Linux Audio

Check our new training course

Loading...
v3.15
 
  1#ifndef __LINUX_PERCPU_H
  2#define __LINUX_PERCPU_H
  3
  4#include <linux/mmdebug.h>
  5#include <linux/preempt.h>
  6#include <linux/smp.h>
  7#include <linux/cpumask.h>
 
  8#include <linux/pfn.h>
  9#include <linux/init.h>
 10
 11#include <asm/percpu.h>
 12
 13/* enough to cover all DEFINE_PER_CPUs in modules */
 14#ifdef CONFIG_MODULES
 15#define PERCPU_MODULE_RESERVE		(8 << 10)
 16#else
 17#define PERCPU_MODULE_RESERVE		0
 18#endif
 19
 20#ifndef PERCPU_ENOUGH_ROOM
 21#define PERCPU_ENOUGH_ROOM						\
 22	(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\
 23	 PERCPU_MODULE_RESERVE)
 24#endif
 25
 26/*
 27 * Must be an lvalue. Since @var must be a simple identifier,
 28 * we force a syntax error here if it isn't.
 29 */
 30#define get_cpu_var(var) (*({				\
 31	preempt_disable();				\
 32	&__get_cpu_var(var); }))
 33
 34/*
 35 * The weird & is necessary because sparse considers (void)(var) to be
 36 * a direct dereference of percpu variable (var).
 37 */
 38#define put_cpu_var(var) do {				\
 39	(void)&(var);					\
 40	preempt_enable();				\
 41} while (0)
 42
 43#define get_cpu_ptr(var) ({				\
 44	preempt_disable();				\
 45	this_cpu_ptr(var); })
 46
 47#define put_cpu_ptr(var) do {				\
 48	(void)(var);					\
 49	preempt_enable();				\
 50} while (0)
 51
 52/* minimum unit size, also is the maximum supported allocation size */
 53#define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55/*
 56 * Percpu allocator can serve percpu allocations before slab is
 57 * initialized which allows slab to depend on the percpu allocator.
 58 * The following two parameters decide how much resource to
 59 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
 60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
 61 */
 62#define PERCPU_DYNAMIC_EARLY_SLOTS	128
 63#define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)
 64
 65/*
 66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
 67 * back on the first chunk for dynamic percpu allocation if arch is
 68 * manually allocating and mapping it for faster access (as a part of
 69 * large page mapping for example).
 70 *
 71 * The following values give between one and two pages of free space
 72 * after typical minimal boot (2-way SMP, single disk and NIC) with
 73 * both defconfig and a distro config on x86_64 and 32.  More
 74 * intelligent way to determine this would be nice.
 75 */
 76#if BITS_PER_LONG > 32
 77#define PERCPU_DYNAMIC_RESERVE		(20 << 10)
 78#else
 79#define PERCPU_DYNAMIC_RESERVE		(12 << 10)
 80#endif
 81
 82extern void *pcpu_base_addr;
 83extern const unsigned long *pcpu_unit_offsets;
 84
 85struct pcpu_group_info {
 86	int			nr_units;	/* aligned # of units */
 87	unsigned long		base_offset;	/* base address offset */
 88	unsigned int		*cpu_map;	/* unit->cpu map, empty
 89						 * entries contain NR_CPUS */
 90};
 91
 92struct pcpu_alloc_info {
 93	size_t			static_size;
 94	size_t			reserved_size;
 95	size_t			dyn_size;
 96	size_t			unit_size;
 97	size_t			atom_size;
 98	size_t			alloc_size;
 99	size_t			__ai_size;	/* internal, don't use */
100	int			nr_groups;	/* 0 if grouping unnecessary */
101	struct pcpu_group_info	groups[];
102};
103
104enum pcpu_fc {
105	PCPU_FC_AUTO,
106	PCPU_FC_EMBED,
107	PCPU_FC_PAGE,
108
109	PCPU_FC_NR,
110};
111extern const char * const pcpu_fc_names[PCPU_FC_NR];
112
113extern enum pcpu_fc pcpu_chosen_fc;
114
115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
116				     size_t align);
117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
120
121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
122							     int nr_units);
123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124
125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
126					 void *base_addr);
127
128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
130				size_t atom_size,
131				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
132				pcpu_fc_alloc_fn_t alloc_fn,
133				pcpu_fc_free_fn_t free_fn);
134#endif
135
136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
137extern int __init pcpu_page_first_chunk(size_t reserved_size,
138				pcpu_fc_alloc_fn_t alloc_fn,
139				pcpu_fc_free_fn_t free_fn,
140				pcpu_fc_populate_pte_fn_t populate_pte_fn);
141#endif
142
143/*
144 * Use this to get to a cpu's version of the per-cpu object
145 * dynamically allocated. Non-atomic access to the current CPU's
146 * version should probably be combined with get_cpu()/put_cpu().
