Linux Audio

Check our new training course

Loading...
v3.15
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
 
 
  31
  32#include <cluster/masklog.h>
  33
  34#include "ocfs2.h"
  35
  36#include "alloc.h"
  37#include "aops.h"
  38#include "dlmglue.h"
  39#include "extent_map.h"
  40#include "file.h"
  41#include "inode.h"
  42#include "journal.h"
  43#include "suballoc.h"
  44#include "super.h"
  45#include "symlink.h"
  46#include "refcounttree.h"
  47#include "ocfs2_trace.h"
  48
  49#include "buffer_head_io.h"
 
 
 
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52				   struct buffer_head *bh_result, int create)
  53{
  54	int err = -EIO;
  55	int status;
  56	struct ocfs2_dinode *fe = NULL;
  57	struct buffer_head *bh = NULL;
  58	struct buffer_head *buffer_cache_bh = NULL;
  59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60	void *kaddr;
  61
  62	trace_ocfs2_symlink_get_block(
  63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  64			(unsigned long long)iblock, bh_result, create);
  65
  66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  67
  68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  70		     (unsigned long long)iblock);
  71		goto bail;
  72	}
  73
  74	status = ocfs2_read_inode_block(inode, &bh);
  75	if (status < 0) {
  76		mlog_errno(status);
  77		goto bail;
  78	}
  79	fe = (struct ocfs2_dinode *) bh->b_data;
  80
  81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  82						    le32_to_cpu(fe->i_clusters))) {
  83		err = -ENOMEM;
  84		mlog(ML_ERROR, "block offset is outside the allocated size: "
  85		     "%llu\n", (unsigned long long)iblock);
  86		goto bail;
  87	}
  88
  89	/* We don't use the page cache to create symlink data, so if
  90	 * need be, copy it over from the buffer cache. */
  91	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  92		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  93			    iblock;
  94		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  95		if (!buffer_cache_bh) {
  96			err = -ENOMEM;
  97			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  98			goto bail;
  99		}
 100
 101		/* we haven't locked out transactions, so a commit
 102		 * could've happened. Since we've got a reference on
 103		 * the bh, even if it commits while we're doing the
 104		 * copy, the data is still good. */
 105		if (buffer_jbd(buffer_cache_bh)
 106		    && ocfs2_inode_is_new(inode)) {
 107			kaddr = kmap_atomic(bh_result->b_page);
 108			if (!kaddr) {
 109				mlog(ML_ERROR, "couldn't kmap!\n");
 110				goto bail;
 111			}
 112			memcpy(kaddr + (bh_result->b_size * iblock),
 113			       buffer_cache_bh->b_data,
 114			       bh_result->b_size);
 115			kunmap_atomic(kaddr);
 116			set_buffer_uptodate(bh_result);
 117		}
 118		brelse(buffer_cache_bh);
 119	}
 120
 121	map_bh(bh_result, inode->i_sb,
 122	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 123
 124	err = 0;
 125
 126bail:
 127	brelse(bh);
 128
 129	return err;
 130}
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 132int ocfs2_get_block(struct inode *inode, sector_t iblock,
 133		    struct buffer_head *bh_result, int create)
 134{
 135	int err = 0;
 136	unsigned int ext_flags;
 137	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 138	u64 p_blkno, count, past_eof;
 139	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 140
 141	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 142			      (unsigned long long)iblock, bh_result, create);
 143
 144	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 145		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 146		     inode, inode->i_ino);
 147
 148	if (S_ISLNK(inode->i_mode)) {
 149		/* this always does I/O for some reason. */
 150		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 151		goto bail;
 152	}
 153
 154	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 155					  &ext_flags);
 156	if (err) {
 157		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 158		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 159		     (unsigned long long)p_blkno);
 160		goto bail;
 161	}
 162
 163	if (max_blocks < count)
 164		count = max_blocks;
 165
 166	/*
 167	 * ocfs2 never allocates in this function - the only time we
 168	 * need to use BH_New is when we're extending i_size on a file
 169	 * system which doesn't support holes, in which case BH_New
 170	 * allows __block_write_begin() to zero.
 171	 *
 172	 * If we see this on a sparse file system, then a truncate has
 173	 * raced us and removed the cluster. In this case, we clear
 174	 * the buffers dirty and uptodate bits and let the buffer code
 175	 * ignore it as a hole.
 176	 */
 177	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 178		clear_buffer_dirty(bh_result);
 179		clear_buffer_uptodate(bh_result);
 180		goto bail;
 181	}
 182
 183	/* Treat the unwritten extent as a hole for zeroing purposes. */
 184	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 185		map_bh(bh_result, inode->i_sb, p_blkno);
 186
 187	bh_result->b_size = count << inode->i_blkbits;
 188
 189	if (!ocfs2_sparse_alloc(osb)) {
 190		if (p_blkno == 0) {
 191			err = -EIO;
 192			mlog(ML_ERROR,
 193			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 194			     (unsigned long long)iblock,
 195			     (unsigned long long)p_blkno,
 196			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 197			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 198			dump_stack();
 199			goto bail;
 200		}
 201	}
 202
 203	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 204
 205	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 206				  (unsigned long long)past_eof);
 207	if (create && (iblock >= past_eof))
 208		set_buffer_new(bh_result);
 209
 210bail:
 211	if (err < 0)
 212		err = -EIO;
 213
 214	return err;
 215}
 216
 217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 218			   struct buffer_head *di_bh)
 219{
 220	void *kaddr;
 221	loff_t size;
 222	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 223
 224	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 225		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 226			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 227		return -EROFS;
 228	}
 229
 230	size = i_size_read(inode);
 231
 232	if (size > PAGE_CACHE_SIZE ||
 233	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 234		ocfs2_error(inode->i_sb,
 235			    "Inode %llu has with inline data has bad size: %Lu",
 236			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 237			    (unsigned long long)size);
 238		return -EROFS;
 239	}
 240
 241	kaddr = kmap_atomic(page);
 242	if (size)
 243		memcpy(kaddr, di->id2.i_data.id_data, size);
 244	/* Clear the remaining part of the page */
 245	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 246	flush_dcache_page(page);
 247	kunmap_atomic(kaddr);
 248
 249	SetPageUptodate(page);
 250
 251	return 0;
 252}
 253
 254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 255{
 256	int ret;
 257	struct buffer_head *di_bh = NULL;
 258
 259	BUG_ON(!PageLocked(page));
 260	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 261
 262	ret = ocfs2_read_inode_block(inode, &di_bh);
 263	if (ret) {
 264		mlog_errno(ret);
 265		goto out;
 266	}
 267
 268	ret = ocfs2_read_inline_data(inode, page, di_bh);
 269out:
 270	unlock_page(page);
 271
 272	brelse(di_bh);
 273	return ret;
 274}
 275
 276static int ocfs2_readpage(struct file *file, struct page *page)
 277{
 278	struct inode *inode = page->mapping->host;
 279	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 280	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 281	int ret, unlock = 1;
 282
 283	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 284			     (page ? page->index : 0));
 285
 286	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 287	if (ret != 0) {
 288		if (ret == AOP_TRUNCATED_PAGE)
 289			unlock = 0;
 290		mlog_errno(ret);
 291		goto out;
 292	}
 293
 294	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 295		/*
 296		 * Unlock the page and cycle ip_alloc_sem so that we don't
 297		 * busyloop waiting for ip_alloc_sem to unlock
 298		 */
 299		ret = AOP_TRUNCATED_PAGE;
 300		unlock_page(page);
 301		unlock = 0;
 302		down_read(&oi->ip_alloc_sem);
 303		up_read(&oi->ip_alloc_sem);
 304		goto out_inode_unlock;
 305	}
 306
 307	/*
 308	 * i_size might have just been updated as we grabed the meta lock.  We
 309	 * might now be discovering a truncate that hit on another node.
 310	 * block_read_full_page->get_block freaks out if it is asked to read
 311	 * beyond the end of a file, so we check here.  Callers
 312	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 313	 * and notice that the page they just read isn't needed.
 314	 *
 315	 * XXX sys_readahead() seems to get that wrong?
 316	 */
 317	if (start >= i_size_read(inode)) {
 318		zero_user(page, 0, PAGE_SIZE);
 319		SetPageUptodate(page);
 320		ret = 0;
 321		goto out_alloc;
 322	}
 323
 324	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 325		ret = ocfs2_readpage_inline(inode, page);
 326	else
 327		ret = block_read_full_page(page, ocfs2_get_block);
 328	unlock = 0;
 329
 330out_alloc:
 331	up_read(&OCFS2_I(inode)->ip_alloc_sem);
 332out_inode_unlock:
 333	ocfs2_inode_unlock(inode, 0);
 334out:
 335	if (unlock)
 336		unlock_page(page);
 337	return ret;
 338}
 339
 340/*
 341 * This is used only for read-ahead. Failures or difficult to handle
 342 * situations are safe to ignore.
 343 *
 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 345 * are quite large (243 extents on 4k blocks), so most inodes don't
 346 * grow out to a tree. If need be, detecting boundary extents could
 347 * trivially be added in a future version of ocfs2_get_block().
 348 */
 349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 350			   struct list_head *pages, unsigned nr_pages)
 351{
 352	int ret, err = -EIO;
 353	struct inode *inode = mapping->host;
 354	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 355	loff_t start;
 356	struct page *last;
 357
 358	/*
 359	 * Use the nonblocking flag for the dlm code to avoid page
 360	 * lock inversion, but don't bother with retrying.
 361	 */
 362	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 363	if (ret)
 364		return err;
 365
 366	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 367		ocfs2_inode_unlock(inode, 0);
 368		return err;
 369	}
 370
 371	/*
 372	 * Don't bother with inline-data. There isn't anything
 373	 * to read-ahead in that case anyway...
 374	 */
 375	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 376		goto out_unlock;
 377
 378	/*
 379	 * Check whether a remote node truncated this file - we just
 380	 * drop out in that case as it's not worth handling here.
 381	 */
 382	last = list_entry(pages->prev, struct page, lru);
 383	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 384	if (start >= i_size_read(inode))
 385		goto out_unlock;
 386
 387	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 388
 389out_unlock:
 390	up_read(&oi->ip_alloc_sem);
 391	ocfs2_inode_unlock(inode, 0);
 392
 393	return err;
 394}
 395
 396/* Note: Because we don't support holes, our allocation has
 397 * already happened (allocation writes zeros to the file data)
 398 * so we don't have to worry about ordered writes in
 399 * ocfs2_writepage.
 400 *
 401 * ->writepage is called during the process of invalidating the page cache
 402 * during blocked lock processing.  It can't block on any cluster locks
 403 * to during block mapping.  It's relying on the fact that the block
 404 * mapping can't have disappeared under the dirty pages that it is
 405 * being asked to write back.
 406 */
 407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 408{
 409	trace_ocfs2_writepage(
 410		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 411		page->index);
 412
 413	return block_write_full_page(page, ocfs2_get_block, wbc);
 414}
 415
 416/* Taken from ext3. We don't necessarily need the full blown
 417 * functionality yet, but IMHO it's better to cut and paste the whole
 418 * thing so we can avoid introducing our own bugs (and easily pick up
 419 * their fixes when they happen) --Mark */
 420int walk_page_buffers(	handle_t *handle,
 421			struct buffer_head *head,
 422			unsigned from,
 423			unsigned to,
 424			int *partial,
 425			int (*fn)(	handle_t *handle,
 426					struct buffer_head *bh))
 427{
 428	struct buffer_head *bh;
 429	unsigned block_start, block_end;
 430	unsigned blocksize = head->b_size;
 431	int err, ret = 0;
 432	struct buffer_head *next;
 433
 434	for (	bh = head, block_start = 0;
 435		ret == 0 && (bh != head || !block_start);
 436	    	block_start = block_end, bh = next)
 437	{
 438		next = bh->b_this_page;
 439		block_end = block_start + blocksize;
 440		if (block_end <= from || block_start >= to) {
 441			if (partial && !buffer_uptodate(bh))
 442				*partial = 1;
 443			continue;
 444		}
 445		err = (*fn)(handle, bh);
 446		if (!ret)
 447			ret = err;
 448	}
 449	return ret;
 450}
 451
 452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 453{
 454	sector_t status;
 455	u64 p_blkno = 0;
 456	int err = 0;
 457	struct inode *inode = mapping->host;
 458
 459	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 460			 (unsigned long long)block);
 461
 
 
 
 
 
 
 
 
 
