Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include <linux/math64.h>
38#include <linux/writeback.h>
39#include "ubifs.h"
40
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
47/* Slab cache for UBIFS inodes */
48struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55};
56
57/**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68{
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err("unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 set_nlink(inode, le32_to_cpu(ino->nlink));
133 i_uid_write(inode, le32_to_cpu(ino->uid));
134 i_gid_write(inode, le32_to_cpu(ino->gid));
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
143
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
152
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
158
159 /* Disable read-ahead */
160 inode->i_mapping->backing_dev_info = &c->bdi;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247out_invalid:
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252out_ino:
253 kfree(ino);
254out:
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258}
259
260static struct inode *ubifs_alloc_inode(struct super_block *sb)
261{
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273};
274
275static void ubifs_i_callback(struct rcu_head *head)
276{
277 struct inode *inode = container_of(head, struct inode, i_rcu);
278 struct ubifs_inode *ui = ubifs_inode(inode);
279 kmem_cache_free(ubifs_inode_slab, ui);
280}
281
282static void ubifs_destroy_inode(struct inode *inode)
283{
284 struct ubifs_inode *ui = ubifs_inode(inode);
285
286 kfree(ui->data);
287 call_rcu(&inode->i_rcu, ubifs_i_callback);
288}
289
290/*
291 * Note, Linux write-back code calls this without 'i_mutex'.
292 */
293static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294{
295 int err = 0;
296 struct ubifs_info *c = inode->i_sb->s_fs_info;
297 struct ubifs_inode *ui = ubifs_inode(inode);
298
299 ubifs_assert(!ui->xattr);
300 if (is_bad_inode(inode))
301 return 0;
302
303 mutex_lock(&ui->ui_mutex);
304 /*
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
309 * 'ubifs_link()'.
310 */
311 if (!ui->dirty) {
312 mutex_unlock(&ui->ui_mutex);
313 return 0;
314 }
315
316 /*
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
319 */
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 if (inode->i_nlink) {
323 err = ubifs_jnl_write_inode(c, inode);
324 if (err)
325 ubifs_err("can't write inode %lu, error %d",
326 inode->i_ino, err);
327 else
328 err = dbg_check_inode_size(c, inode, ui->ui_size);
329 }
330
331 ui->dirty = 0;
332 mutex_unlock(&ui->ui_mutex);
333 ubifs_release_dirty_inode_budget(c, ui);
334 return err;
335}
336
337static void ubifs_evict_inode(struct inode *inode)
338{
339 int err;
340 struct ubifs_info *c = inode->i_sb->s_fs_info;
341 struct ubifs_inode *ui = ubifs_inode(inode);
342
343 if (ui->xattr)
344 /*
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
348 */
349 goto out;
350
351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 ubifs_assert(!atomic_read(&inode->i_count));
353
354 truncate_inode_pages_final(&inode->i_data);
355
356 if (inode->i_nlink)
357 goto done;
358
359 if (is_bad_inode(inode))
360 goto out;
361
362 ui->ui_size = inode->i_size = 0;
363 err = ubifs_jnl_delete_inode(c, inode);
364 if (err)
365 /*
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
368 */
369 ubifs_err("can't delete inode %lu, error %d",
370 inode->i_ino, err);
371
372out:
373 if (ui->dirty)
374 ubifs_release_dirty_inode_budget(c, ui);
375 else {
376 /* We've deleted something - clean the "no space" flags */
377 c->bi.nospace = c->bi.nospace_rp = 0;
378 smp_wmb();
379 }
380done:
381 clear_inode(inode);
382}
383
384static void ubifs_dirty_inode(struct inode *inode, int flags)
385{
386 struct ubifs_inode *ui = ubifs_inode(inode);
387
388 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
389 if (!ui->dirty) {
390 ui->dirty = 1;
391 dbg_gen("inode %lu", inode->i_ino);
392 }
393}
394
395static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
396{
397 struct ubifs_info *c = dentry->d_sb->s_fs_info;
398 unsigned long long free;
399 __le32 *uuid = (__le32 *)c->uuid;
400
401 free = ubifs_get_free_space(c);
402 dbg_gen("free space %lld bytes (%lld blocks)",
403 free, free >> UBIFS_BLOCK_SHIFT);
404
405 buf->f_type = UBIFS_SUPER_MAGIC;
406 buf->f_bsize = UBIFS_BLOCK_SIZE;
407 buf->f_blocks = c->block_cnt;
408 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
409 if (free > c->report_rp_size)
410 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
411 else
412 buf->f_bavail = 0;
413 buf->f_files = 0;
414 buf->f_ffree = 0;
415 buf->f_namelen = UBIFS_MAX_NLEN;
416 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
417 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
418 ubifs_assert(buf->f_bfree <= c->block_cnt);
419 return 0;
420}
421
422static int ubifs_show_options(struct seq_file *s, struct dentry *root)
423{
424 struct ubifs_info *c = root->d_sb->s_fs_info;
425
426 if (c->mount_opts.unmount_mode == 2)
427 seq_printf(s, ",fast_unmount");
428 else if (c->mount_opts.unmount_mode == 1)
429 seq_printf(s, ",norm_unmount");
430
431 if (c->mount_opts.bulk_read == 2)
432 seq_printf(s, ",bulk_read");
433 else if (c->mount_opts.bulk_read == 1)
434 seq_printf(s, ",no_bulk_read");
435
436 if (c->mount_opts.chk_data_crc == 2)
437 seq_printf(s, ",chk_data_crc");
438 else if (c->mount_opts.chk_data_crc == 1)
439 seq_printf(s, ",no_chk_data_crc");
440
441 if (c->mount_opts.override_compr) {
442 seq_printf(s, ",compr=%s",
443 ubifs_compr_name(c->mount_opts.compr_type));
444 }
445
446 return 0;
447}
448
449static int ubifs_sync_fs(struct super_block *sb, int wait)
450{
451 int i, err;
452 struct ubifs_info *c = sb->s_fs_info;
453
454 /*
455 * Zero @wait is just an advisory thing to help the file system shove
456 * lots of data into the queues, and there will be the second
457 * '->sync_fs()' call, with non-zero @wait.
458 */
459 if (!wait)
460 return 0;
461
462 /*
463 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 * do this if it waits for an already running commit.
465 */
466 for (i = 0; i < c->jhead_cnt; i++) {
467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 if (err)
469 return err;
470 }
471
472 /*
473 * Strictly speaking, it is not necessary to commit the journal here,
474 * synchronizing write-buffers would be enough. But committing makes
475 * UBIFS free space predictions much more accurate, so we want to let
476 * the user be able to get more accurate results of 'statfs()' after
477 * they synchronize the file system.
478 */
479 err = ubifs_run_commit(c);
480 if (err)
481 return err;
482
483 return ubi_sync(c->vi.ubi_num);
484}
485
486/**
487 * init_constants_early - initialize UBIFS constants.
488 * @c: UBIFS file-system description object
489 *
490 * This function initialize UBIFS constants which do not need the superblock to
491 * be read. It also checks that the UBI volume satisfies basic UBIFS
492 * requirements. Returns zero in case of success and a negative error code in
493 * case of failure.
494 */
495static int init_constants_early(struct ubifs_info *c)
496{
497 if (c->vi.corrupted) {
498 ubifs_warn("UBI volume is corrupted - read-only mode");
499 c->ro_media = 1;
500 }
501
502 if (c->di.ro_mode) {
503 ubifs_msg("read-only UBI device");
504 c->ro_media = 1;
505 }
506
507 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 ubifs_msg("static UBI volume - read-only mode");
509 c->ro_media = 1;
510 }
511
512 c->leb_cnt = c->vi.size;
513 c->leb_size = c->vi.usable_leb_size;
514 c->leb_start = c->di.leb_start;
515 c->half_leb_size = c->leb_size / 2;
516 c->min_io_size = c->di.min_io_size;
517 c->min_io_shift = fls(c->min_io_size) - 1;
518 c->max_write_size = c->di.max_write_size;
519 c->max_write_shift = fls(c->max_write_size) - 1;
520
521 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
523 c->leb_size, UBIFS_MIN_LEB_SZ);
524 return -EINVAL;
525 }
526
527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 ubifs_err("too few LEBs (%d), min. is %d",
529 c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 return -EINVAL;
531 }
532
533 if (!is_power_of_2(c->min_io_size)) {
534 ubifs_err("bad min. I/O size %d", c->min_io_size);
535 return -EINVAL;
536 }
537
538 /*
539 * Maximum write size has to be greater or equivalent to min. I/O
540 * size, and be multiple of min. I/O size.
541 */
542 if (c->max_write_size < c->min_io_size ||
543 c->max_write_size % c->min_io_size ||
544 !is_power_of_2(c->max_write_size)) {
545 ubifs_err("bad write buffer size %d for %d min. I/O unit",
546 c->max_write_size, c->min_io_size);
547 return -EINVAL;
548 }
549
550 /*
551 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 * less than 8.
554 */
555 if (c->min_io_size < 8) {
556 c->min_io_size = 8;
557 c->min_io_shift = 3;
558 if (c->max_write_size < c->min_io_size) {
559 c->max_write_size = c->min_io_size;
560 c->max_write_shift = c->min_io_shift;
561 }
562 }
563
564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566
567 /*
568 * Initialize node length ranges which are mostly needed for node
569 * length validation.
570 */
571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
577
578 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
579 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
580 c->ranges[UBIFS_ORPH_NODE].min_len =
581 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
582 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
583 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
584 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
585 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
586 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
587 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
588 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
589 /*
590 * Minimum indexing node size is amended later when superblock is
591 * read and the key length is known.
592 */
593 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
594 /*
595 * Maximum indexing node size is amended later when superblock is
596 * read and the fanout is known.
597 */
598 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
599
600 /*
601 * Initialize dead and dark LEB space watermarks. See gc.c for comments
602 * about these values.
603 */
604 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
605 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
606
607 /*
608 * Calculate how many bytes would be wasted at the end of LEB if it was
609 * fully filled with data nodes of maximum size. This is used in
610 * calculations when reporting free space.
611 */
612 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
613
614 /* Buffer size for bulk-reads */
615 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
616 if (c->max_bu_buf_len > c->leb_size)
617 c->max_bu_buf_len = c->leb_size;
618 return 0;
619}
620
621/**
622 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
623 * @c: UBIFS file-system description object
624 * @lnum: LEB the write-buffer was synchronized to
625 * @free: how many free bytes left in this LEB
626 * @pad: how many bytes were padded
627 *
628 * This is a callback function which is called by the I/O unit when the
629 * write-buffer is synchronized. We need this to correctly maintain space
630 * accounting in bud logical eraseblocks. This function returns zero in case of
631 * success and a negative error code in case of failure.
632 *
633 * This function actually belongs to the journal, but we keep it here because
634 * we want to keep it static.
635 */
636static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
637{
638 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
639}
640
641/*
642 * init_constants_sb - initialize UBIFS constants.
643 * @c: UBIFS file-system description object
644 *
645 * This is a helper function which initializes various UBIFS constants after
646 * the superblock has been read. It also checks various UBIFS parameters and
647 * makes sure they are all right. Returns zero in case of success and a
648 * negative error code in case of failure.
649 */
650static int init_constants_sb(struct ubifs_info *c)
651{
652 int tmp, err;
653 long long tmp64;
654
655 c->main_bytes = (long long)c->main_lebs * c->leb_size;
656 c->max_znode_sz = sizeof(struct ubifs_znode) +
657 c->fanout * sizeof(struct ubifs_zbranch);
658
659 tmp = ubifs_idx_node_sz(c, 1);
660 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
661 c->min_idx_node_sz = ALIGN(tmp, 8);
662
663 tmp = ubifs_idx_node_sz(c, c->fanout);
664 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
665 c->max_idx_node_sz = ALIGN(tmp, 8);
666
667 /* Make sure LEB size is large enough to fit full commit */
668 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
669 tmp = ALIGN(tmp, c->min_io_size);
670 if (tmp > c->leb_size) {
671 ubifs_err("too small LEB size %d, at least %d needed",
672 c->leb_size, tmp);
673 return -EINVAL;
674 }
675
676 /*
677 * Make sure that the log is large enough to fit reference nodes for
678 * all buds plus one reserved LEB.
679 */
680 tmp64 = c->max_bud_bytes + c->leb_size - 1;
681 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
682 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
683 tmp /= c->leb_size;
684 tmp += 1;
685 if (c->log_lebs < tmp) {
686 ubifs_err("too small log %d LEBs, required min. %d LEBs",
687 c->log_lebs, tmp);
688 return -EINVAL;
689 }
690
691 /*
692 * When budgeting we assume worst-case scenarios when the pages are not
693 * be compressed and direntries are of the maximum size.
694 *
695 * Note, data, which may be stored in inodes is budgeted separately, so
696 * it is not included into 'c->bi.inode_budget'.
697 */
698 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
699 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
700 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
701
702 /*
703 * When the amount of flash space used by buds becomes
704 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
705 * The writers are unblocked when the commit is finished. To avoid
706 * writers to be blocked UBIFS initiates background commit in advance,
707 * when number of bud bytes becomes above the limit defined below.
708 */
709 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
710
711 /*
712 * Ensure minimum journal size. All the bytes in the journal heads are
713 * considered to be used, when calculating the current journal usage.
714 * Consequently, if the journal is too small, UBIFS will treat it as
715 * always full.
716 */
717 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
718 if (c->bg_bud_bytes < tmp64)
719 c->bg_bud_bytes = tmp64;
720 if (c->max_bud_bytes < tmp64 + c->leb_size)
721 c->max_bud_bytes = tmp64 + c->leb_size;
722
723 err = ubifs_calc_lpt_geom(c);
724 if (err)
725 return err;
726
727 /* Initialize effective LEB size used in budgeting calculations */
728 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
729 return 0;
730}
731
732/*
733 * init_constants_master - initialize UBIFS constants.
734 * @c: UBIFS file-system description object
735 *
736 * This is a helper function which initializes various UBIFS constants after
737 * the master node has been read. It also checks various UBIFS parameters and
738 * makes sure they are all right.
739 */
740static void init_constants_master(struct ubifs_info *c)
741{
742 long long tmp64;
743
744 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
745 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
746
747 /*
748 * Calculate total amount of FS blocks. This number is not used
749 * internally because it does not make much sense for UBIFS, but it is
750 * necessary to report something for the 'statfs()' call.
751 *
752 * Subtract the LEB reserved for GC, the LEB which is reserved for
753 * deletions, minimum LEBs for the index, and assume only one journal
754 * head is available.
755 */
756 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
757 tmp64 *= (long long)c->leb_size - c->leb_overhead;
758 tmp64 = ubifs_reported_space(c, tmp64);
759 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
760}
761
762/**
763 * take_gc_lnum - reserve GC LEB.
764 * @c: UBIFS file-system description object
765 *
766 * This function ensures that the LEB reserved for garbage collection is marked
767 * as "taken" in lprops. We also have to set free space to LEB size and dirty
768 * space to zero, because lprops may contain out-of-date information if the
769 * file-system was un-mounted before it has been committed. This function
770 * returns zero in case of success and a negative error code in case of
771 * failure.