147 */
148#ifdef CONFIG_SMP
149#define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
150#else
151#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
152#endif
153
154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
 
155extern bool is_kernel_percpu_address(unsigned long addr);
156
157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
158extern void __init setup_per_cpu_areas(void);
159#endif
160extern void __init percpu_init_late(void);
161
 
162extern void __percpu *__alloc_percpu(size_t size, size_t align);
163extern void free_percpu(void __percpu *__pdata);
164extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165
166#define alloc_percpu(type)	\
167	(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
168
169/*
170 * Branching function to split up a function into a set of functions that
171 * are called for different scalar sizes of the objects handled.
172 */
173
174extern void __bad_size_call_parameter(void);
175
176#ifdef CONFIG_DEBUG_PREEMPT
177extern void __this_cpu_preempt_check(const char *op);
178#else
179static inline void __this_cpu_preempt_check(const char *op) { }
180#endif
181
182#define __pcpu_size_call_return(stem, variable)				\
183({	typeof(variable) pscr_ret__;					\
184	__verify_pcpu_ptr(&(variable));					\
185	switch(sizeof(variable)) {					\
186	case 1: pscr_ret__ = stem##1(variable);break;			\
187	case 2: pscr_ret__ = stem##2(variable);break;			\
188	case 4: pscr_ret__ = stem##4(variable);break;			\
189	case 8: pscr_ret__ = stem##8(variable);break;			\
190	default:							\
191		__bad_size_call_parameter();break;			\
192	}								\
193	pscr_ret__;							\
194})
195
196#define __pcpu_size_call_return2(stem, variable, ...)			\
197({									\
198	typeof(variable) pscr2_ret__;					\
199	__verify_pcpu_ptr(&(variable));					\
200	switch(sizeof(variable)) {					\
201	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
202	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
203	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
204	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
205	default:							\
206		__bad_size_call_parameter(); break;			\
207	}								\
208	pscr2_ret__;							\
209})
210
211/*
212 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
213 * percpu variables.  The first has to be aligned to a double word
214 * boundary and the second has to follow directly thereafter.
215 * We enforce this on all architectures even if they don't support
216 * a double cmpxchg instruction, since it's a cheap requirement, and it
217 * avoids breaking the requirement for architectures with the instruction.
218 */
219#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
220({									\
221	bool pdcrb_ret__;						\
222	__verify_pcpu_ptr(&pcp1);					\
223	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
224	VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));		\
225	VM_BUG_ON((unsigned long)(&pcp2) !=				\
226		  (unsigned long)(&pcp1) + sizeof(pcp1));		\
227	switch(sizeof(pcp1)) {						\
228	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
229	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
230	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
231	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
232	default:							\
233		__bad_size_call_parameter(); break;			\
234	}								\
235	pdcrb_ret__;							\
236})
237
238#define __pcpu_size_call(stem, variable, ...)				\
239do {									\
240	__verify_pcpu_ptr(&(variable));					\
241	switch(sizeof(variable)) {					\
242		case 1: stem##1(variable, __VA_ARGS__);break;		\
243		case 2: stem##2(variable, __VA_ARGS__);break;		\
244		case 4: stem##4(variable, __VA_ARGS__);break;		\
245		case 8: stem##8(variable, __VA_ARGS__);break;		\
246		default: 						\
247			__bad_size_call_parameter();break;		\
248	}								\
249} while (0)
250
251/*
252 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
253 *
254 * Optimized manipulation for memory allocated through the per cpu
255 * allocator or for addresses of per cpu variables.
256 *
257 * These operation guarantee exclusivity of access for other operations
258 * on the *same* processor. The assumption is that per cpu data is only
259 * accessed by a single processor instance (the current one).
