Loading...
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/spinlock.h>
36#include <linux/platform_device.h>
37#include <linux/log2.h>
38#include <linux/pm.h>
39#include <linux/of.h>
40#include <linux/of_platform.h>
41#include <linux/dmi.h>
42
43/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44#include <asm-generic/rtc.h>
45
46struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62};
63
64/* both platform and pnp busses use negative numbers for invalid irqs */
65#define is_valid_irq(n) ((n) > 0)
66
67static const char driver_name[] = "rtc_cmos";
68
69/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
75static inline int is_intr(u8 rtc_intr)
76{
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80}
81
82/*----------------------------------------------------------------*/
83
84/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94#ifdef CONFIG_HPET_EMULATE_RTC
95#include <asm/hpet.h>
96#else
97
98static inline int is_hpet_enabled(void)
99{
100 return 0;
101}
102
103static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104{
105 return 0;
106}
107
108static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int
114hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115{
116 return 0;
117}
118
119static inline int hpet_set_periodic_freq(unsigned long freq)
120{
121 return 0;
122}
123
124static inline int hpet_rtc_dropped_irq(void)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_timer_init(void)
130{
131 return 0;
132}
133
134extern irq_handler_t hpet_rtc_interrupt;
135
136static inline int hpet_register_irq_handler(irq_handler_t handler)
137{
138 return 0;
139}
140
141static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146#endif
147
148/*----------------------------------------------------------------*/
149
150#ifdef RTC_PORT
151
152/* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156#define can_bank2 true
157
158static inline unsigned char cmos_read_bank2(unsigned char addr)
159{
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162}
163
164static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165{
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(3));
168}
169
170#else
171
172#define can_bank2 false
173
174static inline unsigned char cmos_read_bank2(unsigned char addr)
175{
176 return 0;
177}
178
179static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180{
181}
182
183#endif
184
185/*----------------------------------------------------------------*/
186
187static int cmos_read_time(struct device *dev, struct rtc_time *t)
188{
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195}
196
197static int cmos_set_time(struct device *dev, struct rtc_time *t)
198{
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206}
207
208static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209{
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 else
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 else
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278}
279
280static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281{
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295}
296
297static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298{
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312}
313
314static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315{
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
326static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327{
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378}
379
380/*
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382 */
383static bool alarm_disable_quirk;
384
385static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386{
387 alarm_disable_quirk = true;
388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 pr_info("RTC alarms disabled\n");
390 return 0;
391}
392
393static const struct dmi_system_id rtc_quirks[] __initconst = {
394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 {
396 .callback = set_alarm_disable_quirk,
397 .ident = "IBM Truman",
398 .matches = {
399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 },
402 },
403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 {
405 .callback = set_alarm_disable_quirk,
406 .ident = "Gigabyte GA-990XA-UD3",
407 .matches = {
408 DMI_MATCH(DMI_SYS_VENDOR,
409 "Gigabyte Technology Co., Ltd."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 },
412 },
413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 {
415 .callback = set_alarm_disable_quirk,
416 .ident = "Toshiba Satellite L300",
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 },
421 },
422 {}
423};
424
425static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426{
427 struct cmos_rtc *cmos = dev_get_drvdata(dev);
428 unsigned long flags;
429
430 if (!is_valid_irq(cmos->irq))
431 return -EINVAL;
432
433 if (alarm_disable_quirk)
434 return 0;
435
436 spin_lock_irqsave(&rtc_lock, flags);
437
438 if (enabled)
439 cmos_irq_enable(cmos, RTC_AIE);
440 else
441 cmos_irq_disable(cmos, RTC_AIE);
442
443 spin_unlock_irqrestore(&rtc_lock, flags);
444 return 0;
445}
446
447#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
449static int cmos_procfs(struct device *dev, struct seq_file *seq)
450{
451 struct cmos_rtc *cmos = dev_get_drvdata(dev);
452 unsigned char rtc_control, valid;
453
454 spin_lock_irq(&rtc_lock);
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 valid = CMOS_READ(RTC_VALID);
457 spin_unlock_irq(&rtc_lock);
458
459 /* NOTE: at least ICH6 reports battery status using a different
460 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 */
462 return seq_printf(seq,
463 "periodic_IRQ\t: %s\n"
464 "update_IRQ\t: %s\n"
465 "HPET_emulated\t: %s\n"
466 // "square_wave\t: %s\n"
467 "BCD\t\t: %s\n"
468 "DST_enable\t: %s\n"
469 "periodic_freq\t: %d\n"
470 "batt_status\t: %s\n",
471 (rtc_control & RTC_PIE) ? "yes" : "no",
472 (rtc_control & RTC_UIE) ? "yes" : "no",
473 is_hpet_enabled() ? "yes" : "no",
474 // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 cmos->rtc->irq_freq,
478 (valid & RTC_VRT) ? "okay" : "dead");
479}
480
481#else
482#define cmos_procfs NULL
483#endif
484
485static const struct rtc_class_ops cmos_rtc_ops = {
486 .read_time = cmos_read_time,
487 .set_time = cmos_set_time,
488 .read_alarm = cmos_read_alarm,
489 .set_alarm = cmos_set_alarm,
490 .proc = cmos_procfs,
491 .alarm_irq_enable = cmos_alarm_irq_enable,
492};
493
494/*----------------------------------------------------------------*/
495
496/*
497 * All these chips have at least 64 bytes of address space, shared by
498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
499 * by boot firmware. Modern chips have 128 or 256 bytes.
500 */
501
502#define NVRAM_OFFSET (RTC_REG_D + 1)
503
504static ssize_t
505cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 struct bin_attribute *attr,
507 char *buf, loff_t off, size_t count)
508{
509 int retval;
510
511 if (unlikely(off >= attr->size))
512 return 0;
513 if (unlikely(off < 0))
514 return -EINVAL;
515 if ((off + count) > attr->size)
516 count = attr->size - off;
517
518 off += NVRAM_OFFSET;
519 spin_lock_irq(&rtc_lock);
520 for (retval = 0; count; count--, off++, retval++) {
521 if (off < 128)
522 *buf++ = CMOS_READ(off);
523 else if (can_bank2)
524 *buf++ = cmos_read_bank2(off);
525 else
526 break;
527 }
528 spin_unlock_irq(&rtc_lock);
529
530 return retval;
531}
532
533static ssize_t
534cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 struct bin_attribute *attr,
536 char *buf, loff_t off, size_t count)
537{
538 struct cmos_rtc *cmos;
539 int retval;
540
541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 if (unlikely(off >= attr->size))
543 return -EFBIG;
544 if (unlikely(off < 0))
545 return -EINVAL;
546 if ((off + count) > attr->size)
547 count = attr->size - off;
548
549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
550 * checksum on part of the NVRAM data. That's currently ignored
551 * here. If userspace is smart enough to know what fields of
552 * NVRAM to update, updating checksums is also part of its job.