772 */
773static int take_gc_lnum(struct ubifs_info *c)
774{
775 int err;
776
777 if (c->gc_lnum == -1) {
778 ubifs_err("no LEB for GC");
779 return -EINVAL;
780 }
781
782 /* And we have to tell lprops that this LEB is taken */
783 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
784 LPROPS_TAKEN, 0, 0);
785 return err;
786}
787
788/**
789 * alloc_wbufs - allocate write-buffers.
790 * @c: UBIFS file-system description object
791 *
792 * This helper function allocates and initializes UBIFS write-buffers. Returns
793 * zero in case of success and %-ENOMEM in case of failure.
794 */
795static int alloc_wbufs(struct ubifs_info *c)
796{
797 int i, err;
798
799 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
800 GFP_KERNEL);
801 if (!c->jheads)
802 return -ENOMEM;
803
804 /* Initialize journal heads */
805 for (i = 0; i < c->jhead_cnt; i++) {
806 INIT_LIST_HEAD(&c->jheads[i].buds_list);
807 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
808 if (err)
809 return err;
810
811 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
812 c->jheads[i].wbuf.jhead = i;
813 c->jheads[i].grouped = 1;
814 }
815
816 /*
817 * Garbage Collector head does not need to be synchronized by timer.
818 * Also GC head nodes are not grouped.
819 */
820 c->jheads[GCHD].wbuf.no_timer = 1;
821 c->jheads[GCHD].grouped = 0;
822
823 return 0;
824}
825
826/**
827 * free_wbufs - free write-buffers.
828 * @c: UBIFS file-system description object
829 */
830static void free_wbufs(struct ubifs_info *c)
831{
832 int i;
833
834 if (c->jheads) {
835 for (i = 0; i < c->jhead_cnt; i++) {
836 kfree(c->jheads[i].wbuf.buf);
837 kfree(c->jheads[i].wbuf.inodes);
838 }
839 kfree(c->jheads);
840 c->jheads = NULL;
841 }
842}
843
844/**
845 * free_orphans - free orphans.
846 * @c: UBIFS file-system description object
847 */
848static void free_orphans(struct ubifs_info *c)
849{
850 struct ubifs_orphan *orph;
851
852 while (c->orph_dnext) {
853 orph = c->orph_dnext;
854 c->orph_dnext = orph->dnext;
855 list_del(&orph->list);
856 kfree(orph);
857 }
858
859 while (!list_empty(&c->orph_list)) {
860 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
861 list_del(&orph->list);
862 kfree(orph);
863 ubifs_err("orphan list not empty at unmount");
864 }
865
866 vfree(c->orph_buf);
867 c->orph_buf = NULL;
868}
869
870/**
871 * free_buds - free per-bud objects.
872 * @c: UBIFS file-system description object
873 */
874static void free_buds(struct ubifs_info *c)
875{
876 struct ubifs_bud *bud, *n;
877
878 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
879 kfree(bud);
880}
881
882/**
883 * check_volume_empty - check if the UBI volume is empty.
884 * @c: UBIFS file-system description object
885 *
886 * This function checks if the UBIFS volume is empty by looking if its LEBs are
887 * mapped or not. The result of checking is stored in the @c->empty variable.
888 * Returns zero in case of success and a negative error code in case of
889 * failure.
890 */
891static int check_volume_empty(struct ubifs_info *c)
892{
893 int lnum, err;
894
895 c->empty = 1;
896 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
897 err = ubifs_is_mapped(c, lnum);
898 if (unlikely(err < 0))
899 return err;
900 if (err == 1) {
901 c->empty = 0;
902 break;
903 }
904
905 cond_resched();
906 }
907
908 return 0;
909}
910
911/*
912 * UBIFS mount options.
913 *
914 * Opt_fast_unmount: do not run a journal commit before un-mounting
915 * Opt_norm_unmount: run a journal commit before un-mounting
916 * Opt_bulk_read: enable bulk-reads
917 * Opt_no_bulk_read: disable bulk-reads
918 * Opt_chk_data_crc: check CRCs when reading data nodes
919 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
920 * Opt_override_compr: override default compressor
921 * Opt_err: just end of array marker
922 */
923enum {
924 Opt_fast_unmount,
925 Opt_norm_unmount,
926 Opt_bulk_read,
927 Opt_no_bulk_read,
928 Opt_chk_data_crc,
929 Opt_no_chk_data_crc,
930 Opt_override_compr,
931 Opt_err,
932};
933
934static const match_table_t tokens = {
935 {Opt_fast_unmount, "fast_unmount"},
936 {Opt_norm_unmount, "norm_unmount"},
937 {Opt_bulk_read, "bulk_read"},
938 {Opt_no_bulk_read, "no_bulk_read"},
939 {Opt_chk_data_crc, "chk_data_crc"},
940 {Opt_no_chk_data_crc, "no_chk_data_crc"},
941 {Opt_override_compr, "compr=%s"},
942 {Opt_err, NULL},
943};
944
945/**
946 * parse_standard_option - parse a standard mount option.
947 * @option: the option to parse
948 *
949 * Normally, standard mount options like "sync" are passed to file-systems as
950 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
951 * be present in the options string. This function tries to deal with this
952 * situation and parse standard options. Returns 0 if the option was not
953 * recognized, and the corresponding integer flag if it was.
954 *
955 * UBIFS is only interested in the "sync" option, so do not check for anything
956 * else.
957 */
958static int parse_standard_option(const char *option)
959{
960 ubifs_msg("parse %s", option);
961 if (!strcmp(option, "sync"))
962 return MS_SYNCHRONOUS;
963 return 0;
964}
965
966/**
967 * ubifs_parse_options - parse mount parameters.
968 * @c: UBIFS file-system description object
969 * @options: parameters to parse
970 * @is_remount: non-zero if this is FS re-mount
971 *
972 * This function parses UBIFS mount options and returns zero in case success
973 * and a negative error code in case of failure.
974 */
975static int ubifs_parse_options(struct ubifs_info *c, char *options,
976 int is_remount)
977{
978 char *p;
979 substring_t args[MAX_OPT_ARGS];
980
981 if (!options)
982 return 0;
983
984 while ((p = strsep(&options, ","))) {
985 int token;
986
987 if (!*p)
988 continue;
989
990 token = match_token(p, tokens, args);
991 switch (token) {
992 /*
993 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
994 * We accept them in order to be backward-compatible. But this
995 * should be removed at some point.
996 */
997 case Opt_fast_unmount:
998 c->mount_opts.unmount_mode = 2;
999 break;
1000 case Opt_norm_unmount:
1001 c->mount_opts.unmount_mode = 1;
1002 break;
1003 case Opt_bulk_read:
1004 c->mount_opts.bulk_read = 2;
1005 c->bulk_read = 1;
1006 break;
1007 case Opt_no_bulk_read:
1008 c->mount_opts.bulk_read = 1;
1009 c->bulk_read = 0;
1010 break;
1011 case Opt_chk_data_crc:
1012 c->mount_opts.chk_data_crc = 2;
1013 c->no_chk_data_crc = 0;
1014 break;
1015 case Opt_no_chk_data_crc:
1016 c->mount_opts.chk_data_crc = 1;
1017 c->no_chk_data_crc = 1;
1018 break;
1019 case Opt_override_compr:
1020 {
1021 char *name = match_strdup(&args[0]);
1022
1023 if (!name)
1024 return -ENOMEM;
1025 if (!strcmp(name, "none"))
1026 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1027 else if (!strcmp(name, "lzo"))
1028 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1029 else if (!strcmp(name, "zlib"))
1030 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1031 else {
1032 ubifs_err("unknown compressor \"%s\"", name);
1033 kfree(name);
1034 return -EINVAL;
1035 }
1036 kfree(name);
1037 c->mount_opts.override_compr = 1;
1038 c->default_compr = c->mount_opts.compr_type;
1039 break;
1040 }
1041 default:
1042 {
1043 unsigned long flag;
1044 struct super_block *sb = c->vfs_sb;
1045
1046 flag = parse_standard_option(p);
1047 if (!flag) {
1048 ubifs_err("unrecognized mount option \"%s\" or missing value",
1049 p);
1050 return -EINVAL;
1051 }
1052 sb->s_flags |= flag;
1053 break;
1054 }
1055 }
1056 }
1057
1058 return 0;
1059}
1060
1061/**
1062 * destroy_journal - destroy journal data structures.
1063 * @c: UBIFS file-system description object
1064 *
1065 * This function destroys journal data structures including those that may have
1066 * been created by recovery functions.
1067 */
1068static void destroy_journal(struct ubifs_info *c)
1069{
1070 while (!list_empty(&c->unclean_leb_list)) {
1071 struct ubifs_unclean_leb *ucleb;
1072
1073 ucleb = list_entry(c->unclean_leb_list.next,
1074 struct ubifs_unclean_leb, list);
1075 list_del(&ucleb->list);
1076 kfree(ucleb);
1077 }
1078 while (!list_empty(&c->old_buds)) {
1079 struct ubifs_bud *bud;
1080
1081 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1082 list_del(&bud->list);
1083 kfree(bud);
1084 }
1085 ubifs_destroy_idx_gc(c);
1086 ubifs_destroy_size_tree(c);
1087 ubifs_tnc_close(c);
1088 free_buds(c);
1089}
1090
1091/**
1092 * bu_init - initialize bulk-read information.
1093 * @c: UBIFS file-system description object
1094 */
1095static void bu_init(struct ubifs_info *c)
1096{
1097 ubifs_assert(c->bulk_read == 1);
1098
1099 if (c->bu.buf)
1100 return; /* Already initialized */
1101
1102again:
1103 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1104 if (!c->bu.buf) {
1105 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1106 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1107 goto again;
1108 }
1109
1110 /* Just disable bulk-read */
1111 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1112 c->max_bu_buf_len);
1113 c->mount_opts.bulk_read = 1;
1114 c->bulk_read = 0;
1115 return;
1116 }
1117}
1118
1119/**
1120 * check_free_space - check if there is enough free space to mount.
1121 * @c: UBIFS file-system description object
1122 *
1123 * This function makes sure UBIFS has enough free space to be mounted in
1124 * read/write mode. UBIFS must always have some free space to allow deletions.
1125 */
1126static int check_free_space(struct ubifs_info *c)
1127{
1128 ubifs_assert(c->dark_wm > 0);
1129 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1130 ubifs_err("insufficient free space to mount in R/W mode");
1131 ubifs_dump_budg(c, &c->bi);
1132 ubifs_dump_lprops(c);
1133 return -ENOSPC;
1134 }
1135 return 0;
1136}
1137
1138/**
1139 * mount_ubifs - mount UBIFS file-system.
1140 * @c: UBIFS file-system description object
1141 *
1142 * This function mounts UBIFS file system. Returns zero in case of success and
1143 * a negative error code in case of failure.
1144 */
1145static int mount_ubifs(struct ubifs_info *c)
1146{
1147 int err;
1148 long long x, y;
1149 size_t sz;
1150
1151 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1152 err = init_constants_early(c);
1153 if (err)
1154 return err;
1155
1156 err = ubifs_debugging_init(c);
1157 if (err)
1158 return err;
1159
1160 err = check_volume_empty(c);
1161 if (err)
1162 goto out_free;
1163
1164 if (c->empty && (c->ro_mount || c->ro_media)) {
1165 /*
1166 * This UBI volume is empty, and read-only, or the file system
1167 * is mounted read-only - we cannot format it.
1168 */
1169 ubifs_err("can't format empty UBI volume: read-only %s",
1170 c->ro_media ? "UBI volume" : "mount");
1171 err = -EROFS;
1172 goto out_free;
1173 }
1174
1175 if (c->ro_media && !c->ro_mount) {
1176 ubifs_err("cannot mount read-write - read-only media");
1177 err = -EROFS;
1178 goto out_free;
1179 }
1180
1181 /*
1182 * The requirement for the buffer is that it should fit indexing B-tree
1183 * height amount of integers. We assume the height if the TNC tree will
1184 * never exceed 64.
1185 */
1186 err = -ENOMEM;
1187 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1188 if (!c->bottom_up_buf)
1189 goto out_free;
1190
1191 c->sbuf = vmalloc(c->leb_size);
1192 if (!c->sbuf)
1193 goto out_free;
1194
1195 if (!c->ro_mount) {
1196 c->ileb_buf = vmalloc(c->leb_size);
1197 if (!c->ileb_buf)
1198 goto out_free;
1199 }
1200
1201 if (c->bulk_read == 1)
1202 bu_init(c);
1203
1204 if (!c->ro_mount) {
1205 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1206 GFP_KERNEL);
1207 if (!c->write_reserve_buf)
1208 goto out_free;
1209 }
1210
1211 c->mounting = 1;
1212
1213 err = ubifs_read_superblock(c);
1214 if (err)
1215 goto out_free;
1216
1217 /*
1218 * Make sure the compressor which is set as default in the superblock
1219 * or overridden by mount options is actually compiled in.
1220 */
1221 if (!ubifs_compr_present(c->default_compr)) {
1222 ubifs_err("'compressor \"%s\" is not compiled in",
1223 ubifs_compr_name(c->default_compr));
1224 err = -ENOTSUPP;
1225 goto out_free;
1226 }
1227
1228 err = init_constants_sb(c);
1229 if (err)
1230 goto out_free;
1231
1232 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1233 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1234 c->cbuf = kmalloc(sz, GFP_NOFS);
1235 if (!c->cbuf) {
1236 err = -ENOMEM;
1237 goto out_free;
1238 }
1239
1240 err = alloc_wbufs(c);
1241 if (err)
1242 goto out_cbuf;
1243
1244 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1245 if (!c->ro_mount) {
1246 /* Create background thread */
1247 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1248 if (IS_ERR(c->bgt)) {
1249 err = PTR_ERR(c->bgt);
1250 c->bgt = NULL;
1251 ubifs_err("cannot spawn \"%s\", error %d",
1252 c->bgt_name, err);
1253 goto out_wbufs;
1254 }
1255 wake_up_process(c->bgt);
1256 }
1257
1258 err = ubifs_read_master(c);
1259 if (err)
1260 goto out_master;
1261
1262 init_constants_master(c);
1263
1264 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1265 ubifs_msg("recovery needed");
1266 c->need_recovery = 1;
1267 }
1268
1269 if (c->need_recovery && !c->ro_mount) {
1270 err = ubifs_recover_inl_heads(c, c->sbuf);
1271 if (err)
1272 goto out_master;
1273 }
1274
1275 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1276 if (err)
1277 goto out_master;
1278
1279 if (!c->ro_mount && c->space_fixup) {
1280 err = ubifs_fixup_free_space(c);
1281 if (err)
1282 goto out_lpt;
1283 }
1284
1285 if (!c->ro_mount) {
1286 /*
1287 * Set the "dirty" flag so that if we reboot uncleanly we
1288 * will notice this immediately on the next mount.
