Loading...
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21
22struct mempolicy;
23struct anon_vma;
24struct anon_vma_chain;
25struct file_ra_state;
26struct user_struct;
27struct writeback_control;
28
29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30extern unsigned long max_mapnr;
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
38#endif
39
40extern unsigned long totalram_pages;
41extern void * high_memory;
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
53
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
58extern unsigned long sysctl_user_reserve_kbytes;
59extern unsigned long sysctl_admin_reserve_kbytes;
60
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87extern struct kmem_cache *vm_area_cachep;
88
89#ifndef CONFIG_MMU
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99#define VM_NONE 0x00000000
100
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
174/*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195#define FAULT_FLAG_TRIED 0x40 /* second try */
196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197
198/*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by
214 * VM_FAULT_ERROR).
215 */
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
220};
221
222/*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
242#ifdef CONFIG_NUMA
243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy.
249 */
250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251
252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy.
261 */
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr);
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags);
266#endif
267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff);
270};
271
272struct mmu_gather;
273struct inode;
274
275#define page_private(page) ((page)->private)
276#define set_page_private(page, v) ((page)->private = (v))
277
278/* It's valid only if the page is free path or free_list */
279static inline void set_freepage_migratetype(struct page *page, int migratetype)
280{
281 page->index = migratetype;
282}
283
284/* It's valid only if the page is free path or free_list */
285static inline int get_freepage_migratetype(struct page *page)
286{
287 return page->index;
288}
289
290/*
291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them)
293 */
294#include <linux/page-flags.h>
295#include <linux/huge_mm.h>
296
297/*
298 * Methods to modify the page usage count.
299 *
300 * What counts for a page usage:
301 * - cache mapping (page->mapping)
302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping
304 * is counted separately
305 *
306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them.
308 */
309
310/*
311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
312 */
313static inline int put_page_testzero(struct page *page)
314{
315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 return atomic_dec_and_test(&page->_count);
317}
318
319/*
320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case.
322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings.
324 */
325static inline int get_page_unless_zero(struct page *page)
326{
327 return atomic_inc_not_zero(&page->_count);
328}
329
330/*
331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings.
336 */
337static inline int put_page_unless_one(struct page *page)
338{
339 return atomic_add_unless(&page->_count, -1, 1);
340}
341
342extern int page_is_ram(unsigned long pfn);
343
344/* Support for virtually mapped pages */
345struct page *vmalloc_to_page(const void *addr);
346unsigned long vmalloc_to_pfn(const void *addr);
347
348/*
349 * Determine if an address is within the vmalloc range
350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required.
353 */
354static inline int is_vmalloc_addr(const void *x)
355{
356#ifdef CONFIG_MMU
357 unsigned long addr = (unsigned long)x;
358
359 return addr >= VMALLOC_START && addr < VMALLOC_END;
360#else
361 return 0;
362#endif
363}
364#ifdef CONFIG_MMU
365extern int is_vmalloc_or_module_addr(const void *x);
366#else
367static inline int is_vmalloc_or_module_addr(const void *x)
368{
369 return 0;
370}
371#endif
372
373extern void kvfree(const void *addr);
374
375static inline void compound_lock(struct page *page)
376{
377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
378 VM_BUG_ON_PAGE(PageSlab(page), page);
379 bit_spin_lock(PG_compound_lock, &page->flags);
380#endif
381}
382
383static inline void compound_unlock(struct page *page)
384{
385#ifdef CONFIG_TRANSPARENT_HUGEPAGE
386 VM_BUG_ON_PAGE(PageSlab(page), page);
387 bit_spin_unlock(PG_compound_lock, &page->flags);
388#endif
389}
390
391static inline unsigned long compound_lock_irqsave(struct page *page)
392{
393 unsigned long uninitialized_var(flags);
394#ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 local_irq_save(flags);
396 compound_lock(page);
397#endif
398 return flags;
399}
400
401static inline void compound_unlock_irqrestore(struct page *page,
402 unsigned long flags)
403{
404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 compound_unlock(page);
406 local_irq_restore(flags);
407#endif
408}
409
410static inline struct page *compound_head(struct page *page)
411{
412 if (unlikely(PageTail(page))) {
413 struct page *head = page->first_page;
414
415 /*
416 * page->first_page may be a dangling pointer to an old
417 * compound page, so recheck that it is still a tail
418 * page before returning.
419 */
420 smp_rmb();
421 if (likely(PageTail(page)))
422 return head;
423 }
424 return page;
425}
426
427/*
428 * The atomic page->_mapcount, starts from -1: so that transitions
429 * both from it and to it can be tracked, using atomic_inc_and_test
430 * and atomic_add_negative(-1).
431 */
432static inline void page_mapcount_reset(struct page *page)
433{
434 atomic_set(&(page)->_mapcount, -1);
435}
436
437static inline int page_mapcount(struct page *page)
438{
439 return atomic_read(&(page)->_mapcount) + 1;
440}
441
442static inline int page_count(struct page *page)
443{
444 return atomic_read(&compound_head(page)->_count);
445}
446
447#ifdef CONFIG_HUGETLB_PAGE
448extern int PageHeadHuge(struct page *page_head);
449#else /* CONFIG_HUGETLB_PAGE */
450static inline int PageHeadHuge(struct page *page_head)
451{
452 return 0;
453}
454#endif /* CONFIG_HUGETLB_PAGE */
455
456static inline bool __compound_tail_refcounted(struct page *page)
457{
458 return !PageSlab(page) && !PageHeadHuge(page);
459}
460
461/*
462 * This takes a head page as parameter and tells if the
463 * tail page reference counting can be skipped.
464 *
465 * For this to be safe, PageSlab and PageHeadHuge must remain true on
466 * any given page where they return true here, until all tail pins
467 * have been released.
468 */
469static inline bool compound_tail_refcounted(struct page *page)
470{
471 VM_BUG_ON_PAGE(!PageHead(page), page);
472 return __compound_tail_refcounted(page);
473}
474
475static inline void get_huge_page_tail(struct page *page)
476{
477 /*
478 * __split_huge_page_refcount() cannot run from under us.
479 */
480 VM_BUG_ON_PAGE(!PageTail(page), page);
481 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
482 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
483 if (compound_tail_refcounted(page->first_page))
484 atomic_inc(&page->_mapcount);
485}
486
487extern bool __get_page_tail(struct page *page);
488
489static inline void get_page(struct page *page)
490{
491 if (unlikely(PageTail(page)))
492 if (likely(__get_page_tail(page)))
493 return;
494 /*
495 * Getting a normal page or the head of a compound page
496 * requires to already have an elevated page->_count.
497 */
498 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
499 atomic_inc(&page->_count);
500}
501
502static inline struct page *virt_to_head_page(const void *x)
503{
504 struct page *page = virt_to_page(x);
505 return compound_head(page);
506}
507
508/*
509 * Setup the page count before being freed into the page allocator for
510 * the first time (boot or memory hotplug)
511 */
512static inline void init_page_count(struct page *page)
513{
514 atomic_set(&page->_count, 1);
515}
516
517/*
518 * PageBuddy() indicate that the page is free and in the buddy system
519 * (see mm/page_alloc.c).
520 *
521 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
522 * -2 so that an underflow of the page_mapcount() won't be mistaken
523 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
524 * efficiently by most CPU architectures.
525 */
526#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
527
528static inline int PageBuddy(struct page *page)
529{
530 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
531}
532
533static inline void __SetPageBuddy(struct page *page)
534{
535 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
536 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
537}
538
539static inline void __ClearPageBuddy(struct page *page)
540{
541 VM_BUG_ON_PAGE(!PageBuddy(page), page);
542 atomic_set(&page->_mapcount, -1);
543}
544
545void put_page(struct page *page);
546void put_pages_list(struct list_head *pages);
547
548void split_page(struct page *page, unsigned int order);
549int split_free_page(struct page *page);
550
551/*
552 * Compound pages have a destructor function. Provide a
553 * prototype for that function and accessor functions.
554 * These are _only_ valid on the head of a PG_compound page.
555 */
556typedef void compound_page_dtor(struct page *);
557
558static inline void set_compound_page_dtor(struct page *page,
559 compound_page_dtor *dtor)
560{
561 page[1].lru.next = (void *)dtor;
562}
563
564static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
565{
566 return (compound_page_dtor *)page[1].lru.next;
567}
568
569static inline int compound_order(struct page *page)
570{
571 if (!PageHead(page))
572 return 0;
573 return (unsigned long)page[1].lru.prev;
574}
575
576static inline void set_compound_order(struct page *page, unsigned long order)
577{
578 page[1].lru.prev = (void *)order;
579}
580
581#ifdef CONFIG_MMU
582/*
583 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
584 * servicing faults for write access. In the normal case, do always want
585 * pte_mkwrite. But get_user_pages can cause write faults for mappings
586 * that do not have writing enabled, when used by access_process_vm.
587 */
588static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
589{
590 if (likely(vma->vm_flags & VM_WRITE))
591 pte = pte_mkwrite(pte);
592 return pte;
593}
594
595void do_set_pte(struct vm_area_struct *vma, unsigned long address,
596 struct page *page, pte_t *pte, bool write, bool anon);
597#endif
598
599/*
600 * Multiple processes may "see" the same page. E.g. for untouched
601 * mappings of /dev/null, all processes see the same page full of
602 * zeroes, and text pages of executables and shared libraries have
603 * only one copy in memory, at most, normally.
604 *
605 * For the non-reserved pages, page_count(page) denotes a reference count.
606 * page_count() == 0 means the page is free. page->lru is then used for
607 * freelist management in the buddy allocator.
608 * page_count() > 0 means the page has been allocated.
609 *
610 * Pages are allocated by the slab allocator in order to provide memory
611 * to kmalloc and kmem_cache_alloc. In this case, the management of the
612 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
613 * unless a particular usage is carefully commented. (the responsibility of
614 * freeing the kmalloc memory is the caller's, of course).
615 *
616 * A page may be used by anyone else who does a __get_free_page().
617 * In this case, page_count still tracks the references, and should only
618 * be used through the normal accessor functions. The top bits of page->flags
619 * and page->virtual store page management information, but all other fields
620 * are unused and could be used privately, carefully. The management of this
621 * page is the responsibility of the one who allocated it, and those who have
622 * subsequently been given references to it.
623 *
624 * The other pages (we may call them "pagecache pages") are completely
625 * managed by the Linux memory manager: I/O, buffers, swapping etc.
626 * The following discussion applies only to them.
627 *
628 * A pagecache page contains an opaque `private' member, which belongs to the
629 * page's address_space. Usually, this is the address of a circular list of
630 * the page's disk buffers. PG_private must be set to tell the VM to call
631 * into the filesystem to release these pages.
632 *
633 * A page may belong to an inode's memory mapping. In this case, page->mapping
634 * is the pointer to the inode, and page->index is the file offset of the page,
635 * in units of PAGE_CACHE_SIZE.
636 *
637 * If pagecache pages are not associated with an inode, they are said to be
638 * anonymous pages. These may become associated with the swapcache, and in that
639 * case PG_swapcache is set, and page->private is an offset into the swapcache.
640 *
641 * In either case (swapcache or inode backed), the pagecache itself holds one
642 * reference to the page. Setting PG_private should also increment the
643 * refcount. The each user mapping also has a reference to the page.
644 *
645 * The pagecache pages are stored in a per-mapping radix tree, which is
646 * rooted at mapping->page_tree, and indexed by offset.
647 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
648 * lists, we instead now tag pages as dirty/writeback in the radix tree.
649 *
650 * All pagecache pages may be subject to I/O:
651 * - inode pages may need to be read from disk,
652 * - inode pages which have been modified and are MAP_SHARED may need
653 * to be written back to the inode on disk,
654 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
655 * modified may need to be swapped out to swap space and (later) to be read
656 * back into memory.
657 */
658
659/*
660 * The zone field is never updated after free_area_init_core()
661 * sets it, so none of the operations on it need to be atomic.
662 */
663
664/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
665#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
666#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
667#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
668#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
669
670/*
671 * Define the bit shifts to access each section. For non-existent
672 * sections we define the shift as 0; that plus a 0 mask ensures
673 * the compiler will optimise away reference to them.
674 */
675#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
676#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
677#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
678#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
679
680/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
681#ifdef NODE_NOT_IN_PAGE_FLAGS
682#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
683#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
684 SECTIONS_PGOFF : ZONES_PGOFF)
685#else
686#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
687#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
688 NODES_PGOFF : ZONES_PGOFF)
689#endif
690
691#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
692
693#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
694#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
695#endif
696
697#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
698#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
699#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
700#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
701#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
702
703static inline enum zone_type page_zonenum(const struct page *page)
704{
705 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
706}
707
708#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
709#define SECTION_IN_PAGE_FLAGS
710#endif
711
712/*
713 * The identification function is mainly used by the buddy allocator for
714 * determining if two pages could be buddies. We are not really identifying
715 * the zone since we could be using the section number id if we do not have
716 * node id available in page flags.
717 * We only guarantee that it will return the same value for two combinable
718 * pages in a zone.
719 */
720static inline int page_zone_id(struct page *page)
721{
722 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
723}
724
725static inline int zone_to_nid(struct zone *zone)
726{
727#ifdef CONFIG_NUMA
728 return zone->node;
729#else
730 return 0;
731#endif
732}
733
734#ifdef NODE_NOT_IN_PAGE_FLAGS
735extern int page_to_nid(const struct page *page);
736#else
737static inline int page_to_nid(const struct page *page)
738{
739 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
740}
741#endif
742
743#ifdef CONFIG_NUMA_BALANCING
744static inline int cpu_pid_to_cpupid(int cpu, int pid)
745{
746 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
747}
748
749static inline int cpupid_to_pid(int cpupid)
750{
751 return cpupid & LAST__PID_MASK;
752}
753
754static inline int cpupid_to_cpu(int cpupid)
755{
756 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
757}
758
759static inline int cpupid_to_nid(int cpupid)
760{
761 return cpu_to_node(cpupid_to_cpu(cpupid));
762}
763
764static inline bool cpupid_pid_unset(int cpupid)
765{
766 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
767}
768
769static inline bool cpupid_cpu_unset(int cpupid)
770{
771 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
772}
773
774static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
775{
776 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
777}
778
779#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
780#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
781static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
782{
783 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
784}
785
786static inline int page_cpupid_last(struct page *page)
787{
788 return page->_last_cpupid;
789}
790static inline void page_cpupid_reset_last(struct page *page)
791{
792 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
793}
794#else
795static inline int page_cpupid_last(struct page *page)
796{
797 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
798}
799
800extern int page_cpupid_xchg_last(struct page *page, int cpupid);
801
802static inline void page_cpupid_reset_last(struct page *page)
803{
804 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
805
806 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
807 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
808}
809#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
810#else /* !CONFIG_NUMA_BALANCING */
811static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
812{
813 return page_to_nid(page); /* XXX */
814}
815
816static inline int page_cpupid_last(struct page *page)
817{
818 return page_to_nid(page); /* XXX */
819}
820
821static inline int cpupid_to_nid(int cpupid)
822{
823 return -1;
824}
825
826static inline int cpupid_to_pid(int cpupid)
827{
828 return -1;
829}
830
831static inline int cpupid_to_cpu(int cpupid)
832{
833 return -1;
834}
835
836static inline int cpu_pid_to_cpupid(int nid, int pid)
837{
838 return -1;
839}
840
841static inline bool cpupid_pid_unset(int cpupid)
842{
843 return 1;
844}
845
846static inline void page_cpupid_reset_last(struct page *page)
847{
848}
849
850static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
851{
852 return false;
853}
854#endif /* CONFIG_NUMA_BALANCING */
855
856static inline struct zone *page_zone(const struct page *page)
857{
858 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
859}
860
861#ifdef SECTION_IN_PAGE_FLAGS
862static inline void set_page_section(struct page *page, unsigned long section)
863{
864 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
865 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
866}
867
868static inline unsigned long page_to_section(const struct page *page)
869{
870 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
871}
872#endif
873
874static inline void set_page_zone(struct page *page, enum zone_type zone)
875{
876 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
877 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
878}
879
880static inline void set_page_node(struct page *page, unsigned long node)
881{
882 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
883 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
884}
885
886static inline void set_page_links(struct page *page, enum zone_type zone,
887 unsigned long node, unsigned long pfn)
888{
889 set_page_zone(page, zone);
890 set_page_node(page, node);
891#ifdef SECTION_IN_PAGE_FLAGS
892 set_page_section(page, pfn_to_section_nr(pfn));
893#endif
894}
895
896/*
897 * Some inline functions in vmstat.h depend on page_zone()
898 */
899#include <linux/vmstat.h>
900
901static __always_inline void *lowmem_page_address(const struct page *page)
902{
903 return __va(PFN_PHYS(page_to_pfn(page)));
904}
905
906#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
907#define HASHED_PAGE_VIRTUAL
908#endif
909
910#if defined(WANT_PAGE_VIRTUAL)
911static inline void *page_address(const struct page *page)
912{
913 return page->virtual;
914}
915static inline void set_page_address(struct page *page, void *address)
916{
917 page->virtual = address;
918}
919#define page_address_init() do { } while(0)
920#endif
921
922#if defined(HASHED_PAGE_VIRTUAL)
923void *page_address(const struct page *page);
924void set_page_address(struct page *page, void *virtual);
925void page_address_init(void);
926#endif
927
928#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
929#define page_address(page) lowmem_page_address(page)
930#define set_page_address(page, address) do { } while(0)
931#define page_address_init() do { } while(0)
932#endif
933
934/*
935 * On an anonymous page mapped into a user virtual memory area,
936 * page->mapping points to its anon_vma, not to a struct address_space;
937 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
938 *
939 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
940 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
941 * and then page->mapping points, not to an anon_vma, but to a private
942 * structure which KSM associates with that merged page. See ksm.h.
