Loading...
1#include "audit.h"
2#include <linux/fsnotify_backend.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6#include <linux/slab.h>
7
8struct audit_tree;
9struct audit_chunk;
10
11struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21};
22
23struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36};
37
38static LIST_HEAD(tree_list);
39static LIST_HEAD(prune_list);
40
41/*
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
46 * the same tree.
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
51 *
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
58 *
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
61 *
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
64 *
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
69 */
70
71static struct fsnotify_group *audit_tree_group;
72
73static struct audit_tree *alloc_tree(const char *s)
74{
75 struct audit_tree *tree;
76
77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 if (tree) {
79 atomic_set(&tree->count, 1);
80 tree->goner = 0;
81 INIT_LIST_HEAD(&tree->chunks);
82 INIT_LIST_HEAD(&tree->rules);
83 INIT_LIST_HEAD(&tree->list);
84 INIT_LIST_HEAD(&tree->same_root);
85 tree->root = NULL;
86 strcpy(tree->pathname, s);
87 }
88 return tree;
89}
90
91static inline void get_tree(struct audit_tree *tree)
92{
93 atomic_inc(&tree->count);
94}
95
96static inline void put_tree(struct audit_tree *tree)
97{
98 if (atomic_dec_and_test(&tree->count))
99 kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105 return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110 int i;
111
112 for (i = 0; i < chunk->count; i++) {
113 if (chunk->owners[i].owner)
114 put_tree(chunk->owners[i].owner);
115 }
116 kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121 if (atomic_long_dec_and_test(&chunk->refs))
122 free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128 audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134 call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139 struct audit_chunk *chunk;
140 size_t size;
141 int i;
142
143 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144 chunk = kzalloc(size, GFP_KERNEL);
145 if (!chunk)
146 return NULL;
147
148 INIT_LIST_HEAD(&chunk->hash);
149 INIT_LIST_HEAD(&chunk->trees);
150 chunk->count = count;
151 atomic_long_set(&chunk->refs, 1);
152 for (i = 0; i < count; i++) {
153 INIT_LIST_HEAD(&chunk->owners[i].list);
154 chunk->owners[i].index = i;
155 }
156 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157 return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167 return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173 struct fsnotify_mark *entry = &chunk->mark;
174 struct list_head *list;
175
176 if (!entry->i.inode)
177 return;
178 list = chunk_hash(entry->i.inode);
179 list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185 struct list_head *list = chunk_hash(inode);
186 struct audit_chunk *p;
187
188 list_for_each_entry_rcu(p, list, hash) {
189 /* mark.inode may have gone NULL, but who cares? */
190 if (p->mark.i.inode == inode) {
191 atomic_long_inc(&p->refs);
192 return p;
193 }
194 }
195 return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200 int n;
201 for (n = 0; n < chunk->count; n++)
202 if (chunk->owners[n].owner == tree)
203 return 1;
204 return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211 int index = p->index & ~(1U<<31);
212 p -= index;
213 return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218 struct audit_chunk *chunk = find_chunk(p);
219 struct fsnotify_mark *entry = &chunk->mark;
220 struct audit_chunk *new = NULL;
221 struct audit_tree *owner;
222 int size = chunk->count - 1;
223 int i, j;
224
225 fsnotify_get_mark(entry);
226
227 spin_unlock(&hash_lock);
228
229 if (size)
230 new = alloc_chunk(size);
231
232 spin_lock(&entry->lock);
233 if (chunk->dead || !entry->i.inode) {
234 spin_unlock(&entry->lock);
235 if (new)
236 free_chunk(new);
237 goto out;
238 }
239
240 owner = p->owner;
241
242 if (!size) {
243 chunk->dead = 1;
244 spin_lock(&hash_lock);
245 list_del_init(&chunk->trees);
246 if (owner->root == chunk)
247 owner->root = NULL;
248 list_del_init(&p->list);
249 list_del_rcu(&chunk->hash);
250 spin_unlock(&hash_lock);
251 spin_unlock(&entry->lock);
252 fsnotify_destroy_mark(entry, audit_tree_group);
253 goto out;
254 }
255
256 if (!new)
257 goto Fallback;
258
259 fsnotify_duplicate_mark(&new->mark, entry);
260 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261 fsnotify_put_mark(&new->mark);
262 goto Fallback;
263 }
264
265 chunk->dead = 1;
266 spin_lock(&hash_lock);
267 list_replace_init(&chunk->trees, &new->trees);
268 if (owner->root == chunk) {
269 list_del_init(&owner->same_root);
270 owner->root = NULL;
271 }
272
273 for (i = j = 0; j <= size; i++, j++) {
274 struct audit_tree *s;
275 if (&chunk->owners[j] == p) {
276 list_del_init(&p->list);
277 i--;
278 continue;
279 }
280 s = chunk->owners[j].owner;
281 new->owners[i].owner = s;
282 new->owners[i].index = chunk->owners[j].index - j + i;
283 if (!s) /* result of earlier fallback */
284 continue;
285 get_tree(s);
286 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287 }
288
289 list_replace_rcu(&chunk->hash, &new->hash);
290 list_for_each_entry(owner, &new->trees, same_root)
291 owner->root = new;
292 spin_unlock(&hash_lock);
293 spin_unlock(&entry->lock);
294 fsnotify_destroy_mark(entry, audit_tree_group);
295 fsnotify_put_mark(&new->mark); /* drop initial reference */
296 goto out;
297
298Fallback:
299 // do the best we can
300 spin_lock(&hash_lock);
301 if (owner->root == chunk) {
302 list_del_init(&owner->same_root);
303 owner->root = NULL;
304 }
305 list_del_init(&p->list);
306 p->owner = NULL;
307 put_tree(owner);
308 spin_unlock(&hash_lock);
309 spin_unlock(&entry->lock);
310out:
311 fsnotify_put_mark(entry);
312 spin_lock(&hash_lock);
313}
314
315static int create_chunk(struct inode *inode, struct audit_tree *tree)
316{
317 struct fsnotify_mark *entry;
318 struct audit_chunk *chunk = alloc_chunk(1);
319 if (!chunk)
320 return -ENOMEM;
321
322 entry = &chunk->mark;
323 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
324 fsnotify_put_mark(entry);
325 return -ENOSPC;
326 }