1289 */
1290 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1291 err = ubifs_write_master(c);
1292 if (err)
1293 goto out_lpt;
1294 }
1295
1296 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1297 if (err)
1298 goto out_lpt;
1299
1300 err = ubifs_replay_journal(c);
1301 if (err)
1302 goto out_journal;
1303
1304 /* Calculate 'min_idx_lebs' after journal replay */
1305 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1306
1307 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1308 if (err)
1309 goto out_orphans;
1310
1311 if (!c->ro_mount) {
1312 int lnum;
1313
1314 err = check_free_space(c);
1315 if (err)
1316 goto out_orphans;
1317
1318 /* Check for enough log space */
1319 lnum = c->lhead_lnum + 1;
1320 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1321 lnum = UBIFS_LOG_LNUM;
1322 if (lnum == c->ltail_lnum) {
1323 err = ubifs_consolidate_log(c);
1324 if (err)
1325 goto out_orphans;
1326 }
1327
1328 if (c->need_recovery) {
1329 err = ubifs_recover_size(c);
1330 if (err)
1331 goto out_orphans;
1332 err = ubifs_rcvry_gc_commit(c);
1333 if (err)
1334 goto out_orphans;
1335 } else {
1336 err = take_gc_lnum(c);
1337 if (err)
1338 goto out_orphans;
1339
1340 /*
1341 * GC LEB may contain garbage if there was an unclean
1342 * reboot, and it should be un-mapped.
1343 */
1344 err = ubifs_leb_unmap(c, c->gc_lnum);
1345 if (err)
1346 goto out_orphans;
1347 }
1348
1349 err = dbg_check_lprops(c);
1350 if (err)
1351 goto out_orphans;
1352 } else if (c->need_recovery) {
1353 err = ubifs_recover_size(c);
1354 if (err)
1355 goto out_orphans;
1356 } else {
1357 /*
1358 * Even if we mount read-only, we have to set space in GC LEB
1359 * to proper value because this affects UBIFS free space
1360 * reporting. We do not want to have a situation when
1361 * re-mounting from R/O to R/W changes amount of free space.
1362 */
1363 err = take_gc_lnum(c);
1364 if (err)
1365 goto out_orphans;
1366 }
1367
1368 spin_lock(&ubifs_infos_lock);
1369 list_add_tail(&c->infos_list, &ubifs_infos);
1370 spin_unlock(&ubifs_infos_lock);
1371
1372 if (c->need_recovery) {
1373 if (c->ro_mount)
1374 ubifs_msg("recovery deferred");
1375 else {
1376 c->need_recovery = 0;
1377 ubifs_msg("recovery completed");
1378 /*
1379 * GC LEB has to be empty and taken at this point. But
1380 * the journal head LEBs may also be accounted as
1381 * "empty taken" if they are empty.
1382 */
1383 ubifs_assert(c->lst.taken_empty_lebs > 0);
1384 }
1385 } else
1386 ubifs_assert(c->lst.taken_empty_lebs > 0);
1387
1388 err = dbg_check_filesystem(c);
1389 if (err)
1390 goto out_infos;
1391
1392 err = dbg_debugfs_init_fs(c);
1393 if (err)
1394 goto out_infos;
1395
1396 c->mounting = 0;
1397
1398 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1399 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1400 c->ro_mount ? ", R/O mode" : "");
1401 x = (long long)c->main_lebs * c->leb_size;
1402 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1403 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1404 c->leb_size, c->leb_size >> 10, c->min_io_size,
1405 c->max_write_size);
1406 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1407 x, x >> 20, c->main_lebs,
1408 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1409 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1410 c->report_rp_size, c->report_rp_size >> 10);
1411 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1412 c->fmt_version, c->ro_compat_version,
1413 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1414 c->big_lpt ? ", big LPT model" : ", small LPT model");
1415
1416 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1417 dbg_gen("data journal heads: %d",
1418 c->jhead_cnt - NONDATA_JHEADS_CNT);
1419 dbg_gen("log LEBs: %d (%d - %d)",
1420 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1421 dbg_gen("LPT area LEBs: %d (%d - %d)",
1422 c->lpt_lebs, c->lpt_first, c->lpt_last);
1423 dbg_gen("orphan area LEBs: %d (%d - %d)",
1424 c->orph_lebs, c->orph_first, c->orph_last);
1425 dbg_gen("main area LEBs: %d (%d - %d)",
1426 c->main_lebs, c->main_first, c->leb_cnt - 1);
1427 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1428 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1429 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1430 c->bi.old_idx_sz >> 20);
1431 dbg_gen("key hash type: %d", c->key_hash_type);
1432 dbg_gen("tree fanout: %d", c->fanout);
1433 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1434 dbg_gen("max. znode size %d", c->max_znode_sz);
1435 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1436 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1437 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1438 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1439 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1440 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1441 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1442 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1443 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1444 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1445 dbg_gen("dead watermark: %d", c->dead_wm);
1446 dbg_gen("dark watermark: %d", c->dark_wm);
1447 dbg_gen("LEB overhead: %d", c->leb_overhead);
1448 x = (long long)c->main_lebs * c->dark_wm;
1449 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1450 x, x >> 10, x >> 20);
1451 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1452 c->max_bud_bytes, c->max_bud_bytes >> 10,
1453 c->max_bud_bytes >> 20);
1454 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1455 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1456 c->bg_bud_bytes >> 20);
1457 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1458 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1459 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1460 dbg_gen("commit number: %llu", c->cmt_no);
1461
1462 return 0;
1463
1464out_infos:
1465 spin_lock(&ubifs_infos_lock);
1466 list_del(&c->infos_list);
1467 spin_unlock(&ubifs_infos_lock);
1468out_orphans:
1469 free_orphans(c);
1470out_journal:
1471 destroy_journal(c);
1472out_lpt:
1473 ubifs_lpt_free(c, 0);
1474out_master:
1475 kfree(c->mst_node);
1476 kfree(c->rcvrd_mst_node);
1477 if (c->bgt)
1478 kthread_stop(c->bgt);
1479out_wbufs:
1480 free_wbufs(c);
1481out_cbuf:
1482 kfree(c->cbuf);
1483out_free:
1484 kfree(c->write_reserve_buf);
1485 kfree(c->bu.buf);
1486 vfree(c->ileb_buf);
1487 vfree(c->sbuf);
1488 kfree(c->bottom_up_buf);
1489 ubifs_debugging_exit(c);
1490 return err;
1491}
1492
1493/**
1494 * ubifs_umount - un-mount UBIFS file-system.
1495 * @c: UBIFS file-system description object
1496 *
1497 * Note, this function is called to free allocated resourced when un-mounting,
1498 * as well as free resources when an error occurred while we were half way
1499 * through mounting (error path cleanup function). So it has to make sure the
1500 * resource was actually allocated before freeing it.
1501 */
1502static void ubifs_umount(struct ubifs_info *c)
1503{
1504 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1505 c->vi.vol_id);
1506
1507 dbg_debugfs_exit_fs(c);
1508 spin_lock(&ubifs_infos_lock);
1509 list_del(&c->infos_list);
1510 spin_unlock(&ubifs_infos_lock);
1511
1512 if (c->bgt)
1513 kthread_stop(c->bgt);
1514
1515 destroy_journal(c);
1516 free_wbufs(c);
1517 free_orphans(c);
1518 ubifs_lpt_free(c, 0);
1519
1520 kfree(c->cbuf);
1521 kfree(c->rcvrd_mst_node);
1522 kfree(c->mst_node);
1523 kfree(c->write_reserve_buf);
1524 kfree(c->bu.buf);
1525 vfree(c->ileb_buf);
1526 vfree(c->sbuf);
1527 kfree(c->bottom_up_buf);
1528 ubifs_debugging_exit(c);
1529}
1530
1531/**
1532 * ubifs_remount_rw - re-mount in read-write mode.
1533 * @c: UBIFS file-system description object
1534 *
1535 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1536 * mode. This function allocates the needed resources and re-mounts UBIFS in
1537 * read-write mode.
1538 */
1539static int ubifs_remount_rw(struct ubifs_info *c)
1540{
1541 int err, lnum;
1542
1543 if (c->rw_incompat) {
1544 ubifs_err("the file-system is not R/W-compatible");
1545 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1546 c->fmt_version, c->ro_compat_version,
1547 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1548 return -EROFS;
1549 }
1550
1551 mutex_lock(&c->umount_mutex);
1552 dbg_save_space_info(c);
1553 c->remounting_rw = 1;
1554 c->ro_mount = 0;
1555
1556 if (c->space_fixup) {
1557 err = ubifs_fixup_free_space(c);
1558 if (err)
1559 goto out;
1560 }
1561
1562 err = check_free_space(c);
1563 if (err)
1564 goto out;
1565
1566 if (c->old_leb_cnt != c->leb_cnt) {
1567 struct ubifs_sb_node *sup;
1568
1569 sup = ubifs_read_sb_node(c);
1570 if (IS_ERR(sup)) {
1571 err = PTR_ERR(sup);
1572 goto out;
1573 }
1574 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1575 err = ubifs_write_sb_node(c, sup);
1576 kfree(sup);
1577 if (err)
1578 goto out;
1579 }
1580
1581 if (c->need_recovery) {
1582 ubifs_msg("completing deferred recovery");
1583 err = ubifs_write_rcvrd_mst_node(c);
1584 if (err)
1585 goto out;
1586 err = ubifs_recover_size(c);
1587 if (err)
1588 goto out;
1589 err = ubifs_clean_lebs(c, c->sbuf);
1590 if (err)
1591 goto out;
1592 err = ubifs_recover_inl_heads(c, c->sbuf);
1593 if (err)
1594 goto out;
1595 } else {
1596 /* A readonly mount is not allowed to have orphans */
1597 ubifs_assert(c->tot_orphans == 0);
1598 err = ubifs_clear_orphans(c);
1599 if (err)
1600 goto out;
1601 }
1602
1603 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1604 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1605 err = ubifs_write_master(c);
1606 if (err)
1607 goto out;
1608 }
1609
1610 c->ileb_buf = vmalloc(c->leb_size);
1611 if (!c->ileb_buf) {
1612 err = -ENOMEM;
1613 goto out;
1614 }
1615
1616 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1617 if (!c->write_reserve_buf) {
1618 err = -ENOMEM;
1619 goto out;
1620 }
1621
1622 err = ubifs_lpt_init(c, 0, 1);
1623 if (err)
1624 goto out;
1625
1626 /* Create background thread */
1627 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1628 if (IS_ERR(c->bgt)) {
1629 err = PTR_ERR(c->bgt);
1630 c->bgt = NULL;
1631 ubifs_err("cannot spawn \"%s\", error %d",
1632 c->bgt_name, err);
1633 goto out;
1634 }
1635 wake_up_process(c->bgt);
1636
1637 c->orph_buf = vmalloc(c->leb_size);
1638 if (!c->orph_buf) {
1639 err = -ENOMEM;
1640 goto out;
1641 }
1642
1643 /* Check for enough log space */
1644 lnum = c->lhead_lnum + 1;
1645 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1646 lnum = UBIFS_LOG_LNUM;
1647 if (lnum == c->ltail_lnum) {
1648 err = ubifs_consolidate_log(c);
1649 if (err)
1650 goto out;
1651 }
1652
1653 if (c->need_recovery)
1654 err = ubifs_rcvry_gc_commit(c);
1655 else
1656 err = ubifs_leb_unmap(c, c->gc_lnum);
1657 if (err)
1658 goto out;
1659
1660 dbg_gen("re-mounted read-write");
1661 c->remounting_rw = 0;
1662
1663 if (c->need_recovery) {
1664 c->need_recovery = 0;
1665 ubifs_msg("deferred recovery completed");
1666 } else {
1667 /*
1668 * Do not run the debugging space check if the were doing
1669 * recovery, because when we saved the information we had the
1670 * file-system in a state where the TNC and lprops has been
1671 * modified in memory, but all the I/O operations (including a
1672 * commit) were deferred. So the file-system was in
1673 * "non-committed" state. Now the file-system is in committed
1674 * state, and of course the amount of free space will change
1675 * because, for example, the old index size was imprecise.
1676 */
1677 err = dbg_check_space_info(c);
1678 }
1679
1680 mutex_unlock(&c->umount_mutex);
1681 return err;
1682
1683out:
1684 c->ro_mount = 1;
1685 vfree(c->orph_buf);
1686 c->orph_buf = NULL;
1687 if (c->bgt) {
1688 kthread_stop(c->bgt);
1689 c->bgt = NULL;
1690 }
1691 free_wbufs(c);
1692 kfree(c->write_reserve_buf);
1693 c->write_reserve_buf = NULL;
1694 vfree(c->ileb_buf);
1695 c->ileb_buf = NULL;
1696 ubifs_lpt_free(c, 1);
1697 c->remounting_rw = 0;
1698 mutex_unlock(&c->umount_mutex);
1699 return err;
1700}
1701
1702/**
1703 * ubifs_remount_ro - re-mount in read-only mode.
1704 * @c: UBIFS file-system description object
1705 *
1706 * We assume VFS has stopped writing. Possibly the background thread could be
1707 * running a commit, however kthread_stop will wait in that case.
1708 */
1709static void ubifs_remount_ro(struct ubifs_info *c)
1710{
1711 int i, err;
1712
1713 ubifs_assert(!c->need_recovery);
1714 ubifs_assert(!c->ro_mount);
1715
1716 mutex_lock(&c->umount_mutex);
1717 if (c->bgt) {
1718 kthread_stop(c->bgt);
1719 c->bgt = NULL;
1720 }
1721
1722 dbg_save_space_info(c);
1723
1724 for (i = 0; i < c->jhead_cnt; i++)
1725 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1726
1727 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1728 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1729 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1730 err = ubifs_write_master(c);
1731 if (err)
1732 ubifs_ro_mode(c, err);
1733
1734 vfree(c->orph_buf);
1735 c->orph_buf = NULL;
1736 kfree(c->write_reserve_buf);
1737 c->write_reserve_buf = NULL;
1738 vfree(c->ileb_buf);
1739 c->ileb_buf = NULL;
1740 ubifs_lpt_free(c, 1);
1741 c->ro_mount = 1;
1742 err = dbg_check_space_info(c);
1743 if (err)
1744 ubifs_ro_mode(c, err);
1745 mutex_unlock(&c->umount_mutex);
1746}
1747
1748static void ubifs_put_super(struct super_block *sb)
1749{
1750 int i;
1751 struct ubifs_info *c = sb->s_fs_info;
1752
1753 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1754 c->vi.vol_id);
1755
1756 /*
1757 * The following asserts are only valid if there has not been a failure
1758 * of the media. For example, there will be dirty inodes if we failed
1759 * to write them back because of I/O errors.
1760 */
1761 if (!c->ro_error) {
1762 ubifs_assert(c->bi.idx_growth == 0);
1763 ubifs_assert(c->bi.dd_growth == 0);
1764 ubifs_assert(c->bi.data_growth == 0);
1765 }
1766
1767 /*
1768 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1769 * and file system un-mount. Namely, it prevents the shrinker from
1770 * picking this superblock for shrinking - it will be just skipped if
1771 * the mutex is locked.
1772 */
1773 mutex_lock(&c->umount_mutex);
1774 if (!c->ro_mount) {
1775 /*
1776 * First of all kill the background thread to make sure it does
1777 * not interfere with un-mounting and freeing resources.
1778 */
1779 if (c->bgt) {
1780 kthread_stop(c->bgt);
1781 c->bgt = NULL;
1782 }
1783
1784 /*
1785 * On fatal errors c->ro_error is set to 1, in which case we do
1786 * not write the master node.
1787 */
1788 if (!c->ro_error) {
1789 int err;
1790
1791 /* Synchronize write-buffers */
1792 for (i = 0; i < c->jhead_cnt; i++)
1793 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1794
1795 /*
1796 * We are being cleanly unmounted which means the
1797 * orphans were killed - indicate this in the master
1798 * node. Also save the reserved GC LEB number.