943 *
944 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
945 *
946 * Please note that, confusingly, "page_mapping" refers to the inode
947 * address_space which maps the page from disk; whereas "page_mapped"
948 * refers to user virtual address space into which the page is mapped.
949 */
950#define PAGE_MAPPING_ANON 1
951#define PAGE_MAPPING_KSM 2
952#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
953
954extern struct address_space *page_mapping(struct page *page);
955
956/* Neutral page->mapping pointer to address_space or anon_vma or other */
957static inline void *page_rmapping(struct page *page)
958{
959 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
960}
961
962extern struct address_space *__page_file_mapping(struct page *);
963
964static inline
965struct address_space *page_file_mapping(struct page *page)
966{
967 if (unlikely(PageSwapCache(page)))
968 return __page_file_mapping(page);
969
970 return page->mapping;
971}
972
973static inline int PageAnon(struct page *page)
974{
975 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
976}
977
978/*
979 * Return the pagecache index of the passed page. Regular pagecache pages
980 * use ->index whereas swapcache pages use ->private
981 */
982static inline pgoff_t page_index(struct page *page)
983{
984 if (unlikely(PageSwapCache(page)))
985 return page_private(page);
986 return page->index;
987}
988
989extern pgoff_t __page_file_index(struct page *page);
990
991/*
992 * Return the file index of the page. Regular pagecache pages use ->index
993 * whereas swapcache pages use swp_offset(->private)
994 */
995static inline pgoff_t page_file_index(struct page *page)
996{
997 if (unlikely(PageSwapCache(page)))
998 return __page_file_index(page);
999
1000 return page->index;
1001}
1002
1003/*
1004 * Return true if this page is mapped into pagetables.
1005 */
1006static inline int page_mapped(struct page *page)
1007{
1008 return atomic_read(&(page)->_mapcount) >= 0;
1009}
1010
1011/*
1012 * Different kinds of faults, as returned by handle_mm_fault().
1013 * Used to decide whether a process gets delivered SIGBUS or
1014 * just gets major/minor fault counters bumped up.
1015 */
1016
1017#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1018
1019#define VM_FAULT_OOM 0x0001
1020#define VM_FAULT_SIGBUS 0x0002
1021#define VM_FAULT_MAJOR 0x0004
1022#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1023#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1024#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1025
1026#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1027#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1028#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1029#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1030
1031#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1032
1033#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1034 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1035
1036/* Encode hstate index for a hwpoisoned large page */
1037#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1038#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1039
1040/*
1041 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1042 */
1043extern void pagefault_out_of_memory(void);
1044
1045#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1046
1047/*
1048 * Flags passed to show_mem() and show_free_areas() to suppress output in
1049 * various contexts.
1050 */
1051#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1052
1053extern void show_free_areas(unsigned int flags);
1054extern bool skip_free_areas_node(unsigned int flags, int nid);
1055
1056int shmem_zero_setup(struct vm_area_struct *);
1057#ifdef CONFIG_SHMEM
1058bool shmem_mapping(struct address_space *mapping);
1059#else
1060static inline bool shmem_mapping(struct address_space *mapping)
1061{
1062 return false;
1063}
1064#endif
1065
1066extern int can_do_mlock(void);
1067extern int user_shm_lock(size_t, struct user_struct *);
1068extern void user_shm_unlock(size_t, struct user_struct *);
1069
1070/*
1071 * Parameter block passed down to zap_pte_range in exceptional cases.
1072 */
1073struct zap_details {
1074 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1075 struct address_space *check_mapping; /* Check page->mapping if set */
1076 pgoff_t first_index; /* Lowest page->index to unmap */
1077 pgoff_t last_index; /* Highest page->index to unmap */
1078};
1079
1080struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1081 pte_t pte);
1082
1083int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1084 unsigned long size);
1085void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1086 unsigned long size, struct zap_details *);
1087void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1088 unsigned long start, unsigned long end);
1089
1090/**
1091 * mm_walk - callbacks for walk_page_range
1092 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1093 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1094 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1095 * this handler is required to be able to handle
1096 * pmd_trans_huge() pmds. They may simply choose to
1097 * split_huge_page() instead of handling it explicitly.
1098 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1099 * @pte_hole: if set, called for each hole at all levels
1100 * @hugetlb_entry: if set, called for each hugetlb entry
1101 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1102 * is used.
1103 *
1104 * (see walk_page_range for more details)
1105 */
1106struct mm_walk {
1107 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1108 unsigned long next, struct mm_walk *walk);
1109 int (*pud_entry)(pud_t *pud, unsigned long addr,
1110 unsigned long next, struct mm_walk *walk);
1111 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk);
1113 int (*pte_entry)(pte_t *pte, unsigned long addr,
1114 unsigned long next, struct mm_walk *walk);
1115 int (*pte_hole)(unsigned long addr, unsigned long next,
1116 struct mm_walk *walk);
1117 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1118 unsigned long addr, unsigned long next,
1119 struct mm_walk *walk);
1120 struct mm_struct *mm;
1121 void *private;
1122};
1123
1124int walk_page_range(unsigned long addr, unsigned long end,
1125 struct mm_walk *walk);
1126void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1127 unsigned long end, unsigned long floor, unsigned long ceiling);
1128int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1129 struct vm_area_struct *vma);
1130void unmap_mapping_range(struct address_space *mapping,
1131 loff_t const holebegin, loff_t const holelen, int even_cows);
1132int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1133 unsigned long *pfn);
1134int follow_phys(struct vm_area_struct *vma, unsigned long address,
1135 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1136int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1137 void *buf, int len, int write);
1138
1139static inline void unmap_shared_mapping_range(struct address_space *mapping,
1140 loff_t const holebegin, loff_t const holelen)
1141{
1142 unmap_mapping_range(mapping, holebegin, holelen, 0);
1143}
1144
1145extern void truncate_pagecache(struct inode *inode, loff_t new);
1146extern void truncate_setsize(struct inode *inode, loff_t newsize);
1147void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1148int truncate_inode_page(struct address_space *mapping, struct page *page);
1149int generic_error_remove_page(struct address_space *mapping, struct page *page);
1150int invalidate_inode_page(struct page *page);
1151
1152#ifdef CONFIG_MMU
1153extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1154 unsigned long address, unsigned int flags);
1155extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1156 unsigned long address, unsigned int fault_flags);
1157#else
1158static inline int handle_mm_fault(struct mm_struct *mm,
1159 struct vm_area_struct *vma, unsigned long address,
1160 unsigned int flags)
1161{
1162 /* should never happen if there's no MMU */
1163 BUG();
1164 return VM_FAULT_SIGBUS;
1165}
1166static inline int fixup_user_fault(struct task_struct *tsk,
1167 struct mm_struct *mm, unsigned long address,
1168 unsigned int fault_flags)
1169{
1170 /* should never happen if there's no MMU */
1171 BUG();
1172 return -EFAULT;
1173}
1174#endif
1175
1176extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1177extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1178 void *buf, int len, int write);
1179
1180long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, unsigned long nr_pages,
1182 unsigned int foll_flags, struct page **pages,
1183 struct vm_area_struct **vmas, int *nonblocking);
1184long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 int write, int force, struct page **pages,
1187 struct vm_area_struct **vmas);
1188int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1189 struct page **pages);
1190struct kvec;
1191int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1192 struct page **pages);
1193int get_kernel_page(unsigned long start, int write, struct page **pages);
1194struct page *get_dump_page(unsigned long addr);
1195
1196extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1197extern void do_invalidatepage(struct page *page, unsigned int offset,
1198 unsigned int length);
1199
1200int __set_page_dirty_nobuffers(struct page *page);
1201int __set_page_dirty_no_writeback(struct page *page);
1202int redirty_page_for_writepage(struct writeback_control *wbc,
1203 struct page *page);
1204void account_page_dirtied(struct page *page, struct address_space *mapping);
1205void account_page_writeback(struct page *page);
1206int set_page_dirty(struct page *page);
1207int set_page_dirty_lock(struct page *page);
1208int clear_page_dirty_for_io(struct page *page);
1209int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1210
1211/* Is the vma a continuation of the stack vma above it? */
1212static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1213{
1214 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1215}
1216
1217static inline int stack_guard_page_start(struct vm_area_struct *vma,
1218 unsigned long addr)
1219{
1220 return (vma->vm_flags & VM_GROWSDOWN) &&
1221 (vma->vm_start == addr) &&
1222 !vma_growsdown(vma->vm_prev, addr);
1223}
1224
1225/* Is the vma a continuation of the stack vma below it? */
1226static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1227{
1228 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1229}
1230
1231static inline int stack_guard_page_end(struct vm_area_struct *vma,
1232 unsigned long addr)
1233{
1234 return (vma->vm_flags & VM_GROWSUP) &&
1235 (vma->vm_end == addr) &&
1236 !vma_growsup(vma->vm_next, addr);
1237}
1238
1239extern pid_t
1240vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1241
1242extern unsigned long move_page_tables(struct vm_area_struct *vma,
1243 unsigned long old_addr, struct vm_area_struct *new_vma,
1244 unsigned long new_addr, unsigned long len,
1245 bool need_rmap_locks);
1246extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1247 unsigned long end, pgprot_t newprot,
1248 int dirty_accountable, int prot_numa);
1249extern int mprotect_fixup(struct vm_area_struct *vma,
1250 struct vm_area_struct **pprev, unsigned long start,
1251 unsigned long end, unsigned long newflags);
1252
1253/*
1254 * doesn't attempt to fault and will return short.
1255 */
1256int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1257 struct page **pages);
1258/*
1259 * per-process(per-mm_struct) statistics.
1260 */
1261static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1262{
1263 long val = atomic_long_read(&mm->rss_stat.count[member]);
1264
1265#ifdef SPLIT_RSS_COUNTING
1266 /*
1267 * counter is updated in asynchronous manner and may go to minus.
1268 * But it's never be expected number for users.
1269 */
1270 if (val < 0)
1271 val = 0;
1272#endif
1273 return (unsigned long)val;
1274}
1275
1276static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1277{
1278 atomic_long_add(value, &mm->rss_stat.count[member]);
1279}
1280
1281static inline void inc_mm_counter(struct mm_struct *mm, int member)
1282{
1283 atomic_long_inc(&mm->rss_stat.count[member]);
1284}
1285
1286static inline void dec_mm_counter(struct mm_struct *mm, int member)
1287{
1288 atomic_long_dec(&mm->rss_stat.count[member]);
1289}
1290
1291static inline unsigned long get_mm_rss(struct mm_struct *mm)
1292{
1293 return get_mm_counter(mm, MM_FILEPAGES) +
1294 get_mm_counter(mm, MM_ANONPAGES);
1295}
1296
1297static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1298{
1299 return max(mm->hiwater_rss, get_mm_rss(mm));
1300}
1301
1302static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1303{
1304 return max(mm->hiwater_vm, mm->total_vm);
1305}
1306
1307static inline void update_hiwater_rss(struct mm_struct *mm)
1308{
1309 unsigned long _rss = get_mm_rss(mm);
1310
1311 if ((mm)->hiwater_rss < _rss)
1312 (mm)->hiwater_rss = _rss;
1313}
1314
1315static inline void update_hiwater_vm(struct mm_struct *mm)
1316{
1317 if (mm->hiwater_vm < mm->total_vm)
1318 mm->hiwater_vm = mm->total_vm;
1319}
1320
1321static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1322 struct mm_struct *mm)
1323{
1324 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1325
1326 if (*maxrss < hiwater_rss)
1327 *maxrss = hiwater_rss;
1328}
1329
1330#if defined(SPLIT_RSS_COUNTING)
1331void sync_mm_rss(struct mm_struct *mm);
1332#else
1333static inline void sync_mm_rss(struct mm_struct *mm)
1334{
1335}
1336#endif
1337
1338int vma_wants_writenotify(struct vm_area_struct *vma);
1339
1340extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1341 spinlock_t **ptl);
1342static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1343 spinlock_t **ptl)
1344{
1345 pte_t *ptep;
1346 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1347 return ptep;
1348}
1349
1350#ifdef __PAGETABLE_PUD_FOLDED
1351static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1352 unsigned long address)
1353{
1354 return 0;
1355}
1356#else
1357int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1358#endif
1359
1360#ifdef __PAGETABLE_PMD_FOLDED
1361static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1362 unsigned long address)
1363{
1364 return 0;
1365}
1366#else
1367int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1368#endif
1369
1370int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1371 pmd_t *pmd, unsigned long address);
1372int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1373
1374/*
1375 * The following ifdef needed to get the 4level-fixup.h header to work.
1376 * Remove it when 4level-fixup.h has been removed.
1377 */
1378#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1379static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1380{
1381 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1382 NULL: pud_offset(pgd, address);
1383}
1384
1385static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1386{
1387 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1388 NULL: pmd_offset(pud, address);
1389}
1390#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1391
1392#if USE_SPLIT_PTE_PTLOCKS
1393#if ALLOC_SPLIT_PTLOCKS
1394void __init ptlock_cache_init(void);
1395extern bool ptlock_alloc(struct page *page);
1396extern void ptlock_free(struct page *page);
1397
1398static inline spinlock_t *ptlock_ptr(struct page *page)
1399{
1400 return page->ptl;
1401}
1402#else /* ALLOC_SPLIT_PTLOCKS */
1403static inline void ptlock_cache_init(void)
1404{
1405}
1406
1407static inline bool ptlock_alloc(struct page *page)
1408{
1409 return true;
1410}
1411
1412static inline void ptlock_free(struct page *page)
1413{
1414}
1415
1416static inline spinlock_t *ptlock_ptr(struct page *page)
1417{
1418 return &page->ptl;
1419}
1420#endif /* ALLOC_SPLIT_PTLOCKS */
1421
1422static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1423{
1424 return ptlock_ptr(pmd_page(*pmd));
1425}
1426
1427static inline bool ptlock_init(struct page *page)
1428{
1429 /*
1430 * prep_new_page() initialize page->private (and therefore page->ptl)
1431 * with 0. Make sure nobody took it in use in between.