327
328 spin_lock(&entry->lock);
329 spin_lock(&hash_lock);
330 if (tree->goner) {
331 spin_unlock(&hash_lock);
332 chunk->dead = 1;
333 spin_unlock(&entry->lock);
334 fsnotify_destroy_mark(entry, audit_tree_group);
335 fsnotify_put_mark(entry);
336 return 0;
337 }
338 chunk->owners[0].index = (1U << 31);
339 chunk->owners[0].owner = tree;
340 get_tree(tree);
341 list_add(&chunk->owners[0].list, &tree->chunks);
342 if (!tree->root) {
343 tree->root = chunk;
344 list_add(&tree->same_root, &chunk->trees);
345 }
346 insert_hash(chunk);
347 spin_unlock(&hash_lock);
348 spin_unlock(&entry->lock);
349 fsnotify_put_mark(entry); /* drop initial reference */
350 return 0;
351}
352
353/* the first tagged inode becomes root of tree */
354static int tag_chunk(struct inode *inode, struct audit_tree *tree)
355{
356 struct fsnotify_mark *old_entry, *chunk_entry;
357 struct audit_tree *owner;
358 struct audit_chunk *chunk, *old;
359 struct node *p;
360 int n;
361
362 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363 if (!old_entry)
364 return create_chunk(inode, tree);
365
366 old = container_of(old_entry, struct audit_chunk, mark);
367
368 /* are we already there? */
369 spin_lock(&hash_lock);
370 for (n = 0; n < old->count; n++) {
371 if (old->owners[n].owner == tree) {
372 spin_unlock(&hash_lock);
373 fsnotify_put_mark(old_entry);
374 return 0;
375 }
376 }
377 spin_unlock(&hash_lock);
378
379 chunk = alloc_chunk(old->count + 1);
380 if (!chunk) {
381 fsnotify_put_mark(old_entry);
382 return -ENOMEM;
383 }
384
385 chunk_entry = &chunk->mark;
386
387 spin_lock(&old_entry->lock);
388 if (!old_entry->i.inode) {
389 /* old_entry is being shot, lets just lie */
390 spin_unlock(&old_entry->lock);
391 fsnotify_put_mark(old_entry);
392 free_chunk(chunk);
393 return -ENOENT;
394 }
395
396 fsnotify_duplicate_mark(chunk_entry, old_entry);
397 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398 spin_unlock(&old_entry->lock);
399 fsnotify_put_mark(chunk_entry);
400 fsnotify_put_mark(old_entry);
401 return -ENOSPC;
402 }
403
404 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405 spin_lock(&chunk_entry->lock);
406 spin_lock(&hash_lock);
407
408 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409 if (tree->goner) {
410 spin_unlock(&hash_lock);
411 chunk->dead = 1;
412 spin_unlock(&chunk_entry->lock);
413 spin_unlock(&old_entry->lock);
414
415 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
416
417 fsnotify_put_mark(chunk_entry);
418 fsnotify_put_mark(old_entry);
419 return 0;
420 }
421 list_replace_init(&old->trees, &chunk->trees);
422 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423 struct audit_tree *s = old->owners[n].owner;
424 p->owner = s;
425 p->index = old->owners[n].index;
426 if (!s) /* result of fallback in untag */
427 continue;
428 get_tree(s);
429 list_replace_init(&old->owners[n].list, &p->list);
430 }
431 p->index = (chunk->count - 1) | (1U<<31);
432 p->owner = tree;
433 get_tree(tree);
434 list_add(&p->list, &tree->chunks);
435 list_replace_rcu(&old->hash, &chunk->hash);
436 list_for_each_entry(owner, &chunk->trees, same_root)
437 owner->root = chunk;
438 old->dead = 1;
439 if (!tree->root) {
440 tree->root = chunk;
441 list_add(&tree->same_root, &chunk->trees);
442 }
443 spin_unlock(&hash_lock);
444 spin_unlock(&chunk_entry->lock);
445 spin_unlock(&old_entry->lock);
446 fsnotify_destroy_mark(old_entry, audit_tree_group);
447 fsnotify_put_mark(chunk_entry); /* drop initial reference */
448 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
449 return 0;
450}
451
452static void audit_log_remove_rule(struct audit_krule *rule)
453{
454 struct audit_buffer *ab;
455
456 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
457 if (unlikely(!ab))
458 return;
459 audit_log_format(ab, "op=");
460 audit_log_string(ab, "remove rule");
461 audit_log_format(ab, " dir=");
462 audit_log_untrustedstring(ab, rule->tree->pathname);
463 audit_log_key(ab, rule->filterkey);
464 audit_log_format(ab, " list=%d res=1", rule->listnr);
465 audit_log_end(ab);
466}
467
468static void kill_rules(struct audit_tree *tree)
469{
470 struct audit_krule *rule, *next;
471 struct audit_entry *entry;
472
473 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
474 entry = container_of(rule, struct audit_entry, rule);
475
476 list_del_init(&rule->rlist);
477 if (rule->tree) {
478 /* not a half-baked one */
479 audit_log_remove_rule(rule);
480 rule->tree = NULL;
481 list_del_rcu(&entry->list);
482 list_del(&entry->rule.list);
483 call_rcu(&entry->rcu, audit_free_rule_rcu);
484 }
485 }
486}
487
488/*
489 * finish killing struct audit_tree
490 */
491static void prune_one(struct audit_tree *victim)
492{
493 spin_lock(&hash_lock);
494 while (!list_empty(&victim->chunks)) {
495 struct node *p;
496
497 p = list_entry(victim->chunks.next, struct node, list);
498
499 untag_chunk(p);
500 }
501 spin_unlock(&hash_lock);
502 put_tree(victim);
503}
504
505/* trim the uncommitted chunks from tree */
506
507static void trim_marked(struct audit_tree *tree)
508{
509 struct list_head *p, *q;
510 spin_lock(&hash_lock);
511 if (tree->goner) {
512 spin_unlock(&hash_lock);
513 return;
514 }
515 /* reorder */
516 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
517 struct node *node = list_entry(p, struct node, list);
518 q = p->next;
519 if (node->index & (1U<<31)) {
520 list_del_init(p);
521 list_add(p, &tree->chunks);
522 }
523 }
524
525 while (!list_empty(&tree->chunks)) {
526 struct node *node;
527
528 node = list_entry(tree->chunks.next, struct node, list);
529
530 /* have we run out of marked? */
531 if (!(node->index & (1U<<31)))
532 break;
533
534 untag_chunk(node);
535 }
536 if (!tree->root && !tree->goner) {
537 tree->goner = 1;
538 spin_unlock(&hash_lock);
539 mutex_lock(&audit_filter_mutex);
540 kill_rules(tree);
541 list_del_init(&tree->list);
542 mutex_unlock(&audit_filter_mutex);
543 prune_one(tree);
544 } else {
545 spin_unlock(&hash_lock);
546 }
547}
548
549static void audit_schedule_prune(void);
550
551/* called with audit_filter_mutex */
552int audit_remove_tree_rule(struct audit_krule *rule)
553{
554 struct audit_tree *tree;
555 tree = rule->tree;
556 if (tree) {