1799 */
1800 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1801 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1802 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1803 err = ubifs_write_master(c);
1804 if (err)
1805 /*
1806 * Recovery will attempt to fix the master area
1807 * next mount, so we just print a message and
1808 * continue to unmount normally.
1809 */
1810 ubifs_err("failed to write master node, error %d",
1811 err);
1812 } else {
1813 for (i = 0; i < c->jhead_cnt; i++)
1814 /* Make sure write-buffer timers are canceled */
1815 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1816 }
1817 }
1818
1819 ubifs_umount(c);
1820 bdi_destroy(&c->bdi);
1821 ubi_close_volume(c->ubi);
1822 mutex_unlock(&c->umount_mutex);
1823}
1824
1825static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1826{
1827 int err;
1828 struct ubifs_info *c = sb->s_fs_info;
1829
1830 sync_filesystem(sb);
1831 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1832
1833 err = ubifs_parse_options(c, data, 1);
1834 if (err) {
1835 ubifs_err("invalid or unknown remount parameter");
1836 return err;
1837 }
1838
1839 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1840 if (c->ro_error) {
1841 ubifs_msg("cannot re-mount R/W due to prior errors");
1842 return -EROFS;
1843 }
1844 if (c->ro_media) {
1845 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1846 return -EROFS;
1847 }
1848 err = ubifs_remount_rw(c);
1849 if (err)
1850 return err;
1851 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1852 if (c->ro_error) {
1853 ubifs_msg("cannot re-mount R/O due to prior errors");
1854 return -EROFS;
1855 }
1856 ubifs_remount_ro(c);
1857 }
1858
1859 if (c->bulk_read == 1)
1860 bu_init(c);
1861 else {
1862 dbg_gen("disable bulk-read");
1863 kfree(c->bu.buf);
1864 c->bu.buf = NULL;
1865 }
1866
1867 ubifs_assert(c->lst.taken_empty_lebs > 0);
1868 return 0;
1869}
1870
1871const struct super_operations ubifs_super_operations = {
1872 .alloc_inode = ubifs_alloc_inode,
1873 .destroy_inode = ubifs_destroy_inode,
1874 .put_super = ubifs_put_super,
1875 .write_inode = ubifs_write_inode,
1876 .evict_inode = ubifs_evict_inode,
1877 .statfs = ubifs_statfs,
1878 .dirty_inode = ubifs_dirty_inode,
1879 .remount_fs = ubifs_remount_fs,
1880 .show_options = ubifs_show_options,
1881 .sync_fs = ubifs_sync_fs,
1882};
1883
1884/**
1885 * open_ubi - parse UBI device name string and open the UBI device.
1886 * @name: UBI volume name
1887 * @mode: UBI volume open mode
1888 *
1889 * The primary method of mounting UBIFS is by specifying the UBI volume
1890 * character device node path. However, UBIFS may also be mounted withoug any
1891 * character device node using one of the following methods:
1892 *
1893 * o ubiX_Y - mount UBI device number X, volume Y;
1894 * o ubiY - mount UBI device number 0, volume Y;
1895 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1896 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1897 *
1898 * Alternative '!' separator may be used instead of ':' (because some shells
1899 * like busybox may interpret ':' as an NFS host name separator). This function
1900 * returns UBI volume description object in case of success and a negative
1901 * error code in case of failure.
1902 */
1903static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1904{
1905 struct ubi_volume_desc *ubi;
1906 int dev, vol;
1907 char *endptr;
1908
1909 /* First, try to open using the device node path method */
1910 ubi = ubi_open_volume_path(name, mode);
1911 if (!IS_ERR(ubi))
1912 return ubi;
1913
1914 /* Try the "nodev" method */
1915 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1916 return ERR_PTR(-EINVAL);
1917
1918 /* ubi:NAME method */
1919 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1920 return ubi_open_volume_nm(0, name + 4, mode);
1921
1922 if (!isdigit(name[3]))
1923 return ERR_PTR(-EINVAL);
1924
1925 dev = simple_strtoul(name + 3, &endptr, 0);
1926
1927 /* ubiY method */
1928 if (*endptr == '\0')
1929 return ubi_open_volume(0, dev, mode);
1930
1931 /* ubiX_Y method */
1932 if (*endptr == '_' && isdigit(endptr[1])) {
1933 vol = simple_strtoul(endptr + 1, &endptr, 0);
1934 if (*endptr != '\0')
1935 return ERR_PTR(-EINVAL);
1936 return ubi_open_volume(dev, vol, mode);
1937 }
1938
1939 /* ubiX:NAME method */
1940 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1941 return ubi_open_volume_nm(dev, ++endptr, mode);
1942
1943 return ERR_PTR(-EINVAL);
1944}
1945
1946static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1947{
1948 struct ubifs_info *c;
1949
1950 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1951 if (c) {
1952 spin_lock_init(&c->cnt_lock);
1953 spin_lock_init(&c->cs_lock);
1954 spin_lock_init(&c->buds_lock);
1955 spin_lock_init(&c->space_lock);
1956 spin_lock_init(&c->orphan_lock);
1957 init_rwsem(&c->commit_sem);
1958 mutex_init(&c->lp_mutex);
1959 mutex_init(&c->tnc_mutex);
1960 mutex_init(&c->log_mutex);
1961 mutex_init(&c->mst_mutex);
1962 mutex_init(&c->umount_mutex);
1963 mutex_init(&c->bu_mutex);
1964 mutex_init(&c->write_reserve_mutex);
1965 init_waitqueue_head(&c->cmt_wq);
1966 c->buds = RB_ROOT;
1967 c->old_idx = RB_ROOT;
1968 c->size_tree = RB_ROOT;
1969 c->orph_tree = RB_ROOT;
1970 INIT_LIST_HEAD(&c->infos_list);
1971 INIT_LIST_HEAD(&c->idx_gc);
1972 INIT_LIST_HEAD(&c->replay_list);
1973 INIT_LIST_HEAD(&c->replay_buds);
1974 INIT_LIST_HEAD(&c->uncat_list);
1975 INIT_LIST_HEAD(&c->empty_list);
1976 INIT_LIST_HEAD(&c->freeable_list);
1977 INIT_LIST_HEAD(&c->frdi_idx_list);
1978 INIT_LIST_HEAD(&c->unclean_leb_list);
1979 INIT_LIST_HEAD(&c->old_buds);
1980 INIT_LIST_HEAD(&c->orph_list);
1981 INIT_LIST_HEAD(&c->orph_new);
1982 c->no_chk_data_crc = 1;
1983
1984 c->highest_inum = UBIFS_FIRST_INO;
1985 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1986
1987 ubi_get_volume_info(ubi, &c->vi);
1988 ubi_get_device_info(c->vi.ubi_num, &c->di);
1989 }
1990 return c;
1991}
1992
1993static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1994{
1995 struct ubifs_info *c = sb->s_fs_info;
1996 struct inode *root;
1997 int err;
1998
1999 c->vfs_sb = sb;
2000 /* Re-open the UBI device in read-write mode */
2001 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2002 if (IS_ERR(c->ubi)) {
2003 err = PTR_ERR(c->ubi);
2004 goto out;
2005 }
2006
2007 /*
2008 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2009 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2010 * which means the user would have to wait not just for their own I/O
2011 * but the read-ahead I/O as well i.e. completely pointless.
2012 *
2013 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2014 */
2015 c->bdi.name = "ubifs",
2016 c->bdi.capabilities = BDI_CAP_MAP_COPY;
2017 err = bdi_init(&c->bdi);
2018 if (err)
2019 goto out_close;
2020 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2021 c->vi.ubi_num, c->vi.vol_id);
2022 if (err)
2023 goto out_bdi;
2024
2025 err = ubifs_parse_options(c, data, 0);
2026 if (err)
2027 goto out_bdi;
2028
2029 sb->s_bdi = &c->bdi;
2030 sb->s_fs_info = c;
2031 sb->s_magic = UBIFS_SUPER_MAGIC;
2032 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2033 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2034 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2035 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2036 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2037 sb->s_op = &ubifs_super_operations;
2038
2039 mutex_lock(&c->umount_mutex);
2040 err = mount_ubifs(c);
2041 if (err) {
2042 ubifs_assert(err < 0);
2043 goto out_unlock;
2044 }
2045
2046 /* Read the root inode */
2047 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2048 if (IS_ERR(root)) {
2049 err = PTR_ERR(root);
2050 goto out_umount;
2051 }
2052
2053 sb->s_root = d_make_root(root);
2054 if (!sb->s_root) {
2055 err = -ENOMEM;
2056 goto out_umount;
2057 }
2058
2059 mutex_unlock(&c->umount_mutex);
2060 return 0;
2061
2062out_umount:
2063 ubifs_umount(c);
2064out_unlock:
2065 mutex_unlock(&c->umount_mutex);
2066out_bdi:
2067 bdi_destroy(&c->bdi);
2068out_close:
2069 ubi_close_volume(c->ubi);
2070out:
2071 return err;
2072}
2073
2074static int sb_test(struct super_block *sb, void *data)
2075{
2076 struct ubifs_info *c1 = data;
2077 struct ubifs_info *c = sb->s_fs_info;
2078
2079 return c->vi.cdev == c1->vi.cdev;
2080}
2081
2082static int sb_set(struct super_block *sb, void *data)
2083{
2084 sb->s_fs_info = data;
2085 return set_anon_super(sb, NULL);
2086}
2087
2088static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2089 const char *name, void *data)
2090{
2091 struct ubi_volume_desc *ubi;
2092 struct ubifs_info *c;
2093 struct super_block *sb;
2094 int err;
2095
2096 dbg_gen("name %s, flags %#x", name, flags);
2097
2098 /*
2099 * Get UBI device number and volume ID. Mount it read-only so far
2100 * because this might be a new mount point, and UBI allows only one
2101 * read-write user at a time.
2102 */
2103 ubi = open_ubi(name, UBI_READONLY);
2104 if (IS_ERR(ubi)) {
2105 ubifs_err("cannot open \"%s\", error %d",
2106 name, (int)PTR_ERR(ubi));
2107 return ERR_CAST(ubi);
2108 }
2109
2110 c = alloc_ubifs_info(ubi);
2111 if (!c) {
2112 err = -ENOMEM;
2113 goto out_close;
2114 }
2115
2116 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2117
2118 sb = sget(fs_type, sb_test, sb_set, flags, c);
2119 if (IS_ERR(sb)) {
2120 err = PTR_ERR(sb);
2121 kfree(c);
2122 goto out_close;
2123 }
2124
2125 if (sb->s_root) {
2126 struct ubifs_info *c1 = sb->s_fs_info;
2127 kfree(c);
2128 /* A new mount point for already mounted UBIFS */
2129 dbg_gen("this ubi volume is already mounted");
2130 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2131 err = -EBUSY;
2132 goto out_deact;
2133 }
2134 } else {
2135 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2136 if (err)
2137 goto out_deact;
2138 /* We do not support atime */
2139 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2140 }
2141
2142 /* 'fill_super()' opens ubi again so we must close it here */
2143 ubi_close_volume(ubi);
2144
2145 return dget(sb->s_root);
2146
2147out_deact:
2148 deactivate_locked_super(sb);
2149out_close:
2150 ubi_close_volume(ubi);
2151 return ERR_PTR(err);
2152}
2153
2154static void kill_ubifs_super(struct super_block *s)
2155{
2156 struct ubifs_info *c = s->s_fs_info;
2157 kill_anon_super(s);
2158 kfree(c);
2159}
2160
2161static struct file_system_type ubifs_fs_type = {
2162 .name = "ubifs",
2163 .owner = THIS_MODULE,
2164 .mount = ubifs_mount,
2165 .kill_sb = kill_ubifs_super,
2166};
2167MODULE_ALIAS_FS("ubifs");
2168
2169/*
2170 * Inode slab cache constructor.
2171 */
2172static void inode_slab_ctor(void *obj)
2173{
2174 struct ubifs_inode *ui = obj;
2175 inode_init_once(&ui->vfs_inode);
2176}
2177
2178static int __init ubifs_init(void)
2179{
2180 int err;
2181
2182 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2183
2184 /* Make sure node sizes are 8-byte aligned */
2185 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2186 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2187 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2188 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2189 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2190 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2191 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2192 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2193 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2194 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2195 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2196
2197 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2198 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2199 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2200 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2201 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2202 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2203
2204 /* Check min. node size */
2205 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2206 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2207 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2208 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2209
2210 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2211 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2212 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2213 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2214
2215 /* Defined node sizes */
2216 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2217 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2218 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2219 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2220
2221 /*
2222 * We use 2 bit wide bit-fields to store compression type, which should
2223 * be amended if more compressors are added. The bit-fields are:
2224 * @compr_type in 'struct ubifs_inode', @default_compr in
2225 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2226 */
2227 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2228
2229 /*
2230 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2231 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2232 */
2233 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2234 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2235 (unsigned int)PAGE_CACHE_SIZE);
2236 return -EINVAL;
2237 }
2238
2239 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2240 sizeof(struct ubifs_inode), 0,
2241 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2242 &inode_slab_ctor);
2243 if (!ubifs_inode_slab)
2244 return -ENOMEM;
2245
2246 register_shrinker(&ubifs_shrinker_info);
2247
2248 err = ubifs_compressors_init();
2249 if (err)
2250 goto out_shrinker;
2251
2252 err = dbg_debugfs_init();
2253 if (err)
2254 goto out_compr;
2255
2256 err = register_filesystem(&ubifs_fs_type);
2257 if (err) {
2258 ubifs_err("cannot register file system, error %d", err);
2259 goto out_dbg;
2260 }
2261 return 0;
2262
2263out_dbg:
2264 dbg_debugfs_exit();
2265out_compr:
2266 ubifs_compressors_exit();
2267out_shrinker:
2268 unregister_shrinker(&ubifs_shrinker_info);
2269 kmem_cache_destroy(ubifs_inode_slab);
2270 return err;
2271}
2272/* late_initcall to let compressors initialize first */
2273late_initcall(ubifs_init);
2274
2275static void __exit ubifs_exit(void)
2276{
2277 ubifs_assert(list_empty(&ubifs_infos));
2278 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2279
2280 dbg_debugfs_exit();
2281 ubifs_compressors_exit();
2282 unregister_shrinker(&ubifs_shrinker_info);
2283
2284 /*
2285 * Make sure all delayed rcu free inodes are flushed before we
2286 * destroy cache.