1432 *
1433 * It can happen if arch try to use slab for page table allocation:
1434 * slab code uses page->slab_cache and page->first_page (for tail
1435 * pages), which share storage with page->ptl.
1436 */
1437 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1438 if (!ptlock_alloc(page))
1439 return false;
1440 spin_lock_init(ptlock_ptr(page));
1441 return true;
1442}
1443
1444/* Reset page->mapping so free_pages_check won't complain. */
1445static inline void pte_lock_deinit(struct page *page)
1446{
1447 page->mapping = NULL;
1448 ptlock_free(page);
1449}
1450
1451#else /* !USE_SPLIT_PTE_PTLOCKS */
1452/*
1453 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1454 */
1455static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1456{
1457 return &mm->page_table_lock;
1458}
1459static inline void ptlock_cache_init(void) {}
1460static inline bool ptlock_init(struct page *page) { return true; }
1461static inline void pte_lock_deinit(struct page *page) {}
1462#endif /* USE_SPLIT_PTE_PTLOCKS */
1463
1464static inline void pgtable_init(void)
1465{
1466 ptlock_cache_init();
1467 pgtable_cache_init();
1468}
1469
1470static inline bool pgtable_page_ctor(struct page *page)
1471{
1472 inc_zone_page_state(page, NR_PAGETABLE);
1473 return ptlock_init(page);
1474}
1475
1476static inline void pgtable_page_dtor(struct page *page)
1477{
1478 pte_lock_deinit(page);
1479 dec_zone_page_state(page, NR_PAGETABLE);
1480}
1481
1482#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1483({ \
1484 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1485 pte_t *__pte = pte_offset_map(pmd, address); \
1486 *(ptlp) = __ptl; \
1487 spin_lock(__ptl); \
1488 __pte; \
1489})
1490
1491#define pte_unmap_unlock(pte, ptl) do { \
1492 spin_unlock(ptl); \
1493 pte_unmap(pte); \
1494} while (0)
1495
1496#define pte_alloc_map(mm, vma, pmd, address) \
1497 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1498 pmd, address))? \
1499 NULL: pte_offset_map(pmd, address))
1500
1501#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1502 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1503 pmd, address))? \
1504 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1505
1506#define pte_alloc_kernel(pmd, address) \
1507 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1508 NULL: pte_offset_kernel(pmd, address))
1509
1510#if USE_SPLIT_PMD_PTLOCKS
1511
1512static struct page *pmd_to_page(pmd_t *pmd)
1513{
1514 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1515 return virt_to_page((void *)((unsigned long) pmd & mask));
1516}
1517
1518static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1519{
1520 return ptlock_ptr(pmd_to_page(pmd));
1521}
1522
1523static inline bool pgtable_pmd_page_ctor(struct page *page)
1524{
1525#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1526 page->pmd_huge_pte = NULL;
1527#endif
1528 return ptlock_init(page);
1529}
1530
1531static inline void pgtable_pmd_page_dtor(struct page *page)
1532{
1533#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1534 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1535#endif
1536 ptlock_free(page);
1537}
1538
1539#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1540
1541#else
1542
1543static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1544{
1545 return &mm->page_table_lock;
1546}
1547
1548static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1549static inline void pgtable_pmd_page_dtor(struct page *page) {}
1550
1551#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1552
1553#endif
1554
1555static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1556{
1557 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1558 spin_lock(ptl);
1559 return ptl;
1560}
1561
1562extern void free_area_init(unsigned long * zones_size);
1563extern void free_area_init_node(int nid, unsigned long * zones_size,
1564 unsigned long zone_start_pfn, unsigned long *zholes_size);
1565extern void free_initmem(void);
1566
1567/*
1568 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1569 * into the buddy system. The freed pages will be poisoned with pattern
1570 * "poison" if it's within range [0, UCHAR_MAX].
1571 * Return pages freed into the buddy system.
1572 */
1573extern unsigned long free_reserved_area(void *start, void *end,
1574 int poison, char *s);
1575
1576#ifdef CONFIG_HIGHMEM
1577/*
1578 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1579 * and totalram_pages.
1580 */
1581extern void free_highmem_page(struct page *page);
1582#endif
1583
1584extern void adjust_managed_page_count(struct page *page, long count);
1585extern void mem_init_print_info(const char *str);
1586
1587/* Free the reserved page into the buddy system, so it gets managed. */
1588static inline void __free_reserved_page(struct page *page)
1589{
1590 ClearPageReserved(page);
1591 init_page_count(page);
1592 __free_page(page);
1593}
1594
1595static inline void free_reserved_page(struct page *page)
1596{
1597 __free_reserved_page(page);
1598 adjust_managed_page_count(page, 1);
1599}
1600
1601static inline void mark_page_reserved(struct page *page)
1602{
1603 SetPageReserved(page);
1604 adjust_managed_page_count(page, -1);
1605}
1606
1607/*
1608 * Default method to free all the __init memory into the buddy system.
1609 * The freed pages will be poisoned with pattern "poison" if it's within
1610 * range [0, UCHAR_MAX].
1611 * Return pages freed into the buddy system.
1612 */
1613static inline unsigned long free_initmem_default(int poison)
1614{
1615 extern char __init_begin[], __init_end[];
1616
1617 return free_reserved_area(&__init_begin, &__init_end,
1618 poison, "unused kernel");
1619}
1620
1621static inline unsigned long get_num_physpages(void)
1622{
1623 int nid;
1624 unsigned long phys_pages = 0;
1625
1626 for_each_online_node(nid)
1627 phys_pages += node_present_pages(nid);
1628
1629 return phys_pages;
1630}
1631
1632#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1633/*
1634 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1635 * zones, allocate the backing mem_map and account for memory holes in a more
1636 * architecture independent manner. This is a substitute for creating the
1637 * zone_sizes[] and zholes_size[] arrays and passing them to
1638 * free_area_init_node()
1639 *
1640 * An architecture is expected to register range of page frames backed by
1641 * physical memory with memblock_add[_node]() before calling
1642 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1643 * usage, an architecture is expected to do something like
1644 *
1645 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1646 * max_highmem_pfn};
1647 * for_each_valid_physical_page_range()
1648 * memblock_add_node(base, size, nid)
1649 * free_area_init_nodes(max_zone_pfns);
1650 *
1651 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1652 * registered physical page range. Similarly
1653 * sparse_memory_present_with_active_regions() calls memory_present() for
1654 * each range when SPARSEMEM is enabled.
1655 *
1656 * See mm/page_alloc.c for more information on each function exposed by
1657 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1658 */
1659extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1660unsigned long node_map_pfn_alignment(void);
1661unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1662 unsigned long end_pfn);
1663extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1664 unsigned long end_pfn);
1665extern void get_pfn_range_for_nid(unsigned int nid,
1666 unsigned long *start_pfn, unsigned long *end_pfn);
1667extern unsigned long find_min_pfn_with_active_regions(void);
1668extern void free_bootmem_with_active_regions(int nid,
1669 unsigned long max_low_pfn);
1670extern void sparse_memory_present_with_active_regions(int nid);
1671
1672#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1673
1674#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1675 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1676static inline int __early_pfn_to_nid(unsigned long pfn)
1677{
1678 return 0;
1679}
1680#else
1681/* please see mm/page_alloc.c */
1682extern int __meminit early_pfn_to_nid(unsigned long pfn);
1683/* there is a per-arch backend function. */
1684extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1685#endif
1686
1687extern void set_dma_reserve(unsigned long new_dma_reserve);
1688extern void memmap_init_zone(unsigned long, int, unsigned long,
1689 unsigned long, enum memmap_context);
1690extern void setup_per_zone_wmarks(void);
1691extern int __meminit init_per_zone_wmark_min(void);
1692extern void mem_init(void);
1693extern void __init mmap_init(void);
1694extern void show_mem(unsigned int flags);
1695extern void si_meminfo(struct sysinfo * val);
1696extern void si_meminfo_node(struct sysinfo *val, int nid);
1697
1698extern __printf(3, 4)
1699void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1700
1701extern void setup_per_cpu_pageset(void);
1702
1703extern void zone_pcp_update(struct zone *zone);
1704extern void zone_pcp_reset(struct zone *zone);
1705
1706/* page_alloc.c */
1707extern int min_free_kbytes;
1708
1709/* nommu.c */
1710extern atomic_long_t mmap_pages_allocated;
1711extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1712
1713/* interval_tree.c */
1714void vma_interval_tree_insert(struct vm_area_struct *node,
1715 struct rb_root *root);
1716void vma_interval_tree_insert_after(struct vm_area_struct *node,
1717 struct vm_area_struct *prev,
1718 struct rb_root *root);
1719void vma_interval_tree_remove(struct vm_area_struct *node,
1720 struct rb_root *root);
1721struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1722 unsigned long start, unsigned long last);
1723struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1724 unsigned long start, unsigned long last);
1725
1726#define vma_interval_tree_foreach(vma, root, start, last) \
1727 for (vma = vma_interval_tree_iter_first(root, start, last); \
1728 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1729
1730static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1731 struct list_head *list)
1732{
1733 list_add_tail(&vma->shared.nonlinear, list);
1734}
1735
1736void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1737 struct rb_root *root);
1738void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1739 struct rb_root *root);
1740struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1741 struct rb_root *root, unsigned long start, unsigned long last);
1742struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1743 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1744#ifdef CONFIG_DEBUG_VM_RB
1745void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1746#endif
1747
1748#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1749 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1750 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1751
1752/* mmap.c */
1753extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1754extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1755 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1756extern struct vm_area_struct *vma_merge(struct mm_struct *,
1757 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1758 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1759 struct mempolicy *);
1760extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1761extern int split_vma(struct mm_struct *,
1762 struct vm_area_struct *, unsigned long addr, int new_below);
1763extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1764extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1765 struct rb_node **, struct rb_node *);
1766extern void unlink_file_vma(struct vm_area_struct *);
1767extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1768 unsigned long addr, unsigned long len, pgoff_t pgoff,
1769 bool *need_rmap_locks);
1770extern void exit_mmap(struct mm_struct *);
1771
1772extern int mm_take_all_locks(struct mm_struct *mm);
1773extern void mm_drop_all_locks(struct mm_struct *mm);
1774
1775extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1776extern struct file *get_mm_exe_file(struct mm_struct *mm);
1777
1778extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1779extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1780 unsigned long addr, unsigned long len,
1781 unsigned long flags, struct page **pages);
1782extern int install_special_mapping(struct mm_struct *mm,
1783 unsigned long addr, unsigned long len,
1784 unsigned long flags, struct page **pages);
1785
1786extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1787
1788extern unsigned long mmap_region(struct file *file, unsigned long addr,
1789 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1790extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1791 unsigned long len, unsigned long prot, unsigned long flags,
1792 unsigned long pgoff, unsigned long *populate);
1793extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1794
1795#ifdef CONFIG_MMU
1796extern int __mm_populate(unsigned long addr, unsigned long len,
1797 int ignore_errors);
1798static inline void mm_populate(unsigned long addr, unsigned long len)
1799{
1800 /* Ignore errors */
1801 (void) __mm_populate(addr, len, 1);
1802}
1803#else
1804static inline void mm_populate(unsigned long addr, unsigned long len) {}
1805#endif
1806
1807/* These take the mm semaphore themselves */
1808extern unsigned long vm_brk(unsigned long, unsigned long);
1809extern int vm_munmap(unsigned long, size_t);
1810extern unsigned long vm_mmap(struct file *, unsigned long,
1811 unsigned long, unsigned long,
1812 unsigned long, unsigned long);
1813
1814struct vm_unmapped_area_info {
1815#define VM_UNMAPPED_AREA_TOPDOWN 1
1816 unsigned long flags;
1817 unsigned long length;
1818 unsigned long low_limit;
1819 unsigned long high_limit;
1820 unsigned long align_mask;
1821 unsigned long align_offset;
1822};
1823
1824extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1825extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1826
1827/*
1828 * Search for an unmapped address range.
1829 *
1830 * We are looking for a range that:
1831 * - does not intersect with any VMA;
1832 * - is contained within the [low_limit, high_limit) interval;
1833 * - is at least the desired size.