557 spin_lock(&hash_lock);
558 list_del_init(&rule->rlist);
559 if (list_empty(&tree->rules) && !tree->goner) {
560 tree->root = NULL;
561 list_del_init(&tree->same_root);
562 tree->goner = 1;
563 list_move(&tree->list, &prune_list);
564 rule->tree = NULL;
565 spin_unlock(&hash_lock);
566 audit_schedule_prune();
567 return 1;
568 }
569 rule->tree = NULL;
570 spin_unlock(&hash_lock);
571 return 1;
572 }
573 return 0;
574}
575
576static int compare_root(struct vfsmount *mnt, void *arg)
577{
578 return mnt->mnt_root->d_inode == arg;
579}
580
581void audit_trim_trees(void)
582{
583 struct list_head cursor;
584
585 mutex_lock(&audit_filter_mutex);
586 list_add(&cursor, &tree_list);
587 while (cursor.next != &tree_list) {
588 struct audit_tree *tree;
589 struct path path;
590 struct vfsmount *root_mnt;
591 struct node *node;
592 int err;
593
594 tree = container_of(cursor.next, struct audit_tree, list);
595 get_tree(tree);
596 list_del(&cursor);
597 list_add(&cursor, &tree->list);
598 mutex_unlock(&audit_filter_mutex);
599
600 err = kern_path(tree->pathname, 0, &path);
601 if (err)
602 goto skip_it;
603
604 root_mnt = collect_mounts(&path);
605 path_put(&path);
606 if (IS_ERR(root_mnt))
607 goto skip_it;
608
609 spin_lock(&hash_lock);
610 list_for_each_entry(node, &tree->chunks, list) {
611 struct audit_chunk *chunk = find_chunk(node);
612 /* this could be NULL if the watch is dying else where... */
613 struct inode *inode = chunk->mark.i.inode;
614 node->index |= 1U<<31;
615 if (iterate_mounts(compare_root, inode, root_mnt))
616 node->index &= ~(1U<<31);
617 }
618 spin_unlock(&hash_lock);
619 trim_marked(tree);
620 drop_collected_mounts(root_mnt);
621skip_it:
622 put_tree(tree);
623 mutex_lock(&audit_filter_mutex);
624 }
625 list_del(&cursor);
626 mutex_unlock(&audit_filter_mutex);
627}
628
629int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
630{
631
632 if (pathname[0] != '/' ||
633 rule->listnr != AUDIT_FILTER_EXIT ||
634 op != Audit_equal ||
635 rule->inode_f || rule->watch || rule->tree)
636 return -EINVAL;
637 rule->tree = alloc_tree(pathname);
638 if (!rule->tree)
639 return -ENOMEM;
640 return 0;
641}
642
643void audit_put_tree(struct audit_tree *tree)
644{
645 put_tree(tree);
646}
647
648static int tag_mount(struct vfsmount *mnt, void *arg)
649{
650 return tag_chunk(mnt->mnt_root->d_inode, arg);
651}
652
653/* called with audit_filter_mutex */
654int audit_add_tree_rule(struct audit_krule *rule)
655{
656 struct audit_tree *seed = rule->tree, *tree;
657 struct path path;
658 struct vfsmount *mnt;
659 int err;
660
661 rule->tree = NULL;
662 list_for_each_entry(tree, &tree_list, list) {
663 if (!strcmp(seed->pathname, tree->pathname)) {
664 put_tree(seed);
665 rule->tree = tree;
666 list_add(&rule->rlist, &tree->rules);
667 return 0;
668 }
669 }
670 tree = seed;
671 list_add(&tree->list, &tree_list);
672 list_add(&rule->rlist, &tree->rules);
673 /* do not set rule->tree yet */
674 mutex_unlock(&audit_filter_mutex);
675
676 err = kern_path(tree->pathname, 0, &path);
677 if (err)
678 goto Err;
679 mnt = collect_mounts(&path);
680 path_put(&path);
681 if (IS_ERR(mnt)) {
682 err = PTR_ERR(mnt);
683 goto Err;
684 }
685
686 get_tree(tree);
687 err = iterate_mounts(tag_mount, tree, mnt);
688 drop_collected_mounts(mnt);
689
690 if (!err) {
691 struct node *node;
692 spin_lock(&hash_lock);
693 list_for_each_entry(node, &tree->chunks, list)
694 node->index &= ~(1U<<31);
695 spin_unlock(&hash_lock);
696 } else {
697 trim_marked(tree);
698 goto Err;
699 }
700
701 mutex_lock(&audit_filter_mutex);
702 if (list_empty(&rule->rlist)) {
703 put_tree(tree);
704 return -ENOENT;
705 }
706 rule->tree = tree;
707 put_tree(tree);
708
709 return 0;
710Err:
711 mutex_lock(&audit_filter_mutex);
712 list_del_init(&tree->list);
713 list_del_init(&tree->rules);
714 put_tree(tree);
715 return err;
716}
717
718int audit_tag_tree(char *old, char *new)
719{
720 struct list_head cursor, barrier;
721 int failed = 0;
722 struct path path1, path2;
723 struct vfsmount *tagged;
724 int err;
725
726 err = kern_path(new, 0, &path2);
727 if (err)
728 return err;
729 tagged = collect_mounts(&path2);
730 path_put(&path2);
731 if (IS_ERR(tagged))
732 return PTR_ERR(tagged);
733
734 err = kern_path(old, 0, &path1);
735 if (err) {
736 drop_collected_mounts(tagged);
737 return err;
738 }
739
740 mutex_lock(&audit_filter_mutex);
741 list_add(&barrier, &tree_list);
742 list_add(&cursor, &barrier);
743
744 while (cursor.next != &tree_list) {
745 struct audit_tree *tree;
746 int good_one = 0;
747
748 tree = container_of(cursor.next, struct audit_tree, list);
749 get_tree(tree);
750 list_del(&cursor);
751 list_add(&cursor, &tree->list);
752 mutex_unlock(&audit_filter_mutex);
753
754 err = kern_path(tree->pathname, 0, &path2);
755 if (!err) {
756 good_one = path_is_under(&path1, &path2);
757 path_put(&path2);
758 }
759
760 if (!good_one) {
761 put_tree(tree);
762 mutex_lock(&audit_filter_mutex);
763 continue;
764 }
765
766 failed = iterate_mounts(tag_mount, tree, tagged);
767 if (failed) {
768 put_tree(tree);
769 mutex_lock(&audit_filter_mutex);
770 break;
771 }
772
773 mutex_lock(&audit_filter_mutex);
774 spin_lock(&hash_lock);
775 if (!tree->goner) {
776 list_del(&tree->list);
777 list_add(&tree->list, &tree_list);
778 }
779 spin_unlock(&hash_lock);
780 put_tree(tree);
781 }
782
783 while (barrier.prev != &tree_list) {
784 struct audit_tree *tree;
785
786 tree = container_of(barrier.prev, struct audit_tree, list);
787 get_tree(tree);
788 list_del(&tree->list);
789 list_add(&tree->list, &barrier);
790 mutex_unlock(&audit_filter_mutex);
791
792 if (!failed) {
793 struct node *node;
794 spin_lock(&hash_lock);
795 list_for_each_entry(node, &tree->chunks, list)
796 node->index &= ~(1U<<31);
797 spin_unlock(&hash_lock);
798 } else {
799 trim_marked(tree);
800 }
801
802 put_tree(tree);
803 mutex_lock(&audit_filter_mutex);
804 }
805 list_del(&barrier);
806 list_del(&cursor);
807 mutex_unlock(&audit_filter_mutex);
808 path_put(&path1);
809 drop_collected_mounts(tagged);
810 return failed;
811}
812
813/*
814 * That gets run when evict_chunk() ends up needing to kill audit_tree.
815 * Runs from a separate thread.