553 */
554 off += NVRAM_OFFSET;
555 spin_lock_irq(&rtc_lock);
556 for (retval = 0; count; count--, off++, retval++) {
557 /* don't trash RTC registers */
558 if (off == cmos->day_alrm
559 || off == cmos->mon_alrm
560 || off == cmos->century)
561 buf++;
562 else if (off < 128)
563 CMOS_WRITE(*buf++, off);
564 else if (can_bank2)
565 cmos_write_bank2(*buf++, off);
566 else
567 break;
568 }
569 spin_unlock_irq(&rtc_lock);
570
571 return retval;
572}
573
574static struct bin_attribute nvram = {
575 .attr = {
576 .name = "nvram",
577 .mode = S_IRUGO | S_IWUSR,
578 },
579
580 .read = cmos_nvram_read,
581 .write = cmos_nvram_write,
582 /* size gets set up later */
583};
584
585/*----------------------------------------------------------------*/
586
587static struct cmos_rtc cmos_rtc;
588
589static irqreturn_t cmos_interrupt(int irq, void *p)
590{
591 u8 irqstat;
592 u8 rtc_control;
593
594 spin_lock(&rtc_lock);
595
596 /* When the HPET interrupt handler calls us, the interrupt
597 * status is passed as arg1 instead of the irq number. But
598 * always clear irq status, even when HPET is in the way.
599 *
600 * Note that HPET and RTC are almost certainly out of phase,
601 * giving different IRQ status ...
602 */
603 irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 rtc_control = CMOS_READ(RTC_CONTROL);
605 if (is_hpet_enabled())
606 irqstat = (unsigned long)irq & 0xF0;
607
608 /* If we were suspended, RTC_CONTROL may not be accurate since the
609 * bios may have cleared it.
610 */
611 if (!cmos_rtc.suspend_ctrl)
612 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613 else
614 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
615
616 /* All Linux RTC alarms should be treated as if they were oneshot.
617 * Similar code may be needed in system wakeup paths, in case the
618 * alarm woke the system.
619 */
620 if (irqstat & RTC_AIE) {
621 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622 rtc_control &= ~RTC_AIE;
623 CMOS_WRITE(rtc_control, RTC_CONTROL);
624 hpet_mask_rtc_irq_bit(RTC_AIE);
625 CMOS_READ(RTC_INTR_FLAGS);
626 }
627 spin_unlock(&rtc_lock);
628
629 if (is_intr(irqstat)) {
630 rtc_update_irq(p, 1, irqstat);
631 return IRQ_HANDLED;
632 } else
633 return IRQ_NONE;
634}
635
636#ifdef CONFIG_PNP
637#define INITSECTION
638
639#else
640#define INITSECTION __init
641#endif
642
643static int INITSECTION
644cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
645{
646 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
647 int retval = 0;
648 unsigned char rtc_control;
649 unsigned address_space;
650
651 /* there can be only one ... */
652 if (cmos_rtc.dev)
653 return -EBUSY;
654
655 if (!ports)
656 return -ENODEV;
657
658 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
659 *
660 * REVISIT non-x86 systems may instead use memory space resources
661 * (needing ioremap etc), not i/o space resources like this ...
662 */
663 ports = request_region(ports->start,
664 resource_size(ports),
665 driver_name);
666 if (!ports) {
667 dev_dbg(dev, "i/o registers already in use\n");
668 return -EBUSY;
669 }
670
671 cmos_rtc.irq = rtc_irq;
672 cmos_rtc.iomem = ports;
673
674 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
675 * driver did, but don't reject unknown configs. Old hardware
676 * won't address 128 bytes. Newer chips have multiple banks,
677 * though they may not be listed in one I/O resource.
678 */
679#if defined(CONFIG_ATARI)
680 address_space = 64;
681#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
682 || defined(__sparc__) || defined(__mips__) \
683 || defined(__powerpc__)
684 address_space = 128;
685#else
686#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
687 address_space = 128;
688#endif
689 if (can_bank2 && ports->end > (ports->start + 1))
690 address_space = 256;
691
692 /* For ACPI systems extension info comes from the FADT. On others,
693 * board specific setup provides it as appropriate. Systems where
694 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
695 * some almost-clones) can provide hooks to make that behave.
696 *
697 * Note that ACPI doesn't preclude putting these registers into
698 * "extended" areas of the chip, including some that we won't yet
699 * expect CMOS_READ and friends to handle.
700 */
701 if (info) {
702 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
703 cmos_rtc.day_alrm = info->rtc_day_alarm;
704 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
705 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
706 if (info->rtc_century && info->rtc_century < 128)
707 cmos_rtc.century = info->rtc_century;
708
709 if (info->wake_on && info->wake_off) {
710 cmos_rtc.wake_on = info->wake_on;
711 cmos_rtc.wake_off = info->wake_off;
712 }
713 }
714
715 cmos_rtc.dev = dev;
716 dev_set_drvdata(dev, &cmos_rtc);
717
718 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
719 &cmos_rtc_ops, THIS_MODULE);
720 if (IS_ERR(cmos_rtc.rtc)) {
721 retval = PTR_ERR(cmos_rtc.rtc);
722 goto cleanup0;
723 }
724
725 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
726
727 spin_lock_irq(&rtc_lock);
728
729 /* force periodic irq to CMOS reset default of 1024Hz;
730 *
731 * REVISIT it's been reported that at least one x86_64 ALI mobo
732 * doesn't use 32KHz here ... for portability we might need to
733 * do something about other clock frequencies.
734 */
735 cmos_rtc.rtc->irq_freq = 1024;
736 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
737 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
738
739 /* disable irqs */
740 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
741
742 rtc_control = CMOS_READ(RTC_CONTROL);
743
744 spin_unlock_irq(&rtc_lock);
745
746 /* FIXME:
747 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
748 */
749 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
750 dev_warn(dev, "only 24-hr supported\n");
751 retval = -ENXIO;
752 goto cleanup1;
753 }
754
755 if (is_valid_irq(rtc_irq)) {
756 irq_handler_t rtc_cmos_int_handler;
757
758 if (is_hpet_enabled()) {
759 rtc_cmos_int_handler = hpet_rtc_interrupt;
760 retval = hpet_register_irq_handler(cmos_interrupt);
761 if (retval) {
762 dev_warn(dev, "hpet_register_irq_handler "
763 " failed in rtc_init().");
764 goto cleanup1;
