Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/atomic.h>
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
143#else
144 "PROMPT=kdb> ",
145#endif
146 "MOREPROMPT=more> ",
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = ARRAY_SIZE(__env);
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 if (in_dbg_master()) {
685 kdb_printf("Command only available during kdb_init()\n");
686 return KDB_NOTIMP;
687 }
688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
689 GFP_KDB);
690 if (!defcmd_set)
691 goto fail_defcmd;
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 if (!s->name)
699 goto fail_name;
700 s->usage = kdb_strdup(argv[2], GFP_KDB);
701 if (!s->usage)
702 goto fail_usage;
703 s->help = kdb_strdup(argv[3], GFP_KDB);
704 if (!s->help)
705 goto fail_help;
706 if (s->usage[0] == '"') {
707 strcpy(s->usage, argv[2]+1);
708 s->usage[strlen(s->usage)-1] = '\0';
709 }
710 if (s->help[0] == '"') {
711 strcpy(s->help, argv[3]+1);
712 s->help[strlen(s->help)-1] = '\0';
713 }
714 ++defcmd_set_count;
715 defcmd_in_progress = 1;
716 kfree(save_defcmd_set);
717 return 0;
718fail_help:
719 kfree(s->usage);
720fail_usage:
721 kfree(s->name);
722fail_name:
723 kfree(defcmd_set);
724fail_defcmd:
725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
726 defcmd_set = save_defcmd_set;
727 return KDB_NOTIMP;
728}
729
730/*
731 * kdb_exec_defcmd - Execute the set of commands associated with this
732 * defcmd name.
733 * Inputs:
734 * argc argument count
735 * argv argument vector
736 * Returns:
737 * zero for success, a kdb diagnostic if error
738 */
739static int kdb_exec_defcmd(int argc, const char **argv)
740{
741 int i, ret;
742 struct defcmd_set *s;
743 if (argc != 0)
744 return KDB_ARGCOUNT;
745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
746 if (strcmp(s->name, argv[0]) == 0)
747 break;
748 }
749 if (i == defcmd_set_count) {
750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
751 argv[0]);
752 return KDB_NOTIMP;
753 }
754 for (i = 0; i < s->count; ++i) {
755 /* Recursive use of kdb_parse, do not use argv after
756 * this point */
757 argv = NULL;
758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
759 ret = kdb_parse(s->command[i]);
760 if (ret)
761 return ret;
762 }
763 return 0;
764}
765
766/* Command history */
767#define KDB_CMD_HISTORY_COUNT 32
768#define CMD_BUFLEN 200 /* kdb_printf: max printline
769 * size == 256 */
770static unsigned int cmd_head, cmd_tail;
771static unsigned int cmdptr;
772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
773static char cmd_cur[CMD_BUFLEN];
774
775/*
776 * The "str" argument may point to something like | grep xyz
777 */
778static void parse_grep(const char *str)
779{
780 int len;
781 char *cp = (char *)str, *cp2;
782
783 /* sanity check: we should have been called with the \ first */
784 if (*cp != '|')
785 return;
786 cp++;
787 while (isspace(*cp))
788 cp++;
789 if (strncmp(cp, "grep ", 5)) {
790 kdb_printf("invalid 'pipe', see grephelp\n");
791 return;
792 }
793 cp += 5;
794 while (isspace(*cp))
795 cp++;
796 cp2 = strchr(cp, '\n');
797 if (cp2)
798 *cp2 = '\0'; /* remove the trailing newline */
799 len = strlen(cp);
800 if (len == 0) {
801 kdb_printf("invalid 'pipe', see grephelp\n");
802 return;
803 }
804 /* now cp points to a nonzero length search string */
805 if (*cp == '"') {
806 /* allow it be "x y z" by removing the "'s - there must
807 be two of them */
808 cp++;
809 cp2 = strchr(cp, '"');
810 if (!cp2) {
811 kdb_printf("invalid quoted string, see grephelp\n");
812 return;
813 }
814 *cp2 = '\0'; /* end the string where the 2nd " was */
815 }
816 kdb_grep_leading = 0;
817 if (*cp == '^') {
818 kdb_grep_leading = 1;
819 cp++;
820 }
821 len = strlen(cp);
822 kdb_grep_trailing = 0;
823 if (*(cp+len-1) == '$') {
824 kdb_grep_trailing = 1;
825 *(cp+len-1) = '\0';
826 }
827 len = strlen(cp);
828 if (!len)
829 return;
830 if (len >= GREP_LEN) {
831 kdb_printf("search string too long\n");
832 return;
833 }
834 strcpy(kdb_grep_string, cp);
835 kdb_grepping_flag++;
836 return;
837}
838
839/*
840 * kdb_parse - Parse the command line, search the command table for a
841 * matching command and invoke the command function. This
842 * function may be called recursively, if it is, the second call
843 * will overwrite argv and cbuf. It is the caller's
844 * responsibility to save their argv if they recursively call
845 * kdb_parse().
846 * Parameters:
847 * cmdstr The input command line to be parsed.
848 * regs The registers at the time kdb was entered.
849 * Returns:
850 * Zero for success, a kdb diagnostic if failure.
851 * Remarks:
852 * Limited to 20 tokens.
853 *
854 * Real rudimentary tokenization. Basically only whitespace
855 * is considered a token delimeter (but special consideration
856 * is taken of the '=' sign as used by the 'set' command).
857 *
858 * The algorithm used to tokenize the input string relies on
859 * there being at least one whitespace (or otherwise useless)
860 * character between tokens as the character immediately following
861 * the token is altered in-place to a null-byte to terminate the
862 * token string.
863 */
864
865#define MAXARGC 20
866
867int kdb_parse(const char *cmdstr)
868{
869 static char *argv[MAXARGC];
870 static int argc;
871 static char cbuf[CMD_BUFLEN+2];
872 char *cp;
873 char *cpp, quoted;
874 kdbtab_t *tp;
875 int i, escaped, ignore_errors = 0, check_grep;
876
877 /*
878 * First tokenize the command string.
879 */
880 cp = (char *)cmdstr;
881 kdb_grepping_flag = check_grep = 0;
882
883 if (KDB_FLAG(CMD_INTERRUPT)) {
884 /* Previous command was interrupted, newline must not
885 * repeat the command */
886 KDB_FLAG_CLEAR(CMD_INTERRUPT);
887 KDB_STATE_SET(PAGER);
888 argc = 0; /* no repeat */
889 }
890
891 if (*cp != '\n' && *cp != '\0') {
892 argc = 0;
893 cpp = cbuf;
894 while (*cp) {
895 /* skip whitespace */
896 while (isspace(*cp))
897 cp++;
898 if ((*cp == '\0') || (*cp == '\n') ||
899 (*cp == '#' && !defcmd_in_progress))
900 break;
901 /* special case: check for | grep pattern */
902 if (*cp == '|') {
903 check_grep++;
904 break;
905 }
906 if (cpp >= cbuf + CMD_BUFLEN) {
907 kdb_printf("kdb_parse: command buffer "
908 "overflow, command ignored\n%s\n",
909 cmdstr);
910 return KDB_NOTFOUND;
911 }
912 if (argc >= MAXARGC - 1) {
913 kdb_printf("kdb_parse: too many arguments, "
914 "command ignored\n%s\n", cmdstr);
915 return KDB_NOTFOUND;
916 }
917 argv[argc++] = cpp;
918 escaped = 0;
919 quoted = '\0';
920 /* Copy to next unquoted and unescaped
921 * whitespace or '=' */
922 while (*cp && *cp != '\n' &&
923 (escaped || quoted || !isspace(*cp))) {
924 if (cpp >= cbuf + CMD_BUFLEN)
925 break;
926 if (escaped) {
927 escaped = 0;
928 *cpp++ = *cp++;
929 continue;
930 }
931 if (*cp == '\\') {
932 escaped = 1;
933 ++cp;
934 continue;
935 }
936 if (*cp == quoted)
937 quoted = '\0';
938 else if (*cp == '\'' || *cp == '"')
939 quoted = *cp;
940 *cpp = *cp++;
941 if (*cpp == '=' && !quoted)
942 break;
943 ++cpp;
944 }
945 *cpp++ = '\0'; /* Squash a ws or '=' character */
946 }
947 }
948 if (!argc)
949 return 0;
950 if (check_grep)
951 parse_grep(cp);
952 if (defcmd_in_progress) {
953 int result = kdb_defcmd2(cmdstr, argv[0]);
954 if (!defcmd_in_progress) {
955 argc = 0; /* avoid repeat on endefcmd */
956 *(argv[0]) = '\0';
957 }
958 return result;
959 }
960 if (argv[0][0] == '-' && argv[0][1] &&
961 (argv[0][1] < '0' || argv[0][1] > '9')) {
962 ignore_errors = 1;
963 ++argv[0];
964 }
965
966 for_each_kdbcmd(tp, i) {
967 if (tp->cmd_name) {
968 /*
969 * If this command is allowed to be abbreviated,
970 * check to see if this is it.
971 */
972
973 if (tp->cmd_minlen
974 && (strlen(argv[0]) <= tp->cmd_minlen)) {
975 if (strncmp(argv[0],
976 tp->cmd_name,
977 tp->cmd_minlen) == 0) {
978 break;
979 }
980 }
981
982 if (strcmp(argv[0], tp->cmd_name) == 0)
983 break;
984 }
985 }
986
987 /*
988 * If we don't find a command by this name, see if the first
989 * few characters of this match any of the known commands.
990 * e.g., md1c20 should match md.
991 */
992 if (i == kdb_max_commands) {
993 for_each_kdbcmd(tp, i) {
994 if (tp->cmd_name) {
995 if (strncmp(argv[0],
996 tp->cmd_name,
997 strlen(tp->cmd_name)) == 0) {
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 if (i < kdb_max_commands) {
1005 int result;
1006 KDB_STATE_SET(CMD);
1007 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008 if (result && ignore_errors && result > KDB_CMD_GO)
1009 result = 0;
1010 KDB_STATE_CLEAR(CMD);
1011 switch (tp->cmd_repeat) {
1012 case KDB_REPEAT_NONE:
1013 argc = 0;
1014 if (argv[0])
1015 *(argv[0]) = '\0';
1016 break;
1017 case KDB_REPEAT_NO_ARGS:
1018 argc = 1;
1019 if (argv[1])
1020 *(argv[1]) = '\0';
1021 break;
1022 case KDB_REPEAT_WITH_ARGS:
1023 break;
1024 }
1025 return result;
1026 }
1027
1028 /*
1029 * If the input with which we were presented does not
1030 * map to an existing command, attempt to parse it as an
1031 * address argument and display the result. Useful for
1032 * obtaining the address of a variable, or the nearest symbol
1033 * to an address contained in a register.
1034 */
1035 {
1036 unsigned long value;
1037 char *name = NULL;
1038 long offset;
1039 int nextarg = 0;
1040
1041 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042 &value, &offset, &name)) {
1043 return KDB_NOTFOUND;
1044 }
1045
1046 kdb_printf("%s = ", argv[0]);
1047 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048 kdb_printf("\n");
1049 return 0;
1050 }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P 16
1057#define CTRL_N 14
1058
1059 /* initial situation */
1060 if (cmd_head == cmd_tail)
1061 return 0;
1062 switch (*cmd) {
1063 case CTRL_P:
1064 if (cmdptr != cmd_tail)
1065 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067 return 1;
1068 case CTRL_N:
1069 if (cmdptr != cmd_head)
1070 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072 return 1;
1073 }
1074 return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command. Reboot
1079 * the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083 emergency_restart();
1084 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085 while (1)
1086 cpu_relax();
1087 /* NOTREACHED */
1088 return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093 int old_lvl = console_loglevel;
1094 console_loglevel = 15;
1095 kdb_trap_printk++;
1096 show_regs(regs);
1097 kdb_trap_printk--;
1098 kdb_printf("\n");
1099 console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104 kdb_current_task = p;
1105
1106 if (kdb_task_has_cpu(p)) {
1107 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108 return;
1109 }
1110 kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb. This routine is invoked on a
1115 * specific processor, it is not global. The main kdb() routine
1116 * ensures that only one processor at a time is in this routine.
1117 * This code is called with the real reason code on the first
1118 * entry to a kdb session, thereafter it is called with reason
1119 * SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 * reason The reason KDB was invoked
1122 * error The hardware-defined error code
1123 * regs The exception frame at time of fault/breakpoint.
1124 * db_result Result code from the break or debug point.
1125 * Returns:
1126 * 0 KDB was invoked for an event which it wasn't responsible
1127 * 1 KDB handled the event for which it was invoked.
1128 * KDB_CMD_GO User typed 'go'.
1129 * KDB_CMD_CPU User switched to another cpu.
1130 * KDB_CMD_SS Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133 kdb_dbtrap_t db_result)
1134{
1135 char *cmdbuf;
1136 int diag;
1137 struct task_struct *kdb_current =
1138 kdb_curr_task(raw_smp_processor_id());
1139
1140 KDB_DEBUG_STATE("kdb_local 1", reason);
1141 kdb_go_count = 0;
1142 if (reason == KDB_REASON_DEBUG) {
1143 /* special case below */
1144 } else {
1145 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146 kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 }
1151
1152 switch (reason) {
1153 case KDB_REASON_DEBUG:
1154 {
1155 /*
1156 * If re-entering kdb after a single step
1157 * command, don't print the message.