2287 */
2288 rcu_barrier();
2289 kmem_cache_destroy(ubifs_inode_slab);
2290 unregister_filesystem(&ubifs_fs_type);
2291}
2292module_exit(ubifs_exit);
2293
2294MODULE_LICENSE("GPL");
2295MODULE_VERSION(__stringify(UBIFS_VERSION));
2296MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2297MODULE_DESCRIPTION("UBIFS - UBI File System");
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include <linux/math64.h>
38#include <linux/writeback.h>
39#include "ubifs.h"
40
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
47/* Slab cache for UBIFS inodes */
48static struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55};
56
57/**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68{
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err(c, "inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= S_NOCMTIME;
132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode->i_flags |= S_NOATIME;
134#endif
135 set_nlink(inode, le32_to_cpu(ino->nlink));
136 i_uid_write(inode, le32_to_cpu(ino->uid));
137 i_gid_write(inode, le32_to_cpu(ino->gid));
138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 inode->i_mode = le32_to_cpu(ino->mode);
145 inode->i_size = le64_to_cpu(ino->size);
146
147 ui->data_len = le32_to_cpu(ino->data_len);
148 ui->flags = le32_to_cpu(ino->flags);
149 ui->compr_type = le16_to_cpu(ino->compr_type);
150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
152 ui->xattr_size = le32_to_cpu(ino->xattr_size);
153 ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 ui->synced_i_size = ui->ui_size = inode->i_size;
155
156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157
158 err = validate_inode(c, inode);
159 if (err)
160 goto out_invalid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247out_invalid:
248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252out_ino:
253 kfree(ino);
254out:
255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258}
259
260static struct inode *ubifs_alloc_inode(struct super_block *sb)
261{
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273};
274
275static void ubifs_i_callback(struct rcu_head *head)
276{
277 struct inode *inode = container_of(head, struct inode, i_rcu);
278 struct ubifs_inode *ui = ubifs_inode(inode);
279 kmem_cache_free(ubifs_inode_slab, ui);
280}
281
282static void ubifs_destroy_inode(struct inode *inode)
283{
284 struct ubifs_inode *ui = ubifs_inode(inode);
285
286 kfree(ui->data);
287 call_rcu(&inode->i_rcu, ubifs_i_callback);
288}
289
290/*
291 * Note, Linux write-back code calls this without 'i_mutex'.
292 */
293static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294{
295 int err = 0;
296 struct ubifs_info *c = inode->i_sb->s_fs_info;
297 struct ubifs_inode *ui = ubifs_inode(inode);
298
299 ubifs_assert(!ui->xattr);
300 if (is_bad_inode(inode))
301 return 0;
302
303 mutex_lock(&ui->ui_mutex);
304 /*
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
309 * 'ubifs_link()'.
310 */
311 if (!ui->dirty) {
312 mutex_unlock(&ui->ui_mutex);
313 return 0;
314 }
315
316 /*
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
319 */
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 if (inode->i_nlink) {
323 err = ubifs_jnl_write_inode(c, inode);
324 if (err)
325 ubifs_err(c, "can't write inode %lu, error %d",
326 inode->i_ino, err);
327 else
328 err = dbg_check_inode_size(c, inode, ui->ui_size);
329 }
330
331 ui->dirty = 0;
332 mutex_unlock(&ui->ui_mutex);
333 ubifs_release_dirty_inode_budget(c, ui);
334 return err;
335}
336
337static void ubifs_evict_inode(struct inode *inode)
338{
339 int err;
340 struct ubifs_info *c = inode->i_sb->s_fs_info;
341 struct ubifs_inode *ui = ubifs_inode(inode);
342
343 if (ui->xattr)
344 /*
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
348 */
349 goto out;
350
351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 ubifs_assert(!atomic_read(&inode->i_count));
353
354 truncate_inode_pages_final(&inode->i_data);
355
356 if (inode->i_nlink)
357 goto done;
358
359 if (is_bad_inode(inode))
360 goto out;
361
362 ui->ui_size = inode->i_size = 0;
363 err = ubifs_jnl_delete_inode(c, inode);
364 if (err)
365 /*
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
368 */
369 ubifs_err(c, "can't delete inode %lu, error %d",
370 inode->i_ino, err);
371
372out:
373 if (ui->dirty)
374 ubifs_release_dirty_inode_budget(c, ui);
375 else {
376 /* We've deleted something - clean the "no space" flags */
377 c->bi.nospace = c->bi.nospace_rp = 0;
378 smp_wmb();
379 }
380done:
381 clear_inode(inode);
382 fscrypt_put_encryption_info(inode);
383}
384
385static void ubifs_dirty_inode(struct inode *inode, int flags)
386{
387 struct ubifs_inode *ui = ubifs_inode(inode);
388
389 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 if (!ui->dirty) {
391 ui->dirty = 1;
392 dbg_gen("inode %lu", inode->i_ino);
393 }
394}
395
396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397{
398 struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 unsigned long long free;
400 __le32 *uuid = (__le32 *)c->uuid;
401
402 free = ubifs_get_free_space(c);
403 dbg_gen("free space %lld bytes (%lld blocks)",
404 free, free >> UBIFS_BLOCK_SHIFT);
405
406 buf->f_type = UBIFS_SUPER_MAGIC;
407 buf->f_bsize = UBIFS_BLOCK_SIZE;
408 buf->f_blocks = c->block_cnt;
409 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 if (free > c->report_rp_size)
411 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 else
413 buf->f_bavail = 0;
414 buf->f_files = 0;
415 buf->f_ffree = 0;
416 buf->f_namelen = UBIFS_MAX_NLEN;
417 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 ubifs_assert(buf->f_bfree <= c->block_cnt);
420 return 0;
421}
422
423static int ubifs_show_options(struct seq_file *s, struct dentry *root)
424{
425 struct ubifs_info *c = root->d_sb->s_fs_info;
426
427 if (c->mount_opts.unmount_mode == 2)
428 seq_puts(s, ",fast_unmount");
429 else if (c->mount_opts.unmount_mode == 1)
430 seq_puts(s, ",norm_unmount");
431
432 if (c->mount_opts.bulk_read == 2)
433 seq_puts(s, ",bulk_read");
434 else if (c->mount_opts.bulk_read == 1)
435 seq_puts(s, ",no_bulk_read");
436
437 if (c->mount_opts.chk_data_crc == 2)
438 seq_puts(s, ",chk_data_crc");
439 else if (c->mount_opts.chk_data_crc == 1)
440 seq_puts(s, ",no_chk_data_crc");
441
442 if (c->mount_opts.override_compr) {
443 seq_printf(s, ",compr=%s",
444 ubifs_compr_name(c->mount_opts.compr_type));
445 }
446
447 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
448
449 return 0;
450}
451
452static int ubifs_sync_fs(struct super_block *sb, int wait)
453{
454 int i, err;
455 struct ubifs_info *c = sb->s_fs_info;
456
457 /*
458 * Zero @wait is just an advisory thing to help the file system shove
459 * lots of data into the queues, and there will be the second
460 * '->sync_fs()' call, with non-zero @wait.
461 */
462 if (!wait)
463 return 0;
464
465 /*
466 * Synchronize write buffers, because 'ubifs_run_commit()' does not
467 * do this if it waits for an already running commit.
468 */
469 for (i = 0; i < c->jhead_cnt; i++) {
470 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
471 if (err)
472 return err;
473 }
474
475 /*
476 * Strictly speaking, it is not necessary to commit the journal here,
477 * synchronizing write-buffers would be enough. But committing makes
478 * UBIFS free space predictions much more accurate, so we want to let
479 * the user be able to get more accurate results of 'statfs()' after
480 * they synchronize the file system.
481 */
482 err = ubifs_run_commit(c);
483 if (err)
484 return err;
485
486 return ubi_sync(c->vi.ubi_num);
487}
488
489/**
490 * init_constants_early - initialize UBIFS constants.
491 * @c: UBIFS file-system description object
492 *
493 * This function initialize UBIFS constants which do not need the superblock to
494 * be read. It also checks that the UBI volume satisfies basic UBIFS
495 * requirements. Returns zero in case of success and a negative error code in
496 * case of failure.
497 */
498static int init_constants_early(struct ubifs_info *c)
499{
500 if (c->vi.corrupted) {
501 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
502 c->ro_media = 1;
503 }
504
505 if (c->di.ro_mode) {
506 ubifs_msg(c, "read-only UBI device");
507 c->ro_media = 1;
508 }
509
510 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
511 ubifs_msg(c, "static UBI volume - read-only mode");
512 c->ro_media = 1;
513 }
514
515 c->leb_cnt = c->vi.size;
516 c->leb_size = c->vi.usable_leb_size;
517 c->leb_start = c->di.leb_start;
518 c->half_leb_size = c->leb_size / 2;
519 c->min_io_size = c->di.min_io_size;
520 c->min_io_shift = fls(c->min_io_size) - 1;
521 c->max_write_size = c->di.max_write_size;
522 c->max_write_shift = fls(c->max_write_size) - 1;
523
524 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
525 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
526 c->leb_size, UBIFS_MIN_LEB_SZ);
527 return -EINVAL;
528 }
529
530 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
531 ubifs_errc(c, "too few LEBs (%d), min. is %d",
532 c->leb_cnt, UBIFS_MIN_LEB_CNT);
533 return -EINVAL;
534 }
535
536 if (!is_power_of_2(c->min_io_size)) {
537 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
538 return -EINVAL;
539 }
540
541 /*
542 * Maximum write size has to be greater or equivalent to min. I/O
543 * size, and be multiple of min. I/O size.
544 */
545 if (c->max_write_size < c->min_io_size ||
546 c->max_write_size % c->min_io_size ||
547 !is_power_of_2(c->max_write_size)) {
548 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
549 c->max_write_size, c->min_io_size);
550 return -EINVAL;
551 }
552
553 /*
554 * UBIFS aligns all node to 8-byte boundary, so to make function in
555 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
556 * less than 8.
557 */
558 if (c->min_io_size < 8) {
559 c->min_io_size = 8;
560 c->min_io_shift = 3;
561 if (c->max_write_size < c->min_io_size) {
562 c->max_write_size = c->min_io_size;
563 c->max_write_shift = c->min_io_shift;
564 }
565 }
566
567 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
568 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
569
570 /*
571 * Initialize node length ranges which are mostly needed for node
572 * length validation.
573 */
574 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
575 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
576 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
577 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
578 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
579 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
580
581 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
582 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
583 c->ranges[UBIFS_ORPH_NODE].min_len =
584 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
585 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
586 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
587 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
588 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
589 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
590 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
591 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
592 /*
593 * Minimum indexing node size is amended later when superblock is
594 * read and the key length is known.
595 */
596 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
597 /*
598 * Maximum indexing node size is amended later when superblock is
599 * read and the fanout is known.
600 */
601 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
602
603 /*
604 * Initialize dead and dark LEB space watermarks. See gc.c for comments
605 * about these values.
606 */
607 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
608 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
609
610 /*
611 * Calculate how many bytes would be wasted at the end of LEB if it was
612 * fully filled with data nodes of maximum size. This is used in
613 * calculations when reporting free space.
614 */
615 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
616
617 /* Buffer size for bulk-reads */
618 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
619 if (c->max_bu_buf_len > c->leb_size)
620 c->max_bu_buf_len = c->leb_size;
621 return 0;
622}
623
624/**
625 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
626 * @c: UBIFS file-system description object
627 * @lnum: LEB the write-buffer was synchronized to
628 * @free: how many free bytes left in this LEB
629 * @pad: how many bytes were padded
630 *
631 * This is a callback function which is called by the I/O unit when the
632 * write-buffer is synchronized. We need this to correctly maintain space
633 * accounting in bud logical eraseblocks. This function returns zero in case of
634 * success and a negative error code in case of failure.
635 *
636 * This function actually belongs to the journal, but we keep it here because
637 * we want to keep it static.
638 */
639static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
640{
641 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
642}
643
644/*
645 * init_constants_sb - initialize UBIFS constants.
646 * @c: UBIFS file-system description object
647 *
648 * This is a helper function which initializes various UBIFS constants after
649 * the superblock has been read. It also checks various UBIFS parameters and
650 * makes sure they are all right. Returns zero in case of success and a
651 * negative error code in case of failure.
652 */
653static int init_constants_sb(struct ubifs_info *c)
654{
655 int tmp, err;
656 long long tmp64;
657
658 c->main_bytes = (long long)c->main_lebs * c->leb_size;
659 c->max_znode_sz = sizeof(struct ubifs_znode) +
660 c->fanout * sizeof(struct ubifs_zbranch);
661
662 tmp = ubifs_idx_node_sz(c, 1);
663 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
664 c->min_idx_node_sz = ALIGN(tmp, 8);
665
666 tmp = ubifs_idx_node_sz(c, c->fanout);
667 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
668 c->max_idx_node_sz = ALIGN(tmp, 8);
669
670 /* Make sure LEB size is large enough to fit full commit */
671 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
672 tmp = ALIGN(tmp, c->min_io_size);
673 if (tmp > c->leb_size) {
674 ubifs_err(c, "too small LEB size %d, at least %d needed",
675 c->leb_size, tmp);
676 return -EINVAL;
677 }
678
679 /*
680 * Make sure that the log is large enough to fit reference nodes for
681 * all buds plus one reserved LEB.
682 */
683 tmp64 = c->max_bud_bytes + c->leb_size - 1;
684 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
685 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
686 tmp /= c->leb_size;
687 tmp += 1;
688 if (c->log_lebs < tmp) {
689 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
690 c->log_lebs, tmp);
691 return -EINVAL;
692 }
693
694 /*
695 * When budgeting we assume worst-case scenarios when the pages are not
696 * be compressed and direntries are of the maximum size.
697 *
698 * Note, data, which may be stored in inodes is budgeted separately, so
699 * it is not included into 'c->bi.inode_budget'.
700 */
701 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
702 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
703 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
704
705 /*
706 * When the amount of flash space used by buds becomes
707 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
708 * The writers are unblocked when the commit is finished. To avoid
709 * writers to be blocked UBIFS initiates background commit in advance,
710 * when number of bud bytes becomes above the limit defined below.
711 */
712 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
713
714 /*
715 * Ensure minimum journal size. All the bytes in the journal heads are
716 * considered to be used, when calculating the current journal usage.
717 * Consequently, if the journal is too small, UBIFS will treat it as
718 * always full.
719 */
720 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
721 if (c->bg_bud_bytes < tmp64)
722 c->bg_bud_bytes = tmp64;
723 if (c->max_bud_bytes < tmp64 + c->leb_size)
724 c->max_bud_bytes = tmp64 + c->leb_size;
725
726 err = ubifs_calc_lpt_geom(c);
727 if (err)
728 return err;
729
730 /* Initialize effective LEB size used in budgeting calculations */
731 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
732 return 0;
733}
734
735/*
736 * init_constants_master - initialize UBIFS constants.
737 * @c: UBIFS file-system description object
738 *
739 * This is a helper function which initializes various UBIFS constants after
740 * the master node has been read. It also checks various UBIFS parameters and
741 * makes sure they are all right.
742 */
743static void init_constants_master(struct ubifs_info *c)
744{
745 long long tmp64;
746
747 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
748 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
749
750 /*
751 * Calculate total amount of FS blocks. This number is not used
752 * internally because it does not make much sense for UBIFS, but it is
753 * necessary to report something for the 'statfs()' call.
754 *
755 * Subtract the LEB reserved for GC, the LEB which is reserved for
756 * deletions, minimum LEBs for the index, and assume only one journal
757 * head is available.
758 */
759 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
760 tmp64 *= (long long)c->leb_size - c->leb_overhead;
761 tmp64 = ubifs_reported_space(c, tmp64);
762 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
763}
764
765/**
766 * take_gc_lnum - reserve GC LEB.
767 * @c: UBIFS file-system description object
768 *
769 * This function ensures that the LEB reserved for garbage collection is marked
770 * as "taken" in lprops. We also have to set free space to LEB size and dirty
771 * space to zero, because lprops may contain out-of-date information if the
772 * file-system was un-mounted before it has been committed. This function
773 * returns zero in case of success and a negative error code in case of
774 * failure.
