Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
 
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;			/* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)					\
  85	for ((cmd) = kdb_base_commands, (num) = 0;			\
  86	     num < kdb_max_commands;					\
  87	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90	int	km_diag;	/* kdb diagnostic */
  91	char	*km_msg;	/* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95	{ KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98	KDBMSG(NOTFOUND, "Command Not Found"),
  99	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101	       "8 is only allowed on 64 bit systems"),
 102	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103	KDBMSG(NOTENV, "Cannot find environment variable"),
 104	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105	KDBMSG(NOTIMP, "Command not implemented"),
 106	KDBMSG(ENVFULL, "Environment full"),
 107	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116	KDBMSG(BADMODE, "Invalid IDMODE"),
 117	KDBMSG(BADINT, "Illegal numeric value"),
 118	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119	KDBMSG(BADREG, "Invalid register name"),
 120	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121	KDBMSG(BADLENGTH, "Invalid length field"),
 122	KDBMSG(NOBP, "No Breakpoint exists"),
 123	KDBMSG(BADADDR, "Invalid address"),
 
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 
 
 
 
 
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	if (in_dbg_master()) {
 685		kdb_printf("Command only available during kdb_init()\n");
 686		return KDB_NOTIMP;
 687	}
 688	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689			     GFP_KDB);
 690	if (!defcmd_set)
 691		goto fail_defcmd;
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 698	if (!s->name)
 699		goto fail_name;
 700	s->usage = kdb_strdup(argv[2], GFP_KDB);
 701	if (!s->usage)
 702		goto fail_usage;
 703	s->help = kdb_strdup(argv[3], GFP_KDB);
 704	if (!s->help)
 705		goto fail_help;
 706	if (s->usage[0] == '"') {
 707		strcpy(s->usage, argv[2]+1);
 708		s->usage[strlen(s->usage)-1] = '\0';
 709	}
 710	if (s->help[0] == '"') {
 711		strcpy(s->help, argv[3]+1);
 712		s->help[strlen(s->help)-1] = '\0';
 713	}
 714	++defcmd_set_count;
 715	defcmd_in_progress = 1;
 716	kfree(save_defcmd_set);
 717	return 0;
 718fail_help:
 719	kfree(s->usage);
 720fail_usage:
 721	kfree(s->name);
 722fail_name:
 723	kfree(defcmd_set);
 724fail_defcmd:
 725	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726	defcmd_set = save_defcmd_set;
 727	return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *	defcmd name.
 733 * Inputs:
 734 *	argc	argument count
 735 *	argv	argument vector
 736 * Returns:
 737 *	zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741	int i, ret;
 742	struct defcmd_set *s;
 743	if (argc != 0)
 744		return KDB_ARGCOUNT;
 745	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746		if (strcmp(s->name, argv[0]) == 0)
 747			break;
 748	}
 749	if (i == defcmd_set_count) {
 750		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751			   argv[0]);
 752		return KDB_NOTIMP;
 753	}
 754	for (i = 0; i < s->count; ++i) {
 755		/* Recursive use of kdb_parse, do not use argv after
 756		 * this point */
 757		argv = NULL;
 758		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759		ret = kdb_parse(s->command[i]);
 760		if (ret)
 761			return ret;
 762	}
 763	return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT	32
 768#define CMD_BUFLEN		200	/* kdb_printf: max printline
 769					 * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780	int	len;
 781	char	*cp = (char *)str, *cp2;
 782
 783	/* sanity check: we should have been called with the \ first */
 784	if (*cp != '|')
 785		return;
 786	cp++;
 787	while (isspace(*cp))
 788		cp++;
 789	if (strncmp(cp, "grep ", 5)) {
 790		kdb_printf("invalid 'pipe', see grephelp\n");
 791		return;
 792	}
 793	cp += 5;
 794	while (isspace(*cp))
 795		cp++;
 796	cp2 = strchr(cp, '\n');
 797	if (cp2)
 798		*cp2 = '\0'; /* remove the trailing newline */
 799	len = strlen(cp);
 800	if (len == 0) {
 801		kdb_printf("invalid 'pipe', see grephelp\n");
 802		return;
 803	}
 804	/* now cp points to a nonzero length search string */
 805	if (*cp == '"') {
 806		/* allow it be "x y z" by removing the "'s - there must
 807		   be two of them */
 808		cp++;
 809		cp2 = strchr(cp, '"');
 810		if (!cp2) {
 811			kdb_printf("invalid quoted string, see grephelp\n");
 812			return;
 813		}
 814		*cp2 = '\0'; /* end the string where the 2nd " was */
 815	}
 816	kdb_grep_leading = 0;
 817	if (*cp == '^') {
 818		kdb_grep_leading = 1;
 819		cp++;
 820	}
 821	len = strlen(cp);
 822	kdb_grep_trailing = 0;
 823	if (*(cp+len-1) == '$') {
 824		kdb_grep_trailing = 1;
 825		*(cp+len-1) = '\0';
 826	}
 827	len = strlen(cp);
 828	if (!len)
 829		return;
 830	if (len >= GREP_LEN) {
 831		kdb_printf("search string too long\n");
 832		return;
 833	}
 834	strcpy(kdb_grep_string, cp);
 835	kdb_grepping_flag++;
 836	return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *	matching command and invoke the command function.  This
 842 *	function may be called recursively, if it is, the second call
 843 *	will overwrite argv and cbuf.  It is the caller's
 844 *	responsibility to save their argv if they recursively call
 845 *	kdb_parse().
 846 * Parameters:
 847 *      cmdstr	The input command line to be parsed.
 848 *	regs	The registers at the time kdb was entered.
 849 * Returns:
 850 *	Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *	Limited to 20 tokens.
 853 *
 854 *	Real rudimentary tokenization. Basically only whitespace
 855 *	is considered a token delimeter (but special consideration
 856 *	is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *	The algorithm used to tokenize the input string relies on
 859 *	there being at least one whitespace (or otherwise useless)
 860 *	character between tokens as the character immediately following
 861 *	the token is altered in-place to a null-byte to terminate the
 862 *	token string.
 863 */
 864
 865#define MAXARGC	20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869	static char *argv[MAXARGC];
 870	static int argc;
 871	static char cbuf[CMD_BUFLEN+2];
 872	char *cp;
 873	char *cpp, quoted;
 874	kdbtab_t *tp;
 875	int i, escaped, ignore_errors = 0, check_grep;
 876
 877	/*
 878	 * First tokenize the command string.
 879	 */
 880	cp = (char *)cmdstr;
 881	kdb_grepping_flag = check_grep = 0;
 882
 883	if (KDB_FLAG(CMD_INTERRUPT)) {
 884		/* Previous command was interrupted, newline must not
 885		 * repeat the command */
 886		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887		KDB_STATE_SET(PAGER);
 888		argc = 0;	/* no repeat */
 889	}
 890
 891	if (*cp != '\n' && *cp != '\0') {
 892		argc = 0;
 893		cpp = cbuf;
 894		while (*cp) {
 895			/* skip whitespace */
 896			while (isspace(*cp))
 897				cp++;
 898			if ((*cp == '\0') || (*cp == '\n') ||
 899			    (*cp == '#' && !defcmd_in_progress))
 900				break;
 901			/* special case: check for | grep pattern */
 902			if (*cp == '|') {
 903				check_grep++;
 904				break;
 905			}
 906			if (cpp >= cbuf + CMD_BUFLEN) {
 907				kdb_printf("kdb_parse: command buffer "
 908					   "overflow, command ignored\n%s\n",
 909					   cmdstr);
 910				return KDB_NOTFOUND;
 911			}
 912			if (argc >= MAXARGC - 1) {
 913				kdb_printf("kdb_parse: too many arguments, "
 914					   "command ignored\n%s\n", cmdstr);
 915				return KDB_NOTFOUND;
 916			}
 917			argv[argc++] = cpp;
 918			escaped = 0;
 919			quoted = '\0';
 920			/* Copy to next unquoted and unescaped
 921			 * whitespace or '=' */
 922			while (*cp && *cp != '\n' &&
 923			       (escaped || quoted || !isspace(*cp))) {
 924				if (cpp >= cbuf + CMD_BUFLEN)
 925					break;
 926				if (escaped) {
 927					escaped = 0;
 928					*cpp++ = *cp++;
 929					continue;
 930				}
 931				if (*cp == '\\') {
 932					escaped = 1;
 933					++cp;
 934					continue;
 935				}
 936				if (*cp == quoted)
 937					quoted = '\0';
 938				else if (*cp == '\'' || *cp == '"')
 939					quoted = *cp;
 940				*cpp = *cp++;
 941				if (*cpp == '=' && !quoted)
 942					break;
 943				++cpp;
 944			}
 945			*cpp++ = '\0';	/* Squash a ws or '=' character */
 946		}
 947	}
 948	if (!argc)
 949		return 0;
 950	if (check_grep)
 951		parse_grep(cp);
 952	if (defcmd_in_progress) {
 953		int result = kdb_defcmd2(cmdstr, argv[0]);
 954		if (!defcmd_in_progress) {
 955			argc = 0;	/* avoid repeat on endefcmd */
 956			*(argv[0]) = '\0';
 957		}
 958		return result;
 959	}
 960	if (argv[0][0] == '-' && argv[0][1] &&
 961	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 962		ignore_errors = 1;
 963		++argv[0];
 964	}
 965
 966	for_each_kdbcmd(tp, i) {
 967		if (tp->cmd_name) {
 968			/*
 969			 * If this command is allowed to be abbreviated,
 970			 * check to see if this is it.
 971			 */
 972
 973			if (tp->cmd_minlen
 974			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975				if (strncmp(argv[0],
 976					    tp->cmd_name,
 977					    tp->cmd_minlen) == 0) {
 978					break;
 979				}
 980			}
 981
 982			if (strcmp(argv[0], tp->cmd_name) == 0)
 983				break;
 984		}
 985	}
 986
 987	/*
 988	 * If we don't find a command by this name, see if the first
 989	 * few characters of this match any of the known commands.
 990	 * e.g., md1c20 should match md.
 991	 */
 992	if (i == kdb_max_commands) {
 993		for_each_kdbcmd(tp, i) {
 994			if (tp->cmd_name) {
 995				if (strncmp(argv[0],
 996					    tp->cmd_name,
 997					    strlen(tp->cmd_name)) == 0) {
 998					break;
 999				}
1000			}
1001		}
1002	}
1003
1004	if (i < kdb_max_commands) {
1005		int result;
 
 
 
 
1006		KDB_STATE_SET(CMD);
1007		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008		if (result && ignore_errors && result > KDB_CMD_GO)
1009			result = 0;
1010		KDB_STATE_CLEAR(CMD);
1011		switch (tp->cmd_repeat) {
1012		case KDB_REPEAT_NONE:
1013			argc = 0;
1014			if (argv[0])
1015				*(argv[0]) = '\0';
1016			break;
1017		case KDB_REPEAT_NO_ARGS:
1018			argc = 1;
1019			if (argv[1])
1020				*(argv[1]) = '\0';
1021			break;
1022		case KDB_REPEAT_WITH_ARGS:
1023			break;
1024		}
1025		return result;
1026	}
1027
1028	/*
1029	 * If the input with which we were presented does not
1030	 * map to an existing command, attempt to parse it as an
1031	 * address argument and display the result.   Useful for
1032	 * obtaining the address of a variable, or the nearest symbol
1033	 * to an address contained in a register.
1034	 */
1035	{
1036		unsigned long value;
1037		char *name = NULL;
1038		long offset;
1039		int nextarg = 0;
1040
1041		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042				  &value, &offset, &name)) {
1043			return KDB_NOTFOUND;
1044		}
1045
1046		kdb_printf("%s = ", argv[0]);
1047		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048		kdb_printf("\n");
1049		return 0;
1050	}
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P	16
1057#define CTRL_N	14
1058
1059	/* initial situation */
1060	if (cmd_head == cmd_tail)
1061		return 0;
1062	switch (*cmd) {
1063	case CTRL_P:
1064		if (cmdptr != cmd_tail)
1065			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067		return 1;
1068	case CTRL_N:
1069		if (cmdptr != cmd_head)
1070			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072		return 1;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *	the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083	emergency_restart();
1084	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085	while (1)
1086		cpu_relax();
1087	/* NOTREACHED */
1088	return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093	int old_lvl = console_loglevel;
1094	console_loglevel = 15;
1095	kdb_trap_printk++;
1096	show_regs(regs);
1097	kdb_trap_printk--;
1098	kdb_printf("\n");
1099	console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104	kdb_current_task = p;
1105
1106	if (kdb_task_has_cpu(p)) {
1107		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108		return;
1109	}
1110	kdb_current_regs = NULL;
1111}
1112
 
 
 
 
 
 
 
 
 
 
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *	specific processor, it is not global.  The main kdb() routine
1116 *	ensures that only one processor at a time is in this routine.
1117 *	This code is called with the real reason code on the first
1118 *	entry to a kdb session, thereafter it is called with reason
1119 *	SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *	reason		The reason KDB was invoked
1122 *	error		The hardware-defined error code
1123 *	regs		The exception frame at time of fault/breakpoint.
1124 *	db_result	Result code from the break or debug point.
1125 * Returns:
1126 *	0	KDB was invoked for an event which it wasn't responsible
1127 *	1	KDB handled the event for which it was invoked.
1128 *	KDB_CMD_GO	User typed 'go'.
1129 *	KDB_CMD_CPU	User switched to another cpu.
1130 *	KDB_CMD_SS	Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133		     kdb_dbtrap_t db_result)
1134{
1135	char *cmdbuf;
1136	int diag;
1137	struct task_struct *kdb_current =
1138		kdb_curr_task(raw_smp_processor_id());
1139
1140	KDB_DEBUG_STATE("kdb_local 1", reason);
1141	kdb_go_count = 0;
1142	if (reason == KDB_REASON_DEBUG) {
1143		/* special case below */
1144	} else {
1145		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146			   kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148		kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150	}
1151
1152	switch (reason) {
1153	case KDB_REASON_DEBUG:
1154	{
1155		/*
1156		 * If re-entering kdb after a single step
1157		 * command, don't print the message.
1158		 */
1159		switch (db_result) {
1160		case KDB_DB_BPT:
1161			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162				   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164			kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167				   instruction_pointer(regs));
1168			break;
1169		case KDB_DB_SS:
1170			break;
1171		case KDB_DB_SSBPT:
1172			KDB_DEBUG_STATE("kdb_local 4", reason);
1173			return 1;	/* kdba_db_trap did the work */
1174		default:
1175			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176				   db_result);
1177			break;
1178		}
1179
1180	}
1181		break;
1182	case KDB_REASON_ENTER:
1183		if (KDB_STATE(KEYBOARD))
1184			kdb_printf("due to Keyboard Entry\n");
1185		else
1186			kdb_printf("due to KDB_ENTER()\n");
1187		break;
1188	case KDB_REASON_KEYBOARD:
1189		KDB_STATE_SET(KEYBOARD);
1190		kdb_printf("due to Keyboard Entry\n");
1191		break;
1192	case KDB_REASON_ENTER_SLAVE:
1193		/* drop through, slaves only get released via cpu switch */
1194	case KDB_REASON_SWITCH:
1195		kdb_printf("due to cpu switch\n");
1196		break;
1197	case KDB_REASON_OOPS:
1198		kdb_printf("Oops: %s\n", kdb_diemsg);
1199		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200			   instruction_pointer(regs));
1201		kdb_dumpregs(regs);
1202		break;
1203	case KDB_REASON_SYSTEM_NMI:
1204		kdb_printf("due to System NonMaskable Interrupt\n");
1205		break;
1206	case KDB_REASON_NMI:
1207		kdb_printf("due to NonMaskable Interrupt @ "
1208			   kdb_machreg_fmt "\n",
1209			   instruction_pointer(regs));
1210		kdb_dumpregs(regs);
1211		break;
1212	case KDB_REASON_SSTEP:
1213	case KDB_REASON_BREAK:
1214		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215			   reason == KDB_REASON_BREAK ?
1216			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1217		/*
1218		 * Determine if this breakpoint is one that we
1219		 * are interested in.
1220		 */
1221		if (db_result != KDB_DB_BPT) {
1222			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223				   db_result);
1224			KDB_DEBUG_STATE("kdb_local 6", reason);
1225			return 0;	/* Not for us, dismiss it */
1226		}
1227		break;
1228	case KDB_REASON_RECURSE:
1229		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230			   instruction_pointer(regs));
1231		break;
1232	default:
1233		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234		KDB_DEBUG_STATE("kdb_local 8", reason);
1235		return 0;	/* Not for us, dismiss it */
1236	}
1237
1238	while (1) {
1239		/*
1240		 * Initialize pager context.
1241		 */
1242		kdb_nextline = 1;
1243		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1244
1245		cmdbuf = cmd_cur;
1246		*cmdbuf = '\0';
1247		*(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252			 raw_smp_processor_id());
1253#else
1254		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256		if (defcmd_in_progress)
1257			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259		/*
1260		 * Fetch command from keyboard
1261		 */
1262		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263		if (*cmdbuf != '\n') {
1264			if (*cmdbuf < 32) {
1265				if (cmdptr == cmd_head) {
1266					strncpy(cmd_hist[cmd_head], cmd_cur,
1267						CMD_BUFLEN);
1268					*(cmd_hist[cmd_head] +
1269					  strlen(cmd_hist[cmd_head])-1) = '\0';
1270				}
1271				if (!handle_ctrl_cmd(cmdbuf))
1272					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273				cmdbuf = cmd_cur;
1274				goto do_full_getstr;
1275			} else {
1276				strncpy(cmd_hist[cmd_head], cmd_cur,
1277					CMD_BUFLEN);
1278			}
1279
1280			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281			if (cmd_head == cmd_tail)
1282				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283		}
1284
1285		cmdptr = cmd_head;
1286		diag = kdb_parse(cmdbuf);
1287		if (diag == KDB_NOTFOUND) {
 