765 }
766 } else
767 rtc_cmos_int_handler = cmos_interrupt;
768
769 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
770 0, dev_name(&cmos_rtc.rtc->dev),
771 cmos_rtc.rtc);
772 if (retval < 0) {
773 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
774 goto cleanup1;
775 }
776 }
777 hpet_rtc_timer_init();
778
779 /* export at least the first block of NVRAM */
780 nvram.size = address_space - NVRAM_OFFSET;
781 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
782 if (retval < 0) {
783 dev_dbg(dev, "can't create nvram file? %d\n", retval);
784 goto cleanup2;
785 }
786
787 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
788 !is_valid_irq(rtc_irq) ? "no alarms" :
789 cmos_rtc.mon_alrm ? "alarms up to one year" :
790 cmos_rtc.day_alrm ? "alarms up to one month" :
791 "alarms up to one day",
792 cmos_rtc.century ? ", y3k" : "",
793 nvram.size,
794 is_hpet_enabled() ? ", hpet irqs" : "");
795
796 return 0;
797
798cleanup2:
799 if (is_valid_irq(rtc_irq))
800 free_irq(rtc_irq, cmos_rtc.rtc);
801cleanup1:
802 cmos_rtc.dev = NULL;
803 rtc_device_unregister(cmos_rtc.rtc);
804cleanup0:
805 release_region(ports->start, resource_size(ports));
806 return retval;
807}
808
809static void cmos_do_shutdown(void)
810{
811 spin_lock_irq(&rtc_lock);
812 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
813 spin_unlock_irq(&rtc_lock);
814}
815
816static void __exit cmos_do_remove(struct device *dev)
817{
818 struct cmos_rtc *cmos = dev_get_drvdata(dev);
819 struct resource *ports;
820
821 cmos_do_shutdown();
822
823 sysfs_remove_bin_file(&dev->kobj, &nvram);
824
825 if (is_valid_irq(cmos->irq)) {
826 free_irq(cmos->irq, cmos->rtc);
827 hpet_unregister_irq_handler(cmos_interrupt);
828 }
829
830 rtc_device_unregister(cmos->rtc);
831 cmos->rtc = NULL;
832
833 ports = cmos->iomem;
834 release_region(ports->start, resource_size(ports));
835 cmos->iomem = NULL;
836
837 cmos->dev = NULL;
838}
839
840#ifdef CONFIG_PM_SLEEP
841
842static int cmos_suspend(struct device *dev)
843{
844 struct cmos_rtc *cmos = dev_get_drvdata(dev);
845 unsigned char tmp;
846
847 /* only the alarm might be a wakeup event source */
848 spin_lock_irq(&rtc_lock);
849 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
850 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
851 unsigned char mask;
852
853 if (device_may_wakeup(dev))
854 mask = RTC_IRQMASK & ~RTC_AIE;
855 else
856 mask = RTC_IRQMASK;
857 tmp &= ~mask;
858 CMOS_WRITE(tmp, RTC_CONTROL);
859 hpet_mask_rtc_irq_bit(mask);
860
861 cmos_checkintr(cmos, tmp);
862 }
863 spin_unlock_irq(&rtc_lock);
864
865 if (tmp & RTC_AIE) {
866 cmos->enabled_wake = 1;
867 if (cmos->wake_on)
868 cmos->wake_on(dev);
869 else
870 enable_irq_wake(cmos->irq);
871 }
872
873 dev_dbg(dev, "suspend%s, ctrl %02x\n",
874 (tmp & RTC_AIE) ? ", alarm may wake" : "",
875 tmp);
876
877 return 0;
878}
879
880/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
881 * after a detour through G3 "mechanical off", although the ACPI spec
882 * says wakeup should only work from G1/S4 "hibernate". To most users,
883 * distinctions between S4 and S5 are pointless. So when the hardware
884 * allows, don't draw that distinction.
885 */
886static inline int cmos_poweroff(struct device *dev)
887{
888 return cmos_suspend(dev);
889}
890
891static int cmos_resume(struct device *dev)
892{
893 struct cmos_rtc *cmos = dev_get_drvdata(dev);
894 unsigned char tmp;
895
896 if (cmos->enabled_wake) {
897 if (cmos->wake_off)
898 cmos->wake_off(dev);
899 else
900 disable_irq_wake(cmos->irq);
901 cmos->enabled_wake = 0;
902 }
903
904 spin_lock_irq(&rtc_lock);
905 tmp = cmos->suspend_ctrl;
906 cmos->suspend_ctrl = 0;
907 /* re-enable any irqs previously active */
908 if (tmp & RTC_IRQMASK) {
909 unsigned char mask;
910
911 if (device_may_wakeup(dev))
912 hpet_rtc_timer_init();
913
914 do {
915 CMOS_WRITE(tmp, RTC_CONTROL);
916 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
917
918 mask = CMOS_READ(RTC_INTR_FLAGS);
919 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
920 if (!is_hpet_enabled() || !is_intr(mask))
921 break;
922
923 /* force one-shot behavior if HPET blocked
924 * the wake alarm's irq
925 */
926 rtc_update_irq(cmos->rtc, 1, mask);
927 tmp &= ~RTC_AIE;
928 hpet_mask_rtc_irq_bit(RTC_AIE);
929 } while (mask & RTC_AIE);
930 }
931 spin_unlock_irq(&rtc_lock);
932
933 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
934
935 return 0;
936}
937
938#else
939
940static inline int cmos_poweroff(struct device *dev)
941{
942 return -ENOSYS;
943}
944
945#endif
946
947static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
948
949/*----------------------------------------------------------------*/
950
951/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
952 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
953 * probably list them in similar PNPBIOS tables; so PNP is more common.
954 *
955 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
956 * predate even PNPBIOS should set up platform_bus devices.
957 */
958
959#ifdef CONFIG_ACPI
960
961#include <linux/acpi.h>
962
963static u32 rtc_handler(void *context)
964{
965 struct device *dev = context;
966
967 pm_wakeup_event(dev, 0);
968 acpi_clear_event(ACPI_EVENT_RTC);
969 acpi_disable_event(ACPI_EVENT_RTC, 0);
970 return ACPI_INTERRUPT_HANDLED;
971}
972
973static inline void rtc_wake_setup(struct device *dev)
974{
975 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
976 /*
977 * After the RTC handler is installed, the Fixed_RTC event should
978 * be disabled. Only when the RTC alarm is set will it be enabled.
979 */
980 acpi_clear_event(ACPI_EVENT_RTC);
981 acpi_disable_event(ACPI_EVENT_RTC, 0);
982}
983
984static void rtc_wake_on(struct device *dev)
985{
986 acpi_clear_event(ACPI_EVENT_RTC);
987 acpi_enable_event(ACPI_EVENT_RTC, 0);
988}
989
990static void rtc_wake_off(struct device *dev)
991{
992 acpi_disable_event(ACPI_EVENT_RTC, 0);
993}
994
995/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
996 * its device node and pass extra config data. This helps its driver use
997 * capabilities that the now-obsolete mc146818 didn't have, and informs it
998 * that this board's RTC is wakeup-capable (per ACPI spec).