1158 */
1159 switch (db_result) {
1160 case KDB_DB_BPT:
1161 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162 kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164 kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167 instruction_pointer(regs));
1168 break;
1169 case KDB_DB_SS:
1170 break;
1171 case KDB_DB_SSBPT:
1172 KDB_DEBUG_STATE("kdb_local 4", reason);
1173 return 1; /* kdba_db_trap did the work */
1174 default:
1175 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176 db_result);
1177 break;
1178 }
1179
1180 }
1181 break;
1182 case KDB_REASON_ENTER:
1183 if (KDB_STATE(KEYBOARD))
1184 kdb_printf("due to Keyboard Entry\n");
1185 else
1186 kdb_printf("due to KDB_ENTER()\n");
1187 break;
1188 case KDB_REASON_KEYBOARD:
1189 KDB_STATE_SET(KEYBOARD);
1190 kdb_printf("due to Keyboard Entry\n");
1191 break;
1192 case KDB_REASON_ENTER_SLAVE:
1193 /* drop through, slaves only get released via cpu switch */
1194 case KDB_REASON_SWITCH:
1195 kdb_printf("due to cpu switch\n");
1196 break;
1197 case KDB_REASON_OOPS:
1198 kdb_printf("Oops: %s\n", kdb_diemsg);
1199 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 kdb_dumpregs(regs);
1202 break;
1203 case KDB_REASON_SYSTEM_NMI:
1204 kdb_printf("due to System NonMaskable Interrupt\n");
1205 break;
1206 case KDB_REASON_NMI:
1207 kdb_printf("due to NonMaskable Interrupt @ "
1208 kdb_machreg_fmt "\n",
1209 instruction_pointer(regs));
1210 kdb_dumpregs(regs);
1211 break;
1212 case KDB_REASON_SSTEP:
1213 case KDB_REASON_BREAK:
1214 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215 reason == KDB_REASON_BREAK ?
1216 "Breakpoint" : "SS trap", instruction_pointer(regs));
1217 /*
1218 * Determine if this breakpoint is one that we
1219 * are interested in.
1220 */
1221 if (db_result != KDB_DB_BPT) {
1222 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223 db_result);
1224 KDB_DEBUG_STATE("kdb_local 6", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227 break;
1228 case KDB_REASON_RECURSE:
1229 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230 instruction_pointer(regs));
1231 break;
1232 default:
1233 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234 KDB_DEBUG_STATE("kdb_local 8", reason);
1235 return 0; /* Not for us, dismiss it */
1236 }
1237
1238 while (1) {
1239 /*
1240 * Initialize pager context.
1241 */
1242 kdb_nextline = 1;
1243 KDB_STATE_CLEAR(SUPPRESS);
1244
1245 cmdbuf = cmd_cur;
1246 *cmdbuf = '\0';
1247 *(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252 raw_smp_processor_id());
1253#else
1254 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256 if (defcmd_in_progress)
1257 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259 /*
1260 * Fetch command from keyboard
1261 */
1262 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263 if (*cmdbuf != '\n') {
1264 if (*cmdbuf < 32) {
1265 if (cmdptr == cmd_head) {
1266 strncpy(cmd_hist[cmd_head], cmd_cur,
1267 CMD_BUFLEN);
1268 *(cmd_hist[cmd_head] +
1269 strlen(cmd_hist[cmd_head])-1) = '\0';
1270 }
1271 if (!handle_ctrl_cmd(cmdbuf))
1272 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273 cmdbuf = cmd_cur;
1274 goto do_full_getstr;
1275 } else {
1276 strncpy(cmd_hist[cmd_head], cmd_cur,
1277 CMD_BUFLEN);
1278 }
1279
1280 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281 if (cmd_head == cmd_tail)
1282 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283 }
1284
1285 cmdptr = cmd_head;
1286 diag = kdb_parse(cmdbuf);
1287 if (diag == KDB_NOTFOUND) {
1288 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289 diag = 0;
1290 }
1291 if (diag == KDB_CMD_GO
1292 || diag == KDB_CMD_CPU
1293 || diag == KDB_CMD_SS
1294 || diag == KDB_CMD_KGDB)
1295 break;
1296
1297 if (diag)
1298 kdb_cmderror(diag);
1299 }
1300 KDB_DEBUG_STATE("kdb_local 9", diag);
1301 return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 * for debugging.
1308 * Inputs:
1309 * text Identifies the debug point
1310 * value Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316 kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 * controlling cpu, all cpus are in this loop. One cpu is in
1322 * control and will issue the kdb prompt, the others will spin
1323 * until 'go' or cpu switch.
1324 *
1325 * To get a consistent view of the kernel stacks for all
1326 * processes, this routine is invoked from the main kdb code via
1327 * an architecture specific routine. kdba_main_loop is
1328 * responsible for making the kernel stacks consistent for all
1329 * processes, there should be no difference between a blocked
1330 * process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 * reason The reason KDB was invoked
1333 * error The hardware-defined error code
1334 * reason2 kdb's current reason code.
1335 * Initially error but can change
1336 * according to kdb state.
1337 * db_result Result code from break or debug point.
1338 * regs The exception frame at time of fault/breakpoint.
1339 * should always be valid.
1340 * Returns:
1341 * 0 KDB was invoked for an event which it wasn't responsible
1342 * 1 KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345 kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347 int result = 1;
1348 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1349 while (1) {
1350 /*
1351 * All processors except the one that is in control
1352 * will spin here.
1353 */
1354 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355 while (KDB_STATE(HOLD_CPU)) {
1356 /* state KDB is turned off by kdb_cpu to see if the
1357 * other cpus are still live, each cpu in this loop
1358 * turns it back on.
1359 */
1360 if (!KDB_STATE(KDB))
1361 KDB_STATE_SET(KDB);
1362 }
1363
1364 KDB_STATE_CLEAR(SUPPRESS);
1365 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366 if (KDB_STATE(LEAVING))
1367 break; /* Another cpu said 'go' */
1368 /* Still using kdb, this processor is in control */
1369 result = kdb_local(reason2, error, regs, db_result);
1370 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372 if (result == KDB_CMD_CPU)
1373 break;
1374
1375 if (result == KDB_CMD_SS) {
1376 KDB_STATE_SET(DOING_SS);
1377 break;
1378 }
1379
1380 if (result == KDB_CMD_KGDB) {
1381 if (!KDB_STATE(DOING_KGDB))
1382 kdb_printf("Entering please attach debugger "
1383 "or use $D#44+ or $3#33\n");
1384 break;
1385 }
1386 if (result && result != 1 && result != KDB_CMD_GO)
1387 kdb_printf("\nUnexpected kdb_local return code %d\n",
1388 result);
1389 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390 break;
1391 }
1392 if (KDB_STATE(DOING_SS))
1393 KDB_STATE_CLEAR(SSBPT);
1394
1395 /* Clean up any keyboard devices before leaving */
1396 kdb_kbd_cleanup_state();
1397
1398 return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 * mdr <addr arg>,<byte count>
1405 * Inputs:
1406 * addr Start address
1407 * count Number of bytes
1408 * Returns:
1409 * Always 0. Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413 unsigned char c;
1414 while (count--) {
1415 if (kdb_getarea(c, addr))
1416 return 0;
1417 kdb_printf("%02x", c);
1418 addr++;
1419 }
1420 kdb_printf("\n");
1421 return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 * 'md8' 'mdr' and 'mds' commands.
1427 *
1428 * md|mds [<addr arg> [<line count> [<radix>]]]
1429 * mdWcN [<addr arg> [<line count> [<radix>]]]
1430 * where W = is the width (1, 2, 4 or 8) and N is the count.
1431 * for eg., md1c20 reads 20 bytes, 1 at a time.
1432 * mdr <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435 int symbolic, int nosect, int bytesperword,
1436 int num, int repeat, int phys)
1437{
1438 /* print just one line of data */
1439 kdb_symtab_t symtab;
1440 char cbuf[32];
1441 char *c = cbuf;
1442 int i;
1443 unsigned long word;
1444
1445 memset(cbuf, '\0', sizeof(cbuf));
1446 if (phys)
1447 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448 else
1449 kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451 for (i = 0; i < num && repeat--; i++) {
1452 if (phys) {
1453 if (kdb_getphysword(&word, addr, bytesperword))
1454 break;
1455 } else if (kdb_getword(&word, addr, bytesperword))
1456 break;
1457 kdb_printf(fmtstr, word);
1458 if (symbolic)
1459 kdbnearsym(word, &symtab);
1460 else
1461 memset(&symtab, 0, sizeof(symtab));
1462 if (symtab.sym_name) {
1463 kdb_symbol_print(word, &symtab, 0);
1464 if (!nosect) {
1465 kdb_printf("\n");
1466 kdb_printf(" %s %s "
1467 kdb_machreg_fmt " "
1468 kdb_machreg_fmt " "
1469 kdb_machreg_fmt, symtab.mod_name,
1470 symtab.sec_name, symtab.sec_start,
1471 symtab.sym_start, symtab.sym_end);
1472 }
1473 addr += bytesperword;
1474 } else {
1475 union {
1476 u64 word;
1477 unsigned char c[8];
1478 } wc;
1479 unsigned char *cp;
1480#ifdef __BIG_ENDIAN
1481 cp = wc.c + 8 - bytesperword;
1482#else
1483 cp = wc.c;
1484#endif
1485 wc.word = word;
1486#define printable_char(c) \
1487 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488 switch (bytesperword) {
1489 case 8:
1490 *c++ = printable_char(*cp++);
1491 *c++ = printable_char(*cp++);
1492 *c++ = printable_char(*cp++);
1493 *c++ = printable_char(*cp++);
1494 addr += 4;
1495 case 4:
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 addr += 2;
1499 case 2:
1500 *c++ = printable_char(*cp++);
1501 addr++;
1502 case 1:
1503 *c++ = printable_char(*cp++);
1504 addr++;
1505 break;
1506 }
1507#undef printable_char
1508 }
1509 }
1510 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511 " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516 static unsigned long last_addr;
1517 static int last_radix, last_bytesperword, last_repeat;
1518 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519 int nosect = 0;
1520 char fmtchar, fmtstr[64];
1521 unsigned long addr;
1522 unsigned long word;
1523 long offset = 0;
1524 int symbolic = 0;
1525 int valid = 0;
1526 int phys = 0;
1527
1528 kdbgetintenv("MDCOUNT", &mdcount);
1529 kdbgetintenv("RADIX", &radix);
1530 kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532 /* Assume 'md <addr>' and start with environment values */
1533 repeat = mdcount * 16 / bytesperword;
1534
1535 if (strcmp(argv[0], "mdr") == 0) {
1536 if (argc != 2)
1537 return KDB_ARGCOUNT;
1538 valid = 1;
1539 } else if (isdigit(argv[0][2])) {
1540 bytesperword = (int)(argv[0][2] - '0');
1541 if (bytesperword == 0) {
1542 bytesperword = last_bytesperword;
1543 if (bytesperword == 0)
1544 bytesperword = 4;
1545 }
1546 last_bytesperword = bytesperword;
1547 repeat = mdcount * 16 / bytesperword;
1548 if (!argv[0][3])
1549 valid = 1;
1550 else if (argv[0][3] == 'c' && argv[0][4]) {
1551 char *p;
1552 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553 mdcount = ((repeat * bytesperword) + 15) / 16;
1554 valid = !*p;
1555 }
1556 last_repeat = repeat;
1557 } else if (strcmp(argv[0], "md") == 0)
1558 valid = 1;
1559 else if (strcmp(argv[0], "mds") == 0)
1560 valid = 1;
1561 else if (strcmp(argv[0], "mdp") == 0) {
1562 phys = valid = 1;
1563 }
1564 if (!valid)
1565 return KDB_NOTFOUND;
1566
1567 if (argc == 0) {
1568 if (last_addr == 0)
1569 return KDB_ARGCOUNT;
1570 addr = last_addr;
1571 radix = last_radix;
1572 bytesperword = last_bytesperword;
1573 repeat = last_repeat;
1574 mdcount = ((repeat * bytesperword) + 15) / 16;
1575 }
1576
1577 if (argc) {
1578 unsigned long val;
1579 int diag, nextarg = 1;
1580 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581 &offset, NULL);
1582 if (diag)
1583 return diag;
1584 if (argc > nextarg+2)
1585 return KDB_ARGCOUNT;
1586
1587 if (argc >= nextarg) {
1588 diag = kdbgetularg(argv[nextarg], &val);
1589 if (!diag) {
1590 mdcount = (int) val;
1591 repeat = mdcount * 16 / bytesperword;
1592 }
1593 }
1594 if (argc >= nextarg+1) {
1595 diag = kdbgetularg(argv[nextarg+1], &val);
1596 if (!diag)
1597 radix = (int) val;
1598 }
1599 }
1600
1601 if (strcmp(argv[0], "mdr") == 0)
1602 return kdb_mdr(addr, mdcount);
1603
1604 switch (radix) {
1605 case 10:
1606 fmtchar = 'd';
1607 break;
1608 case 16:
1609 fmtchar = 'x';
1610 break;
1611 case 8:
1612 fmtchar = 'o';
1613 break;
1614 default:
1615 return KDB_BADRADIX;
1616 }
1617
1618 last_radix = radix;
1619
1620 if (bytesperword > KDB_WORD_SIZE)
1621 return KDB_BADWIDTH;
1622
1623 switch (bytesperword) {
1624 case 8:
1625 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626 break;
1627 case 4:
1628 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629 break;
1630 case 2:
1631 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632 break;
1633 case 1:
1634 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635 break;
1636 default:
1637 return KDB_BADWIDTH;
1638 }
1639
1640 last_repeat = repeat;
1641 last_bytesperword = bytesperword;
1642
1643 if (strcmp(argv[0], "mds") == 0) {
1644 symbolic = 1;
1645 /* Do not save these changes as last_*, they are temporary mds
1646 * overrides.