816 */
817static int prune_tree_thread(void *unused)
818{
819 mutex_lock(&audit_cmd_mutex);
820 mutex_lock(&audit_filter_mutex);
821
822 while (!list_empty(&prune_list)) {
823 struct audit_tree *victim;
824
825 victim = list_entry(prune_list.next, struct audit_tree, list);
826 list_del_init(&victim->list);
827
828 mutex_unlock(&audit_filter_mutex);
829
830 prune_one(victim);
831
832 mutex_lock(&audit_filter_mutex);
833 }
834
835 mutex_unlock(&audit_filter_mutex);
836 mutex_unlock(&audit_cmd_mutex);
837 return 0;
838}
839
840static void audit_schedule_prune(void)
841{
842 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
843}
844
845/*
846 * ... and that one is done if evict_chunk() decides to delay until the end
847 * of syscall. Runs synchronously.
848 */
849void audit_kill_trees(struct list_head *list)
850{
851 mutex_lock(&audit_cmd_mutex);
852 mutex_lock(&audit_filter_mutex);
853
854 while (!list_empty(list)) {
855 struct audit_tree *victim;
856
857 victim = list_entry(list->next, struct audit_tree, list);
858 kill_rules(victim);
859 list_del_init(&victim->list);
860
861 mutex_unlock(&audit_filter_mutex);
862
863 prune_one(victim);
864
865 mutex_lock(&audit_filter_mutex);
866 }
867
868 mutex_unlock(&audit_filter_mutex);
869 mutex_unlock(&audit_cmd_mutex);
870}
871
872/*
873 * Here comes the stuff asynchronous to auditctl operations
874 */
875
876static void evict_chunk(struct audit_chunk *chunk)
877{
878 struct audit_tree *owner;
879 struct list_head *postponed = audit_killed_trees();
880 int need_prune = 0;
881 int n;
882
883 if (chunk->dead)
884 return;
885
886 chunk->dead = 1;
887 mutex_lock(&audit_filter_mutex);
888 spin_lock(&hash_lock);
889 while (!list_empty(&chunk->trees)) {
890 owner = list_entry(chunk->trees.next,
891 struct audit_tree, same_root);
892 owner->goner = 1;
893 owner->root = NULL;
894 list_del_init(&owner->same_root);
895 spin_unlock(&hash_lock);
896 if (!postponed) {
897 kill_rules(owner);
898 list_move(&owner->list, &prune_list);
899 need_prune = 1;
900 } else {
901 list_move(&owner->list, postponed);
902 }
903 spin_lock(&hash_lock);
904 }
905 list_del_rcu(&chunk->hash);
906 for (n = 0; n < chunk->count; n++)
907 list_del_init(&chunk->owners[n].list);
908 spin_unlock(&hash_lock);
909 if (need_prune)
910 audit_schedule_prune();
911 mutex_unlock(&audit_filter_mutex);
912}
913
914static int audit_tree_handle_event(struct fsnotify_group *group,
915 struct inode *to_tell,
916 struct fsnotify_mark *inode_mark,
917 struct fsnotify_mark *vfsmount_mark,
918 u32 mask, void *data, int data_type,
919 const unsigned char *file_name, u32 cookie)
920{
921 return 0;
922}
923
924static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
925{
926 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
927
928 evict_chunk(chunk);
929
930 /*
931 * We are guaranteed to have at least one reference to the mark from
932 * either the inode or the caller of fsnotify_destroy_mark().
933 */
934 BUG_ON(atomic_read(&entry->refcnt) < 1);
935}
936
937static const struct fsnotify_ops audit_tree_ops = {
938 .handle_event = audit_tree_handle_event,
939 .freeing_mark = audit_tree_freeing_mark,
940};
941
942static int __init audit_tree_init(void)
943{
944 int i;
945
946 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
947 if (IS_ERR(audit_tree_group))
948 audit_panic("cannot initialize fsnotify group for rectree watches");
949
950 for (i = 0; i < HASH_SIZE; i++)
951 INIT_LIST_HEAD(&chunk_hash_heads[i]);
952
953 return 0;
954}
955__initcall(audit_tree_init);
1// SPDX-License-Identifier: GPL-2.0
2#include "audit.h"
3#include <linux/fsnotify_backend.h>
4#include <linux/namei.h>
5#include <linux/mount.h>
6#include <linux/kthread.h>
7#include <linux/refcount.h>
8#include <linux/slab.h>
9
10struct audit_tree;
11struct audit_chunk;
12
13struct audit_tree {
14 refcount_t count;
15 int goner;
16 struct audit_chunk *root;
17 struct list_head chunks;
18 struct list_head rules;
19 struct list_head list;
20 struct list_head same_root;
21 struct rcu_head head;
22 char pathname[];
23};
24
25struct audit_chunk {
26 struct list_head hash;
27 struct fsnotify_mark mark;
28 struct list_head trees; /* with root here */
29 int dead;
30 int count;
31 atomic_long_t refs;
32 struct rcu_head head;
33 struct node {
34 struct list_head list;
35 struct audit_tree *owner;
36 unsigned index; /* index; upper bit indicates 'will prune' */
37 } owners[];
38};
39
40static LIST_HEAD(tree_list);
41static LIST_HEAD(prune_list);
42static struct task_struct *prune_thread;
43
44/*
45 * One struct chunk is attached to each inode of interest.
46 * We replace struct chunk on tagging/untagging.
47 * Rules have pointer to struct audit_tree.
48 * Rules have struct list_head rlist forming a list of rules over
49 * the same tree.
50 * References to struct chunk are collected at audit_inode{,_child}()
51 * time and used in AUDIT_TREE rule matching.
52 * These references are dropped at the same time we are calling
53 * audit_free_names(), etc.
54 *
55 * Cyclic lists galore:
56 * tree.chunks anchors chunk.owners[].list hash_lock
57 * tree.rules anchors rule.rlist audit_filter_mutex
58 * chunk.trees anchors tree.same_root hash_lock
59 * chunk.hash is a hash with middle bits of watch.inode as
60 * a hash function. RCU, hash_lock
61 *
62 * tree is refcounted; one reference for "some rules on rules_list refer to
63 * it", one for each chunk with pointer to it.
64 *
65 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
66 * of watch contributes 1 to .refs).
67 *
68 * node.index allows to get from node.list to containing chunk.
69 * MSB of that sucker is stolen to mark taggings that we might have to
70 * revert - several operations have very unpleasant cleanup logics and
71 * that makes a difference. Some.