260 *
261 * The first group is used for accesses that must be done in a
262 * preemption safe way since we know that the context is not preempt
263 * safe. Interrupts may occur. If the interrupt modifies the variable
264 * too then RMW actions will not be reliable.
265 *
266 * The arch code can provide optimized functions in two ways:
267 *
268 * 1. Override the function completely. F.e. define this_cpu_add().
269 *    The arch must then ensure that the various scalar format passed
270 *    are handled correctly.
271 *
272 * 2. Provide functions for certain scalar sizes. F.e. provide
273 *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
274 *    sized RMW actions. If arch code does not provide operations for
275 *    a scalar size then the fallback in the generic code will be
276 *    used.
277 */
278
279#define _this_cpu_generic_read(pcp)					\
280({	typeof(pcp) ret__;						\
281	preempt_disable();						\
282	ret__ = *this_cpu_ptr(&(pcp));					\
283	preempt_enable();						\
284	ret__;								\
285})
286
287#ifndef this_cpu_read
288# ifndef this_cpu_read_1
289#  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp)
290# endif
291# ifndef this_cpu_read_2
292#  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp)
293# endif
294# ifndef this_cpu_read_4
295#  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp)
296# endif
297# ifndef this_cpu_read_8
298#  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp)
299# endif
300# define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp))
301#endif
302
303#define _this_cpu_generic_to_op(pcp, val, op)				\
304do {									\
305	unsigned long flags;						\
306	raw_local_irq_save(flags);					\
307	*raw_cpu_ptr(&(pcp)) op val;					\
308	raw_local_irq_restore(flags);					\
309} while (0)
310
311#ifndef this_cpu_write
312# ifndef this_cpu_write_1
313#  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
314# endif
315# ifndef this_cpu_write_2
316#  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
317# endif
318# ifndef this_cpu_write_4
319#  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
320# endif
321# ifndef this_cpu_write_8
322#  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
323# endif
324# define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val))
325#endif
326
327#ifndef this_cpu_add
328# ifndef this_cpu_add_1
329#  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
330# endif
331# ifndef this_cpu_add_2
332#  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
333# endif
334# ifndef this_cpu_add_4
335#  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
336# endif
337# ifndef this_cpu_add_8
338#  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
339# endif
340# define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val))
341#endif
342
343#ifndef this_cpu_sub
344# define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(typeof(pcp))(val))
345#endif
346
347#ifndef this_cpu_inc
348# define this_cpu_inc(pcp)		this_cpu_add((pcp), 1)
349#endif
350
351#ifndef this_cpu_dec
352# define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1)
353#endif
354
355#ifndef this_cpu_and
356# ifndef this_cpu_and_1
357#  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
358# endif
359# ifndef this_cpu_and_2
360#  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
361# endif
362# ifndef this_cpu_and_4
363#  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
364# endif
365# ifndef this_cpu_and_8
366#  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
367# endif
368# define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val))
369#endif
370
371#ifndef this_cpu_or
372# ifndef this_cpu_or_1
373#  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
374# endif
375# ifndef this_cpu_or_2
376#  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
377# endif
378# ifndef this_cpu_or_4
379#  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
380# endif
381# ifndef this_cpu_or_8
382#  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
383# endif
384# define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
385#endif
386
387#define _this_cpu_generic_add_return(pcp, val)				\
388({									\
389	typeof(pcp) ret__;						\
390	unsigned long flags;						\
391	raw_local_irq_save(flags);					\
392	raw_cpu_add(pcp, val);					\
393	ret__ = raw_cpu_read(pcp);					\
394	raw_local_irq_restore(flags);					\
395	ret__;								\
396})
397
398#ifndef this_cpu_add_return
399# ifndef this_cpu_add_return_1
400#  define this_cpu_add_return_1(pcp, val)	_this_cpu_generic_add_return(pcp, val)
401# endif