1288			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289			diag = 0;
1290		}
1291		if (diag == KDB_CMD_GO
1292		 || diag == KDB_CMD_CPU
1293		 || diag == KDB_CMD_SS
1294		 || diag == KDB_CMD_KGDB)
1295			break;
1296
1297		if (diag)
1298			kdb_cmderror(diag);
1299	}
1300	KDB_DEBUG_STATE("kdb_local 9", diag);
1301	return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *	for debugging.
1308 * Inputs:
1309 *	text		Identifies the debug point
1310 *	value		Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316		   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *	controlling cpu, all cpus are in this loop.  One cpu is in
1322 *	control and will issue the kdb prompt, the others will spin
1323 *	until 'go' or cpu switch.
1324 *
1325 *	To get a consistent view of the kernel stacks for all
1326 *	processes, this routine is invoked from the main kdb code via
1327 *	an architecture specific routine.  kdba_main_loop is
1328 *	responsible for making the kernel stacks consistent for all
1329 *	processes, there should be no difference between a blocked
1330 *	process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *	reason		The reason KDB was invoked
1333 *	error		The hardware-defined error code
1334 *	reason2		kdb's current reason code.
1335 *			Initially error but can change
1336 *			according to kdb state.
1337 *	db_result	Result code from break or debug point.
1338 *	regs		The exception frame at time of fault/breakpoint.
1339 *			should always be valid.
1340 * Returns:
1341 *	0	KDB was invoked for an event which it wasn't responsible
1342 *	1	KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347	int result = 1;
1348	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1349	while (1) {
1350		/*
1351		 * All processors except the one that is in control
1352		 * will spin here.
1353		 */
1354		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355		while (KDB_STATE(HOLD_CPU)) {
1356			/* state KDB is turned off by kdb_cpu to see if the
1357			 * other cpus are still live, each cpu in this loop
1358			 * turns it back on.
1359			 */
1360			if (!KDB_STATE(KDB))
1361				KDB_STATE_SET(KDB);
1362		}
1363
1364		KDB_STATE_CLEAR(SUPPRESS);
1365		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366		if (KDB_STATE(LEAVING))
1367			break;	/* Another cpu said 'go' */
1368		/* Still using kdb, this processor is in control */
1369		result = kdb_local(reason2, error, regs, db_result);
1370		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372		if (result == KDB_CMD_CPU)
1373			break;
1374
1375		if (result == KDB_CMD_SS) {
1376			KDB_STATE_SET(DOING_SS);
1377			break;
1378		}
1379
1380		if (result == KDB_CMD_KGDB) {
1381			if (!KDB_STATE(DOING_KGDB))
1382				kdb_printf("Entering please attach debugger "
1383					   "or use $D#44+ or $3#33\n");
1384			break;
1385		}
1386		if (result && result != 1 && result != KDB_CMD_GO)
1387			kdb_printf("\nUnexpected kdb_local return code %d\n",
1388				   result);
1389		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390		break;
1391	}
1392	if (KDB_STATE(DOING_SS))
1393		KDB_STATE_CLEAR(SSBPT);
1394
1395	/* Clean up any keyboard devices before leaving */
1396	kdb_kbd_cleanup_state();
1397
1398	return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *	mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *	addr	Start address
1407 *	count	Number of bytes
1408 * Returns:
1409 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413	unsigned char c;
1414	while (count--) {
1415		if (kdb_getarea(c, addr))
1416			return 0;
1417		kdb_printf("%02x", c);
1418		addr++;
1419	}
1420	kdb_printf("\n");
1421	return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *	'md8' 'mdr' and 'mds' commands.
1427 *
1428 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1430 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *	mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435			int symbolic, int nosect, int bytesperword,
1436			int num, int repeat, int phys)
1437{
1438	/* print just one line of data */
1439	kdb_symtab_t symtab;
1440	char cbuf[32];
1441	char *c = cbuf;
1442	int i;
1443	unsigned long word;
1444
1445	memset(cbuf, '\0', sizeof(cbuf));
1446	if (phys)
1447		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448	else
1449		kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451	for (i = 0; i < num && repeat--; i++) {
1452		if (phys) {
1453			if (kdb_getphysword(&word, addr, bytesperword))
1454				break;
1455		} else if (kdb_getword(&word, addr, bytesperword))
1456			break;
1457		kdb_printf(fmtstr, word);
1458		if (symbolic)
1459			kdbnearsym(word, &symtab);
1460		else
1461			memset(&symtab, 0, sizeof(symtab));
1462		if (symtab.sym_name) {
1463			kdb_symbol_print(word, &symtab, 0);
1464			if (!nosect) {
1465				kdb_printf("\n");
1466				kdb_printf("                       %s %s "
1467					   kdb_machreg_fmt " "
1468					   kdb_machreg_fmt " "
1469					   kdb_machreg_fmt, symtab.mod_name,
1470					   symtab.sec_name, symtab.sec_start,
1471					   symtab.sym_start, symtab.sym_end);
1472			}
1473			addr += bytesperword;
1474		} else {
1475			union {
1476				u64 word;
1477				unsigned char c[8];
1478			} wc;
1479			unsigned char *cp;
1480#ifdef	__BIG_ENDIAN
1481			cp = wc.c + 8 - bytesperword;
1482#else
1483			cp = wc.c;
1484#endif
1485			wc.word = word;
1486#define printable_char(c) \
1487	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488			switch (bytesperword) {
1489			case 8:
1490				*c++ = printable_char(*cp++);
1491				*c++ = printable_char(*cp++);
1492				*c++ = printable_char(*cp++);
1493				*c++ = printable_char(*cp++);
1494				addr += 4;
1495			case 4:
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				addr += 2;
1499			case 2:
1500				*c++ = printable_char(*cp++);
1501				addr++;
1502			case 1:
1503				*c++ = printable_char(*cp++);
1504				addr++;
1505				break;
1506			}
1507#undef printable_char
1508		}
1509	}
1510	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511		   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516	static unsigned long last_addr;
1517	static int last_radix, last_bytesperword, last_repeat;
1518	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519	int nosect = 0;
1520	char fmtchar, fmtstr[64];
1521	unsigned long addr;
1522	unsigned long word;
1523	long offset = 0;
1524	int symbolic = 0;
1525	int valid = 0;
1526	int phys = 0;
 
1527
1528	kdbgetintenv("MDCOUNT", &mdcount);
1529	kdbgetintenv("RADIX", &radix);
1530	kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532	/* Assume 'md <addr>' and start with environment values */
1533	repeat = mdcount * 16 / bytesperword;
1534
1535	if (strcmp(argv[0], "mdr") == 0) {
1536		if (argc != 2)
 
 
1537			return KDB_ARGCOUNT;
1538		valid = 1;
1539	} else if (isdigit(argv[0][2])) {
1540		bytesperword = (int)(argv[0][2] - '0');
1541		if (bytesperword == 0) {
1542			bytesperword = last_bytesperword;
1543			if (bytesperword == 0)
1544				bytesperword = 4;
1545		}
1546		last_bytesperword = bytesperword;
1547		repeat = mdcount * 16 / bytesperword;
1548		if (!argv[0][3])
1549			valid = 1;
1550		else if (argv[0][3] == 'c' && argv[0][4]) {
1551			char *p;
1552			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553			mdcount = ((repeat * bytesperword) + 15) / 16;
1554			valid = !*p;
1555		}
1556		last_repeat = repeat;
1557	} else if (strcmp(argv[0], "md") == 0)
1558		valid = 1;
1559	else if (strcmp(argv[0], "mds") == 0)
1560		valid = 1;
1561	else if (strcmp(argv[0], "mdp") == 0) {
1562		phys = valid = 1;
1563	}
1564	if (!valid)
1565		return KDB_NOTFOUND;
1566
1567	if (argc == 0) {
1568		if (last_addr == 0)
1569			return KDB_ARGCOUNT;
1570		addr = last_addr;
1571		radix = last_radix;
1572		bytesperword = last_bytesperword;
1573		repeat = last_repeat;
1574		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1575	}
1576
1577	if (argc) {
1578		unsigned long val;
1579		int diag, nextarg = 1;
1580		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581				     &offset, NULL);
1582		if (diag)
1583			return diag;
1584		if (argc > nextarg+2)
1585			return KDB_ARGCOUNT;
1586
1587		if (argc >= nextarg) {
1588			diag = kdbgetularg(argv[nextarg], &val);
1589			if (!diag) {
1590				mdcount = (int) val;
1591				repeat = mdcount * 16 / bytesperword;
 
 
 
1592			}
1593		}
1594		if (argc >= nextarg+1) {
1595			diag = kdbgetularg(argv[nextarg+1], &val);
1596			if (!diag)
1597				radix = (int) val;
1598		}
1599	}
1600
1601	if (strcmp(argv[0], "mdr") == 0)
1602		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1603
1604	switch (radix) {
1605	case 10:
1606		fmtchar = 'd';
1607		break;
1608	case 16:
1609		fmtchar = 'x';
1610		break;
1611	case 8:
1612		fmtchar = 'o';
1613		break;
1614	default:
1615		return KDB_BADRADIX;
1616	}
1617
1618	last_radix = radix;
1619
1620	if (bytesperword > KDB_WORD_SIZE)
1621		return KDB_BADWIDTH;
1622
1623	switch (bytesperword) {
1624	case 8:
1625		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626		break;
1627	case 4:
1628		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629		break;
1630	case 2:
1631		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632		break;
1633	case 1:
1634		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635		break;
1636	default:
1637		return KDB_BADWIDTH;
1638	}
1639
1640	last_repeat = repeat;
1641	last_bytesperword = bytesperword;
1642
1643	if (strcmp(argv[0], "mds") == 0) {
1644		symbolic = 1;
1645		/* Do not save these changes as last_*, they are temporary mds
1646		 * overrides.
1647		 */
1648		bytesperword = KDB_WORD_SIZE;
1649		repeat = mdcount;
1650		kdbgetintenv("NOSECT", &nosect);
1651	}
1652
1653	/* Round address down modulo BYTESPERWORD */
1654
1655	addr &= ~(bytesperword-1);
1656
1657	while (repeat > 0) {
1658		unsigned long a;
1659		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661		if (KDB_FLAG(CMD_INTERRUPT))
1662			return 0;
1663		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664			if (phys) {
1665				if (kdb_getphysword(&word, a, bytesperword)
1666						|| word)
1667					break;
1668			} else if (kdb_getword(&word, a, bytesperword) || word)
1669				break;
1670		}
1671		n = min(num, repeat);
1672		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673			    num, repeat, phys);
1674		addr += bytesperword * n;
1675		repeat -= n;
1676		z = (z + num - 1) / num;
1677		if (z > 2) {
1678			int s = num * (z-2);
1679			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680				   " zero suppressed\n",
1681				addr, addr + bytesperword * s - 1);
1682			addr += bytesperword * s;
1683			repeat -= s;
1684		}
1685	}
1686	last_addr = addr;
1687
1688	return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *	mm address-expression new-value
1694 * Remarks:
1695 *	mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699	int diag;
1700	unsigned long addr;
1701	long offset = 0;
1702	unsigned long contents;
1703	int nextarg;
1704	int width;
1705
1706	if (argv[0][2] && !isdigit(argv[0][2]))
1707		return KDB_NOTFOUND;
1708
1709	if (argc < 2)
1710		return KDB_ARGCOUNT;
1711
1712	nextarg = 1;
1713	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714	if (diag)
1715		return diag;
1716
1717	if (nextarg > argc)
1718		return KDB_ARGCOUNT;
1719	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720	if (diag)
1721		return diag;
1722
1723	if (nextarg != argc + 1)
1724		return KDB_ARGCOUNT;
1725
1726	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727	diag = kdb_putword(addr, contents, width);
1728	if (diag)
1729		return diag;
1730
1731	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733	return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *	go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742	unsigned long addr;
1743	int diag;
1744	int nextarg;
1745	long offset;
1746
1747	if (raw_smp_processor_id() != kdb_initial_cpu) {
1748		kdb_printf("go must execute on the entry cpu, "
1749			   "please use \"cpu %d\" and then execute go\n",
1750			   kdb_initial_cpu);
1751		return KDB_BADCPUNUM;
1752	}
1753	if (argc == 1) {
1754		nextarg = 1;
1755		diag = kdbgetaddrarg(argc, argv, &nextarg,
1756				     &addr, &offset, NULL);
1757		if (diag)
1758			return diag;
1759	} else if (argc) {
1760		return KDB_ARGCOUNT;
1761	}
1762
1763	diag = KDB_CMD_GO;
1764	if (KDB_FLAG(CATASTROPHIC)) {
1765		kdb_printf("Catastrophic error detected\n");
1766		kdb_printf("kdb_continue_catastrophic=%d, ",
1767			kdb_continue_catastrophic);
1768		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769			kdb_printf("type go a second time if you really want "
1770				   "to continue\n");
1771			return 0;
1772		}
1773		if (kdb_continue_catastrophic == 2) {
1774			kdb_printf("forcing reboot\n");
1775			kdb_reboot(0, NULL);
1776		}
1777		kdb_printf("attempting to continue\n");
1778	}
1779	return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787	int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789	int i;
1790	char *rname;
1791	int rsize;
1792	u64 reg64;
1793	u32 reg32;
1794	u16 reg16;
1795	u8 reg8;
1796
1797	if (len)
1798		return len;
1799
1800	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801		rsize = dbg_reg_def[i].size * 2;
1802		if (rsize > 16)
1803			rsize = 2;
1804		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805			len = 0;
1806			kdb_printf("\n");
1807		}
1808		if (len)
1809			len += kdb_printf("  ");
1810		switch(dbg_reg_def[i].size * 8) {
1811		case 8:
1812			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813			if (!rname)
1814				break;
1815			len += kdb_printf("%s: %02x", rname, reg8);
1816			break;
1817		case 16:
1818			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819			if (!rname)
1820				break;
1821			len += kdb_printf("%s: %04x", rname, reg16);
1822			break;
1823		case 32:
1824			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825			if (!rname)
1826				break;
1827			len += kdb_printf("%s: %08x", rname, reg32);
1828			break;
1829		case 64:
1830			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831			if (!rname)
1832				break;
1833			len += kdb_printf("%s: %016llx", rname, reg64);
1834			break;
1835		default:
1836			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837		}
1838	}
1839	kdb_printf("\n");
1840#else
1841	if (len)
1842		return len;
1843
1844	kdb_dumpregs(kdb_current_regs);
1845#endif
1846	return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *	rm register-name new-contents
1852 * Remarks:
1853 *	Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858	int diag;
1859	const char *rname;
1860	int i;
1861	u64 reg64;
1862	u32 reg32;
1863	u16 reg16;
1864	u8 reg8;
1865
1866	if (argc != 2)
1867		return KDB_ARGCOUNT;
1868	/*
1869	 * Allow presence or absence of leading '%' symbol.
1870	 */
1871	rname = argv[1];
1872	if (*rname == '%')
1873		rname++;
1874
1875	diag = kdbgetu64arg(argv[2], &reg64);
1876	if (diag)
1877		return diag;
1878
1879	diag = kdb_check_regs();
1880	if (diag)
1881		return diag;
1882
1883	diag = KDB_BADREG;
1884	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886			diag = 0;
1887			break;
1888		}
1889	}
1890	if (!diag) {
1891		switch(dbg_reg_def[i].size * 8) {
1892		case 8:
1893			reg8 = reg64;
1894			dbg_set_reg(i, &reg8, kdb_current_regs);
1895			break;
1896		case 16:
1897			reg16 = reg64;
1898			dbg_set_reg(i, &reg16, kdb_current_regs);
1899			break;
1900		case 32:
1901			reg32 = reg64;
1902			dbg_set_reg(i, &reg32, kdb_current_regs);
1903			break;
1904		case 64:
1905			dbg_set_reg(i, &reg64, kdb_current_regs);
1906			break;
1907		}
1908	}
1909	return diag;
1910#else
1911	kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *		sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
 
 
 
1924	if (argc != 1)
1925		return KDB_ARGCOUNT;
 