1647 */
1648 bytesperword = KDB_WORD_SIZE;
1649 repeat = mdcount;
1650 kdbgetintenv("NOSECT", &nosect);
1651 }
1652
1653 /* Round address down modulo BYTESPERWORD */
1654
1655 addr &= ~(bytesperword-1);
1656
1657 while (repeat > 0) {
1658 unsigned long a;
1659 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661 if (KDB_FLAG(CMD_INTERRUPT))
1662 return 0;
1663 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664 if (phys) {
1665 if (kdb_getphysword(&word, a, bytesperword)
1666 || word)
1667 break;
1668 } else if (kdb_getword(&word, a, bytesperword) || word)
1669 break;
1670 }
1671 n = min(num, repeat);
1672 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673 num, repeat, phys);
1674 addr += bytesperword * n;
1675 repeat -= n;
1676 z = (z + num - 1) / num;
1677 if (z > 2) {
1678 int s = num * (z-2);
1679 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680 " zero suppressed\n",
1681 addr, addr + bytesperword * s - 1);
1682 addr += bytesperword * s;
1683 repeat -= s;
1684 }
1685 }
1686 last_addr = addr;
1687
1688 return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 * mm address-expression new-value
1694 * Remarks:
1695 * mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699 int diag;
1700 unsigned long addr;
1701 long offset = 0;
1702 unsigned long contents;
1703 int nextarg;
1704 int width;
1705
1706 if (argv[0][2] && !isdigit(argv[0][2]))
1707 return KDB_NOTFOUND;
1708
1709 if (argc < 2)
1710 return KDB_ARGCOUNT;
1711
1712 nextarg = 1;
1713 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714 if (diag)
1715 return diag;
1716
1717 if (nextarg > argc)
1718 return KDB_ARGCOUNT;
1719 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720 if (diag)
1721 return diag;
1722
1723 if (nextarg != argc + 1)
1724 return KDB_ARGCOUNT;
1725
1726 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727 diag = kdb_putword(addr, contents, width);
1728 if (diag)
1729 return diag;
1730
1731 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733 return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 * go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742 unsigned long addr;
1743 int diag;
1744 int nextarg;
1745 long offset;
1746
1747 if (raw_smp_processor_id() != kdb_initial_cpu) {
1748 kdb_printf("go must execute on the entry cpu, "
1749 "please use \"cpu %d\" and then execute go\n",
1750 kdb_initial_cpu);
1751 return KDB_BADCPUNUM;
1752 }
1753 if (argc == 1) {
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg,
1756 &addr, &offset, NULL);
1757 if (diag)
1758 return diag;
1759 } else if (argc) {
1760 return KDB_ARGCOUNT;
1761 }
1762
1763 diag = KDB_CMD_GO;
1764 if (KDB_FLAG(CATASTROPHIC)) {
1765 kdb_printf("Catastrophic error detected\n");
1766 kdb_printf("kdb_continue_catastrophic=%d, ",
1767 kdb_continue_catastrophic);
1768 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769 kdb_printf("type go a second time if you really want "
1770 "to continue\n");
1771 return 0;
1772 }
1773 if (kdb_continue_catastrophic == 2) {
1774 kdb_printf("forcing reboot\n");
1775 kdb_reboot(0, NULL);
1776 }
1777 kdb_printf("attempting to continue\n");
1778 }
1779 return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787 int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789 int i;
1790 char *rname;
1791 int rsize;
1792 u64 reg64;
1793 u32 reg32;
1794 u16 reg16;
1795 u8 reg8;
1796
1797 if (len)
1798 return len;
1799
1800 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801 rsize = dbg_reg_def[i].size * 2;
1802 if (rsize > 16)
1803 rsize = 2;
1804 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805 len = 0;
1806 kdb_printf("\n");
1807 }
1808 if (len)
1809 len += kdb_printf(" ");
1810 switch(dbg_reg_def[i].size * 8) {
1811 case 8:
1812 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1813 if (!rname)
1814 break;
1815 len += kdb_printf("%s: %02x", rname, reg8);
1816 break;
1817 case 16:
1818 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1819 if (!rname)
1820 break;
1821 len += kdb_printf("%s: %04x", rname, reg16);
1822 break;
1823 case 32:
1824 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1825 if (!rname)
1826 break;
1827 len += kdb_printf("%s: %08x", rname, reg32);
1828 break;
1829 case 64:
1830 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1831 if (!rname)
1832 break;
1833 len += kdb_printf("%s: %016llx", rname, reg64);
1834 break;
1835 default:
1836 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837 }
1838 }
1839 kdb_printf("\n");
1840#else
1841 if (len)
1842 return len;
1843
1844 kdb_dumpregs(kdb_current_regs);
1845#endif
1846 return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify) command.
1851 * rm register-name new-contents
1852 * Remarks:
1853 * Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858 int diag;
1859 const char *rname;
1860 int i;
1861 u64 reg64;
1862 u32 reg32;
1863 u16 reg16;
1864 u8 reg8;
1865
1866 if (argc != 2)
1867 return KDB_ARGCOUNT;
1868 /*
1869 * Allow presence or absence of leading '%' symbol.
1870 */
1871 rname = argv[1];
1872 if (*rname == '%')
1873 rname++;
1874
1875 diag = kdbgetu64arg(argv[2], ®64);
1876 if (diag)
1877 return diag;
1878
1879 diag = kdb_check_regs();
1880 if (diag)
1881 return diag;
1882
1883 diag = KDB_BADREG;
1884 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886 diag = 0;
1887 break;
1888 }
1889 }
1890 if (!diag) {
1891 switch(dbg_reg_def[i].size * 8) {
1892 case 8:
1893 reg8 = reg64;
1894 dbg_set_reg(i, ®8, kdb_current_regs);
1895 break;
1896 case 16:
1897 reg16 = reg64;
1898 dbg_set_reg(i, ®16, kdb_current_regs);
1899 break;
1900 case 32:
1901 reg32 = reg64;
1902 dbg_set_reg(i, ®32, kdb_current_regs);
1903 break;
1904 case 64:
1905 dbg_set_reg(i, ®64, kdb_current_regs);
1906 break;
1907 }
1908 }
1909 return diag;
1910#else
1911 kdb_printf("ERROR: Register set currently not implemented\n");
1912 return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 * sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924 if (argc != 1)
1925 return KDB_ARGCOUNT;
1926 kdb_trap_printk++;
1927 __handle_sysrq(*argv[1], false);
1928 kdb_trap_printk--;
1929
1930 return 0;
1931}
1932#endif /* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 * frame) command. This command takes an address and expects to
1937 * find an exception frame at that address, formats and prints
1938 * it.
1939 * regs address-expression
1940 * Remarks:
1941 * Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945 int diag;
1946 unsigned long addr;
1947 long offset;
1948 int nextarg;
1949
1950 if (argc != 1)
1951 return KDB_ARGCOUNT;
1952
1953 nextarg = 1;
1954 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955 if (diag)
1956 return diag;
1957 show_regs((struct pt_regs *)addr);
1958 return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1964 * currently loaded kernel modules.
1965 * Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969 struct module *mod;
1970
1971 if (argc != 0)
1972 return KDB_ARGCOUNT;
1973
1974 kdb_printf("Module Size modstruct Used by\n");
1975 list_for_each_entry(mod, kdb_modules, list) {
1976 if (mod->state == MODULE_STATE_UNFORMED)
1977 continue;
1978
1979 kdb_printf("%-20s%8u 0x%p ", mod->name,
1980 mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982 kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984 if (mod->state == MODULE_STATE_GOING)
1985 kdb_printf(" (Unloading)");
1986 else if (mod->state == MODULE_STATE_COMING)
1987 kdb_printf(" (Loading)");
1988 else
1989 kdb_printf(" (Live)");
1990 kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993 {
1994 struct module_use *use;
1995 kdb_printf(" [ ");
1996 list_for_each_entry(use, &mod->source_list,
1997 source_list)
1998 kdb_printf("%s ", use->target->name);
1999 kdb_printf("]\n");
2000 }
2001#endif
2002 }
2003
2004 return 0;
2005}
2006
2007#endif /* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command. Display the
2011 * current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016 int i;
2017
2018 for (i = 0; i < __nenv; i++) {
2019 if (__env[i])
2020 kdb_printf("%s\n", __env[i]);
2021 }
2022
2023 if (KDB_DEBUG(MASK))
2024 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026 return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 * the contents of the syslog buffer.
2033 * dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037 int diag;
2038 int logging;
2039 int lines = 0;
2040 int adjust = 0;
2041 int n = 0;
2042 int skip = 0;
2043 struct kmsg_dumper dumper = { .active = 1 };
2044 size_t len;
2045 char buf[201];
2046
2047 if (argc > 2)
2048 return KDB_ARGCOUNT;
2049 if (argc) {
2050 char *cp;
2051 lines = simple_strtol(argv[1], &cp, 0);
2052 if (*cp)
2053 lines = 0;
2054 if (argc > 1) {
2055 adjust = simple_strtoul(argv[2], &cp, 0);
2056 if (*cp || adjust < 0)
2057 adjust = 0;
2058 }
2059 }
2060
2061 /* disable LOGGING if set */
2062 diag = kdbgetintenv("LOGGING", &logging);
2063 if (!diag && logging) {
2064 const char *setargs[] = { "set", "LOGGING", "0" };
2065 kdb_set(2, setargs);
2066 }
2067
2068 kmsg_dump_rewind_nolock(&dumper);
2069 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070 n++;
2071
2072 if (lines < 0) {
2073 if (adjust >= n)
2074 kdb_printf("buffer only contains %d lines, nothing "
2075 "printed\n", n);
2076 else if (adjust - lines >= n)
2077 kdb_printf("buffer only contains %d lines, last %d "
2078 "lines printed\n", n, n - adjust);
2079 skip = adjust;
2080 lines = abs(lines);
2081 } else if (lines > 0) {
2082 skip = n - lines - adjust;
2083 lines = abs(lines);
2084 if (adjust >= n) {
2085 kdb_printf("buffer only contains %d lines, "
2086 "nothing printed\n", n);
2087 skip = n;
2088 } else if (skip < 0) {
2089 lines += skip;
2090 skip = 0;
2091 kdb_printf("buffer only contains %d lines, first "
2092 "%d lines printed\n", n, lines);
2093 }
2094 } else {
2095 lines = n;
2096 }
2097
2098 if (skip >= n || skip < 0)
2099 return 0;
2100
2101 kmsg_dump_rewind_nolock(&dumper);
2102 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103 if (skip) {
2104 skip--;
2105 continue;
2106 }
2107 if (!lines--)
2108 break;
2109 if (KDB_FLAG(CMD_INTERRUPT))
2110 return 0;
2111
2112 kdb_printf("%.*s\n", (int)len - 1, buf);
2113 }
2114
2115 return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124 if (atomic_read(&kdb_nmi_disabled))
2125 return 0;
2126 atomic_set(&kdb_nmi_disabled, 1);
2127 arch_kgdb_ops.enable_nmi(0);
2128 return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134 return -EINVAL;
2135 arch_kgdb_ops.enable_nmi(1);
2136 return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140 .set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 * cpu [<cpunum>]
2147 * Returns:
2148 * KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152 int i, start_cpu, first_print = 1;
2153 char state, prev_state = '?';
2154
2155 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156 kdb_printf("Available cpus: ");
2157 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158 if (!cpu_online(i)) {
2159 state = 'F'; /* cpu is offline */
2160 } else {
2161 state = ' '; /* cpu is responding to kdb */
2162 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163 state = 'I'; /* idle task */
2164 }
2165 if (state != prev_state) {
2166 if (prev_state != '?') {
2167 if (!first_print)
2168 kdb_printf(", ");
2169 first_print = 0;
2170 kdb_printf("%d", start_cpu);
2171 if (start_cpu < i-1)
2172 kdb_printf("-%d", i-1);
2173 if (prev_state != ' ')
2174 kdb_printf("(%c)", prev_state);
2175 }
2176 prev_state = state;
2177 start_cpu = i;
2178 }
2179 }
2180 /* print the trailing cpus, ignoring them if they are all offline */
2181 if (prev_state != 'F') {
2182 if (!first_print)
2183 kdb_printf(", ");
2184 kdb_printf("%d", start_cpu);
2185 if (start_cpu < i-1)
2186 kdb_printf("-%d", i-1);
2187 if (prev_state != ' ')
2188 kdb_printf("(%c)", prev_state);
2189 }
2190 kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195 unsigned long cpunum;
2196 int diag;
2197
2198 if (argc == 0) {
2199 kdb_cpu_status();
2200 return 0;
2201 }
2202
2203 if (argc != 1)
2204 return KDB_ARGCOUNT;
2205
2206 diag = kdbgetularg(argv[1], &cpunum);
2207 if (diag)
2208 return diag;
2209
2210 /*
2211 * Validate cpunum
2212 */
2213 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214 return KDB_BADCPUNUM;
2215
2216 dbg_switch_cpu = cpunum;
2217
2218 /*
2219 * Switch to other cpu
2220 */
2221 return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229 int idle = 0, daemon = 0;
2230 unsigned long mask_I = kdb_task_state_string("I"),
2231 mask_M = kdb_task_state_string("M");
2232 unsigned long cpu;
2233 const struct task_struct *p, *g;
2234 for_each_online_cpu(cpu) {
2235 p = kdb_curr_task(cpu);
2236 if (kdb_task_state(p, mask_I))
2237 ++idle;
2238 }
2239 kdb_do_each_thread(g, p) {
2240 if (kdb_task_state(p, mask_M))
2241 ++daemon;
2242 } kdb_while_each_thread(g, p);
2243 if (idle || daemon) {
2244 if (idle)
2245 kdb_printf("%d idle process%s (state I)%s\n",
2246 idle, idle == 1 ? "" : "es",
2247 daemon ? " and " : "");
2248 if (daemon)
2249 kdb_printf("%d sleeping system daemon (state M) "
2250 "process%s", daemon,
2251 daemon == 1 ? "" : "es");
2252 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253 }
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 * list of the active processes.