72 */
73
74static struct fsnotify_group *audit_tree_group;
75
76static struct audit_tree *alloc_tree(const char *s)
77{
78 struct audit_tree *tree;
79
80 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
81 if (tree) {
82 refcount_set(&tree->count, 1);
83 tree->goner = 0;
84 INIT_LIST_HEAD(&tree->chunks);
85 INIT_LIST_HEAD(&tree->rules);
86 INIT_LIST_HEAD(&tree->list);
87 INIT_LIST_HEAD(&tree->same_root);
88 tree->root = NULL;
89 strcpy(tree->pathname, s);
90 }
91 return tree;
92}
93
94static inline void get_tree(struct audit_tree *tree)
95{
96 refcount_inc(&tree->count);
97}
98
99static inline void put_tree(struct audit_tree *tree)
100{
101 if (refcount_dec_and_test(&tree->count))
102 kfree_rcu(tree, head);
103}
104
105/* to avoid bringing the entire thing in audit.h */
106const char *audit_tree_path(struct audit_tree *tree)
107{
108 return tree->pathname;
109}
110
111static void free_chunk(struct audit_chunk *chunk)
112{
113 int i;
114
115 for (i = 0; i < chunk->count; i++) {
116 if (chunk->owners[i].owner)
117 put_tree(chunk->owners[i].owner);
118 }
119 kfree(chunk);
120}
121
122void audit_put_chunk(struct audit_chunk *chunk)
123{
124 if (atomic_long_dec_and_test(&chunk->refs))
125 free_chunk(chunk);
126}
127
128static void __put_chunk(struct rcu_head *rcu)
129{
130 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
131 audit_put_chunk(chunk);
132}
133
134static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
135{
136 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
137 call_rcu(&chunk->head, __put_chunk);
138}
139
140static struct audit_chunk *alloc_chunk(int count)
141{
142 struct audit_chunk *chunk;
143 size_t size;
144 int i;
145
146 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
147 chunk = kzalloc(size, GFP_KERNEL);
148 if (!chunk)
149 return NULL;
150
151 INIT_LIST_HEAD(&chunk->hash);
152 INIT_LIST_HEAD(&chunk->trees);
153 chunk->count = count;
154 atomic_long_set(&chunk->refs, 1);
155 for (i = 0; i < count; i++) {
156 INIT_LIST_HEAD(&chunk->owners[i].list);
157 chunk->owners[i].index = i;
158 }
159 fsnotify_init_mark(&chunk->mark, audit_tree_group);
160 chunk->mark.mask = FS_IN_IGNORED;
161 return chunk;
162}
163
164enum {HASH_SIZE = 128};
165static struct list_head chunk_hash_heads[HASH_SIZE];
166static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
167
168/* Function to return search key in our hash from inode. */
169static unsigned long inode_to_key(const struct inode *inode)
170{
171 return (unsigned long)inode;
172}
173
174/*
175 * Function to return search key in our hash from chunk. Key 0 is special and
176 * should never be present in the hash.
177 */
178static unsigned long chunk_to_key(struct audit_chunk *chunk)
179{
180 /*
181 * We have a reference to the mark so it should be attached to a
182 * connector.
183 */
184 if (WARN_ON_ONCE(!chunk->mark.connector))
185 return 0;
186 return (unsigned long)chunk->mark.connector->inode;
187}
188
189static inline struct list_head *chunk_hash(unsigned long key)
190{
191 unsigned long n = key / L1_CACHE_BYTES;
192 return chunk_hash_heads + n % HASH_SIZE;
193}
194
195/* hash_lock & entry->lock is held by caller */
196static void insert_hash(struct audit_chunk *chunk)
197{
198 unsigned long key = chunk_to_key(chunk);
199 struct list_head *list;
200
201 if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
202 return;
203 list = chunk_hash(key);
204 list_add_rcu(&chunk->hash, list);
205}
206
207/* called under rcu_read_lock */
208struct audit_chunk *audit_tree_lookup(const struct inode *inode)
209{
210 unsigned long key = inode_to_key(inode);
211 struct list_head *list = chunk_hash(key);
212 struct audit_chunk *p;
213
214 list_for_each_entry_rcu(p, list, hash) {
215 if (chunk_to_key(p) == key) {
216 atomic_long_inc(&p->refs);
217 return p;
218 }
219 }
220 return NULL;
221}
222
223bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
224{
225 int n;
226 for (n = 0; n < chunk->count; n++)
227 if (chunk->owners[n].owner == tree)
228 return true;
229 return false;
230}
231
232/* tagging and untagging inodes with trees */
233
234static struct audit_chunk *find_chunk(struct node *p)
235{
236 int index = p->index & ~(1U<<31);
237 p -= index;
238 return container_of(p, struct audit_chunk, owners[0]);
239}
240
241static void untag_chunk(struct node *p)
242{
243 struct audit_chunk *chunk = find_chunk(p);
244 struct fsnotify_mark *entry = &chunk->mark;
245 struct audit_chunk *new = NULL;
246 struct audit_tree *owner;
247 int size = chunk->count - 1;
248 int i, j;
249
250 fsnotify_get_mark(entry);
251
252 spin_unlock(&hash_lock);
253
254 if (size)
255 new = alloc_chunk(size);
256
257 mutex_lock(&entry->group->mark_mutex);
258 spin_lock(&entry->lock);
259 /*
260 * mark_mutex protects mark from getting detached and thus also from
261 * mark->connector->inode getting NULL.
262 */
263 if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
264 spin_unlock(&entry->lock);
265 mutex_unlock(&entry->group->mark_mutex);
266 if (new)
267 fsnotify_put_mark(&new->mark);
268 goto out;
269 }
270
271 owner = p->owner;
272
273 if (!size) {
274 chunk->dead = 1;
275 spin_lock(&hash_lock);
276 list_del_init(&chunk->trees);
277 if (owner->root == chunk)
278 owner->root = NULL;
279 list_del_init(&p->list);
280 list_del_rcu(&chunk->hash);
281 spin_unlock(&hash_lock);
282 spin_unlock(&entry->lock);
283 mutex_unlock(&entry->group->mark_mutex);
284 fsnotify_destroy_mark(entry, audit_tree_group);
285 goto out;
286 }
287
288 if (!new)
289 goto Fallback;
290
291 if (fsnotify_add_mark_locked(&new->mark, entry->connector->inode,
292 NULL, 1)) {
293 fsnotify_put_mark(&new->mark);
294 goto Fallback;
295 }
296
297 chunk->dead = 1;
298 spin_lock(&hash_lock);
299 list_replace_init(&chunk->trees, &new->trees);
300 if (owner->root == chunk) {
301 list_del_init(&owner->same_root);
302 owner->root = NULL;
303 }
304
305 for (i = j = 0; j <= size; i++, j++) {
306 struct audit_tree *s;
307 if (&chunk->owners[j] == p) {
308 list_del_init(&p->list);
309 i--;
310 continue;
311 }
312 s = chunk->owners[j].owner;
313 new->owners[i].owner = s;