402# ifndef this_cpu_add_return_2
403#  define this_cpu_add_return_2(pcp, val)	_this_cpu_generic_add_return(pcp, val)
404# endif
405# ifndef this_cpu_add_return_4
406#  define this_cpu_add_return_4(pcp, val)	_this_cpu_generic_add_return(pcp, val)
407# endif
408# ifndef this_cpu_add_return_8
409#  define this_cpu_add_return_8(pcp, val)	_this_cpu_generic_add_return(pcp, val)
410# endif
411# define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
412#endif
413
414#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
415#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
416#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
417
418#define _this_cpu_generic_xchg(pcp, nval)				\
419({	typeof(pcp) ret__;						\
420	unsigned long flags;						\
421	raw_local_irq_save(flags);					\
422	ret__ = raw_cpu_read(pcp);					\
423	raw_cpu_write(pcp, nval);					\
424	raw_local_irq_restore(flags);					\
425	ret__;								\
426})
427
428#ifndef this_cpu_xchg
429# ifndef this_cpu_xchg_1
430#  define this_cpu_xchg_1(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
431# endif
432# ifndef this_cpu_xchg_2
433#  define this_cpu_xchg_2(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
434# endif
435# ifndef this_cpu_xchg_4
436#  define this_cpu_xchg_4(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
437# endif
438# ifndef this_cpu_xchg_8
439#  define this_cpu_xchg_8(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
440# endif
441# define this_cpu_xchg(pcp, nval)	\
442	__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
443#endif
444
445#define _this_cpu_generic_cmpxchg(pcp, oval, nval)			\
446({									\
447	typeof(pcp) ret__;						\
448	unsigned long flags;						\
449	raw_local_irq_save(flags);					\
450	ret__ = raw_cpu_read(pcp);					\
451	if (ret__ == (oval))						\
452		raw_cpu_write(pcp, nval);				\
453	raw_local_irq_restore(flags);					\
454	ret__;								\
455})
456
457#ifndef this_cpu_cmpxchg
458# ifndef this_cpu_cmpxchg_1
459#  define this_cpu_cmpxchg_1(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
460# endif
461# ifndef this_cpu_cmpxchg_2
462#  define this_cpu_cmpxchg_2(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
463# endif
464# ifndef this_cpu_cmpxchg_4
465#  define this_cpu_cmpxchg_4(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
466# endif
467# ifndef this_cpu_cmpxchg_8
468#  define this_cpu_cmpxchg_8(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
469# endif
470# define this_cpu_cmpxchg(pcp, oval, nval)	\
471	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
472#endif
473
474/*
475 * cmpxchg_double replaces two adjacent scalars at once.  The first
476 * two parameters are per cpu variables which have to be of the same
477 * size.  A truth value is returned to indicate success or failure
478 * (since a double register result is difficult to handle).  There is
479 * very limited hardware support for these operations, so only certain
480 * sizes may work.
481 */
482#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
483({									\
484	int ret__;							\
485	unsigned long flags;						\
486	raw_local_irq_save(flags);					\
487	ret__ = raw_cpu_generic_cmpxchg_double(pcp1, pcp2,		\
488			oval1, oval2, nval1, nval2);			\
489	raw_local_irq_restore(flags);					\
490	ret__;								\
491})
492
493#ifndef this_cpu_cmpxchg_double
494# ifndef this_cpu_cmpxchg_double_1
495#  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
496	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
497# endif
498# ifndef this_cpu_cmpxchg_double_2
499#  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
500	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
501# endif
502# ifndef this_cpu_cmpxchg_double_4
503#  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
504	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
505# endif
506# ifndef this_cpu_cmpxchg_double_8
507#  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
508	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
509# endif
510# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
511	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
512#endif
513
514/*
515 * Generic percpu operations for contexts where we do not want to do
516 * any checks for preemptiosn.
517 *
518 * If there is no other protection through preempt disable and/or
519 * disabling interupts then one of these RMW operations can show unexpected
520 * behavior because the execution thread was rescheduled on another processor
521 * or an interrupt occurred and the same percpu variable was modified from
522 * the interrupt context.