 462	/* We don't need to lock journal system files, since they aren't
 463	 * accessed concurrently from multiple nodes.
 464	 */
 465	if (!INODE_JOURNAL(inode)) {
 466		err = ocfs2_inode_lock(inode, NULL, 0);
 467		if (err) {
 468			if (err != -ENOENT)
 469				mlog_errno(err);
 470			goto bail;
 471		}
 472		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 473	}
 474
 475	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 476		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 477						  NULL);
 478
 479	if (!INODE_JOURNAL(inode)) {
 480		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 481		ocfs2_inode_unlock(inode, 0);
 482	}
 483
 484	if (err) {
 485		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 486		     (unsigned long long)block);
 487		mlog_errno(err);
 488		goto bail;
 489	}
 490
 491bail:
 492	status = err ? 0 : p_blkno;
 493
 494	return status;
 495}
 496
 497/*
 498 * TODO: Make this into a generic get_blocks function.
 499 *
 500 * From do_direct_io in direct-io.c:
 501 *  "So what we do is to permit the ->get_blocks function to populate
 502 *   bh.b_size with the size of IO which is permitted at this offset and
 503 *   this i_blkbits."
 504 *
 505 * This function is called directly from get_more_blocks in direct-io.c.
 506 *
 507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 508 * 					fs_count, map_bh, dio->rw == WRITE);
 509 *
 510 * Note that we never bother to allocate blocks here, and thus ignore the
 511 * create argument.
 512 */
 513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 514				     struct buffer_head *bh_result, int create)
 515{
 516	int ret;
 517	u64 p_blkno, inode_blocks, contig_blocks;
 518	unsigned int ext_flags;
 519	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 520	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 521
 522	/* This function won't even be called if the request isn't all
 523	 * nicely aligned and of the right size, so there's no need
 524	 * for us to check any of that. */
 525
 526	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 527
 528	/* This figures out the size of the next contiguous block, and
 529	 * our logical offset */
 530	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 531					  &contig_blocks, &ext_flags);
 532	if (ret) {
 533		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 534		     (unsigned long long)iblock);
 535		ret = -EIO;
 536		goto bail;
 537	}
 538
 539	/* We should already CoW the refcounted extent in case of create. */
 540	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 541
 542	/*
 543	 * get_more_blocks() expects us to describe a hole by clearing
 544	 * the mapped bit on bh_result().
 545	 *
 546	 * Consider an unwritten extent as a hole.
 547	 */
 548	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 549		map_bh(bh_result, inode->i_sb, p_blkno);
 550	else
 551		clear_buffer_mapped(bh_result);
 552
 553	/* make sure we don't map more than max_blocks blocks here as
 554	   that's all the kernel will handle at this point. */
 555	if (max_blocks < contig_blocks)
 556		contig_blocks = max_blocks;
 557	bh_result->b_size = contig_blocks << blocksize_bits;
 558bail:
 559	return ret;
 560}
 561
 562/*
 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 564 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 565 * to protect io on one node from truncation on another.
 566 */
 567static void ocfs2_dio_end_io(struct kiocb *iocb,
 568			     loff_t offset,
 569			     ssize_t bytes,
 570			     void *private)
 571{
 572	struct inode *inode = file_inode(iocb->ki_filp);
 573	int level;
 574
 575	/* this io's submitter should not have unlocked this before we could */
 576	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 577
 578	if (ocfs2_iocb_is_sem_locked(iocb))
 579		ocfs2_iocb_clear_sem_locked(iocb);
 580
 581	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 582		ocfs2_iocb_clear_unaligned_aio(iocb);
 583
 584		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
 585	}
 586
 587	ocfs2_iocb_clear_rw_locked(iocb);
 588
 589	level = ocfs2_iocb_rw_locked_level(iocb);
 590	ocfs2_rw_unlock(inode, level);
 591}
 592
 593static int ocfs2_releasepage(struct page *page, gfp_t wait)
 594{
 595	if (!page_has_buffers(page))
 596		return 0;
 597	return try_to_free_buffers(page);
 598}
 599
 600static ssize_t ocfs2_direct_IO(int rw,
 601			       struct kiocb *iocb,
 602			       const struct iovec *iov,
 603			       loff_t offset,
 604			       unsigned long nr_segs)
 605{
 606	struct file *file = iocb->ki_filp;
 607	struct inode *inode = file_inode(file)->i_mapping->host;
 608
 609	/*
 610	 * Fallback to buffered I/O if we see an inode without
 611	 * extents.
 612	 */
 613	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 614		return 0;
 615
 616	/* Fallback to buffered I/O if we are appending. */
 617	if (i_size_read(inode) <= offset)
 618		return 0;
 619
 620	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 621				    iov, offset, nr_segs,
 622				    ocfs2_direct_IO_get_blocks,
 623				    ocfs2_dio_end_io, NULL, 0);
 624}
 625
 626static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 627					    u32 cpos,
 628					    unsigned int *start,
 629					    unsigned int *end)
 630{
 631	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 632
 633	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 634		unsigned int cpp;
 635
 636		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 637
 638		cluster_start = cpos % cpp;
 639		cluster_start = cluster_start << osb->s_clustersize_bits;
 640
 641		cluster_end = cluster_start + osb->s_clustersize;
 642	}
 643
 644	BUG_ON(cluster_start > PAGE_SIZE);
 645	BUG_ON(cluster_end > PAGE_SIZE);
 646
 647	if (start)
 648		*start = cluster_start;
 649	if (end)
 650		*end = cluster_end;
 651}
 652
 653/*
 654 * 'from' and 'to' are the region in the page to avoid zeroing.
 655 *
 656 * If pagesize > clustersize, this function will avoid zeroing outside
 657 * of the cluster boundary.
 658 *
 659 * from == to == 0 is code for "zero the entire cluster region"
 660 */
 661static void ocfs2_clear_page_regions(struct page *page,
 662				     struct ocfs2_super *osb, u32 cpos,
 663				     unsigned from, unsigned to)
 664{
 665	void *kaddr;
 666	unsigned int cluster_start, cluster_end;
 667
 668	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 669
 670	kaddr = kmap_atomic(page);
 671
 672	if (from || to) {
 673		if (from > cluster_start)
 674			memset(kaddr + cluster_start, 0, from - cluster_start);
 675		if (to < cluster_end)
 676			memset(kaddr + to, 0, cluster_end - to);
 677	} else {
 678		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 679	}
 680
 681	kunmap_atomic(kaddr);
 682}
 683
 684/*
 685 * Nonsparse file systems fully allocate before we get to the write
 686 * code. This prevents ocfs2_write() from tagging the write as an
 687 * allocating one, which means ocfs2_map_page_blocks() might try to
 688 * read-in the blocks at the tail of our file. Avoid reading them by
 689 * testing i_size against each block offset.
 690 */
 691static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 692				 unsigned int block_start)
 693{
 694	u64 offset = page_offset(page) + block_start;
 695
 696	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 697		return 1;
 698
 699	if (i_size_read(inode) > offset)
 700		return 1;
 701
 702	return 0;
 703}
 704
 705/*
 706 * Some of this taken from __block_write_begin(). We already have our
 707 * mapping by now though, and the entire write will be allocating or
 708 * it won't, so not much need to use BH_New.
 709 *
 710 * This will also skip zeroing, which is handled externally.
 711 */
 712int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 713			  struct inode *inode, unsigned int from,
 714			  unsigned int to, int new)
 715{
 716	int ret = 0;
 717	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 718	unsigned int block_end, block_start;
 719	unsigned int bsize = 1 << inode->i_blkbits;
 720
 721	if (!page_has_buffers(page))
 722		create_empty_buffers(page, bsize, 0);
 723
 724	head = page_buffers(page);
 725	for (bh = head, block_start = 0; bh != head || !block_start;
 726	     bh = bh->b_this_page, block_start += bsize) {
 727		block_end = block_start + bsize;
 728
 729		clear_buffer_new(bh);
 730
 731		/*
 732		 * Ignore blocks outside of our i/o range -
 733		 * they may belong to unallocated clusters.
 734		 */
 735		if (block_start >= to || block_end <= from) {
 736			if (PageUptodate(page))
 737				set_buffer_uptodate(bh);
 738			continue;
 739		}
 740
 741		/*
 742		 * For an allocating write with cluster size >= page
 743		 * size, we always write the entire page.
 744		 */
 745		if (new)
 746			set_buffer_new(bh);
 747
 748		if (!buffer_mapped(bh)) {
 749			map_bh(bh, inode->i_sb, *p_blkno);
 750			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 751		}
 752
 753		if (PageUptodate(page)) {
 754			if (!buffer_uptodate(bh))
 755				set_buffer_uptodate(bh);
 756		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 757			   !buffer_new(bh) &&
 758			   ocfs2_should_read_blk(inode, page, block_start) &&
 759			   (block_start < from || block_end > to)) {
 760			ll_rw_block(READ, 1, &bh);
 761			*wait_bh++=bh;
 762		}
 763
 764		*p_blkno = *p_blkno + 1;
 765	}
 766
 767	/*
 768	 * If we issued read requests - let them complete.
 769	 */
 770	while(wait_bh > wait) {
 771		wait_on_buffer(*--wait_bh);
 772		if (!buffer_uptodate(*wait_bh))
 773			ret = -EIO;
 774	}
 775
 776	if (ret == 0 || !new)
 777		return ret;
 778
 779	/*
 780	 * If we get -EIO above, zero out any newly allocated blocks
 781	 * to avoid exposing stale data.
 782	 */
 783	bh = head;
 784	block_start = 0;
 785	do {
 786		block_end = block_start + bsize;
 787		if (block_end <= from)
 788			goto next_bh;
 789		if (block_start >= to)
 790			break;
 791
 792		zero_user(page, block_start, bh->b_size);
 793		set_buffer_uptodate(bh);
 794		mark_buffer_dirty(bh);
 795
 796next_bh:
 797		block_start = block_end;
 798		bh = bh->b_this_page;
 799	} while (bh != head);
 800
 801	return ret;
 802}
 803
 804#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 805#define OCFS2_MAX_CTXT_PAGES	1
 806#else
 807#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 808#endif
 809
 810#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 
 
 
 
 
 
 
 811
 812/*
 813 * Describe the state of a single cluster to be written to.
 814 */
 815struct ocfs2_write_cluster_desc {
 816	u32		c_cpos;
 817	u32		c_phys;
 818	/*
 819	 * Give this a unique field because c_phys eventually gets
 820	 * filled.
 821	 */
 822	unsigned	c_new;
 823	unsigned	c_unwritten;
 824	unsigned	c_needs_zero;
 825};
 826
 827struct ocfs2_write_ctxt {
 828	/* Logical cluster position / len of write */
 829	u32				w_cpos;
 830	u32				w_clen;
 831
 832	/* First cluster allocated in a nonsparse extend */
 833	u32				w_first_new_cpos;
 834
 
 
 
 835	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 836
 837	/*
 838	 * This is true if page_size > cluster_size.
 839	 *
 840	 * It triggers a set of special cases during write which might
 841	 * have to deal with allocating writes to partial pages.
 842	 */
 843	unsigned int			w_large_pages;
 844
 845	/*
 846	 * Pages involved in this write.
 847	 *
 848	 * w_target_page is the page being written to by the user.
 849	 *
 850	 * w_pages is an array of pages which always contains
 851	 * w_target_page, and in the case of an allocating write with
 852	 * page_size < cluster size, it will contain zero'd and mapped
 853	 * pages adjacent to w_target_page which need to be written
 854	 * out in so that future reads from that region will get
 855	 * zero's.
 856	 */
 857	unsigned int			w_num_pages;
 858	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 859	struct page			*w_target_page;
 860
 861	/*
 862	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 863	 * against w_target_page in ocfs2_write_end_nolock.
 864	 */
 865	unsigned int			w_target_locked:1;
 866
 867	/*
 868	 * ocfs2_write_end() uses this to know what the real range to
 869	 * write in the target should be.
 870	 */
 871	unsigned int			w_target_from;
 872	unsigned int			w_target_to;
 873
 874	/*
 875	 * We could use journal_current_handle() but this is cleaner,
 876	 * IMHO -Mark
 877	 */
 878	handle_t			*w_handle;
 879
 880	struct buffer_head		*w_di_bh;
 881
 882	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 
 
 
 883};
 884
 885void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 886{
 887	int i;
 888
 889	for(i = 0; i < num_pages; i++) {
 890		if (pages[i]) {
 891			unlock_page(pages[i]);
 892			mark_page_accessed(pages[i]);
 893			page_cache_release(pages[i]);
 894		}
 895	}
 896}
 897
 898static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 899{
 900	int i;
 901
 902	/*
 903	 * w_target_locked is only set to true in the page_mkwrite() case.
 904	 * The intent is to allow us to lock the target page from write_begin()
 905	 * to write_end(). The caller must hold a ref on w_target_page.
 906	 */
 907	if (wc->w_target_locked) {
 908		BUG_ON(!wc->w_target_page);
 909		for (i = 0; i < wc->w_num_pages; i++) {
 910			if (wc->w_target_page == wc->w_pages[i]) {
 911				wc->w_pages[i] = NULL;
 912				break;
 913			}
 914		}
 915		mark_page_accessed(wc->w_target_page);
 916		page_cache_release(wc->w_target_page);
 917	}
 918	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919
 
 
 
 
 
 920	brelse(wc->w_di_bh);
 921	kfree(wc);
 922}
 923
 924static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 925				  struct ocfs2_super *osb, loff_t pos,
 926				  unsigned len, struct buffer_head *di_bh)
 
 927{
 928	u32 cend;
 929	struct ocfs2_write_ctxt *wc;
 930
 931	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 932	if (!wc)
 933		return -ENOMEM;
 934
 935	wc->w_cpos = pos >> osb->s_clustersize_bits;
 936	wc->w_first_new_cpos = UINT_MAX;
 937	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 938	wc->w_clen = cend - wc->w_cpos + 1;
 939	get_bh(di_bh);
 940	wc->w_di_bh = di_bh;
 
 941
 942	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 943		wc->w_large_pages = 1;
 944	else
 945		wc->w_large_pages = 0;
 946
 947	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 
 948
 949	*wcp = wc;
 950
 951	return 0;
 952}
 953
 954/*
 955 * If a page has any new buffers, zero them out here, and mark them uptodate
 956 * and dirty so they'll be written out (in order to prevent uninitialised
 957 * block data from leaking). And clear the new bit.
 958 */
 959static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 960{
 961	unsigned int block_start, block_end;
 962	struct buffer_head *head, *bh;
 963
 964	BUG_ON(!PageLocked(page));
 965	if (!page_has_buffers(page))
 966		return;
 967
 968	bh = head = page_buffers(page);
 969	block_start = 0;
 970	do {
 971		block_end = block_start + bh->b_size;
 972
 973		if (buffer_new(bh)) {
 974			if (block_end > from && block_start < to) {
 975				if (!PageUptodate(page)) {
 976					unsigned start, end;
 977
 978					start = max(from, block_start);
 979					end = min(to, block_end);
 980
 981					zero_user_segment(page, start, end);
 982					set_buffer_uptodate(bh);
 983				}
 984
 985				clear_buffer_new(bh);
 986				mark_buffer_dirty(bh);
 987			}
 988		}
 989
 990		block_start = block_end;
 991		bh = bh->b_this_page;
 992	} while (bh != head);
 993}
 994
 995/*
 996 * Only called when we have a failure during allocating write to write
 997 * zero's to the newly allocated region.
 998 */
 999static void ocfs2_write_failure(struct inode *inode,
1000				struct ocfs2_write_ctxt *wc,
1001				loff_t user_pos, unsigned user_len)
1002{
1003	int i;
1004	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1005		to = user_pos + user_len;
1006	struct page *tmppage;
1007
1008	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 
1009
1010	for(i = 0; i < wc->w_num_pages; i++) {
1011		tmppage = wc->w_pages[i];
1012
1013		if (page_has_buffers(tmppage)) {
1014			if (ocfs2_should_order_data(inode))
1015				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1016
1017			block_commit_write(tmppage, from, to);
1018		}
1019	}
1020}
1021
1022static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1023					struct ocfs2_write_ctxt *wc,
1024					struct page *page, u32 cpos,
1025					loff_t user_pos, unsigned user_len,
1026					int new)
1027{
1028	int ret;
1029	unsigned int map_from = 0, map_to = 0;
1030	unsigned int cluster_start, cluster_end;
1031	unsigned int user_data_from = 0, user_data_to = 0;
1032
1033	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1034					&cluster_start, &cluster_end);
1035
1036	/* treat the write as new if the a hole/lseek spanned across
1037	 * the page boundary.
1038	 */
1039	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1040			(page_offset(page) <= user_pos));
1041
1042	if (page == wc->w_target_page) {
1043		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1044		map_to = map_from + user_len;
1045
1046		if (new)
1047			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1048						    cluster_start, cluster_end,
1049						    new);
1050		else
1051			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052						    map_from, map_to, new);
1053		if (ret) {
1054			mlog_errno(ret);
1055			goto out;
1056		}
1057
1058		user_data_from = map_from;
1059		user_data_to = map_to;
1060		if (new) {
1061			map_from = cluster_start;
1062			map_to = cluster_end;
1063		}
1064	} else {
1065		/*
1066		 * If we haven't allocated the new page yet, we
1067		 * shouldn't be writing it out without copying user
1068		 * data. This is likely a math error from the caller.
1069		 */
1070		BUG_ON(!new);
1071
1072		map_from = cluster_start;
1073		map_to = cluster_end;
1074
1075		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1076					    cluster_start, cluster_end, new);
1077		if (ret) {
1078			mlog_errno(ret);
1079			goto out;
1080		}
1081	}
1082
1083	/*
1084	 * Parts of newly allocated pages need to be zero'd.
1085	 *
1086	 * Above, we have also rewritten 'to' and 'from' - as far as
1087	 * the rest of the function is concerned, the entire cluster
1088	 * range inside of a page needs to be written.
1089	 *
1090	 * We can skip this if the page is up to date - it's already
1091	 * been zero'd from being read in as a hole.
1092	 */
1093	if (new && !PageUptodate(page))
1094		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1095					 cpos, user_data_from, user_data_to);
1096
1097	flush_dcache_page(page);
1098
1099out:
1100	return ret;
1101}
1102
1103/*
1104 * This function will only grab one clusters worth of pages.
1105 */
1106static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1107				      struct ocfs2_write_ctxt *wc,
1108				      u32 cpos, loff_t user_pos,
1109				      unsigned user_len, int new,
1110				      struct page *mmap_page)
1111{
1112	int ret = 0, i;
1113	unsigned long start, target_index, end_index, index;
1114	struct inode *inode = mapping->host;
1115	loff_t last_byte;
1116
1117	target_index = user_pos >> PAGE_CACHE_SHIFT;
1118
1119	/*
1120	 * Figure out how many pages we'll be manipulating here. For
1121	 * non allocating write, we just change the one
1122	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1123	 * writing past i_size, we only need enough pages to cover the
1124	 * last page of the write.
1125	 */
1126	if (new) {
1127		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1128		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1129		/*
1130		 * We need the index *past* the last page we could possibly
1131		 * touch.  This is the page past the end of the write or
1132		 * i_size, whichever is greater.
1133		 */
1134		last_byte = max(user_pos + user_len, i_size_read(inode));
1135		BUG_ON(last_byte < 1);
1136		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1137		if ((start + wc->w_num_pages) > end_index)
1138			wc->w_num_pages = end_index - start;
1139	} else {
1140		wc->w_num_pages = 1;
1141		start = target_index;
1142	}
 