2259 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263 int cpu;
2264 unsigned long tmp;
2265
2266 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%p)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290 struct task_struct *g, *p;
2291 unsigned long mask, cpu;
2292
2293 if (argc == 0)
2294 kdb_ps_suppressed();
2295 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2296 (int)(2*sizeof(void *))+2, "Task Addr",
2297 (int)(2*sizeof(void *))+2, "Thread");
2298 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299 /* Run the active tasks first */
2300 for_each_online_cpu(cpu) {
2301 if (KDB_FLAG(CMD_INTERRUPT))
2302 return 0;
2303 p = kdb_curr_task(cpu);
2304 if (kdb_task_state(p, mask))
2305 kdb_ps1(p);
2306 }
2307 kdb_printf("\n");
2308 /* Now the real tasks */
2309 kdb_do_each_thread(g, p) {
2310 if (KDB_FLAG(CMD_INTERRUPT))
2311 return 0;
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 } kdb_while_each_thread(g, p);
2315
2316 return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 * the currently active process.
2322 * pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326 struct task_struct *p;
2327 unsigned long val;
2328 int diag;
2329
2330 if (argc > 1)
2331 return KDB_ARGCOUNT;
2332
2333 if (argc) {
2334 if (strcmp(argv[1], "R") == 0) {
2335 p = KDB_TSK(kdb_initial_cpu);
2336 } else {
2337 diag = kdbgetularg(argv[1], &val);
2338 if (diag)
2339 return KDB_BADINT;
2340
2341 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2342 if (!p) {
2343 kdb_printf("No task with pid=%d\n", (pid_t)val);
2344 return 0;
2345 }
2346 }
2347 kdb_set_current_task(p);
2348 }
2349 kdb_printf("KDB current process is %s(pid=%d)\n",
2350 kdb_current_task->comm,
2351 kdb_current_task->pid);
2352
2353 return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358 return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366 kdbtab_t *kt;
2367 int i;
2368
2369 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370 kdb_printf("-----------------------------"
2371 "-----------------------------\n");
2372 for_each_kdbcmd(kt, i) {
2373 char *space = "";
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (!kt->cmd_name)
2377 continue;
2378 if (strlen(kt->cmd_usage) > 20)
2379 space = "\n ";
2380 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381 kt->cmd_usage, space, kt->cmd_help);
2382 }
2383 return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391 long sig, pid;
2392 char *endp;
2393 struct task_struct *p;
2394 struct siginfo info;
2395
2396 if (argc != 2)
2397 return KDB_ARGCOUNT;
2398
2399 sig = simple_strtol(argv[1], &endp, 0);
2400 if (*endp)
2401 return KDB_BADINT;
2402 if (sig >= 0) {
2403 kdb_printf("Invalid signal parameter.<-signal>\n");
2404 return 0;
2405 }
2406 sig = -sig;
2407
2408 pid = simple_strtol(argv[2], &endp, 0);
2409 if (*endp)
2410 return KDB_BADINT;
2411 if (pid <= 0) {
2412 kdb_printf("Process ID must be large than 0.\n");
2413 return 0;
2414 }
2415
2416 /* Find the process. */
2417 p = find_task_by_pid_ns(pid, &init_pid_ns);
2418 if (!p) {
2419 kdb_printf("The specified process isn't found.\n");
2420 return 0;
2421 }
2422 p = p->group_leader;
2423 info.si_signo = sig;
2424 info.si_errno = 0;
2425 info.si_code = SI_USER;
2426 info.si_pid = pid; /* same capabilities as process being signalled */
2427 info.si_uid = 0; /* kdb has root authority */
2428 kdb_send_sig_info(p, &info);
2429 return 0;
2430}
2431
2432struct kdb_tm {
2433 int tm_sec; /* seconds */
2434 int tm_min; /* minutes */
2435 int tm_hour; /* hours */
2436 int tm_mday; /* day of the month */
2437 int tm_mon; /* month */
2438 int tm_year; /* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443 /* This will work from 1970-2099, 2100 is not a leap year */
2444 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445 31, 30, 31, 30, 31 };
2446 memset(tm, 0, sizeof(*tm));
2447 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2448 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2450 tm->tm_min = tm->tm_sec / 60 % 60;
2451 tm->tm_hour = tm->tm_sec / 60 / 60;
2452 tm->tm_sec = tm->tm_sec % 60;
2453 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454 tm->tm_mday %= (4*365+1);
2455 mon_day[1] = 29;
2456 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457 tm->tm_mday -= mon_day[tm->tm_mon];
2458 if (++tm->tm_mon == 12) {
2459 tm->tm_mon = 0;
2460 ++tm->tm_year;
2461 mon_day[1] = 28;
2462 }
2463 }
2464 ++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474 struct timespec uptime;
2475 do_posix_clock_monotonic_gettime(&uptime);
2476 memset(val, 0, sizeof(*val));
2477 val->uptime = uptime.tv_sec;
2478 val->loads[0] = avenrun[0];
2479 val->loads[1] = avenrun[1];
2480 val->loads[2] = avenrun[2];
2481 val->procs = nr_threads-1;
2482 si_meminfo(val);
2483
2484 return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492 struct timespec now;
2493 struct kdb_tm tm;
2494 struct sysinfo val;
2495
2496 if (argc)
2497 return KDB_ARGCOUNT;
2498
2499 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2500 kdb_printf("release %s\n", init_uts_ns.name.release);
2501 kdb_printf("version %s\n", init_uts_ns.name.version);
2502 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2503 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2504 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2506
2507 now = __current_kernel_time();
2508 kdb_gmtime(&now, &tm);
2509 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2510 "tz_minuteswest %d\n",
2511 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512 tm.tm_hour, tm.tm_min, tm.tm_sec,
2513 sys_tz.tz_minuteswest);
2514
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534 /* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2537 "Buffers: %8lu kB\n",
2538 val.totalram, val.freeram, val.bufferram);
2539 return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547 char fmtstr[64];
2548 int cpu, diag, nextarg = 1;
2549 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551 if (argc < 1 || argc > 3)
2552 return KDB_ARGCOUNT;
2553
2554 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555 if (diag)
2556 return diag;
2557
2558 if (argc >= 2) {
2559 diag = kdbgetularg(argv[2], &bytesperword);
2560 if (diag)
2561 return diag;
2562 }
2563 if (!bytesperword)
2564 bytesperword = KDB_WORD_SIZE;
2565 else if (bytesperword > KDB_WORD_SIZE)
2566 return KDB_BADWIDTH;
2567 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568 if (argc >= 3) {
2569 diag = kdbgetularg(argv[3], &whichcpu);
2570 if (diag)
2571 return diag;
2572 if (!cpu_online(whichcpu)) {
2573 kdb_printf("cpu %ld is not online\n", whichcpu);
2574 return KDB_BADCPUNUM;
2575 }
2576 }
2577
2578 /* Most architectures use __per_cpu_offset[cpu], some use
2579 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580 */
2581#ifdef __per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590 for_each_online_cpu(cpu) {
2591 if (KDB_FLAG(CMD_INTERRUPT))
2592 return 0;
2593
2594 if (whichcpu != ~0UL && whichcpu != cpu)
2595 continue;
2596 addr = symaddr + KDB_PCU(cpu);
2597 diag = kdb_getword(&val, addr, bytesperword);
2598 if (diag) {
2599 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600 "read, diag=%d\n", cpu, addr, diag);
2601 continue;
2602 }
2603 kdb_printf("%5d ", cpu);
2604 kdb_md_line(fmtstr, addr,
2605 bytesperword == KDB_WORD_SIZE,
2606 1, bytesperword, 1, 1, 0);
2607 }
2608#undef KDB_PCU
2609 return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617 kdb_printf("Usage of cmd args | grep pattern:\n");
2618 kdb_printf(" Any command's output may be filtered through an ");
2619 kdb_printf("emulated 'pipe'.\n");
2620 kdb_printf(" 'grep' is just a key word.\n");
2621 kdb_printf(" The pattern may include a very limited set of "
2622 "metacharacters:\n");
2623 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2624 kdb_printf(" And if there are spaces in the pattern, you may "
2625 "quote it:\n");
2626 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627 " or \"^pat tern$\"\n");
2628 return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * debugger command.
2634 * Inputs:
2635 * cmd Command name
2636 * func Function to execute the command
2637 * usage A simple usage string showing arguments
2638 * help A simple help string describing command
2639 * repeat Does the command auto repeat on enter?
2640 * Returns:
2641 * zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50 /* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645 kdb_func_t func,
2646 char *usage,
2647 char *help,
2648 short minlen,
2649 kdb_repeat_t repeat)
2650{
2651 int i;
2652 kdbtab_t *kp;
2653
2654 /*
2655 * Brute force method to determine duplicates
2656 */
2657 for_each_kdbcmd(kp, i) {
2658 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659 kdb_printf("Duplicate kdb command registered: "
2660 "%s, func %p help %s\n", cmd, func, help);
2661 return 1;
2662 }
2663 }
2664
2665 /*
2666 * Insert command into first available location in table
2667 */
2668 for_each_kdbcmd(kp, i) {
2669 if (kp->cmd_name == NULL)
2670 break;
2671 }
2672
2673 if (i >= kdb_max_commands) {
2674 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676 if (!new) {
2677 kdb_printf("Could not allocate new kdb_command "
2678 "table\n");
2679 return 1;
2680 }
2681 if (kdb_commands) {
2682 memcpy(new, kdb_commands,
2683 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684 kfree(kdb_commands);
2685 }
2686 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687 kdb_command_extend * sizeof(*new));
2688 kdb_commands = new;
2689 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690 kdb_max_commands += kdb_command_extend;
2691 }
2692
2693 kp->cmd_name = cmd;
2694 kp->cmd_func = func;
2695 kp->cmd_usage = usage;
2696 kp->cmd_help = help;
2697 kp->cmd_flags = 0;
2698 kp->cmd_minlen = minlen;
2699 kp->cmd_repeat = repeat;
2700
2701 return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 * not need to specify a repeat state. Equivalent to
2709 * kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 * cmd Command name
2712 * func Function to execute the command
2713 * usage A simple usage string showing arguments
2714 * help A simple help string describing command
2715 * Returns:
2716 * zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719 kdb_func_t func,
2720 char *usage,
2721 char *help,
2722 short minlen)
2723{
2724 return kdb_register_repeat(cmd, func, usage, help, minlen,
2725 KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 * debugger command. It is generally called when a module which
2732 * implements kdb commands is unloaded.
2733 * Inputs:
2734 * cmd Command name
2735 * Returns:
2736 * zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740 int i;
2741 kdbtab_t *kp;
2742
2743 /*
2744 * find the command.
2745 */
2746 for_each_kdbcmd(kp, i) {
2747 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748 kp->cmd_name = NULL;
2749 return 0;
2750 }
2751 }
2752
2753 /* Couldn't find it. */
2754 return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761 int i;
2762 kdbtab_t *kp;
2763
2764 for_each_kdbcmd(kp, i)
2765 kp->cmd_name = NULL;
2766
2767 kdb_register_repeat("md", kdb_md, "<vaddr>",
2768 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769 KDB_REPEAT_NO_ARGS);
2770 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779 "Continue Execution", 1, KDB_REPEAT_NONE);
2780 kdb_register_repeat("rd", kdb_rd, "",
2781 "Display Registers", 0, KDB_REPEAT_NONE);
2782 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783 "Modify Registers", 0, KDB_REPEAT_NONE);
2784 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785 "Display exception frame", 0, KDB_REPEAT_NONE);
2786 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787 "Stack traceback", 1, KDB_REPEAT_NONE);
2788 kdb_register_repeat("btp", kdb_bt, "<pid>",
2789 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790 kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792 kdb_register_repeat("btc", kdb_bt, "",
2793 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795 "Backtrace process given its struct task address", 0,
2796 KDB_REPEAT_NONE);
2797 kdb_register_repeat("env", kdb_env, "",
2798 "Show environment variables", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("set", kdb_set, "",
2800 "Set environment variables", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("help", kdb_help, "",
2802 "Display Help Message", 1, KDB_REPEAT_NONE);
2803 kdb_register_repeat("?", kdb_help, "",
2804 "Display Help Message", 0, KDB_REPEAT_NONE);
2805 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807 kdb_register_repeat("kgdb", kdb_kgdb, "",
2808 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810 "Display active task list", 0, KDB_REPEAT_NONE);
2811 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812 "Switch to another task", 0, KDB_REPEAT_NONE);
2813 kdb_register_repeat("reboot", kdb_reboot, "",
2814 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816 kdb_register_repeat("lsmod", kdb_lsmod, "",
2817 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820 kdb_register_repeat("sr", kdb_sr, "<key>",
2821 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827 if (arch_kgdb_ops.enable_nmi) {
2828 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830 }
2831 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835 kdb_register_repeat("summary", kdb_summary, "",
2836 "Summarize the system", 4, KDB_REPEAT_NONE);
2837 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839 kdb_register_repeat("grephelp", kdb_grep_help, "",
2840 "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds. */
2844static void __init kdb_cmd_init(void)
2845{
2846 int i, diag;
2847 for (i = 0; kdb_cmds[i]; ++i) {
2848 diag = kdb_parse(kdb_cmds[i]);
2849 if (diag)
2850 kdb_printf("kdb command %s failed, kdb diag %d\n",
2851 kdb_cmds[i], diag);
2852 }
2853 if (defcmd_in_progress) {
2854 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855 kdb_parse("endefcmd");
2856 }
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863 int i;
2864
2865 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866 return;
2867 for (i = kdb_init_lvl; i < lvl; i++) {
2868 switch (i) {
2869 case KDB_NOT_INITIALIZED:
2870 kdb_inittab(); /* Initialize Command Table */
2871 kdb_initbptab(); /* Initialize Breakpoints */
2872 break;
2873 case KDB_INIT_EARLY:
2874 kdb_cmd_init(); /* Build kdb_cmds tables */
2875 break;
2876 }
2877 }
2878 kdb_init_lvl = lvl;
2879}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76EXPORT_SYMBOL(kdb_current_task);
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_commands describes the available commands. */
89static kdbtab_t *kdb_commands;
90#define KDB_BASE_CMD_MAX 50
91static int kdb_max_commands = KDB_BASE_CMD_MAX;
92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93#define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101} kdbmsg_t;
102
103#define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118#ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120#else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122#endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134};
135#undef KDBMSG
136
137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140/*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150static char *__env[] = {
151#if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153#else
154 "PROMPT=kdb> ",
155#endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186};
187
188static const int __nenv = ARRAY_SIZE(__env);
189
190struct task_struct *kdb_curr_task(int cpu)
191{
192 struct task_struct *p = curr_task(cpu);
193#ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196#endif
197 return p;
198}
199
200/*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206{
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218}
219
220/*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229char *kdbgetenv(const char *match)
230{
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249}
250
251/*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267static char *kdballocenv(size_t bytes)
268{
269#define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279}
280
281/*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291static int kdbgetulenv(const char *match, unsigned long *value)
292{
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304}
305
306/*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316int kdbgetintenv(const char *match, int *value)
317{
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325}
326
327/*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337int kdbgetularg(const char *arg, unsigned long *value)
338{
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357}
358
359int kdbgetu64arg(const char *arg, u64 *value)
360{
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376}
377
378/*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382int kdb_set(int argc, const char **argv)
383{
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457}
458
459static int kdb_check_regs(void)
460{
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467}
468
469/*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497{
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626}
627
628static void kdb_cmderror(int diag)
629{
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645}
646
647/*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666};
667static struct defcmd_set *defcmd_set;
668static int defcmd_set_count;
669static int defcmd_in_progress;
670
671/* Forward references */
672static int kdb_exec_defcmd(int argc, const char **argv);
673
674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675{
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705}
706
707static int kdb_defcmd(int argc, const char **argv)
708{
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
761 return 0;
762fail_help:
763 kfree(s->usage);
764fail_usage:
765 kfree(s->name);
766fail_name:
767 kfree(defcmd_set);
768fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772}
773
774/*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783static int kdb_exec_defcmd(int argc, const char **argv)
784{
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808}
809
810/* Command history */
811#define KDB_CMD_HISTORY_COUNT 32
812#define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814static unsigned int cmd_head, cmd_tail;
815static unsigned int cmdptr;
816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817static char cmd_cur[CMD_BUFLEN];
818
819/*
820 * The "str" argument may point to something like | grep xyz
821 */
822static void parse_grep(const char *str)
823{
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881}
882
883/*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909#define MAXARGC 20
910
911int kdb_parse(const char *cmdstr)
912{
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155 size_t len = strlen(buf);
1156
1157 if (len == 0)
1158 return;
1159 if (*(buf + len - 1) == '\n')
1160 *(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb. This routine is invoked on a
1165 * specific processor, it is not global. The main kdb() routine
1166 * ensures that only one processor at a time is in this routine.