999 */
1000static struct cmos_rtc_board_info acpi_rtc_info;
1001
1002static void cmos_wake_setup(struct device *dev)
1003{
1004 if (acpi_disabled)
1005 return;
1006
1007 rtc_wake_setup(dev);
1008 acpi_rtc_info.wake_on = rtc_wake_on;
1009 acpi_rtc_info.wake_off = rtc_wake_off;
1010
1011 /* workaround bug in some ACPI tables */
1012 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1013 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1014 acpi_gbl_FADT.month_alarm);
1015 acpi_gbl_FADT.month_alarm = 0;
1016 }
1017
1018 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1019 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1020 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1021
1022 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1023 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1024 dev_info(dev, "RTC can wake from S4\n");
1025
1026 dev->platform_data = &acpi_rtc_info;
1027
1028 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1029 device_init_wakeup(dev, 1);
1030}
1031
1032#else
1033
1034static void cmos_wake_setup(struct device *dev)
1035{
1036}
1037
1038#endif
1039
1040#ifdef CONFIG_PNP
1041
1042#include <linux/pnp.h>
1043
1044static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1045{
1046 cmos_wake_setup(&pnp->dev);
1047
1048 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1049 /* Some machines contain a PNP entry for the RTC, but
1050 * don't define the IRQ. It should always be safe to
1051 * hardcode it in these cases
1052 */
1053 return cmos_do_probe(&pnp->dev,
1054 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1055 else
1056 return cmos_do_probe(&pnp->dev,
1057 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1058 pnp_irq(pnp, 0));
1059}
1060
1061static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1062{
1063 cmos_do_remove(&pnp->dev);
1064}
1065
1066static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1067{
1068 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1069 return;
1070
1071 cmos_do_shutdown();
1072}
1073
1074static const struct pnp_device_id rtc_ids[] = {
1075 { .id = "PNP0b00", },
1076 { .id = "PNP0b01", },
1077 { .id = "PNP0b02", },
1078 { },
1079};
1080MODULE_DEVICE_TABLE(pnp, rtc_ids);
1081
1082static struct pnp_driver cmos_pnp_driver = {
1083 .name = (char *) driver_name,
1084 .id_table = rtc_ids,
1085 .probe = cmos_pnp_probe,
1086 .remove = __exit_p(cmos_pnp_remove),
1087 .shutdown = cmos_pnp_shutdown,
1088
1089 /* flag ensures resume() gets called, and stops syslog spam */
1090 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1091 .driver = {
1092 .pm = &cmos_pm_ops,
1093 },
1094};
1095
1096#endif /* CONFIG_PNP */
1097
1098#ifdef CONFIG_OF
1099static const struct of_device_id of_cmos_match[] = {
1100 {
1101 .compatible = "motorola,mc146818",
1102 },
1103 { },
1104};
1105MODULE_DEVICE_TABLE(of, of_cmos_match);
1106
1107static __init void cmos_of_init(struct platform_device *pdev)
1108{
1109 struct device_node *node = pdev->dev.of_node;
1110 struct rtc_time time;
1111 int ret;
1112 const __be32 *val;
1113
1114 if (!node)
1115 return;
1116
1117 val = of_get_property(node, "ctrl-reg", NULL);
1118 if (val)
1119 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1120
1121 val = of_get_property(node, "freq-reg", NULL);
1122 if (val)
1123 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1124
1125 get_rtc_time(&time);
1126 ret = rtc_valid_tm(&time);
1127 if (ret) {
1128 struct rtc_time def_time = {
1129 .tm_year = 1,
1130 .tm_mday = 1,
1131 };
1132 set_rtc_time(&def_time);
1133 }
1134}
1135#else
1136static inline void cmos_of_init(struct platform_device *pdev) {}
1137#endif
1138/*----------------------------------------------------------------*/
1139
1140/* Platform setup should have set up an RTC device, when PNP is
1141 * unavailable ... this could happen even on (older) PCs.
1142 */
1143
1144static int __init cmos_platform_probe(struct platform_device *pdev)
1145{
1146 cmos_of_init(pdev);
1147 cmos_wake_setup(&pdev->dev);
1148 return cmos_do_probe(&pdev->dev,
1149 platform_get_resource(pdev, IORESOURCE_IO, 0),
1150 platform_get_irq(pdev, 0));
1151}
1152
1153static int __exit cmos_platform_remove(struct platform_device *pdev)
1154{
1155 cmos_do_remove(&pdev->dev);
1156 return 0;
1157}
1158
1159static void cmos_platform_shutdown(struct platform_device *pdev)
1160{
1161 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1162 return;
1163
1164 cmos_do_shutdown();
1165}
1166
1167/* work with hotplug and coldplug */
1168MODULE_ALIAS("platform:rtc_cmos");
1169
1170static struct platform_driver cmos_platform_driver = {
1171 .remove = __exit_p(cmos_platform_remove),
1172 .shutdown = cmos_platform_shutdown,
1173 .driver = {
1174 .name = driver_name,
1175#ifdef CONFIG_PM
1176 .pm = &cmos_pm_ops,
1177#endif
1178 .of_match_table = of_match_ptr(of_cmos_match),
1179 }
1180};
1181
1182#ifdef CONFIG_PNP
1183static bool pnp_driver_registered;
1184#endif
1185static bool platform_driver_registered;
1186
1187static int __init cmos_init(void)
1188{
1189 int retval = 0;
1190
1191#ifdef CONFIG_PNP
1192 retval = pnp_register_driver(&cmos_pnp_driver);
1193 if (retval == 0)
1194 pnp_driver_registered = true;
1195#endif
1196
1197 if (!cmos_rtc.dev) {
1198 retval = platform_driver_probe(&cmos_platform_driver,
1199 cmos_platform_probe);
1200 if (retval == 0)
1201 platform_driver_registered = true;
1202 }
1203
1204 dmi_check_system(rtc_quirks);
1205
1206 if (retval == 0)
1207 return 0;
1208
1209#ifdef CONFIG_PNP
1210 if (pnp_driver_registered)
1211 pnp_unregister_driver(&cmos_pnp_driver);
1212#endif
1213 return retval;
1214}
1215module_init(cmos_init);
1216
1217static void __exit cmos_exit(void)
1218{
1219#ifdef CONFIG_PNP
1220 if (pnp_driver_registered)
1221 pnp_unregister_driver(&cmos_pnp_driver);
1222#endif
1223 if (platform_driver_registered)
1224 platform_driver_unregister(&cmos_platform_driver);
1225}
1226module_exit(cmos_exit);
1227
1228
1229MODULE_AUTHOR("David Brownell");
1230MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1231MODULE_LICENSE("GPL");
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44#ifdef CONFIG_X86
45#include <asm/i8259.h>
46#endif
47
48/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49#include <linux/mc146818rtc.h>
50
51struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
56 time64_t alarm_expires;
57
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
60
61 u8 enabled_wake;
62 u8 suspend_ctrl;
63
64 /* newer hardware extends the original register set */
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
68
69 struct rtc_wkalrm saved_wkalrm;
70};
71
72/* both platform and pnp busses use negative numbers for invalid irqs */
73#define is_valid_irq(n) ((n) > 0)
74
75static const char driver_name[] = "rtc_cmos";
76
77/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80 */
81#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
82
83static inline int is_intr(u8 rtc_intr)
84{
85 if (!(rtc_intr & RTC_IRQF))
86 return 0;
87 return rtc_intr & RTC_IRQMASK;
88}
89
90/*----------------------------------------------------------------*/
91
92/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94 * used in a broken "legacy replacement" mode. The breakage includes
95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96 * other (better) use.
97 *
98 * When that broken mode is in use, platform glue provides a partial
99 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
100 * want to use HPET for anything except those IRQs though...
101 */
102#ifdef CONFIG_HPET_EMULATE_RTC
103#include <asm/hpet.h>
104#else
105
106static inline int is_hpet_enabled(void)
107{
108 return 0;
109}
110
111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112{
113 return 0;
114}
115
116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117{
118 return 0;
119}
120
121static inline int
122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123{
124 return 0;
125}
126
127static inline int hpet_set_periodic_freq(unsigned long freq)
128{
129 return 0;
130}
131
132static inline int hpet_rtc_dropped_irq(void)
133{
134 return 0;
135}
136
137static inline int hpet_rtc_timer_init(void)
138{
139 return 0;
140}
141
142extern irq_handler_t hpet_rtc_interrupt;
143
144static inline int hpet_register_irq_handler(irq_handler_t handler)
145{
146 return 0;
147}
148
149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150{
151 return 0;
152}
153
154#endif
155
156/*----------------------------------------------------------------*/
157
158#ifdef RTC_PORT
159
160/* Most newer x86 systems have two register banks, the first used
161 * for RTC and NVRAM and the second only for NVRAM. Caller must
162 * own rtc_lock ... and we won't worry about access during NMI.