314 new->owners[i].index = chunk->owners[j].index - j + i;
315 if (!s) /* result of earlier fallback */
316 continue;
317 get_tree(s);
318 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
319 }
320
321 list_replace_rcu(&chunk->hash, &new->hash);
322 list_for_each_entry(owner, &new->trees, same_root)
323 owner->root = new;
324 spin_unlock(&hash_lock);
325 spin_unlock(&entry->lock);
326 mutex_unlock(&entry->group->mark_mutex);
327 fsnotify_destroy_mark(entry, audit_tree_group);
328 fsnotify_put_mark(&new->mark); /* drop initial reference */
329 goto out;
330
331Fallback:
332 // do the best we can
333 spin_lock(&hash_lock);
334 if (owner->root == chunk) {
335 list_del_init(&owner->same_root);
336 owner->root = NULL;
337 }
338 list_del_init(&p->list);
339 p->owner = NULL;
340 put_tree(owner);
341 spin_unlock(&hash_lock);
342 spin_unlock(&entry->lock);
343 mutex_unlock(&entry->group->mark_mutex);
344out:
345 fsnotify_put_mark(entry);
346 spin_lock(&hash_lock);
347}
348
349static int create_chunk(struct inode *inode, struct audit_tree *tree)
350{
351 struct fsnotify_mark *entry;
352 struct audit_chunk *chunk = alloc_chunk(1);
353 if (!chunk)
354 return -ENOMEM;
355
356 entry = &chunk->mark;
357 if (fsnotify_add_mark(entry, inode, NULL, 0)) {
358 fsnotify_put_mark(entry);
359 return -ENOSPC;
360 }
361
362 spin_lock(&entry->lock);
363 spin_lock(&hash_lock);
364 if (tree->goner) {
365 spin_unlock(&hash_lock);
366 chunk->dead = 1;
367 spin_unlock(&entry->lock);
368 fsnotify_destroy_mark(entry, audit_tree_group);
369 fsnotify_put_mark(entry);
370 return 0;
371 }
372 chunk->owners[0].index = (1U << 31);
373 chunk->owners[0].owner = tree;
374 get_tree(tree);
375 list_add(&chunk->owners[0].list, &tree->chunks);
376 if (!tree->root) {
377 tree->root = chunk;
378 list_add(&tree->same_root, &chunk->trees);
379 }
380 insert_hash(chunk);
381 spin_unlock(&hash_lock);
382 spin_unlock(&entry->lock);
383 fsnotify_put_mark(entry); /* drop initial reference */
384 return 0;
385}
386
387/* the first tagged inode becomes root of tree */
388static int tag_chunk(struct inode *inode, struct audit_tree *tree)
389{
390 struct fsnotify_mark *old_entry, *chunk_entry;
391 struct audit_tree *owner;
392 struct audit_chunk *chunk, *old;
393 struct node *p;
394 int n;
395
396 old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
397 audit_tree_group);
398 if (!old_entry)
399 return create_chunk(inode, tree);
400
401 old = container_of(old_entry, struct audit_chunk, mark);
402
403 /* are we already there? */
404 spin_lock(&hash_lock);
405 for (n = 0; n < old->count; n++) {
406 if (old->owners[n].owner == tree) {
407 spin_unlock(&hash_lock);
408 fsnotify_put_mark(old_entry);
409 return 0;
410 }
411 }
412 spin_unlock(&hash_lock);
413
414 chunk = alloc_chunk(old->count + 1);
415 if (!chunk) {
416 fsnotify_put_mark(old_entry);
417 return -ENOMEM;
418 }
419
420 chunk_entry = &chunk->mark;
421
422 mutex_lock(&old_entry->group->mark_mutex);
423 spin_lock(&old_entry->lock);
424 /*
425 * mark_mutex protects mark from getting detached and thus also from
426 * mark->connector->inode getting NULL.
427 */
428 if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
429 /* old_entry is being shot, lets just lie */
430 spin_unlock(&old_entry->lock);
431 mutex_unlock(&old_entry->group->mark_mutex);
432 fsnotify_put_mark(old_entry);
433 fsnotify_put_mark(&chunk->mark);
434 return -ENOENT;
435 }
436
437 if (fsnotify_add_mark_locked(chunk_entry,
438 old_entry->connector->inode, NULL, 1)) {
439 spin_unlock(&old_entry->lock);
440 mutex_unlock(&old_entry->group->mark_mutex);
441 fsnotify_put_mark(chunk_entry);
442 fsnotify_put_mark(old_entry);
443 return -ENOSPC;
444 }
445
446 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
447 spin_lock(&chunk_entry->lock);
448 spin_lock(&hash_lock);
449
450 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
451 if (tree->goner) {
452 spin_unlock(&hash_lock);
453 chunk->dead = 1;
454 spin_unlock(&chunk_entry->lock);
455 spin_unlock(&old_entry->lock);
456 mutex_unlock(&old_entry->group->mark_mutex);
457
458 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
459
460 fsnotify_put_mark(chunk_entry);
461 fsnotify_put_mark(old_entry);
462 return 0;
463 }
464 list_replace_init(&old->trees, &chunk->trees);
465 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
466 struct audit_tree *s = old->owners[n].owner;
467 p->owner = s;
468 p->index = old->owners[n].index;
469 if (!s) /* result of fallback in untag */
470 continue;
471 get_tree(s);
472 list_replace_init(&old->owners[n].list, &p->list);
473 }
474 p->index = (chunk->count - 1) | (1U<<31);
475 p->owner = tree;
476 get_tree(tree);
477 list_add(&p->list, &tree->chunks);
478 list_replace_rcu(&old->hash, &chunk->hash);
479 list_for_each_entry(owner, &chunk->trees, same_root)
480 owner->root = chunk;
481 old->dead = 1;
482 if (!tree->root) {
483 tree->root = chunk;
484 list_add(&tree->same_root, &chunk->trees);
485 }
486 spin_unlock(&hash_lock);
487 spin_unlock(&chunk_entry->lock);
488 spin_unlock(&old_entry->lock);
489 mutex_unlock(&old_entry->group->mark_mutex);
490 fsnotify_destroy_mark(old_entry, audit_tree_group);
491 fsnotify_put_mark(chunk_entry); /* drop initial reference */
492 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
493 return 0;
494}
495
496static void audit_tree_log_remove_rule(struct audit_krule *rule)
497{
498 struct audit_buffer *ab;
499
500 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
501 if (unlikely(!ab))
502 return;
503 audit_log_format(ab, "op=remove_rule");
504 audit_log_format(ab, " dir=");
505 audit_log_untrustedstring(ab, rule->tree->pathname);
506 audit_log_key(ab, rule->filterkey);
507 audit_log_format(ab, " list=%d res=1", rule->listnr);
508 audit_log_end(ab);
509}
510
511static void kill_rules(struct audit_tree *tree)
512{
513 struct audit_krule *rule, *next;
514 struct audit_entry *entry;
515
516 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
517 entry = container_of(rule, struct audit_entry, rule);
518
519 list_del_init(&rule->rlist);
520 if (rule->tree) {
521 /* not a half-baked one */