1926	kdb_trap_printk++;
1927	__handle_sysrq(*argv[1], false);
1928	kdb_trap_printk--;
1929
1930	return 0;
1931}
1932#endif	/* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *	frame) command.  This command takes an address and expects to
1937 *	find an exception frame at that address, formats and prints
1938 *	it.
1939 *		regs address-expression
1940 * Remarks:
1941 *	Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945	int diag;
1946	unsigned long addr;
1947	long offset;
1948	int nextarg;
1949
1950	if (argc != 1)
1951		return KDB_ARGCOUNT;
1952
1953	nextarg = 1;
1954	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955	if (diag)
1956		return diag;
1957	show_regs((struct pt_regs *)addr);
1958	return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *	currently loaded kernel modules.
1965 *	Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969	struct module *mod;
1970
1971	if (argc != 0)
1972		return KDB_ARGCOUNT;
1973
1974	kdb_printf("Module                  Size  modstruct     Used by\n");
1975	list_for_each_entry(mod, kdb_modules, list) {
1976		if (mod->state == MODULE_STATE_UNFORMED)
1977			continue;
1978
1979		kdb_printf("%-20s%8u  0x%p ", mod->name,
1980			   mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982		kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984		if (mod->state == MODULE_STATE_GOING)
1985			kdb_printf(" (Unloading)");
1986		else if (mod->state == MODULE_STATE_COMING)
1987			kdb_printf(" (Loading)");
1988		else
1989			kdb_printf(" (Live)");
1990		kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993		{
1994			struct module_use *use;
1995			kdb_printf(" [ ");
1996			list_for_each_entry(use, &mod->source_list,
1997					    source_list)
1998				kdb_printf("%s ", use->target->name);
1999			kdb_printf("]\n");
2000		}
2001#endif
2002	}
2003
2004	return 0;
2005}
2006
2007#endif	/* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *	current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016	int i;
2017
2018	for (i = 0; i < __nenv; i++) {
2019		if (__env[i])
2020			kdb_printf("%s\n", __env[i]);
2021	}
2022
2023	if (KDB_DEBUG(MASK))
2024		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026	return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *	the contents of the syslog buffer.
2033 *		dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037	int diag;
2038	int logging;
2039	int lines = 0;
2040	int adjust = 0;
2041	int n = 0;
2042	int skip = 0;
2043	struct kmsg_dumper dumper = { .active = 1 };
2044	size_t len;
2045	char buf[201];
2046
2047	if (argc > 2)
2048		return KDB_ARGCOUNT;
2049	if (argc) {
2050		char *cp;
2051		lines = simple_strtol(argv[1], &cp, 0);
2052		if (*cp)
2053			lines = 0;
2054		if (argc > 1) {
2055			adjust = simple_strtoul(argv[2], &cp, 0);
2056			if (*cp || adjust < 0)
2057				adjust = 0;
2058		}
2059	}
2060
2061	/* disable LOGGING if set */
2062	diag = kdbgetintenv("LOGGING", &logging);
2063	if (!diag && logging) {
2064		const char *setargs[] = { "set", "LOGGING", "0" };
2065		kdb_set(2, setargs);
2066	}
2067
2068	kmsg_dump_rewind_nolock(&dumper);
2069	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070		n++;
2071
2072	if (lines < 0) {
2073		if (adjust >= n)
2074			kdb_printf("buffer only contains %d lines, nothing "
2075				   "printed\n", n);
2076		else if (adjust - lines >= n)
2077			kdb_printf("buffer only contains %d lines, last %d "
2078				   "lines printed\n", n, n - adjust);
2079		skip = adjust;
2080		lines = abs(lines);
2081	} else if (lines > 0) {
2082		skip = n - lines - adjust;
2083		lines = abs(lines);
2084		if (adjust >= n) {
2085			kdb_printf("buffer only contains %d lines, "
2086				   "nothing printed\n", n);
2087			skip = n;
2088		} else if (skip < 0) {
2089			lines += skip;
2090			skip = 0;
2091			kdb_printf("buffer only contains %d lines, first "
2092				   "%d lines printed\n", n, lines);
2093		}
2094	} else {
2095		lines = n;
2096	}
2097
2098	if (skip >= n || skip < 0)
2099		return 0;
2100
2101	kmsg_dump_rewind_nolock(&dumper);
2102	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103		if (skip) {
2104			skip--;
2105			continue;
2106		}
2107		if (!lines--)
2108			break;
2109		if (KDB_FLAG(CMD_INTERRUPT))
2110			return 0;
2111
2112		kdb_printf("%.*s\n", (int)len - 1, buf);
2113	}
2114
2115	return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124	if (atomic_read(&kdb_nmi_disabled))
2125		return 0;
2126	atomic_set(&kdb_nmi_disabled, 1);
2127	arch_kgdb_ops.enable_nmi(0);
2128	return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134		return -EINVAL;
2135	arch_kgdb_ops.enable_nmi(1);
2136	return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140	.set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *	cpu	[<cpunum>]
2147 * Returns:
2148 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152	int i, start_cpu, first_print = 1;
2153	char state, prev_state = '?';
2154
2155	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156	kdb_printf("Available cpus: ");
2157	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158		if (!cpu_online(i)) {
2159			state = 'F';	/* cpu is offline */
 
 
2160		} else {
2161			state = ' ';	/* cpu is responding to kdb */
2162			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163				state = 'I';	/* idle task */
2164		}
2165		if (state != prev_state) {
2166			if (prev_state != '?') {
2167				if (!first_print)
2168					kdb_printf(", ");
2169				first_print = 0;
2170				kdb_printf("%d", start_cpu);
2171				if (start_cpu < i-1)
2172					kdb_printf("-%d", i-1);
2173				if (prev_state != ' ')
2174					kdb_printf("(%c)", prev_state);
2175			}
2176			prev_state = state;
2177			start_cpu = i;
2178		}
2179	}
2180	/* print the trailing cpus, ignoring them if they are all offline */
2181	if (prev_state != 'F') {
2182		if (!first_print)
2183			kdb_printf(", ");
2184		kdb_printf("%d", start_cpu);
2185		if (start_cpu < i-1)
2186			kdb_printf("-%d", i-1);
2187		if (prev_state != ' ')
2188			kdb_printf("(%c)", prev_state);
2189	}
2190	kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195	unsigned long cpunum;
2196	int diag;
2197
2198	if (argc == 0) {
2199		kdb_cpu_status();
2200		return 0;
2201	}
2202
2203	if (argc != 1)
2204		return KDB_ARGCOUNT;
2205
2206	diag = kdbgetularg(argv[1], &cpunum);
2207	if (diag)
2208		return diag;
2209
2210	/*
2211	 * Validate cpunum
2212	 */
2213	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214		return KDB_BADCPUNUM;
2215
2216	dbg_switch_cpu = cpunum;
2217
2218	/*
2219	 * Switch to other cpu
2220	 */
2221	return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229	int idle = 0, daemon = 0;
2230	unsigned long mask_I = kdb_task_state_string("I"),
2231		      mask_M = kdb_task_state_string("M");
2232	unsigned long cpu;
2233	const struct task_struct *p, *g;
2234	for_each_online_cpu(cpu) {
2235		p = kdb_curr_task(cpu);
2236		if (kdb_task_state(p, mask_I))
2237			++idle;
2238	}
2239	kdb_do_each_thread(g, p) {
2240		if (kdb_task_state(p, mask_M))
2241			++daemon;
2242	} kdb_while_each_thread(g, p);
2243	if (idle || daemon) {
2244		if (idle)
2245			kdb_printf("%d idle process%s (state I)%s\n",
2246				   idle, idle == 1 ? "" : "es",
2247				   daemon ? " and " : "");
2248		if (daemon)
2249			kdb_printf("%d sleeping system daemon (state M) "
2250				   "process%s", daemon,
2251				   daemon == 1 ? "" : "es");
2252		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253	}
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *	list of the active processes.
2259 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263	int cpu;
2264	unsigned long tmp;
2265
2266	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%p)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290	struct task_struct *g, *p;
2291	unsigned long mask, cpu;
2292
2293	if (argc == 0)
2294		kdb_ps_suppressed();
2295	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296		(int)(2*sizeof(void *))+2, "Task Addr",
2297		(int)(2*sizeof(void *))+2, "Thread");
2298	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299	/* Run the active tasks first */
2300	for_each_online_cpu(cpu) {
2301		if (KDB_FLAG(CMD_INTERRUPT))
2302			return 0;
2303		p = kdb_curr_task(cpu);
2304		if (kdb_task_state(p, mask))
2305			kdb_ps1(p);
2306	}
2307	kdb_printf("\n");
2308	/* Now the real tasks */
2309	kdb_do_each_thread(g, p) {
2310		if (KDB_FLAG(CMD_INTERRUPT))
2311			return 0;
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	} kdb_while_each_thread(g, p);
2315
2316	return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *	the currently active process.
2322 *		pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326	struct task_struct *p;
2327	unsigned long val;
2328	int diag;
2329
2330	if (argc > 1)
2331		return KDB_ARGCOUNT;
2332
2333	if (argc) {
2334		if (strcmp(argv[1], "R") == 0) {
2335			p = KDB_TSK(kdb_initial_cpu);
2336		} else {
2337			diag = kdbgetularg(argv[1], &val);
2338			if (diag)
2339				return KDB_BADINT;
2340
2341			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2342			if (!p) {
2343				kdb_printf("No task with pid=%d\n", (pid_t)val);
2344				return 0;
2345			}
2346		}
2347		kdb_set_current_task(p);
2348	}
2349	kdb_printf("KDB current process is %s(pid=%d)\n",
2350		   kdb_current_task->comm,
2351		   kdb_current_task->pid);
2352
2353	return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358	return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366	kdbtab_t *kt;
2367	int i;
2368
2369	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370	kdb_printf("-----------------------------"
2371		   "-----------------------------\n");
2372	for_each_kdbcmd(kt, i) {
2373		char *space = "";
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (!kt->cmd_name)
2377			continue;
 
 
2378		if (strlen(kt->cmd_usage) > 20)
2379			space = "\n                                    ";
2380		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381			   kt->cmd_usage, space, kt->cmd_help);
2382	}
2383	return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391	long sig, pid;
2392	char *endp;
2393	struct task_struct *p;
2394	struct siginfo info;
2395
2396	if (argc != 2)
2397		return KDB_ARGCOUNT;
2398
2399	sig = simple_strtol(argv[1], &endp, 0);
2400	if (*endp)
2401		return KDB_BADINT;
2402	if (sig >= 0) {
2403		kdb_printf("Invalid signal parameter.<-signal>\n");
2404		return 0;
2405	}
2406	sig = -sig;
2407
2408	pid = simple_strtol(argv[2], &endp, 0);
2409	if (*endp)
2410		return KDB_BADINT;
2411	if (pid <= 0) {
2412		kdb_printf("Process ID must be large than 0.\n");
2413		return 0;
2414	}
2415
2416	/* Find the process. */
2417	p = find_task_by_pid_ns(pid, &init_pid_ns);
2418	if (!p) {
2419		kdb_printf("The specified process isn't found.\n");
2420		return 0;
2421	}
2422	p = p->group_leader;
2423	info.si_signo = sig;
2424	info.si_errno = 0;
2425	info.si_code = SI_USER;
2426	info.si_pid = pid;  /* same capabilities as process being signalled */
2427	info.si_uid = 0;    /* kdb has root authority */
2428	kdb_send_sig_info(p, &info);
2429	return 0;
2430}
2431
2432struct kdb_tm {
2433	int tm_sec;	/* seconds */
2434	int tm_min;	/* minutes */
2435	int tm_hour;	/* hours */
2436	int tm_mday;	/* day of the month */
2437	int tm_mon;	/* month */
2438	int tm_year;	/* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443	/* This will work from 1970-2099, 2100 is not a leap year */
2444	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445				 31, 30, 31, 30, 31 };
2446	memset(tm, 0, sizeof(*tm));
2447	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2450	tm->tm_min =  tm->tm_sec / 60 % 60;
2451	tm->tm_hour = tm->tm_sec / 60 / 60;
2452	tm->tm_sec =  tm->tm_sec % 60;
2453	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454	tm->tm_mday %= (4*365+1);
2455	mon_day[1] = 29;
2456	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457		tm->tm_mday -= mon_day[tm->tm_mon];
2458		if (++tm->tm_mon == 12) {
2459			tm->tm_mon = 0;
2460			++tm->tm_year;
2461			mon_day[1] = 28;
2462		}
2463	}
2464	++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474	struct timespec uptime;
2475	do_posix_clock_monotonic_gettime(&uptime);
2476	memset(val, 0, sizeof(*val));
2477	val->uptime = uptime.tv_sec;
2478	val->loads[0] = avenrun[0];
2479	val->loads[1] = avenrun[1];
2480	val->loads[2] = avenrun[2];
2481	val->procs = nr_threads-1;
2482	si_meminfo(val);
2483
2484	return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492	struct timespec now;
2493	struct kdb_tm tm;
2494	struct sysinfo val;
2495
2496	if (argc)
2497		return KDB_ARGCOUNT;
2498
2499	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500	kdb_printf("release    %s\n", init_uts_ns.name.release);
2501	kdb_printf("version    %s\n", init_uts_ns.name.version);
2502	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507	now = __current_kernel_time();
2508	kdb_gmtime(&now, &tm);
2509	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510		   "tz_minuteswest %d\n",
2511		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512		tm.tm_hour, tm.tm_min, tm.tm_sec,
2513		sys_tz.tz_minuteswest);
2514
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534	/* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537		   "Buffers:        %8lu kB\n",
2538		   val.totalram, val.freeram, val.bufferram);
2539	return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547	char fmtstr[64];
2548	int cpu, diag, nextarg = 1;
2549	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551	if (argc < 1 || argc > 3)
2552		return KDB_ARGCOUNT;
2553
2554	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555	if (diag)
2556		return diag;
2557
2558	if (argc >= 2) {
2559		diag = kdbgetularg(argv[2], &bytesperword);
2560		if (diag)
2561			return diag;
2562	}
2563	if (!bytesperword)
2564		bytesperword = KDB_WORD_SIZE;
2565	else if (bytesperword > KDB_WORD_SIZE)
2566		return KDB_BADWIDTH;
2567	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568	if (argc >= 3) {
2569		diag = kdbgetularg(argv[3], &whichcpu);
2570		if (diag)
2571			return diag;
2572		if (!cpu_online(whichcpu)) {
2573			kdb_printf("cpu %ld is not online\n", whichcpu);
2574			return KDB_BADCPUNUM;
2575		}
2576	}
2577
2578	/* Most architectures use __per_cpu_offset[cpu], some use
2579	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580	 */
2581#ifdef	__per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef	CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590	for_each_online_cpu(cpu) {
2591		if (KDB_FLAG(CMD_INTERRUPT))
2592			return 0;
2593
2594		if (whichcpu != ~0UL && whichcpu != cpu)
2595			continue;
2596		addr = symaddr + KDB_PCU(cpu);
2597		diag = kdb_getword(&val, addr, bytesperword);
2598		if (diag) {
2599			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600				   "read, diag=%d\n", cpu, addr, diag);
2601			continue;
2602		}
2603		kdb_printf("%5d ", cpu);
2604		kdb_md_line(fmtstr, addr,
2605			bytesperword == KDB_WORD_SIZE,
2606			1, bytesperword, 1, 1, 0);
2607	}
2608#undef KDB_PCU
2609	return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617	kdb_printf("Usage of  cmd args | grep pattern:\n");
2618	kdb_printf("  Any command's output may be filtered through an ");
2619	kdb_printf("emulated 'pipe'.\n");
2620	kdb_printf("  'grep' is just a key word.\n");
2621	kdb_printf("  The pattern may include a very limited set of "
2622		   "metacharacters:\n");
2623	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624	kdb_printf("  And if there are spaces in the pattern, you may "
2625		   "quote it:\n");
2626	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627		   " or \"^pat tern$\"\n");
2628	return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * 	debugger command.
2634 * Inputs:
2635 *	cmd	Command name
2636 *	func	Function to execute the command
2637 *	usage	A simple usage string showing arguments
2638 *	help	A simple help string describing command
2639 *	repeat	Does the command auto repeat on enter?
2640 * Returns:
2641 *	zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50	/* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645			kdb_func_t func,
2646			char *usage,
2647			char *help,
2648			short minlen,
2649			kdb_repeat_t repeat)
2650{
2651	int i;
2652	kdbtab_t *kp;
2653
2654	/*
2655	 *  Brute force method to determine duplicates
2656	 */
2657	for_each_kdbcmd(kp, i) {
2658		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659			kdb_printf("Duplicate kdb command registered: "
2660				"%s, func %p help %s\n", cmd, func, help);
2661			return 1;
2662		}
2663	}
2664
2665	/*
2666	 * Insert command into first available location in table
2667	 */
2668	for_each_kdbcmd(kp, i) {
2669		if (kp->cmd_name == NULL)
2670			break;
2671	}
2672
2673	if (i >= kdb_max_commands) {
2674		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676		if (!new) {
2677			kdb_printf("Could not allocate new kdb_command "
2678				   "table\n");
2679			return 1;
2680		}
2681		if (kdb_commands) {
2682			memcpy(new, kdb_commands,
2683			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684			kfree(kdb_commands);
2685		}
2686		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687		       kdb_command_extend * sizeof(*new));
2688		kdb_commands = new;
2689		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690		kdb_max_commands += kdb_command_extend;
2691	}
2692
2693	kp->cmd_name   = cmd;
2694	kp->cmd_func   = func;
2695	kp->cmd_usage  = usage;
2696	kp->cmd_help   = help;
2697	kp->cmd_flags  = 0;
2698	kp->cmd_minlen = minlen;
2699	kp->cmd_repeat = repeat;
2700
2701	return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *	not need to specify a repeat state.  Equivalent to
2709 *	kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *	cmd	Command name
2712 *	func	Function to execute the command
2713 *	usage	A simple usage string showing arguments
2714 *	help	A simple help string describing command
2715 * Returns:
2716 *	zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719	     kdb_func_t func,
2720	     char *usage,
2721	     char *help,
2722	     short minlen)
2723{
2724	return kdb_register_repeat(cmd, func, usage, help, minlen,
2725				   KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *	debugger command.  It is generally called when a module which
2732 *	implements kdb commands is unloaded.
2733 * Inputs:
2734 *	cmd	Command name
2735 * Returns:
2736 *	zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740	int i;
2741	kdbtab_t *kp;
2742
2743	/*
2744	 *  find the command.
2745	 */
2746	for_each_kdbcmd(kp, i) {
2747		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748			kp->cmd_name = NULL;
2749			return 0;
2750		}
2751	}
2752
2753	/* Couldn't find it.  */
2754	return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761	int i;
2762	kdbtab_t *kp;
2763
2764	for_each_kdbcmd(kp, i)
2765		kp->cmd_name = NULL;
2766
2767	kdb_register_repeat("md", kdb_md, "<vaddr>",
2768	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769			    KDB_REPEAT_NO_ARGS);
2770	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779	  "Continue Execution", 1, KDB_REPEAT_NONE);
2780	kdb_register_repeat("rd", kdb_rd, "",
2781	  "Display Registers", 0, KDB_REPEAT_NONE);
2782	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783	  "Modify Registers", 0, KDB_REPEAT_NONE);
2784	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785	  "Display exception frame", 0, KDB_REPEAT_NONE);
2786	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787	  "Stack traceback", 1, KDB_REPEAT_NONE);
2788	kdb_register_repeat("btp", kdb_bt, "<pid>",
2789	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790	kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791	  "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792	kdb_register_repeat("btc", kdb_bt, "",
2793	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
 