163 */
164#define can_bank2 true
165
166static inline unsigned char cmos_read_bank2(unsigned char addr)
167{
168 outb(addr, RTC_PORT(2));
169 return inb(RTC_PORT(3));
170}
171
172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173{
174 outb(addr, RTC_PORT(2));
175 outb(val, RTC_PORT(3));
176}
177
178#else
179
180#define can_bank2 false
181
182static inline unsigned char cmos_read_bank2(unsigned char addr)
183{
184 return 0;
185}
186
187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188{
189}
190
191#endif
192
193/*----------------------------------------------------------------*/
194
195static int cmos_read_time(struct device *dev, struct rtc_time *t)
196{
197 /*
198 * If pm_trace abused the RTC for storage, set the timespec to 0,
199 * which tells the caller that this RTC value is unusable.
200 */
201 if (!pm_trace_rtc_valid())
202 return -EIO;
203
204 /* REVISIT: if the clock has a "century" register, use
205 * that instead of the heuristic in mc146818_get_time().
206 * That'll make Y3K compatility (year > 2070) easy!
207 */
208 mc146818_get_time(t);
209 return 0;
210}
211
212static int cmos_set_time(struct device *dev, struct rtc_time *t)
213{
214 /* REVISIT: set the "century" register if available
215 *
216 * NOTE: this ignores the issue whereby updating the seconds
217 * takes effect exactly 500ms after we write the register.
218 * (Also queueing and other delays before we get this far.)
219 */
220 return mc146818_set_time(t);
221}
222
223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224{
225 struct cmos_rtc *cmos = dev_get_drvdata(dev);
226 unsigned char rtc_control;
227
228 if (!is_valid_irq(cmos->irq))
229 return -EIO;
230
231 /* Basic alarms only support hour, minute, and seconds fields.
232 * Some also support day and month, for alarms up to a year in
233 * the future.
234 */
235
236 spin_lock_irq(&rtc_lock);
237 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240
241 if (cmos->day_alrm) {
242 /* ignore upper bits on readback per ACPI spec */
243 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
244 if (!t->time.tm_mday)
245 t->time.tm_mday = -1;
246
247 if (cmos->mon_alrm) {
248 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249 if (!t->time.tm_mon)
250 t->time.tm_mon = -1;
251 }
252 }
253
254 rtc_control = CMOS_READ(RTC_CONTROL);
255 spin_unlock_irq(&rtc_lock);
256
257 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258 if (((unsigned)t->time.tm_sec) < 0x60)
259 t->time.tm_sec = bcd2bin(t->time.tm_sec);
260 else
261 t->time.tm_sec = -1;
262 if (((unsigned)t->time.tm_min) < 0x60)
263 t->time.tm_min = bcd2bin(t->time.tm_min);
264 else
265 t->time.tm_min = -1;
266 if (((unsigned)t->time.tm_hour) < 0x24)
267 t->time.tm_hour = bcd2bin(t->time.tm_hour);
268 else
269 t->time.tm_hour = -1;
270
271 if (cmos->day_alrm) {
272 if (((unsigned)t->time.tm_mday) <= 0x31)
273 t->time.tm_mday = bcd2bin(t->time.tm_mday);
274 else
275 t->time.tm_mday = -1;
276
277 if (cmos->mon_alrm) {
278 if (((unsigned)t->time.tm_mon) <= 0x12)
279 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280 else
281 t->time.tm_mon = -1;
282 }
283 }
284 }
285
286 t->enabled = !!(rtc_control & RTC_AIE);
287 t->pending = 0;
288
289 return 0;
290}
291
292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293{
294 unsigned char rtc_intr;
295
296 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
297 * allegedly some older rtcs need that to handle irqs properly
298 */
299 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300
301 if (is_hpet_enabled())
302 return;
303
304 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305 if (is_intr(rtc_intr))
306 rtc_update_irq(cmos->rtc, 1, rtc_intr);
307}
308
309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310{
311 unsigned char rtc_control;
312
313 /* flush any pending IRQ status, notably for update irqs,
314 * before we enable new IRQs
315 */
316 rtc_control = CMOS_READ(RTC_CONTROL);
317 cmos_checkintr(cmos, rtc_control);
318
319 rtc_control |= mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_set_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327{
328 unsigned char rtc_control;
329
330 rtc_control = CMOS_READ(RTC_CONTROL);
331 rtc_control &= ~mask;
332 CMOS_WRITE(rtc_control, RTC_CONTROL);
333 hpet_mask_rtc_irq_bit(mask);
334
335 cmos_checkintr(cmos, rtc_control);
336}
337
338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339{
340 struct cmos_rtc *cmos = dev_get_drvdata(dev);
341 struct rtc_time now;
342
343 cmos_read_time(dev, &now);
344
345 if (!cmos->day_alrm) {
346 time64_t t_max_date;
347 time64_t t_alrm;
348
349 t_max_date = rtc_tm_to_time64(&now);
350 t_max_date += 24 * 60 * 60 - 1;
351 t_alrm = rtc_tm_to_time64(&t->time);
352 if (t_alrm > t_max_date) {
353 dev_err(dev,
354 "Alarms can be up to one day in the future\n");
355 return -EINVAL;
356 }
357 } else if (!cmos->mon_alrm) {
358 struct rtc_time max_date = now;
359 time64_t t_max_date;
360 time64_t t_alrm;
361 int max_mday;
362
363 if (max_date.tm_mon == 11) {
364 max_date.tm_mon = 0;
365 max_date.tm_year += 1;
366 } else {
367 max_date.tm_mon += 1;
368 }
369 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370 if (max_date.tm_mday > max_mday)
371 max_date.tm_mday = max_mday;
372
373 t_max_date = rtc_tm_to_time64(&max_date);
374 t_max_date -= 1;
375 t_alrm = rtc_tm_to_time64(&t->time);
376 if (t_alrm > t_max_date) {
377 dev_err(dev,
378 "Alarms can be up to one month in the future\n");
379 return -EINVAL;
380 }
381 } else {
382 struct rtc_time max_date = now;
383 time64_t t_max_date;
384 time64_t t_alrm;
385 int max_mday;
386
387 max_date.tm_year += 1;
388 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389 if (max_date.tm_mday > max_mday)
390 max_date.tm_mday = max_mday;
391
392 t_max_date = rtc_tm_to_time64(&max_date);
393 t_max_date -= 1;
394 t_alrm = rtc_tm_to_time64(&t->time);
395 if (t_alrm > t_max_date) {
396 dev_err(dev,
397 "Alarms can be up to one year in the future\n");
398 return -EINVAL;
399 }
400 }
401
402 return 0;
403}
404
405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406{
407 struct cmos_rtc *cmos = dev_get_drvdata(dev);
408 unsigned char mon, mday, hrs, min, sec, rtc_control;
409 int ret;
410
411 if (!is_valid_irq(cmos->irq))
412 return -EIO;
413
414 ret = cmos_validate_alarm(dev, t);
415 if (ret < 0)
416 return ret;
417
418 mon = t->time.tm_mon + 1;
419 mday = t->time.tm_mday;
420 hrs = t->time.tm_hour;
421 min = t->time.tm_min;
422 sec = t->time.tm_sec;
423
424 rtc_control = CMOS_READ(RTC_CONTROL);
425 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
426 /* Writing 0xff means "don't care" or "match all". */
427 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
428 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
429 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
430 min = (min < 60) ? bin2bcd(min) : 0xff;
431 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
432 }
433
434 spin_lock_irq(&rtc_lock);
435
436 /* next rtc irq must not be from previous alarm setting */
437 cmos_irq_disable(cmos, RTC_AIE);
438
439 /* update alarm */
440 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
441 CMOS_WRITE(min, RTC_MINUTES_ALARM);
442 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
443
444 /* the system may support an "enhanced" alarm */
445 if (cmos->day_alrm) {
446 CMOS_WRITE(mday, cmos->day_alrm);
447 if (cmos->mon_alrm)
448 CMOS_WRITE(mon, cmos->mon_alrm);
449 }
450
451 /* FIXME the HPET alarm glue currently ignores day_alrm
452 * and mon_alrm ...
