobe_module_nb);
2316
2317 kprobes_initialized = (err == 0);
2318
2319 if (!err)
2320 init_test_probes();
2321 return err;
2322}
2323
2324#ifdef CONFIG_DEBUG_FS
2325static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 const char *sym, int offset, char *modname, struct kprobe *pp)
2327{
2328 char *kprobe_type;
2329
2330 if (p->pre_handler == pre_handler_kretprobe)
2331 kprobe_type = "r";
2332 else if (p->pre_handler == setjmp_pre_handler)
2333 kprobe_type = "j";
2334 else
2335 kprobe_type = "k";
2336
2337 if (sym)
2338 seq_printf(pi, "%p %s %s+0x%x %s ",
2339 p->addr, kprobe_type, sym, offset,
2340 (modname ? modname : " "));
2341 else
2342 seq_printf(pi, "%p %s %p ",
2343 p->addr, kprobe_type, p->addr);
2344
2345 if (!pp)
2346 pp = p;
2347 seq_printf(pi, "%s%s%s%s\n",
2348 (kprobe_gone(p) ? "[GONE]" : ""),
2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352}
2353
2354static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355{
2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357}
2358
2359static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360{
2361 (*pos)++;
2362 if (*pos >= KPROBE_TABLE_SIZE)
2363 return NULL;
2364 return pos;
2365}
2366
2367static void kprobe_seq_stop(struct seq_file *f, void *v)
2368{
2369 /* Nothing to do */
2370}
2371
2372static int show_kprobe_addr(struct seq_file *pi, void *v)
2373{
2374 struct hlist_head *head;
2375 struct kprobe *p, *kp;
2376 const char *sym = NULL;
2377 unsigned int i = *(loff_t *) v;
2378 unsigned long offset = 0;
2379 char *modname, namebuf[KSYM_NAME_LEN];
2380
2381 head = &kprobe_table[i];
2382 preempt_disable();
2383 hlist_for_each_entry_rcu(p, head, hlist) {
2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 &offset, &modname, namebuf);
2386 if (kprobe_aggrprobe(p)) {
2387 list_for_each_entry_rcu(kp, &p->list, list)
2388 report_probe(pi, kp, sym, offset, modname, p);
2389 } else
2390 report_probe(pi, p, sym, offset, modname, NULL);
2391 }
2392 preempt_enable();
2393 return 0;
2394}
2395
2396static const struct seq_operations kprobes_seq_ops = {
2397 .start = kprobe_seq_start,
2398 .next = kprobe_seq_next,
2399 .stop = kprobe_seq_stop,
2400 .show = show_kprobe_addr
2401};
2402
2403static int kprobes_open(struct inode *inode, struct file *filp)
2404{
2405 return seq_open(filp, &kprobes_seq_ops);
2406}
2407
2408static const struct file_operations debugfs_kprobes_operations = {
2409 .open = kprobes_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release,
2413};
2414
2415/* kprobes/blacklist -- shows which functions can not be probed */
2416static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417{
2418 return seq_list_start(&kprobe_blacklist, *pos);
2419}
2420
2421static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422{
2423 return seq_list_next(v, &kprobe_blacklist, pos);
2424}
2425
2426static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427{
2428 struct kprobe_blacklist_entry *ent =
2429 list_entry(v, struct kprobe_blacklist_entry, list);
2430
2431 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432 (void *)ent->end_addr, (void *)ent->start_addr);
2433 return 0;
2434}
2435
2436static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 .start = kprobe_blacklist_seq_start,
2438 .next = kprobe_blacklist_seq_next,
2439 .stop = kprobe_seq_stop, /* Reuse void function */
2440 .show = kprobe_blacklist_seq_show,
2441};
2442
2443static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444{
2445 return seq_open(filp, &kprobe_blacklist_seq_ops);
2446}
2447
2448static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 .open = kprobe_blacklist_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release,
2453};
2454
2455static int arm_all_kprobes(void)
2456{
2457 struct hlist_head *head;
2458 struct kprobe *p;
2459 unsigned int i, total = 0, errors = 0;
2460 int err, ret = 0;
2461
2462 mutex_lock(&kprobe_mutex);
2463
2464 /* If kprobes are armed, just return */
2465 if (!kprobes_all_disarmed)
2466 goto already_enabled;
2467
2468 /*
2469 * optimize_kprobe() called by arm_kprobe() checks
2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 * arm_kprobe.