775 */
776static int take_gc_lnum(struct ubifs_info *c)
777{
778 int err;
779
780 if (c->gc_lnum == -1) {
781 ubifs_err(c, "no LEB for GC");
782 return -EINVAL;
783 }
784
785 /* And we have to tell lprops that this LEB is taken */
786 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
787 LPROPS_TAKEN, 0, 0);
788 return err;
789}
790
791/**
792 * alloc_wbufs - allocate write-buffers.
793 * @c: UBIFS file-system description object
794 *
795 * This helper function allocates and initializes UBIFS write-buffers. Returns
796 * zero in case of success and %-ENOMEM in case of failure.
797 */
798static int alloc_wbufs(struct ubifs_info *c)
799{
800 int i, err;
801
802 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
803 GFP_KERNEL);
804 if (!c->jheads)
805 return -ENOMEM;
806
807 /* Initialize journal heads */
808 for (i = 0; i < c->jhead_cnt; i++) {
809 INIT_LIST_HEAD(&c->jheads[i].buds_list);
810 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
811 if (err)
812 return err;
813
814 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
815 c->jheads[i].wbuf.jhead = i;
816 c->jheads[i].grouped = 1;
817 }
818
819 /*
820 * Garbage Collector head does not need to be synchronized by timer.
821 * Also GC head nodes are not grouped.
822 */
823 c->jheads[GCHD].wbuf.no_timer = 1;
824 c->jheads[GCHD].grouped = 0;
825
826 return 0;
827}
828
829/**
830 * free_wbufs - free write-buffers.
831 * @c: UBIFS file-system description object
832 */
833static void free_wbufs(struct ubifs_info *c)
834{
835 int i;
836
837 if (c->jheads) {
838 for (i = 0; i < c->jhead_cnt; i++) {
839 kfree(c->jheads[i].wbuf.buf);
840 kfree(c->jheads[i].wbuf.inodes);
841 }
842 kfree(c->jheads);
843 c->jheads = NULL;
844 }
845}
846
847/**
848 * free_orphans - free orphans.
849 * @c: UBIFS file-system description object
850 */
851static void free_orphans(struct ubifs_info *c)
852{
853 struct ubifs_orphan *orph;
854
855 while (c->orph_dnext) {
856 orph = c->orph_dnext;
857 c->orph_dnext = orph->dnext;
858 list_del(&orph->list);
859 kfree(orph);
860 }
861
862 while (!list_empty(&c->orph_list)) {
863 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
864 list_del(&orph->list);
865 kfree(orph);
866 ubifs_err(c, "orphan list not empty at unmount");
867 }
868
869 vfree(c->orph_buf);
870 c->orph_buf = NULL;
871}
872
873/**
874 * free_buds - free per-bud objects.
875 * @c: UBIFS file-system description object
876 */
877static void free_buds(struct ubifs_info *c)
878{
879 struct ubifs_bud *bud, *n;
880
881 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
882 kfree(bud);
883}
884
885/**
886 * check_volume_empty - check if the UBI volume is empty.
887 * @c: UBIFS file-system description object
888 *
889 * This function checks if the UBIFS volume is empty by looking if its LEBs are
890 * mapped or not. The result of checking is stored in the @c->empty variable.
891 * Returns zero in case of success and a negative error code in case of
892 * failure.
893 */
894static int check_volume_empty(struct ubifs_info *c)
895{
896 int lnum, err;
897
898 c->empty = 1;
899 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
900 err = ubifs_is_mapped(c, lnum);
901 if (unlikely(err < 0))
902 return err;
903 if (err == 1) {
904 c->empty = 0;
905 break;
906 }
907
908 cond_resched();
909 }
910
911 return 0;
912}
913
914/*
915 * UBIFS mount options.
916 *
917 * Opt_fast_unmount: do not run a journal commit before un-mounting
918 * Opt_norm_unmount: run a journal commit before un-mounting
919 * Opt_bulk_read: enable bulk-reads
920 * Opt_no_bulk_read: disable bulk-reads
921 * Opt_chk_data_crc: check CRCs when reading data nodes
922 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
923 * Opt_override_compr: override default compressor
924 * Opt_err: just end of array marker
925 */
926enum {
927 Opt_fast_unmount,
928 Opt_norm_unmount,
929 Opt_bulk_read,
930 Opt_no_bulk_read,
931 Opt_chk_data_crc,
932 Opt_no_chk_data_crc,
933 Opt_override_compr,
934 Opt_ignore,
935 Opt_err,
936};
937
938static const match_table_t tokens = {
939 {Opt_fast_unmount, "fast_unmount"},
940 {Opt_norm_unmount, "norm_unmount"},
941 {Opt_bulk_read, "bulk_read"},
942 {Opt_no_bulk_read, "no_bulk_read"},
943 {Opt_chk_data_crc, "chk_data_crc"},
944 {Opt_no_chk_data_crc, "no_chk_data_crc"},
945 {Opt_override_compr, "compr=%s"},
946 {Opt_ignore, "ubi=%s"},
947 {Opt_ignore, "vol=%s"},
948 {Opt_err, NULL},
949};
950
951/**
952 * parse_standard_option - parse a standard mount option.
953 * @option: the option to parse
954 *
955 * Normally, standard mount options like "sync" are passed to file-systems as
956 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
957 * be present in the options string. This function tries to deal with this
958 * situation and parse standard options. Returns 0 if the option was not
959 * recognized, and the corresponding integer flag if it was.
960 *
961 * UBIFS is only interested in the "sync" option, so do not check for anything
962 * else.
963 */
964static int parse_standard_option(const char *option)
965{
966
967 pr_notice("UBIFS: parse %s\n", option);
968 if (!strcmp(option, "sync"))
969 return SB_SYNCHRONOUS;
970 return 0;
971}
972
973/**
974 * ubifs_parse_options - parse mount parameters.
975 * @c: UBIFS file-system description object
976 * @options: parameters to parse
977 * @is_remount: non-zero if this is FS re-mount
978 *
979 * This function parses UBIFS mount options and returns zero in case success
980 * and a negative error code in case of failure.
981 */
982static int ubifs_parse_options(struct ubifs_info *c, char *options,
983 int is_remount)
984{
985 char *p;
986 substring_t args[MAX_OPT_ARGS];
987
988 if (!options)
989 return 0;
990
991 while ((p = strsep(&options, ","))) {
992 int token;
993
994 if (!*p)
995 continue;
996
997 token = match_token(p, tokens, args);
998 switch (token) {
999 /*
1000 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1001 * We accept them in order to be backward-compatible. But this
1002 * should be removed at some point.
1003 */
1004 case Opt_fast_unmount:
1005 c->mount_opts.unmount_mode = 2;
1006 break;
1007 case Opt_norm_unmount:
1008 c->mount_opts.unmount_mode = 1;
1009 break;
1010 case Opt_bulk_read:
1011 c->mount_opts.bulk_read = 2;
1012 c->bulk_read = 1;
1013 break;
1014 case Opt_no_bulk_read:
1015 c->mount_opts.bulk_read = 1;
1016 c->bulk_read = 0;
1017 break;
1018 case Opt_chk_data_crc:
1019 c->mount_opts.chk_data_crc = 2;
1020 c->no_chk_data_crc = 0;
1021 break;
1022 case Opt_no_chk_data_crc:
1023 c->mount_opts.chk_data_crc = 1;
1024 c->no_chk_data_crc = 1;
1025 break;
1026 case Opt_override_compr:
1027 {
1028 char *name = match_strdup(&args[0]);
1029
1030 if (!name)
1031 return -ENOMEM;
1032 if (!strcmp(name, "none"))
1033 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1034 else if (!strcmp(name, "lzo"))
1035 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1036 else if (!strcmp(name, "zlib"))
1037 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1038 else {
1039 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1040 kfree(name);
1041 return -EINVAL;
1042 }
1043 kfree(name);
1044 c->mount_opts.override_compr = 1;
1045 c->default_compr = c->mount_opts.compr_type;
1046 break;
1047 }
1048 case Opt_ignore:
1049 break;
1050 default:
1051 {
1052 unsigned long flag;
1053 struct super_block *sb = c->vfs_sb;
1054
1055 flag = parse_standard_option(p);
1056 if (!flag) {
1057 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1058 p);
1059 return -EINVAL;
1060 }
1061 sb->s_flags |= flag;
1062 break;
1063 }
1064 }
1065 }
1066
1067 return 0;
1068}
1069
1070/**
1071 * destroy_journal - destroy journal data structures.
1072 * @c: UBIFS file-system description object
1073 *
1074 * This function destroys journal data structures including those that may have
1075 * been created by recovery functions.
1076 */
1077static void destroy_journal(struct ubifs_info *c)
1078{
1079 while (!list_empty(&c->unclean_leb_list)) {
1080 struct ubifs_unclean_leb *ucleb;
1081
1082 ucleb = list_entry(c->unclean_leb_list.next,
1083 struct ubifs_unclean_leb, list);
1084 list_del(&ucleb->list);
1085 kfree(ucleb);
1086 }
1087 while (!list_empty(&c->old_buds)) {
1088 struct ubifs_bud *bud;
1089
1090 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1091 list_del(&bud->list);
1092 kfree(bud);
1093 }
1094 ubifs_destroy_idx_gc(c);
1095 ubifs_destroy_size_tree(c);
1096 ubifs_tnc_close(c);
1097 free_buds(c);
1098}
1099
1100/**
1101 * bu_init - initialize bulk-read information.
1102 * @c: UBIFS file-system description object
1103 */
1104static void bu_init(struct ubifs_info *c)
1105{
1106 ubifs_assert(c->bulk_read == 1);
1107
1108 if (c->bu.buf)
1109 return; /* Already initialized */
1110
1111again:
1112 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1113 if (!c->bu.buf) {
1114 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1115 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1116 goto again;
1117 }
1118
1119 /* Just disable bulk-read */
1120 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1121 c->max_bu_buf_len);
1122 c->mount_opts.bulk_read = 1;
1123 c->bulk_read = 0;
1124 return;
1125 }
1126}
1127
1128/**
1129 * check_free_space - check if there is enough free space to mount.
1130 * @c: UBIFS file-system description object
1131 *
1132 * This function makes sure UBIFS has enough free space to be mounted in
1133 * read/write mode. UBIFS must always have some free space to allow deletions.
1134 */
1135static int check_free_space(struct ubifs_info *c)
1136{
1137 ubifs_assert(c->dark_wm > 0);
1138 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1139 ubifs_err(c, "insufficient free space to mount in R/W mode");
1140 ubifs_dump_budg(c, &c->bi);
1141 ubifs_dump_lprops(c);
1142 return -ENOSPC;
1143 }
1144 return 0;
1145}
1146
1147/**
1148 * mount_ubifs - mount UBIFS file-system.
1149 * @c: UBIFS file-system description object
1150 *
1151 * This function mounts UBIFS file system. Returns zero in case of success and
1152 * a negative error code in case of failure.
1153 */
1154static int mount_ubifs(struct ubifs_info *c)
1155{
1156 int err;
1157 long long x, y;
1158 size_t sz;
1159
1160 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1161 /* Suppress error messages while probing if SB_SILENT is set */
1162 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1163
1164 err = init_constants_early(c);
1165 if (err)
1166 return err;
1167
1168 err = ubifs_debugging_init(c);
1169 if (err)
1170 return err;
1171
1172 err = check_volume_empty(c);
1173 if (err)
1174 goto out_free;
1175
1176 if (c->empty && (c->ro_mount || c->ro_media)) {
1177 /*
1178 * This UBI volume is empty, and read-only, or the file system
1179 * is mounted read-only - we cannot format it.
1180 */
1181 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1182 c->ro_media ? "UBI volume" : "mount");
1183 err = -EROFS;
1184 goto out_free;
1185 }
1186
1187 if (c->ro_media && !c->ro_mount) {
1188 ubifs_err(c, "cannot mount read-write - read-only media");
1189 err = -EROFS;
1190 goto out_free;
1191 }
1192
1193 /*
1194 * The requirement for the buffer is that it should fit indexing B-tree
1195 * height amount of integers. We assume the height if the TNC tree will
1196 * never exceed 64.
1197 */
1198 err = -ENOMEM;
1199 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1200 if (!c->bottom_up_buf)
1201 goto out_free;
1202
1203 c->sbuf = vmalloc(c->leb_size);
1204 if (!c->sbuf)
1205 goto out_free;
1206
1207 if (!c->ro_mount) {
1208 c->ileb_buf = vmalloc(c->leb_size);
1209 if (!c->ileb_buf)
1210 goto out_free;
1211 }
1212
1213 if (c->bulk_read == 1)
1214 bu_init(c);
1215
1216 if (!c->ro_mount) {
1217 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1218 UBIFS_CIPHER_BLOCK_SIZE,
1219 GFP_KERNEL);
1220 if (!c->write_reserve_buf)
1221 goto out_free;
1222 }
1223
1224 c->mounting = 1;
1225
1226 err = ubifs_read_superblock(c);
1227 if (err)
1228 goto out_free;
1229
1230 c->probing = 0;
1231
1232 /*
1233 * Make sure the compressor which is set as default in the superblock
1234 * or overridden by mount options is actually compiled in.
1235 */
1236 if (!ubifs_compr_present(c->default_compr)) {
1237 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1238 ubifs_compr_name(c->default_compr));
1239 err = -ENOTSUPP;
1240 goto out_free;
1241 }
1242
1243 err = init_constants_sb(c);
1244 if (err)
1245 goto out_free;
1246
1247 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1248 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1249 c->cbuf = kmalloc(sz, GFP_NOFS);
1250 if (!c->cbuf) {
1251 err = -ENOMEM;
1252 goto out_free;
1253 }
1254
1255 err = alloc_wbufs(c);
1256 if (err)
1257 goto out_cbuf;
1258
1259 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1260 if (!c->ro_mount) {
1261 /* Create background thread */
1262 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1263 if (IS_ERR(c->bgt)) {
1264 err = PTR_ERR(c->bgt);
1265 c->bgt = NULL;
1266 ubifs_err(c, "cannot spawn \"%s\", error %d",
1267 c->bgt_name, err);
1268 goto out_wbufs;
1269 }
1270 wake_up_process(c->bgt);
1271 }
1272
1273 err = ubifs_read_master(c);
1274 if (err)
1275 goto out_master;
1276
1277 init_constants_master(c);
1278
1279 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1280 ubifs_msg(c, "recovery needed");
1281 c->need_recovery = 1;
1282 }
1283
1284 if (c->need_recovery && !c->ro_mount) {
1285 err = ubifs_recover_inl_heads(c, c->sbuf);
1286 if (err)
1287 goto out_master;
1288 }
1289
1290 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1291 if (err)
1292 goto out_master;
1293
1294 if (!c->ro_mount && c->space_fixup) {
1295 err = ubifs_fixup_free_space(c);
1296 if (err)
1297 goto out_lpt;
1298 }
1299
1300 if (!c->ro_mount && !c->need_recovery) {
1301 /*
1302 * Set the "dirty" flag so that if we reboot uncleanly we
1303 * will notice this immediately on the next mount.