523 */
524#ifndef raw_cpu_read
525# ifndef raw_cpu_read_1
526#  define raw_cpu_read_1(pcp)	(*raw_cpu_ptr(&(pcp)))
527# endif
528# ifndef raw_cpu_read_2
529#  define raw_cpu_read_2(pcp)	(*raw_cpu_ptr(&(pcp)))
530# endif
531# ifndef raw_cpu_read_4
532#  define raw_cpu_read_4(pcp)	(*raw_cpu_ptr(&(pcp)))
533# endif
534# ifndef raw_cpu_read_8
535#  define raw_cpu_read_8(pcp)	(*raw_cpu_ptr(&(pcp)))
536# endif
537# define raw_cpu_read(pcp)	__pcpu_size_call_return(raw_cpu_read_, (pcp))
538#endif
539
540#define raw_cpu_generic_to_op(pcp, val, op)				\
541do {									\
542	*raw_cpu_ptr(&(pcp)) op val;					\
543} while (0)
544
545
546#ifndef raw_cpu_write
547# ifndef raw_cpu_write_1
548#  define raw_cpu_write_1(pcp, val)	raw_cpu_generic_to_op((pcp), (val), =)
549# endif
550# ifndef raw_cpu_write_2
551#  define raw_cpu_write_2(pcp, val)	raw_cpu_generic_to_op((pcp), (val), =)
552# endif
553# ifndef raw_cpu_write_4
554#  define raw_cpu_write_4(pcp, val)	raw_cpu_generic_to_op((pcp), (val), =)
555# endif
556# ifndef raw_cpu_write_8
557#  define raw_cpu_write_8(pcp, val)	raw_cpu_generic_to_op((pcp), (val), =)
558# endif
559# define raw_cpu_write(pcp, val)	__pcpu_size_call(raw_cpu_write_, (pcp), (val))
560#endif
561
562#ifndef raw_cpu_add
563# ifndef raw_cpu_add_1
564#  define raw_cpu_add_1(pcp, val)	raw_cpu_generic_to_op((pcp), (val), +=)
565# endif
566# ifndef raw_cpu_add_2
567#  define raw_cpu_add_2(pcp, val)	raw_cpu_generic_to_op((pcp), (val), +=)
568# endif
569# ifndef raw_cpu_add_4
570#  define raw_cpu_add_4(pcp, val)	raw_cpu_generic_to_op((pcp), (val), +=)
571# endif
572# ifndef raw_cpu_add_8
573#  define raw_cpu_add_8(pcp, val)	raw_cpu_generic_to_op((pcp), (val), +=)
574# endif
575# define raw_cpu_add(pcp, val)	__pcpu_size_call(raw_cpu_add_, (pcp), (val))
576#endif
577
578#ifndef raw_cpu_sub
579# define raw_cpu_sub(pcp, val)	raw_cpu_add((pcp), -(val))
580#endif
581
582#ifndef raw_cpu_inc
583# define raw_cpu_inc(pcp)		raw_cpu_add((pcp), 1)
584#endif
585
586#ifndef raw_cpu_dec
587# define raw_cpu_dec(pcp)		raw_cpu_sub((pcp), 1)
588#endif
589
590#ifndef raw_cpu_and
591# ifndef raw_cpu_and_1
592#  define raw_cpu_and_1(pcp, val)	raw_cpu_generic_to_op((pcp), (val), &=)
593# endif
594# ifndef raw_cpu_and_2
595#  define raw_cpu_and_2(pcp, val)	raw_cpu_generic_to_op((pcp), (val), &=)
596# endif
597# ifndef raw_cpu_and_4
598#  define raw_cpu_and_4(pcp, val)	raw_cpu_generic_to_op((pcp), (val), &=)
599# endif
600# ifndef raw_cpu_and_8
601#  define raw_cpu_and_8(pcp, val)	raw_cpu_generic_to_op((pcp), (val), &=)
602# endif
603# define raw_cpu_and(pcp, val)	__pcpu_size_call(raw_cpu_and_, (pcp), (val))
604#endif
605
606#ifndef raw_cpu_or
607# ifndef raw_cpu_or_1
608#  define raw_cpu_or_1(pcp, val)	raw_cpu_generic_to_op((pcp), (val), |=)
609# endif
610# ifndef raw_cpu_or_2
611#  define raw_cpu_or_2(pcp, val)	raw_cpu_generic_to_op((pcp), (val), |=)
612# endif
613# ifndef raw_cpu_or_4
614#  define raw_cpu_or_4(pcp, val)	raw_cpu_generic_to_op((pcp), (val), |=)
615# endif
616# ifndef raw_cpu_or_8
617#  define raw_cpu_or_8(pcp, val)	raw_cpu_generic_to_op((pcp), (val), |=)
618# endif
619# define raw_cpu_or(pcp, val)	__pcpu_size_call(raw_cpu_or_, (pcp), (val))
620#endif
621
622#define raw_cpu_generic_add_return(pcp, val)				\
623({									\
624	raw_cpu_add(pcp, val);						\
625	raw_cpu_read(pcp);						\
626})
627
628#ifndef raw_cpu_add_return
629# ifndef raw_cpu_add_return_1
630#  define raw_cpu_add_return_1(pcp, val)	raw_cpu_generic_add_return(pcp, val)
631# endif
632# ifndef raw_cpu_add_return_2
633#  define raw_cpu_add_return_2(pcp, val)	raw_cpu_generic_add_return(pcp, val)