1143
1144	for(i = 0; i < wc->w_num_pages; i++) {
1145		index = start + i;
1146
1147		if (index == target_index && mmap_page) {
 
1148			/*
1149			 * ocfs2_pagemkwrite() is a little different
1150			 * and wants us to directly use the page
1151			 * passed in.
1152			 */
1153			lock_page(mmap_page);
1154
1155			/* Exit and let the caller retry */
1156			if (mmap_page->mapping != mapping) {
1157				WARN_ON(mmap_page->mapping);
1158				unlock_page(mmap_page);
1159				ret = -EAGAIN;
1160				goto out;
1161			}
1162
1163			page_cache_get(mmap_page);
1164			wc->w_pages[i] = mmap_page;
1165			wc->w_target_locked = true;
 
 
 
 
 
1166		} else {
1167			wc->w_pages[i] = find_or_create_page(mapping, index,
1168							     GFP_NOFS);
1169			if (!wc->w_pages[i]) {
1170				ret = -ENOMEM;
1171				mlog_errno(ret);
1172				goto out;
1173			}
1174		}
1175		wait_for_stable_page(wc->w_pages[i]);
1176
1177		if (index == target_index)
1178			wc->w_target_page = wc->w_pages[i];
1179	}
1180out:
1181	if (ret)
1182		wc->w_target_locked = false;
1183	return ret;
1184}
1185
1186/*
1187 * Prepare a single cluster for write one cluster into the file.
1188 */
1189static int ocfs2_write_cluster(struct address_space *mapping,
1190			       u32 phys, unsigned int unwritten,
 
1191			       unsigned int should_zero,
1192			       struct ocfs2_alloc_context *data_ac,
1193			       struct ocfs2_alloc_context *meta_ac,
1194			       struct ocfs2_write_ctxt *wc, u32 cpos,
1195			       loff_t user_pos, unsigned user_len)
1196{
1197	int ret, i, new;
1198	u64 v_blkno, p_blkno;
1199	struct inode *inode = mapping->host;
1200	struct ocfs2_extent_tree et;
 
1201
1202	new = phys == 0 ? 1 : 0;
1203	if (new) {
1204		u32 tmp_pos;
1205
1206		/*
1207		 * This is safe to call with the page locks - it won't take
1208		 * any additional semaphores or cluster locks.
1209		 */
1210		tmp_pos = cpos;
1211		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1212					   &tmp_pos, 1, 0, wc->w_di_bh,
1213					   wc->w_handle, data_ac,
1214					   meta_ac, NULL);
1215		/*
1216		 * This shouldn't happen because we must have already
1217		 * calculated the correct meta data allocation required. The
1218		 * internal tree allocation code should know how to increase
1219		 * transaction credits itself.
1220		 *
1221		 * If need be, we could handle -EAGAIN for a
1222		 * RESTART_TRANS here.
1223		 */
1224		mlog_bug_on_msg(ret == -EAGAIN,
1225				"Inode %llu: EAGAIN return during allocation.\n",
1226				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1227		if (ret < 0) {
1228			mlog_errno(ret);
1229			goto out;
1230		}
1231	} else if (unwritten) {
1232		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1233					      wc->w_di_bh);
1234		ret = ocfs2_mark_extent_written(inode, &et,
1235						wc->w_handle, cpos, 1, phys,
1236						meta_ac, &wc->w_dealloc);
1237		if (ret < 0) {
1238			mlog_errno(ret);
1239			goto out;
1240		}
1241	}
1242
1243	if (should_zero)
1244		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1245	else
1246		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1247
1248	/*
1249	 * The only reason this should fail is due to an inability to
1250	 * find the extent added.
1251	 */
1252	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1253					  NULL);
1254	if (ret < 0) {
1255		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1256			    "at logical block %llu",
1257			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1258			    (unsigned long long)v_blkno);
1259		goto out;
1260	}
1261
1262	BUG_ON(p_blkno == 0);
 
 
 
 
1263
1264	for(i = 0; i < wc->w_num_pages; i++) {
1265		int tmpret;
1266
 
 
 
 
 
 
1267		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1268						      wc->w_pages[i], cpos,
1269						      user_pos, user_len,
1270						      should_zero);
1271		if (tmpret) {
1272			mlog_errno(tmpret);
1273			if (ret == 0)
1274				ret = tmpret;
1275		}
1276	}
1277
1278	/*
1279	 * We only have cleanup to do in case of allocating write.
1280	 */
1281	if (ret && new)
1282		ocfs2_write_failure(inode, wc, user_pos, user_len);
1283
1284out:
1285
1286	return ret;
1287}
1288
1289static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1290				       struct ocfs2_alloc_context *data_ac,
1291				       struct ocfs2_alloc_context *meta_ac,
1292				       struct ocfs2_write_ctxt *wc,
1293				       loff_t pos, unsigned len)
1294{
1295	int ret, i;
1296	loff_t cluster_off;
1297	unsigned int local_len = len;
1298	struct ocfs2_write_cluster_desc *desc;
1299	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1300
1301	for (i = 0; i < wc->w_clen; i++) {
1302		desc = &wc->w_desc[i];
1303
1304		/*
1305		 * We have to make sure that the total write passed in
1306		 * doesn't extend past a single cluster.
1307		 */
1308		local_len = len;
1309		cluster_off = pos & (osb->s_clustersize - 1);
1310		if ((cluster_off + local_len) > osb->s_clustersize)
1311			local_len = osb->s_clustersize - cluster_off;
1312
1313		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1314					  desc->c_unwritten,
 
1315					  desc->c_needs_zero,
1316					  data_ac, meta_ac,
1317					  wc, desc->c_cpos, pos, local_len);
1318		if (ret) {
1319			mlog_errno(ret);
1320			goto out;
1321		}
1322
1323		len -= local_len;
1324		pos += local_len;
1325	}
1326
1327	ret = 0;
1328out:
1329	return ret;
1330}
1331
1332/*
1333 * ocfs2_write_end() wants to know which parts of the target page it
1334 * should complete the write on. It's easiest to compute them ahead of
1335 * time when a more complete view of the write is available.
1336 */
1337static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1338					struct ocfs2_write_ctxt *wc,
1339					loff_t pos, unsigned len, int alloc)
1340{
1341	struct ocfs2_write_cluster_desc *desc;
1342
1343	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1344	wc->w_target_to = wc->w_target_from + len;
1345
1346	if (alloc == 0)
1347		return;
1348
1349	/*
1350	 * Allocating write - we may have different boundaries based
1351	 * on page size and cluster size.
1352	 *
1353	 * NOTE: We can no longer compute one value from the other as
1354	 * the actual write length and user provided length may be
1355	 * different.
1356	 */
1357
1358	if (wc->w_large_pages) {
1359		/*
1360		 * We only care about the 1st and last cluster within
1361		 * our range and whether they should be zero'd or not. Either
1362		 * value may be extended out to the start/end of a
1363		 * newly allocated cluster.
1364		 */
1365		desc = &wc->w_desc[0];
1366		if (desc->c_needs_zero)
1367			ocfs2_figure_cluster_boundaries(osb,
1368							desc->c_cpos,
1369							&wc->w_target_from,
1370							NULL);
1371
1372		desc = &wc->w_desc[wc->w_clen - 1];
1373		if (desc->c_needs_zero)
1374			ocfs2_figure_cluster_boundaries(osb,
1375							desc->c_cpos,
1376							NULL,
1377							&wc->w_target_to);
1378	} else {
1379		wc->w_target_from = 0;
1380		wc->w_target_to = PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382}
1383
1384/*
1385 * Populate each single-cluster write descriptor in the write context
1386 * with information about the i/o to be done.
1387 *
1388 * Returns the number of clusters that will have to be allocated, as
1389 * well as a worst case estimate of the number of extent records that
1390 * would have to be created during a write to an unwritten region.
1391 */
1392static int ocfs2_populate_write_desc(struct inode *inode,
1393				     struct ocfs2_write_ctxt *wc,
1394				     unsigned int *clusters_to_alloc,
1395				     unsigned int *extents_to_split)
1396{
1397	int ret;
1398	struct ocfs2_write_cluster_desc *desc;
1399	unsigned int num_clusters = 0;
1400	unsigned int ext_flags = 0;
1401	u32 phys = 0;
1402	int i;
1403
1404	*clusters_to_alloc = 0;
1405	*extents_to_split = 0;
1406
1407	for (i = 0; i < wc->w_clen; i++) {
1408		desc = &wc->w_desc[i];
1409		desc->c_cpos = wc->w_cpos + i;
1410
1411		if (num_clusters == 0) {
1412			/*
1413			 * Need to look up the next extent record.
1414			 */
1415			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1416						 &num_clusters, &ext_flags);
1417			if (ret) {
1418				mlog_errno(ret);
1419				goto out;
1420			}
1421
1422			/* We should already CoW the refcountd extent. */
1423			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1424
1425			/*
1426			 * Assume worst case - that we're writing in
1427			 * the middle of the extent.
1428			 *
1429			 * We can assume that the write proceeds from
1430			 * left to right, in which case the extent
1431			 * insert code is smart enough to coalesce the
1432			 * next splits into the previous records created.
1433			 */
1434			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1435				*extents_to_split = *extents_to_split + 2;
1436		} else if (phys) {
1437			/*
1438			 * Only increment phys if it doesn't describe
1439			 * a hole.
1440			 */
1441			phys++;
1442		}
1443
1444		/*
1445		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1446		 * file that got extended.  w_first_new_cpos tells us
1447		 * where the newly allocated clusters are so we can
1448		 * zero them.
1449		 */
1450		if (desc->c_cpos >= wc->w_first_new_cpos) {
1451			BUG_ON(phys == 0);
1452			desc->c_needs_zero = 1;
1453		}
1454
1455		desc->c_phys = phys;
1456		if (phys == 0) {
1457			desc->c_new = 1;
1458			desc->c_needs_zero = 1;
 
1459			*clusters_to_alloc = *clusters_to_alloc + 1;
1460		}
1461
1462		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1463			desc->c_unwritten = 1;
1464			desc->c_needs_zero = 1;
1465		}
1466
 
 
 
 
 
 
1467		num_clusters--;
1468	}
1469
1470	ret = 0;
1471out:
1472	return ret;
1473}
1474
1475static int ocfs2_write_begin_inline(struct address_space *mapping,
1476				    struct inode *inode,
1477				    struct ocfs2_write_ctxt *wc)
1478{
1479	int ret;
1480	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1481	struct page *page;
1482	handle_t *handle;
1483	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1484
 
 
 
 
 
 
 
1485	page = find_or_create_page(mapping, 0, GFP_NOFS);
1486	if (!page) {
 
1487		ret = -ENOMEM;
1488		mlog_errno(ret);
1489		goto out;
1490	}
1491	/*
1492	 * If we don't set w_num_pages then this page won't get unlocked
1493	 * and freed on cleanup of the write context.
1494	 */
1495	wc->w_pages[0] = wc->w_target_page = page;
1496	wc->w_num_pages = 1;
1497
1498	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1499	if (IS_ERR(handle)) {
1500		ret = PTR_ERR(handle);
1501		mlog_errno(ret);
1502		goto out;
1503	}
1504
1505	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506				      OCFS2_JOURNAL_ACCESS_WRITE);
1507	if (ret) {
1508		ocfs2_commit_trans(osb, handle);
1509
1510		mlog_errno(ret);
1511		goto out;
1512	}
1513
1514	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515		ocfs2_set_inode_data_inline(inode, di);
1516
1517	if (!PageUptodate(page)) {
1518		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519		if (ret) {
1520			ocfs2_commit_trans(osb, handle);
1521
1522			goto out;
1523		}
1524	}
1525
1526	wc->w_handle = handle;
1527out:
1528	return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536		return 1;
1537	return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541					  struct inode *inode, loff_t pos,
1542					  unsigned len, struct page *mmap_page,
1543					  struct ocfs2_write_ctxt *wc)
1544{
1545	int ret, written = 0;
1546	loff_t end = pos + len;
1547	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548	struct ocfs2_dinode *di = NULL;
1549
1550	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551					     len, (unsigned long long)pos,
1552					     oi->ip_dyn_features);
1553
1554	/*
1555	 * Handle inodes which already have inline data 1st.
1556	 */
1557	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558		if (mmap_page == NULL &&
1559		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560			goto do_inline_write;
1561
1562		/*
1563		 * The write won't fit - we have to give this inode an
1564		 * inline extent list now.
1565		 */
1566		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567		if (ret)
1568			mlog_errno(ret);
1569		goto out;
1570	}
1571
1572	/*
1573	 * Check whether the inode can accept inline data.
1574	 */
1575	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576		return 0;
1577
1578	/*
1579	 * Check whether the write can fit.
1580	 */
1581	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582	if (mmap_page ||
1583	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584		return 0;
1585
1586do_inline_write:
1587	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588	if (ret) {
1589		mlog_errno(ret);
1590		goto out;
1591	}
1592
1593	/*
1594	 * This signals to the caller that the data can be written
1595	 * inline.
1596	 */
1597	written = 1;
1598out:
1599	return written ? written : ret;
1600}
1601
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612					struct buffer_head *di_bh,
1613					loff_t pos, unsigned len,
1614					struct ocfs2_write_ctxt *wc)
1615{
1616	int ret;
1617	loff_t newsize = pos + len;
1618
1619	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621	if (newsize <= i_size_read(inode))
1622		return 0;
1623
1624	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625	if (ret)
1626		mlog_errno(ret);
1627
1628	wc->w_first_new_cpos =
1629		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 
 
1630
1631	return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635			   loff_t pos)
1636{
1637	int ret = 0;
1638
1639	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640	if (pos > i_size_read(inode))
1641		ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643	return ret;
1644}
1645
1646/*
1647 * Try to flush truncate logs if we can free enough clusters from it.
1648 * As for return value, "< 0" means error, "0" no space and "1" means
1649 * we have freed enough spaces and let the caller try to allocate again.
1650 */
1651static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1652					  unsigned int needed)
1653{
1654	tid_t target;
1655	int ret = 0;
1656	unsigned int truncated_clusters;
1657
1658	mutex_lock(&osb->osb_tl_inode->i_mutex);
1659	truncated_clusters = osb->truncated_clusters;
1660	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1661
1662	/*
1663	 * Check whether we can succeed in allocating if we free
1664	 * the truncate log.
1665	 */
1666	if (truncated_clusters < needed)
1667		goto out;
1668
1669	ret = ocfs2_flush_truncate_log(osb);
1670	if (ret) {
1671		mlog_errno(ret);
1672		goto out;
1673	}
1674
1675	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1676		jbd2_log_wait_commit(osb->journal->j_journal, target);
1677		ret = 1;
1678	}
1679out:
1680	return ret;
1681}
1682
1683int ocfs2_write_begin_nolock(struct file *filp,
1684			     struct address_space *mapping,
1685			     loff_t pos, unsigned len, unsigned flags,
1686			     struct page **pagep, void **fsdata,
1687			     struct buffer_head *di_bh, struct page *mmap_page)
1688{
1689	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1690	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1691	struct ocfs2_write_ctxt *wc;
1692	struct inode *inode = mapping->host;
1693	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1694	struct ocfs2_dinode *di;
1695	struct ocfs2_alloc_context *data_ac = NULL;
1696	struct ocfs2_alloc_context *meta_ac = NULL;
1697	handle_t *handle;
1698	struct ocfs2_extent_tree et;
1699	int try_free = 1, ret1;
1700
1701try_again:
1702	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1703	if (ret) {
1704		mlog_errno(ret);
1705		return ret;
1706	}
1707
1708	if (ocfs2_supports_inline_data(osb)) {
1709		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1710						     mmap_page, wc);
1711		if (ret == 1) {
1712			ret = 0;
1713			goto success;
1714		}
1715		if (ret < 0) {
1716			mlog_errno(ret);
1717			goto out;
1718		}
1719	}
1720
1721	if (ocfs2_sparse_alloc(osb))
1722		ret = ocfs2_zero_tail(inode, di_bh, pos);
1723	else
1724		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1725						   wc);
1726	if (ret) {
1727		mlog_errno(ret);
1728		goto out;
 