522 audit_tree_log_remove_rule(rule);
523 if (entry->rule.exe)
524 audit_remove_mark(entry->rule.exe);
525 rule->tree = NULL;
526 list_del_rcu(&entry->list);
527 list_del(&entry->rule.list);
528 call_rcu(&entry->rcu, audit_free_rule_rcu);
529 }
530 }
531}
532
533/*
534 * finish killing struct audit_tree
535 */
536static void prune_one(struct audit_tree *victim)
537{
538 spin_lock(&hash_lock);
539 while (!list_empty(&victim->chunks)) {
540 struct node *p;
541
542 p = list_entry(victim->chunks.next, struct node, list);
543
544 untag_chunk(p);
545 }
546 spin_unlock(&hash_lock);
547 put_tree(victim);
548}
549
550/* trim the uncommitted chunks from tree */
551
552static void trim_marked(struct audit_tree *tree)
553{
554 struct list_head *p, *q;
555 spin_lock(&hash_lock);
556 if (tree->goner) {
557 spin_unlock(&hash_lock);
558 return;
559 }
560 /* reorder */
561 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
562 struct node *node = list_entry(p, struct node, list);
563 q = p->next;
564 if (node->index & (1U<<31)) {
565 list_del_init(p);
566 list_add(p, &tree->chunks);
567 }
568 }
569
570 while (!list_empty(&tree->chunks)) {
571 struct node *node;
572
573 node = list_entry(tree->chunks.next, struct node, list);
574
575 /* have we run out of marked? */
576 if (!(node->index & (1U<<31)))
577 break;
578
579 untag_chunk(node);
580 }
581 if (!tree->root && !tree->goner) {
582 tree->goner = 1;
583 spin_unlock(&hash_lock);
584 mutex_lock(&audit_filter_mutex);
585 kill_rules(tree);
586 list_del_init(&tree->list);
587 mutex_unlock(&audit_filter_mutex);
588 prune_one(tree);
589 } else {
590 spin_unlock(&hash_lock);
591 }
592}
593
594static void audit_schedule_prune(void);
595
596/* called with audit_filter_mutex */
597int audit_remove_tree_rule(struct audit_krule *rule)
598{
599 struct audit_tree *tree;
600 tree = rule->tree;
601 if (tree) {
602 spin_lock(&hash_lock);
603 list_del_init(&rule->rlist);
604 if (list_empty(&tree->rules) && !tree->goner) {
605 tree->root = NULL;
606 list_del_init(&tree->same_root);
607 tree->goner = 1;
608 list_move(&tree->list, &prune_list);
609 rule->tree = NULL;
610 spin_unlock(&hash_lock);
611 audit_schedule_prune();
612 return 1;
613 }
614 rule->tree = NULL;
615 spin_unlock(&hash_lock);
616 return 1;
617 }
618 return 0;
619}
620
621static int compare_root(struct vfsmount *mnt, void *arg)
622{
623 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
624 (unsigned long)arg;
625}
626
627void audit_trim_trees(void)
628{
629 struct list_head cursor;
630
631 mutex_lock(&audit_filter_mutex);
632 list_add(&cursor, &tree_list);
633 while (cursor.next != &tree_list) {
634 struct audit_tree *tree;
635 struct path path;
636 struct vfsmount *root_mnt;
637 struct node *node;
638 int err;
639
640 tree = container_of(cursor.next, struct audit_tree, list);
641 get_tree(tree);
642 list_del(&cursor);
643 list_add(&cursor, &tree->list);
644 mutex_unlock(&audit_filter_mutex);
645
646 err = kern_path(tree->pathname, 0, &path);
647 if (err)
648 goto skip_it;
649
650 root_mnt = collect_mounts(&path);
651 path_put(&path);
652 if (IS_ERR(root_mnt))
653 goto skip_it;
654
655 spin_lock(&hash_lock);
656 list_for_each_entry(node, &tree->chunks, list) {
657 struct audit_chunk *chunk = find_chunk(node);
658 /* this could be NULL if the watch is dying else where... */
659 node->index |= 1U<<31;
660 if (iterate_mounts(compare_root,
661 (void *)chunk_to_key(chunk),
662 root_mnt))
663 node->index &= ~(1U<<31);
664 }
665 spin_unlock(&hash_lock);
666 trim_marked(tree);
667 drop_collected_mounts(root_mnt);
668skip_it:
669 put_tree(tree);
670 mutex_lock(&audit_filter_mutex);
671 }
672 list_del(&cursor);
673 mutex_unlock(&audit_filter_mutex);
674}
675
676int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
677{
678
679 if (pathname[0] != '/' ||
680 rule->listnr != AUDIT_FILTER_EXIT ||
681 op != Audit_equal ||
682 rule->inode_f || rule->watch || rule->tree)
683 return -EINVAL;
684 rule->tree = alloc_tree(pathname);
685 if (!rule->tree)
686 return -ENOMEM;
687 return 0;
688}
689
690void audit_put_tree(struct audit_tree *tree)
691{
692 put_tree(tree);
693}
694
695static int tag_mount(struct vfsmount *mnt, void *arg)
696{
697 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
698}
699
700/*
701 * That gets run when evict_chunk() ends up needing to kill audit_tree.
702 * Runs from a separate thread.
703 */
704static int prune_tree_thread(void *unused)
705{
706 for (;;) {
707 if (list_empty(&prune_list)) {
708 set_current_state(TASK_INTERRUPTIBLE);
709 schedule();
710 }
711
712 audit_ctl_lock();
713 mutex_lock(&audit_filter_mutex);
714
715 while (!list_empty(&prune_list)) {
716 struct audit_tree *victim;
717
718 victim = list_entry(prune_list.next,
719 struct audit_tree, list);
720 list_del_init(&victim->list);
721
722 mutex_unlock(&audit_filter_mutex);
723
724 prune_one(victim);
725
726 mutex_lock(&audit_filter_mutex);
727 }
728
729 mutex_unlock(&audit_filter_mutex);
730 audit_ctl_unlock();
731 }
732 return 0;
733}
734
735static int audit_launch_prune(void)
736{
737 if (prune_thread)
738 return 0;
739 prune_thread = kthread_run(prune_tree_thread, NULL,
740 "audit_prune_tree");
741 if (IS_ERR(prune_thread)) {
742 pr_err("cannot start thread audit_prune_tree");
743 prune_thread = NULL;
744 return -ENOMEM;
745 }
746 return 0;
747}
748
749/* called with audit_filter_mutex */
750int audit_add_tree_rule(struct audit_krule *rule)
751{
752 struct audit_tree *seed = rule->tree, *tree;
753 struct path path;
754 struct vfsmount *mnt;
755 int err;
756
757 rule->tree = NULL;
758 list_for_each_entry(tree, &tree_list, list) {
759 if (!strcmp(seed->pathname, tree->pathname)) {
760 put_tree(seed);
761 rule->tree = tree;
762 list_add(&rule->rlist, &tree->rules);
763 return 0;
764 }
765 }
766 tree = seed;
767 list_add(&tree->list, &tree_list);
768 list_add(&rule->rlist, &tree->rules);
769 /* do not set rule->tree yet */
770 mutex_unlock(&audit_filter_mutex);
771
772 if (unlikely(!prune_thread)) {
773 err = audit_launch_prune();
774 if (err)
775 goto Err;
776 }
777
778 err = kern_path(tree->pathname, 0, &path);
779 if (err)
780 goto Err;