1834 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1835 */
1836static inline unsigned long
1837vm_unmapped_area(struct vm_unmapped_area_info *info)
1838{
1839 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1840 return unmapped_area(info);
1841 else
1842 return unmapped_area_topdown(info);
1843}
1844
1845/* truncate.c */
1846extern void truncate_inode_pages(struct address_space *, loff_t);
1847extern void truncate_inode_pages_range(struct address_space *,
1848 loff_t lstart, loff_t lend);
1849extern void truncate_inode_pages_final(struct address_space *);
1850
1851/* generic vm_area_ops exported for stackable file systems */
1852extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1853extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1854extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1855
1856/* mm/page-writeback.c */
1857int write_one_page(struct page *page, int wait);
1858void task_dirty_inc(struct task_struct *tsk);
1859
1860/* readahead.c */
1861#define VM_MAX_READAHEAD 128 /* kbytes */
1862#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1863
1864int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1865 pgoff_t offset, unsigned long nr_to_read);
1866
1867void page_cache_sync_readahead(struct address_space *mapping,
1868 struct file_ra_state *ra,
1869 struct file *filp,
1870 pgoff_t offset,
1871 unsigned long size);
1872
1873void page_cache_async_readahead(struct address_space *mapping,
1874 struct file_ra_state *ra,
1875 struct file *filp,
1876 struct page *pg,
1877 pgoff_t offset,
1878 unsigned long size);
1879
1880unsigned long max_sane_readahead(unsigned long nr);
1881
1882/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1883extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1884
1885/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1886extern int expand_downwards(struct vm_area_struct *vma,
1887 unsigned long address);
1888#if VM_GROWSUP
1889extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1890#else
1891 #define expand_upwards(vma, address) do { } while (0)
1892#endif
1893
1894/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1895extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1896extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1897 struct vm_area_struct **pprev);
1898
1899/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1900 NULL if none. Assume start_addr < end_addr. */
1901static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1902{
1903 struct vm_area_struct * vma = find_vma(mm,start_addr);
1904
1905 if (vma && end_addr <= vma->vm_start)
1906 vma = NULL;
1907 return vma;
1908}
1909
1910static inline unsigned long vma_pages(struct vm_area_struct *vma)
1911{
1912 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1913}
1914
1915/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1916static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1917 unsigned long vm_start, unsigned long vm_end)
1918{
1919 struct vm_area_struct *vma = find_vma(mm, vm_start);
1920
1921 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1922 vma = NULL;
1923
1924 return vma;
1925}
1926
1927#ifdef CONFIG_MMU
1928pgprot_t vm_get_page_prot(unsigned long vm_flags);
1929#else
1930static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1931{
1932 return __pgprot(0);
1933}
1934#endif
1935
1936#ifdef CONFIG_NUMA_BALANCING
1937unsigned long change_prot_numa(struct vm_area_struct *vma,
1938 unsigned long start, unsigned long end);
1939#endif
1940
1941struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1942int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1943 unsigned long pfn, unsigned long size, pgprot_t);
1944int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1945int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1946 unsigned long pfn);
1947int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1948 unsigned long pfn);
1949int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1950
1951
1952struct page *follow_page_mask(struct vm_area_struct *vma,
1953 unsigned long address, unsigned int foll_flags,
1954 unsigned int *page_mask);
1955
1956static inline struct page *follow_page(struct vm_area_struct *vma,
1957 unsigned long address, unsigned int foll_flags)
1958{
1959 unsigned int unused_page_mask;
1960 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1961}
1962
1963#define FOLL_WRITE 0x01 /* check pte is writable */
1964#define FOLL_TOUCH 0x02 /* mark page accessed */
1965#define FOLL_GET 0x04 /* do get_page on page */
1966#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1967#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1968#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1969 * and return without waiting upon it */
1970#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1971#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1972#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1973#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1974#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1975
1976typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1977 void *data);
1978extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1979 unsigned long size, pte_fn_t fn, void *data);
1980
1981#ifdef CONFIG_PROC_FS
1982void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1983#else
1984static inline void vm_stat_account(struct mm_struct *mm,
1985 unsigned long flags, struct file *file, long pages)
1986{
1987 mm->total_vm += pages;
1988}
1989#endif /* CONFIG_PROC_FS */
1990
1991#ifdef CONFIG_DEBUG_PAGEALLOC
1992extern void kernel_map_pages(struct page *page, int numpages, int enable);
1993#ifdef CONFIG_HIBERNATION
1994extern bool kernel_page_present(struct page *page);
1995#endif /* CONFIG_HIBERNATION */
1996#else
1997static inline void
1998kernel_map_pages(struct page *page, int numpages, int enable) {}
1999#ifdef CONFIG_HIBERNATION
2000static inline bool kernel_page_present(struct page *page) { return true; }
2001#endif /* CONFIG_HIBERNATION */
2002#endif
2003
2004extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2005#ifdef __HAVE_ARCH_GATE_AREA
2006int in_gate_area_no_mm(unsigned long addr);
2007int in_gate_area(struct mm_struct *mm, unsigned long addr);
2008#else
2009int in_gate_area_no_mm(unsigned long addr);
2010#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2011#endif /* __HAVE_ARCH_GATE_AREA */
2012
2013#ifdef CONFIG_SYSCTL
2014extern int sysctl_drop_caches;
2015int drop_caches_sysctl_handler(struct ctl_table *, int,
2016 void __user *, size_t *, loff_t *);
2017#endif
2018
2019unsigned long shrink_slab(struct shrink_control *shrink,
2020 unsigned long nr_pages_scanned,
2021 unsigned long lru_pages);
2022
2023#ifndef CONFIG_MMU
2024#define randomize_va_space 0
2025#else
2026extern int randomize_va_space;
2027#endif
2028
2029const char * arch_vma_name(struct vm_area_struct *vma);
2030void print_vma_addr(char *prefix, unsigned long rip);
2031
2032void sparse_mem_maps_populate_node(struct page **map_map,
2033 unsigned long pnum_begin,
2034 unsigned long pnum_end,
2035 unsigned long map_count,
2036 int nodeid);
2037
2038struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2039pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2040pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2041pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2042pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2043void *vmemmap_alloc_block(unsigned long size, int node);
2044void *vmemmap_alloc_block_buf(unsigned long size, int node);
2045void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2046int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2047 int node);
2048int vmemmap_populate(unsigned long start, unsigned long end, int node);
2049void vmemmap_populate_print_last(void);
2050#ifdef CONFIG_MEMORY_HOTPLUG
2051void vmemmap_free(unsigned long start, unsigned long end);
2052#endif
2053void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2054 unsigned long size);
2055
2056enum mf_flags {
2057 MF_COUNT_INCREASED = 1 << 0,
2058 MF_ACTION_REQUIRED = 1 << 1,
2059 MF_MUST_KILL = 1 << 2,
2060 MF_SOFT_OFFLINE = 1 << 3,
2061};
2062extern int memory_failure(unsigned long pfn, int trapno, int flags);
2063extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2064extern int unpoison_memory(unsigned long pfn);
2065extern int sysctl_memory_failure_early_kill;
2066extern int sysctl_memory_failure_recovery;
2067extern void shake_page(struct page *p, int access);
2068extern atomic_long_t num_poisoned_pages;
2069extern int soft_offline_page(struct page *page, int flags);
2070
2071#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2072extern void clear_huge_page(struct page *page,
2073 unsigned long addr,
2074 unsigned int pages_per_huge_page);
2075extern void copy_user_huge_page(struct page *dst, struct page *src,
2076 unsigned long addr, struct vm_area_struct *vma,
2077 unsigned int pages_per_huge_page);
2078#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2079
2080#ifdef CONFIG_DEBUG_PAGEALLOC
2081extern unsigned int _debug_guardpage_minorder;
2082
2083static inline unsigned int debug_guardpage_minorder(void)
2084{
2085 return _debug_guardpage_minorder;
2086}
2087
2088static inline bool page_is_guard(struct page *page)
2089{
2090 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2091}
2092#else
2093static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2094static inline bool page_is_guard(struct page *page) { return false; }
2095#endif /* CONFIG_DEBUG_PAGEALLOC */
2096
2097#if MAX_NUMNODES > 1
2098void __init setup_nr_node_ids(void);
2099#else
2100static inline void setup_nr_node_ids(void) {}
2101#endif
2102
2103#endif /* __KERNEL__ */
2104#endif /* _LINUX_MM_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28
29struct mempolicy;
30struct anon_vma;
31struct anon_vma_chain;
32struct file_ra_state;
33struct user_struct;
34struct writeback_control;
35struct bdi_writeback;
36
37void init_mm_internals(void);
38
39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40extern unsigned long max_mapnr;
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
48#endif
49
50extern unsigned long totalram_pages;
51extern void * high_memory;
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
74
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
128extern unsigned long sysctl_user_reserve_kbytes;
129extern unsigned long sysctl_admin_reserve_kbytes;
130
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
157extern struct kmem_cache *vm_area_cachep;
158
159#ifndef CONFIG_MMU
160extern struct rb_root nommu_region_tree;
161extern struct rw_semaphore nommu_region_sem;
162
163extern unsigned int kobjsize(const void *objp);
164#endif
165
166/*
167 * vm_flags in vm_area_struct, see mm_types.h.
168 * When changing, update also include/trace/events/mmflags.h
169 */
170#define VM_NONE 0x00000000
171
172#define VM_READ 0x00000001 /* currently active flags */
173#define VM_WRITE 0x00000002
174#define VM_EXEC 0x00000004
175#define VM_SHARED 0x00000008
176
177/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
178#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179#define VM_MAYWRITE 0x00000020
180#define VM_MAYEXEC 0x00000040
181#define VM_MAYSHARE 0x00000080
182
183#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
184#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
185#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
186#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
187#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
188
189#define VM_LOCKED 0x00002000
190#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
191
192 /* Used by sys_madvise() */
193#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
195
196#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
198#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
199#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
200#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
201#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
202#define VM_SYNC 0x00800000 /* Synchronous page faults */
203#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
204#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
205#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
206
207#ifdef CONFIG_MEM_SOFT_DIRTY
208# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209#else
210# define VM_SOFTDIRTY 0
211#endif
212
213#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
214#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
216#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
217
218#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
228#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
229#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
231#if defined(CONFIG_X86)
232# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
233#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239#endif
240#elif defined(CONFIG_PPC)
241# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242#elif defined(CONFIG_PARISC)
243# define VM_GROWSUP VM_ARCH_1
244#elif defined(CONFIG_IA64)
245# define VM_GROWSUP VM_ARCH_1
246#elif defined(CONFIG_SPARC64)
247# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
248# define VM_ARCH_CLEAR VM_SPARC_ADI
249#elif !defined(CONFIG_MMU)
250# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
251#endif
252
253#if defined(CONFIG_X86_INTEL_MPX)
254/* MPX specific bounds table or bounds directory */
255# define VM_MPX VM_HIGH_ARCH_4
256#else
257# define VM_MPX VM_NONE
258#endif
259
260#ifndef VM_GROWSUP
261# define VM_GROWSUP VM_NONE
262#endif
263
264/* Bits set in the VMA until the stack is in its final location */
265#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
266
267#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
268#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
269#endif
270
271#ifdef CONFIG_STACK_GROWSUP
272#define VM_STACK VM_GROWSUP
273#else
274#define VM_STACK VM_GROWSDOWN
275#endif
276
277#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
278
279/*
280 * Special vmas that are non-mergable, non-mlock()able.
281 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
282 */
283#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
284
285/* This mask defines which mm->def_flags a process can inherit its parent */
286#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
287
288/* This mask is used to clear all the VMA flags used by mlock */
289#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
290
291/* Arch-specific flags to clear when updating VM flags on protection change */
292#ifndef VM_ARCH_CLEAR
293# define VM_ARCH_CLEAR VM_NONE
294#endif
295#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
296
297/*
298 * mapping from the currently active vm_flags protection bits (the
299 * low four bits) to a page protection mask..
300 */
301extern pgprot_t protection_map[16];
302
303#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
304#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
305#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
306#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
307#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
308#define FAULT_FLAG_TRIED 0x20 /* Second try */
309#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
310#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
311#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
312
313#define FAULT_FLAG_TRACE \
314 { FAULT_FLAG_WRITE, "WRITE" }, \
315 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
316 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
317 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
318 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
319 { FAULT_FLAG_TRIED, "TRIED" }, \
320 { FAULT_FLAG_USER, "USER" }, \
321 { FAULT_FLAG_REMOTE, "REMOTE" }, \
322 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
323
324/*
325 * vm_fault is filled by the the pagefault handler and passed to the vma's
326 * ->fault function. The vma's ->fault is responsible for returning a bitmask
327 * of VM_FAULT_xxx flags that give details about how the fault was handled.
328 *
329 * MM layer fills up gfp_mask for page allocations but fault handler might
330 * alter it if its implementation requires a different allocation context.
331 *
332 * pgoff should be used in favour of virtual_address, if possible.
333 */
334struct vm_fault {
335 struct vm_area_struct *vma; /* Target VMA */
336 unsigned int flags; /* FAULT_FLAG_xxx flags */
337 gfp_t gfp_mask; /* gfp mask to be used for allocations */
338 pgoff_t pgoff; /* Logical page offset based on vma */
339 unsigned long address; /* Faulting virtual address */
340 pmd_t *pmd; /* Pointer to pmd entry matching
341 * the 'address' */
342 pud_t *pud; /* Pointer to pud entry matching
343 * the 'address'
344 */
345 pte_t orig_pte; /* Value of PTE at the time of fault */
346
347 struct page *cow_page; /* Page handler may use for COW fault */
348 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
349 struct page *page; /* ->fault handlers should return a
350 * page here, unless VM_FAULT_NOPAGE
351 * is set (which is also implied by
352 * VM_FAULT_ERROR).
353 */
354 /* These three entries are valid only while holding ptl lock */
355 pte_t *pte; /* Pointer to pte entry matching
356 * the 'address'. NULL if the page
357 * table hasn't been allocated.
358 */
359 spinlock_t *ptl; /* Page table lock.
360 * Protects pte page table if 'pte'
361 * is not NULL, otherwise pmd.
362 */
363 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
364 * vm_ops->map_pages() calls
365 * alloc_set_pte() from atomic context.
366 * do_fault_around() pre-allocates
367 * page table to avoid allocation from
368 * atomic context.
369 */
370};
371
372/* page entry size for vm->huge_fault() */
373enum page_entry_size {
374 PE_SIZE_PTE = 0,
375 PE_SIZE_PMD,
376 PE_SIZE_PUD,
377};
378
379/*
380 * These are the virtual MM functions - opening of an area, closing and
381 * unmapping it (needed to keep files on disk up-to-date etc), pointer
382 * to the functions called when a no-page or a wp-page exception occurs.
383 */
384struct vm_operations_struct {
385 void (*open)(struct vm_area_struct * area);
386 void (*close)(struct vm_area_struct * area);
387 int (*split)(struct vm_area_struct * area, unsigned long addr);
388 int (*mremap)(struct vm_area_struct * area);
389 vm_fault_t (*fault)(struct vm_fault *vmf);
390 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
391 enum page_entry_size pe_size);
392 void (*map_pages)(struct vm_fault *vmf,
393 pgoff_t start_pgoff, pgoff_t end_pgoff);
394 unsigned long (*pagesize)(struct vm_area_struct * area);
395
396 /* notification that a previously read-only page is about to become
397 * writable, if an error is returned it will cause a SIGBUS */
398 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
399
400 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
401 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
402
403 /* called by access_process_vm when get_user_pages() fails, typically
404 * for use by special VMAs that can switch between memory and hardware
405 */
406 int (*access)(struct vm_area_struct *vma, unsigned long addr,
407 void *buf, int len, int write);
408
409 /* Called by the /proc/PID/maps code to ask the vma whether it
410 * has a special name. Returning non-NULL will also cause this
411 * vma to be dumped unconditionally. */
412 const char *(*name)(struct vm_area_struct *vma);
413
414#ifdef CONFIG_NUMA
415 /*
416 * set_policy() op must add a reference to any non-NULL @new mempolicy
417 * to hold the policy upon return. Caller should pass NULL @new to
418 * remove a policy and fall back to surrounding context--i.e. do not
419 * install a MPOL_DEFAULT policy, nor the task or system default
420 * mempolicy.
421 */
422 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
423
424 /*
425 * get_policy() op must add reference [mpol_get()] to any policy at
426 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
427 * in mm/mempolicy.c will do this automatically.
428 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
429 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
430 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
431 * must return NULL--i.e., do not "fallback" to task or system default
432 * policy.
433 */
434 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
435 unsigned long addr);
436#endif
437 /*
438 * Called by vm_normal_page() for special PTEs to find the
439 * page for @addr. This is useful if the default behavior
440 * (using pte_page()) would not find the correct page.
441 */
442 struct page *(*find_special_page)(struct vm_area_struct *vma,
443 unsigned long addr);
444};
445
446struct mmu_gather;
447struct inode;
448
449#define page_private(page) ((page)->private)
450#define set_page_private(page, v) ((page)->private = (v))
451
452#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
453static inline int pmd_devmap(pmd_t pmd)
454{
455 return 0;
456}
457static inline int pud_devmap(pud_t pud)
458{
459 return 0;
460}
461static inline int pgd_devmap(pgd_t pgd)
462{
463 return 0;
464}
465#endif
466
467/*
468 * FIXME: take this include out, include page-flags.h in
469 * files which need it (119 of them)
470 */
471#include <linux/page-flags.h>
472#include <linux/huge_mm.h>
473
474/*
475 * Methods to modify the page usage count.
476 *
477 * What counts for a page usage:
478 * - cache mapping (page->mapping)
479 * - private data (page->private)
480 * - page mapped in a task's page tables, each mapping
481 * is counted separately
482 *
483 * Also, many kernel routines increase the page count before a critical
484 * routine so they can be sure the page doesn't go away from under them.
485 */
486
487/*
488 * Drop a ref, return true if the refcount fell to zero (the page has no users)
489 */
490static inline int put_page_testzero(struct page *page)
491{
492 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
493 return page_ref_dec_and_test(page);
494}
495
496/*
497 * Try to grab a ref unless the page has a refcount of zero, return false if
498 * that is the case.
499 * This can be called when MMU is off so it must not access
500 * any of the virtual mappings.
501 */
502static inline int get_page_unless_zero(struct page *page)
503{
504 return page_ref_add_unless(page, 1, 0);
505}
506
507extern int page_is_ram(unsigned long pfn);
508
509enum {
510 REGION_INTERSECTS,
511 REGION_DISJOINT,
512 REGION_MIXED,
513};
514
515int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
516 unsigned long desc);
517
518/* Support for virtually mapped pages */
519struct page *vmalloc_to_page(const void *addr);
520unsigned long vmalloc_to_pfn(const void *addr);
521
522/*
523 * Determine if an address is within the vmalloc range
524 *
525 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
526 * is no special casing required.