 
 
1729	}
1730
1731	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1732	if (ret < 0) {
1733		mlog_errno(ret);
1734		goto out;
1735	} else if (ret == 1) {
1736		clusters_need = wc->w_clen;
1737		ret = ocfs2_refcount_cow(inode, di_bh,
1738					 wc->w_cpos, wc->w_clen, UINT_MAX);
1739		if (ret) {
1740			mlog_errno(ret);
1741			goto out;
1742		}
1743	}
1744
1745	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1746					&extents_to_split);
1747	if (ret) {
1748		mlog_errno(ret);
1749		goto out;
1750	}
1751	clusters_need += clusters_to_alloc;
1752
1753	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1754
1755	trace_ocfs2_write_begin_nolock(
1756			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1757			(long long)i_size_read(inode),
1758			le32_to_cpu(di->i_clusters),
1759			pos, len, flags, mmap_page,
1760			clusters_to_alloc, extents_to_split);
1761
1762	/*
1763	 * We set w_target_from, w_target_to here so that
1764	 * ocfs2_write_end() knows which range in the target page to
1765	 * write out. An allocation requires that we write the entire
1766	 * cluster range.
1767	 */
1768	if (clusters_to_alloc || extents_to_split) {
1769		/*
1770		 * XXX: We are stretching the limits of
1771		 * ocfs2_lock_allocators(). It greatly over-estimates
1772		 * the work to be done.
1773		 */
1774		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1775					      wc->w_di_bh);
1776		ret = ocfs2_lock_allocators(inode, &et,
1777					    clusters_to_alloc, extents_to_split,
1778					    &data_ac, &meta_ac);
1779		if (ret) {
1780			mlog_errno(ret);
1781			goto out;
1782		}
1783
1784		if (data_ac)
1785			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1786
1787		credits = ocfs2_calc_extend_credits(inode->i_sb,
1788						    &di->id2.i_list);
1789
1790	}
 
1791
1792	/*
1793	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1794	 * and non-sparse clusters we just extended.  For non-sparse writes,
1795	 * we know zeros will only be needed in the first and/or last cluster.
1796	 */
1797	if (clusters_to_alloc || extents_to_split ||
1798	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1799			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1800		cluster_of_pages = 1;
1801	else
1802		cluster_of_pages = 0;
1803
1804	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1805
1806	handle = ocfs2_start_trans(osb, credits);
1807	if (IS_ERR(handle)) {
1808		ret = PTR_ERR(handle);
1809		mlog_errno(ret);
1810		goto out;
1811	}
1812
1813	wc->w_handle = handle;
1814
1815	if (clusters_to_alloc) {
1816		ret = dquot_alloc_space_nodirty(inode,
1817			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1818		if (ret)
1819			goto out_commit;
1820	}
1821	/*
1822	 * We don't want this to fail in ocfs2_write_end(), so do it
1823	 * here.
1824	 */
1825	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1826				      OCFS2_JOURNAL_ACCESS_WRITE);
1827	if (ret) {
1828		mlog_errno(ret);
1829		goto out_quota;
1830	}
1831
1832	/*
1833	 * Fill our page array first. That way we've grabbed enough so
1834	 * that we can zero and flush if we error after adding the
1835	 * extent.
1836	 */
1837	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1838					 cluster_of_pages, mmap_page);
1839	if (ret && ret != -EAGAIN) {
1840		mlog_errno(ret);
1841		goto out_quota;
1842	}
1843
1844	/*
1845	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1846	 * the target page. In this case, we exit with no error and no target
1847	 * page. This will trigger the caller, page_mkwrite(), to re-try
1848	 * the operation.
1849	 */
1850	if (ret == -EAGAIN) {
1851		BUG_ON(wc->w_target_page);
1852		ret = 0;
1853		goto out_quota;
1854	}
1855
1856	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1857					  len);
1858	if (ret) {
1859		mlog_errno(ret);
1860		goto out_quota;
1861	}
1862
1863	if (data_ac)
1864		ocfs2_free_alloc_context(data_ac);
1865	if (meta_ac)
1866		ocfs2_free_alloc_context(meta_ac);
1867
1868success:
1869	*pagep = wc->w_target_page;
 
1870	*fsdata = wc;
1871	return 0;
1872out_quota:
1873	if (clusters_to_alloc)
1874		dquot_free_space(inode,
1875			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1876out_commit:
1877	ocfs2_commit_trans(osb, handle);
1878
1879out:
1880	ocfs2_free_write_ctxt(wc);
 
 
 
 
 
 
 
 
 
 
1881
1882	if (data_ac) {
1883		ocfs2_free_alloc_context(data_ac);
1884		data_ac = NULL;
1885	}
1886	if (meta_ac) {
1887		ocfs2_free_alloc_context(meta_ac);
1888		meta_ac = NULL;
1889	}
1890
1891	if (ret == -ENOSPC && try_free) {
1892		/*
1893		 * Try to free some truncate log so that we can have enough
1894		 * clusters to allocate.
1895		 */
1896		try_free = 0;
1897
1898		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1899		if (ret1 == 1)
1900			goto try_again;
1901
1902		if (ret1 < 0)
1903			mlog_errno(ret1);
1904	}
1905
1906	return ret;
1907}
1908
1909static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1910			     loff_t pos, unsigned len, unsigned flags,
1911			     struct page **pagep, void **fsdata)
1912{
1913	int ret;
1914	struct buffer_head *di_bh = NULL;
1915	struct inode *inode = mapping->host;
1916
1917	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1918	if (ret) {
1919		mlog_errno(ret);
1920		return ret;
1921	}
1922
1923	/*
1924	 * Take alloc sem here to prevent concurrent lookups. That way
1925	 * the mapping, zeroing and tree manipulation within
1926	 * ocfs2_write() will be safe against ->readpage(). This
1927	 * should also serve to lock out allocation from a shared
1928	 * writeable region.
1929	 */
1930	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1933				       fsdata, di_bh, NULL);
1934	if (ret) {
1935		mlog_errno(ret);
1936		goto out_fail;
1937	}
1938
1939	brelse(di_bh);
1940
1941	return 0;
1942
1943out_fail:
1944	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946	brelse(di_bh);
1947	ocfs2_inode_unlock(inode, 1);
1948
1949	return ret;
1950}
1951
1952static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1953				   unsigned len, unsigned *copied,
1954				   struct ocfs2_dinode *di,
1955				   struct ocfs2_write_ctxt *wc)
1956{
1957	void *kaddr;
1958
1959	if (unlikely(*copied < len)) {
1960		if (!PageUptodate(wc->w_target_page)) {
1961			*copied = 0;
1962			return;
1963		}
1964	}
1965
1966	kaddr = kmap_atomic(wc->w_target_page);
1967	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1968	kunmap_atomic(kaddr);
1969
1970	trace_ocfs2_write_end_inline(
1971	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1972	     (unsigned long long)pos, *copied,
1973	     le16_to_cpu(di->id2.i_data.id_count),
1974	     le16_to_cpu(di->i_dyn_features));
1975}
1976
1977int ocfs2_write_end_nolock(struct address_space *mapping,
1978			   loff_t pos, unsigned len, unsigned copied,
1979			   struct page *page, void *fsdata)
1980{
1981	int i;
1982	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1983	struct inode *inode = mapping->host;
1984	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1985	struct ocfs2_write_ctxt *wc = fsdata;
1986	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1987	handle_t *handle = wc->w_handle;
1988	struct page *tmppage;
1989
 
 
 
 
 
 
 
 
 
 
 
 
1990	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1991		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1992		goto out_write_size;
1993	}
1994
1995	if (unlikely(copied < len)) {
1996		if (!PageUptodate(wc->w_target_page))
1997			copied = 0;
1998
1999		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2000				       start+len);
2001	}
2002	flush_dcache_page(wc->w_target_page);
 
2003
2004	for(i = 0; i < wc->w_num_pages; i++) {
2005		tmppage = wc->w_pages[i];
2006
 
 
 
 
2007		if (tmppage == wc->w_target_page) {
2008			from = wc->w_target_from;
2009			to = wc->w_target_to;
2010
2011			BUG_ON(from > PAGE_CACHE_SIZE ||
2012			       to > PAGE_CACHE_SIZE ||
2013			       to < from);
2014		} else {
2015			/*
2016			 * Pages adjacent to the target (if any) imply
2017			 * a hole-filling write in which case we want
2018			 * to flush their entire range.
2019			 */
2020			from = 0;
2021			to = PAGE_CACHE_SIZE;
2022		}
2023
2024		if (page_has_buffers(tmppage)) {
2025			if (ocfs2_should_order_data(inode))
2026				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2027			block_commit_write(tmppage, from, to);
2028		}
2029	}
2030
2031out_write_size:
2032	pos += copied;
2033	if (pos > i_size_read(inode)) {
2034		i_size_write(inode, pos);
2035		mark_inode_dirty(inode);
2036	}
2037	inode->i_blocks = ocfs2_inode_sector_count(inode);
2038	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2039	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2040	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2041	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2042	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043	ocfs2_journal_dirty(handle, wc->w_di_bh);
 
 
 
 
2044
2045	ocfs2_commit_trans(osb, handle);
 
 
 
 
 
 
 
 
 
2046
2047	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2048
2049	ocfs2_free_write_ctxt(wc);
 