634# endif
635# ifndef raw_cpu_add_return_4
636#  define raw_cpu_add_return_4(pcp, val)	raw_cpu_generic_add_return(pcp, val)
637# endif
638# ifndef raw_cpu_add_return_8
639#  define raw_cpu_add_return_8(pcp, val)	raw_cpu_generic_add_return(pcp, val)
640# endif
641# define raw_cpu_add_return(pcp, val)	\
642	__pcpu_size_call_return2(raw_add_return_, pcp, val)
643#endif
644
645#define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
646#define raw_cpu_inc_return(pcp)	raw_cpu_add_return(pcp, 1)
647#define raw_cpu_dec_return(pcp)	raw_cpu_add_return(pcp, -1)
648
649#define raw_cpu_generic_xchg(pcp, nval)					\
650({	typeof(pcp) ret__;						\
651	ret__ = raw_cpu_read(pcp);					\
652	raw_cpu_write(pcp, nval);					\
653	ret__;								\
654})
655
656#ifndef raw_cpu_xchg
657# ifndef raw_cpu_xchg_1
658#  define raw_cpu_xchg_1(pcp, nval)	raw_cpu_generic_xchg(pcp, nval)
659# endif
660# ifndef raw_cpu_xchg_2
661#  define raw_cpu_xchg_2(pcp, nval)	raw_cpu_generic_xchg(pcp, nval)
662# endif
663# ifndef raw_cpu_xchg_4
664#  define raw_cpu_xchg_4(pcp, nval)	raw_cpu_generic_xchg(pcp, nval)
665# endif
666# ifndef raw_cpu_xchg_8
667#  define raw_cpu_xchg_8(pcp, nval)	raw_cpu_generic_xchg(pcp, nval)
668# endif
669# define raw_cpu_xchg(pcp, nval)	\
670	__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)
671#endif
672
673#define raw_cpu_generic_cmpxchg(pcp, oval, nval)			\
674({									\
675	typeof(pcp) ret__;						\
676	ret__ = raw_cpu_read(pcp);					\
677	if (ret__ == (oval))						\
678		raw_cpu_write(pcp, nval);				\
679	ret__;								\
680})
681
682#ifndef raw_cpu_cmpxchg
683# ifndef raw_cpu_cmpxchg_1
684#  define raw_cpu_cmpxchg_1(pcp, oval, nval)	raw_cpu_generic_cmpxchg(pcp, oval, nval)
685# endif
686# ifndef raw_cpu_cmpxchg_2
687#  define raw_cpu_cmpxchg_2(pcp, oval, nval)	raw_cpu_generic_cmpxchg(pcp, oval, nval)
688# endif
689# ifndef raw_cpu_cmpxchg_4
690#  define raw_cpu_cmpxchg_4(pcp, oval, nval)	raw_cpu_generic_cmpxchg(pcp, oval, nval)
691# endif
692# ifndef raw_cpu_cmpxchg_8
693#  define raw_cpu_cmpxchg_8(pcp, oval, nval)	raw_cpu_generic_cmpxchg(pcp, oval, nval)
694# endif
695# define raw_cpu_cmpxchg(pcp, oval, nval)	\
696	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
697#endif
698
699#define raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
700({									\
701	int __ret = 0;							\
702	if (raw_cpu_read(pcp1) == (oval1) &&				\
703			 raw_cpu_read(pcp2)  == (oval2)) {		\
704		raw_cpu_write(pcp1, (nval1));				\
705		raw_cpu_write(pcp2, (nval2));				\
706		__ret = 1;						\
707	}								\
708	(__ret);							\
709})
710
711#ifndef raw_cpu_cmpxchg_double
712# ifndef raw_cpu_cmpxchg_double_1
713#  define raw_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
714	raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
715# endif
716# ifndef raw_cpu_cmpxchg_double_2
717#  define raw_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
718	raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
719# endif
720# ifndef raw_cpu_cmpxchg_double_4
721#  define raw_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
722	raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
723# endif
724# ifndef raw_cpu_cmpxchg_double_8
725#  define raw_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
726	raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
727# endif
728# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
729	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
730#endif
731
732/*
733 * Generic percpu operations for context that are safe from preemption/interrupts.