781 mnt = collect_mounts(&path);
782 path_put(&path);
783 if (IS_ERR(mnt)) {
784 err = PTR_ERR(mnt);
785 goto Err;
786 }
787
788 get_tree(tree);
789 err = iterate_mounts(tag_mount, tree, mnt);
790 drop_collected_mounts(mnt);
791
792 if (!err) {
793 struct node *node;
794 spin_lock(&hash_lock);
795 list_for_each_entry(node, &tree->chunks, list)
796 node->index &= ~(1U<<31);
797 spin_unlock(&hash_lock);
798 } else {
799 trim_marked(tree);
800 goto Err;
801 }
802
803 mutex_lock(&audit_filter_mutex);
804 if (list_empty(&rule->rlist)) {
805 put_tree(tree);
806 return -ENOENT;
807 }
808 rule->tree = tree;
809 put_tree(tree);
810
811 return 0;
812Err:
813 mutex_lock(&audit_filter_mutex);
814 list_del_init(&tree->list);
815 list_del_init(&tree->rules);
816 put_tree(tree);
817 return err;
818}
819
820int audit_tag_tree(char *old, char *new)
821{
822 struct list_head cursor, barrier;
823 int failed = 0;
824 struct path path1, path2;
825 struct vfsmount *tagged;
826 int err;
827
828 err = kern_path(new, 0, &path2);
829 if (err)
830 return err;
831 tagged = collect_mounts(&path2);
832 path_put(&path2);
833 if (IS_ERR(tagged))
834 return PTR_ERR(tagged);
835
836 err = kern_path(old, 0, &path1);
837 if (err) {
838 drop_collected_mounts(tagged);
839 return err;
840 }
841
842 mutex_lock(&audit_filter_mutex);
843 list_add(&barrier, &tree_list);
844 list_add(&cursor, &barrier);
845
846 while (cursor.next != &tree_list) {
847 struct audit_tree *tree;
848 int good_one = 0;
849
850 tree = container_of(cursor.next, struct audit_tree, list);
851 get_tree(tree);
852 list_del(&cursor);
853 list_add(&cursor, &tree->list);
854 mutex_unlock(&audit_filter_mutex);
855
856 err = kern_path(tree->pathname, 0, &path2);
857 if (!err) {
858 good_one = path_is_under(&path1, &path2);
859 path_put(&path2);
860 }
861
862 if (!good_one) {
863 put_tree(tree);
864 mutex_lock(&audit_filter_mutex);
865 continue;
866 }
867
868 failed = iterate_mounts(tag_mount, tree, tagged);
869 if (failed) {
870 put_tree(tree);
871 mutex_lock(&audit_filter_mutex);
872 break;
873 }
874
875 mutex_lock(&audit_filter_mutex);
876 spin_lock(&hash_lock);
877 if (!tree->goner) {
878 list_del(&tree->list);
879 list_add(&tree->list, &tree_list);
880 }
881 spin_unlock(&hash_lock);
882 put_tree(tree);
883 }
884
885 while (barrier.prev != &tree_list) {
886 struct audit_tree *tree;
887
888 tree = container_of(barrier.prev, struct audit_tree, list);
889 get_tree(tree);
890 list_del(&tree->list);
891 list_add(&tree->list, &barrier);
892 mutex_unlock(&audit_filter_mutex);
893
894 if (!failed) {
895 struct node *node;
896 spin_lock(&hash_lock);
897 list_for_each_entry(node, &tree->chunks, list)
898 node->index &= ~(1U<<31);
899 spin_unlock(&hash_lock);
900 } else {
901 trim_marked(tree);
902 }
903
904 put_tree(tree);
905 mutex_lock(&audit_filter_mutex);
906 }
907 list_del(&barrier);
908 list_del(&cursor);
909 mutex_unlock(&audit_filter_mutex);
910 path_put(&path1);
911 drop_collected_mounts(tagged);
912 return failed;
913}
914
915
916static void audit_schedule_prune(void)
917{
918 wake_up_process(prune_thread);
919}
920
921/*
922 * ... and that one is done if evict_chunk() decides to delay until the end
923 * of syscall. Runs synchronously.
924 */
925void audit_kill_trees(struct list_head *list)
926{
927 audit_ctl_lock();
928 mutex_lock(&audit_filter_mutex);
929
930 while (!list_empty(list)) {
931 struct audit_tree *victim;
932
933 victim = list_entry(list->next, struct audit_tree, list);
934 kill_rules(victim);
935 list_del_init(&victim->list);
936
937 mutex_unlock(&audit_filter_mutex);
938
939 prune_one(victim);
940
941 mutex_lock(&audit_filter_mutex);
942 }
943
944 mutex_unlock(&audit_filter_mutex);
945 audit_ctl_unlock();
946}
947
948/*
949 * Here comes the stuff asynchronous to auditctl operations
950 */
951
952static void evict_chunk(struct audit_chunk *chunk)
953{
954 struct audit_tree *owner;
955 struct list_head *postponed = audit_killed_trees();
956 int need_prune = 0;
957 int n;
958
959 if (chunk->dead)
960 return;
961
962 chunk->dead = 1;
963 mutex_lock(&audit_filter_mutex);
964 spin_lock(&hash_lock);
965 while (!list_empty(&chunk->trees)) {
966 owner = list_entry(chunk->trees.next,
967 struct audit_tree, same_root);
968 owner->goner = 1;
969 owner->root = NULL;
970 list_del_init(&owner->same_root);
971 spin_unlock(&hash_lock);
972 if (!postponed) {
973 kill_rules(owner);
974 list_move(&owner->list, &prune_list);
975 need_prune = 1;
976 } else {
977 list_move(&owner->list, postponed);
978 }
979 spin_lock(&hash_lock);
980 }
981 list_del_rcu(&chunk->hash);
982 for (n = 0; n < chunk->count; n++)
983 list_del_init(&chunk->owners[n].list);
984 spin_unlock(&hash_lock);
985 mutex_unlock(&audit_filter_mutex);
986 if (need_prune)
987 audit_schedule_prune();
988}
989
990static int audit_tree_handle_event(struct fsnotify_group *group,
991 struct inode *to_tell,
992 struct fsnotify_mark *inode_mark,
993 struct fsnotify_mark *vfsmount_mark,
994 u32 mask, const void *data, int data_type,
995 const unsigned char *file_name, u32 cookie,
996 struct fsnotify_iter_info *iter_info)
997{
998 return 0;
999}
1000
1001static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1002{
1003 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1004
1005 evict_chunk(chunk);
1006
1007 /*
1008 * We are guaranteed to have at least one reference to the mark from
1009 * either the inode or the caller of fsnotify_destroy_mark().
1010 */
1011 BUG_ON(refcount_read(&entry->refcnt) < 1);
1012}
1013
1014static const struct fsnotify_ops audit_tree_ops = {
1015 .handle_event = audit_tree_handle_event,
1016 .freeing_mark = audit_tree_freeing_mark,
1017 .free_mark = audit_tree_destroy_watch,
1018};
1019
1020static int __init audit_tree_init(void)
1021{
1022 int i;
1023
1024 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1025 if (IS_ERR(audit_tree_group))
1026 audit_panic("cannot initialize fsnotify group for rectree watches");
1027
1028 for (i = 0; i < HASH_SIZE; i++)
1029 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1030
1031 return 0;
1032}
1033__initcall(audit_tree_init);