2472 */
2473 kprobes_all_disarmed = false;
2474 /* Arming kprobes doesn't optimize kprobe itself */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 /* Arm all kprobes on a best-effort basis */
2478 hlist_for_each_entry_rcu(p, head, hlist) {
2479 if (!kprobe_disabled(p)) {
2480 err = arm_kprobe(p);
2481 if (err) {
2482 errors++;
2483 ret = err;
2484 }
2485 total++;
2486 }
2487 }
2488 }
2489
2490 if (errors)
2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 errors, total);
2493 else
2494 pr_info("Kprobes globally enabled\n");
2495
2496already_enabled:
2497 mutex_unlock(&kprobe_mutex);
2498 return ret;
2499}
2500
2501static int disarm_all_kprobes(void)
2502{
2503 struct hlist_head *head;
2504 struct kprobe *p;
2505 unsigned int i, total = 0, errors = 0;
2506 int err, ret = 0;
2507
2508 mutex_lock(&kprobe_mutex);
2509
2510 /* If kprobes are already disarmed, just return */
2511 if (kprobes_all_disarmed) {
2512 mutex_unlock(&kprobe_mutex);
2513 return 0;
2514 }
2515
2516 kprobes_all_disarmed = true;
2517
2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 head = &kprobe_table[i];
2520 /* Disarm all kprobes on a best-effort basis */
2521 hlist_for_each_entry_rcu(p, head, hlist) {
2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 err = disarm_kprobe(p, false);
2524 if (err) {
2525 errors++;
2526 ret = err;
2527 }
2528 total++;
2529 }
2530 }
2531 }
2532
2533 if (errors)
2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 errors, total);
2536 else
2537 pr_info("Kprobes globally disabled\n");
2538
2539 mutex_unlock(&kprobe_mutex);
2540
2541 /* Wait for disarming all kprobes by optimizer */
2542 wait_for_kprobe_optimizer();
2543
2544 return ret;
2545}
2546
2547/*
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2551 */
2552static ssize_t read_enabled_file_bool(struct file *file,
2553 char __user *user_buf, size_t count, loff_t *ppos)
2554{
2555 char buf[3];
2556
2557 if (!kprobes_all_disarmed)
2558 buf[0] = '1';
2559 else
2560 buf[0] = '0';
2561 buf[1] = '\n';
2562 buf[2] = 0x00;
2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564}
2565
2566static ssize_t write_enabled_file_bool(struct file *file,
2567 const char __user *user_buf, size_t count, loff_t *ppos)
2568{
2569 char buf[32];
2570 size_t buf_size;
2571 int ret = 0;
2572
2573 buf_size = min(count, (sizeof(buf)-1));
2574 if (copy_from_user(buf, user_buf, buf_size))
2575 return -EFAULT;
2576
2577 buf[buf_size] = '\0';
2578 switch (buf[0]) {
2579 case 'y':
2580 case 'Y':
2581 case '1':
2582 ret = arm_all_kprobes();
2583 break;
2584 case 'n':
2585 case 'N':
2586 case '0':
2587 ret = disarm_all_kprobes();
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592
2593 if (ret)
2594 return ret;
2595
2596 return count;
2597}
2598
2599static const struct file_operations fops_kp = {
2600 .read = read_enabled_file_bool,
2601 .write = write_enabled_file_bool,
2602 .llseek = default_llseek,
2603};
2604
2605static int __init debugfs_kprobe_init(void)
2606{
2607 struct dentry *dir, *file;
2608 unsigned int value = 1;
2609
2610 dir = debugfs_create_dir("kprobes", NULL);
2611 if (!dir)
2612 return -ENOMEM;
2613
2614 file = debugfs_create_file("list", 0444, dir, NULL,
2615 &debugfs_kprobes_operations);
2616 if (!file)
2617 goto error;
2618
2619 file = debugfs_create_file("enabled", 0600, dir,
2620 &value, &fops_kp);
2621 if (!file)
2622 goto error;
2623
2624 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 &debugfs_kprobe_blacklist_ops);
2626 if (!file)
2627 goto error;
2628
2629 return 0;
2630
2631error:
2632 debugfs_remove(dir);
2633 return -ENOMEM;
2634}
2635
2636late_initcall(debugfs_kprobe_init);
2637#endif /* CONFIG_DEBUG_FS */
2638
2639module_init(init_kprobes);
2640
2641/* defined in arch/.../kernel/kprobes.c */
2642EXPORT_SYMBOL_GPL(jprobe_return);