 
 
 
 
 
 
 
 
 
 
 
2795	  "Backtrace process given its struct task address", 0,
2796			    KDB_REPEAT_NONE);
2797	kdb_register_repeat("env", kdb_env, "",
2798	  "Show environment variables", 0, KDB_REPEAT_NONE);
2799	kdb_register_repeat("set", kdb_set, "",
2800	  "Set environment variables", 0, KDB_REPEAT_NONE);
2801	kdb_register_repeat("help", kdb_help, "",
2802	  "Display Help Message", 1, KDB_REPEAT_NONE);
2803	kdb_register_repeat("?", kdb_help, "",
2804	  "Display Help Message", 0, KDB_REPEAT_NONE);
2805	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807	kdb_register_repeat("kgdb", kdb_kgdb, "",
2808	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810	  "Display active task list", 0, KDB_REPEAT_NONE);
2811	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812	  "Switch to another task", 0, KDB_REPEAT_NONE);
2813	kdb_register_repeat("reboot", kdb_reboot, "",
2814	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
2815#if defined(CONFIG_MODULES)
2816	kdb_register_repeat("lsmod", kdb_lsmod, "",
2817	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820	kdb_register_repeat("sr", kdb_sr, "<key>",
2821	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
2822#endif
2823#if defined(CONFIG_PRINTK)
2824	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
2826#endif
2827	if (arch_kgdb_ops.enable_nmi) {
2828		kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829		  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830	}
2831	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835	kdb_register_repeat("summary", kdb_summary, "",
2836	  "Summarize the system", 4, KDB_REPEAT_NONE);
2837	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839	kdb_register_repeat("grephelp", kdb_grep_help, "",
2840	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846	int i, diag;
2847	for (i = 0; kdb_cmds[i]; ++i) {
2848		diag = kdb_parse(kdb_cmds[i]);
2849		if (diag)
2850			kdb_printf("kdb command %s failed, kdb diag %d\n",
2851				kdb_cmds[i], diag);
2852	}
2853	if (defcmd_in_progress) {
2854		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855		kdb_parse("endefcmd");
2856	}
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863	int i;
2864
2865	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866		return;
2867	for (i = kdb_init_lvl; i < lvl; i++) {
2868		switch (i) {
2869		case KDB_NOT_INITIALIZED:
2870			kdb_inittab();		/* Initialize Command Table */
2871			kdb_initbptab();	/* Initialize Breakpoints */
2872			break;
2873		case KDB_INIT_EARLY:
2874			kdb_cmd_init();		/* Build kdb_cmds tables */
2875			break;
2876		}
2877	}
2878	kdb_init_lvl = lvl;
2879}
v4.17
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76EXPORT_SYMBOL(kdb_current_task);
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_commands describes the available commands. */
  89static kdbtab_t *kdb_commands;
  90#define KDB_BASE_CMD_MAX 50
  91static int kdb_max_commands = KDB_BASE_CMD_MAX;
  92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  93#define for_each_kdbcmd(cmd, num)					\
  94	for ((cmd) = kdb_base_commands, (num) = 0;			\
  95	     num < kdb_max_commands;					\
  96	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  97
  98typedef struct _kdbmsg {
  99	int	km_diag;	/* kdb diagnostic */
 100	char	*km_msg;	/* Corresponding message text */
 101} kdbmsg_t;
 102
 103#define KDBMSG(msgnum, text) \
 104	{ KDB_##msgnum, text }
 105
 106static kdbmsg_t kdbmsgs[] = {
 107	KDBMSG(NOTFOUND, "Command Not Found"),
 108	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 109	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 110	       "8 is only allowed on 64 bit systems"),
 111	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 112	KDBMSG(NOTENV, "Cannot find environment variable"),
 113	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 114	KDBMSG(NOTIMP, "Command not implemented"),
 115	KDBMSG(ENVFULL, "Environment full"),
 116	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 117	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 118#ifdef CONFIG_CPU_XSCALE
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 120#else
 121	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 122#endif
 123	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 124	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 125	KDBMSG(BADMODE, "Invalid IDMODE"),
 126	KDBMSG(BADINT, "Illegal numeric value"),
 127	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 128	KDBMSG(BADREG, "Invalid register name"),
 129	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 130	KDBMSG(BADLENGTH, "Invalid length field"),
 131	KDBMSG(NOBP, "No Breakpoint exists"),
 132	KDBMSG(BADADDR, "Invalid address"),
 133	KDBMSG(NOPERM, "Permission denied"),
 134};
 135#undef KDBMSG
 136
 137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 138
 139
 140/*
 141 * Initial environment.   This is all kept static and local to
 142 * this file.   We don't want to rely on the memory allocation
 143 * mechanisms in the kernel, so we use a very limited allocate-only
 144 * heap for new and altered environment variables.  The entire
 145 * environment is limited to a fixed number of entries (add more
 146 * to __env[] if required) and a fixed amount of heap (add more to
 147 * KDB_ENVBUFSIZE if required).
 148 */
 149
 150static char *__env[] = {
 151#if defined(CONFIG_SMP)
 152 "PROMPT=[%d]kdb> ",
 153#else
 154 "PROMPT=kdb> ",
 155#endif
 156 "MOREPROMPT=more> ",
 157 "RADIX=16",
 158 "MDCOUNT=8",			/* lines of md output */
 159 KDB_PLATFORM_ENV,
 160 "DTABCOUNT=30",
 161 "NOSECT=1",
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185 (char *)0,
 186};
 187
 188static const int __nenv = ARRAY_SIZE(__env);
 189
 190struct task_struct *kdb_curr_task(int cpu)
 191{
 192	struct task_struct *p = curr_task(cpu);
 193#ifdef	_TIF_MCA_INIT
 194	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 195		p = krp->p;
 196#endif
 197	return p;
 198}
 199
 200/*
 201 * Check whether the flags of the current command and the permissions
 202 * of the kdb console has allow a command to be run.
 203 */
 204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 205				   bool no_args)
 206{
 207	/* permissions comes from userspace so needs massaging slightly */
 208	permissions &= KDB_ENABLE_MASK;
 209	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 210
 211	/* some commands change group when launched with no arguments */
 212	if (no_args)
 213		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 214
 215	flags |= KDB_ENABLE_ALL;
 216
 217	return permissions & flags;
 218}
 219
 220/*
 221 * kdbgetenv - This function will return the character string value of
 222 *	an environment variable.
 223 * Parameters:
 224 *	match	A character string representing an environment variable.
 225 * Returns:
 226 *	NULL	No environment variable matches 'match'
 227 *	char*	Pointer to string value of environment variable.
 228 */
 229char *kdbgetenv(const char *match)
 230{
 231	char **ep = __env;
 232	int matchlen = strlen(match);
 233	int i;
 234
 235	for (i = 0; i < __nenv; i++) {
 236		char *e = *ep++;
 237
 238		if (!e)
 239			continue;
 240
 241		if ((strncmp(match, e, matchlen) == 0)
 242		 && ((e[matchlen] == '\0')
 243		   || (e[matchlen] == '='))) {
 244			char *cp = strchr(e, '=');
 245			return cp ? ++cp : "";
 246		}
 247	}
 248	return NULL;
 249}
 250
 251/*
 252 * kdballocenv - This function is used to allocate bytes for
 253 *	environment entries.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long representation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 * Remarks:
 261 *	We use a static environment buffer (envbuffer) to hold the values
 262 *	of dynamically generated environment variables (see kdb_set).  Buffer
 263 *	space once allocated is never free'd, so over time, the amount of space
 264 *	(currently 512 bytes) will be exhausted if env variables are changed
 265 *	frequently.
 266 */
 267static char *kdballocenv(size_t bytes)
 268{
 269#define	KDB_ENVBUFSIZE	512
 270	static char envbuffer[KDB_ENVBUFSIZE];
 271	static int envbufsize;
 272	char *ep = NULL;
 273
 274	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 275		ep = &envbuffer[envbufsize];
 276		envbufsize += bytes;
 277	}
 278	return ep;
 279}
 280
 281/*
 282 * kdbgetulenv - This function will return the value of an unsigned
 283 *	long-valued environment variable.
 284 * Parameters:
 285 *	match	A character string representing a numeric value
 286 * Outputs:
 287 *	*value  the unsigned long represntation of the env variable 'match'
 288 * Returns:
 289 *	Zero on success, a kdb diagnostic on failure.
 290 */
 291static int kdbgetulenv(const char *match, unsigned long *value)
 292{
 293	char *ep;
 294
 295	ep = kdbgetenv(match);
 296	if (!ep)
 297		return KDB_NOTENV;
 298	if (strlen(ep) == 0)
 299		return KDB_NOENVVALUE;
 300
 301	*value = simple_strtoul(ep, NULL, 0);
 302
 303	return 0;
 304}
 305
 306/*
 307 * kdbgetintenv - This function will return the value of an
 308 *	integer-valued environment variable.
 309 * Parameters:
 310 *	match	A character string representing an integer-valued env variable
 311 * Outputs:
 312 *	*value  the integer representation of the environment variable 'match'
 313 * Returns:
 314 *	Zero on success, a kdb diagnostic on failure.
 315 */
 316int kdbgetintenv(const char *match, int *value)
 317{
 318	unsigned long val;
 319	int diag;
 320
 321	diag = kdbgetulenv(match, &val);
 322	if (!diag)
 323		*value = (int) val;
 324	return diag;
 325}
 326
 327/*
 328 * kdbgetularg - This function will convert a numeric string into an
 329 *	unsigned long value.
 330 * Parameters:
 331 *	arg	A character string representing a numeric value
 332 * Outputs:
 333 *	*value  the unsigned long represntation of arg.
 334 * Returns:
 335 *	Zero on success, a kdb diagnostic on failure.
 336 */
 337int kdbgetularg(const char *arg, unsigned long *value)
 338{
 339	char *endp;
 340	unsigned long val;
 341
 342	val = simple_strtoul(arg, &endp, 0);
 343
 344	if (endp == arg) {
 345		/*
 346		 * Also try base 16, for us folks too lazy to type the
 347		 * leading 0x...
 348		 */
 349		val = simple_strtoul(arg, &endp, 16);
 350		if (endp == arg)
 351			return KDB_BADINT;
 352	}
 353
 354	*value = val;
 355
 356	return 0;
 357}
 358
 359int kdbgetu64arg(const char *arg, u64 *value)
 360{
 361	char *endp;
 362	u64 val;
 363
 364	val = simple_strtoull(arg, &endp, 0);
 365
 366	if (endp == arg) {
 367
 368		val = simple_strtoull(arg, &endp, 16);
 369		if (endp == arg)
 370			return KDB_BADINT;
 371	}
 372
 373	*value = val;
 374
 375	return 0;
 376}
 377
 378/*
 379 * kdb_set - This function implements the 'set' command.  Alter an
 380 *	existing environment variable or create a new one.
 381 */
 382int kdb_set(int argc, const char **argv)
 383{
 384	int i;
 385	char *ep;
 386	size_t varlen, vallen;
 387
 388	/*
 389	 * we can be invoked two ways:
 390	 *   set var=value    argv[1]="var", argv[2]="value"
 391	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 392	 * - if the latter, shift 'em down.
 393	 */
 394	if (argc == 3) {
 395		argv[2] = argv[3];
 396		argc--;
 397	}
 398
 399	if (argc != 2)
 400		return KDB_ARGCOUNT;
 401
 402	/*
 403	 * Check for internal variables
 404	 */
 405	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 406		unsigned int debugflags;
 407		char *cp;
 408
 409		debugflags = simple_strtoul(argv[2], &cp, 0);
 410		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 411			kdb_printf("kdb: illegal debug flags '%s'\n",
 412				    argv[2]);
 413			return 0;
 414		}
 415		kdb_flags = (kdb_flags &
 416			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 417			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 418
 419		return 0;
 420	}
 421
 422	/*
 423	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 424	 * name, argv[2] = value.
 425	 */
 426	varlen = strlen(argv[1]);
 427	vallen = strlen(argv[2]);
 428	ep = kdballocenv(varlen + vallen + 2);
 429	if (ep == (char *)0)
 430		return KDB_ENVBUFFULL;
 431
 432	sprintf(ep, "%s=%s", argv[1], argv[2]);
 433
 434	ep[varlen+vallen+1] = '\0';
 435
 436	for (i = 0; i < __nenv; i++) {
 437		if (__env[i]
 438		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 439		   && ((__env[i][varlen] == '\0')
 440		    || (__env[i][varlen] == '=')))) {
 441			__env[i] = ep;
 442			return 0;
 443		}
 444	}
 445
 446	/*
 447	 * Wasn't existing variable.  Fit into slot.
 448	 */
 449	for (i = 0; i < __nenv-1; i++) {
 450		if (__env[i] == (char *)0) {
 451			__env[i] = ep;
 452			return 0;
 453		}
 454	}
 455
 456	return KDB_ENVFULL;
 457}
 458
 459static int kdb_check_regs(void)
 460{
 461	if (!kdb_current_regs) {
 462		kdb_printf("No current kdb registers."
 463			   "  You may need to select another task\n");
 464		return KDB_BADREG;
 465	}
 466	return 0;
 467}
 468
 469/*
 470 * kdbgetaddrarg - This function is responsible for parsing an
 471 *	address-expression and returning the value of the expression,
 472 *	symbol name, and offset to the caller.
 473 *
 474 *	The argument may consist of a numeric value (decimal or
 475 *	hexidecimal), a symbol name, a register name (preceded by the
 476 *	percent sign), an environment variable with a numeric value
 477 *	(preceded by a dollar sign) or a simple arithmetic expression
 478 *	consisting of a symbol name, +/-, and a numeric constant value
 479 *	(offset).
 480 * Parameters:
 481 *	argc	- count of arguments in argv
 482 *	argv	- argument vector
 483 *	*nextarg - index to next unparsed argument in argv[]
 484 *	regs	- Register state at time of KDB entry
 485 * Outputs:
 486 *	*value	- receives the value of the address-expression
 487 *	*offset - receives the offset specified, if any
 488 *	*name   - receives the symbol name, if any
 489 *	*nextarg - index to next unparsed argument in argv[]
 490 * Returns:
 491 *	zero is returned on success, a kdb diagnostic code is
 492 *      returned on error.
 493 */
 494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 495		  unsigned long *value,  long *offset,
 496		  char **name)
 497{
 498	unsigned long addr;
 499	unsigned long off = 0;
 500	int positive;
 501	int diag;
 502	int found = 0;
 503	char *symname;
 504	char symbol = '\0';
 505	char *cp;
 506	kdb_symtab_t symtab;
 507
 508	/*
 509	 * If the enable flags prohibit both arbitrary memory access
 510	 * and flow control then there are no reasonable grounds to
 511	 * provide symbol lookup.
 512	 */
 513	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 514			     kdb_cmd_enabled, false))
 515		return KDB_NOPERM;
 516
 517	/*
 518	 * Process arguments which follow the following syntax:
 519	 *
 520	 *  symbol | numeric-address [+/- numeric-offset]
 521	 *  %register
 522	 *  $environment-variable
 523	 */
 524
 525	if (*nextarg > argc)
 526		return KDB_ARGCOUNT;
 527
 528	symname = (char *)argv[*nextarg];
 529
 530	/*
 531	 * If there is no whitespace between the symbol
 532	 * or address and the '+' or '-' symbols, we
 533	 * remember the character and replace it with a
 534	 * null so the symbol/value can be properly parsed
 535	 */
 536	cp = strpbrk(symname, "+-");
 537	if (cp != NULL) {
 538		symbol = *cp;
 539		*cp++ = '\0';
 540	}
 541
 542	if (symname[0] == '$') {
 543		diag = kdbgetulenv(&symname[1], &addr);
 544		if (diag)
 545			return diag;
 546	} else if (symname[0] == '%') {
 547		diag = kdb_check_regs();
 548		if (diag)
 549			return diag;
 550		/* Implement register values with % at a later time as it is
 551		 * arch optional.
 552		 */
 553		return KDB_NOTIMP;
 554	} else {
 555		found = kdbgetsymval(symname, &symtab);
 556		if (found) {
 557			addr = symtab.sym_start;
 558		} else {
 559			diag = kdbgetularg(argv[*nextarg], &addr);
 560			if (diag)
 561				return diag;
 562		}
 563	}
 564
 565	if (!found)
 566		found = kdbnearsym(addr, &symtab);
 567
 568	(*nextarg)++;
 569
 570	if (name)
 571		*name = symname;
 572	if (value)
 573		*value = addr;
 574	if (offset && name && *name)
 575		*offset = addr - symtab.sym_start;
 576
 577	if ((*nextarg > argc)
 578	 && (symbol == '\0'))
 579		return 0;
 580
 581	/*
 582	 * check for +/- and offset
 583	 */
 584
 585	if (symbol == '\0') {
 586		if ((argv[*nextarg][0] != '+')
 587		 && (argv[*nextarg][0] != '-')) {
 588			/*
 589			 * Not our argument.  Return.
 590			 */
 591			return 0;
 592		} else {
 593			positive = (argv[*nextarg][0] == '+');
 594			(*nextarg)++;
 595		}
 596	} else
 597		positive = (symbol == '+');
 598
 599	/*
 600	 * Now there must be an offset!
 601	 */
 602	if ((*nextarg > argc)
 603	 && (symbol == '\0')) {
 604		return KDB_INVADDRFMT;
 605	}
 606
 607	if (!symbol) {
 608		cp = (char *)argv[*nextarg];
 609		(*nextarg)++;
 610	}
 611
 612	diag = kdbgetularg(cp, &off);
 613	if (diag)
 614		return diag;
 615
 616	if (!positive)
 617		off = -off;
 618
 619	if (offset)
 620		*offset += off;
 621
 622	if (value)
 623		*value += off;
 624
 625	return 0;
 626}
 627
 628static void kdb_cmderror(int diag)
 629{
 630	int i;
 631
 632	if (diag >= 0) {
 633		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 634		return;
 635	}
 636
 637	for (i = 0; i < __nkdb_err; i++) {
 638		if (kdbmsgs[i].km_diag == diag) {
 639			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 640			return;
 641		}
 642	}
 643
 644	kdb_printf("Unknown diag %d\n", -diag);
 645}
 646
 647/*
 648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 649 *	command which defines one command as a set of other commands,
 650 *	terminated by endefcmd.  kdb_defcmd processes the initial
 651 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 652 *	the following commands until 'endefcmd'.
 653 * Inputs:
 654 *	argc	argument count
 655 *	argv	argument vector
 656 * Returns:
 657 *	zero for success, a kdb diagnostic if error
 658 */
 659struct defcmd_set {
 660	int count;
 661	int usable;
 662	char *name;
 663	char *usage;
 664	char *help;
 665	char **command;
 666};
 667static struct defcmd_set *defcmd_set;
 668static int defcmd_set_count;
 669static int defcmd_in_progress;
 670
 671/* Forward references */
 672static int kdb_exec_defcmd(int argc, const char **argv);
 673
 674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 675{
 676	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 677	char **save_command = s->command;
 678	if (strcmp(argv0, "endefcmd") == 0) {
 679		defcmd_in_progress = 0;
 680		if (!s->count)
 681			s->usable = 0;
 682		if (s->usable)
 683			/* macros are always safe because when executed each
 684			 * internal command re-enters kdb_parse() and is
 685			 * safety checked individually.
 686			 */
 687			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 688					   s->help, 0,
 689					   KDB_ENABLE_ALWAYS_SAFE);
 690		return 0;
 691	}
 692	if (!s->usable)
 693		return KDB_NOTIMP;
 694	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 695	if (!s->command) {
 696		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 697			   cmdstr);
 698		s->usable = 0;
 699		return KDB_NOTIMP;
 700	}
 701	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 702	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 703	kfree(save_command);
 704	return 0;
 705}
 706
 707static int kdb_defcmd(int argc, const char **argv)
 708{
 709	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 710	if (defcmd_in_progress) {
 711		kdb_printf("kdb: nested defcmd detected, assuming missing "
 712			   "endefcmd\n");
 713		kdb_defcmd2("endefcmd", "endefcmd");
 714	}
 715	if (argc == 0) {
 716		int i;
 717		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 718			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 719				   s->usage, s->help);
 720			for (i = 0; i < s->count; ++i)
 721				kdb_printf("%s", s->command[i]);
 722			kdb_printf("endefcmd\n");
 723		}
 724		return 0;
 725	}
 726	if (argc != 3)
 727		return KDB_ARGCOUNT;
 728	if (in_dbg_master()) {
 729		kdb_printf("Command only available during kdb_init()\n");
 730		return KDB_NOTIMP;
 731	}
 732	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 733			     GFP_KDB);
 734	if (!defcmd_set)
 735		goto fail_defcmd;
 736	memcpy(defcmd_set, save_defcmd_set,
 737	       defcmd_set_count * sizeof(*defcmd_set));
 738	s = defcmd_set + defcmd_set_count;
 739	memset(s, 0, sizeof(*s));
 740	s->usable = 1;
 741	s->name = kdb_strdup(argv[1], GFP_KDB);
 742	if (!s->name)
 743		goto fail_name;
 744	s->usage = kdb_strdup(argv[2], GFP_KDB);
 745	if (!s->usage)
 746		goto fail_usage;
 747	s->help = kdb_strdup(argv[3], GFP_KDB);
 748	if (!s->help)
 749		goto fail_help;
 750	if (s->usage[0] == '"') {
 751		strcpy(s->usage, argv[2]+1);
 752		s->usage[strlen(s->usage)-1] = '\0';
 753	}
 754	if (s->help[0] == '"') {
 755		strcpy(s->help, argv[3]+1);
 756		s->help[strlen(s->help)-1] = '\0';
 757	}
 758	++defcmd_set_count;
 759	defcmd_in_progress = 1;
 760	kfree(save_defcmd_set);
 761	return 0;
 762fail_help:
 763	kfree(s->usage);
 764fail_usage:
 765	kfree(s->name);
 766fail_name:
 767	kfree(defcmd_set);
 768fail_defcmd:
 769	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 770	defcmd_set = save_defcmd_set;
 771	return KDB_NOTIMP;
 772}
 773
 774/*
 775 * kdb_exec_defcmd - Execute the set of commands associated with this
 776 *	defcmd name.
 777 * Inputs:
 778 *	argc	argument count
 779 *	argv	argument vector
 780 * Returns:
 781 *	zero for success, a kdb diagnostic if error
 782 */
 783static int kdb_exec_defcmd(int argc, const char **argv)
 784{
 785	int i, ret;
 786	struct defcmd_set *s;
 787	if (argc != 0)
 788		return KDB_ARGCOUNT;
 789	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 790		if (strcmp(s->name, argv[0]) == 0)
 791			break;
 792	}
 793	if (i == defcmd_set_count) {
 794		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 795			   argv[0]);
 796		return KDB_NOTIMP;
 797	}
 798	for (i = 0; i < s->count; ++i) {
 799		/* Recursive use of kdb_parse, do not use argv after
 800		 * this point */
 801		argv = NULL;
 802		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 803		ret = kdb_parse(s->command[i]);
 804		if (ret)
 805			return ret;
 806	}
 807	return 0;
 808}
 809
 810/* Command history */
 811#define KDB_CMD_HISTORY_COUNT	32
 812#define CMD_BUFLEN		200	/* kdb_printf: max printline
 813					 * size == 256 */
 814static unsigned int cmd_head, cmd_tail;
 815static unsigned int cmdptr;
 816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 817static char cmd_cur[CMD_BUFLEN];
 818
 819/*
 820 * The "str" argument may point to something like  | grep xyz
 821 */
 822static void parse_grep(const char *str)
 823{
 824	int	len;
 825	char	*cp = (char *)str, *cp2;
 826
 827	/* sanity check: we should have been called with the \ first */
 828	if (*cp != '|')
 829		return;
 830	cp++;
 831	while (isspace(*cp))
 832		cp++;
 833	if (strncmp(cp, "grep ", 5)) {
 834		kdb_printf("invalid 'pipe', see grephelp\n");
 835		return;
 836	}
 837	cp += 5;
 838	while (isspace(*cp))
 839		cp++;
 840	cp2 = strchr(cp, '\n');
 841	if (cp2)
 842		*cp2 = '\0'; /* remove the trailing newline */
 843	len = strlen(cp);
 844	if (len == 0) {
 845		kdb_printf("invalid 'pipe', see grephelp\n");
 846		return;
 847	}
 848	/* now cp points to a nonzero length search string */
 849	if (*cp == '"') {
 850		/* allow it be "x y z" by removing the "'s - there must
 851		   be two of them */
 852		cp++;
 853		cp2 = strchr(cp, '"');
 854		if (!cp2) {
 855			kdb_printf("invalid quoted string, see grephelp\n");
 856			return;
 857		}
 858		*cp2 = '\0'; /* end the string where the 2nd " was */
 859	}
 860	kdb_grep_leading = 0;
 861	if (*cp == '^') {
 862		kdb_grep_leading = 1;
 863		cp++;
 864	}
 865	len = strlen(cp);
 866	kdb_grep_trailing = 0;
 867	if (*(cp+len-1) == '$') {
 868		kdb_grep_trailing = 1;
 869		*(cp+len-1) = '\0';
 870	}
 871	len = strlen(cp);
 872	if (!len)
 873		return;
 874	if (len >= KDB_GREP_STRLEN) {
 875		kdb_printf("search string too long\n");
 876		return;
 877	}
 878	strcpy(kdb_grep_string, cp);
 879	kdb_grepping_flag++;
 880	return;
 881}
 882
 883/*
 884 * kdb_parse - Parse the command line, search the command table for a
 885 *	matching command and invoke the command function.  This
 886 *	function may be called recursively, if it is, the second call
 887 *	will overwrite argv and cbuf.  It is the caller's
 888 *	responsibility to save their argv if they recursively call
 889 *	kdb_parse().
 890 * Parameters:
 891 *      cmdstr	The input command line to be parsed.
 892 *	regs	The registers at the time kdb was entered.
 893 * Returns:
 894 *	Zero for success, a kdb diagnostic if failure.
 895 * Remarks:
 896 *	Limited to 20 tokens.
 897 *
 898 *	Real rudimentary tokenization. Basically only whitespace
 899 *	is considered a token delimeter (but special consideration
 900 *	is taken of the '=' sign as used by the 'set' command).
 901 *
 902 *	The algorithm used to tokenize the input string relies on
 903 *	there being at least one whitespace (or otherwise useless)
 904 *	character between tokens as the character immediately following
 905 *	the token is altered in-place to a null-byte to terminate the
 906 *	token string.
 907 */
 908
 909#define MAXARGC	20
 910
 911int kdb_parse(const char *cmdstr)
 912{
 913	static char *argv[MAXARGC];
 914	static int argc;
 915	static char cbuf[CMD_BUFLEN+2];
 916	char *cp;
 917	char *cpp, quoted;
 918	kdbtab_t *tp;
 919	int i, escaped, ignore_errors = 0, check_grep = 0;
 920
 921	/*
 922	 * First tokenize the command string.
 923	 */
 924	cp = (char *)cmdstr;
 