453 */
454 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
455
456 if (t->enabled)
457 cmos_irq_enable(cmos, RTC_AIE);
458
459 spin_unlock_irq(&rtc_lock);
460
461 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
462
463 return 0;
464}
465
466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
467{
468 struct cmos_rtc *cmos = dev_get_drvdata(dev);
469 unsigned long flags;
470
471 if (!is_valid_irq(cmos->irq))
472 return -EINVAL;
473
474 spin_lock_irqsave(&rtc_lock, flags);
475
476 if (enabled)
477 cmos_irq_enable(cmos, RTC_AIE);
478 else
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 spin_unlock_irqrestore(&rtc_lock, flags);
482 return 0;
483}
484
485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
486
487static int cmos_procfs(struct device *dev, struct seq_file *seq)
488{
489 struct cmos_rtc *cmos = dev_get_drvdata(dev);
490 unsigned char rtc_control, valid;
491
492 spin_lock_irq(&rtc_lock);
493 rtc_control = CMOS_READ(RTC_CONTROL);
494 valid = CMOS_READ(RTC_VALID);
495 spin_unlock_irq(&rtc_lock);
496
497 /* NOTE: at least ICH6 reports battery status using a different
498 * (non-RTC) bit; and SQWE is ignored on many current systems.
499 */
500 seq_printf(seq,
501 "periodic_IRQ\t: %s\n"
502 "update_IRQ\t: %s\n"
503 "HPET_emulated\t: %s\n"
504 // "square_wave\t: %s\n"
505 "BCD\t\t: %s\n"
506 "DST_enable\t: %s\n"
507 "periodic_freq\t: %d\n"
508 "batt_status\t: %s\n",
509 (rtc_control & RTC_PIE) ? "yes" : "no",
510 (rtc_control & RTC_UIE) ? "yes" : "no",
511 is_hpet_enabled() ? "yes" : "no",
512 // (rtc_control & RTC_SQWE) ? "yes" : "no",
513 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
514 (rtc_control & RTC_DST_EN) ? "yes" : "no",
515 cmos->rtc->irq_freq,
516 (valid & RTC_VRT) ? "okay" : "dead");
517
518 return 0;
519}
520
521#else
522#define cmos_procfs NULL
523#endif
524
525static const struct rtc_class_ops cmos_rtc_ops = {
526 .read_time = cmos_read_time,
527 .set_time = cmos_set_time,
528 .read_alarm = cmos_read_alarm,
529 .set_alarm = cmos_set_alarm,
530 .proc = cmos_procfs,
531 .alarm_irq_enable = cmos_alarm_irq_enable,
532};
533
534/*----------------------------------------------------------------*/
535
536/*
537 * All these chips have at least 64 bytes of address space, shared by
538 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
539 * by boot firmware. Modern chips have 128 or 256 bytes.
540 */
541
542#define NVRAM_OFFSET (RTC_REG_D + 1)
543
544static int cmos_nvram_read(void *priv, unsigned int off, void *val,
545 size_t count)
546{
547 unsigned char *buf = val;
548 int retval;
549
550 off += NVRAM_OFFSET;
551 spin_lock_irq(&rtc_lock);
552 for (retval = 0; count; count--, off++, retval++) {
553 if (off < 128)
554 *buf++ = CMOS_READ(off);
555 else if (can_bank2)
556 *buf++ = cmos_read_bank2(off);
557 else
558 break;
559 }
560 spin_unlock_irq(&rtc_lock);
561
562 return retval;
563}
564
565static int cmos_nvram_write(void *priv, unsigned int off, void *val,
566 size_t count)
567{
568 struct cmos_rtc *cmos = priv;
569 unsigned char *buf = val;
570 int retval;
571
572 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
573 * checksum on part of the NVRAM data. That's currently ignored
574 * here. If userspace is smart enough to know what fields of
575 * NVRAM to update, updating checksums is also part of its job.
576 */
577 off += NVRAM_OFFSET;
578 spin_lock_irq(&rtc_lock);
579 for (retval = 0; count; count--, off++, retval++) {
580 /* don't trash RTC registers */
581 if (off == cmos->day_alrm
582 || off == cmos->mon_alrm
583 || off == cmos->century)
584 buf++;
585 else if (off < 128)
586 CMOS_WRITE(*buf++, off);
587 else if (can_bank2)
588 cmos_write_bank2(*buf++, off);
589 else
590 break;
591 }
592 spin_unlock_irq(&rtc_lock);
593
594 return retval;
595}
596
597/*----------------------------------------------------------------*/
598
599static struct cmos_rtc cmos_rtc;
600
601static irqreturn_t cmos_interrupt(int irq, void *p)
602{
603 u8 irqstat;
604 u8 rtc_control;
605
606 spin_lock(&rtc_lock);
607
608 /* When the HPET interrupt handler calls us, the interrupt
609 * status is passed as arg1 instead of the irq number. But
610 * always clear irq status, even when HPET is in the way.
611 *
612 * Note that HPET and RTC are almost certainly out of phase,
613 * giving different IRQ status ...
614 */
615 irqstat = CMOS_READ(RTC_INTR_FLAGS);
616 rtc_control = CMOS_READ(RTC_CONTROL);
617 if (is_hpet_enabled())
618 irqstat = (unsigned long)irq & 0xF0;
619
620 /* If we were suspended, RTC_CONTROL may not be accurate since the
621 * bios may have cleared it.
622 */
623 if (!cmos_rtc.suspend_ctrl)
624 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
625 else
626 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
627
628 /* All Linux RTC alarms should be treated as if they were oneshot.
629 * Similar code may be needed in system wakeup paths, in case the
630 * alarm woke the system.
631 */
632 if (irqstat & RTC_AIE) {
633 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
634 rtc_control &= ~RTC_AIE;
635 CMOS_WRITE(rtc_control, RTC_CONTROL);
636 hpet_mask_rtc_irq_bit(RTC_AIE);
637 CMOS_READ(RTC_INTR_FLAGS);
638 }
639 spin_unlock(&rtc_lock);
640
641 if (is_intr(irqstat)) {
642 rtc_update_irq(p, 1, irqstat);
643 return IRQ_HANDLED;
644 } else
645 return IRQ_NONE;
646}
647
648#ifdef CONFIG_PNP
649#define INITSECTION
650
651#else
652#define INITSECTION __init
653#endif
654
655static int INITSECTION
656cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
657{
658 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
659 int retval = 0;
660 unsigned char rtc_control;
661 unsigned address_space;
662 u32 flags = 0;
663 struct nvmem_config nvmem_cfg = {
664 .name = "cmos_nvram",
665 .word_size = 1,
666 .stride = 1,
667 .reg_read = cmos_nvram_read,
668 .reg_write = cmos_nvram_write,
669 .priv = &cmos_rtc,
670 };
671
672 /* there can be only one ... */
673 if (cmos_rtc.dev)
674 return -EBUSY;
675
676 if (!ports)
677 return -ENODEV;
678
679 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
680 *
681 * REVISIT non-x86 systems may instead use memory space resources
682 * (needing ioremap etc), not i/o space resources like this ...