527 */
528static inline bool is_vmalloc_addr(const void *x)
529{
530#ifdef CONFIG_MMU
531 unsigned long addr = (unsigned long)x;
532
533 return addr >= VMALLOC_START && addr < VMALLOC_END;
534#else
535 return false;
536#endif
537}
538#ifdef CONFIG_MMU
539extern int is_vmalloc_or_module_addr(const void *x);
540#else
541static inline int is_vmalloc_or_module_addr(const void *x)
542{
543 return 0;
544}
545#endif
546
547extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
548static inline void *kvmalloc(size_t size, gfp_t flags)
549{
550 return kvmalloc_node(size, flags, NUMA_NO_NODE);
551}
552static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
553{
554 return kvmalloc_node(size, flags | __GFP_ZERO, node);
555}
556static inline void *kvzalloc(size_t size, gfp_t flags)
557{
558 return kvmalloc(size, flags | __GFP_ZERO);
559}
560
561static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
562{
563 if (size != 0 && n > SIZE_MAX / size)
564 return NULL;
565
566 return kvmalloc(n * size, flags);
567}
568
569extern void kvfree(const void *addr);
570
571static inline atomic_t *compound_mapcount_ptr(struct page *page)
572{
573 return &page[1].compound_mapcount;
574}
575
576static inline int compound_mapcount(struct page *page)
577{
578 VM_BUG_ON_PAGE(!PageCompound(page), page);
579 page = compound_head(page);
580 return atomic_read(compound_mapcount_ptr(page)) + 1;
581}
582
583/*
584 * The atomic page->_mapcount, starts from -1: so that transitions
585 * both from it and to it can be tracked, using atomic_inc_and_test
586 * and atomic_add_negative(-1).
587 */
588static inline void page_mapcount_reset(struct page *page)
589{
590 atomic_set(&(page)->_mapcount, -1);
591}
592
593int __page_mapcount(struct page *page);
594
595static inline int page_mapcount(struct page *page)
596{
597 VM_BUG_ON_PAGE(PageSlab(page), page);
598
599 if (unlikely(PageCompound(page)))
600 return __page_mapcount(page);
601 return atomic_read(&page->_mapcount) + 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605int total_mapcount(struct page *page);
606int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
607#else
608static inline int total_mapcount(struct page *page)
609{
610 return page_mapcount(page);
611}
612static inline int page_trans_huge_mapcount(struct page *page,
613 int *total_mapcount)
614{
615 int mapcount = page_mapcount(page);
616 if (total_mapcount)
617 *total_mapcount = mapcount;
618 return mapcount;
619}
620#endif
621
622static inline struct page *virt_to_head_page(const void *x)
623{
624 struct page *page = virt_to_page(x);
625
626 return compound_head(page);
627}
628
629void __put_page(struct page *page);
630
631void put_pages_list(struct list_head *pages);
632
633void split_page(struct page *page, unsigned int order);
634
635/*
636 * Compound pages have a destructor function. Provide a
637 * prototype for that function and accessor functions.
638 * These are _only_ valid on the head of a compound page.
639 */
640typedef void compound_page_dtor(struct page *);
641
642/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
643enum compound_dtor_id {
644 NULL_COMPOUND_DTOR,
645 COMPOUND_PAGE_DTOR,
646#ifdef CONFIG_HUGETLB_PAGE
647 HUGETLB_PAGE_DTOR,
648#endif
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 TRANSHUGE_PAGE_DTOR,
651#endif
652 NR_COMPOUND_DTORS,
653};
654extern compound_page_dtor * const compound_page_dtors[];
655
656static inline void set_compound_page_dtor(struct page *page,
657 enum compound_dtor_id compound_dtor)
658{
659 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
660 page[1].compound_dtor = compound_dtor;
661}
662
663static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
664{
665 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
666 return compound_page_dtors[page[1].compound_dtor];
667}
668
669static inline unsigned int compound_order(struct page *page)
670{
671 if (!PageHead(page))
672 return 0;
673 return page[1].compound_order;
674}
675
676static inline void set_compound_order(struct page *page, unsigned int order)
677{
678 page[1].compound_order = order;
679}
680
681void free_compound_page(struct page *page);
682
683#ifdef CONFIG_MMU
684/*
685 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
686 * servicing faults for write access. In the normal case, do always want
687 * pte_mkwrite. But get_user_pages can cause write faults for mappings
688 * that do not have writing enabled, when used by access_process_vm.
689 */
690static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
691{
692 if (likely(vma->vm_flags & VM_WRITE))
693 pte = pte_mkwrite(pte);
694 return pte;
695}
696
697int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
698 struct page *page);
699int finish_fault(struct vm_fault *vmf);
700int finish_mkwrite_fault(struct vm_fault *vmf);
701#endif
702
703/*
704 * Multiple processes may "see" the same page. E.g. for untouched
705 * mappings of /dev/null, all processes see the same page full of
706 * zeroes, and text pages of executables and shared libraries have
707 * only one copy in memory, at most, normally.
708 *
709 * For the non-reserved pages, page_count(page) denotes a reference count.
710 * page_count() == 0 means the page is free. page->lru is then used for
711 * freelist management in the buddy allocator.
712 * page_count() > 0 means the page has been allocated.
713 *
714 * Pages are allocated by the slab allocator in order to provide memory
715 * to kmalloc and kmem_cache_alloc. In this case, the management of the
716 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
717 * unless a particular usage is carefully commented. (the responsibility of
718 * freeing the kmalloc memory is the caller's, of course).
719 *
720 * A page may be used by anyone else who does a __get_free_page().
721 * In this case, page_count still tracks the references, and should only
722 * be used through the normal accessor functions. The top bits of page->flags
723 * and page->virtual store page management information, but all other fields
724 * are unused and could be used privately, carefully. The management of this
725 * page is the responsibility of the one who allocated it, and those who have
726 * subsequently been given references to it.
727 *
728 * The other pages (we may call them "pagecache pages") are completely
729 * managed by the Linux memory manager: I/O, buffers, swapping etc.
730 * The following discussion applies only to them.
731 *
732 * A pagecache page contains an opaque `private' member, which belongs to the
733 * page's address_space. Usually, this is the address of a circular list of
734 * the page's disk buffers. PG_private must be set to tell the VM to call
735 * into the filesystem to release these pages.
736 *
737 * A page may belong to an inode's memory mapping. In this case, page->mapping
738 * is the pointer to the inode, and page->index is the file offset of the page,
739 * in units of PAGE_SIZE.
740 *
741 * If pagecache pages are not associated with an inode, they are said to be
742 * anonymous pages. These may become associated with the swapcache, and in that
743 * case PG_swapcache is set, and page->private is an offset into the swapcache.
744 *
745 * In either case (swapcache or inode backed), the pagecache itself holds one
746 * reference to the page. Setting PG_private should also increment the
747 * refcount. The each user mapping also has a reference to the page.
748 *
749 * The pagecache pages are stored in a per-mapping radix tree, which is
750 * rooted at mapping->i_pages, and indexed by offset.
751 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
752 * lists, we instead now tag pages as dirty/writeback in the radix tree.
753 *
754 * All pagecache pages may be subject to I/O:
755 * - inode pages may need to be read from disk,
756 * - inode pages which have been modified and are MAP_SHARED may need
757 * to be written back to the inode on disk,
758 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
759 * modified may need to be swapped out to swap space and (later) to be read
760 * back into memory.
761 */
762
763/*
764 * The zone field is never updated after free_area_init_core()
765 * sets it, so none of the operations on it need to be atomic.
766 */
767
768/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
769#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
770#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
771#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
772#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
773
774/*
775 * Define the bit shifts to access each section. For non-existent
776 * sections we define the shift as 0; that plus a 0 mask ensures
777 * the compiler will optimise away reference to them.
778 */
779#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
780#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
781#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
782#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
783
784/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
785#ifdef NODE_NOT_IN_PAGE_FLAGS
786#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
787#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
788 SECTIONS_PGOFF : ZONES_PGOFF)
789#else
790#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
791#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
792 NODES_PGOFF : ZONES_PGOFF)
793#endif
794
795#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
796
797#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
798#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
799#endif
800
801#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
802#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
803#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
804#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
805#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
806
807static inline enum zone_type page_zonenum(const struct page *page)
808{
809 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
810}
811
812#ifdef CONFIG_ZONE_DEVICE
813static inline bool is_zone_device_page(const struct page *page)
814{
815 return page_zonenum(page) == ZONE_DEVICE;
816}
817#else
818static inline bool is_zone_device_page(const struct page *page)
819{
820 return false;
821}
822#endif
823
824#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
825void put_zone_device_private_or_public_page(struct page *page);
826DECLARE_STATIC_KEY_FALSE(device_private_key);
827#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
828static inline bool is_device_private_page(const struct page *page);
829static inline bool is_device_public_page(const struct page *page);
830#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
831static inline void put_zone_device_private_or_public_page(struct page *page)
832{
833}
834#define IS_HMM_ENABLED 0
835static inline bool is_device_private_page(const struct page *page)
836{
837 return false;
838}
839static inline bool is_device_public_page(const struct page *page)
840{
841 return false;
842}
843#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
844
845
846static inline void get_page(struct page *page)
847{
848 page = compound_head(page);
849 /*
850 * Getting a normal page or the head of a compound page
851 * requires to already have an elevated page->_refcount.
852 */
853 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
854 page_ref_inc(page);
855}
856
857static inline void put_page(struct page *page)
858{
859 page = compound_head(page);
860
861 /*
862 * For private device pages we need to catch refcount transition from
863 * 2 to 1, when refcount reach one it means the private device page is
864 * free and we need to inform the device driver through callback. See
865 * include/linux/memremap.h and HMM for details.
866 */
867 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
868 unlikely(is_device_public_page(page)))) {
869 put_zone_device_private_or_public_page(page);
870 return;
871 }
872
873 if (put_page_testzero(page))
874 __put_page(page);
875}
876
877#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
878#define SECTION_IN_PAGE_FLAGS
879#endif
880
881/*
882 * The identification function is mainly used by the buddy allocator for
883 * determining if two pages could be buddies. We are not really identifying
884 * the zone since we could be using the section number id if we do not have
885 * node id available in page flags.
886 * We only guarantee that it will return the same value for two combinable
887 * pages in a zone.
888 */
889static inline int page_zone_id(struct page *page)
890{
891 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
892}
893
894static inline int zone_to_nid(struct zone *zone)
895{
896#ifdef CONFIG_NUMA
897 return zone->node;
898#else
899 return 0;
900#endif
901}
902
903#ifdef NODE_NOT_IN_PAGE_FLAGS
904extern int page_to_nid(const struct page *page);
905#else
906static inline int page_to_nid(const struct page *page)
907{
908 struct page *p = (struct page *)page;
909
910 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
911}
912#endif
913
914#ifdef CONFIG_NUMA_BALANCING
915static inline int cpu_pid_to_cpupid(int cpu, int pid)
916{
917 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
918}
919
920static inline int cpupid_to_pid(int cpupid)
921{
922 return cpupid & LAST__PID_MASK;
923}
924
925static inline int cpupid_to_cpu(int cpupid)
926{
927 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
928}
929
930static inline int cpupid_to_nid(int cpupid)
931{
932 return cpu_to_node(cpupid_to_cpu(cpupid));
933}
934
935static inline bool cpupid_pid_unset(int cpupid)
936{
937 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
938}
939
940static inline bool cpupid_cpu_unset(int cpupid)
941{
942 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
943}
944
945static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
946{
947 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
948}
949
950#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
951#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
952static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
953{
954 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
955}
956
957static inline int page_cpupid_last(struct page *page)
958{
959 return page->_last_cpupid;
960}
961static inline void page_cpupid_reset_last(struct page *page)
962{
963 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
964}
965#else
966static inline int page_cpupid_last(struct page *page)
967{
968 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
969}
970
971extern int page_cpupid_xchg_last(struct page *page, int cpupid);
972
973static inline void page_cpupid_reset_last(struct page *page)
974{
975 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
976}
977#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
978#else /* !CONFIG_NUMA_BALANCING */
979static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
980{
981 return page_to_nid(page); /* XXX */
982}
983
984static inline int page_cpupid_last(struct page *page)
985{
986 return page_to_nid(page); /* XXX */
987}
988
989static inline int cpupid_to_nid(int cpupid)
990{
991 return -1;
992}
993
994static inline int cpupid_to_pid(int cpupid)
995{
996 return -1;
997}
998
999static inline int cpupid_to_cpu(int cpupid)
1000{
1001 return -1;
1002}
1003
1004static inline int cpu_pid_to_cpupid(int nid, int pid)
1005{
1006 return -1;
1007}
1008
1009static inline bool cpupid_pid_unset(int cpupid)
1010{
1011 return 1;
1012}
1013
1014static inline void page_cpupid_reset_last(struct page *page)
1015{
1016}
1017
1018static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1019{
1020 return false;
1021}
1022#endif /* CONFIG_NUMA_BALANCING */
1023
1024static inline struct zone *page_zone(const struct page *page)
1025{
1026 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1027}
1028
1029static inline pg_data_t *page_pgdat(const struct page *page)
1030{
1031 return NODE_DATA(page_to_nid(page));
1032}
1033
1034#ifdef SECTION_IN_PAGE_FLAGS
1035static inline void set_page_section(struct page *page, unsigned long section)
1036{
1037 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1038 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1039}
1040
1041static inline unsigned long page_to_section(const struct page *page)
1042{
1043 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1044}
1045#endif
1046
1047static inline void set_page_zone(struct page *page, enum zone_type zone)
1048{
1049 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1050 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1051}
1052
1053static inline void set_page_node(struct page *page, unsigned long node)
1054{
1055 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1056 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1057}
1058
1059static inline void set_page_links(struct page *page, enum zone_type zone,
1060 unsigned long node, unsigned long pfn)
1061{
1062 set_page_zone(page, zone);
1063 set_page_node(page, node);
1064#ifdef SECTION_IN_PAGE_FLAGS
1065 set_page_section(page, pfn_to_section_nr(pfn));
1066#endif
1067}
1068
1069#ifdef CONFIG_MEMCG
1070static inline struct mem_cgroup *page_memcg(struct page *page)
1071{
1072 return page->mem_cgroup;
1073}
1074static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1075{
1076 WARN_ON_ONCE(!rcu_read_lock_held());
1077 return READ_ONCE(page->mem_cgroup);
1078}
1079#else
1080static inline struct mem_cgroup *page_memcg(struct page *page)
1081{
1082 return NULL;
1083}
1084static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1085{
1086 WARN_ON_ONCE(!rcu_read_lock_held());
1087 return NULL;
1088}
1089#endif
1090
1091/*
1092 * Some inline functions in vmstat.h depend on page_zone()
1093 */
1094#include <linux/vmstat.h>
1095
1096static __always_inline void *lowmem_page_address(const struct page *page)
1097{
1098 return page_to_virt(page);
1099}
1100
1101#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1102#define HASHED_PAGE_VIRTUAL
1103#endif
1104
1105#if defined(WANT_PAGE_VIRTUAL)
1106static inline void *page_address(const struct page *page)
1107{
1108 return page->virtual;
1109}
1110static inline void set_page_address(struct page *page, void *address)
1111{
1112 page->virtual = address;
1113}
1114#define page_address_init() do { } while(0)
1115#endif
1116
1117#if defined(HASHED_PAGE_VIRTUAL)
1118void *page_address(const struct page *page);
1119void set_page_address(struct page *page, void *virtual);
1120void page_address_init(void);
1121#endif
1122
1123#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1124#define page_address(page) lowmem_page_address(page)
1125#define set_page_address(page, address) do { } while(0)
1126#define page_address_init() do { } while(0)
1127#endif
1128
1129extern void *page_rmapping(struct page *page);
1130extern struct anon_vma *page_anon_vma(struct page *page);
1131extern struct address_space *page_mapping(struct page *page);
1132
1133extern struct address_space *__page_file_mapping(struct page *);
1134
1135static inline
1136struct address_space *page_file_mapping(struct page *page)
1137{
1138 if (unlikely(PageSwapCache(page)))
1139 return __page_file_mapping(page);
1140
1141 return page->mapping;
1142}
1143
1144extern pgoff_t __page_file_index(struct page *page);
1145
1146/*
1147 * Return the pagecache index of the passed page. Regular pagecache pages
1148 * use ->index whereas swapcache pages use swp_offset(->private)
1149 */
1150static inline pgoff_t page_index(struct page *page)
1151{
1152 if (unlikely(PageSwapCache(page)))
1153 return __page_file_index(page);
1154 return page->index;
1155}
1156
1157bool page_mapped(struct page *page);
1158struct address_space *page_mapping(struct page *page);
1159struct address_space *page_mapping_file(struct page *page);
1160
1161/*
1162 * Return true only if the page has been allocated with
1163 * ALLOC_NO_WATERMARKS and the low watermark was not
1164 * met implying that the system is under some pressure.