 925
 926	if (KDB_FLAG(CMD_INTERRUPT)) {
 927		/* Previous command was interrupted, newline must not
 928		 * repeat the command */
 929		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 930		KDB_STATE_SET(PAGER);
 931		argc = 0;	/* no repeat */
 932	}
 933
 934	if (*cp != '\n' && *cp != '\0') {
 935		argc = 0;
 936		cpp = cbuf;
 937		while (*cp) {
 938			/* skip whitespace */
 939			while (isspace(*cp))
 940				cp++;
 941			if ((*cp == '\0') || (*cp == '\n') ||
 942			    (*cp == '#' && !defcmd_in_progress))
 943				break;
 944			/* special case: check for | grep pattern */
 945			if (*cp == '|') {
 946				check_grep++;
 947				break;
 948			}
 949			if (cpp >= cbuf + CMD_BUFLEN) {
 950				kdb_printf("kdb_parse: command buffer "
 951					   "overflow, command ignored\n%s\n",
 952					   cmdstr);
 953				return KDB_NOTFOUND;
 954			}
 955			if (argc >= MAXARGC - 1) {
 956				kdb_printf("kdb_parse: too many arguments, "
 957					   "command ignored\n%s\n", cmdstr);
 958				return KDB_NOTFOUND;
 959			}
 960			argv[argc++] = cpp;
 961			escaped = 0;
 962			quoted = '\0';
 963			/* Copy to next unquoted and unescaped
 964			 * whitespace or '=' */
 965			while (*cp && *cp != '\n' &&
 966			       (escaped || quoted || !isspace(*cp))) {
 967				if (cpp >= cbuf + CMD_BUFLEN)
 968					break;
 969				if (escaped) {
 970					escaped = 0;
 971					*cpp++ = *cp++;
 972					continue;
 973				}
 974				if (*cp == '\\') {
 975					escaped = 1;
 976					++cp;
 977					continue;
 978				}
 979				if (*cp == quoted)
 980					quoted = '\0';
 981				else if (*cp == '\'' || *cp == '"')
 982					quoted = *cp;
 983				*cpp = *cp++;
 984				if (*cpp == '=' && !quoted)
 985					break;
 986				++cpp;
 987			}
 988			*cpp++ = '\0';	/* Squash a ws or '=' character */
 989		}
 990	}
 991	if (!argc)
 992		return 0;
 993	if (check_grep)
 994		parse_grep(cp);
 995	if (defcmd_in_progress) {
 996		int result = kdb_defcmd2(cmdstr, argv[0]);
 997		if (!defcmd_in_progress) {
 998			argc = 0;	/* avoid repeat on endefcmd */
 999			*(argv[0]) = '\0';
1000		}
1001		return result;
1002	}
1003	if (argv[0][0] == '-' && argv[0][1] &&
1004	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1005		ignore_errors = 1;
1006		++argv[0];
1007	}
1008
1009	for_each_kdbcmd(tp, i) {
1010		if (tp->cmd_name) {
1011			/*
1012			 * If this command is allowed to be abbreviated,
1013			 * check to see if this is it.
1014			 */
1015
1016			if (tp->cmd_minlen
1017			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018				if (strncmp(argv[0],
1019					    tp->cmd_name,
1020					    tp->cmd_minlen) == 0) {
1021					break;
1022				}
1023			}
1024
1025			if (strcmp(argv[0], tp->cmd_name) == 0)
1026				break;
1027		}
1028	}
1029
1030	/*
1031	 * If we don't find a command by this name, see if the first
1032	 * few characters of this match any of the known commands.
1033	 * e.g., md1c20 should match md.
1034	 */
1035	if (i == kdb_max_commands) {
1036		for_each_kdbcmd(tp, i) {
1037			if (tp->cmd_name) {
1038				if (strncmp(argv[0],
1039					    tp->cmd_name,
1040					    strlen(tp->cmd_name)) == 0) {
1041					break;
1042				}
1043			}
1044		}
1045	}
1046
1047	if (i < kdb_max_commands) {
1048		int result;
1049
1050		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051			return KDB_NOPERM;
1052
1053		KDB_STATE_SET(CMD);
1054		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055		if (result && ignore_errors && result > KDB_CMD_GO)
1056			result = 0;
1057		KDB_STATE_CLEAR(CMD);
1058
1059		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060			return result;
1061
1062		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063		if (argv[argc])
1064			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1065		return result;
1066	}
1067
1068	/*
1069	 * If the input with which we were presented does not
1070	 * map to an existing command, attempt to parse it as an
1071	 * address argument and display the result.   Useful for
1072	 * obtaining the address of a variable, or the nearest symbol
1073	 * to an address contained in a register.
1074	 */
1075	{
1076		unsigned long value;
1077		char *name = NULL;
1078		long offset;
1079		int nextarg = 0;
1080
1081		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082				  &value, &offset, &name)) {
1083			return KDB_NOTFOUND;
1084		}
1085
1086		kdb_printf("%s = ", argv[0]);
1087		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088		kdb_printf("\n");
1089		return 0;
1090	}
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P	16
1097#define CTRL_N	14
1098
1099	/* initial situation */
1100	if (cmd_head == cmd_tail)
1101		return 0;
1102	switch (*cmd) {
1103	case CTRL_P:
1104		if (cmdptr != cmd_tail)
1105			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107		return 1;
1108	case CTRL_N:
1109		if (cmdptr != cmd_head)
1110			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112		return 1;
1113	}
1114	return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1119 *	the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123	emergency_restart();
1124	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125	while (1)
1126		cpu_relax();
1127	/* NOTREACHED */
1128	return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133	int old_lvl = console_loglevel;
1134	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135	kdb_trap_printk++;
1136	show_regs(regs);
1137	kdb_trap_printk--;
1138	kdb_printf("\n");
1139	console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144	kdb_current_task = p;
1145
1146	if (kdb_task_has_cpu(p)) {
1147		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148		return;
1149	}
1150	kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155	size_t len = strlen(buf);
1156
1157	if (len == 0)
1158		return;
1159	if (*(buf + len - 1) == '\n')
1160		*(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb.  This routine is invoked on a
1165 *	specific processor, it is not global.  The main kdb() routine
1166 *	ensures that only one processor at a time is in this routine.
1167 *	This code is called with the real reason code on the first
1168 *	entry to a kdb session, thereafter it is called with reason
1169 *	SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 *	reason		The reason KDB was invoked
1172 *	error		The hardware-defined error code
1173 *	regs		The exception frame at time of fault/breakpoint.
1174 *	db_result	Result code from the break or debug point.
1175 * Returns:
1176 *	0	KDB was invoked for an event which it wasn't responsible
1177 *	1	KDB handled the event for which it was invoked.
1178 *	KDB_CMD_GO	User typed 'go'.
1179 *	KDB_CMD_CPU	User switched to another cpu.
1180 *	KDB_CMD_SS	Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183		     kdb_dbtrap_t db_result)
1184{
1185	char *cmdbuf;
1186	int diag;
1187	struct task_struct *kdb_current =
1188		kdb_curr_task(raw_smp_processor_id());
1189
1190	KDB_DEBUG_STATE("kdb_local 1", reason);
1191	kdb_go_count = 0;
1192	if (reason == KDB_REASON_DEBUG) {
1193		/* special case below */
1194	} else {
1195		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1196			   kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198		kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200	}
1201
1202	switch (reason) {
1203	case KDB_REASON_DEBUG:
1204	{
1205		/*
1206		 * If re-entering kdb after a single step
1207		 * command, don't print the message.
1208		 */
1209		switch (db_result) {
1210		case KDB_DB_BPT:
1211			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1212				   kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214			kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217				   instruction_pointer(regs));
1218			break;
1219		case KDB_DB_SS:
1220			break;
1221		case KDB_DB_SSBPT:
1222			KDB_DEBUG_STATE("kdb_local 4", reason);
1223			return 1;	/* kdba_db_trap did the work */
1224		default:
1225			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226				   db_result);
1227			break;
1228		}
1229
1230	}
1231		break;
1232	case KDB_REASON_ENTER:
1233		if (KDB_STATE(KEYBOARD))
1234			kdb_printf("due to Keyboard Entry\n");
1235		else
1236			kdb_printf("due to KDB_ENTER()\n");
1237		break;
1238	case KDB_REASON_KEYBOARD:
1239		KDB_STATE_SET(KEYBOARD);
1240		kdb_printf("due to Keyboard Entry\n");
1241		break;
1242	case KDB_REASON_ENTER_SLAVE:
1243		/* drop through, slaves only get released via cpu switch */
1244	case KDB_REASON_SWITCH:
1245		kdb_printf("due to cpu switch\n");
1246		break;
1247	case KDB_REASON_OOPS:
1248		kdb_printf("Oops: %s\n", kdb_diemsg);
1249		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250			   instruction_pointer(regs));
1251		kdb_dumpregs(regs);
1252		break;
1253	case KDB_REASON_SYSTEM_NMI:
1254		kdb_printf("due to System NonMaskable Interrupt\n");
1255		break;
1256	case KDB_REASON_NMI:
1257		kdb_printf("due to NonMaskable Interrupt @ "
1258			   kdb_machreg_fmt "\n",
1259			   instruction_pointer(regs));
 