683 */
684 if (RTC_IOMAPPED)
685 ports = request_region(ports->start, resource_size(ports),
686 driver_name);
687 else
688 ports = request_mem_region(ports->start, resource_size(ports),
689 driver_name);
690 if (!ports) {
691 dev_dbg(dev, "i/o registers already in use\n");
692 return -EBUSY;
693 }
694
695 cmos_rtc.irq = rtc_irq;
696 cmos_rtc.iomem = ports;
697
698 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
699 * driver did, but don't reject unknown configs. Old hardware
700 * won't address 128 bytes. Newer chips have multiple banks,
701 * though they may not be listed in one I/O resource.
702 */
703#if defined(CONFIG_ATARI)
704 address_space = 64;
705#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
706 || defined(__sparc__) || defined(__mips__) \
707 || defined(__powerpc__)
708 address_space = 128;
709#else
710#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
711 address_space = 128;
712#endif
713 if (can_bank2 && ports->end > (ports->start + 1))
714 address_space = 256;
715
716 /* For ACPI systems extension info comes from the FADT. On others,
717 * board specific setup provides it as appropriate. Systems where
718 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
719 * some almost-clones) can provide hooks to make that behave.
720 *
721 * Note that ACPI doesn't preclude putting these registers into
722 * "extended" areas of the chip, including some that we won't yet
723 * expect CMOS_READ and friends to handle.
724 */
725 if (info) {
726 if (info->flags)
727 flags = info->flags;
728 if (info->address_space)
729 address_space = info->address_space;
730
731 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
732 cmos_rtc.day_alrm = info->rtc_day_alarm;
733 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
734 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
735 if (info->rtc_century && info->rtc_century < 128)
736 cmos_rtc.century = info->rtc_century;
737
738 if (info->wake_on && info->wake_off) {
739 cmos_rtc.wake_on = info->wake_on;
740 cmos_rtc.wake_off = info->wake_off;
741 }
742 }
743
744 cmos_rtc.dev = dev;
745 dev_set_drvdata(dev, &cmos_rtc);
746
747 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
748 if (IS_ERR(cmos_rtc.rtc)) {
749 retval = PTR_ERR(cmos_rtc.rtc);
750 goto cleanup0;
751 }
752
753 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
754
755 spin_lock_irq(&rtc_lock);
756
757 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
758 /* force periodic irq to CMOS reset default of 1024Hz;
759 *
760 * REVISIT it's been reported that at least one x86_64 ALI
761 * mobo doesn't use 32KHz here ... for portability we might
762 * need to do something about other clock frequencies.
763 */
764 cmos_rtc.rtc->irq_freq = 1024;
765 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
766 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
767 }
768
769 /* disable irqs */
770 if (is_valid_irq(rtc_irq))
771 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
772
773 rtc_control = CMOS_READ(RTC_CONTROL);
774
775 spin_unlock_irq(&rtc_lock);
776
777 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
778 dev_warn(dev, "only 24-hr supported\n");
779 retval = -ENXIO;
780 goto cleanup1;
781 }
782
783 hpet_rtc_timer_init();
784
785 if (is_valid_irq(rtc_irq)) {
786 irq_handler_t rtc_cmos_int_handler;
787
788 if (is_hpet_enabled()) {
789 rtc_cmos_int_handler = hpet_rtc_interrupt;
790 retval = hpet_register_irq_handler(cmos_interrupt);
791 if (retval) {
792 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
793 dev_warn(dev, "hpet_register_irq_handler "
794 " failed in rtc_init().");
795 goto cleanup1;
796 }
797 } else
798 rtc_cmos_int_handler = cmos_interrupt;
799
800 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
801 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
802 cmos_rtc.rtc);
803 if (retval < 0) {
804 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
805 goto cleanup1;
806 }
807 }
808
809 cmos_rtc.rtc->ops = &cmos_rtc_ops;
810 cmos_rtc.rtc->nvram_old_abi = true;
811 retval = rtc_register_device(cmos_rtc.rtc);
812 if (retval)
813 goto cleanup2;
814
815 /* export at least the first block of NVRAM */
816 nvmem_cfg.size = address_space - NVRAM_OFFSET;
817 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
818 dev_err(dev, "nvmem registration failed\n");
819
820 dev_info(dev, "%s%s, %d bytes nvram%s\n",
821 !is_valid_irq(rtc_irq) ? "no alarms" :
822 cmos_rtc.mon_alrm ? "alarms up to one year" :
823 cmos_rtc.day_alrm ? "alarms up to one month" :
824 "alarms up to one day",
825 cmos_rtc.century ? ", y3k" : "",
826 nvmem_cfg.size,
827 is_hpet_enabled() ? ", hpet irqs" : "");
828
829 return 0;
830
831cleanup2:
832 if (is_valid_irq(rtc_irq))
833 free_irq(rtc_irq, cmos_rtc.rtc);
834cleanup1:
835 cmos_rtc.dev = NULL;
836cleanup0:
837 if (RTC_IOMAPPED)
838 release_region(ports->start, resource_size(ports));
839 else
840 release_mem_region(ports->start, resource_size(ports));
841 return retval;
842}
843
844static void cmos_do_shutdown(int rtc_irq)
845{
846 spin_lock_irq(&rtc_lock);
847 if (is_valid_irq(rtc_irq))
848 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
849 spin_unlock_irq(&rtc_lock);
850}
851
852static void cmos_do_remove(struct device *dev)
853{
854 struct cmos_rtc *cmos = dev_get_drvdata(dev);
855 struct resource *ports;
856
857 cmos_do_shutdown(cmos->irq);
858
859 if (is_valid_irq(cmos->irq)) {
860 free_irq(cmos->irq, cmos->rtc);
861 hpet_unregister_irq_handler(cmos_interrupt);
862 }
863
864 cmos->rtc = NULL;
865
866 ports = cmos->iomem;
867 if (RTC_IOMAPPED)
868 release_region(ports->start, resource_size(ports));
869 else
870 release_mem_region(ports->start, resource_size(ports));
871 cmos->iomem = NULL;
872
873 cmos->dev = NULL;
874}
875
876static int cmos_aie_poweroff(struct device *dev)
877{
878 struct cmos_rtc *cmos = dev_get_drvdata(dev);
879 struct rtc_time now;
880 time64_t t_now;
881 int retval = 0;
882 unsigned char rtc_control;
883
884 if (!cmos->alarm_expires)
885 return -EINVAL;
886
887 spin_lock_irq(&rtc_lock);
888 rtc_control = CMOS_READ(RTC_CONTROL);
889 spin_unlock_irq(&rtc_lock);
890
891 /* We only care about the situation where AIE is disabled. */
892 if (rtc_control & RTC_AIE)
893 return -EBUSY;
894
895 cmos_read_time(dev, &now);
896 t_now = rtc_tm_to_time64(&now);
897
898 /*
899 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
900 * automatically right after shutdown on some buggy boxes.
901 * This automatic rebooting issue won't happen when the alarm
902 * time is larger than now+1 seconds.