1165 */
1166static inline bool page_is_pfmemalloc(struct page *page)
1167{
1168 /*
1169 * Page index cannot be this large so this must be
1170 * a pfmemalloc page.
1171 */
1172 return page->index == -1UL;
1173}
1174
1175/*
1176 * Only to be called by the page allocator on a freshly allocated
1177 * page.
1178 */
1179static inline void set_page_pfmemalloc(struct page *page)
1180{
1181 page->index = -1UL;
1182}
1183
1184static inline void clear_page_pfmemalloc(struct page *page)
1185{
1186 page->index = 0;
1187}
1188
1189/*
1190 * Different kinds of faults, as returned by handle_mm_fault().
1191 * Used to decide whether a process gets delivered SIGBUS or
1192 * just gets major/minor fault counters bumped up.
1193 */
1194
1195#define VM_FAULT_OOM 0x0001
1196#define VM_FAULT_SIGBUS 0x0002
1197#define VM_FAULT_MAJOR 0x0004
1198#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1199#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1200#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1201#define VM_FAULT_SIGSEGV 0x0040
1202
1203#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1204#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1205#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1206#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1207#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1208#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1209 * and needs fsync() to complete (for
1210 * synchronous page faults in DAX) */
1211
1212#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1213 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1214 VM_FAULT_FALLBACK)
1215
1216#define VM_FAULT_RESULT_TRACE \
1217 { VM_FAULT_OOM, "OOM" }, \
1218 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1219 { VM_FAULT_MAJOR, "MAJOR" }, \
1220 { VM_FAULT_WRITE, "WRITE" }, \
1221 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1222 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1223 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1224 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1225 { VM_FAULT_LOCKED, "LOCKED" }, \
1226 { VM_FAULT_RETRY, "RETRY" }, \
1227 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1228 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1229 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1230
1231/* Encode hstate index for a hwpoisoned large page */
1232#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1233#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1234
1235/*
1236 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1237 */
1238extern void pagefault_out_of_memory(void);
1239
1240#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1241
1242/*
1243 * Flags passed to show_mem() and show_free_areas() to suppress output in
1244 * various contexts.
1245 */
1246#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1247
1248extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1249
1250extern bool can_do_mlock(void);
1251extern int user_shm_lock(size_t, struct user_struct *);
1252extern void user_shm_unlock(size_t, struct user_struct *);
1253
1254/*
1255 * Parameter block passed down to zap_pte_range in exceptional cases.
1256 */
1257struct zap_details {
1258 struct address_space *check_mapping; /* Check page->mapping if set */
1259 pgoff_t first_index; /* Lowest page->index to unmap */
1260 pgoff_t last_index; /* Highest page->index to unmap */
1261};
1262
1263struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1264 pte_t pte, bool with_public_device);
1265#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1266
1267struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1268 pmd_t pmd);
1269
1270int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1271 unsigned long size);
1272void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1273 unsigned long size);
1274void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1275 unsigned long start, unsigned long end);
1276
1277/**
1278 * mm_walk - callbacks for walk_page_range
1279 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1280 * this handler should only handle pud_trans_huge() puds.
1281 * the pmd_entry or pte_entry callbacks will be used for
1282 * regular PUDs.
1283 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1284 * this handler is required to be able to handle
1285 * pmd_trans_huge() pmds. They may simply choose to
1286 * split_huge_page() instead of handling it explicitly.
1287 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1288 * @pte_hole: if set, called for each hole at all levels
1289 * @hugetlb_entry: if set, called for each hugetlb entry
1290 * @test_walk: caller specific callback function to determine whether
1291 * we walk over the current vma or not. Returning 0
1292 * value means "do page table walk over the current vma,"
1293 * and a negative one means "abort current page table walk
1294 * right now." 1 means "skip the current vma."
1295 * @mm: mm_struct representing the target process of page table walk
1296 * @vma: vma currently walked (NULL if walking outside vmas)
1297 * @private: private data for callbacks' usage
1298 *
1299 * (see the comment on walk_page_range() for more details)
1300 */
1301struct mm_walk {
1302 int (*pud_entry)(pud_t *pud, unsigned long addr,
1303 unsigned long next, struct mm_walk *walk);
1304 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1305 unsigned long next, struct mm_walk *walk);
1306 int (*pte_entry)(pte_t *pte, unsigned long addr,
1307 unsigned long next, struct mm_walk *walk);
1308 int (*pte_hole)(unsigned long addr, unsigned long next,
1309 struct mm_walk *walk);
1310 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1311 unsigned long addr, unsigned long next,
1312 struct mm_walk *walk);
1313 int (*test_walk)(unsigned long addr, unsigned long next,
1314 struct mm_walk *walk);
1315 struct mm_struct *mm;
1316 struct vm_area_struct *vma;
1317 void *private;
1318};
1319
1320int walk_page_range(unsigned long addr, unsigned long end,
1321 struct mm_walk *walk);
1322int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1323void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1324 unsigned long end, unsigned long floor, unsigned long ceiling);
1325int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1326 struct vm_area_struct *vma);
1327int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1328 unsigned long *start, unsigned long *end,
1329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1330int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1331 unsigned long *pfn);
1332int follow_phys(struct vm_area_struct *vma, unsigned long address,
1333 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1334int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1335 void *buf, int len, int write);
1336
1337extern void truncate_pagecache(struct inode *inode, loff_t new);
1338extern void truncate_setsize(struct inode *inode, loff_t newsize);
1339void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1340void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1341int truncate_inode_page(struct address_space *mapping, struct page *page);
1342int generic_error_remove_page(struct address_space *mapping, struct page *page);
1343int invalidate_inode_page(struct page *page);
1344
1345#ifdef CONFIG_MMU
1346extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1347 unsigned int flags);
1348extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1349 unsigned long address, unsigned int fault_flags,
1350 bool *unlocked);
1351void unmap_mapping_pages(struct address_space *mapping,
1352 pgoff_t start, pgoff_t nr, bool even_cows);
1353void unmap_mapping_range(struct address_space *mapping,
1354 loff_t const holebegin, loff_t const holelen, int even_cows);
1355#else
1356static inline int handle_mm_fault(struct vm_area_struct *vma,
1357 unsigned long address, unsigned int flags)
1358{
1359 /* should never happen if there's no MMU */
1360 BUG();
1361 return VM_FAULT_SIGBUS;
1362}
1363static inline int fixup_user_fault(struct task_struct *tsk,
1364 struct mm_struct *mm, unsigned long address,
1365 unsigned int fault_flags, bool *unlocked)
1366{
1367 /* should never happen if there's no MMU */
1368 BUG();
1369 return -EFAULT;
1370}
1371static inline void unmap_mapping_pages(struct address_space *mapping,
1372 pgoff_t start, pgoff_t nr, bool even_cows) { }
1373static inline void unmap_mapping_range(struct address_space *mapping,
1374 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1375#endif
1376
1377static inline void unmap_shared_mapping_range(struct address_space *mapping,
1378 loff_t const holebegin, loff_t const holelen)
1379{
1380 unmap_mapping_range(mapping, holebegin, holelen, 0);
1381}
1382
1383extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1384 void *buf, int len, unsigned int gup_flags);
1385extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1386 void *buf, int len, unsigned int gup_flags);
1387extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1388 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1389
1390long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1391 unsigned long start, unsigned long nr_pages,
1392 unsigned int gup_flags, struct page **pages,
1393 struct vm_area_struct **vmas, int *locked);
1394long get_user_pages(unsigned long start, unsigned long nr_pages,
1395 unsigned int gup_flags, struct page **pages,
1396 struct vm_area_struct **vmas);
1397long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1398 unsigned int gup_flags, struct page **pages, int *locked);
1399long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1400 struct page **pages, unsigned int gup_flags);
1401#ifdef CONFIG_FS_DAX
1402long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1403 unsigned int gup_flags, struct page **pages,
1404 struct vm_area_struct **vmas);
1405#else
1406static inline long get_user_pages_longterm(unsigned long start,
1407 unsigned long nr_pages, unsigned int gup_flags,
1408 struct page **pages, struct vm_area_struct **vmas)
1409{
1410 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1411}
1412#endif /* CONFIG_FS_DAX */
1413
1414int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1415 struct page **pages);
1416
1417/* Container for pinned pfns / pages */
1418struct frame_vector {
1419 unsigned int nr_allocated; /* Number of frames we have space for */
1420 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1421 bool got_ref; /* Did we pin pages by getting page ref? */
1422 bool is_pfns; /* Does array contain pages or pfns? */
1423 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1424 * pfns_vector_pages() or pfns_vector_pfns()
1425 * for access */
1426};
1427
1428struct frame_vector *frame_vector_create(unsigned int nr_frames);
1429void frame_vector_destroy(struct frame_vector *vec);
1430int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1431 unsigned int gup_flags, struct frame_vector *vec);
1432void put_vaddr_frames(struct frame_vector *vec);
1433int frame_vector_to_pages(struct frame_vector *vec);
1434void frame_vector_to_pfns(struct frame_vector *vec);
1435
1436static inline unsigned int frame_vector_count(struct frame_vector *vec)
1437{
1438 return vec->nr_frames;
1439}
1440
1441static inline struct page **frame_vector_pages(struct frame_vector *vec)
1442{
1443 if (vec->is_pfns) {
1444 int err = frame_vector_to_pages(vec);
1445
1446 if (err)
1447 return ERR_PTR(err);
1448 }
1449 return (struct page **)(vec->ptrs);
1450}
1451
1452static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1453{
1454 if (!vec->is_pfns)
1455 frame_vector_to_pfns(vec);
1456 return (unsigned long *)(vec->ptrs);
1457}
1458
1459struct kvec;
1460int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1461 struct page **pages);
1462int get_kernel_page(unsigned long start, int write, struct page **pages);
1463struct page *get_dump_page(unsigned long addr);
1464
1465extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1466extern void do_invalidatepage(struct page *page, unsigned int offset,
1467 unsigned int length);
1468
1469void __set_page_dirty(struct page *, struct address_space *, int warn);
1470int __set_page_dirty_nobuffers(struct page *page);
1471int __set_page_dirty_no_writeback(struct page *page);
1472int redirty_page_for_writepage(struct writeback_control *wbc,
1473 struct page *page);
1474void account_page_dirtied(struct page *page, struct address_space *mapping);
1475void account_page_cleaned(struct page *page, struct address_space *mapping,
1476 struct bdi_writeback *wb);
1477int set_page_dirty(struct page *page);
1478int set_page_dirty_lock(struct page *page);
1479void __cancel_dirty_page(struct page *page);
1480static inline void cancel_dirty_page(struct page *page)
1481{
1482 /* Avoid atomic ops, locking, etc. when not actually needed. */
1483 if (PageDirty(page))
1484 __cancel_dirty_page(page);
1485}
1486int clear_page_dirty_for_io(struct page *page);
1487
1488int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1489
1490static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1491{
1492 return !vma->vm_ops;
1493}
1494
1495#ifdef CONFIG_SHMEM
1496/*
1497 * The vma_is_shmem is not inline because it is used only by slow
1498 * paths in userfault.
1499 */
1500bool vma_is_shmem(struct vm_area_struct *vma);
1501#else
1502static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1503#endif
1504
1505int vma_is_stack_for_current(struct vm_area_struct *vma);
1506
1507extern unsigned long move_page_tables(struct vm_area_struct *vma,
1508 unsigned long old_addr, struct vm_area_struct *new_vma,
1509 unsigned long new_addr, unsigned long len,
1510 bool need_rmap_locks);
1511extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1512 unsigned long end, pgprot_t newprot,
1513 int dirty_accountable, int prot_numa);
1514extern int mprotect_fixup(struct vm_area_struct *vma,
1515 struct vm_area_struct **pprev, unsigned long start,
1516 unsigned long end, unsigned long newflags);
1517
1518/*
1519 * doesn't attempt to fault and will return short.
1520 */
1521int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1522 struct page **pages);
1523/*
1524 * per-process(per-mm_struct) statistics.
1525 */
1526static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1527{
1528 long val = atomic_long_read(&mm->rss_stat.count[member]);
1529
1530#ifdef SPLIT_RSS_COUNTING
1531 /*
1532 * counter is updated in asynchronous manner and may go to minus.
1533 * But it's never be expected number for users.
1534 */
1535 if (val < 0)
1536 val = 0;
1537#endif
1538 return (unsigned long)val;
1539}
1540
1541static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1542{
1543 atomic_long_add(value, &mm->rss_stat.count[member]);
1544}
1545
1546static inline void inc_mm_counter(struct mm_struct *mm, int member)
1547{
1548 atomic_long_inc(&mm->rss_stat.count[member]);
1549}
1550
1551static inline void dec_mm_counter(struct mm_struct *mm, int member)
1552{
1553 atomic_long_dec(&mm->rss_stat.count[member]);
1554}
1555
1556/* Optimized variant when page is already known not to be PageAnon */
1557static inline int mm_counter_file(struct page *page)
1558{
1559 if (PageSwapBacked(page))
1560 return MM_SHMEMPAGES;
1561 return MM_FILEPAGES;
1562}
1563
1564static inline int mm_counter(struct page *page)
1565{
1566 if (PageAnon(page))
1567 return MM_ANONPAGES;
1568 return mm_counter_file(page);
1569}
1570
1571static inline unsigned long get_mm_rss(struct mm_struct *mm)
1572{
1573 return get_mm_counter(mm, MM_FILEPAGES) +
1574 get_mm_counter(mm, MM_ANONPAGES) +
1575 get_mm_counter(mm, MM_SHMEMPAGES);
1576}
1577
1578static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1579{
1580 return max(mm->hiwater_rss, get_mm_rss(mm));
1581}
1582
1583static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1584{
1585 return max(mm->hiwater_vm, mm->total_vm);
1586}
1587
1588static inline void update_hiwater_rss(struct mm_struct *mm)
1589{
1590 unsigned long _rss = get_mm_rss(mm);
1591
1592 if ((mm)->hiwater_rss < _rss)
1593 (mm)->hiwater_rss = _rss;
1594}
1595
1596static inline void update_hiwater_vm(struct mm_struct *mm)
1597{
1598 if (mm->hiwater_vm < mm->total_vm)
1599 mm->hiwater_vm = mm->total_vm;
1600}
1601
1602static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1603{
1604 mm->hiwater_rss = get_mm_rss(mm);
1605}
1606
1607static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1608 struct mm_struct *mm)
1609{
1610 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1611
1612 if (*maxrss < hiwater_rss)
1613 *maxrss = hiwater_rss;
1614}
1615
1616#if defined(SPLIT_RSS_COUNTING)
1617void sync_mm_rss(struct mm_struct *mm);
1618#else
1619static inline void sync_mm_rss(struct mm_struct *mm)
1620{
1621}
1622#endif
1623
1624#ifndef __HAVE_ARCH_PTE_DEVMAP
1625static inline int pte_devmap(pte_t pte)
1626{
1627 return 0;
1628}
1629#endif
1630
1631int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1632
1633extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634 spinlock_t **ptl);
1635static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1636 spinlock_t **ptl)
1637{
1638 pte_t *ptep;
1639 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1640 return ptep;
1641}
1642
1643#ifdef __PAGETABLE_P4D_FOLDED
1644static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1645 unsigned long address)
1646{
1647 return 0;
1648}
1649#else
1650int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1651#endif
1652
1653#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1654static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1655 unsigned long address)
1656{
1657 return 0;
1658}
1659static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1660static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1661
1662#else
1663int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1664
1665static inline void mm_inc_nr_puds(struct mm_struct *mm)
1666{
1667 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1668}
1669
1670static inline void mm_dec_nr_puds(struct mm_struct *mm)
1671{
1672 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1673}
1674#endif
1675
1676#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1677static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1678 unsigned long address)
1679{
1680 return 0;
1681}
1682
1683static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1684static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1685
1686#else
1687int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1688
1689static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1690{
1691 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1692}
1693
1694static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1695{
1696 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1697}
1698#endif
1699
1700#ifdef CONFIG_MMU
1701static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1702{
1703 atomic_long_set(&mm->pgtables_bytes, 0);
1704}
1705
1706static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1707{
1708 return atomic_long_read(&mm->pgtables_bytes);
1709}
1710
1711static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1712{
1713 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1714}
1715
1716static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1717{
1718 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1719}
1720#else
1721
1722static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1723static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1724{
1725 return 0;
1726}
1727
1728static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1729static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1730#endif
1731
1732int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1733int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1734
1735/*
1736 * The following ifdef needed to get the 4level-fixup.h header to work.