2050
2051	return copied;
2052}
2053
2054static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2055			   loff_t pos, unsigned len, unsigned copied,
2056			   struct page *page, void *fsdata)
2057{
2058	int ret;
2059	struct inode *inode = mapping->host;
2060
2061	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2062
2063	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2064	ocfs2_inode_unlock(inode, 1);
2065
2066	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067}
2068
2069const struct address_space_operations ocfs2_aops = {
2070	.readpage		= ocfs2_readpage,
2071	.readpages		= ocfs2_readpages,
2072	.writepage		= ocfs2_writepage,
2073	.write_begin		= ocfs2_write_begin,
2074	.write_end		= ocfs2_write_end,
2075	.bmap			= ocfs2_bmap,
2076	.direct_IO		= ocfs2_direct_IO,
2077	.invalidatepage		= block_invalidatepage,
2078	.releasepage		= ocfs2_releasepage,
2079	.migratepage		= buffer_migrate_page,
2080	.is_partially_uptodate	= block_is_partially_uptodate,
2081	.error_remove_page	= generic_error_remove_page,
2082};
v4.17
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57				   struct buffer_head *bh_result, int create)
  58{
  59	int err = -EIO;
  60	int status;
  61	struct ocfs2_dinode *fe = NULL;
  62	struct buffer_head *bh = NULL;
  63	struct buffer_head *buffer_cache_bh = NULL;
  64	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65	void *kaddr;
  66
  67	trace_ocfs2_symlink_get_block(
  68			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  69			(unsigned long long)iblock, bh_result, create);
  70
  71	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75		     (unsigned long long)iblock);
  76		goto bail;
  77	}
  78
  79	status = ocfs2_read_inode_block(inode, &bh);
  80	if (status < 0) {
  81		mlog_errno(status);
  82		goto bail;
  83	}
  84	fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87						    le32_to_cpu(fe->i_clusters))) {
  88		err = -ENOMEM;
  89		mlog(ML_ERROR, "block offset is outside the allocated size: "
  90		     "%llu\n", (unsigned long long)iblock);
  91		goto bail;
  92	}
  93
  94	/* We don't use the page cache to create symlink data, so if
  95	 * need be, copy it over from the buffer cache. */
  96	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98			    iblock;
  99		buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100		if (!buffer_cache_bh) {
 101			err = -ENOMEM;
 102			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103			goto bail;
 104		}
 105
 106		/* we haven't locked out transactions, so a commit
 107		 * could've happened. Since we've got a reference on
 108		 * the bh, even if it commits while we're doing the
 109		 * copy, the data is still good. */
 110		if (buffer_jbd(buffer_cache_bh)
 111		    && ocfs2_inode_is_new(inode)) {
 112			kaddr = kmap_atomic(bh_result->b_page);
 113			if (!kaddr) {
 114				mlog(ML_ERROR, "couldn't kmap!\n");
 115				goto bail;
 116			}
 117			memcpy(kaddr + (bh_result->b_size * iblock),
 118			       buffer_cache_bh->b_data,
 119			       bh_result->b_size);
 120			kunmap_atomic(kaddr);
 121			set_buffer_uptodate(bh_result);
 122		}
 123		brelse(buffer_cache_bh);
 124	}
 125
 126	map_bh(bh_result, inode->i_sb,
 127	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129	err = 0;
 130
 131bail:
 132	brelse(bh);
 133
 134	return err;
 135}
 136
 137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 138		    struct buffer_head *bh_result, int create)
 139{
 140	int ret = 0;
 141	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 142
 143	down_read(&oi->ip_alloc_sem);
 144	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 145	up_read(&oi->ip_alloc_sem);
 146
 147	return ret;
 148}
 149
 150int ocfs2_get_block(struct inode *inode, sector_t iblock,
 151		    struct buffer_head *bh_result, int create)
 152{
 153	int err = 0;
 154	unsigned int ext_flags;
 155	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 156	u64 p_blkno, count, past_eof;
 157	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 158
 159	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 160			      (unsigned long long)iblock, bh_result, create);
 161
 162	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 163		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 164		     inode, inode->i_ino);
 165
 166	if (S_ISLNK(inode->i_mode)) {
 167		/* this always does I/O for some reason. */
 168		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 169		goto bail;
 170	}
 171
 172	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 173					  &ext_flags);
 174	if (err) {
 175		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 176		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 177		     (unsigned long long)p_blkno);
 178		goto bail;
 179	}
 180
 181	if (max_blocks < count)
 182		count = max_blocks;
 183
 184	/*
 185	 * ocfs2 never allocates in this function - the only time we
 186	 * need to use BH_New is when we're extending i_size on a file
 187	 * system which doesn't support holes, in which case BH_New
 188	 * allows __block_write_begin() to zero.
 189	 *
 190	 * If we see this on a sparse file system, then a truncate has
 191	 * raced us and removed the cluster. In this case, we clear
 192	 * the buffers dirty and uptodate bits and let the buffer code
 193	 * ignore it as a hole.
 194	 */
 195	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 196		clear_buffer_dirty(bh_result);
 197		clear_buffer_uptodate(bh_result);
 198		goto bail;
 199	}
 200
 201	/* Treat the unwritten extent as a hole for zeroing purposes. */
 202	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 203		map_bh(bh_result, inode->i_sb, p_blkno);
 204
 205	bh_result->b_size = count << inode->i_blkbits;
 206
 207	if (!ocfs2_sparse_alloc(osb)) {
 208		if (p_blkno == 0) {
 209			err = -EIO;
 210			mlog(ML_ERROR,
 211			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 212			     (unsigned long long)iblock,
 213			     (unsigned long long)p_blkno,
 214			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 215			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 216			dump_stack();
 217			goto bail;
 218		}
 219	}
 220
 221	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 222
 223	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 224				  (unsigned long long)past_eof);
 225	if (create && (iblock >= past_eof))
 226		set_buffer_new(bh_result);
 227
 228bail:
 229	if (err < 0)
 230		err = -EIO;
 231
 232	return err;
 233}
 234
 235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 236			   struct buffer_head *di_bh)
 237{
 238	void *kaddr;
 239	loff_t size;
 240	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 241
 242	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 243		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 244			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 245		return -EROFS;
 246	}
 247
 248	size = i_size_read(inode);
 249
 250	if (size > PAGE_SIZE ||
 251	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 252		ocfs2_error(inode->i_sb,
 253			    "Inode %llu has with inline data has bad size: %Lu\n",
 254			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 255			    (unsigned long long)size);
 256		return -EROFS;
 257	}
 258
 259	kaddr = kmap_atomic(page);
 260	if (size)
 261		memcpy(kaddr, di->id2.i_data.id_data, size);
 262	/* Clear the remaining part of the page */
 263	memset(kaddr + size, 0, PAGE_SIZE - size);
 264	flush_dcache_page(page);
 265	kunmap_atomic(kaddr);
 266
 267	SetPageUptodate(page);
 268
 269	return 0;
 270}
 271
 272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 273{
 274	int ret;
 275	struct buffer_head *di_bh = NULL;
 276
 277	BUG_ON(!PageLocked(page));
 278	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 279
 280	ret = ocfs2_read_inode_block(inode, &di_bh);
 281	if (ret) {
 282		mlog_errno(ret);
 283		goto out;
 284	}
 285
 286	ret = ocfs2_read_inline_data(inode, page, di_bh);
 287out:
 288	unlock_page(page);
 289
 290	brelse(di_bh);
 291	return ret;
 292}
 293
 294static int ocfs2_readpage(struct file *file, struct page *page)
 295{
 296	struct inode *inode = page->mapping->host;
 297	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 298	loff_t start = (loff_t)page->index << PAGE_SHIFT;
 299	int ret, unlock = 1;
 300
 301	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 302			     (page ? page->index : 0));
 303
 304	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 305	if (ret != 0) {
 306		if (ret == AOP_TRUNCATED_PAGE)
 307			unlock = 0;
 308		mlog_errno(ret);
 309		goto out;
 310	}
 311
 312	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 313		/*
 314		 * Unlock the page and cycle ip_alloc_sem so that we don't
 315		 * busyloop waiting for ip_alloc_sem to unlock
 316		 */
 317		ret = AOP_TRUNCATED_PAGE;
 318		unlock_page(page);
 319		unlock = 0;
 320		down_read(&oi->ip_alloc_sem);
 321		up_read(&oi->ip_alloc_sem);
 322		goto out_inode_unlock;
 323	}
 324
 325	/*
 326	 * i_size might have just been updated as we grabed the meta lock.  We
 327	 * might now be discovering a truncate that hit on another node.
 328	 * block_read_full_page->get_block freaks out if it is asked to read
 329	 * beyond the end of a file, so we check here.  Callers
 330	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 331	 * and notice that the page they just read isn't needed.
 332	 *
 333	 * XXX sys_readahead() seems to get that wrong?
 334	 */
 335	if (start >= i_size_read(inode)) {
 336		zero_user(page, 0, PAGE_SIZE);
 337		SetPageUptodate(page);
 338		ret = 0;
 339		goto out_alloc;
 340	}
 341
 342	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 343		ret = ocfs2_readpage_inline(inode, page);
 344	else
 345		ret = block_read_full_page(page, ocfs2_get_block);
 346	unlock = 0;
 347
 348out_alloc:
 349	up_read(&oi->ip_alloc_sem);
 350out_inode_unlock:
 351	ocfs2_inode_unlock(inode, 0);
 352out:
 353	if (unlock)
 354		unlock_page(page);
 355	return ret;
 356}
 357
 358/*
 359 * This is used only for read-ahead. Failures or difficult to handle
 360 * situations are safe to ignore.
 361 *
 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 363 * are quite large (243 extents on 4k blocks), so most inodes don't
 364 * grow out to a tree. If need be, detecting boundary extents could
 365 * trivially be added in a future version of ocfs2_get_block().
 366 */
 367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 368			   struct list_head *pages, unsigned nr_pages)
 369{
 370	int ret, err = -EIO;
 371	struct inode *inode = mapping->host;
 372	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 373	loff_t start;
 374	struct page *last;
 375
 376	/*
 377	 * Use the nonblocking flag for the dlm code to avoid page
 378	 * lock inversion, but don't bother with retrying.
 379	 */
 380	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 381	if (ret)
 382		return err;
 383
 384	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 385		ocfs2_inode_unlock(inode, 0);
 386		return err;
 387	}
 388
 389	/*
 390	 * Don't bother with inline-data. There isn't anything
 391	 * to read-ahead in that case anyway...
 392	 */
 393	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 394		goto out_unlock;
 395
 396	/*
 397	 * Check whether a remote node truncated this file - we just
 398	 * drop out in that case as it's not worth handling here.
 399	 */
 400	last = list_entry(pages->prev, struct page, lru);
 401	start = (loff_t)last->index << PAGE_SHIFT;
 402	if (start >= i_size_read(inode))
 403		goto out_unlock;
 404
 405	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 406
 407out_unlock:
 408	up_read(&oi->ip_alloc_sem);
 409	ocfs2_inode_unlock(inode, 0);
 410
 411	return err;
 412}
 413
 414/* Note: Because we don't support holes, our allocation has
 415 * already happened (allocation writes zeros to the file data)
 416 * so we don't have to worry about ordered writes in
 417 * ocfs2_writepage.
 418 *
 419 * ->writepage is called during the process of invalidating the page cache
 420 * during blocked lock processing.  It can't block on any cluster locks
 421 * to during block mapping.  It's relying on the fact that the block
 422 * mapping can't have disappeared under the dirty pages that it is
 423 * being asked to write back.
 424 */
 425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 426{
 427	trace_ocfs2_writepage(
 428		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 429		page->index);
 430
 431	return block_write_full_page(page, ocfs2_get_block, wbc);
 432}
 433
 434/* Taken from ext3. We don't necessarily need the full blown
 435 * functionality yet, but IMHO it's better to cut and paste the whole
 436 * thing so we can avoid introducing our own bugs (and easily pick up
 437 * their fixes when they happen) --Mark */
 438int walk_page_buffers(	handle_t *handle,
 439			struct buffer_head *head,
 440			unsigned from,
 441			unsigned to,
 442			int *partial,
 443			int (*fn)(	handle_t *handle,
 444					struct buffer_head *bh))
 445{
 446	struct buffer_head *bh;
 447	unsigned block_start, block_end;
 448	unsigned blocksize = head->b_size;
 449	int err, ret = 0;
 450	struct buffer_head *next;
 451
 452	for (	bh = head, block_start = 0;
 453		ret == 0 && (bh != head || !block_start);
 454	    	block_start = block_end, bh = next)
 455	{
 456		next = bh->b_this_page;
 457		block_end = block_start + blocksize;
 458		if (block_end <= from || block_start >= to) {
 459			if (partial && !buffer_uptodate(bh))
 460				*partial = 1;
 461			continue;
 462		}
 463		err = (*fn)(handle, bh);
 464		if (!ret)
 465			ret = err;
 466	}
 467	return ret;
 468}
 469
 470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 471{
 472	sector_t status;
 473	u64 p_blkno = 0;
 474	int err = 0;
 475	struct inode *inode = mapping->host;
 476
 477	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 478			 (unsigned long long)block);
 479
 480	/*
 481	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 482	 * bypasseѕ the file system for actual I/O.  We really can't allow
 483	 * that on refcounted inodes, so we have to skip out here.  And yes,
 484	 * 0 is the magic code for a bmap error..
 485	 */
 486	if (ocfs2_is_refcount_inode(inode))
 487		return 0;
 488
 489	/* We don't need to lock journal system files, since they aren't
 490	 * accessed concurrently from multiple nodes.
 491	 */
 492	if (!INODE_JOURNAL(inode)) {
 493		err = ocfs2_inode_lock(inode, NULL, 0);
 494		if (err) {
 495			if (err != -ENOENT)
 496				mlog_errno(err);
 497			goto bail;
 498		}
 499		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 500	}
 501
 502	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 503		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 504						  NULL);
 505
 506	if (!INODE_JOURNAL(inode)) {
 507		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 508		ocfs2_inode_unlock(inode, 0);
 509	}
 510
 511	if (err) {
 512		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 513		     (unsigned long long)block);
 514		mlog_errno(err);
 515		goto bail;
 516	}
 517
 518bail:
 519	status = err ? 0 : p_blkno;
 520
 521	return status;
 522}
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524static int ocfs2_releasepage(struct page *page, gfp_t wait)
 525{
 526	if (!page_has_buffers(page))
 527		return 0;
 528	return try_to_free_buffers(page);
 529}
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 532					    u32 cpos,
 533					    unsigned int *start,
 534					    unsigned int *end)
 535{
 536	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 537
 538	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 539		unsigned int cpp;
 540
 541		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 542
 543		cluster_start = cpos % cpp;
 544		cluster_start = cluster_start << osb->s_clustersize_bits;
 545
 546		cluster_end = cluster_start + osb->s_clustersize;
 547	}
 548
 549	BUG_ON(cluster_start > PAGE_SIZE);
 550	BUG_ON(cluster_end > PAGE_SIZE);
 551
 552	if (start)
 553		*start = cluster_start;
 554	if (end)
 555		*end = cluster_end;
 556}
 557
 558/*
 559 * 'from' and 'to' are the region in the page to avoid zeroing.
 560 *
 561 * If pagesize > clustersize, this function will avoid zeroing outside
 562 * of the cluster boundary.
 563 *
 564 * from == to == 0 is code for "zero the entire cluster region"
 565 */
 566static void ocfs2_clear_page_regions(struct page *page,
 567				     struct ocfs2_super *osb, u32 cpos,
 568				     unsigned from, unsigned to)
 569{
 570	void *kaddr;
 571	unsigned int cluster_start, cluster_end;
 572
 573	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 574
 575	kaddr = kmap_atomic(page);
 576
 577	if (from || to) {
 578		if (from > cluster_start)
 579			memset(kaddr + cluster_start, 0, from - cluster_start);
 580		if (to < cluster_end)
 581			memset(kaddr + to, 0, cluster_end - to);
 582	} else {
 583		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 584	}
 585
 586	kunmap_atomic(kaddr);
 587}
 588
 589/*
 590 * Nonsparse file systems fully allocate before we get to the write
 591 * code. This prevents ocfs2_write() from tagging the write as an
 592 * allocating one, which means ocfs2_map_page_blocks() might try to
 593 * read-in the blocks at the tail of our file. Avoid reading them by
 594 * testing i_size against each block offset.
 595 */
 596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 597				 unsigned int block_start)
 598{
 599	u64 offset = page_offset(page) + block_start;
 600
 601	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 602		return 1;
 603
 604	if (i_size_read(inode) > offset)
 605		return 1;
 606
 607	return 0;
 608}
 609
 610/*
 611 * Some of this taken from __block_write_begin(). We already have our
 612 * mapping by now though, and the entire write will be allocating or
 613 * it won't, so not much need to use BH_New.
 614 *
 615 * This will also skip zeroing, which is handled externally.
 616 */
 617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 618			  struct inode *inode, unsigned int from,
 619			  unsigned int to, int new)
 620{
 621	int ret = 0;
 622	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 623	unsigned int block_end, block_start;
 624	unsigned int bsize = i_blocksize(inode);
 625
 626	if (!page_has_buffers(page))
 627		create_empty_buffers(page, bsize, 0);
 628
 629	head = page_buffers(page);
 630	for (bh = head, block_start = 0; bh != head || !block_start;
 631	     bh = bh->b_this_page, block_start += bsize) {
 632		block_end = block_start + bsize;
 633
 634		clear_buffer_new(bh);
 635
 636		/*
 637		 * Ignore blocks outside of our i/o range -
 638		 * they may belong to unallocated clusters.
 639		 */
 640		if (block_start >= to || block_end <= from) {
 641			if (PageUptodate(page))
 642				set_buffer_uptodate(bh);
 643			continue;
 644		}
 645
 646		/*
 647		 * For an allocating write with cluster size >= page
 648		 * size, we always write the entire page.
 649		 */
 650		if (new)
 651			set_buffer_new(bh);
 652
 653		if (!buffer_mapped(bh)) {
 654			map_bh(bh, inode->i_sb, *p_blkno);
 655			clean_bdev_bh_alias(bh);
 656		}
 657
 658		if (PageUptodate(page)) {
 659			if (!buffer_uptodate(bh))
 660				set_buffer_uptodate(bh);
 661		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 662			   !buffer_new(bh) &&
 663			   ocfs2_should_read_blk(inode, page, block_start) &&
 664			   (block_start < from || block_end > to)) {
 665			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 666			*wait_bh++=bh;
 667		}
 668
 669		*p_blkno = *p_blkno + 1;
 670	}
 671
 672	/*
 673	 * If we issued read requests - let them complete.
 674	 */
 675	while(wait_bh > wait) {
 676		wait_on_buffer(*--wait_bh);
 677		if (!buffer_uptodate(*wait_bh))
 678			ret = -EIO;
 679	}
 680
 681	if (ret == 0 || !new)
 682		return ret;
 683
 684	/*
 685	 * If we get -EIO above, zero out any newly allocated blocks
 686	 * to avoid exposing stale data.
 687	 */
 688	bh = head;
 689	block_start = 0;
 690	do {
 691		block_end = block_start + bsize;
 692		if (block_end <= from)
 693			goto next_bh;
 694		if (block_start >= to)
 695			break;
 696
 697		zero_user(page, block_start, bh->b_size);
 698		set_buffer_uptodate(bh);
 699		mark_buffer_dirty(bh);
 700
 701next_bh:
 702		block_start = block_end;
 703		bh = bh->b_this_page;
 704	} while (bh != head);
 705
 706	return ret;
 707}
 708
 709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 710#define OCFS2_MAX_CTXT_PAGES	1
 711#else
 712#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 713#endif
 714
 715#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 716
 717struct ocfs2_unwritten_extent {
 718	struct list_head	ue_node;
 719	struct list_head	ue_ip_node;
 720	u32			ue_cpos;
 721	u32			ue_phys;
 722};
 723
 724/*
 725 * Describe the state of a single cluster to be written to.
 726 */
 727struct ocfs2_write_cluster_desc {
 728	u32		c_cpos;
 729	u32		c_phys;
 730	/*
 731	 * Give this a unique field because c_phys eventually gets
 732	 * filled.
 733	 */
 734	unsigned	c_new;
 735	unsigned	c_clear_unwritten;
 736	unsigned	c_needs_zero;
 737};
 738
 739struct ocfs2_write_ctxt {
 740	/* Logical cluster position / len of write */
 741	u32				w_cpos;
 742	u32				w_clen;
 743
 744	/* First cluster allocated in a nonsparse extend */
 745	u32				w_first_new_cpos;
 746
 747	/* Type of caller. Must be one of buffer, mmap, direct.  */
 748	ocfs2_write_type_t		w_type;
 749
 750	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 751
 752	/*
 753	 * This is true if page_size > cluster_size.
 754	 *
 755	 * It triggers a set of special cases during write which might
 756	 * have to deal with allocating writes to partial pages.
 757	 */
 758	unsigned int			w_large_pages;
 759
 760	/*
 761	 * Pages involved in this write.
 762	 *
 763	 * w_target_page is the page being written to by the user.
 764	 *
 765	 * w_pages is an array of pages which always contains
 766	 * w_target_page, and in the case of an allocating write with
 767	 * page_size < cluster size, it will contain zero'd and mapped
 768	 * pages adjacent to w_target_page which need to be written
 769	 * out in so that future reads from that region will get
 770	 * zero's.
 771	 */
 772	unsigned int			w_num_pages;
 773	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 774	struct page			*w_target_page;
 775
 776	/*
 777	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 778	 * against w_target_page in ocfs2_write_end_nolock.
 779	 */
 780	unsigned int			w_target_locked:1;
 781
 782	/*
 783	 * ocfs2_write_end() uses this to know what the real range to
 784	 * write in the target should be.
 785	 */
 786	unsigned int			w_target_from;
 787	unsigned int			w_target_to;
 788
 789	/*
 790	 * We could use journal_current_handle() but this is cleaner,
 791	 * IMHO -Mark
 792	 */
 793	handle_t			*w_handle;
 794
 795	struct buffer_head		*w_di_bh;
 796
 797	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 798
 799	struct list_head		w_unwritten_list;
 800	unsigned int			w_unwritten_count;
 801};
 802
 803void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 804{
 805	int i;
 806
 807	for(i = 0; i < num_pages; i++) {
 808		if (pages[i]) {
 809			unlock_page(pages[i]);
 810			mark_page_accessed(pages[i]);
 811			put_page(pages[i]);
 812		}
 813	}
 814}
 815
 816static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 817{
 818	int i;
 819
 820	/*
 821	 * w_target_locked is only set to true in the page_mkwrite() case.
 822	 * The intent is to allow us to lock the target page from write_begin()
 823	 * to write_end(). The caller must hold a ref on w_target_page.
 824	 */
 825	if (wc->w_target_locked) {
 826		BUG_ON(!wc->w_target_page);
 827		for (i = 0; i < wc->w_num_pages; i++) {
 828			if (wc->w_target_page == wc->w_pages[i]) {
 829				wc->w_pages[i] = NULL;
 830				break;
 831			}
 832		}
 833		mark_page_accessed(wc->w_target_page);
 834		put_page(wc->w_target_page);
 835	}
 836	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 837}
 838
 839static void ocfs2_free_unwritten_list(struct inode *inode,
 840				 struct list_head *head)
 841{
 842	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 843	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 844
 845	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 846		list_del(&ue->ue_node);
 847		spin_lock(&oi->ip_lock);
 848		list_del(&ue->ue_ip_node);
 849		spin_unlock(&oi->ip_lock);
 850		kfree(ue);
 851	}
 852}
 853
 854static void ocfs2_free_write_ctxt(struct inode *inode,
 855				  struct ocfs2_write_ctxt *wc)
 856{
 857	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 858	ocfs2_unlock_pages(wc);
 859	brelse(wc->w_di_bh);
 860	kfree(wc);
 861}
 862
 863static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 864				  struct ocfs2_super *osb, loff_t pos,
 865				  unsigned len, ocfs2_write_type_t type,
 866				  struct buffer_head *di_bh)
 867{
 868	u32 cend;
 869	struct ocfs2_write_ctxt *wc;
 870
 871	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 872	if (!wc)
 873		return -ENOMEM;
 874
 875	wc->w_cpos = pos >> osb->s_clustersize_bits;
 876	wc->w_first_new_cpos = UINT_MAX;
 877	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 878	wc->w_clen = cend - wc->w_cpos + 1;
 879	get_bh(di_bh);
 880	wc->w_di_bh = di_bh;
 881	wc->w_type = type;
 882
 883	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 884		wc->w_large_pages = 1;
 885	else
 886		wc->w_large_pages = 0;
 887
 888	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 889	INIT_LIST_HEAD(&wc->w_unwritten_list);
 890
 891	*wcp = wc;
 892
 893	return 0;
 894}
 895
 896/*
 897 * If a page has any new buffers, zero them out here, and mark them uptodate
 898 * and dirty so they'll be written out (in order to prevent uninitialised
 899 * block data from leaking). And clear the new bit.
 900 */
 901static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 902{
 903	unsigned int block_start, block_end;
 904	struct buffer_head *head, *bh;
 905
 906	BUG_ON(!PageLocked(page));
 907	if (!page_has_buffers(page))
 908		return;
 909
 910	bh = head = page_buffers(page);
 911	block_start = 0;
 912	do {
 913		block_end = block_start + bh->b_size;
 914
 915		if (buffer_new(bh)) {
 916			if (block_end > from && block_start < to) {
 917				if (!PageUptodate(page)) {
 918					unsigned start, end;
 919
 920					start = max(from, block_start);
 921					end = min(to, block_end);
 922
 923					zero_user_segment(page, start, end);
 924					set_buffer_uptodate(bh);
 925				}
 926
 927				clear_buffer_new(bh);
 928				mark_buffer_dirty(bh);
 929			}
 930		}
 931
 932		block_start = block_end;
 933		bh = bh->b_this_page;
 934	} while (bh != head);
 935}
 936
 937/*
 938 * Only called when we have a failure during allocating write to write
 939 * zero's to the newly allocated region.
 940 */
 941static void ocfs2_write_failure(struct inode *inode,
 942				struct ocfs2_write_ctxt *wc,
 943				loff_t user_pos, unsigned user_len)
 944{
 945	int i;
 946	unsigned from = user_pos & (PAGE_SIZE - 1),
 947		to = user_pos + user_len;
 948	struct page *tmppage;
 949
 950	if (wc->w_target_page)
 951		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 952
 953	for(i = 0; i < wc->w_num_pages; i++) {
 954		tmppage = wc->w_pages[i];
 955
 956		if (tmppage && page_has_buffers(tmppage)) {
 957			if (ocfs2_should_order_data(inode))
 958				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 959
 960			block_commit_write(tmppage, from, to);
 961		}
 962	}
 963}
 964
 965static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 966					struct ocfs2_write_ctxt *wc,
 967					struct page *page, u32 cpos,
 968					loff_t user_pos, unsigned user_len,
 969					int new)
 970{
 971	int ret;
 972	unsigned int map_from = 0, map_to = 0;
 973	unsigned int cluster_start, cluster_end;
 974	unsigned int user_data_from = 0, user_data_to = 0;
 975
 976	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 977					&cluster_start, &cluster_end);
 978
 979	/* treat the write as new if the a hole/lseek spanned across
 980	 * the page boundary.
 981	 */
 982	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 983			(page_offset(page) <= user_pos));
 984
 985	if (page == wc->w_target_page) {
 986		map_from = user_pos & (PAGE_SIZE - 1);
 987		map_to = map_from + user_len;
 988
 989		if (new)
 990			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 991						    cluster_start, cluster_end,
 992						    new);
 993		else
 994			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 995						    map_from, map_to, new);
 996		if (ret) {
 997			mlog_errno(ret);
 998			goto out;
 999		}
1000
1001		user_data_from = map_from;
1002		user_data_to = map_to;
1003		if (new) {
1004			map_from = cluster_start;
1005			map_to = cluster_end;
1006		}
1007	} else {
1008		/*
1009		 * If we haven't allocated the new page yet, we
1010		 * shouldn't be writing it out without copying user
1011		 * data. This is likely a math error from the caller.
1012		 */
1013		BUG_ON(!new);
1014
1015		map_from = cluster_start;
1016		map_to = cluster_end;
1017
1018		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1019					    cluster_start, cluster_end, new);
1020		if (ret) {
1021			mlog_errno(ret);
1022			goto out;
1023		}
1024	}
1025
1026	/*
1027	 * Parts of newly allocated pages need to be zero'd.
1028	 *
1029	 * Above, we have also rewritten 'to' and 'from' - as far as
1030	 * the rest of the function is concerned, the entire cluster
1031	 * range inside of a page needs to be written.
1032	 *
1033	 * We can skip this if the page is up to date - it's already
1034	 * been zero'd from being read in as a hole.
1035	 */
1036	if (new && !PageUptodate(page))
1037		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1038					 cpos, user_data_from, user_data_to);
1039
1040	flush_dcache_page(page);
1041
1042out:
1043	return ret;
1044}
1045
1046/*
1047 * This function will only grab one clusters worth of pages.
1048 */
1049static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050				      struct ocfs2_write_ctxt *wc,
1051				      u32 cpos, loff_t user_pos,
1052				      unsigned user_len, int new,
1053				      struct page *mmap_page)
1054{
1055	int ret = 0, i;
1056	unsigned long start, target_index, end_index, index;
1057	struct inode *inode = mapping->host;
1058	loff_t last_byte;
1059
1060	target_index = user_pos >> PAGE_SHIFT;
1061
1062	/*
1063	 * Figure out how many pages we'll be manipulating here. For
1064	 * non allocating write, we just change the one
1065	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1066	 * writing past i_size, we only need enough pages to cover the
1067	 * last page of the write.
1068	 */
1069	if (new) {
1070		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1072		/*
1073		 * We need the index *past* the last page we could possibly
1074		 * touch.  This is the page past the end of the write or
1075		 * i_size, whichever is greater.
1076		 */
1077		last_byte = max(user_pos + user_len, i_size_read(inode));
1078		BUG_ON(last_byte < 1);
1079		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1080		if ((start + wc->w_num_pages) > end_index)
1081			wc->w_num_pages = end_index - start;
1082	} else {
1083		wc->w_num_pages = 1;
1084		start = target_index;
1085	}
1086	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1087
1088	for(i = 0; i < wc->w_num_pages; i++) {
1089		index = start + i;
1090
1091		if (index >= target_index && index <= end_index &&
1092		    wc->w_type == OCFS2_WRITE_MMAP) {
1093			/*
1094			 * ocfs2_pagemkwrite() is a little different
1095			 * and wants us to directly use the page
1096			 * passed in.
1097			 */
1098			lock_page(mmap_page);
1099
1100			/* Exit and let the caller retry */
1101			if (mmap_page->mapping != mapping) {
1102				WARN_ON(mmap_page->mapping);
1103				unlock_page(mmap_page);
1104				ret = -EAGAIN;
1105				goto out;
1106			}
1107
1108			get_page(mmap_page);
1109			wc->w_pages[i] = mmap_page;
1110			wc->w_target_locked = true;
1111		} else if (index >= target_index && index <= end_index &&
1112			   wc->w_type == OCFS2_WRITE_DIRECT) {
1113			/* Direct write has no mapping page. */
1114			wc->w_pages[i] = NULL;
1115			continue;
1116		} else {
1117			wc->w_pages[i] = find_or_create_page(mapping, index,
1118							     GFP_NOFS);
1119			if (!wc->w_pages[i]) {
1120				ret = -ENOMEM;
1121				mlog_errno(ret);
1122				goto out;
1123			}
1124		}
1125		wait_for_stable_page(wc->w_pages[i]);
1126
1127		if (index == target_index)
1128			wc->w_target_page = wc->w_pages[i];
1129	}
1130out:
1131	if (ret)
1132		wc->w_target_locked = false;
1133	return ret;
1134}
1135
1136/*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
1139static int ocfs2_write_cluster(struct address_space *mapping,
1140			       u32 *phys, unsigned int new,
1141			       unsigned int clear_unwritten,
1142			       unsigned int should_zero,
1143			       struct ocfs2_alloc_context *data_ac,
1144			       struct ocfs2_alloc_context *meta_ac,
1145			       struct ocfs2_write_ctxt *wc, u32 cpos,
1146			       loff_t user_pos, unsigned user_len)
1147{
1148	int ret, i;
1149	u64 p_blkno;
1150	struct inode *inode = mapping->host;
1151	struct ocfs2_extent_tree et;
1152	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1153
 