1167 * This code is called with the real reason code on the first
1168 * entry to a kdb session, thereafter it is called with reason
1169 * SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 * reason The reason KDB was invoked
1172 * error The hardware-defined error code
1173 * regs The exception frame at time of fault/breakpoint.
1174 * db_result Result code from the break or debug point.
1175 * Returns:
1176 * 0 KDB was invoked for an event which it wasn't responsible
1177 * 1 KDB handled the event for which it was invoked.
1178 * KDB_CMD_GO User typed 'go'.
1179 * KDB_CMD_CPU User switched to another cpu.
1180 * KDB_CMD_SS Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 kdb_dbtrap_t db_result)
1184{
1185 char *cmdbuf;
1186 int diag;
1187 struct task_struct *kdb_current =
1188 kdb_curr_task(raw_smp_processor_id());
1189
1190 KDB_DEBUG_STATE("kdb_local 1", reason);
1191 kdb_go_count = 0;
1192 if (reason == KDB_REASON_DEBUG) {
1193 /* special case below */
1194 } else {
1195 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1196 kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198 kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200 }
1201
1202 switch (reason) {
1203 case KDB_REASON_DEBUG:
1204 {
1205 /*
1206 * If re-entering kdb after a single step
1207 * command, don't print the message.
1208 */
1209 switch (db_result) {
1210 case KDB_DB_BPT:
1211 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1212 kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214 kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 instruction_pointer(regs));
1218 break;
1219 case KDB_DB_SS:
1220 break;
1221 case KDB_DB_SSBPT:
1222 KDB_DEBUG_STATE("kdb_local 4", reason);
1223 return 1; /* kdba_db_trap did the work */
1224 default:
1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226 db_result);
1227 break;
1228 }
1229
1230 }
1231 break;
1232 case KDB_REASON_ENTER:
1233 if (KDB_STATE(KEYBOARD))
1234 kdb_printf("due to Keyboard Entry\n");
1235 else
1236 kdb_printf("due to KDB_ENTER()\n");
1237 break;
1238 case KDB_REASON_KEYBOARD:
1239 KDB_STATE_SET(KEYBOARD);
1240 kdb_printf("due to Keyboard Entry\n");
1241 break;
1242 case KDB_REASON_ENTER_SLAVE:
1243 /* drop through, slaves only get released via cpu switch */
1244 case KDB_REASON_SWITCH:
1245 kdb_printf("due to cpu switch\n");
1246 break;
1247 case KDB_REASON_OOPS:
1248 kdb_printf("Oops: %s\n", kdb_diemsg);
1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 instruction_pointer(regs));
1251 kdb_dumpregs(regs);
1252 break;
1253 case KDB_REASON_SYSTEM_NMI:
1254 kdb_printf("due to System NonMaskable Interrupt\n");
1255 break;
1256 case KDB_REASON_NMI:
1257 kdb_printf("due to NonMaskable Interrupt @ "
1258 kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 break;
1261 case KDB_REASON_SSTEP:
1262 case KDB_REASON_BREAK:
1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 reason == KDB_REASON_BREAK ?
1265 "Breakpoint" : "SS trap", instruction_pointer(regs));
1266 /*
1267 * Determine if this breakpoint is one that we
1268 * are interested in.
1269 */
1270 if (db_result != KDB_DB_BPT) {
1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272 db_result);
1273 KDB_DEBUG_STATE("kdb_local 6", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276 break;
1277 case KDB_REASON_RECURSE:
1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 instruction_pointer(regs));
1280 break;
1281 default:
1282 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 KDB_DEBUG_STATE("kdb_local 8", reason);
1284 return 0; /* Not for us, dismiss it */
1285 }
1286
1287 while (1) {
1288 /*
1289 * Initialize pager context.
1290 */
1291 kdb_nextline = 1;
1292 KDB_STATE_CLEAR(SUPPRESS);
1293 kdb_grepping_flag = 0;
1294 /* ensure the old search does not leak into '/' commands */
1295 kdb_grep_string[0] = '\0';
1296
1297 cmdbuf = cmd_cur;
1298 *cmdbuf = '\0';
1299 *(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 raw_smp_processor_id());
1305#else
1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308 if (defcmd_in_progress)
1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311 /*
1312 * Fetch command from keyboard
1313 */
1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 if (*cmdbuf != '\n') {
1316 if (*cmdbuf < 32) {
1317 if (cmdptr == cmd_head) {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 *(cmd_hist[cmd_head] +
1321 strlen(cmd_hist[cmd_head])-1) = '\0';
1322 }
1323 if (!handle_ctrl_cmd(cmdbuf))
1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325 cmdbuf = cmd_cur;
1326 goto do_full_getstr;
1327 } else {
1328 strncpy(cmd_hist[cmd_head], cmd_cur,
1329 CMD_BUFLEN);
1330 }
1331
1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 if (cmd_head == cmd_tail)
1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335 }
1336
1337 cmdptr = cmd_head;
1338 diag = kdb_parse(cmdbuf);
1339 if (diag == KDB_NOTFOUND) {
1340 drop_newline(cmdbuf);
1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342 diag = 0;
1343 }
1344 if (diag == KDB_CMD_GO
1345 || diag == KDB_CMD_CPU
1346 || diag == KDB_CMD_SS
1347 || diag == KDB_CMD_KGDB)
1348 break;
1349
1350 if (diag)
1351 kdb_cmderror(diag);
1352 }
1353 KDB_DEBUG_STATE("kdb_local 9", diag);
1354 return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 * for debugging.
1361 * Inputs:
1362 * text Identifies the debug point
1363 * value Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369 kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 * controlling cpu, all cpus are in this loop. One cpu is in
1375 * control and will issue the kdb prompt, the others will spin
1376 * until 'go' or cpu switch.
1377 *
1378 * To get a consistent view of the kernel stacks for all
1379 * processes, this routine is invoked from the main kdb code via
1380 * an architecture specific routine. kdba_main_loop is
1381 * responsible for making the kernel stacks consistent for all
1382 * processes, there should be no difference between a blocked
1383 * process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 * reason The reason KDB was invoked
1386 * error The hardware-defined error code
1387 * reason2 kdb's current reason code.
1388 * Initially error but can change
1389 * according to kdb state.
1390 * db_result Result code from break or debug point.
1391 * regs The exception frame at time of fault/breakpoint.
1392 * should always be valid.
1393 * Returns:
1394 * 0 KDB was invoked for an event which it wasn't responsible
1395 * 1 KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400 int result = 1;
1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1402 while (1) {
1403 /*
1404 * All processors except the one that is in control
1405 * will spin here.
1406 */
1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 while (KDB_STATE(HOLD_CPU)) {
1409 /* state KDB is turned off by kdb_cpu to see if the
1410 * other cpus are still live, each cpu in this loop
1411 * turns it back on.
1412 */
1413 if (!KDB_STATE(KDB))
1414 KDB_STATE_SET(KDB);
1415 }
1416
1417 KDB_STATE_CLEAR(SUPPRESS);
1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 if (KDB_STATE(LEAVING))
1420 break; /* Another cpu said 'go' */
1421 /* Still using kdb, this processor is in control */
1422 result = kdb_local(reason2, error, regs, db_result);
1423 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425 if (result == KDB_CMD_CPU)
1426 break;
1427
1428 if (result == KDB_CMD_SS) {
1429 KDB_STATE_SET(DOING_SS);
1430 break;
1431 }
1432
1433 if (result == KDB_CMD_KGDB) {
1434 if (!KDB_STATE(DOING_KGDB))
1435 kdb_printf("Entering please attach debugger "
1436 "or use $D#44+ or $3#33\n");
1437 break;
1438 }
1439 if (result && result != 1 && result != KDB_CMD_GO)
1440 kdb_printf("\nUnexpected kdb_local return code %d\n",
1441 result);
1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443 break;
1444 }
1445 if (KDB_STATE(DOING_SS))
1446 KDB_STATE_CLEAR(SSBPT);
1447
1448 /* Clean up any keyboard devices before leaving */
1449 kdb_kbd_cleanup_state();
1450
1451 return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 * mdr <addr arg>,<byte count>
1458 * Inputs:
1459 * addr Start address
1460 * count Number of bytes
1461 * Returns:
1462 * Always 0. Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466 unsigned char c;
1467 while (count--) {
1468 if (kdb_getarea(c, addr))
1469 return 0;
1470 kdb_printf("%02x", c);
1471 addr++;
1472 }
1473 kdb_printf("\n");
1474 return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 * 'md8' 'mdr' and 'mds' commands.
1480 *
1481 * md|mds [<addr arg> [<line count> [<radix>]]]
1482 * mdWcN [<addr arg> [<line count> [<radix>]]]
1483 * where W = is the width (1, 2, 4 or 8) and N is the count.
1484 * for eg., md1c20 reads 20 bytes, 1 at a time.