1737 * Remove it when 4level-fixup.h has been removed.
1738 */
1739#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1740
1741#ifndef __ARCH_HAS_5LEVEL_HACK
1742static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1743 unsigned long address)
1744{
1745 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1746 NULL : p4d_offset(pgd, address);
1747}
1748
1749static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1750 unsigned long address)
1751{
1752 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1753 NULL : pud_offset(p4d, address);
1754}
1755#endif /* !__ARCH_HAS_5LEVEL_HACK */
1756
1757static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1758{
1759 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1760 NULL: pmd_offset(pud, address);
1761}
1762#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1763
1764#if USE_SPLIT_PTE_PTLOCKS
1765#if ALLOC_SPLIT_PTLOCKS
1766void __init ptlock_cache_init(void);
1767extern bool ptlock_alloc(struct page *page);
1768extern void ptlock_free(struct page *page);
1769
1770static inline spinlock_t *ptlock_ptr(struct page *page)
1771{
1772 return page->ptl;
1773}
1774#else /* ALLOC_SPLIT_PTLOCKS */
1775static inline void ptlock_cache_init(void)
1776{
1777}
1778
1779static inline bool ptlock_alloc(struct page *page)
1780{
1781 return true;
1782}
1783
1784static inline void ptlock_free(struct page *page)
1785{
1786}
1787
1788static inline spinlock_t *ptlock_ptr(struct page *page)
1789{
1790 return &page->ptl;
1791}
1792#endif /* ALLOC_SPLIT_PTLOCKS */
1793
1794static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1795{
1796 return ptlock_ptr(pmd_page(*pmd));
1797}
1798
1799static inline bool ptlock_init(struct page *page)
1800{
1801 /*
1802 * prep_new_page() initialize page->private (and therefore page->ptl)
1803 * with 0. Make sure nobody took it in use in between.
1804 *
1805 * It can happen if arch try to use slab for page table allocation:
1806 * slab code uses page->slab_cache, which share storage with page->ptl.
1807 */
1808 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1809 if (!ptlock_alloc(page))
1810 return false;
1811 spin_lock_init(ptlock_ptr(page));
1812 return true;
1813}
1814
1815/* Reset page->mapping so free_pages_check won't complain. */
1816static inline void pte_lock_deinit(struct page *page)
1817{
1818 page->mapping = NULL;
1819 ptlock_free(page);
1820}
1821
1822#else /* !USE_SPLIT_PTE_PTLOCKS */
1823/*
1824 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1825 */
1826static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1827{
1828 return &mm->page_table_lock;
1829}
1830static inline void ptlock_cache_init(void) {}
1831static inline bool ptlock_init(struct page *page) { return true; }
1832static inline void pte_lock_deinit(struct page *page) {}
1833#endif /* USE_SPLIT_PTE_PTLOCKS */
1834
1835static inline void pgtable_init(void)
1836{
1837 ptlock_cache_init();
1838 pgtable_cache_init();
1839}
1840
1841static inline bool pgtable_page_ctor(struct page *page)
1842{
1843 if (!ptlock_init(page))
1844 return false;
1845 inc_zone_page_state(page, NR_PAGETABLE);
1846 return true;
1847}
1848
1849static inline void pgtable_page_dtor(struct page *page)
1850{
1851 pte_lock_deinit(page);
1852 dec_zone_page_state(page, NR_PAGETABLE);
1853}
1854
1855#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1856({ \
1857 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1858 pte_t *__pte = pte_offset_map(pmd, address); \
1859 *(ptlp) = __ptl; \
1860 spin_lock(__ptl); \
1861 __pte; \
1862})
1863
1864#define pte_unmap_unlock(pte, ptl) do { \
1865 spin_unlock(ptl); \
1866 pte_unmap(pte); \
1867} while (0)
1868
1869#define pte_alloc(mm, pmd, address) \
1870 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1871
1872#define pte_alloc_map(mm, pmd, address) \
1873 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1874
1875#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1876 (pte_alloc(mm, pmd, address) ? \
1877 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1878
1879#define pte_alloc_kernel(pmd, address) \
1880 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1881 NULL: pte_offset_kernel(pmd, address))
1882
1883#if USE_SPLIT_PMD_PTLOCKS
1884
1885static struct page *pmd_to_page(pmd_t *pmd)
1886{
1887 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1888 return virt_to_page((void *)((unsigned long) pmd & mask));
1889}
1890
1891static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1892{
1893 return ptlock_ptr(pmd_to_page(pmd));
1894}
1895
1896static inline bool pgtable_pmd_page_ctor(struct page *page)
1897{
1898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1899 page->pmd_huge_pte = NULL;
1900#endif
1901 return ptlock_init(page);
1902}
1903
1904static inline void pgtable_pmd_page_dtor(struct page *page)
1905{
1906#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1907 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1908#endif
1909 ptlock_free(page);
1910}
1911
1912#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1913
1914#else
1915
1916static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1917{
1918 return &mm->page_table_lock;
1919}
1920
1921static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1922static inline void pgtable_pmd_page_dtor(struct page *page) {}
1923
1924#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1925
1926#endif
1927
1928static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1929{
1930 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1931 spin_lock(ptl);
1932 return ptl;
1933}
1934
1935/*
1936 * No scalability reason to split PUD locks yet, but follow the same pattern
1937 * as the PMD locks to make it easier if we decide to. The VM should not be
1938 * considered ready to switch to split PUD locks yet; there may be places
1939 * which need to be converted from page_table_lock.
1940 */
1941static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1942{
1943 return &mm->page_table_lock;
1944}
1945
1946static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1947{
1948 spinlock_t *ptl = pud_lockptr(mm, pud);
1949
1950 spin_lock(ptl);
1951 return ptl;
1952}
1953
1954extern void __init pagecache_init(void);
1955extern void free_area_init(unsigned long * zones_size);
1956extern void free_area_init_node(int nid, unsigned long * zones_size,
1957 unsigned long zone_start_pfn, unsigned long *zholes_size);
1958extern void free_initmem(void);
1959
1960/*
1961 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1962 * into the buddy system. The freed pages will be poisoned with pattern
1963 * "poison" if it's within range [0, UCHAR_MAX].
1964 * Return pages freed into the buddy system.
1965 */
1966extern unsigned long free_reserved_area(void *start, void *end,
1967 int poison, char *s);
1968
1969#ifdef CONFIG_HIGHMEM
1970/*
1971 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1972 * and totalram_pages.
1973 */
1974extern void free_highmem_page(struct page *page);
1975#endif
1976
1977extern void adjust_managed_page_count(struct page *page, long count);
1978extern void mem_init_print_info(const char *str);
1979
1980extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1981
1982/* Free the reserved page into the buddy system, so it gets managed. */
1983static inline void __free_reserved_page(struct page *page)
1984{
1985 ClearPageReserved(page);
1986 init_page_count(page);
1987 __free_page(page);
1988}
1989
1990static inline void free_reserved_page(struct page *page)
1991{
1992 __free_reserved_page(page);
1993 adjust_managed_page_count(page, 1);
1994}
1995
1996static inline void mark_page_reserved(struct page *page)
1997{
1998 SetPageReserved(page);
1999 adjust_managed_page_count(page, -1);
2000}
2001
2002/*
2003 * Default method to free all the __init memory into the buddy system.
2004 * The freed pages will be poisoned with pattern "poison" if it's within
2005 * range [0, UCHAR_MAX].
2006 * Return pages freed into the buddy system.
2007 */
2008static inline unsigned long free_initmem_default(int poison)
2009{
2010 extern char __init_begin[], __init_end[];
2011
2012 return free_reserved_area(&__init_begin, &__init_end,
2013 poison, "unused kernel");
2014}
2015
2016static inline unsigned long get_num_physpages(void)
2017{
2018 int nid;
2019 unsigned long phys_pages = 0;
2020
2021 for_each_online_node(nid)
2022 phys_pages += node_present_pages(nid);
2023
2024 return phys_pages;
2025}
2026
2027#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2028/*
2029 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2030 * zones, allocate the backing mem_map and account for memory holes in a more
2031 * architecture independent manner. This is a substitute for creating the
2032 * zone_sizes[] and zholes_size[] arrays and passing them to
2033 * free_area_init_node()
2034 *
2035 * An architecture is expected to register range of page frames backed by
2036 * physical memory with memblock_add[_node]() before calling
2037 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2038 * usage, an architecture is expected to do something like
2039 *
2040 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2041 * max_highmem_pfn};
2042 * for_each_valid_physical_page_range()
2043 * memblock_add_node(base, size, nid)
2044 * free_area_init_nodes(max_zone_pfns);
2045 *
2046 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2047 * registered physical page range. Similarly
2048 * sparse_memory_present_with_active_regions() calls memory_present() for
2049 * each range when SPARSEMEM is enabled.
2050 *
2051 * See mm/page_alloc.c for more information on each function exposed by
2052 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2053 */
2054extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2055unsigned long node_map_pfn_alignment(void);
2056unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2057 unsigned long end_pfn);
2058extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2059 unsigned long end_pfn);
2060extern void get_pfn_range_for_nid(unsigned int nid,
2061 unsigned long *start_pfn, unsigned long *end_pfn);
2062extern unsigned long find_min_pfn_with_active_regions(void);
2063extern void free_bootmem_with_active_regions(int nid,
2064 unsigned long max_low_pfn);
2065extern void sparse_memory_present_with_active_regions(int nid);
2066
2067#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2068
2069#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2070 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2071static inline int __early_pfn_to_nid(unsigned long pfn,
2072 struct mminit_pfnnid_cache *state)
2073{
2074 return 0;
2075}
2076#else
2077/* please see mm/page_alloc.c */
2078extern int __meminit early_pfn_to_nid(unsigned long pfn);
2079/* there is a per-arch backend function. */
2080extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2081 struct mminit_pfnnid_cache *state);
2082#endif
2083
2084#ifdef CONFIG_HAVE_MEMBLOCK
2085void zero_resv_unavail(void);
2086#else
2087static inline void zero_resv_unavail(void) {}
2088#endif
2089
2090extern void set_dma_reserve(unsigned long new_dma_reserve);
2091extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2092 enum memmap_context, struct vmem_altmap *);
2093extern void setup_per_zone_wmarks(void);
2094extern int __meminit init_per_zone_wmark_min(void);
2095extern void mem_init(void);
2096extern void __init mmap_init(void);
2097extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2098extern long si_mem_available(void);
2099extern void si_meminfo(struct sysinfo * val);
2100extern void si_meminfo_node(struct sysinfo *val, int nid);
2101#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2102extern unsigned long arch_reserved_kernel_pages(void);
2103#endif
2104
2105extern __printf(3, 4)
2106void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2107
2108extern void setup_per_cpu_pageset(void);
2109
2110extern void zone_pcp_update(struct zone *zone);
2111extern void zone_pcp_reset(struct zone *zone);
2112
2113/* page_alloc.c */
2114extern int min_free_kbytes;
2115extern int watermark_scale_factor;
2116
2117/* nommu.c */
2118extern atomic_long_t mmap_pages_allocated;
2119extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2120
2121/* interval_tree.c */
2122void vma_interval_tree_insert(struct vm_area_struct *node,
2123 struct rb_root_cached *root);
2124void vma_interval_tree_insert_after(struct vm_area_struct *node,
2125 struct vm_area_struct *prev,
2126 struct rb_root_cached *root);
2127void vma_interval_tree_remove(struct vm_area_struct *node,
2128 struct rb_root_cached *root);
2129struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2130 unsigned long start, unsigned long last);
2131struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2132 unsigned long start, unsigned long last);
2133
2134#define vma_interval_tree_foreach(vma, root, start, last) \
2135 for (vma = vma_interval_tree_iter_first(root, start, last); \
2136 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2137
2138void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2139 struct rb_root_cached *root);
2140void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2141 struct rb_root_cached *root);
2142struct anon_vma_chain *
2143anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2144 unsigned long start, unsigned long last);
2145struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2146 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2147#ifdef CONFIG_DEBUG_VM_RB
2148void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2149#endif
2150
2151#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2152 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2153 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2154
2155/* mmap.c */
2156extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2157extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2158 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2159 struct vm_area_struct *expand);
2160static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2161 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2162{
2163 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2164}
2165extern struct vm_area_struct *vma_merge(struct mm_struct *,
2166 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2167 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2168 struct mempolicy *, struct vm_userfaultfd_ctx);
2169extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2170extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2171 unsigned long addr, int new_below);
2172extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2173 unsigned long addr, int new_below);
2174extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2175extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2176 struct rb_node **, struct rb_node *);
2177extern void unlink_file_vma(struct vm_area_struct *);
2178extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2179 unsigned long addr, unsigned long len, pgoff_t pgoff,
2180 bool *need_rmap_locks);
2181extern void exit_mmap(struct mm_struct *);
2182
2183static inline int check_data_rlimit(unsigned long rlim,
2184 unsigned long new,
2185 unsigned long start,
2186 unsigned long end_data,
2187 unsigned long start_data)
2188{
2189 if (rlim < RLIM_INFINITY) {
2190 if (((new - start) + (end_data - start_data)) > rlim)
2191 return -ENOSPC;
2192 }
2193
2194 return 0;
2195}
2196
2197extern int mm_take_all_locks(struct mm_struct *mm);
2198extern void mm_drop_all_locks(struct mm_struct *mm);
2199
2200extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2201extern struct file *get_mm_exe_file(struct mm_struct *mm);
2202extern struct file *get_task_exe_file(struct task_struct *task);
2203
2204extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2205extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2206
2207extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2208 const struct vm_special_mapping *sm);
2209extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2210 unsigned long addr, unsigned long len,
2211 unsigned long flags,
2212 const struct vm_special_mapping *spec);
2213/* This is an obsolete alternative to _install_special_mapping. */
2214extern int install_special_mapping(struct mm_struct *mm,
2215 unsigned long addr, unsigned long len,
2216 unsigned long flags, struct page **pages);
2217
2218extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2219
2220extern unsigned long mmap_region(struct file *file, unsigned long addr,
2221 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2222 struct list_head *uf);
2223extern unsigned long do_mmap(struct file *file, unsigned long addr,
2224 unsigned long len, unsigned long prot, unsigned long flags,
2225 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2226 struct list_head *uf);
2227extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2228 struct list_head *uf);
2229
2230static inline unsigned long
2231do_mmap_pgoff(struct file *file, unsigned long addr,
2232 unsigned long len, unsigned long prot, unsigned long flags,
2233 unsigned long pgoff, unsigned long *populate,
2234 struct list_head *uf)
2235{
2236 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2237}
2238
2239#ifdef CONFIG_MMU
2240extern int __mm_populate(unsigned long addr, unsigned long len,
2241 int ignore_errors);
2242static inline void mm_populate(unsigned long addr, unsigned long len)
2243{
2244 /* Ignore errors */
2245 (void) __mm_populate(addr, len, 1);
2246}
2247#else
2248static inline void mm_populate(unsigned long addr, unsigned long len) {}
2249#endif
2250
2251/* These take the mm semaphore themselves */
2252extern int __must_check vm_brk(unsigned long, unsigned long);
2253extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2254extern int vm_munmap(unsigned long, size_t);
2255extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2256 unsigned long, unsigned long,
2257 unsigned long, unsigned long);
2258
2259struct vm_unmapped_area_info {
2260#define VM_UNMAPPED_AREA_TOPDOWN 1
2261 unsigned long flags;
2262 unsigned long length;
2263 unsigned long low_limit;
2264 unsigned long high_limit;
2265 unsigned long align_mask;
2266 unsigned long align_offset;
2267};
2268
2269extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2270extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2271
2272/*
2273 * Search for an unmapped address range.