1154	if (new) {
1155		u32 tmp_pos;
1156
1157		/*
1158		 * This is safe to call with the page locks - it won't take
1159		 * any additional semaphores or cluster locks.
1160		 */
1161		tmp_pos = cpos;
1162		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1163					   &tmp_pos, 1, !clear_unwritten,
1164					   wc->w_di_bh, wc->w_handle,
1165					   data_ac, meta_ac, NULL);
1166		/*
1167		 * This shouldn't happen because we must have already
1168		 * calculated the correct meta data allocation required. The
1169		 * internal tree allocation code should know how to increase
1170		 * transaction credits itself.
1171		 *
1172		 * If need be, we could handle -EAGAIN for a
1173		 * RESTART_TRANS here.
1174		 */
1175		mlog_bug_on_msg(ret == -EAGAIN,
1176				"Inode %llu: EAGAIN return during allocation.\n",
1177				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1178		if (ret < 0) {
1179			mlog_errno(ret);
1180			goto out;
1181		}
1182	} else if (clear_unwritten) {
1183		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184					      wc->w_di_bh);
1185		ret = ocfs2_mark_extent_written(inode, &et,
1186						wc->w_handle, cpos, 1, *phys,
1187						meta_ac, &wc->w_dealloc);
1188		if (ret < 0) {
1189			mlog_errno(ret);
1190			goto out;
1191		}
1192	}
1193
 
 
 
 
 
1194	/*
1195	 * The only reason this should fail is due to an inability to
1196	 * find the extent added.
1197	 */
1198	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
 
1199	if (ret < 0) {
1200		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1201			    "at logical cluster %u",
1202			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
 