1485 * mdr <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 int symbolic, int nosect, int bytesperword,
1489 int num, int repeat, int phys)
1490{
1491 /* print just one line of data */
1492 kdb_symtab_t symtab;
1493 char cbuf[32];
1494 char *c = cbuf;
1495 int i;
1496 unsigned long word;
1497
1498 memset(cbuf, '\0', sizeof(cbuf));
1499 if (phys)
1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1501 else
1502 kdb_printf(kdb_machreg_fmt0 " ", addr);
1503
1504 for (i = 0; i < num && repeat--; i++) {
1505 if (phys) {
1506 if (kdb_getphysword(&word, addr, bytesperword))
1507 break;
1508 } else if (kdb_getword(&word, addr, bytesperword))
1509 break;
1510 kdb_printf(fmtstr, word);
1511 if (symbolic)
1512 kdbnearsym(word, &symtab);
1513 else
1514 memset(&symtab, 0, sizeof(symtab));
1515 if (symtab.sym_name) {
1516 kdb_symbol_print(word, &symtab, 0);
1517 if (!nosect) {
1518 kdb_printf("\n");
1519 kdb_printf(" %s %s "
1520 kdb_machreg_fmt " "
1521 kdb_machreg_fmt " "
1522 kdb_machreg_fmt, symtab.mod_name,
1523 symtab.sec_name, symtab.sec_start,
1524 symtab.sym_start, symtab.sym_end);
1525 }
1526 addr += bytesperword;
1527 } else {
1528 union {
1529 u64 word;
1530 unsigned char c[8];
1531 } wc;
1532 unsigned char *cp;
1533#ifdef __BIG_ENDIAN
1534 cp = wc.c + 8 - bytesperword;
1535#else
1536 cp = wc.c;
1537#endif
1538 wc.word = word;
1539#define printable_char(c) \
1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1541 switch (bytesperword) {
1542 case 8:
1543 *c++ = printable_char(*cp++);
1544 *c++ = printable_char(*cp++);
1545 *c++ = printable_char(*cp++);
1546 *c++ = printable_char(*cp++);
1547 addr += 4;
1548 case 4:
1549 *c++ = printable_char(*cp++);
1550 *c++ = printable_char(*cp++);
1551 addr += 2;
1552 case 2:
1553 *c++ = printable_char(*cp++);
1554 addr++;
1555 case 1:
1556 *c++ = printable_char(*cp++);
1557 addr++;
1558 break;
1559 }
1560#undef printable_char
1561 }
1562 }
1563 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1564 " ", cbuf);
1565}
1566
1567static int kdb_md(int argc, const char **argv)
1568{
1569 static unsigned long last_addr;
1570 static int last_radix, last_bytesperword, last_repeat;
1571 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1572 int nosect = 0;
1573 char fmtchar, fmtstr[64];
1574 unsigned long addr;
1575 unsigned long word;
1576 long offset = 0;
1577 int symbolic = 0;
1578 int valid = 0;
1579 int phys = 0;
1580 int raw = 0;
1581
1582 kdbgetintenv("MDCOUNT", &mdcount);
1583 kdbgetintenv("RADIX", &radix);
1584 kdbgetintenv("BYTESPERWORD", &bytesperword);
1585
1586 /* Assume 'md <addr>' and start with environment values */
1587 repeat = mdcount * 16 / bytesperword;
1588
1589 if (strcmp(argv[0], "mdr") == 0) {
1590 if (argc == 2 || (argc == 0 && last_addr != 0))
1591 valid = raw = 1;
1592 else
1593 return KDB_ARGCOUNT;
1594 } else if (isdigit(argv[0][2])) {
1595 bytesperword = (int)(argv[0][2] - '0');
1596 if (bytesperword == 0) {
1597 bytesperword = last_bytesperword;
1598 if (bytesperword == 0)
1599 bytesperword = 4;
1600 }
1601 last_bytesperword = bytesperword;
1602 repeat = mdcount * 16 / bytesperword;
1603 if (!argv[0][3])
1604 valid = 1;
1605 else if (argv[0][3] == 'c' && argv[0][4]) {
1606 char *p;
1607 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1608 mdcount = ((repeat * bytesperword) + 15) / 16;
1609 valid = !*p;
1610 }
1611 last_repeat = repeat;
1612 } else if (strcmp(argv[0], "md") == 0)
1613 valid = 1;
1614 else if (strcmp(argv[0], "mds") == 0)
1615 valid = 1;
1616 else if (strcmp(argv[0], "mdp") == 0) {
1617 phys = valid = 1;
1618 }
1619 if (!valid)
1620 return KDB_NOTFOUND;
1621
1622 if (argc == 0) {
1623 if (last_addr == 0)
1624 return KDB_ARGCOUNT;
1625 addr = last_addr;
1626 radix = last_radix;
1627 bytesperword = last_bytesperword;
1628 repeat = last_repeat;
1629 if (raw)
1630 mdcount = repeat;
1631 else
1632 mdcount = ((repeat * bytesperword) + 15) / 16;
1633 }
1634
1635 if (argc) {
1636 unsigned long val;
1637 int diag, nextarg = 1;
1638 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1639 &offset, NULL);
1640 if (diag)
1641 return diag;
1642 if (argc > nextarg+2)
1643 return KDB_ARGCOUNT;
1644
1645 if (argc >= nextarg) {
1646 diag = kdbgetularg(argv[nextarg], &val);
1647 if (!diag) {
1648 mdcount = (int) val;
1649 if (raw)
1650 repeat = mdcount;
1651 else
1652 repeat = mdcount * 16 / bytesperword;
1653 }
1654 }
1655 if (argc >= nextarg+1) {
1656 diag = kdbgetularg(argv[nextarg+1], &val);
1657 if (!diag)
1658 radix = (int) val;
1659 }
1660 }
1661
1662 if (strcmp(argv[0], "mdr") == 0) {
1663 int ret;
1664 last_addr = addr;
1665 ret = kdb_mdr(addr, mdcount);
1666 last_addr += mdcount;
1667 last_repeat = mdcount;
1668 last_bytesperword = bytesperword; // to make REPEAT happy
1669 return ret;
1670 }
1671
1672 switch (radix) {
1673 case 10:
1674 fmtchar = 'd';
1675 break;
1676 case 16:
1677 fmtchar = 'x';
1678 break;
1679 case 8:
1680 fmtchar = 'o';
1681 break;
1682 default:
1683 return KDB_BADRADIX;
1684 }
1685
1686 last_radix = radix;
1687
1688 if (bytesperword > KDB_WORD_SIZE)
1689 return KDB_BADWIDTH;
1690
1691 switch (bytesperword) {
1692 case 8:
1693 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1694 break;
1695 case 4:
1696 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1697 break;
1698 case 2:
1699 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1700 break;
1701 case 1:
1702 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1703 break;
1704 default:
1705 return KDB_BADWIDTH;
1706 }
1707
1708 last_repeat = repeat;
1709 last_bytesperword = bytesperword;
1710
1711 if (strcmp(argv[0], "mds") == 0) {
1712 symbolic = 1;
1713 /* Do not save these changes as last_*, they are temporary mds
1714 * overrides.
1715 */
1716 bytesperword = KDB_WORD_SIZE;
1717 repeat = mdcount;
1718 kdbgetintenv("NOSECT", &nosect);
1719 }
1720
1721 /* Round address down modulo BYTESPERWORD */
1722
1723 addr &= ~(bytesperword-1);
1724
1725 while (repeat > 0) {
1726 unsigned long a;
1727 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1728
1729 if (KDB_FLAG(CMD_INTERRUPT))
1730 return 0;
1731 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1732 if (phys) {
1733 if (kdb_getphysword(&word, a, bytesperword)
1734 || word)
1735 break;
1736 } else if (kdb_getword(&word, a, bytesperword) || word)
1737 break;
1738 }
1739 n = min(num, repeat);
1740 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1741 num, repeat, phys);
1742 addr += bytesperword * n;
1743 repeat -= n;
1744 z = (z + num - 1) / num;
1745 if (z > 2) {
1746 int s = num * (z-2);
1747 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1748 " zero suppressed\n",
1749 addr, addr + bytesperword * s - 1);
1750 addr += bytesperword * s;
1751 repeat -= s;
1752 }
1753 }
1754 last_addr = addr;
1755
1756 return 0;
1757}
1758
1759/*
1760 * kdb_mm - This function implements the 'mm' command.
1761 * mm address-expression new-value
1762 * Remarks:
1763 * mm works on machine words, mmW works on bytes.
1764 */
1765static int kdb_mm(int argc, const char **argv)
1766{
1767 int diag;
1768 unsigned long addr;
1769 long offset = 0;
1770 unsigned long contents;
1771 int nextarg;
1772 int width;
1773
1774 if (argv[0][2] && !isdigit(argv[0][2]))
1775 return KDB_NOTFOUND;
1776
1777 if (argc < 2)
1778 return KDB_ARGCOUNT;
1779
1780 nextarg = 1;
1781 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1782 if (diag)
1783 return diag;
1784
1785 if (nextarg > argc)
1786 return KDB_ARGCOUNT;
1787 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1788 if (diag)
1789 return diag;
1790
1791 if (nextarg != argc + 1)
1792 return KDB_ARGCOUNT;
1793
1794 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1795 diag = kdb_putword(addr, contents, width);
1796 if (diag)
1797 return diag;
1798
1799 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1800
1801 return 0;
1802}
1803
1804/*
1805 * kdb_go - This function implements the 'go' command.
1806 * go [address-expression]
1807 */
1808static int kdb_go(int argc, const char **argv)
1809{
1810 unsigned long addr;
1811 int diag;
1812 int nextarg;
1813 long offset;
1814
1815 if (raw_smp_processor_id() != kdb_initial_cpu) {
1816 kdb_printf("go must execute on the entry cpu, "
1817 "please use \"cpu %d\" and then execute go\n",
1818 kdb_initial_cpu);
1819 return KDB_BADCPUNUM;
1820 }
1821 if (argc == 1) {
1822 nextarg = 1;
1823 diag = kdbgetaddrarg(argc, argv, &nextarg,
1824 &addr, &offset, NULL);
1825 if (diag)
1826 return diag;
1827 } else if (argc) {
1828 return KDB_ARGCOUNT;
1829 }
1830
1831 diag = KDB_CMD_GO;
1832 if (KDB_FLAG(CATASTROPHIC)) {
1833 kdb_printf("Catastrophic error detected\n");
1834 kdb_printf("kdb_continue_catastrophic=%d, ",
1835 kdb_continue_catastrophic);
1836 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1837 kdb_printf("type go a second time if you really want "
1838 "to continue\n");
1839 return 0;
1840 }
1841 if (kdb_continue_catastrophic == 2) {
1842 kdb_printf("forcing reboot\n");
1843 kdb_reboot(0, NULL);
1844 }
1845 kdb_printf("attempting to continue\n");
1846 }
1847 return diag;
1848}
1849
1850/*
1851 * kdb_rd - This function implements the 'rd' command.
1852 */
1853static int kdb_rd(int argc, const char **argv)
1854{
1855 int len = kdb_check_regs();
1856#if DBG_MAX_REG_NUM > 0
1857 int i;
1858 char *rname;
1859 int rsize;
1860 u64 reg64;
1861 u32 reg32;
1862 u16 reg16;
1863 u8 reg8;
1864
1865 if (len)
1866 return len;
1867
1868 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1869 rsize = dbg_reg_def[i].size * 2;
1870 if (rsize > 16)
1871 rsize = 2;
1872 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1873 len = 0;
1874 kdb_printf("\n");
1875 }
1876 if (len)
1877 len += kdb_printf(" ");
1878 switch(dbg_reg_def[i].size * 8) {
1879 case 8:
1880 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %02x", rname, reg8);
1884 break;
1885 case 16:
1886 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %04x", rname, reg16);
1890 break;
1891 case 32:
1892 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1893 if (!rname)
1894 break;
1895 len += kdb_printf("%s: %08x", rname, reg32);
1896 break;
1897 case 64:
1898 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1899 if (!rname)
1900 break;
1901 len += kdb_printf("%s: %016llx", rname, reg64);
1902 break;
1903 default:
1904 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1905 }
1906 }
1907 kdb_printf("\n");
1908#else
1909 if (len)
1910 return len;
1911
1912 kdb_dumpregs(kdb_current_regs);
1913#endif
1914 return 0;
1915}
1916
1917/*
1918 * kdb_rm - This function implements the 'rm' (register modify) command.
1919 * rm register-name new-contents
1920 * Remarks:
1921 * Allows register modification with the same restrictions as gdb
1922 */
1923static int kdb_rm(int argc, const char **argv)
1924{
1925#if DBG_MAX_REG_NUM > 0
1926 int diag;
1927 const char *rname;
1928 int i;
1929 u64 reg64;
1930 u32 reg32;
1931 u16 reg16;
1932 u8 reg8;
1933
1934 if (argc != 2)
1935 return KDB_ARGCOUNT;
1936 /*
1937 * Allow presence or absence of leading '%' symbol.
1938 */
1939 rname = argv[1];
1940 if (*rname == '%')
1941 rname++;
1942
1943 diag = kdbgetu64arg(argv[2], ®64);
1944 if (diag)
1945 return diag;
1946
1947 diag = kdb_check_regs();
1948 if (diag)
1949 return diag;
1950
1951 diag = KDB_BADREG;
1952 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1953 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1954 diag = 0;
1955 break;
1956 }
1957 }
1958 if (!diag) {
1959 switch(dbg_reg_def[i].size * 8) {
1960 case 8:
1961 reg8 = reg64;
1962 dbg_set_reg(i, ®8, kdb_current_regs);
1963 break;
1964 case 16:
1965 reg16 = reg64;
1966 dbg_set_reg(i, ®16, kdb_current_regs);
1967 break;
1968 case 32:
1969 reg32 = reg64;
1970 dbg_set_reg(i, ®32, kdb_current_regs);
1971 break;
1972 case 64:
1973 dbg_set_reg(i, ®64, kdb_current_regs);
1974 break;
1975 }
1976 }
1977 return diag;
1978#else
1979 kdb_printf("ERROR: Register set currently not implemented\n");
1980 return 0;
1981#endif
1982}
1983
1984#if defined(CONFIG_MAGIC_SYSRQ)
1985/*
1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1987 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1988 * sr <magic-sysrq-code>
1989 */
1990static int kdb_sr(int argc, const char **argv)
1991{
1992 bool check_mask =
1993 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1994
1995 if (argc != 1)
1996 return KDB_ARGCOUNT;
1997
1998 kdb_trap_printk++;
1999 __handle_sysrq(*argv[1], check_mask);
2000 kdb_trap_printk--;
2001
2002 return 0;
2003}
2004#endif /* CONFIG_MAGIC_SYSRQ */
2005
2006/*
2007 * kdb_ef - This function implements the 'regs' (display exception
2008 * frame) command. This command takes an address and expects to
2009 * find an exception frame at that address, formats and prints
2010 * it.
2011 * regs address-expression
2012 * Remarks:
2013 * Not done yet.
2014 */
2015static int kdb_ef(int argc, const char **argv)
2016{
2017 int diag;
2018 unsigned long addr;
2019 long offset;
2020 int nextarg;
2021
2022 if (argc != 1)
2023 return KDB_ARGCOUNT;
2024
2025 nextarg = 1;
2026 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2027 if (diag)
2028 return diag;
2029 show_regs((struct pt_regs *)addr);
2030 return 0;
2031}
2032
2033#if defined(CONFIG_MODULES)
2034/*
2035 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2036 * currently loaded kernel modules.
2037 * Mostly taken from userland lsmod.