734 */
735#ifndef __this_cpu_read
736# define __this_cpu_read(pcp) \
737	(__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp)))
738#endif
739
740#ifndef __this_cpu_write
741# define __this_cpu_write(pcp, val)					\
742do { __this_cpu_preempt_check("write");					\
743     __pcpu_size_call(raw_cpu_write_, (pcp), (val));			\
744} while (0)
745#endif
746
747#ifndef __this_cpu_add
748# define __this_cpu_add(pcp, val)					 \
749do { __this_cpu_preempt_check("add");					\
750	__pcpu_size_call(raw_cpu_add_, (pcp), (val));			\
751} while (0)
752#endif
753
754#ifndef __this_cpu_sub
755# define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(typeof(pcp))(val))
756#endif
757
758#ifndef __this_cpu_inc
759# define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1)
760#endif
761
762#ifndef __this_cpu_dec
763# define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1)
764#endif
765
766#ifndef __this_cpu_and
767# define __this_cpu_and(pcp, val)					\
768do { __this_cpu_preempt_check("and");					\
769	__pcpu_size_call(raw_cpu_and_, (pcp), (val));			\
770} while (0)
771
772#endif
773
774#ifndef __this_cpu_or
775# define __this_cpu_or(pcp, val)					\
776do { __this_cpu_preempt_check("or");					\
777	__pcpu_size_call(raw_cpu_or_, (pcp), (val));			\
778} while (0)
779#endif
780
781#ifndef __this_cpu_add_return
782# define __this_cpu_add_return(pcp, val)	\
783	(__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val))
784#endif
785
786#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
787#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
788#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
789
790#ifndef __this_cpu_xchg
791# define __this_cpu_xchg(pcp, nval)	\
792	(__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval))
793#endif
794
795#ifndef __this_cpu_cmpxchg
796# define __this_cpu_cmpxchg(pcp, oval, nval)	\
797	(__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval))
798#endif
799
800#ifndef __this_cpu_cmpxchg_double
801# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
802	(__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)))
803#endif
804
805#endif /* __LINUX_PERCPU_H */
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_PERCPU_H
  3#define __LINUX_PERCPU_H
  4
  5#include <linux/mmdebug.h>
  6#include <linux/preempt.h>
  7#include <linux/smp.h>
  8#include <linux/cpumask.h>
  9#include <linux/printk.h>
 10#include <linux/pfn.h>
 11#include <linux/init.h>
 12
 13#include <asm/percpu.h>
 14
 15/* enough to cover all DEFINE_PER_CPUs in modules */
 16#ifdef CONFIG_MODULES
 17#define PERCPU_MODULE_RESERVE		(8 << 10)
 18#else
 19#define PERCPU_MODULE_RESERVE		0
 20#endif
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22/* minimum unit size, also is the maximum supported allocation size */
 23#define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
 24
 25/* minimum allocation size and shift in bytes */
 26#define PCPU_MIN_ALLOC_SHIFT		2
 27#define PCPU_MIN_ALLOC_SIZE		(1 << PCPU_MIN_ALLOC_SHIFT)
 28
 29/* number of bits per page, used to trigger a scan if blocks are > PAGE_SIZE */
 30#define PCPU_BITS_PER_PAGE		(PAGE_SIZE >> PCPU_MIN_ALLOC_SHIFT)
 31
 32/*
 33 * This determines the size of each metadata block.  There are several subtle
 34 * constraints around this constant.  The reserved region must be a multiple of
 35 * PCPU_BITMAP_BLOCK_SIZE.  Additionally, PCPU_BITMAP_BLOCK_SIZE must be a
 36 * multiple of PAGE_SIZE or PAGE_SIZE must be a multiple of
 37 * PCPU_BITMAP_BLOCK_SIZE to align with the populated page map. The unit_size
 38 * also has to be a multiple of PCPU_BITMAP_BLOCK_SIZE to ensure full blocks.