1203		goto out;
1204	}
1205
1206	BUG_ON(*phys == 0);
1207
1208	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209	if (!should_zero)
1210		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1211
1212	for(i = 0; i < wc->w_num_pages; i++) {
1213		int tmpret;
1214
1215		/* This is the direct io target page. */
1216		if (wc->w_pages[i] == NULL) {
1217			p_blkno++;
1218			continue;
1219		}
1220
1221		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222						      wc->w_pages[i], cpos,
1223						      user_pos, user_len,
1224						      should_zero);
1225		if (tmpret) {
1226			mlog_errno(tmpret);
1227			if (ret == 0)
1228				ret = tmpret;
1229		}
1230	}
1231
1232	/*
1233	 * We only have cleanup to do in case of allocating write.
1234	 */
1235	if (ret && new)
1236		ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
1238out:
1239
1240	return ret;
1241}
1242
1243static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244				       struct ocfs2_alloc_context *data_ac,
1245				       struct ocfs2_alloc_context *meta_ac,
1246				       struct ocfs2_write_ctxt *wc,
1247				       loff_t pos, unsigned len)
1248{
1249	int ret, i;
1250	loff_t cluster_off;
1251	unsigned int local_len = len;
1252	struct ocfs2_write_cluster_desc *desc;
1253	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1254
1255	for (i = 0; i < wc->w_clen; i++) {
1256		desc = &wc->w_desc[i];
1257
1258		/*
1259		 * We have to make sure that the total write passed in
1260		 * doesn't extend past a single cluster.
1261		 */
1262		local_len = len;
1263		cluster_off = pos & (osb->s_clustersize - 1);
1264		if ((cluster_off + local_len) > osb->s_clustersize)
1265			local_len = osb->s_clustersize - cluster_off;
1266
1267		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1268					  desc->c_new,
1269					  desc->c_clear_unwritten,
1270					  desc->c_needs_zero,
1271					  data_ac, meta_ac,
1272					  wc, desc->c_cpos, pos, local_len);
1273		if (ret) {
1274			mlog_errno(ret);
1275			goto out;
1276		}
1277
1278		len -= local_len;
1279		pos += local_len;
1280	}
1281
1282	ret = 0;
1283out:
1284	return ret;
1285}
1286
1287/*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
1292static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293					struct ocfs2_write_ctxt *wc,
1294					loff_t pos, unsigned len, int alloc)
1295{
1296	struct ocfs2_write_cluster_desc *desc;
1297
1298	wc->w_target_from = pos & (PAGE_SIZE - 1);
1299	wc->w_target_to = wc->w_target_from + len;
1300
1301	if (alloc == 0)
1302		return;
1303
1304	/*
1305	 * Allocating write - we may have different boundaries based
1306	 * on page size and cluster size.
1307	 *
1308	 * NOTE: We can no longer compute one value from the other as
1309	 * the actual write length and user provided length may be
1310	 * different.
1311	 */
1312
1313	if (wc->w_large_pages) {
1314		/*
1315		 * We only care about the 1st and last cluster within
1316		 * our range and whether they should be zero'd or not. Either
1317		 * value may be extended out to the start/end of a
1318		 * newly allocated cluster.
1319		 */
1320		desc = &wc->w_desc[0];
1321		if (desc->c_needs_zero)
1322			ocfs2_figure_cluster_boundaries(osb,
1323							desc->c_cpos,
1324							&wc->w_target_from,
1325							NULL);
1326
1327		desc = &wc->w_desc[wc->w_clen - 1];
1328		if (desc->c_needs_zero)
1329			ocfs2_figure_cluster_boundaries(osb,
1330							desc->c_cpos,
1331							NULL,
1332							&wc->w_target_to);
1333	} else {
1334		wc->w_target_from = 0;
1335		wc->w_target_to = PAGE_SIZE;
1336	}
1337}
1338
1339/*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
1346static int ocfs2_unwritten_check(struct inode *inode,
1347				 struct ocfs2_write_ctxt *wc,
1348				 struct ocfs2_write_cluster_desc *desc)
1349{
1350	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1351	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1352	int ret = 0;
1353
1354	if (!desc->c_needs_zero)
1355		return 0;
1356
1357retry:
1358	spin_lock(&oi->ip_lock);
1359	/* Needs not to zero no metter buffer or direct. The one who is zero
1360	 * the cluster is doing zero. And he will clear unwritten after all
1361	 * cluster io finished. */
1362	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363		if (desc->c_cpos == ue->ue_cpos) {
1364			BUG_ON(desc->c_new);
1365			desc->c_needs_zero = 0;
1366			desc->c_clear_unwritten = 0;
1367			goto unlock;
1368		}
1369	}
1370
1371	if (wc->w_type != OCFS2_WRITE_DIRECT)
1372		goto unlock;
1373
1374	if (new == NULL) {
1375		spin_unlock(&oi->ip_lock);
1376		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377			     GFP_NOFS);
1378		if (new == NULL) {
1379			ret = -ENOMEM;
1380			goto out;
1381		}
1382		goto retry;
1383	}
1384	/* This direct write will doing zero. */
1385	new->ue_cpos = desc->c_cpos;
1386	new->ue_phys = desc->c_phys;
1387	desc->c_clear_unwritten = 0;
1388	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1390	wc->w_unwritten_count++;
1391	new = NULL;
1392unlock:
1393	spin_unlock(&oi->ip_lock);
1394out:
1395	if (new)
1396		kfree(new);
1397	return ret;
1398}
1399
1400/*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1407 */
1408static int ocfs2_populate_write_desc(struct inode *inode,
1409				     struct ocfs2_write_ctxt *wc,
1410				     unsigned int *clusters_to_alloc,
1411				     unsigned int *extents_to_split)
1412{
1413	int ret;
1414	struct ocfs2_write_cluster_desc *desc;
1415	unsigned int num_clusters = 0;
1416	unsigned int ext_flags = 0;
1417	u32 phys = 0;
1418	int i;
1419
1420	*clusters_to_alloc = 0;
1421	*extents_to_split = 0;
1422
1423	for (i = 0; i < wc->w_clen; i++) {
1424		desc = &wc->w_desc[i];
1425		desc->c_cpos = wc->w_cpos + i;
1426
1427		if (num_clusters == 0) {
1428			/*
1429			 * Need to look up the next extent record.
1430			 */
1431			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1432						 &num_clusters, &ext_flags);
1433			if (ret) {
1434				mlog_errno(ret);
1435				goto out;
1436			}
1437
1438			/* We should already CoW the refcountd extent. */
1439			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
1441			/*
1442			 * Assume worst case - that we're writing in
1443			 * the middle of the extent.
1444			 *
1445			 * We can assume that the write proceeds from
1446			 * left to right, in which case the extent
1447			 * insert code is smart enough to coalesce the
1448			 * next splits into the previous records created.
1449			 */
1450			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451				*extents_to_split = *extents_to_split + 2;
1452		} else if (phys) {
1453			/*
1454			 * Only increment phys if it doesn't describe
1455			 * a hole.
1456			 */
1457			phys++;
1458		}
1459
1460		/*
1461		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462		 * file that got extended.  w_first_new_cpos tells us
1463		 * where the newly allocated clusters are so we can
1464		 * zero them.
1465		 */
1466		if (desc->c_cpos >= wc->w_first_new_cpos) {
1467			BUG_ON(phys == 0);
1468			desc->c_needs_zero = 1;
1469		}
1470
1471		desc->c_phys = phys;
1472		if (phys == 0) {
1473			desc->c_new = 1;
1474			desc->c_needs_zero = 1;
1475			desc->c_clear_unwritten = 1;
1476			*clusters_to_alloc = *clusters_to_alloc + 1;
1477		}
1478
1479		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480			desc->c_clear_unwritten = 1;
1481			desc->c_needs_zero = 1;
1482		}
1483
1484		ret = ocfs2_unwritten_check(inode, wc, desc);
1485		if (ret) {
1486			mlog_errno(ret);
1487			goto out;
1488		}
1489
1490		num_clusters--;
1491	}
1492
1493	ret = 0;
1494out:
1495	return ret;
1496}
1497
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499				    struct inode *inode,
1500				    struct ocfs2_write_ctxt *wc)
1501{
1502	int ret;
1503	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504	struct page *page;
1505	handle_t *handle;
1506	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509	if (IS_ERR(handle)) {
1510		ret = PTR_ERR(handle);
1511		mlog_errno(ret);
1512		goto out;
1513	}
1514
1515	page = find_or_create_page(mapping, 0, GFP_NOFS);
1516	if (!page) {
1517		ocfs2_commit_trans(osb, handle);
1518		ret = -ENOMEM;
1519		mlog_errno(ret);
1520		goto out;
1521	}
1522	/*
1523	 * If we don't set w_num_pages then this page won't get unlocked
1524	 * and freed on cleanup of the write context.
1525	 */
1526	wc->w_pages[0] = wc->w_target_page = page;
1527	wc->w_num_pages = 1;
1528
 
 
 
 
 
 
 
1529	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1530				      OCFS2_JOURNAL_ACCESS_WRITE);
1531	if (ret) {
1532		ocfs2_commit_trans(osb, handle);
1533
1534		mlog_errno(ret);
1535		goto out;
1536	}
1537
1538	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539		ocfs2_set_inode_data_inline(inode, di);
1540
1541	if (!PageUptodate(page)) {
1542		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543		if (ret) {
1544			ocfs2_commit_trans(osb, handle);
1545
1546			goto out;
1547		}
1548	}
1549
1550	wc->w_handle = handle;
1551out:
1552	return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
1559	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1560		return 1;
1561	return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565					  struct inode *inode, loff_t pos,
1566					  unsigned len, struct page *mmap_page,
1567					  struct ocfs2_write_ctxt *wc)
1568{
1569	int ret, written = 0;
1570	loff_t end = pos + len;
1571	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1572	struct ocfs2_dinode *di = NULL;
1573
1574	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575					     len, (unsigned long long)pos,
1576					     oi->ip_dyn_features);
1577
1578	/*
1579	 * Handle inodes which already have inline data 1st.
1580	 */
1581	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582		if (mmap_page == NULL &&
1583		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584			goto do_inline_write;
1585
1586		/*
1587		 * The write won't fit - we have to give this inode an
1588		 * inline extent list now.
1589		 */
1590		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591		if (ret)
1592			mlog_errno(ret);
1593		goto out;
1594	}
1595
1596	/*
1597	 * Check whether the inode can accept inline data.
1598	 */
1599	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600		return 0;
1601
1602	/*
1603	 * Check whether the write can fit.
1604	 */
1605	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606	if (mmap_page ||
1607	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1608		return 0;
1609
1610do_inline_write:
1611	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612	if (ret) {
1613		mlog_errno(ret);
1614		goto out;
1615	}
1616
1617	/*
1618	 * This signals to the caller that the data can be written
1619	 * inline.
1620	 */
1621	written = 1;
1622out:
1623	return written ? written : ret;
1624}
1625
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636					struct buffer_head *di_bh,
1637					loff_t pos, unsigned len,
1638					struct ocfs2_write_ctxt *wc)
1639{
1640	int ret;
1641	loff_t newsize = pos + len;
1642
1643	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644
1645	if (newsize <= i_size_read(inode))
1646		return 0;
1647
1648	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1649	if (ret)
1650		mlog_errno(ret);
1651
1652	/* There is no wc if this is call from direct. */
1653	if (wc)
1654		wc->w_first_new_cpos =
1655			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657	return ret;
1658}
1659
1660static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661			   loff_t pos)
1662{
1663	int ret = 0;
1664
1665	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666	if (pos > i_size_read(inode))
1667		ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669	return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673			     loff_t pos, unsigned len, ocfs2_write_type_t type,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674			     struct page **pagep, void **fsdata,
1675			     struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1679	struct ocfs2_write_ctxt *wc;
1680	struct inode *inode = mapping->host;
1681	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682	struct ocfs2_dinode *di;
1683	struct ocfs2_alloc_context *data_ac = NULL;
1684	struct ocfs2_alloc_context *meta_ac = NULL;
1685	handle_t *handle;
1686	struct ocfs2_extent_tree et;
1687	int try_free = 1, ret1;
1688
1689try_again:
1690	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1691	if (ret) {
1692		mlog_errno(ret);
1693		return ret;
1694	}
1695
1696	if (ocfs2_supports_inline_data(osb)) {
1697		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698						     mmap_page, wc);
1699		if (ret == 1) {
1700			ret = 0;
1701			goto success;
1702		}
1703		if (ret < 0) {
1704			mlog_errno(ret);
1705			goto out;
1706		}
1707	}
1708
1709	/* Direct io change i_size late, should not zero tail here. */
1710	if (type != OCFS2_WRITE_DIRECT) {
1711		if (ocfs2_sparse_alloc(osb))
1712			ret = ocfs2_zero_tail(inode, di_bh, pos);
1713		else
1714			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715							   len, wc);
1716		if (ret) {
1717			mlog_errno(ret);
1718			goto out;
1719		}
1720	}
1721
1722	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723	if (ret < 0) {
1724		mlog_errno(ret);
1725		goto out;
1726	} else if (ret == 1) {
1727		clusters_need = wc->w_clen;
1728		ret = ocfs2_refcount_cow(inode, di_bh,
1729					 wc->w_cpos, wc->w_clen, UINT_MAX);
1730		if (ret) {
1731			mlog_errno(ret);
1732			goto out;
1733		}
1734	}
1735
1736	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737					&extents_to_split);
1738	if (ret) {
1739		mlog_errno(ret);
1740		goto out;
1741	}
1742	clusters_need += clusters_to_alloc;
1743
1744	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
1746	trace_ocfs2_write_begin_nolock(
1747			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1748			(long long)i_size_read(inode),
1749			le32_to_cpu(di->i_clusters),
1750			pos, len, type, mmap_page,
1751			clusters_to_alloc, extents_to_split);
1752
1753	/*
1754	 * We set w_target_from, w_target_to here so that
1755	 * ocfs2_write_end() knows which range in the target page to
1756	 * write out. An allocation requires that we write the entire
1757	 * cluster range.
1758	 */
1759	if (clusters_to_alloc || extents_to_split) {
1760		/*
1761		 * XXX: We are stretching the limits of
1762		 * ocfs2_lock_allocators(). It greatly over-estimates
1763		 * the work to be done.
1764		 */
1765		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766					      wc->w_di_bh);
1767		ret = ocfs2_lock_allocators(inode, &et,
1768					    clusters_to_alloc, extents_to_split,
1769					    &data_ac, &meta_ac);
1770		if (ret) {
1771			mlog_errno(ret);
1772			goto out;
1773		}
1774
1775		if (data_ac)
1776			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
1778		credits = ocfs2_calc_extend_credits(inode->i_sb,
1779						    &di->id2.i_list);
1780	} else if (type == OCFS2_WRITE_DIRECT)
1781		/* direct write needs not to start trans if no extents alloc. */
1782		goto success;
1783
1784	/*
1785	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786	 * and non-sparse clusters we just extended.  For non-sparse writes,
1787	 * we know zeros will only be needed in the first and/or last cluster.
1788	 */
1789	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
 
1791		cluster_of_pages = 1;
1792	else
1793		cluster_of_pages = 0;
1794
1795	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1796
1797	handle = ocfs2_start_trans(osb, credits);
1798	if (IS_ERR(handle)) {
1799		ret = PTR_ERR(handle);
1800		mlog_errno(ret);
1801		goto out;
1802	}
1803
1804	wc->w_handle = handle;
1805
1806	if (clusters_to_alloc) {
1807		ret = dquot_alloc_space_nodirty(inode,
1808			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809		if (ret)
1810			goto out_commit;
1811	}
1812
 
 
 
1813	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1814				      OCFS2_JOURNAL_ACCESS_WRITE);
1815	if (ret) {
1816		mlog_errno(ret);
1817		goto out_quota;
1818	}
1819
1820	/*
1821	 * Fill our page array first. That way we've grabbed enough so
1822	 * that we can zero and flush if we error after adding the
1823	 * extent.
1824	 */
1825	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1826					 cluster_of_pages, mmap_page);
1827	if (ret && ret != -EAGAIN) {
1828		mlog_errno(ret);
1829		goto out_quota;
1830	}
1831
1832	/*
1833	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834	 * the target page. In this case, we exit with no error and no target
1835	 * page. This will trigger the caller, page_mkwrite(), to re-try
1836	 * the operation.
1837	 */
1838	if (ret == -EAGAIN) {
1839		BUG_ON(wc->w_target_page);
1840		ret = 0;
1841		goto out_quota;
1842	}
1843
1844	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845					  len);
1846	if (ret) {
1847		mlog_errno(ret);
1848		goto out_quota;
1849	}
1850
1851	if (data_ac)
1852		ocfs2_free_alloc_context(data_ac);
1853	if (meta_ac)
1854		ocfs2_free_alloc_context(meta_ac);
1855
1856success:
1857	if (pagep)
1858		*pagep = wc->w_target_page;
1859	*fsdata = wc;
1860	return 0;
1861out_quota:
1862	if (clusters_to_alloc)
1863		dquot_free_space(inode,
1864			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865out_commit:
1866	ocfs2_commit_trans(osb, handle);
1867
1868out:
1869	/*
1870	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872	 * to unlock the target page manually to prevent deadlocks when
1873	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874	 * to VM code.
1875	 */
1876	if (wc->w_target_locked)
1877		unlock_page(mmap_page);
1878
1879	ocfs2_free_write_ctxt(inode, wc);
1880
1881	if (data_ac) {
1882		ocfs2_free_alloc_context(data_ac);
1883		data_ac = NULL;
1884	}
1885	if (meta_ac) {
1886		ocfs2_free_alloc_context(meta_ac);
1887		meta_ac = NULL;
1888	}
1889
1890	if (ret == -ENOSPC && try_free) {
1891		/*
1892		 * Try to free some truncate log so that we can have enough
1893		 * clusters to allocate.
1894		 */
1895		try_free = 0;
1896
1897		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898		if (ret1 == 1)
1899			goto try_again;
1900
1901		if (ret1 < 0)
1902			mlog_errno(ret1);
1903	}
1904
1905	return ret;
1906}
1907
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909			     loff_t pos, unsigned len, unsigned flags,
1910			     struct page **pagep, void **fsdata)
1911{
1912	int ret;
1913	struct buffer_head *di_bh = NULL;
1914	struct inode *inode = mapping->host;
1915
1916	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917	if (ret) {
1918		mlog_errno(ret);
1919		return ret;
1920	}
1921
1922	/*
1923	 * Take alloc sem here to prevent concurrent lookups. That way
1924	 * the mapping, zeroing and tree manipulation within
1925	 * ocfs2_write() will be safe against ->readpage(). This
1926	 * should also serve to lock out allocation from a shared
1927	 * writeable region.
1928	 */
1929	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932				       pagep, fsdata, di_bh, NULL);
1933	if (ret) {
1934		mlog_errno(ret);
1935		goto out_fail;
1936	}
1937
1938	brelse(di_bh);
1939
1940	return 0;
1941
1942out_fail:
1943	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945	brelse(di_bh);
1946	ocfs2_inode_unlock(inode, 1);
1947
1948	return ret;
1949}
1950
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952				   unsigned len, unsigned *copied,
1953				   struct ocfs2_dinode *di,
1954				   struct ocfs2_write_ctxt *wc)
1955{
1956	void *kaddr;
1957
1958	if (unlikely(*copied < len)) {
1959		if (!PageUptodate(wc->w_target_page)) {
1960			*copied = 0;
1961			return;
1962		}
1963	}
1964
1965	kaddr = kmap_atomic(wc->w_target_page);
1966	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967	kunmap_atomic(kaddr);
1968
1969	trace_ocfs2_write_end_inline(
1970	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971	     (unsigned long long)pos, *copied,
1972	     le16_to_cpu(di->id2.i_data.id_count),
1973	     le16_to_cpu(di->i_dyn_features));
1974}
1975
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
 