1304 */
1305 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1306 err = ubifs_write_master(c);
1307 if (err)
1308 goto out_lpt;
1309 }
1310
1311 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1312 if (err)
1313 goto out_lpt;
1314
1315 err = ubifs_replay_journal(c);
1316 if (err)
1317 goto out_journal;
1318
1319 /* Calculate 'min_idx_lebs' after journal replay */
1320 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1321
1322 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1323 if (err)
1324 goto out_orphans;
1325
1326 if (!c->ro_mount) {
1327 int lnum;
1328
1329 err = check_free_space(c);
1330 if (err)
1331 goto out_orphans;
1332
1333 /* Check for enough log space */
1334 lnum = c->lhead_lnum + 1;
1335 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1336 lnum = UBIFS_LOG_LNUM;
1337 if (lnum == c->ltail_lnum) {
1338 err = ubifs_consolidate_log(c);
1339 if (err)
1340 goto out_orphans;
1341 }
1342
1343 if (c->need_recovery) {
1344 err = ubifs_recover_size(c);
1345 if (err)
1346 goto out_orphans;
1347 err = ubifs_rcvry_gc_commit(c);
1348 if (err)
1349 goto out_orphans;
1350 } else {
1351 err = take_gc_lnum(c);
1352 if (err)
1353 goto out_orphans;
1354
1355 /*
1356 * GC LEB may contain garbage if there was an unclean
1357 * reboot, and it should be un-mapped.
1358 */
1359 err = ubifs_leb_unmap(c, c->gc_lnum);
1360 if (err)
1361 goto out_orphans;
1362 }
1363
1364 err = dbg_check_lprops(c);
1365 if (err)
1366 goto out_orphans;
1367 } else if (c->need_recovery) {
1368 err = ubifs_recover_size(c);
1369 if (err)
1370 goto out_orphans;
1371 } else {
1372 /*
1373 * Even if we mount read-only, we have to set space in GC LEB
1374 * to proper value because this affects UBIFS free space
1375 * reporting. We do not want to have a situation when
1376 * re-mounting from R/O to R/W changes amount of free space.
1377 */
1378 err = take_gc_lnum(c);
1379 if (err)
1380 goto out_orphans;
1381 }
1382
1383 spin_lock(&ubifs_infos_lock);
1384 list_add_tail(&c->infos_list, &ubifs_infos);
1385 spin_unlock(&ubifs_infos_lock);
1386
1387 if (c->need_recovery) {
1388 if (c->ro_mount)
1389 ubifs_msg(c, "recovery deferred");
1390 else {
1391 c->need_recovery = 0;
1392 ubifs_msg(c, "recovery completed");
1393 /*
1394 * GC LEB has to be empty and taken at this point. But
1395 * the journal head LEBs may also be accounted as
1396 * "empty taken" if they are empty.
1397 */
1398 ubifs_assert(c->lst.taken_empty_lebs > 0);
1399 }
1400 } else
1401 ubifs_assert(c->lst.taken_empty_lebs > 0);
1402
1403 err = dbg_check_filesystem(c);
1404 if (err)
1405 goto out_infos;
1406
1407 err = dbg_debugfs_init_fs(c);
1408 if (err)
1409 goto out_infos;
1410
1411 c->mounting = 0;
1412
1413 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1414 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1415 c->ro_mount ? ", R/O mode" : "");
1416 x = (long long)c->main_lebs * c->leb_size;
1417 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1418 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419 c->leb_size, c->leb_size >> 10, c->min_io_size,
1420 c->max_write_size);
1421 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422 x, x >> 20, c->main_lebs,
1423 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1424 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1425 c->report_rp_size, c->report_rp_size >> 10);
1426 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1427 c->fmt_version, c->ro_compat_version,
1428 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1429 c->big_lpt ? ", big LPT model" : ", small LPT model");
1430
1431 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1432 dbg_gen("data journal heads: %d",
1433 c->jhead_cnt - NONDATA_JHEADS_CNT);
1434 dbg_gen("log LEBs: %d (%d - %d)",
1435 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1436 dbg_gen("LPT area LEBs: %d (%d - %d)",
1437 c->lpt_lebs, c->lpt_first, c->lpt_last);
1438 dbg_gen("orphan area LEBs: %d (%d - %d)",
1439 c->orph_lebs, c->orph_first, c->orph_last);
1440 dbg_gen("main area LEBs: %d (%d - %d)",
1441 c->main_lebs, c->main_first, c->leb_cnt - 1);
1442 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1443 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1444 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1445 c->bi.old_idx_sz >> 20);
1446 dbg_gen("key hash type: %d", c->key_hash_type);
1447 dbg_gen("tree fanout: %d", c->fanout);
1448 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1449 dbg_gen("max. znode size %d", c->max_znode_sz);
1450 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1451 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1452 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1453 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1454 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1455 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1456 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1457 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1458 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1459 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1460 dbg_gen("dead watermark: %d", c->dead_wm);
1461 dbg_gen("dark watermark: %d", c->dark_wm);
1462 dbg_gen("LEB overhead: %d", c->leb_overhead);
1463 x = (long long)c->main_lebs * c->dark_wm;
1464 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1465 x, x >> 10, x >> 20);
1466 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1467 c->max_bud_bytes, c->max_bud_bytes >> 10,
1468 c->max_bud_bytes >> 20);
1469 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1471 c->bg_bud_bytes >> 20);
1472 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1473 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1474 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1475 dbg_gen("commit number: %llu", c->cmt_no);
1476
1477 return 0;
1478
1479out_infos:
1480 spin_lock(&ubifs_infos_lock);
1481 list_del(&c->infos_list);
1482 spin_unlock(&ubifs_infos_lock);
1483out_orphans:
1484 free_orphans(c);
1485out_journal:
1486 destroy_journal(c);
1487out_lpt:
1488 ubifs_lpt_free(c, 0);
1489out_master:
1490 kfree(c->mst_node);
1491 kfree(c->rcvrd_mst_node);
1492 if (c->bgt)
1493 kthread_stop(c->bgt);
1494out_wbufs:
1495 free_wbufs(c);
1496out_cbuf:
1497 kfree(c->cbuf);
1498out_free:
1499 kfree(c->write_reserve_buf);
1500 kfree(c->bu.buf);
1501 vfree(c->ileb_buf);
1502 vfree(c->sbuf);
1503 kfree(c->bottom_up_buf);
1504 ubifs_debugging_exit(c);
1505 return err;
1506}
1507
1508/**
1509 * ubifs_umount - un-mount UBIFS file-system.
1510 * @c: UBIFS file-system description object
1511 *
1512 * Note, this function is called to free allocated resourced when un-mounting,
1513 * as well as free resources when an error occurred while we were half way
1514 * through mounting (error path cleanup function). So it has to make sure the
1515 * resource was actually allocated before freeing it.
1516 */
1517static void ubifs_umount(struct ubifs_info *c)
1518{
1519 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1520 c->vi.vol_id);
1521
1522 dbg_debugfs_exit_fs(c);
1523 spin_lock(&ubifs_infos_lock);
1524 list_del(&c->infos_list);
1525 spin_unlock(&ubifs_infos_lock);
1526
1527 if (c->bgt)
1528 kthread_stop(c->bgt);
1529
1530 destroy_journal(c);
1531 free_wbufs(c);
1532 free_orphans(c);
1533 ubifs_lpt_free(c, 0);
1534
1535 kfree(c->cbuf);
1536 kfree(c->rcvrd_mst_node);
1537 kfree(c->mst_node);
1538 kfree(c->write_reserve_buf);
1539 kfree(c->bu.buf);
1540 vfree(c->ileb_buf);
1541 vfree(c->sbuf);
1542 kfree(c->bottom_up_buf);
1543 ubifs_debugging_exit(c);
1544}
1545
1546/**
1547 * ubifs_remount_rw - re-mount in read-write mode.
1548 * @c: UBIFS file-system description object
1549 *
1550 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1551 * mode. This function allocates the needed resources and re-mounts UBIFS in
1552 * read-write mode.
1553 */
1554static int ubifs_remount_rw(struct ubifs_info *c)
1555{
1556 int err, lnum;
1557
1558 if (c->rw_incompat) {
1559 ubifs_err(c, "the file-system is not R/W-compatible");
1560 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1561 c->fmt_version, c->ro_compat_version,
1562 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1563 return -EROFS;
1564 }
1565
1566 mutex_lock(&c->umount_mutex);
1567 dbg_save_space_info(c);
1568 c->remounting_rw = 1;
1569 c->ro_mount = 0;
1570
1571 if (c->space_fixup) {
1572 err = ubifs_fixup_free_space(c);
1573 if (err)
1574 goto out;
1575 }
1576
1577 err = check_free_space(c);
1578 if (err)
1579 goto out;
1580
1581 if (c->old_leb_cnt != c->leb_cnt) {
1582 struct ubifs_sb_node *sup;
1583
1584 sup = ubifs_read_sb_node(c);
1585 if (IS_ERR(sup)) {
1586 err = PTR_ERR(sup);
1587 goto out;
1588 }
1589 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1590 err = ubifs_write_sb_node(c, sup);
1591 kfree(sup);
1592 if (err)
1593 goto out;
1594 }
1595
1596 if (c->need_recovery) {
1597 ubifs_msg(c, "completing deferred recovery");
1598 err = ubifs_write_rcvrd_mst_node(c);
1599 if (err)
1600 goto out;
1601 err = ubifs_recover_size(c);
1602 if (err)
1603 goto out;
1604 err = ubifs_clean_lebs(c, c->sbuf);
1605 if (err)
1606 goto out;
1607 err = ubifs_recover_inl_heads(c, c->sbuf);
1608 if (err)
1609 goto out;
1610 } else {
1611 /* A readonly mount is not allowed to have orphans */
1612 ubifs_assert(c->tot_orphans == 0);
1613 err = ubifs_clear_orphans(c);
1614 if (err)
1615 goto out;
1616 }
1617
1618 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1619 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1620 err = ubifs_write_master(c);
1621 if (err)
1622 goto out;
1623 }
1624
1625 c->ileb_buf = vmalloc(c->leb_size);
1626 if (!c->ileb_buf) {
1627 err = -ENOMEM;
1628 goto out;
1629 }
1630
1631 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1632 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1633 if (!c->write_reserve_buf) {
1634 err = -ENOMEM;
1635 goto out;
1636 }
1637
1638 err = ubifs_lpt_init(c, 0, 1);
1639 if (err)
1640 goto out;
1641
1642 /* Create background thread */
1643 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1644 if (IS_ERR(c->bgt)) {
1645 err = PTR_ERR(c->bgt);
1646 c->bgt = NULL;
1647 ubifs_err(c, "cannot spawn \"%s\", error %d",
1648 c->bgt_name, err);
1649 goto out;
1650 }
1651 wake_up_process(c->bgt);
1652
1653 c->orph_buf = vmalloc(c->leb_size);
1654 if (!c->orph_buf) {
1655 err = -ENOMEM;
1656 goto out;
1657 }
1658
1659 /* Check for enough log space */
1660 lnum = c->lhead_lnum + 1;
1661 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1662 lnum = UBIFS_LOG_LNUM;
1663 if (lnum == c->ltail_lnum) {
1664 err = ubifs_consolidate_log(c);
1665 if (err)
1666 goto out;
1667 }
1668
1669 if (c->need_recovery)
1670 err = ubifs_rcvry_gc_commit(c);
1671 else
1672 err = ubifs_leb_unmap(c, c->gc_lnum);
1673 if (err)
1674 goto out;
1675
1676 dbg_gen("re-mounted read-write");
1677 c->remounting_rw = 0;
1678
1679 if (c->need_recovery) {
1680 c->need_recovery = 0;
1681 ubifs_msg(c, "deferred recovery completed");
1682 } else {
1683 /*
1684 * Do not run the debugging space check if the were doing
1685 * recovery, because when we saved the information we had the
1686 * file-system in a state where the TNC and lprops has been
1687 * modified in memory, but all the I/O operations (including a
1688 * commit) were deferred. So the file-system was in
1689 * "non-committed" state. Now the file-system is in committed
1690 * state, and of course the amount of free space will change
1691 * because, for example, the old index size was imprecise.
1692 */
1693 err = dbg_check_space_info(c);
1694 }
1695
1696 mutex_unlock(&c->umount_mutex);
1697 return err;
1698
1699out:
1700 c->ro_mount = 1;
1701 vfree(c->orph_buf);
1702 c->orph_buf = NULL;
1703 if (c->bgt) {
1704 kthread_stop(c->bgt);
1705 c->bgt = NULL;
1706 }
1707 free_wbufs(c);
1708 kfree(c->write_reserve_buf);
1709 c->write_reserve_buf = NULL;
1710 vfree(c->ileb_buf);
1711 c->ileb_buf = NULL;
1712 ubifs_lpt_free(c, 1);
1713 c->remounting_rw = 0;
1714 mutex_unlock(&c->umount_mutex);
1715 return err;
1716}
1717
1718/**
1719 * ubifs_remount_ro - re-mount in read-only mode.
1720 * @c: UBIFS file-system description object
1721 *
1722 * We assume VFS has stopped writing. Possibly the background thread could be
1723 * running a commit, however kthread_stop will wait in that case.
1724 */
1725static void ubifs_remount_ro(struct ubifs_info *c)
1726{
1727 int i, err;
1728
1729 ubifs_assert(!c->need_recovery);
1730 ubifs_assert(!c->ro_mount);
1731
1732 mutex_lock(&c->umount_mutex);
1733 if (c->bgt) {
1734 kthread_stop(c->bgt);
1735 c->bgt = NULL;
1736 }
1737
1738 dbg_save_space_info(c);
1739
1740 for (i = 0; i < c->jhead_cnt; i++) {
1741 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1742 if (err)
1743 ubifs_ro_mode(c, err);
1744 }
1745
1746 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1747 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1748 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1749 err = ubifs_write_master(c);
1750 if (err)
1751 ubifs_ro_mode(c, err);
1752
1753 vfree(c->orph_buf);
1754 c->orph_buf = NULL;
1755 kfree(c->write_reserve_buf);
1756 c->write_reserve_buf = NULL;
1757 vfree(c->ileb_buf);
1758 c->ileb_buf = NULL;
1759 ubifs_lpt_free(c, 1);
1760 c->ro_mount = 1;
1761 err = dbg_check_space_info(c);
1762 if (err)
1763 ubifs_ro_mode(c, err);
1764 mutex_unlock(&c->umount_mutex);
1765}
1766
1767static void ubifs_put_super(struct super_block *sb)
1768{
1769 int i;
1770 struct ubifs_info *c = sb->s_fs_info;
1771
1772 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1773
1774 /*
1775 * The following asserts are only valid if there has not been a failure
1776 * of the media. For example, there will be dirty inodes if we failed
1777 * to write them back because of I/O errors.
1778 */
1779 if (!c->ro_error) {
1780 ubifs_assert(c->bi.idx_growth == 0);
1781 ubifs_assert(c->bi.dd_growth == 0);
1782 ubifs_assert(c->bi.data_growth == 0);
1783 }
1784
1785 /*
1786 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1787 * and file system un-mount. Namely, it prevents the shrinker from
1788 * picking this superblock for shrinking - it will be just skipped if
1789 * the mutex is locked.
1790 */
1791 mutex_lock(&c->umount_mutex);
1792 if (!c->ro_mount) {
1793 /*
1794 * First of all kill the background thread to make sure it does
1795 * not interfere with un-mounting and freeing resources.
1796 */
1797 if (c->bgt) {
1798 kthread_stop(c->bgt);
1799 c->bgt = NULL;
1800 }
1801
1802 /*
1803 * On fatal errors c->ro_error is set to 1, in which case we do
1804 * not write the master node.