1260		break;
1261	case KDB_REASON_SSTEP:
1262	case KDB_REASON_BREAK:
1263		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264			   reason == KDB_REASON_BREAK ?
1265			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1266		/*
1267		 * Determine if this breakpoint is one that we
1268		 * are interested in.
1269		 */
1270		if (db_result != KDB_DB_BPT) {
1271			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272				   db_result);
1273			KDB_DEBUG_STATE("kdb_local 6", reason);
1274			return 0;	/* Not for us, dismiss it */
1275		}
1276		break;
1277	case KDB_REASON_RECURSE:
1278		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279			   instruction_pointer(regs));
1280		break;
1281	default:
1282		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283		KDB_DEBUG_STATE("kdb_local 8", reason);
1284		return 0;	/* Not for us, dismiss it */
1285	}
1286
1287	while (1) {
1288		/*
1289		 * Initialize pager context.
1290		 */
1291		kdb_nextline = 1;
1292		KDB_STATE_CLEAR(SUPPRESS);
1293		kdb_grepping_flag = 0;
1294		/* ensure the old search does not leak into '/' commands */
1295		kdb_grep_string[0] = '\0';
1296
1297		cmdbuf = cmd_cur;
1298		*cmdbuf = '\0';
1299		*(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304			 raw_smp_processor_id());
1305#else
1306		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308		if (defcmd_in_progress)
1309			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311		/*
1312		 * Fetch command from keyboard
1313		 */
1314		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315		if (*cmdbuf != '\n') {
1316			if (*cmdbuf < 32) {
1317				if (cmdptr == cmd_head) {
1318					strncpy(cmd_hist[cmd_head], cmd_cur,
1319						CMD_BUFLEN);
1320					*(cmd_hist[cmd_head] +
1321					  strlen(cmd_hist[cmd_head])-1) = '\0';
1322				}
1323				if (!handle_ctrl_cmd(cmdbuf))
1324					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325				cmdbuf = cmd_cur;
1326				goto do_full_getstr;
1327			} else {
1328				strncpy(cmd_hist[cmd_head], cmd_cur,
1329					CMD_BUFLEN);
1330			}
1331
1332			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333			if (cmd_head == cmd_tail)
1334				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335		}
1336
1337		cmdptr = cmd_head;
1338		diag = kdb_parse(cmdbuf);
1339		if (diag == KDB_NOTFOUND) {
1340			drop_newline(cmdbuf);
1341			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342			diag = 0;
1343		}
1344		if (diag == KDB_CMD_GO
1345		 || diag == KDB_CMD_CPU
1346		 || diag == KDB_CMD_SS
1347		 || diag == KDB_CMD_KGDB)
1348			break;
1349
1350		if (diag)
1351			kdb_cmderror(diag);
1352	}
1353	KDB_DEBUG_STATE("kdb_local 9", diag);
1354	return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 *	for debugging.
1361 * Inputs:
1362 *	text		Identifies the debug point
1363 *	value		Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369		   kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 *	controlling cpu, all cpus are in this loop.  One cpu is in
1375 *	control and will issue the kdb prompt, the others will spin
1376 *	until 'go' or cpu switch.
1377 *
1378 *	To get a consistent view of the kernel stacks for all
1379 *	processes, this routine is invoked from the main kdb code via
1380 *	an architecture specific routine.  kdba_main_loop is
1381 *	responsible for making the kernel stacks consistent for all
1382 *	processes, there should be no difference between a blocked
1383 *	process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 *	reason		The reason KDB was invoked
1386 *	error		The hardware-defined error code
1387 *	reason2		kdb's current reason code.
1388 *			Initially error but can change
1389 *			according to kdb state.
1390 *	db_result	Result code from break or debug point.
1391 *	regs		The exception frame at time of fault/breakpoint.
1392 *			should always be valid.
1393 * Returns:
1394 *	0	KDB was invoked for an event which it wasn't responsible
1395 *	1	KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400	int result = 1;
1401	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1402	while (1) {
1403		/*
1404		 * All processors except the one that is in control
1405		 * will spin here.
1406		 */
1407		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408		while (KDB_STATE(HOLD_CPU)) {
1409			/* state KDB is turned off by kdb_cpu to see if the
1410			 * other cpus are still live, each cpu in this loop
1411			 * turns it back on.
1412			 */
1413			if (!KDB_STATE(KDB))
1414				KDB_STATE_SET(KDB);
1415		}
1416
1417		KDB_STATE_CLEAR(SUPPRESS);
1418		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419		if (KDB_STATE(LEAVING))
1420			break;	/* Another cpu said 'go' */
1421		/* Still using kdb, this processor is in control */
1422		result = kdb_local(reason2, error, regs, db_result);
1423		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425		if (result == KDB_CMD_CPU)
1426			break;
1427
1428		if (result == KDB_CMD_SS) {
1429			KDB_STATE_SET(DOING_SS);
1430			break;
1431		}
1432
1433		if (result == KDB_CMD_KGDB) {
1434			if (!KDB_STATE(DOING_KGDB))
1435				kdb_printf("Entering please attach debugger "
1436					   "or use $D#44+ or $3#33\n");
1437			break;
1438		}
1439		if (result && result != 1 && result != KDB_CMD_GO)
1440			kdb_printf("\nUnexpected kdb_local return code %d\n",
1441				   result);
1442		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443		break;
1444	}
1445	if (KDB_STATE(DOING_SS))
1446		KDB_STATE_CLEAR(SSBPT);
1447
1448	/* Clean up any keyboard devices before leaving */
1449	kdb_kbd_cleanup_state();
1450
1451	return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 *	mdr  <addr arg>,<byte count>
1458 * Inputs:
1459 *	addr	Start address
1460 *	count	Number of bytes
1461 * Returns:
1462 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466	unsigned char c;
1467	while (count--) {
1468		if (kdb_getarea(c, addr))
1469			return 0;
1470		kdb_printf("%02x", c);
1471		addr++;
1472	}
1473	kdb_printf("\n");
1474	return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 *	'md8' 'mdr' and 'mds' commands.
1480 *
1481 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1482 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1483 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1484 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1485 *	mdr  <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488			int symbolic, int nosect, int bytesperword,
1489			int num, int repeat, int phys)
1490{
1491	/* print just one line of data */
1492	kdb_symtab_t symtab;
1493	char cbuf[32];
1494	char *c = cbuf;
1495	int i;
1496	unsigned long word;
1497
1498	memset(cbuf, '\0', sizeof(cbuf));
1499	if (phys)
1500		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1501	else
1502		kdb_printf(kdb_machreg_fmt0 " ", addr);
1503
1504	for (i = 0; i < num && repeat--; i++) {
1505		if (phys) {
1506			if (kdb_getphysword(&word, addr, bytesperword))
1507				break;
1508		} else if (kdb_getword(&word, addr, bytesperword))
1509			break;
1510		kdb_printf(fmtstr, word);
1511		if (symbolic)
1512			kdbnearsym(word, &symtab);
1513		else
1514			memset(&symtab, 0, sizeof(symtab));
1515		if (symtab.sym_name) {
1516			kdb_symbol_print(word, &symtab, 0);
1517			if (!nosect) {
1518				kdb_printf("\n");
1519				kdb_printf("                       %s %s "
1520					   kdb_machreg_fmt " "
1521					   kdb_machreg_fmt " "
1522					   kdb_machreg_fmt, symtab.mod_name,
1523					   symtab.sec_name, symtab.sec_start,
1524					   symtab.sym_start, symtab.sym_end);
1525			}
1526			addr += bytesperword;
1527		} else {
1528			union {
1529				u64 word;
1530				unsigned char c[8];
1531			} wc;
1532			unsigned char *cp;
1533#ifdef	__BIG_ENDIAN
1534			cp = wc.c + 8 - bytesperword;
1535#else
1536			cp = wc.c;
1537#endif
1538			wc.word = word;
1539#define printable_char(c) \
1540	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1541			switch (bytesperword) {
1542			case 8:
1543				*c++ = printable_char(*cp++);
1544				*c++ = printable_char(*cp++);
1545				*c++ = printable_char(*cp++);
1546				*c++ = printable_char(*cp++);
1547				addr += 4;
1548			case 4:
1549				*c++ = printable_char(*cp++);
1550				*c++ = printable_char(*cp++);
1551				addr += 2;
1552			case 2:
1553				*c++ = printable_char(*cp++);
1554				addr++;
1555			case 1:
1556				*c++ = printable_char(*cp++);
1557				addr++;
1558				break;
1559			}
1560#undef printable_char
1561		}
1562	}
1563	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1564		   " ", cbuf);
1565}
1566
1567static int kdb_md(int argc, const char **argv)
1568{
1569	static unsigned long last_addr;
1570	static int last_radix, last_bytesperword, last_repeat;
1571	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1572	int nosect = 0;
1573	char fmtchar, fmtstr[64];
1574	unsigned long addr;
1575	unsigned long word;
1576	long offset = 0;
1577	int symbolic = 0;
1578	int valid = 0;
1579	int phys = 0;
1580	int raw = 0;
1581
1582	kdbgetintenv("MDCOUNT", &mdcount);
1583	kdbgetintenv("RADIX", &radix);
1584	kdbgetintenv("BYTESPERWORD", &bytesperword);
1585
1586	/* Assume 'md <addr>' and start with environment values */
1587	repeat = mdcount * 16 / bytesperword;
1588
1589	if (strcmp(argv[0], "mdr") == 0) {
1590		if (argc == 2 || (argc == 0 && last_addr != 0))
1591			valid = raw = 1;
1592		else
1593			return KDB_ARGCOUNT;
 