1978{
1979	int i, ret;
1980	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1981	struct inode *inode = mapping->host;
1982	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983	struct ocfs2_write_ctxt *wc = fsdata;
1984	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985	handle_t *handle = wc->w_handle;
1986	struct page *tmppage;
1987
1988	BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
1990	if (handle) {
1991		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993		if (ret) {
1994			copied = ret;
1995			mlog_errno(ret);
1996			goto out;
1997		}
1998	}
1999
2000	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002		goto out_write_size;
2003	}
2004
2005	if (unlikely(copied < len) && wc->w_target_page) {
2006		if (!PageUptodate(wc->w_target_page))
2007			copied = 0;
2008
2009		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010				       start+len);
2011	}
2012	if (wc->w_target_page)
2013		flush_dcache_page(wc->w_target_page);
2014
2015	for(i = 0; i < wc->w_num_pages; i++) {
2016		tmppage = wc->w_pages[i];
2017
2018		/* This is the direct io target page. */
2019		if (tmppage == NULL)
2020			continue;
2021
2022		if (tmppage == wc->w_target_page) {
2023			from = wc->w_target_from;
2024			to = wc->w_target_to;
2025
2026			BUG_ON(from > PAGE_SIZE ||
2027			       to > PAGE_SIZE ||
2028			       to < from);
2029		} else {
2030			/*
2031			 * Pages adjacent to the target (if any) imply
2032			 * a hole-filling write in which case we want
2033			 * to flush their entire range.
2034			 */
2035			from = 0;
2036			to = PAGE_SIZE;
2037		}
2038
2039		if (page_has_buffers(tmppage)) {
2040			if (handle && ocfs2_should_order_data(inode))
2041				ocfs2_jbd2_file_inode(handle, inode);
2042			block_commit_write(tmppage, from, to);
2043		}
2044	}
2045
2046out_write_size:
2047	/* Direct io do not update i_size here. */
2048	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049		pos += copied;
2050		if (pos > i_size_read(inode)) {
2051			i_size_write(inode, pos);
2052			mark_inode_dirty(inode);
2053		}
2054		inode->i_blocks = ocfs2_inode_sector_count(inode);
2055		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2056		inode->i_mtime = inode->i_ctime = current_time(inode);
2057		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059		ocfs2_update_inode_fsync_trans(handle, inode, 1);
2060	}
2061	if (handle)
2062		ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064out:
2065	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066	 * lock, or it will cause a deadlock since journal commit threads holds
2067	 * this lock and will ask for the page lock when flushing the data.
2068	 * put it here to preserve the unlock order.
2069	 */
2070	ocfs2_unlock_pages(wc);
2071
2072	if (handle)
2073		ocfs2_commit_trans(osb, handle);
2074
2075	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
2077	brelse(wc->w_di_bh);
2078	kfree(wc);
2079
2080	return copied;
2081}
2082
2083static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084			   loff_t pos, unsigned len, unsigned copied,
2085			   struct page *page, void *fsdata)
2086{
2087	int ret;
2088	struct inode *inode = mapping->host;
2089
2090	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2091
2092	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2093	ocfs2_inode_unlock(inode, 1);
2094
2095	return ret;
2096}
2097
2098struct ocfs2_dio_write_ctxt {
2099	struct list_head	dw_zero_list;
2100	unsigned		dw_zero_count;
2101	int			dw_orphaned;
2102	pid_t			dw_writer_pid;
2103};
2104
2105static struct ocfs2_dio_write_ctxt *
2106ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107{
2108	struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110	if (bh->b_private)
2111		return bh->b_private;
2112
2113	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114	if (dwc == NULL)
2115		return NULL;
2116	INIT_LIST_HEAD(&dwc->dw_zero_list);
2117	dwc->dw_zero_count = 0;
2118	dwc->dw_orphaned = 0;
2119	dwc->dw_writer_pid = task_pid_nr(current);
2120	bh->b_private = dwc;
2121	*alloc = 1;
2122
2123	return dwc;
2124}
2125
2126static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127				     struct ocfs2_dio_write_ctxt *dwc)
2128{
2129	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130	kfree(dwc);
2131}
2132
2133/*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 *  "So what we do is to permit the ->get_blocks function to populate
2138 *   bh.b_size with the size of IO which is permitted at this offset and
2139 *   this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 * 					fs_count, map_bh, dio->rw == WRITE);
2145 */
2146static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2147			       struct buffer_head *bh_result, int create)
2148{
2149	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2150	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2151	struct ocfs2_write_ctxt *wc;
2152	struct ocfs2_write_cluster_desc *desc = NULL;
2153	struct ocfs2_dio_write_ctxt *dwc = NULL;
2154	struct buffer_head *di_bh = NULL;
2155	u64 p_blkno;
2156	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2157	unsigned len, total_len = bh_result->b_size;
2158	int ret = 0, first_get_block = 0;
2159
2160	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161	len = min(total_len, len);
2162
2163	mlog(0, "get block of %lu at %llu:%u req %u\n",
2164			inode->i_ino, pos, len, total_len);
2165
2166	/*
2167	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168	 * we may need to add it to orphan dir. So can not fall to fast path
2169	 * while file size will be changed.
2170	 */
2171	if (pos + total_len <= i_size_read(inode)) {
2172
2173		/* This is the fast path for re-write. */
2174		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175		if (buffer_mapped(bh_result) &&
2176		    !buffer_new(bh_result) &&
2177		    ret == 0)
2178			goto out;
2179
2180		/* Clear state set by ocfs2_get_block. */
2181		bh_result->b_state = 0;
2182	}
2183
2184	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185	if (unlikely(dwc == NULL)) {
2186		ret = -ENOMEM;
2187		mlog_errno(ret);
2188		goto out;
2189	}
2190
2191	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193	    !dwc->dw_orphaned) {
2194		/*
2195		 * when we are going to alloc extents beyond file size, add the
2196		 * inode to orphan dir, so we can recall those spaces when
2197		 * system crashed during write.
2198		 */
2199		ret = ocfs2_add_inode_to_orphan(osb, inode);
2200		if (ret < 0) {
2201			mlog_errno(ret);
2202			goto out;
2203		}
2204		dwc->dw_orphaned = 1;
2205	}
2206
2207	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208	if (ret) {
2209		mlog_errno(ret);
2210		goto out;
2211	}
2212
2213	down_write(&oi->ip_alloc_sem);
2214
2215	if (first_get_block) {
2216		if (ocfs2_sparse_alloc(osb))
2217			ret = ocfs2_zero_tail(inode, di_bh, pos);
2218		else
2219			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220							   total_len, NULL);
2221		if (ret < 0) {
2222			mlog_errno(ret);
2223			goto unlock;
2224		}
2225	}
2226
2227	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228				       OCFS2_WRITE_DIRECT, NULL,
2229				       (void **)&wc, di_bh, NULL);
2230	if (ret) {
2231		mlog_errno(ret);
2232		goto unlock;
2233	}
2234
2235	desc = &wc->w_desc[0];
2236
2237	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238	BUG_ON(p_blkno == 0);
2239	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241	map_bh(bh_result, inode->i_sb, p_blkno);
2242	bh_result->b_size = len;
2243	if (desc->c_needs_zero)
2244		set_buffer_new(bh_result);
2245
2246	/* May sleep in end_io. It should not happen in a irq context. So defer
2247	 * it to dio work queue. */
2248	set_buffer_defer_completion(bh_result);
2249
2250	if (!list_empty(&wc->w_unwritten_list)) {
2251		struct ocfs2_unwritten_extent *ue = NULL;
2252
2253		ue = list_first_entry(&wc->w_unwritten_list,
2254				      struct ocfs2_unwritten_extent,
2255				      ue_node);
2256		BUG_ON(ue->ue_cpos != desc->c_cpos);
2257		/* The physical address may be 0, fill it. */
2258		ue->ue_phys = desc->c_phys;
2259
2260		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2261		dwc->dw_zero_count += wc->w_unwritten_count;
2262	}
2263
2264	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2265	BUG_ON(ret != len);
2266	ret = 0;
2267unlock:
2268	up_write(&oi->ip_alloc_sem);
2269	ocfs2_inode_unlock(inode, 1);
2270	brelse(di_bh);
2271out:
2272	if (ret < 0)
2273		ret = -EIO;
2274	return ret;
2275}
2276
2277static int ocfs2_dio_end_io_write(struct inode *inode,
2278				  struct ocfs2_dio_write_ctxt *dwc,
2279				  loff_t offset,
2280				  ssize_t bytes)
2281{
2282	struct ocfs2_cached_dealloc_ctxt dealloc;
2283	struct ocfs2_extent_tree et;
2284	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2286	struct ocfs2_unwritten_extent *ue = NULL;
2287	struct buffer_head *di_bh = NULL;
2288	struct ocfs2_dinode *di;
2289	struct ocfs2_alloc_context *data_ac = NULL;
2290	struct ocfs2_alloc_context *meta_ac = NULL;
2291	handle_t *handle = NULL;
2292	loff_t end = offset + bytes;
2293	int ret = 0, credits = 0, locked = 0;
2294
2295	ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297	/* We do clear unwritten, delete orphan, change i_size here. If neither
2298	 * of these happen, we can skip all this. */
2299	if (list_empty(&dwc->dw_zero_list) &&
2300	    end <= i_size_read(inode) &&
2301	    !dwc->dw_orphaned)
2302		goto out;
2303
2304	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305	 * are in that context. */
2306	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2307		inode_lock(inode);
2308		locked = 1;
2309	}
2310
2311	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312	if (ret < 0) {
2313		mlog_errno(ret);
2314		goto out;
2315	}
2316
2317	down_write(&oi->ip_alloc_sem);
2318
2319	/* Delete orphan before acquire i_mutex. */
2320	if (dwc->dw_orphaned) {
2321		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323		end = end > i_size_read(inode) ? end : 0;
2324
2325		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326				!!end, end);
2327		if (ret < 0)
2328			mlog_errno(ret);
2329	}
2330
2331	di = (struct ocfs2_dinode *)di_bh->b_data;
2332
2333	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
2335	/* Attach dealloc with extent tree in case that we may reuse extents
2336	 * which are already unlinked from current extent tree due to extent
2337	 * rotation and merging.
2338	 */
2339	et.et_dealloc = &dealloc;
2340
2341	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342				    &data_ac, &meta_ac);
2343	if (ret) {
2344		mlog_errno(ret);
2345		goto unlock;
2346	}
2347
2348	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350	handle = ocfs2_start_trans(osb, credits);
2351	if (IS_ERR(handle)) {
2352		ret = PTR_ERR(handle);
2353		mlog_errno(ret);
2354		goto unlock;
2355	}
2356	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357				      OCFS2_JOURNAL_ACCESS_WRITE);
2358	if (ret) {
2359		mlog_errno(ret);
2360		goto commit;
2361	}
2362
2363	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2364		ret = ocfs2_mark_extent_written(inode, &et, handle,
2365						ue->ue_cpos, 1,
2366						ue->ue_phys,
2367						meta_ac, &dealloc);
2368		if (ret < 0) {
2369			mlog_errno(ret);
2370			break;
2371		}
2372	}
2373
2374	if (end > i_size_read(inode)) {
2375		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376		if (ret < 0)
2377			mlog_errno(ret);
2378	}
2379commit:
2380	ocfs2_commit_trans(osb, handle);
2381unlock:
2382	up_write(&oi->ip_alloc_sem);
2383	ocfs2_inode_unlock(inode, 1);
2384	brelse(di_bh);
2385out:
2386	if (data_ac)
2387		ocfs2_free_alloc_context(data_ac);
2388	if (meta_ac)
2389		ocfs2_free_alloc_context(meta_ac);
2390	ocfs2_run_deallocs(osb, &dealloc);
2391	if (locked)
2392		inode_unlock(inode);
2393	ocfs2_dio_free_write_ctx(inode, dwc);
2394
2395	return ret;
2396}
2397
2398/*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2400 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
2403static int ocfs2_dio_end_io(struct kiocb *iocb,
2404			    loff_t offset,
2405			    ssize_t bytes,
2406			    void *private)
2407{
2408	struct inode *inode = file_inode(iocb->ki_filp);
2409	int level;
2410	int ret = 0;
2411
2412	/* this io's submitter should not have unlocked this before we could */
2413	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
2415	if (bytes > 0 && private)
2416		ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2417
2418	ocfs2_iocb_clear_rw_locked(iocb);
2419
2420	level = ocfs2_iocb_rw_locked_level(iocb);
2421	ocfs2_rw_unlock(inode, level);
2422	return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427	struct file *file = iocb->ki_filp;
2428	struct inode *inode = file->f_mapping->host;
2429	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430	get_block_t *get_block;
2431
2432	/*
2433	 * Fallback to buffered I/O if we see an inode without
2434	 * extents.
2435	 */
2436	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437		return 0;
2438
2439	/* Fallback to buffered I/O if we do not support append dio. */
2440	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441	    !ocfs2_supports_append_dio(osb))
2442		return 0;
2443
2444	if (iov_iter_rw(iter) == READ)
2445		get_block = ocfs2_lock_get_block;
2446	else
2447		get_block = ocfs2_dio_wr_get_block;
2448
2449	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450				    iter, get_block,
2451				    ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455	.readpage		= ocfs2_readpage,
2456	.readpages		= ocfs2_readpages,
2457	.writepage		= ocfs2_writepage,
2458	.write_begin		= ocfs2_write_begin,
2459	.write_end		= ocfs2_write_end,
2460	.bmap			= ocfs2_bmap,
2461	.direct_IO		= ocfs2_direct_IO,
2462	.invalidatepage		= block_invalidatepage,
2463	.releasepage		= ocfs2_releasepage,
2464	.migratepage		= buffer_migrate_page,
2465	.is_partially_uptodate	= block_is_partially_uptodate,
2466	.error_remove_page	= generic_error_remove_page,
2467};