 39 */
 40#define PCPU_BITMAP_BLOCK_SIZE		PAGE_SIZE
 41#define PCPU_BITMAP_BLOCK_BITS		(PCPU_BITMAP_BLOCK_SIZE >>	\
 42					 PCPU_MIN_ALLOC_SHIFT)
 43
 44/*
 45 * Percpu allocator can serve percpu allocations before slab is
 46 * initialized which allows slab to depend on the percpu allocator.
 47 * The following two parameters decide how much resource to
 48 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
 49 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
 50 */
 51#define PERCPU_DYNAMIC_EARLY_SLOTS	128
 52#define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)
 53
 54/*
 55 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
 56 * back on the first chunk for dynamic percpu allocation if arch is
 57 * manually allocating and mapping it for faster access (as a part of
 58 * large page mapping for example).
 59 *
 60 * The following values give between one and two pages of free space
 61 * after typical minimal boot (2-way SMP, single disk and NIC) with
 62 * both defconfig and a distro config on x86_64 and 32.  More
 63 * intelligent way to determine this would be nice.
 64 */
 65#if BITS_PER_LONG > 32
 66#define PERCPU_DYNAMIC_RESERVE		(28 << 10)
 67#else
 68#define PERCPU_DYNAMIC_RESERVE		(20 << 10)
 69#endif
 70
 71extern void *pcpu_base_addr;
 72extern const unsigned long *pcpu_unit_offsets;
 73
 74struct pcpu_group_info {
 75	int			nr_units;	/* aligned # of units */
 76	unsigned long		base_offset;	/* base address offset */
 77	unsigned int		*cpu_map;	/* unit->cpu map, empty
 78						 * entries contain NR_CPUS */
 79};
 80
 81struct pcpu_alloc_info {
 82	size_t			static_size;
 83	size_t			reserved_size;
 84	size_t			dyn_size;
 85	size_t			unit_size;
 86	size_t			atom_size;
 87	size_t			alloc_size;
 88	size_t			__ai_size;	/* internal, don't use */
 89	int			nr_groups;	/* 0 if grouping unnecessary */
 90	struct pcpu_group_info	groups[];
 91};
 92
 93enum pcpu_fc {
 94	PCPU_FC_AUTO,
 95	PCPU_FC_EMBED,
 96	PCPU_FC_PAGE,
 97
 98	PCPU_FC_NR,
 99};
100extern const char * const pcpu_fc_names[PCPU_FC_NR];
101
102extern enum pcpu_fc pcpu_chosen_fc;
103
104typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
105				     size_t align);
106typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
107typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
108typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
109
110extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
111							     int nr_units);
112extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
113
114extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
115					 void *base_addr);
116
117#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
118extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
119				size_t atom_size,
120				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
121				pcpu_fc_alloc_fn_t alloc_fn,
122				pcpu_fc_free_fn_t free_fn);
123#endif
124
125#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
126extern int __init pcpu_page_first_chunk(size_t reserved_size,
127				pcpu_fc_alloc_fn_t alloc_fn,
128				pcpu_fc_free_fn_t free_fn,
129				pcpu_fc_populate_pte_fn_t populate_pte_fn);
130#endif
131
 
 
 
 
 
 
 
 
 
 
 
132extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
133extern bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr);
134extern bool is_kernel_percpu_address(unsigned long addr);
135
136#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
137extern void __init setup_per_cpu_areas(void);
138#endif
 
139
140extern void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp);
141extern void __percpu *__alloc_percpu(size_t size, size_t align);
142extern void free_percpu(void __percpu *__pdata);
143extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
144
145#define alloc_percpu_gfp(type, gfp)					\
146	(typeof(type) __percpu *)__alloc_percpu_gfp(sizeof(type),	\
147						__alignof__(type), gfp)
148#define alloc_percpu(type)						\
149	(typeof(type) __percpu *)__alloc_percpu(sizeof(type),		\
150						__alignof__(type))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
152#endif /* __LINUX_PERCPU_H */