1594	} else if (isdigit(argv[0][2])) {
1595		bytesperword = (int)(argv[0][2] - '0');
1596		if (bytesperword == 0) {
1597			bytesperword = last_bytesperword;
1598			if (bytesperword == 0)
1599				bytesperword = 4;
1600		}
1601		last_bytesperword = bytesperword;
1602		repeat = mdcount * 16 / bytesperword;
1603		if (!argv[0][3])
1604			valid = 1;
1605		else if (argv[0][3] == 'c' && argv[0][4]) {
1606			char *p;
1607			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1608			mdcount = ((repeat * bytesperword) + 15) / 16;
1609			valid = !*p;
1610		}
1611		last_repeat = repeat;
1612	} else if (strcmp(argv[0], "md") == 0)
1613		valid = 1;
1614	else if (strcmp(argv[0], "mds") == 0)
1615		valid = 1;
1616	else if (strcmp(argv[0], "mdp") == 0) {
1617		phys = valid = 1;
1618	}
1619	if (!valid)
1620		return KDB_NOTFOUND;
1621
1622	if (argc == 0) {
1623		if (last_addr == 0)
1624			return KDB_ARGCOUNT;
1625		addr = last_addr;
1626		radix = last_radix;
1627		bytesperword = last_bytesperword;
1628		repeat = last_repeat;
1629		if (raw)
1630			mdcount = repeat;
1631		else
1632			mdcount = ((repeat * bytesperword) + 15) / 16;
1633	}
1634
1635	if (argc) {
1636		unsigned long val;
1637		int diag, nextarg = 1;
1638		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1639				     &offset, NULL);
1640		if (diag)
1641			return diag;
1642		if (argc > nextarg+2)
1643			return KDB_ARGCOUNT;
1644
1645		if (argc >= nextarg) {
1646			diag = kdbgetularg(argv[nextarg], &val);
1647			if (!diag) {
1648				mdcount = (int) val;
1649				if (raw)
1650					repeat = mdcount;
1651				else
1652					repeat = mdcount * 16 / bytesperword;
1653			}
1654		}
1655		if (argc >= nextarg+1) {
1656			diag = kdbgetularg(argv[nextarg+1], &val);
1657			if (!diag)
1658				radix = (int) val;
1659		}
1660	}
1661
1662	if (strcmp(argv[0], "mdr") == 0) {
1663		int ret;
1664		last_addr = addr;
1665		ret = kdb_mdr(addr, mdcount);
1666		last_addr += mdcount;
1667		last_repeat = mdcount;
1668		last_bytesperword = bytesperword; // to make REPEAT happy
1669		return ret;
1670	}
1671
1672	switch (radix) {
1673	case 10:
1674		fmtchar = 'd';
1675		break;
1676	case 16:
1677		fmtchar = 'x';
1678		break;
1679	case 8:
1680		fmtchar = 'o';
1681		break;
1682	default:
1683		return KDB_BADRADIX;
1684	}
1685
1686	last_radix = radix;
1687
1688	if (bytesperword > KDB_WORD_SIZE)
1689		return KDB_BADWIDTH;
1690
1691	switch (bytesperword) {
1692	case 8:
1693		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1694		break;
1695	case 4:
1696		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1697		break;
1698	case 2:
1699		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1700		break;
1701	case 1:
1702		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1703		break;
1704	default:
1705		return KDB_BADWIDTH;
1706	}
1707
1708	last_repeat = repeat;
1709	last_bytesperword = bytesperword;
1710
1711	if (strcmp(argv[0], "mds") == 0) {
1712		symbolic = 1;
1713		/* Do not save these changes as last_*, they are temporary mds
1714		 * overrides.
1715		 */
1716		bytesperword = KDB_WORD_SIZE;
1717		repeat = mdcount;
1718		kdbgetintenv("NOSECT", &nosect);
1719	}
1720
1721	/* Round address down modulo BYTESPERWORD */
1722
1723	addr &= ~(bytesperword-1);
1724
1725	while (repeat > 0) {
1726		unsigned long a;
1727		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1728
1729		if (KDB_FLAG(CMD_INTERRUPT))
1730			return 0;
1731		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1732			if (phys) {
1733				if (kdb_getphysword(&word, a, bytesperword)
1734						|| word)
1735					break;
1736			} else if (kdb_getword(&word, a, bytesperword) || word)
1737				break;
1738		}
1739		n = min(num, repeat);
1740		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1741			    num, repeat, phys);
1742		addr += bytesperword * n;
1743		repeat -= n;
1744		z = (z + num - 1) / num;
1745		if (z > 2) {
1746			int s = num * (z-2);
1747			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1748				   " zero suppressed\n",
1749				addr, addr + bytesperword * s - 1);
1750			addr += bytesperword * s;
1751			repeat -= s;
1752		}
1753	}
1754	last_addr = addr;
1755
1756	return 0;
1757}
1758
1759/*
1760 * kdb_mm - This function implements the 'mm' command.
1761 *	mm address-expression new-value
1762 * Remarks:
1763 *	mm works on machine words, mmW works on bytes.
1764 */
1765static int kdb_mm(int argc, const char **argv)
1766{
1767	int diag;
1768	unsigned long addr;
1769	long offset = 0;
1770	unsigned long contents;
1771	int nextarg;
1772	int width;
1773
1774	if (argv[0][2] && !isdigit(argv[0][2]))
1775		return KDB_NOTFOUND;
1776
1777	if (argc < 2)
1778		return KDB_ARGCOUNT;
1779
1780	nextarg = 1;
1781	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1782	if (diag)
1783		return diag;
1784
1785	if (nextarg > argc)
1786		return KDB_ARGCOUNT;
1787	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1788	if (diag)
1789		return diag;
1790
1791	if (nextarg != argc + 1)
1792		return KDB_ARGCOUNT;
1793
1794	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1795	diag = kdb_putword(addr, contents, width);
1796	if (diag)
1797		return diag;
1798
1799	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1800
1801	return 0;
1802}
1803
1804/*
1805 * kdb_go - This function implements the 'go' command.
1806 *	go [address-expression]
1807 */
1808static int kdb_go(int argc, const char **argv)
1809{
1810	unsigned long addr;
1811	int diag;
1812	int nextarg;
1813	long offset;
1814
1815	if (raw_smp_processor_id() != kdb_initial_cpu) {
1816		kdb_printf("go must execute on the entry cpu, "
1817			   "please use \"cpu %d\" and then execute go\n",
1818			   kdb_initial_cpu);
1819		return KDB_BADCPUNUM;
1820	}
1821	if (argc == 1) {
1822		nextarg = 1;
1823		diag = kdbgetaddrarg(argc, argv, &nextarg,
1824				     &addr, &offset, NULL);
1825		if (diag)
1826			return diag;
1827	} else if (argc) {
1828		return KDB_ARGCOUNT;
1829	}
1830
1831	diag = KDB_CMD_GO;
1832	if (KDB_FLAG(CATASTROPHIC)) {
1833		kdb_printf("Catastrophic error detected\n");
1834		kdb_printf("kdb_continue_catastrophic=%d, ",
1835			kdb_continue_catastrophic);
1836		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1837			kdb_printf("type go a second time if you really want "
1838				   "to continue\n");
1839			return 0;
1840		}
1841		if (kdb_continue_catastrophic == 2) {
1842			kdb_printf("forcing reboot\n");
1843			kdb_reboot(0, NULL);
1844		}
1845		kdb_printf("attempting to continue\n");
1846	}
1847	return diag;
1848}
1849
1850/*
1851 * kdb_rd - This function implements the 'rd' command.
1852 */
1853static int kdb_rd(int argc, const char **argv)
1854{
1855	int len = kdb_check_regs();
1856#if DBG_MAX_REG_NUM > 0
1857	int i;
1858	char *rname;
1859	int rsize;
1860	u64 reg64;
1861	u32 reg32;
1862	u16 reg16;
1863	u8 reg8;
1864
1865	if (len)
1866		return len;
1867
1868	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1869		rsize = dbg_reg_def[i].size * 2;
1870		if (rsize > 16)
1871			rsize = 2;
1872		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1873			len = 0;
1874			kdb_printf("\n");
1875		}
1876		if (len)
1877			len += kdb_printf("  ");
1878		switch(dbg_reg_def[i].size * 8) {
1879		case 8:
1880			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1881			if (!rname)
1882				break;
1883			len += kdb_printf("%s: %02x", rname, reg8);
1884			break;
1885		case 16:
1886			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1887			if (!rname)
1888				break;
1889			len += kdb_printf("%s: %04x", rname, reg16);
1890			break;
1891		case 32:
1892			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1893			if (!rname)
1894				break;
1895			len += kdb_printf("%s: %08x", rname, reg32);
1896			break;
1897		case 64:
1898			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1899			if (!rname)
1900				break;
1901			len += kdb_printf("%s: %016llx", rname, reg64);
1902			break;
1903		default:
1904			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1905		}
1906	}
1907	kdb_printf("\n");
1908#else
1909	if (len)
1910		return len;
1911
1912	kdb_dumpregs(kdb_current_regs);
1913#endif
1914	return 0;
1915}
1916
1917/*
1918 * kdb_rm - This function implements the 'rm' (register modify)  command.
1919 *	rm register-name new-contents
1920 * Remarks:
1921 *	Allows register modification with the same restrictions as gdb
1922 */
1923static int kdb_rm(int argc, const char **argv)
1924{
1925#if DBG_MAX_REG_NUM > 0
1926	int diag;
1927	const char *rname;
1928	int i;
1929	u64 reg64;
1930	u32 reg32;
1931	u16 reg16;
1932	u8 reg8;
1933
1934	if (argc != 2)
1935		return KDB_ARGCOUNT;
1936	/*
1937	 * Allow presence or absence of leading '%' symbol.
1938	 */
1939	rname = argv[1];
1940	if (*rname == '%')
1941		rname++;
1942
1943	diag = kdbgetu64arg(argv[2], &reg64);
1944	if (diag)
1945		return diag;
1946
1947	diag = kdb_check_regs();
1948	if (diag)
1949		return diag;
1950
1951	diag = KDB_BADREG;
1952	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1953		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1954			diag = 0;
1955			break;
1956		}
1957	}
1958	if (!diag) {
1959		switch(dbg_reg_def[i].size * 8) {
1960		case 8:
1961			reg8 = reg64;
1962			dbg_set_reg(i, &reg8, kdb_current_regs);
1963			break;
1964		case 16:
1965			reg16 = reg64;
1966			dbg_set_reg(i, &reg16, kdb_current_regs);
1967			break;
1968		case 32:
1969			reg32 = reg64;
1970			dbg_set_reg(i, &reg32, kdb_current_regs);
1971			break;
1972		case 64:
1973			dbg_set_reg(i, &reg64, kdb_current_regs);
1974			break;
1975		}
1976	}
1977	return diag;
1978#else
1979	kdb_printf("ERROR: Register set currently not implemented\n");
1980    return 0;
1981#endif
1982}
1983
1984#if defined(CONFIG_MAGIC_SYSRQ)
1985/*
1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1987 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1988 *		sr <magic-sysrq-code>
1989 */
1990static int kdb_sr(int argc, const char **argv)
1991{
1992	bool check_mask =
1993	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1994
1995	if (argc != 1)
1996		return KDB_ARGCOUNT;
1997
1998	kdb_trap_printk++;
1999	__handle_sysrq(*argv[1], check_mask);
2000	kdb_trap_printk--;
2001
2002	return 0;
2003}
2004#endif	/* CONFIG_MAGIC_SYSRQ */
2005
2006/*
2007 * kdb_ef - This function implements the 'regs' (display exception
2008 *	frame) command.  This command takes an address and expects to
2009 *	find an exception frame at that address, formats and prints
2010 *	it.
2011 *		regs address-expression
2012 * Remarks:
2013 *	Not done yet.
2014 */
2015static int kdb_ef(int argc, const char **argv)
2016{
2017	int diag;
2018	unsigned long addr;
2019	long offset;
2020	int nextarg;
2021
2022	if (argc != 1)
2023		return KDB_ARGCOUNT;
2024
2025	nextarg = 1;
2026	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2027	if (diag)
2028		return diag;
2029	show_regs((struct pt_regs *)addr);
2030	return 0;
2031}
2032
2033#if defined(CONFIG_MODULES)
2034/*
2035 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2036 *	currently loaded kernel modules.
2037 *	Mostly taken from userland lsmod.
2038 */
2039static int kdb_lsmod(int argc, const char **argv)
2040{
2041	struct module *mod;
2042
2043	if (argc != 0)
2044		return KDB_ARGCOUNT;
2045
2046	kdb_printf("Module                  Size  modstruct     Used by\n");
2047	list_for_each_entry(mod, kdb_modules, list) {
2048		if (mod->state == MODULE_STATE_UNFORMED)
2049			continue;
2050
2051		kdb_printf("%-20s%8u  0x%p ", mod->name,
2052			   mod->core_layout.size, (void *)mod);
2053#ifdef CONFIG_MODULE_UNLOAD
2054		kdb_printf("%4d ", module_refcount(mod));
2055#endif
2056		if (mod->state == MODULE_STATE_GOING)
2057			kdb_printf(" (Unloading)");
2058		else if (mod->state == MODULE_STATE_COMING)
2059			kdb_printf(" (Loading)");
2060		else
2061			kdb_printf(" (Live)");
2062		kdb_printf(" 0x%p", mod->core_layout.base);
2063
2064#ifdef CONFIG_MODULE_UNLOAD
2065		{
2066			struct module_use *use;
2067			kdb_printf(" [ ");
2068			list_for_each_entry(use, &mod->source_list,
2069					    source_list)
2070				kdb_printf("%s ", use->target->name);
2071			kdb_printf("]\n");
2072		}
2073#endif
2074	}
2075
2076	return 0;
2077}
2078
2079#endif	/* CONFIG_MODULES */
2080
2081/*
2082 * kdb_env - This function implements the 'env' command.  Display the
2083 *	current environment variables.
2084 */
2085
2086static int kdb_env(int argc, const char **argv)
2087{
2088	int i;
2089
2090	for (i = 0; i < __nenv; i++) {
2091		if (__env[i])
2092			kdb_printf("%s\n", __env[i]);
2093	}
2094
2095	if (KDB_DEBUG(MASK))
2096		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2097
2098	return 0;
2099}
2100
2101#ifdef CONFIG_PRINTK
2102/*
2103 * kdb_dmesg - This function implements the 'dmesg' command to display
2104 *	the contents of the syslog buffer.
2105 *		dmesg [lines] [adjust]
2106 */
2107static int kdb_dmesg(int argc, const char **argv)
2108{
2109	int diag;
2110	int logging;
2111	int lines = 0;
2112	int adjust = 0;
2113	int n = 0;
2114	int skip = 0;
2115	struct kmsg_dumper dumper = { .active = 1 };
2116	size_t len;
2117	char buf[201];
2118
2119	if (argc > 2)
2120		return KDB_ARGCOUNT;
2121	if (argc) {
2122		char *cp;
2123		lines = simple_strtol(argv[1], &cp, 0);
2124		if (*cp)
2125			lines = 0;
2126		if (argc > 1) {
2127			adjust = simple_strtoul(argv[2], &cp, 0);
2128			if (*cp || adjust < 0)
2129				adjust = 0;
2130		}
2131	}
2132
2133	/* disable LOGGING if set */
2134	diag = kdbgetintenv("LOGGING", &logging);
2135	if (!diag && logging) {
2136		const char *setargs[] = { "set", "LOGGING", "0" };
2137		kdb_set(2, setargs);
2138	}
2139
2140	kmsg_dump_rewind_nolock(&dumper);
2141	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2142		n++;
2143
2144	if (lines < 0) {
2145		if (adjust >= n)
2146			kdb_printf("buffer only contains %d lines, nothing "
2147				   "printed\n", n);
2148		else if (adjust - lines >= n)
2149			kdb_printf("buffer only contains %d lines, last %d "
2150				   "lines printed\n", n, n - adjust);
2151		skip = adjust;
2152		lines = abs(lines);
2153	} else if (lines > 0) {
2154		skip = n - lines - adjust;
2155		lines = abs(lines);
2156		if (adjust >= n) {
2157			kdb_printf("buffer only contains %d lines, "
2158				   "nothing printed\n", n);
2159			skip = n;
2160		} else if (skip < 0) {
2161			lines += skip;
2162			skip = 0;
2163			kdb_printf("buffer only contains %d lines, first "
2164				   "%d lines printed\n", n, lines);
2165		}
2166	} else {
2167		lines = n;
2168	}
2169
2170	if (skip >= n || skip < 0)
2171		return 0;
2172
2173	kmsg_dump_rewind_nolock(&dumper);
2174	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2175		if (skip) {
2176			skip--;
2177			continue;
2178		}
2179		if (!lines--)
2180			break;
2181		if (KDB_FLAG(CMD_INTERRUPT))
2182			return 0;
2183
2184		kdb_printf("%.*s\n", (int)len - 1, buf);
2185	}
2186
2187	return 0;
2188}
2189#endif /* CONFIG_PRINTK */
2190
2191/* Make sure we balance enable/disable calls, must disable first. */
2192static atomic_t kdb_nmi_disabled;
2193
2194static int kdb_disable_nmi(int argc, const char *argv[])
2195{
2196	if (atomic_read(&kdb_nmi_disabled))
2197		return 0;
2198	atomic_set(&kdb_nmi_disabled, 1);
2199	arch_kgdb_ops.enable_nmi(0);
2200	return 0;
2201}
2202
2203static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2204{
2205	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2206		return -EINVAL;
2207	arch_kgdb_ops.enable_nmi(1);
2208	return 0;
2209}
2210
2211static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2212	.set = kdb_param_enable_nmi,
2213};
2214module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2215
2216/*
2217 * kdb_cpu - This function implements the 'cpu' command.
2218 *	cpu	[<cpunum>]
2219 * Returns:
2220 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2221 */
2222static void kdb_cpu_status(void)
2223{
2224	int i, start_cpu, first_print = 1;
2225	char state, prev_state = '?';
2226
2227	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2228	kdb_printf("Available cpus: ");
2229	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2230		if (!cpu_online(i)) {
2231			state = 'F';	/* cpu is offline */
2232		} else if (!kgdb_info[i].enter_kgdb) {
2233			state = 'D';	/* cpu is online but unresponsive */
2234		} else {
2235			state = ' ';	/* cpu is responding to kdb */
2236			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2237				state = 'I';	/* idle task */
2238		}
2239		if (state != prev_state) {
2240			if (prev_state != '?') {
2241				if (!first_print)
2242					kdb_printf(", ");
2243				first_print = 0;
2244				kdb_printf("%d", start_cpu);
2245				if (start_cpu < i-1)
2246					kdb_printf("-%d", i-1);
2247				if (prev_state != ' ')
2248					kdb_printf("(%c)", prev_state);
2249			}
2250			prev_state = state;
2251			start_cpu = i;
2252		}
2253	}
2254	/* print the trailing cpus, ignoring them if they are all offline */
2255	if (prev_state != 'F') {
2256		if (!first_print)
2257			kdb_printf(", ");
2258		kdb_printf("%d", start_cpu);
2259		if (start_cpu < i-1)
2260			kdb_printf("-%d", i-1);
2261		if (prev_state != ' ')
2262			kdb_printf("(%c)", prev_state);
2263	}
2264	kdb_printf("\n");
2265}
2266
2267static int kdb_cpu(int argc, const char **argv)
2268{
2269	unsigned long cpunum;
2270	int diag;
2271
2272	if (argc == 0) {
2273		kdb_cpu_status();
2274		return 0;
2275	}
2276
2277	if (argc != 1)
2278		return KDB_ARGCOUNT;
2279
2280	diag = kdbgetularg(argv[1], &cpunum);
2281	if (diag)
2282		return diag;
2283
2284	/*
2285	 * Validate cpunum
2286	 */
2287	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2288		return KDB_BADCPUNUM;
2289
2290	dbg_switch_cpu = cpunum;
2291
2292	/*
2293	 * Switch to other cpu
2294	 */
2295	return KDB_CMD_CPU;
2296}
2297
2298/* The user may not realize that ps/bta with no parameters does not print idle
2299 * or sleeping system daemon processes, so tell them how many were suppressed.
2300 */
2301void kdb_ps_suppressed(void)
2302{
2303	int idle = 0, daemon = 0;
2304	unsigned long mask_I = kdb_task_state_string("I"),
2305		      mask_M = kdb_task_state_string("M");
2306	unsigned long cpu;
2307	const struct task_struct *p, *g;
2308	for_each_online_cpu(cpu) {
2309		p = kdb_curr_task(cpu);
2310		if (kdb_task_state(p, mask_I))
2311			++idle;
2312	}
2313	kdb_do_each_thread(g, p) {
2314		if (kdb_task_state(p, mask_M))
2315			++daemon;
2316	} kdb_while_each_thread(g, p);
2317	if (idle || daemon) {
2318		if (idle)
2319			kdb_printf("%d idle process%s (state I)%s\n",
2320				   idle, idle == 1 ? "" : "es",
2321				   daemon ? " and " : "");
2322		if (daemon)
2323			kdb_printf("%d sleeping system daemon (state M) "
2324				   "process%s", daemon,
2325				   daemon == 1 ? "" : "es");
2326		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2327	}
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 *	list of the active processes.
2333 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2334 */
2335void kdb_ps1(const struct task_struct *p)
2336{
2337	int cpu;
2338	unsigned long tmp;
2339
2340	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2341		return;
2342
2343	cpu = kdb_process_cpu(p);
2344	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2345		   (void *)p, p->pid, p->parent->pid,
2346		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2347		   kdb_task_state_char(p),
2348		   (void *)(&p->thread),
2349		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2350		   p->comm);
2351	if (kdb_task_has_cpu(p)) {
2352		if (!KDB_TSK(cpu)) {
2353			kdb_printf("  Error: no saved data for this cpu\n");
2354		} else {
2355			if (KDB_TSK(cpu) != p)
2356				kdb_printf("  Error: does not match running "
2357				   "process table (0x%p)\n", KDB_TSK(cpu));
2358		}
2359	}
2360}
2361
2362static int kdb_ps(int argc, const char **argv)
2363{
2364	struct task_struct *g, *p;
2365	unsigned long mask, cpu;
2366
2367	if (argc == 0)
2368		kdb_ps_suppressed();
2369	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2370		(int)(2*sizeof(void *))+2, "Task Addr",
2371		(int)(2*sizeof(void *))+2, "Thread");
2372	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2373	/* Run the active tasks first */
2374	for_each_online_cpu(cpu) {
2375		if (KDB_FLAG(CMD_INTERRUPT))
2376			return 0;
2377		p = kdb_curr_task(cpu);
2378		if (kdb_task_state(p, mask))
2379			kdb_ps1(p);
2380	}
2381	kdb_printf("\n");
2382	/* Now the real tasks */
2383	kdb_do_each_thread(g, p) {
2384		if (KDB_FLAG(CMD_INTERRUPT))
2385			return 0;
2386		if (kdb_task_state(p, mask))
2387			kdb_ps1(p);
2388	} kdb_while_each_thread(g, p);
2389
2390	return 0;
2391}
2392
2393/*
2394 * kdb_pid - This function implements the 'pid' command which switches
2395 *	the currently active process.
2396 *		pid [<pid> | R]
2397 */
2398static int kdb_pid(int argc, const char **argv)
2399{
2400	struct task_struct *p;
2401	unsigned long val;
2402	int diag;
2403
2404	if (argc > 1)
2405		return KDB_ARGCOUNT;
2406
2407	if (argc) {
2408		if (strcmp(argv[1], "R") == 0) {
2409			p = KDB_TSK(kdb_initial_cpu);
2410		} else {
2411			diag = kdbgetularg(argv[1], &val);
2412			if (diag)
2413				return KDB_BADINT;
2414
2415			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2416			if (!p) {
2417				kdb_printf("No task with pid=%d\n", (pid_t)val);
2418				return 0;
2419			}
2420		}
2421		kdb_set_current_task(p);
2422	}
2423	kdb_printf("KDB current process is %s(pid=%d)\n",
2424		   kdb_current_task->comm,
2425		   kdb_current_task->pid);
2426
2427	return 0;
2428}
2429
2430static int kdb_kgdb(int argc, const char **argv)
2431{
2432	return KDB_CMD_KGDB;
2433}
2434
2435/*
2436 * kdb_help - This function implements the 'help' and '?' commands.
2437 */
2438static int kdb_help(int argc, const char **argv)
2439{
2440	kdbtab_t *kt;
2441	int i;
2442
2443	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2444	kdb_printf("-----------------------------"
2445		   "-----------------------------\n");
2446	for_each_kdbcmd(kt, i) {
2447		char *space = "";
2448		if (KDB_FLAG(CMD_INTERRUPT))
2449			return 0;
2450		if (!kt->cmd_name)
2451			continue;
2452		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2453			continue;
2454		if (strlen(kt->cmd_usage) > 20)
2455			space = "\n                                    ";
2456		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2457			   kt->cmd_usage, space, kt->cmd_help);
2458	}
2459	return 0;
2460}
2461
2462/*
2463 * kdb_kill - This function implements the 'kill' commands.
2464 */
2465static int kdb_kill(int argc, const char **argv)
2466{
2467	long sig, pid;
2468	char *endp;
2469	struct task_struct *p;
 