2038 */
2039static int kdb_lsmod(int argc, const char **argv)
2040{
2041 struct module *mod;
2042
2043 if (argc != 0)
2044 return KDB_ARGCOUNT;
2045
2046 kdb_printf("Module Size modstruct Used by\n");
2047 list_for_each_entry(mod, kdb_modules, list) {
2048 if (mod->state == MODULE_STATE_UNFORMED)
2049 continue;
2050
2051 kdb_printf("%-20s%8u 0x%p ", mod->name,
2052 mod->core_layout.size, (void *)mod);
2053#ifdef CONFIG_MODULE_UNLOAD
2054 kdb_printf("%4d ", module_refcount(mod));
2055#endif
2056 if (mod->state == MODULE_STATE_GOING)
2057 kdb_printf(" (Unloading)");
2058 else if (mod->state == MODULE_STATE_COMING)
2059 kdb_printf(" (Loading)");
2060 else
2061 kdb_printf(" (Live)");
2062 kdb_printf(" 0x%p", mod->core_layout.base);
2063
2064#ifdef CONFIG_MODULE_UNLOAD
2065 {
2066 struct module_use *use;
2067 kdb_printf(" [ ");
2068 list_for_each_entry(use, &mod->source_list,
2069 source_list)
2070 kdb_printf("%s ", use->target->name);
2071 kdb_printf("]\n");
2072 }
2073#endif
2074 }
2075
2076 return 0;
2077}
2078
2079#endif /* CONFIG_MODULES */
2080
2081/*
2082 * kdb_env - This function implements the 'env' command. Display the
2083 * current environment variables.
2084 */
2085
2086static int kdb_env(int argc, const char **argv)
2087{
2088 int i;
2089
2090 for (i = 0; i < __nenv; i++) {
2091 if (__env[i])
2092 kdb_printf("%s\n", __env[i]);
2093 }
2094
2095 if (KDB_DEBUG(MASK))
2096 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2097
2098 return 0;
2099}
2100
2101#ifdef CONFIG_PRINTK
2102/*
2103 * kdb_dmesg - This function implements the 'dmesg' command to display
2104 * the contents of the syslog buffer.
2105 * dmesg [lines] [adjust]
2106 */
2107static int kdb_dmesg(int argc, const char **argv)
2108{
2109 int diag;
2110 int logging;
2111 int lines = 0;
2112 int adjust = 0;
2113 int n = 0;
2114 int skip = 0;
2115 struct kmsg_dumper dumper = { .active = 1 };
2116 size_t len;
2117 char buf[201];
2118
2119 if (argc > 2)
2120 return KDB_ARGCOUNT;
2121 if (argc) {
2122 char *cp;
2123 lines = simple_strtol(argv[1], &cp, 0);
2124 if (*cp)
2125 lines = 0;
2126 if (argc > 1) {
2127 adjust = simple_strtoul(argv[2], &cp, 0);
2128 if (*cp || adjust < 0)
2129 adjust = 0;
2130 }
2131 }
2132
2133 /* disable LOGGING if set */
2134 diag = kdbgetintenv("LOGGING", &logging);
2135 if (!diag && logging) {
2136 const char *setargs[] = { "set", "LOGGING", "0" };
2137 kdb_set(2, setargs);
2138 }
2139
2140 kmsg_dump_rewind_nolock(&dumper);
2141 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2142 n++;
2143
2144 if (lines < 0) {
2145 if (adjust >= n)
2146 kdb_printf("buffer only contains %d lines, nothing "
2147 "printed\n", n);
2148 else if (adjust - lines >= n)
2149 kdb_printf("buffer only contains %d lines, last %d "
2150 "lines printed\n", n, n - adjust);
2151 skip = adjust;
2152 lines = abs(lines);
2153 } else if (lines > 0) {
2154 skip = n - lines - adjust;
2155 lines = abs(lines);
2156 if (adjust >= n) {
2157 kdb_printf("buffer only contains %d lines, "
2158 "nothing printed\n", n);
2159 skip = n;
2160 } else if (skip < 0) {
2161 lines += skip;
2162 skip = 0;
2163 kdb_printf("buffer only contains %d lines, first "
2164 "%d lines printed\n", n, lines);
2165 }
2166 } else {
2167 lines = n;
2168 }
2169
2170 if (skip >= n || skip < 0)
2171 return 0;
2172
2173 kmsg_dump_rewind_nolock(&dumper);
2174 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2175 if (skip) {
2176 skip--;
2177 continue;
2178 }
2179 if (!lines--)
2180 break;
2181 if (KDB_FLAG(CMD_INTERRUPT))
2182 return 0;
2183
2184 kdb_printf("%.*s\n", (int)len - 1, buf);
2185 }
2186
2187 return 0;
2188}
2189#endif /* CONFIG_PRINTK */
2190
2191/* Make sure we balance enable/disable calls, must disable first. */
2192static atomic_t kdb_nmi_disabled;
2193
2194static int kdb_disable_nmi(int argc, const char *argv[])
2195{
2196 if (atomic_read(&kdb_nmi_disabled))
2197 return 0;
2198 atomic_set(&kdb_nmi_disabled, 1);
2199 arch_kgdb_ops.enable_nmi(0);
2200 return 0;
2201}
2202
2203static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2204{
2205 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2206 return -EINVAL;
2207 arch_kgdb_ops.enable_nmi(1);
2208 return 0;
2209}
2210
2211static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2212 .set = kdb_param_enable_nmi,
2213};
2214module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2215
2216/*
2217 * kdb_cpu - This function implements the 'cpu' command.
2218 * cpu [<cpunum>]
2219 * Returns:
2220 * KDB_CMD_CPU for success, a kdb diagnostic if error
2221 */
2222static void kdb_cpu_status(void)
2223{
2224 int i, start_cpu, first_print = 1;
2225 char state, prev_state = '?';
2226
2227 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2228 kdb_printf("Available cpus: ");
2229 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2230 if (!cpu_online(i)) {
2231 state = 'F'; /* cpu is offline */
2232 } else if (!kgdb_info[i].enter_kgdb) {
2233 state = 'D'; /* cpu is online but unresponsive */
2234 } else {
2235 state = ' '; /* cpu is responding to kdb */
2236 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2237 state = 'I'; /* idle task */
2238 }
2239 if (state != prev_state) {
2240 if (prev_state != '?') {
2241 if (!first_print)
2242 kdb_printf(", ");
2243 first_print = 0;
2244 kdb_printf("%d", start_cpu);
2245 if (start_cpu < i-1)
2246 kdb_printf("-%d", i-1);
2247 if (prev_state != ' ')
2248 kdb_printf("(%c)", prev_state);
2249 }
2250 prev_state = state;
2251 start_cpu = i;
2252 }
2253 }
2254 /* print the trailing cpus, ignoring them if they are all offline */
2255 if (prev_state != 'F') {
2256 if (!first_print)
2257 kdb_printf(", ");
2258 kdb_printf("%d", start_cpu);
2259 if (start_cpu < i-1)
2260 kdb_printf("-%d", i-1);
2261 if (prev_state != ' ')
2262 kdb_printf("(%c)", prev_state);
2263 }
2264 kdb_printf("\n");
2265}
2266
2267static int kdb_cpu(int argc, const char **argv)
2268{
2269 unsigned long cpunum;
2270 int diag;
2271
2272 if (argc == 0) {
2273 kdb_cpu_status();
2274 return 0;
2275 }
2276
2277 if (argc != 1)
2278 return KDB_ARGCOUNT;
2279
2280 diag = kdbgetularg(argv[1], &cpunum);
2281 if (diag)
2282 return diag;
2283
2284 /*
2285 * Validate cpunum
2286 */
2287 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2288 return KDB_BADCPUNUM;
2289
2290 dbg_switch_cpu = cpunum;
2291
2292 /*
2293 * Switch to other cpu
2294 */
2295 return KDB_CMD_CPU;
2296}
2297
2298/* The user may not realize that ps/bta with no parameters does not print idle
2299 * or sleeping system daemon processes, so tell them how many were suppressed.
2300 */
2301void kdb_ps_suppressed(void)
2302{
2303 int idle = 0, daemon = 0;
2304 unsigned long mask_I = kdb_task_state_string("I"),
2305 mask_M = kdb_task_state_string("M");
2306 unsigned long cpu;
2307 const struct task_struct *p, *g;
2308 for_each_online_cpu(cpu) {
2309 p = kdb_curr_task(cpu);
2310 if (kdb_task_state(p, mask_I))
2311 ++idle;
2312 }
2313 kdb_do_each_thread(g, p) {
2314 if (kdb_task_state(p, mask_M))
2315 ++daemon;
2316 } kdb_while_each_thread(g, p);
2317 if (idle || daemon) {
2318 if (idle)
2319 kdb_printf("%d idle process%s (state I)%s\n",
2320 idle, idle == 1 ? "" : "es",
2321 daemon ? " and " : "");
2322 if (daemon)
2323 kdb_printf("%d sleeping system daemon (state M) "
2324 "process%s", daemon,
2325 daemon == 1 ? "" : "es");
2326 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2327 }
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2334 */
2335void kdb_ps1(const struct task_struct *p)
2336{
2337 int cpu;
2338 unsigned long tmp;
2339
2340 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2341 return;
2342
2343 cpu = kdb_process_cpu(p);
2344 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2345 (void *)p, p->pid, p->parent->pid,
2346 kdb_task_has_cpu(p), kdb_process_cpu(p),
2347 kdb_task_state_char(p),
2348 (void *)(&p->thread),
2349 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2350 p->comm);
2351 if (kdb_task_has_cpu(p)) {
2352 if (!KDB_TSK(cpu)) {
2353 kdb_printf(" Error: no saved data for this cpu\n");
2354 } else {
2355 if (KDB_TSK(cpu) != p)
2356 kdb_printf(" Error: does not match running "
2357 "process table (0x%p)\n", KDB_TSK(cpu));
2358 }
2359 }
2360}
2361
2362static int kdb_ps(int argc, const char **argv)
2363{
2364 struct task_struct *g, *p;
2365 unsigned long mask, cpu;
2366
2367 if (argc == 0)
2368 kdb_ps_suppressed();
2369 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2370 (int)(2*sizeof(void *))+2, "Task Addr",
2371 (int)(2*sizeof(void *))+2, "Thread");
2372 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2373 /* Run the active tasks first */
2374 for_each_online_cpu(cpu) {
2375 if (KDB_FLAG(CMD_INTERRUPT))
2376 return 0;
2377 p = kdb_curr_task(cpu);
2378 if (kdb_task_state(p, mask))
2379 kdb_ps1(p);
2380 }
2381 kdb_printf("\n");
2382 /* Now the real tasks */
2383 kdb_do_each_thread(g, p) {
2384 if (KDB_FLAG(CMD_INTERRUPT))
2385 return 0;
2386 if (kdb_task_state(p, mask))
2387 kdb_ps1(p);
2388 } kdb_while_each_thread(g, p);
2389
2390 return 0;
2391}
2392
2393/*
2394 * kdb_pid - This function implements the 'pid' command which switches
2395 * the currently active process.
2396 * pid [<pid> | R]
2397 */
2398static int kdb_pid(int argc, const char **argv)
2399{
2400 struct task_struct *p;
2401 unsigned long val;
2402 int diag;
2403
2404 if (argc > 1)
2405 return KDB_ARGCOUNT;
2406
2407 if (argc) {
2408 if (strcmp(argv[1], "R") == 0) {
2409 p = KDB_TSK(kdb_initial_cpu);
2410 } else {
2411 diag = kdbgetularg(argv[1], &val);
2412 if (diag)
2413 return KDB_BADINT;
2414
2415 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2416 if (!p) {
2417 kdb_printf("No task with pid=%d\n", (pid_t)val);
2418 return 0;
2419 }
2420 }
2421 kdb_set_current_task(p);
2422 }
2423 kdb_printf("KDB current process is %s(pid=%d)\n",
2424 kdb_current_task->comm,
2425 kdb_current_task->pid);
2426
2427 return 0;
2428}
2429
2430static int kdb_kgdb(int argc, const char **argv)
2431{
2432 return KDB_CMD_KGDB;
2433}
2434
2435/*
2436 * kdb_help - This function implements the 'help' and '?' commands.
2437 */
2438static int kdb_help(int argc, const char **argv)
2439{
2440 kdbtab_t *kt;
2441 int i;
2442
2443 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2444 kdb_printf("-----------------------------"
2445 "-----------------------------\n");
2446 for_each_kdbcmd(kt, i) {
2447 char *space = "";
2448 if (KDB_FLAG(CMD_INTERRUPT))
2449 return 0;
2450 if (!kt->cmd_name)
2451 continue;
2452 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2453 continue;
2454 if (strlen(kt->cmd_usage) > 20)
2455 space = "\n ";
2456 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2457 kt->cmd_usage, space, kt->cmd_help);
2458 }
2459 return 0;
2460}
2461
2462/*
2463 * kdb_kill - This function implements the 'kill' commands.
2464 */
2465static int kdb_kill(int argc, const char **argv)
2466{
2467 long sig, pid;
2468 char *endp;
2469 struct task_struct *p;
2470
2471 if (argc != 2)
2472 return KDB_ARGCOUNT;
2473
2474 sig = simple_strtol(argv[1], &endp, 0);
2475 if (*endp)
2476 return KDB_BADINT;
2477 if ((sig >= 0) || !valid_signal(-sig)) {
2478 kdb_printf("Invalid signal parameter.<-signal>\n");
2479 return 0;
2480 }
2481 sig = -sig;
2482
2483 pid = simple_strtol(argv[2], &endp, 0);
2484 if (*endp)
2485 return KDB_BADINT;
2486 if (pid <= 0) {
2487 kdb_printf("Process ID must be large than 0.\n");
2488 return 0;
2489 }
2490
2491 /* Find the process. */
2492 p = find_task_by_pid_ns(pid, &init_pid_ns);
2493 if (!p) {
2494 kdb_printf("The specified process isn't found.\n");
2495 return 0;
2496 }
2497 p = p->group_leader;
2498 kdb_send_sig(p, sig);
2499 return 0;
2500}
2501
2502/*
2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2504 * I cannot call that code directly from kdb, it has an unconditional
2505 * cli()/sti() and calls routines that take locks which can stop the debugger.