1805 */
1806 if (!c->ro_error) {
1807 int err;
1808
1809 /* Synchronize write-buffers */
1810 for (i = 0; i < c->jhead_cnt; i++) {
1811 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1812 if (err)
1813 ubifs_ro_mode(c, err);
1814 }
1815
1816 /*
1817 * We are being cleanly unmounted which means the
1818 * orphans were killed - indicate this in the master
1819 * node. Also save the reserved GC LEB number.
1820 */
1821 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1822 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1823 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1824 err = ubifs_write_master(c);
1825 if (err)
1826 /*
1827 * Recovery will attempt to fix the master area
1828 * next mount, so we just print a message and
1829 * continue to unmount normally.
1830 */
1831 ubifs_err(c, "failed to write master node, error %d",
1832 err);
1833 } else {
1834 for (i = 0; i < c->jhead_cnt; i++)
1835 /* Make sure write-buffer timers are canceled */
1836 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1837 }
1838 }
1839
1840 ubifs_umount(c);
1841 ubi_close_volume(c->ubi);
1842 mutex_unlock(&c->umount_mutex);
1843}
1844
1845static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1846{
1847 int err;
1848 struct ubifs_info *c = sb->s_fs_info;
1849
1850 sync_filesystem(sb);
1851 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1852
1853 err = ubifs_parse_options(c, data, 1);
1854 if (err) {
1855 ubifs_err(c, "invalid or unknown remount parameter");
1856 return err;
1857 }
1858
1859 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1860 if (c->ro_error) {
1861 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1862 return -EROFS;
1863 }
1864 if (c->ro_media) {
1865 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1866 return -EROFS;
1867 }
1868 err = ubifs_remount_rw(c);
1869 if (err)
1870 return err;
1871 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1872 if (c->ro_error) {
1873 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1874 return -EROFS;
1875 }
1876 ubifs_remount_ro(c);
1877 }
1878
1879 if (c->bulk_read == 1)
1880 bu_init(c);
1881 else {
1882 dbg_gen("disable bulk-read");
1883 mutex_lock(&c->bu_mutex);
1884 kfree(c->bu.buf);
1885 c->bu.buf = NULL;
1886 mutex_unlock(&c->bu_mutex);
1887 }
1888
1889 ubifs_assert(c->lst.taken_empty_lebs > 0);
1890 return 0;
1891}
1892
1893const struct super_operations ubifs_super_operations = {
1894 .alloc_inode = ubifs_alloc_inode,
1895 .destroy_inode = ubifs_destroy_inode,
1896 .put_super = ubifs_put_super,
1897 .write_inode = ubifs_write_inode,
1898 .evict_inode = ubifs_evict_inode,
1899 .statfs = ubifs_statfs,
1900 .dirty_inode = ubifs_dirty_inode,
1901 .remount_fs = ubifs_remount_fs,
1902 .show_options = ubifs_show_options,
1903 .sync_fs = ubifs_sync_fs,
1904};
1905
1906/**
1907 * open_ubi - parse UBI device name string and open the UBI device.
1908 * @name: UBI volume name
1909 * @mode: UBI volume open mode
1910 *
1911 * The primary method of mounting UBIFS is by specifying the UBI volume
1912 * character device node path. However, UBIFS may also be mounted withoug any
1913 * character device node using one of the following methods:
1914 *
1915 * o ubiX_Y - mount UBI device number X, volume Y;
1916 * o ubiY - mount UBI device number 0, volume Y;
1917 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1918 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1919 *
1920 * Alternative '!' separator may be used instead of ':' (because some shells
1921 * like busybox may interpret ':' as an NFS host name separator). This function
1922 * returns UBI volume description object in case of success and a negative
1923 * error code in case of failure.
1924 */
1925static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1926{
1927 struct ubi_volume_desc *ubi;
1928 int dev, vol;
1929 char *endptr;
1930
1931 /* First, try to open using the device node path method */
1932 ubi = ubi_open_volume_path(name, mode);
1933 if (!IS_ERR(ubi))
1934 return ubi;
1935
1936 /* Try the "nodev" method */
1937 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1938 return ERR_PTR(-EINVAL);
1939
1940 /* ubi:NAME method */
1941 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1942 return ubi_open_volume_nm(0, name + 4, mode);
1943
1944 if (!isdigit(name[3]))
1945 return ERR_PTR(-EINVAL);
1946
1947 dev = simple_strtoul(name + 3, &endptr, 0);
1948
1949 /* ubiY method */
1950 if (*endptr == '\0')
1951 return ubi_open_volume(0, dev, mode);
1952
1953 /* ubiX_Y method */
1954 if (*endptr == '_' && isdigit(endptr[1])) {
1955 vol = simple_strtoul(endptr + 1, &endptr, 0);
1956 if (*endptr != '\0')
1957 return ERR_PTR(-EINVAL);
1958 return ubi_open_volume(dev, vol, mode);
1959 }
1960
1961 /* ubiX:NAME method */
1962 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1963 return ubi_open_volume_nm(dev, ++endptr, mode);
1964
1965 return ERR_PTR(-EINVAL);
1966}
1967
1968static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1969{
1970 struct ubifs_info *c;
1971
1972 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1973 if (c) {
1974 spin_lock_init(&c->cnt_lock);
1975 spin_lock_init(&c->cs_lock);
1976 spin_lock_init(&c->buds_lock);
1977 spin_lock_init(&c->space_lock);
1978 spin_lock_init(&c->orphan_lock);
1979 init_rwsem(&c->commit_sem);
1980 mutex_init(&c->lp_mutex);
1981 mutex_init(&c->tnc_mutex);
1982 mutex_init(&c->log_mutex);
1983 mutex_init(&c->umount_mutex);
1984 mutex_init(&c->bu_mutex);
1985 mutex_init(&c->write_reserve_mutex);
1986 init_waitqueue_head(&c->cmt_wq);
1987 c->buds = RB_ROOT;
1988 c->old_idx = RB_ROOT;
1989 c->size_tree = RB_ROOT;
1990 c->orph_tree = RB_ROOT;
1991 INIT_LIST_HEAD(&c->infos_list);
1992 INIT_LIST_HEAD(&c->idx_gc);
1993 INIT_LIST_HEAD(&c->replay_list);
1994 INIT_LIST_HEAD(&c->replay_buds);
1995 INIT_LIST_HEAD(&c->uncat_list);
1996 INIT_LIST_HEAD(&c->empty_list);
1997 INIT_LIST_HEAD(&c->freeable_list);
1998 INIT_LIST_HEAD(&c->frdi_idx_list);
1999 INIT_LIST_HEAD(&c->unclean_leb_list);
2000 INIT_LIST_HEAD(&c->old_buds);
2001 INIT_LIST_HEAD(&c->orph_list);
2002 INIT_LIST_HEAD(&c->orph_new);
2003 c->no_chk_data_crc = 1;
2004
2005 c->highest_inum = UBIFS_FIRST_INO;
2006 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2007
2008 ubi_get_volume_info(ubi, &c->vi);
2009 ubi_get_device_info(c->vi.ubi_num, &c->di);
2010 }
2011 return c;
2012}
2013
2014static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2015{
2016 struct ubifs_info *c = sb->s_fs_info;
2017 struct inode *root;
2018 int err;
2019
2020 c->vfs_sb = sb;
2021 /* Re-open the UBI device in read-write mode */
2022 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2023 if (IS_ERR(c->ubi)) {
2024 err = PTR_ERR(c->ubi);
2025 goto out;
2026 }
2027
2028 err = ubifs_parse_options(c, data, 0);
2029 if (err)
2030 goto out_close;
2031
2032 /*
2033 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2034 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2035 * which means the user would have to wait not just for their own I/O
2036 * but the read-ahead I/O as well i.e. completely pointless.
2037 *
2038 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2039 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2040 * writeback happening.
2041 */
2042 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2043 c->vi.vol_id);
2044 if (err)
2045 goto out_close;
2046
2047 sb->s_fs_info = c;
2048 sb->s_magic = UBIFS_SUPER_MAGIC;
2049 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2050 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2051 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2052 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2053 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2054 sb->s_op = &ubifs_super_operations;
2055 sb->s_xattr = ubifs_xattr_handlers;
2056#ifdef CONFIG_UBIFS_FS_ENCRYPTION
2057 sb->s_cop = &ubifs_crypt_operations;
2058#endif
2059
2060 mutex_lock(&c->umount_mutex);
2061 err = mount_ubifs(c);
2062 if (err) {
2063 ubifs_assert(err < 0);
2064 goto out_unlock;
2065 }
2066
2067 /* Read the root inode */
2068 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2069 if (IS_ERR(root)) {
2070 err = PTR_ERR(root);
2071 goto out_umount;
2072 }
2073
2074 sb->s_root = d_make_root(root);
2075 if (!sb->s_root) {
2076 err = -ENOMEM;
2077 goto out_umount;
2078 }
2079
2080 mutex_unlock(&c->umount_mutex);
2081 return 0;
2082
2083out_umount:
2084 ubifs_umount(c);
2085out_unlock:
2086 mutex_unlock(&c->umount_mutex);
2087out_close:
2088 ubi_close_volume(c->ubi);
2089out:
2090 return err;
2091}
2092
2093static int sb_test(struct super_block *sb, void *data)
2094{
2095 struct ubifs_info *c1 = data;
2096 struct ubifs_info *c = sb->s_fs_info;
2097
2098 return c->vi.cdev == c1->vi.cdev;
2099}
2100
2101static int sb_set(struct super_block *sb, void *data)
2102{
2103 sb->s_fs_info = data;
2104 return set_anon_super(sb, NULL);
2105}
2106
2107static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2108 const char *name, void *data)
2109{
2110 struct ubi_volume_desc *ubi;
2111 struct ubifs_info *c;
2112 struct super_block *sb;
2113 int err;
2114
2115 dbg_gen("name %s, flags %#x", name, flags);
2116
2117 /*
2118 * Get UBI device number and volume ID. Mount it read-only so far
2119 * because this might be a new mount point, and UBI allows only one
2120 * read-write user at a time.
2121 */
2122 ubi = open_ubi(name, UBI_READONLY);
2123 if (IS_ERR(ubi)) {
2124 if (!(flags & SB_SILENT))
2125 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2126 current->pid, name, (int)PTR_ERR(ubi));
2127 return ERR_CAST(ubi);
2128 }
2129
2130 c = alloc_ubifs_info(ubi);
2131 if (!c) {
2132 err = -ENOMEM;
2133 goto out_close;
2134 }
2135
2136 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2137
2138 sb = sget(fs_type, sb_test, sb_set, flags, c);
2139 if (IS_ERR(sb)) {
2140 err = PTR_ERR(sb);
2141 kfree(c);
2142 goto out_close;
2143 }
2144
2145 if (sb->s_root) {
2146 struct ubifs_info *c1 = sb->s_fs_info;
2147 kfree(c);
2148 /* A new mount point for already mounted UBIFS */
2149 dbg_gen("this ubi volume is already mounted");
2150 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2151 err = -EBUSY;
2152 goto out_deact;
2153 }
2154 } else {
2155 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2156 if (err)
2157 goto out_deact;
2158 /* We do not support atime */
2159 sb->s_flags |= SB_ACTIVE;
2160#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2161 sb->s_flags |= SB_NOATIME;
2162#else
2163 ubifs_msg(c, "full atime support is enabled.");
2164#endif
2165 }
2166
2167 /* 'fill_super()' opens ubi again so we must close it here */
2168 ubi_close_volume(ubi);
2169
2170 return dget(sb->s_root);
2171
2172out_deact:
2173 deactivate_locked_super(sb);
2174out_close:
2175 ubi_close_volume(ubi);
2176 return ERR_PTR(err);
2177}
2178
2179static void kill_ubifs_super(struct super_block *s)
2180{
2181 struct ubifs_info *c = s->s_fs_info;
2182 kill_anon_super(s);
2183 kfree(c);
2184}
2185
2186static struct file_system_type ubifs_fs_type = {
2187 .name = "ubifs",
2188 .owner = THIS_MODULE,
2189 .mount = ubifs_mount,
2190 .kill_sb = kill_ubifs_super,
2191};
2192MODULE_ALIAS_FS("ubifs");
2193
2194/*
2195 * Inode slab cache constructor.
2196 */
2197static void inode_slab_ctor(void *obj)
2198{
2199 struct ubifs_inode *ui = obj;
2200 inode_init_once(&ui->vfs_inode);
2201}
2202
2203static int __init ubifs_init(void)
2204{
2205 int err;
2206
2207 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2208
2209 /* Make sure node sizes are 8-byte aligned */
2210 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2211 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2212 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2213 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2214 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2215 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2216 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2217 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2218 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2219 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2220 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2221
2222 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2223 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2224 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2225 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2226 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2227 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2228
2229 /* Check min. node size */
2230 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2231 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2232 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2233 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2234
2235 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2236 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2237 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2238 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2239
2240 /* Defined node sizes */
2241 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2242 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2243 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2244 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2245
2246 /*
2247 * We use 2 bit wide bit-fields to store compression type, which should
2248 * be amended if more compressors are added. The bit-fields are:
2249 * @compr_type in 'struct ubifs_inode', @default_compr in
2250 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2251 */
2252 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2253
2254 /*
2255 * We require that PAGE_SIZE is greater-than-or-equal-to
2256 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2257 */
2258 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2259 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2260 current->pid, (unsigned int)PAGE_SIZE);
2261 return -EINVAL;
2262 }
2263
2264 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2265 sizeof(struct ubifs_inode), 0,
2266 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2267 SLAB_ACCOUNT, &inode_slab_ctor);
2268 if (!ubifs_inode_slab)
2269 return -ENOMEM;
2270
2271 err = register_shrinker(&ubifs_shrinker_info);
2272 if (err)
2273 goto out_slab;
2274
2275 err = ubifs_compressors_init();
2276 if (err)
2277 goto out_shrinker;
2278
2279 err = dbg_debugfs_init();
2280 if (err)
2281 goto out_compr;
2282
2283 err = register_filesystem(&ubifs_fs_type);
2284 if (err) {
2285 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2286 current->pid, err);
2287 goto out_dbg;
2288 }
2289 return 0;
2290
2291out_dbg:
2292 dbg_debugfs_exit();
2293out_compr:
2294 ubifs_compressors_exit();
2295out_shrinker:
2296 unregister_shrinker(&ubifs_shrinker_info);
2297out_slab:
2298 kmem_cache_destroy(ubifs_inode_slab);
2299 return err;
2300}
2301/* late_initcall to let compressors initialize first */
2302late_initcall(ubifs_init);
2303
2304static void __exit ubifs_exit(void)
2305{
2306 ubifs_assert(list_empty(&ubifs_infos));
2307 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2308
2309 dbg_debugfs_exit();
2310 ubifs_compressors_exit();
2311 unregister_shrinker(&ubifs_shrinker_info);
2312
2313 /*
2314 * Make sure all delayed rcu free inodes are flushed before we
2315 * destroy cache.
2316 */
2317 rcu_barrier();
2318 kmem_cache_destroy(ubifs_inode_slab);
2319 unregister_filesystem(&ubifs_fs_type);
2320}
2321module_exit(ubifs_exit);
2322
2323MODULE_LICENSE("GPL");
2324MODULE_VERSION(__stringify(UBIFS_VERSION));
2325MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2326MODULE_DESCRIPTION("UBIFS - UBI File System");