2470
2471	if (argc != 2)
2472		return KDB_ARGCOUNT;
2473
2474	sig = simple_strtol(argv[1], &endp, 0);
2475	if (*endp)
2476		return KDB_BADINT;
2477	if ((sig >= 0) || !valid_signal(-sig)) {
2478		kdb_printf("Invalid signal parameter.<-signal>\n");
2479		return 0;
2480	}
2481	sig = -sig;
2482
2483	pid = simple_strtol(argv[2], &endp, 0);
2484	if (*endp)
2485		return KDB_BADINT;
2486	if (pid <= 0) {
2487		kdb_printf("Process ID must be large than 0.\n");
2488		return 0;
2489	}
2490
2491	/* Find the process. */
2492	p = find_task_by_pid_ns(pid, &init_pid_ns);
2493	if (!p) {
2494		kdb_printf("The specified process isn't found.\n");
2495		return 0;
2496	}
2497	p = p->group_leader;
2498	kdb_send_sig(p, sig);
 
 
 
 
 
2499	return 0;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/*
2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2504 * I cannot call that code directly from kdb, it has an unconditional
2505 * cli()/sti() and calls routines that take locks which can stop the debugger.
2506 */
2507static void kdb_sysinfo(struct sysinfo *val)
2508{
2509	u64 uptime = ktime_get_mono_fast_ns();
2510
2511	memset(val, 0, sizeof(*val));
2512	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2513	val->loads[0] = avenrun[0];
2514	val->loads[1] = avenrun[1];
2515	val->loads[2] = avenrun[2];
2516	val->procs = nr_threads-1;
2517	si_meminfo(val);
2518
2519	return;
2520}
2521
2522/*
2523 * kdb_summary - This function implements the 'summary' command.
2524 */
2525static int kdb_summary(int argc, const char **argv)
2526{
2527	time64_t now;
2528	struct tm tm;
2529	struct sysinfo val;
2530
2531	if (argc)
2532		return KDB_ARGCOUNT;
2533
2534	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2535	kdb_printf("release    %s\n", init_uts_ns.name.release);
2536	kdb_printf("version    %s\n", init_uts_ns.name.version);
2537	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2538	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2539	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2540	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2541
2542	now = __ktime_get_real_seconds();
2543	time64_to_tm(now, 0, &tm);
2544	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2545		   "tz_minuteswest %d\n",
2546		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2547		tm.tm_hour, tm.tm_min, tm.tm_sec,
2548		sys_tz.tz_minuteswest);
2549
2550	kdb_sysinfo(&val);
2551	kdb_printf("uptime     ");
2552	if (val.uptime > (24*60*60)) {
2553		int days = val.uptime / (24*60*60);
2554		val.uptime %= (24*60*60);
2555		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2556	}
2557	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2558
2559	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2560
2561#define LOAD_INT(x) ((x) >> FSHIFT)
2562#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2563	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2564		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2565		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2566		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2567#undef LOAD_INT
2568#undef LOAD_FRAC
2569	/* Display in kilobytes */
2570#define K(x) ((x) << (PAGE_SHIFT - 10))
2571	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2572		   "Buffers:        %8lu kB\n",
2573		   K(val.totalram), K(val.freeram), K(val.bufferram));
2574	return 0;
2575}
2576
2577/*
2578 * kdb_per_cpu - This function implements the 'per_cpu' command.
2579 */
2580static int kdb_per_cpu(int argc, const char **argv)
2581{
2582	char fmtstr[64];
2583	int cpu, diag, nextarg = 1;
2584	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2585
2586	if (argc < 1 || argc > 3)
2587		return KDB_ARGCOUNT;
2588
2589	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2590	if (diag)
2591		return diag;
2592
2593	if (argc >= 2) {
2594		diag = kdbgetularg(argv[2], &bytesperword);
2595		if (diag)
2596			return diag;
2597	}
2598	if (!bytesperword)
2599		bytesperword = KDB_WORD_SIZE;
2600	else if (bytesperword > KDB_WORD_SIZE)
2601		return KDB_BADWIDTH;
2602	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2603	if (argc >= 3) {
2604		diag = kdbgetularg(argv[3], &whichcpu);
2605		if (diag)
2606			return diag;
2607		if (!cpu_online(whichcpu)) {
2608			kdb_printf("cpu %ld is not online\n", whichcpu);
2609			return KDB_BADCPUNUM;
2610		}
2611	}
2612
2613	/* Most architectures use __per_cpu_offset[cpu], some use
2614	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2615	 */
2616#ifdef	__per_cpu_offset
2617#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2618#else
2619#ifdef	CONFIG_SMP
2620#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2621#else
2622#define KDB_PCU(cpu) 0
2623#endif
2624#endif
2625	for_each_online_cpu(cpu) {
2626		if (KDB_FLAG(CMD_INTERRUPT))
2627			return 0;
2628
2629		if (whichcpu != ~0UL && whichcpu != cpu)
2630			continue;
2631		addr = symaddr + KDB_PCU(cpu);
2632		diag = kdb_getword(&val, addr, bytesperword);
2633		if (diag) {
2634			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2635				   "read, diag=%d\n", cpu, addr, diag);
2636			continue;
2637		}
2638		kdb_printf("%5d ", cpu);
2639		kdb_md_line(fmtstr, addr,
2640			bytesperword == KDB_WORD_SIZE,
2641			1, bytesperword, 1, 1, 0);
2642	}
2643#undef KDB_PCU
2644	return 0;
2645}
2646
2647/*
2648 * display help for the use of cmd | grep pattern
2649 */
2650static int kdb_grep_help(int argc, const char **argv)
2651{
2652	kdb_printf("Usage of  cmd args | grep pattern:\n");
2653	kdb_printf("  Any command's output may be filtered through an ");
2654	kdb_printf("emulated 'pipe'.\n");
2655	kdb_printf("  'grep' is just a key word.\n");
2656	kdb_printf("  The pattern may include a very limited set of "
2657		   "metacharacters:\n");
2658	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2659	kdb_printf("  And if there are spaces in the pattern, you may "
2660		   "quote it:\n");
2661	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2662		   " or \"^pat tern$\"\n");
2663	return 0;
2664}
2665
2666/*
2667 * kdb_register_flags - This function is used to register a kernel
2668 * 	debugger command.
2669 * Inputs:
2670 *	cmd	Command name
2671 *	func	Function to execute the command
2672 *	usage	A simple usage string showing arguments
2673 *	help	A simple help string describing command
2674 *	repeat	Does the command auto repeat on enter?
2675 * Returns:
2676 *	zero for success, one if a duplicate command.
2677 */
2678#define kdb_command_extend 50	/* arbitrary */
2679int kdb_register_flags(char *cmd,
2680		       kdb_func_t func,
2681		       char *usage,
2682		       char *help,
2683		       short minlen,
2684		       kdb_cmdflags_t flags)
2685{
2686	int i;
2687	kdbtab_t *kp;
2688
2689	/*
2690	 *  Brute force method to determine duplicates
2691	 */
2692	for_each_kdbcmd(kp, i) {
2693		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2694			kdb_printf("Duplicate kdb command registered: "
2695				"%s, func %p help %s\n", cmd, func, help);
2696			return 1;
2697		}
2698	}
2699
2700	/*
2701	 * Insert command into first available location in table
2702	 */
2703	for_each_kdbcmd(kp, i) {
2704		if (kp->cmd_name == NULL)
2705			break;
2706	}
2707
2708	if (i >= kdb_max_commands) {
2709		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2710			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2711		if (!new) {
2712			kdb_printf("Could not allocate new kdb_command "
2713				   "table\n");
2714			return 1;
2715		}
2716		if (kdb_commands) {
2717			memcpy(new, kdb_commands,
2718			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2719			kfree(kdb_commands);
2720		}
2721		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2722		       kdb_command_extend * sizeof(*new));
2723		kdb_commands = new;
2724		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2725		kdb_max_commands += kdb_command_extend;
2726	}
2727
2728	kp->cmd_name   = cmd;
2729	kp->cmd_func   = func;
2730	kp->cmd_usage  = usage;
2731	kp->cmd_help   = help;
 
2732	kp->cmd_minlen = minlen;
2733	kp->cmd_flags  = flags;
2734
2735	return 0;
2736}
2737EXPORT_SYMBOL_GPL(kdb_register_flags);
2738
2739
2740/*
2741 * kdb_register - Compatibility register function for commands that do
2742 *	not need to specify a repeat state.  Equivalent to
2743 *	kdb_register_flags with flags set to 0.
2744 * Inputs:
2745 *	cmd	Command name
2746 *	func	Function to execute the command
2747 *	usage	A simple usage string showing arguments
2748 *	help	A simple help string describing command
2749 * Returns:
2750 *	zero for success, one if a duplicate command.
2751 */
2752int kdb_register(char *cmd,
2753	     kdb_func_t func,
2754	     char *usage,
2755	     char *help,
2756	     short minlen)
2757{
2758	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2759}
2760EXPORT_SYMBOL_GPL(kdb_register);
2761
2762/*
2763 * kdb_unregister - This function is used to unregister a kernel
2764 *	debugger command.  It is generally called when a module which
2765 *	implements kdb commands is unloaded.
2766 * Inputs:
2767 *	cmd	Command name
2768 * Returns:
2769 *	zero for success, one command not registered.
2770 */
2771int kdb_unregister(char *cmd)
2772{
2773	int i;
2774	kdbtab_t *kp;
2775
2776	/*
2777	 *  find the command.
2778	 */
2779	for_each_kdbcmd(kp, i) {
2780		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2781			kp->cmd_name = NULL;
2782			return 0;
2783		}
2784	}
2785
2786	/* Couldn't find it.  */
2787	return 1;
2788}
2789EXPORT_SYMBOL_GPL(kdb_unregister);
2790
2791/* Initialize the kdb command table. */
2792static void __init kdb_inittab(void)
2793{
2794	int i;
2795	kdbtab_t *kp;
2796
2797	for_each_kdbcmd(kp, i)
2798		kp->cmd_name = NULL;
2799
2800	kdb_register_flags("md", kdb_md, "<vaddr>",
2801	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2802	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2803	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2804	  "Display Raw Memory", 0,
2805	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2806	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2807	  "Display Physical Memory", 0,
2808	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2809	kdb_register_flags("mds", kdb_md, "<vaddr>",
2810	  "Display Memory Symbolically", 0,
2811	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2812	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2813	  "Modify Memory Contents", 0,
2814	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2816	  "Continue Execution", 1,
2817	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2818	kdb_register_flags("rd", kdb_rd, "",
2819	  "Display Registers", 0,
2820	  KDB_ENABLE_REG_READ);
2821	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2822	  "Modify Registers", 0,
2823	  KDB_ENABLE_REG_WRITE);
2824	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2825	  "Display exception frame", 0,
2826	  KDB_ENABLE_MEM_READ);
2827	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2828	  "Stack traceback", 1,
2829	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2830	kdb_register_flags("btp", kdb_bt, "<pid>",
2831	  "Display stack for process <pid>", 0,
2832	  KDB_ENABLE_INSPECT);
2833	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2834	  "Backtrace all processes matching state flag", 0,
2835	  KDB_ENABLE_INSPECT);
2836	kdb_register_flags("btc", kdb_bt, "",
2837	  "Backtrace current process on each cpu", 0,
2838	  KDB_ENABLE_INSPECT);
2839	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2840	  "Backtrace process given its struct task address", 0,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("env", kdb_env, "",
2843	  "Show environment variables", 0,
2844	  KDB_ENABLE_ALWAYS_SAFE);
2845	kdb_register_flags("set", kdb_set, "",
2846	  "Set environment variables", 0,
2847	  KDB_ENABLE_ALWAYS_SAFE);
2848	kdb_register_flags("help", kdb_help, "",
2849	  "Display Help Message", 1,
2850	  KDB_ENABLE_ALWAYS_SAFE);
2851	kdb_register_flags("?", kdb_help, "",
2852	  "Display Help Message", 0,
2853	  KDB_ENABLE_ALWAYS_SAFE);
2854	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2855	  "Switch to new cpu", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2857	kdb_register_flags("kgdb", kdb_kgdb, "",
2858	  "Enter kgdb mode", 0, 0);
2859	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2860	  "Display active task list", 0,
2861	  KDB_ENABLE_INSPECT);
2862	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2863	  "Switch to another task", 0,
2864	  KDB_ENABLE_INSPECT);
2865	kdb_register_flags("reboot", kdb_reboot, "",
2866	  "Reboot the machine immediately", 0,
2867	  KDB_ENABLE_REBOOT);
2868#if defined(CONFIG_MODULES)
2869	kdb_register_flags("lsmod", kdb_lsmod, "",
2870	  "List loaded kernel modules", 0,
2871	  KDB_ENABLE_INSPECT);
2872#endif
2873#if defined(CONFIG_MAGIC_SYSRQ)
2874	kdb_register_flags("sr", kdb_sr, "<key>",
2875	  "Magic SysRq key", 0,
2876	  KDB_ENABLE_ALWAYS_SAFE);
2877#endif
2878#if defined(CONFIG_PRINTK)
2879	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2880	  "Display syslog buffer", 0,
2881	  KDB_ENABLE_ALWAYS_SAFE);
2882#endif
2883	if (arch_kgdb_ops.enable_nmi) {
2884		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2885		  "Disable NMI entry to KDB", 0,
2886		  KDB_ENABLE_ALWAYS_SAFE);
2887	}
2888	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2889	  "Define a set of commands, down to endefcmd", 0,
2890	  KDB_ENABLE_ALWAYS_SAFE);
2891	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2892	  "Send a signal to a process", 0,
2893	  KDB_ENABLE_SIGNAL);
2894	kdb_register_flags("summary", kdb_summary, "",
2895	  "Summarize the system", 4,
2896	  KDB_ENABLE_ALWAYS_SAFE);
2897	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2898	  "Display per_cpu variables", 3,
2899	  KDB_ENABLE_MEM_READ);
2900	kdb_register_flags("grephelp", kdb_grep_help, "",
2901	  "Display help on | grep", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903}
2904
2905/* Execute any commands defined in kdb_cmds.  */
2906static void __init kdb_cmd_init(void)
2907{
2908	int i, diag;
2909	for (i = 0; kdb_cmds[i]; ++i) {
2910		diag = kdb_parse(kdb_cmds[i]);
2911		if (diag)
2912			kdb_printf("kdb command %s failed, kdb diag %d\n",
2913				kdb_cmds[i], diag);
2914	}
2915	if (defcmd_in_progress) {
2916		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2917		kdb_parse("endefcmd");
2918	}
2919}
2920
2921/* Initialize kdb_printf, breakpoint tables and kdb state */
2922void __init kdb_init(int lvl)
2923{
2924	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2925	int i;
2926
2927	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2928		return;
2929	for (i = kdb_init_lvl; i < lvl; i++) {
2930		switch (i) {
2931		case KDB_NOT_INITIALIZED:
2932			kdb_inittab();		/* Initialize Command Table */
2933			kdb_initbptab();	/* Initialize Breakpoints */
2934			break;
2935		case KDB_INIT_EARLY:
2936			kdb_cmd_init();		/* Build kdb_cmds tables */
2937			break;
2938		}
2939	}
2940	kdb_init_lvl = lvl;
2941}