2506 */
2507static void kdb_sysinfo(struct sysinfo *val)
2508{
2509 u64 uptime = ktime_get_mono_fast_ns();
2510
2511 memset(val, 0, sizeof(*val));
2512 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2513 val->loads[0] = avenrun[0];
2514 val->loads[1] = avenrun[1];
2515 val->loads[2] = avenrun[2];
2516 val->procs = nr_threads-1;
2517 si_meminfo(val);
2518
2519 return;
2520}
2521
2522/*
2523 * kdb_summary - This function implements the 'summary' command.
2524 */
2525static int kdb_summary(int argc, const char **argv)
2526{
2527 time64_t now;
2528 struct tm tm;
2529 struct sysinfo val;
2530
2531 if (argc)
2532 return KDB_ARGCOUNT;
2533
2534 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2535 kdb_printf("release %s\n", init_uts_ns.name.release);
2536 kdb_printf("version %s\n", init_uts_ns.name.version);
2537 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2538 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2539 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2540 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2541
2542 now = __ktime_get_real_seconds();
2543 time64_to_tm(now, 0, &tm);
2544 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2545 "tz_minuteswest %d\n",
2546 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2547 tm.tm_hour, tm.tm_min, tm.tm_sec,
2548 sys_tz.tz_minuteswest);
2549
2550 kdb_sysinfo(&val);
2551 kdb_printf("uptime ");
2552 if (val.uptime > (24*60*60)) {
2553 int days = val.uptime / (24*60*60);
2554 val.uptime %= (24*60*60);
2555 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2556 }
2557 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2558
2559 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2560
2561#define LOAD_INT(x) ((x) >> FSHIFT)
2562#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2563 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2564 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2565 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2566 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2567#undef LOAD_INT
2568#undef LOAD_FRAC
2569 /* Display in kilobytes */
2570#define K(x) ((x) << (PAGE_SHIFT - 10))
2571 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2572 "Buffers: %8lu kB\n",
2573 K(val.totalram), K(val.freeram), K(val.bufferram));
2574 return 0;
2575}
2576
2577/*
2578 * kdb_per_cpu - This function implements the 'per_cpu' command.
2579 */
2580static int kdb_per_cpu(int argc, const char **argv)
2581{
2582 char fmtstr[64];
2583 int cpu, diag, nextarg = 1;
2584 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2585
2586 if (argc < 1 || argc > 3)
2587 return KDB_ARGCOUNT;
2588
2589 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2590 if (diag)
2591 return diag;
2592
2593 if (argc >= 2) {
2594 diag = kdbgetularg(argv[2], &bytesperword);
2595 if (diag)
2596 return diag;
2597 }
2598 if (!bytesperword)
2599 bytesperword = KDB_WORD_SIZE;
2600 else if (bytesperword > KDB_WORD_SIZE)
2601 return KDB_BADWIDTH;
2602 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2603 if (argc >= 3) {
2604 diag = kdbgetularg(argv[3], &whichcpu);
2605 if (diag)
2606 return diag;
2607 if (!cpu_online(whichcpu)) {
2608 kdb_printf("cpu %ld is not online\n", whichcpu);
2609 return KDB_BADCPUNUM;
2610 }
2611 }
2612
2613 /* Most architectures use __per_cpu_offset[cpu], some use
2614 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2615 */
2616#ifdef __per_cpu_offset
2617#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2618#else
2619#ifdef CONFIG_SMP
2620#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2621#else
2622#define KDB_PCU(cpu) 0
2623#endif
2624#endif
2625 for_each_online_cpu(cpu) {
2626 if (KDB_FLAG(CMD_INTERRUPT))
2627 return 0;
2628
2629 if (whichcpu != ~0UL && whichcpu != cpu)
2630 continue;
2631 addr = symaddr + KDB_PCU(cpu);
2632 diag = kdb_getword(&val, addr, bytesperword);
2633 if (diag) {
2634 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2635 "read, diag=%d\n", cpu, addr, diag);
2636 continue;
2637 }
2638 kdb_printf("%5d ", cpu);
2639 kdb_md_line(fmtstr, addr,
2640 bytesperword == KDB_WORD_SIZE,
2641 1, bytesperword, 1, 1, 0);
2642 }
2643#undef KDB_PCU
2644 return 0;
2645}
2646
2647/*
2648 * display help for the use of cmd | grep pattern
2649 */
2650static int kdb_grep_help(int argc, const char **argv)
2651{
2652 kdb_printf("Usage of cmd args | grep pattern:\n");
2653 kdb_printf(" Any command's output may be filtered through an ");
2654 kdb_printf("emulated 'pipe'.\n");
2655 kdb_printf(" 'grep' is just a key word.\n");
2656 kdb_printf(" The pattern may include a very limited set of "
2657 "metacharacters:\n");
2658 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2659 kdb_printf(" And if there are spaces in the pattern, you may "
2660 "quote it:\n");
2661 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2662 " or \"^pat tern$\"\n");
2663 return 0;
2664}
2665
2666/*
2667 * kdb_register_flags - This function is used to register a kernel
2668 * debugger command.
2669 * Inputs:
2670 * cmd Command name
2671 * func Function to execute the command
2672 * usage A simple usage string showing arguments
2673 * help A simple help string describing command
2674 * repeat Does the command auto repeat on enter?
2675 * Returns:
2676 * zero for success, one if a duplicate command.
2677 */
2678#define kdb_command_extend 50 /* arbitrary */
2679int kdb_register_flags(char *cmd,
2680 kdb_func_t func,
2681 char *usage,
2682 char *help,
2683 short minlen,
2684 kdb_cmdflags_t flags)
2685{
2686 int i;
2687 kdbtab_t *kp;
2688
2689 /*
2690 * Brute force method to determine duplicates
2691 */
2692 for_each_kdbcmd(kp, i) {
2693 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2694 kdb_printf("Duplicate kdb command registered: "
2695 "%s, func %p help %s\n", cmd, func, help);
2696 return 1;
2697 }
2698 }
2699
2700 /*
2701 * Insert command into first available location in table
2702 */
2703 for_each_kdbcmd(kp, i) {
2704 if (kp->cmd_name == NULL)
2705 break;
2706 }
2707
2708 if (i >= kdb_max_commands) {
2709 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2710 kdb_command_extend) * sizeof(*new), GFP_KDB);
2711 if (!new) {
2712 kdb_printf("Could not allocate new kdb_command "
2713 "table\n");
2714 return 1;
2715 }
2716 if (kdb_commands) {
2717 memcpy(new, kdb_commands,
2718 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2719 kfree(kdb_commands);
2720 }
2721 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2722 kdb_command_extend * sizeof(*new));
2723 kdb_commands = new;
2724 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2725 kdb_max_commands += kdb_command_extend;
2726 }
2727
2728 kp->cmd_name = cmd;
2729 kp->cmd_func = func;
2730 kp->cmd_usage = usage;
2731 kp->cmd_help = help;
2732 kp->cmd_minlen = minlen;
2733 kp->cmd_flags = flags;
2734
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(kdb_register_flags);
2738
2739
2740/*
2741 * kdb_register - Compatibility register function for commands that do
2742 * not need to specify a repeat state. Equivalent to
2743 * kdb_register_flags with flags set to 0.
2744 * Inputs:
2745 * cmd Command name
2746 * func Function to execute the command
2747 * usage A simple usage string showing arguments
2748 * help A simple help string describing command
2749 * Returns:
2750 * zero for success, one if a duplicate command.
2751 */
2752int kdb_register(char *cmd,
2753 kdb_func_t func,
2754 char *usage,
2755 char *help,
2756 short minlen)
2757{
2758 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2759}
2760EXPORT_SYMBOL_GPL(kdb_register);
2761
2762/*
2763 * kdb_unregister - This function is used to unregister a kernel
2764 * debugger command. It is generally called when a module which
2765 * implements kdb commands is unloaded.
2766 * Inputs:
2767 * cmd Command name
2768 * Returns:
2769 * zero for success, one command not registered.
2770 */
2771int kdb_unregister(char *cmd)
2772{
2773 int i;
2774 kdbtab_t *kp;
2775
2776 /*
2777 * find the command.
2778 */
2779 for_each_kdbcmd(kp, i) {
2780 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2781 kp->cmd_name = NULL;
2782 return 0;
2783 }
2784 }
2785
2786 /* Couldn't find it. */
2787 return 1;
2788}
2789EXPORT_SYMBOL_GPL(kdb_unregister);
2790
2791/* Initialize the kdb command table. */
2792static void __init kdb_inittab(void)
2793{
2794 int i;
2795 kdbtab_t *kp;
2796
2797 for_each_kdbcmd(kp, i)
2798 kp->cmd_name = NULL;
2799
2800 kdb_register_flags("md", kdb_md, "<vaddr>",
2801 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2802 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2803 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2804 "Display Raw Memory", 0,
2805 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2806 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2807 "Display Physical Memory", 0,
2808 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2809 kdb_register_flags("mds", kdb_md, "<vaddr>",
2810 "Display Memory Symbolically", 0,
2811 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2812 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2813 "Modify Memory Contents", 0,
2814 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2816 "Continue Execution", 1,
2817 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2818 kdb_register_flags("rd", kdb_rd, "",
2819 "Display Registers", 0,
2820 KDB_ENABLE_REG_READ);
2821 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2822 "Modify Registers", 0,
2823 KDB_ENABLE_REG_WRITE);
2824 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2825 "Display exception frame", 0,
2826 KDB_ENABLE_MEM_READ);
2827 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2828 "Stack traceback", 1,
2829 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2830 kdb_register_flags("btp", kdb_bt, "<pid>",
2831 "Display stack for process <pid>", 0,
2832 KDB_ENABLE_INSPECT);
2833 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2834 "Backtrace all processes matching state flag", 0,
2835 KDB_ENABLE_INSPECT);
2836 kdb_register_flags("btc", kdb_bt, "",
2837 "Backtrace current process on each cpu", 0,
2838 KDB_ENABLE_INSPECT);
2839 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2840 "Backtrace process given its struct task address", 0,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("env", kdb_env, "",
2843 "Show environment variables", 0,
2844 KDB_ENABLE_ALWAYS_SAFE);
2845 kdb_register_flags("set", kdb_set, "",
2846 "Set environment variables", 0,
2847 KDB_ENABLE_ALWAYS_SAFE);
2848 kdb_register_flags("help", kdb_help, "",
2849 "Display Help Message", 1,
2850 KDB_ENABLE_ALWAYS_SAFE);
2851 kdb_register_flags("?", kdb_help, "",
2852 "Display Help Message", 0,
2853 KDB_ENABLE_ALWAYS_SAFE);
2854 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2855 "Switch to new cpu", 0,
2856 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2857 kdb_register_flags("kgdb", kdb_kgdb, "",
2858 "Enter kgdb mode", 0, 0);
2859 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2860 "Display active task list", 0,
2861 KDB_ENABLE_INSPECT);
2862 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2863 "Switch to another task", 0,
2864 KDB_ENABLE_INSPECT);
2865 kdb_register_flags("reboot", kdb_reboot, "",
2866 "Reboot the machine immediately", 0,
2867 KDB_ENABLE_REBOOT);
2868#if defined(CONFIG_MODULES)
2869 kdb_register_flags("lsmod", kdb_lsmod, "",
2870 "List loaded kernel modules", 0,
2871 KDB_ENABLE_INSPECT);
2872#endif
2873#if defined(CONFIG_MAGIC_SYSRQ)
2874 kdb_register_flags("sr", kdb_sr, "<key>",
2875 "Magic SysRq key", 0,
2876 KDB_ENABLE_ALWAYS_SAFE);
2877#endif
2878#if defined(CONFIG_PRINTK)
2879 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2880 "Display syslog buffer", 0,
2881 KDB_ENABLE_ALWAYS_SAFE);
2882#endif
2883 if (arch_kgdb_ops.enable_nmi) {
2884 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2885 "Disable NMI entry to KDB", 0,
2886 KDB_ENABLE_ALWAYS_SAFE);
2887 }
2888 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2889 "Define a set of commands, down to endefcmd", 0,
2890 KDB_ENABLE_ALWAYS_SAFE);
2891 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0,
2893 KDB_ENABLE_SIGNAL);
2894 kdb_register_flags("summary", kdb_summary, "",
2895 "Summarize the system", 4,
2896 KDB_ENABLE_ALWAYS_SAFE);
2897 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2898 "Display per_cpu variables", 3,
2899 KDB_ENABLE_MEM_READ);
2900 kdb_register_flags("grephelp", kdb_grep_help, "",
2901 "Display help on | grep", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903}
2904
2905/* Execute any commands defined in kdb_cmds. */
2906static void __init kdb_cmd_init(void)
2907{
2908 int i, diag;
2909 for (i = 0; kdb_cmds[i]; ++i) {
2910 diag = kdb_parse(kdb_cmds[i]);
2911 if (diag)
2912 kdb_printf("kdb command %s failed, kdb diag %d\n",
2913 kdb_cmds[i], diag);
2914 }
2915 if (defcmd_in_progress) {
2916 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2917 kdb_parse("endefcmd");
2918 }
2919}
2920
2921/* Initialize kdb_printf, breakpoint tables and kdb state */
2922void __init kdb_init(int lvl)
2923{
2924 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2925 int i;
2926
2927 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2928 return;
2929 for (i = kdb_init_lvl; i < lvl; i++) {
2930 switch (i) {
2931 case KDB_NOT_INITIALIZED:
2932 kdb_inittab(); /* Initialize Command Table */
2933 kdb_initbptab(); /* Initialize Breakpoints */
2934 break;
2935 case KDB_INIT_EARLY:
2936 kdb_cmd_init(); /* Build kdb_cmds tables */
2937 break;
2938 }
2939 }
2940 kdb_init_lvl = lvl;
2941}