2274 *
2275 * We are looking for a range that:
2276 * - does not intersect with any VMA;
2277 * - is contained within the [low_limit, high_limit) interval;
2278 * - is at least the desired size.
2279 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2280 */
2281static inline unsigned long
2282vm_unmapped_area(struct vm_unmapped_area_info *info)
2283{
2284 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2285 return unmapped_area_topdown(info);
2286 else
2287 return unmapped_area(info);
2288}
2289
2290/* truncate.c */
2291extern void truncate_inode_pages(struct address_space *, loff_t);
2292extern void truncate_inode_pages_range(struct address_space *,
2293 loff_t lstart, loff_t lend);
2294extern void truncate_inode_pages_final(struct address_space *);
2295
2296/* generic vm_area_ops exported for stackable file systems */
2297extern int filemap_fault(struct vm_fault *vmf);
2298extern void filemap_map_pages(struct vm_fault *vmf,
2299 pgoff_t start_pgoff, pgoff_t end_pgoff);
2300extern int filemap_page_mkwrite(struct vm_fault *vmf);
2301
2302/* mm/page-writeback.c */
2303int __must_check write_one_page(struct page *page);
2304void task_dirty_inc(struct task_struct *tsk);
2305
2306/* readahead.c */
2307#define VM_MAX_READAHEAD 128 /* kbytes */
2308#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2309
2310int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2311 pgoff_t offset, unsigned long nr_to_read);
2312
2313void page_cache_sync_readahead(struct address_space *mapping,
2314 struct file_ra_state *ra,
2315 struct file *filp,
2316 pgoff_t offset,
2317 unsigned long size);
2318
2319void page_cache_async_readahead(struct address_space *mapping,
2320 struct file_ra_state *ra,
2321 struct file *filp,
2322 struct page *pg,
2323 pgoff_t offset,
2324 unsigned long size);
2325
2326extern unsigned long stack_guard_gap;
2327/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2328extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2329
2330/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2331extern int expand_downwards(struct vm_area_struct *vma,
2332 unsigned long address);
2333#if VM_GROWSUP
2334extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2335#else
2336 #define expand_upwards(vma, address) (0)
2337#endif
2338
2339/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2340extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2341extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2342 struct vm_area_struct **pprev);
2343
2344/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2345 NULL if none. Assume start_addr < end_addr. */
2346static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2347{
2348 struct vm_area_struct * vma = find_vma(mm,start_addr);
2349
2350 if (vma && end_addr <= vma->vm_start)
2351 vma = NULL;
2352 return vma;
2353}
2354
2355static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2356{
2357 unsigned long vm_start = vma->vm_start;
2358
2359 if (vma->vm_flags & VM_GROWSDOWN) {
2360 vm_start -= stack_guard_gap;
2361 if (vm_start > vma->vm_start)
2362 vm_start = 0;
2363 }
2364 return vm_start;
2365}
2366
2367static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2368{
2369 unsigned long vm_end = vma->vm_end;
2370
2371 if (vma->vm_flags & VM_GROWSUP) {
2372 vm_end += stack_guard_gap;
2373 if (vm_end < vma->vm_end)
2374 vm_end = -PAGE_SIZE;
2375 }
2376 return vm_end;
2377}
2378
2379static inline unsigned long vma_pages(struct vm_area_struct *vma)
2380{
2381 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2382}
2383
2384/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2385static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2386 unsigned long vm_start, unsigned long vm_end)
2387{
2388 struct vm_area_struct *vma = find_vma(mm, vm_start);
2389
2390 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2391 vma = NULL;
2392
2393 return vma;
2394}
2395
2396#ifdef CONFIG_MMU
2397pgprot_t vm_get_page_prot(unsigned long vm_flags);
2398void vma_set_page_prot(struct vm_area_struct *vma);
2399#else
2400static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2401{
2402 return __pgprot(0);
2403}
2404static inline void vma_set_page_prot(struct vm_area_struct *vma)
2405{
2406 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2407}
2408#endif
2409
2410#ifdef CONFIG_NUMA_BALANCING
2411unsigned long change_prot_numa(struct vm_area_struct *vma,
2412 unsigned long start, unsigned long end);
2413#endif
2414
2415struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2416int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2417 unsigned long pfn, unsigned long size, pgprot_t);
2418int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2419int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2420 unsigned long pfn);
2421int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2422 unsigned long pfn, pgprot_t pgprot);
2423int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2424 pfn_t pfn);
2425int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2426 pfn_t pfn);
2427int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2428
2429static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2430 unsigned long addr, struct page *page)
2431{
2432 int err = vm_insert_page(vma, addr, page);
2433
2434 if (err == -ENOMEM)
2435 return VM_FAULT_OOM;
2436 if (err < 0 && err != -EBUSY)
2437 return VM_FAULT_SIGBUS;
2438
2439 return VM_FAULT_NOPAGE;
2440}
2441
2442static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2443 unsigned long addr, pfn_t pfn)
2444{
2445 int err = vm_insert_mixed(vma, addr, pfn);
2446
2447 if (err == -ENOMEM)
2448 return VM_FAULT_OOM;
2449 if (err < 0 && err != -EBUSY)
2450 return VM_FAULT_SIGBUS;
2451
2452 return VM_FAULT_NOPAGE;
2453}
2454
2455static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2456 unsigned long addr, unsigned long pfn)
2457{
2458 int err = vm_insert_pfn(vma, addr, pfn);
2459
2460 if (err == -ENOMEM)
2461 return VM_FAULT_OOM;
2462 if (err < 0 && err != -EBUSY)
2463 return VM_FAULT_SIGBUS;
2464
2465 return VM_FAULT_NOPAGE;
2466}
2467
2468static inline vm_fault_t vmf_error(int err)
2469{
2470 if (err == -ENOMEM)
2471 return VM_FAULT_OOM;
2472 return VM_FAULT_SIGBUS;
2473}
2474
2475struct page *follow_page_mask(struct vm_area_struct *vma,
2476 unsigned long address, unsigned int foll_flags,
2477 unsigned int *page_mask);
2478
2479static inline struct page *follow_page(struct vm_area_struct *vma,
2480 unsigned long address, unsigned int foll_flags)
2481{
2482 unsigned int unused_page_mask;
2483 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2484}
2485
2486#define FOLL_WRITE 0x01 /* check pte is writable */
2487#define FOLL_TOUCH 0x02 /* mark page accessed */
2488#define FOLL_GET 0x04 /* do get_page on page */
2489#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2490#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2491#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2492 * and return without waiting upon it */
2493#define FOLL_POPULATE 0x40 /* fault in page */
2494#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2495#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2496#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2497#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2498#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2499#define FOLL_MLOCK 0x1000 /* lock present pages */
2500#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2501#define FOLL_COW 0x4000 /* internal GUP flag */
2502#define FOLL_ANON 0x8000 /* don't do file mappings */
2503
2504static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2505{
2506 if (vm_fault & VM_FAULT_OOM)
2507 return -ENOMEM;
2508 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2509 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2510 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2511 return -EFAULT;
2512 return 0;
2513}
2514
2515typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2516 void *data);
2517extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2518 unsigned long size, pte_fn_t fn, void *data);
2519
2520
2521#ifdef CONFIG_PAGE_POISONING
2522extern bool page_poisoning_enabled(void);
2523extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2524extern bool page_is_poisoned(struct page *page);
2525#else
2526static inline bool page_poisoning_enabled(void) { return false; }
2527static inline void kernel_poison_pages(struct page *page, int numpages,
2528 int enable) { }
2529static inline bool page_is_poisoned(struct page *page) { return false; }
2530#endif
2531
2532#ifdef CONFIG_DEBUG_PAGEALLOC
2533extern bool _debug_pagealloc_enabled;
2534extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2535
2536static inline bool debug_pagealloc_enabled(void)
2537{
2538 return _debug_pagealloc_enabled;
2539}
2540
2541static inline void
2542kernel_map_pages(struct page *page, int numpages, int enable)
2543{
2544 if (!debug_pagealloc_enabled())
2545 return;
2546
2547 __kernel_map_pages(page, numpages, enable);
2548}
2549#ifdef CONFIG_HIBERNATION
2550extern bool kernel_page_present(struct page *page);
2551#endif /* CONFIG_HIBERNATION */
2552#else /* CONFIG_DEBUG_PAGEALLOC */
2553static inline void
2554kernel_map_pages(struct page *page, int numpages, int enable) {}
2555#ifdef CONFIG_HIBERNATION
2556static inline bool kernel_page_present(struct page *page) { return true; }
2557#endif /* CONFIG_HIBERNATION */
2558static inline bool debug_pagealloc_enabled(void)
2559{
2560 return false;
2561}
2562#endif /* CONFIG_DEBUG_PAGEALLOC */
2563
2564#ifdef __HAVE_ARCH_GATE_AREA
2565extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2566extern int in_gate_area_no_mm(unsigned long addr);
2567extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2568#else
2569static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2570{
2571 return NULL;
2572}
2573static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2574static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2575{
2576 return 0;
2577}
2578#endif /* __HAVE_ARCH_GATE_AREA */
2579
2580extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2581
2582#ifdef CONFIG_SYSCTL
2583extern int sysctl_drop_caches;
2584int drop_caches_sysctl_handler(struct ctl_table *, int,
2585 void __user *, size_t *, loff_t *);
2586#endif
2587
2588void drop_slab(void);
2589void drop_slab_node(int nid);
2590
2591#ifndef CONFIG_MMU
2592#define randomize_va_space 0
2593#else
2594extern int randomize_va_space;
2595#endif
2596
2597const char * arch_vma_name(struct vm_area_struct *vma);
2598void print_vma_addr(char *prefix, unsigned long rip);
2599
2600void sparse_mem_maps_populate_node(struct page **map_map,
2601 unsigned long pnum_begin,
2602 unsigned long pnum_end,
2603 unsigned long map_count,
2604 int nodeid);
2605
2606struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2607 struct vmem_altmap *altmap);
2608pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2609p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2610pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2611pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2612pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2613void *vmemmap_alloc_block(unsigned long size, int node);
2614struct vmem_altmap;
2615void *vmemmap_alloc_block_buf(unsigned long size, int node);
2616void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2617void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2618int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2619 int node);
2620int vmemmap_populate(unsigned long start, unsigned long end, int node,
2621 struct vmem_altmap *altmap);
2622void vmemmap_populate_print_last(void);
2623#ifdef CONFIG_MEMORY_HOTPLUG
2624void vmemmap_free(unsigned long start, unsigned long end,
2625 struct vmem_altmap *altmap);
2626#endif
2627void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2628 unsigned long nr_pages);
2629
2630enum mf_flags {
2631 MF_COUNT_INCREASED = 1 << 0,
2632 MF_ACTION_REQUIRED = 1 << 1,
2633 MF_MUST_KILL = 1 << 2,
2634 MF_SOFT_OFFLINE = 1 << 3,
2635};
2636extern int memory_failure(unsigned long pfn, int flags);
2637extern void memory_failure_queue(unsigned long pfn, int flags);
2638extern int unpoison_memory(unsigned long pfn);
2639extern int get_hwpoison_page(struct page *page);
2640#define put_hwpoison_page(page) put_page(page)
2641extern int sysctl_memory_failure_early_kill;
2642extern int sysctl_memory_failure_recovery;
2643extern void shake_page(struct page *p, int access);
2644extern atomic_long_t num_poisoned_pages __read_mostly;
2645extern int soft_offline_page(struct page *page, int flags);
2646
2647
2648/*
2649 * Error handlers for various types of pages.
2650 */
2651enum mf_result {
2652 MF_IGNORED, /* Error: cannot be handled */
2653 MF_FAILED, /* Error: handling failed */
2654 MF_DELAYED, /* Will be handled later */
2655 MF_RECOVERED, /* Successfully recovered */
2656};
2657
2658enum mf_action_page_type {
2659 MF_MSG_KERNEL,
2660 MF_MSG_KERNEL_HIGH_ORDER,
2661 MF_MSG_SLAB,
2662 MF_MSG_DIFFERENT_COMPOUND,
2663 MF_MSG_POISONED_HUGE,
2664 MF_MSG_HUGE,
2665 MF_MSG_FREE_HUGE,
2666 MF_MSG_NON_PMD_HUGE,
2667 MF_MSG_UNMAP_FAILED,
2668 MF_MSG_DIRTY_SWAPCACHE,
2669 MF_MSG_CLEAN_SWAPCACHE,
2670 MF_MSG_DIRTY_MLOCKED_LRU,
2671 MF_MSG_CLEAN_MLOCKED_LRU,
2672 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2673 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2674 MF_MSG_DIRTY_LRU,
2675 MF_MSG_CLEAN_LRU,
2676 MF_MSG_TRUNCATED_LRU,
2677 MF_MSG_BUDDY,
2678 MF_MSG_BUDDY_2ND,
2679 MF_MSG_UNKNOWN,
2680};
2681
2682#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2683extern void clear_huge_page(struct page *page,
2684 unsigned long addr_hint,
2685 unsigned int pages_per_huge_page);
2686extern void copy_user_huge_page(struct page *dst, struct page *src,
2687 unsigned long addr, struct vm_area_struct *vma,
2688 unsigned int pages_per_huge_page);
2689extern long copy_huge_page_from_user(struct page *dst_page,
2690 const void __user *usr_src,
2691 unsigned int pages_per_huge_page,
2692 bool allow_pagefault);
2693#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2694
2695extern struct page_ext_operations debug_guardpage_ops;
2696
2697#ifdef CONFIG_DEBUG_PAGEALLOC
2698extern unsigned int _debug_guardpage_minorder;
2699extern bool _debug_guardpage_enabled;
2700
2701static inline unsigned int debug_guardpage_minorder(void)
2702{
2703 return _debug_guardpage_minorder;
2704}
2705
2706static inline bool debug_guardpage_enabled(void)
2707{
2708 return _debug_guardpage_enabled;
2709}
2710
2711static inline bool page_is_guard(struct page *page)
2712{
2713 struct page_ext *page_ext;
2714
2715 if (!debug_guardpage_enabled())
2716 return false;
2717
2718 page_ext = lookup_page_ext(page);
2719 if (unlikely(!page_ext))
2720 return false;
2721
2722 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2723}
2724#else
2725static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2726static inline bool debug_guardpage_enabled(void) { return false; }
2727static inline bool page_is_guard(struct page *page) { return false; }
2728#endif /* CONFIG_DEBUG_PAGEALLOC */
2729
2730#if MAX_NUMNODES > 1
2731void __init setup_nr_node_ids(void);
2732#else
2733static inline void setup_nr_node_ids(void) {}
2734#endif
2735
2736#endif /* __KERNEL__ */
2737#endif /* _LINUX_MM_H */