903 *
904 * If the alarm time is equal to now+1 seconds, the issue can be
905 * prevented by cancelling the alarm.
906 */
907 if (cmos->alarm_expires == t_now + 1) {
908 struct rtc_wkalrm alarm;
909
910 /* Cancel the AIE timer by configuring the past time. */
911 rtc_time64_to_tm(t_now - 1, &alarm.time);
912 alarm.enabled = 0;
913 retval = cmos_set_alarm(dev, &alarm);
914 } else if (cmos->alarm_expires > t_now + 1) {
915 retval = -EBUSY;
916 }
917
918 return retval;
919}
920
921static int cmos_suspend(struct device *dev)
922{
923 struct cmos_rtc *cmos = dev_get_drvdata(dev);
924 unsigned char tmp;
925
926 /* only the alarm might be a wakeup event source */
927 spin_lock_irq(&rtc_lock);
928 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
929 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
930 unsigned char mask;
931
932 if (device_may_wakeup(dev))
933 mask = RTC_IRQMASK & ~RTC_AIE;
934 else
935 mask = RTC_IRQMASK;
936 tmp &= ~mask;
937 CMOS_WRITE(tmp, RTC_CONTROL);
938 hpet_mask_rtc_irq_bit(mask);
939
940 cmos_checkintr(cmos, tmp);
941 }
942 spin_unlock_irq(&rtc_lock);
943
944 if (tmp & RTC_AIE) {
945 cmos->enabled_wake = 1;
946 if (cmos->wake_on)
947 cmos->wake_on(dev);
948 else
949 enable_irq_wake(cmos->irq);
950 }
951
952 cmos_read_alarm(dev, &cmos->saved_wkalrm);
953
954 dev_dbg(dev, "suspend%s, ctrl %02x\n",
955 (tmp & RTC_AIE) ? ", alarm may wake" : "",
956 tmp);
957
958 return 0;
959}
960
961/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
962 * after a detour through G3 "mechanical off", although the ACPI spec
963 * says wakeup should only work from G1/S4 "hibernate". To most users,
964 * distinctions between S4 and S5 are pointless. So when the hardware
965 * allows, don't draw that distinction.
966 */
967static inline int cmos_poweroff(struct device *dev)
968{
969 if (!IS_ENABLED(CONFIG_PM))
970 return -ENOSYS;
971
972 return cmos_suspend(dev);
973}
974
975static void cmos_check_wkalrm(struct device *dev)
976{
977 struct cmos_rtc *cmos = dev_get_drvdata(dev);
978 struct rtc_wkalrm current_alarm;
979 time64_t t_current_expires;
980 time64_t t_saved_expires;
981
982 cmos_read_alarm(dev, ¤t_alarm);
983 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
984 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
985 if (t_current_expires != t_saved_expires ||
986 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
987 cmos_set_alarm(dev, &cmos->saved_wkalrm);
988 }
989}
990
991static void cmos_check_acpi_rtc_status(struct device *dev,
992 unsigned char *rtc_control);
993
994static int __maybe_unused cmos_resume(struct device *dev)
995{
996 struct cmos_rtc *cmos = dev_get_drvdata(dev);
997 unsigned char tmp;
998
999 if (cmos->enabled_wake) {
1000 if (cmos->wake_off)
1001 cmos->wake_off(dev);
1002 else
1003 disable_irq_wake(cmos->irq);
1004 cmos->enabled_wake = 0;
1005 }
1006
1007 /* The BIOS might have changed the alarm, restore it */
1008 cmos_check_wkalrm(dev);
1009
1010 spin_lock_irq(&rtc_lock);
1011 tmp = cmos->suspend_ctrl;
1012 cmos->suspend_ctrl = 0;
1013 /* re-enable any irqs previously active */
1014 if (tmp & RTC_IRQMASK) {
1015 unsigned char mask;
1016
1017 if (device_may_wakeup(dev))
1018 hpet_rtc_timer_init();
1019
1020 do {
1021 CMOS_WRITE(tmp, RTC_CONTROL);
1022 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1023
1024 mask = CMOS_READ(RTC_INTR_FLAGS);
1025 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1026 if (!is_hpet_enabled() || !is_intr(mask))
1027 break;
1028
1029 /* force one-shot behavior if HPET blocked
1030 * the wake alarm's irq
1031 */
1032 rtc_update_irq(cmos->rtc, 1, mask);
1033 tmp &= ~RTC_AIE;
1034 hpet_mask_rtc_irq_bit(RTC_AIE);
1035 } while (mask & RTC_AIE);
1036
1037 if (tmp & RTC_AIE)
1038 cmos_check_acpi_rtc_status(dev, &tmp);
1039 }
1040 spin_unlock_irq(&rtc_lock);
1041
1042 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1043
1044 return 0;
1045}
1046
1047static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1048
1049/*----------------------------------------------------------------*/
1050
1051/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1052 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1053 * probably list them in similar PNPBIOS tables; so PNP is more common.
1054 *
1055 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1056 * predate even PNPBIOS should set up platform_bus devices.
1057 */
1058
1059#ifdef CONFIG_ACPI
1060
1061#include <linux/acpi.h>
1062
1063static u32 rtc_handler(void *context)
1064{
1065 struct device *dev = context;
1066 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067 unsigned char rtc_control = 0;
1068 unsigned char rtc_intr;
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&rtc_lock, flags);
1072 if (cmos_rtc.suspend_ctrl)
1073 rtc_control = CMOS_READ(RTC_CONTROL);
1074 if (rtc_control & RTC_AIE) {
1075 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1076 CMOS_WRITE(rtc_control, RTC_CONTROL);
1077 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1078 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1079 }
1080 spin_unlock_irqrestore(&rtc_lock, flags);
1081
1082 pm_wakeup_hard_event(dev);
1083 acpi_clear_event(ACPI_EVENT_RTC);
1084 acpi_disable_event(ACPI_EVENT_RTC, 0);
1085 return ACPI_INTERRUPT_HANDLED;
1086}
1087
1088static inline void rtc_wake_setup(struct device *dev)
1089{
1090 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1091 /*
1092 * After the RTC handler is installed, the Fixed_RTC event should
1093 * be disabled. Only when the RTC alarm is set will it be enabled.
1094 */
1095 acpi_clear_event(ACPI_EVENT_RTC);
1096 acpi_disable_event(ACPI_EVENT_RTC, 0);
1097}
1098
1099static void rtc_wake_on(struct device *dev)
1100{
1101 acpi_clear_event(ACPI_EVENT_RTC);
1102 acpi_enable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_off(struct device *dev)
1106{
1107 acpi_disable_event(ACPI_EVENT_RTC, 0);
1108}
1109
1110/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1111 * its device node and pass extra config data. This helps its driver use
1112 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1113 * that this board's RTC is wakeup-capable (per ACPI spec).
1114 */
1115static struct cmos_rtc_board_info acpi_rtc_info;
1116
1117static void cmos_wake_setup(struct device *dev)
1118{
1119 if (acpi_disabled)
1120 return;
1121
1122 rtc_wake_setup(dev);
1123 acpi_rtc_info.wake_on = rtc_wake_on;
1124 acpi_rtc_info.wake_off = rtc_wake_off;
1125
1126 /* workaround bug in some ACPI tables */
1127 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1128 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1129 acpi_gbl_FADT.month_alarm);
1130 acpi_gbl_FADT.month_alarm = 0;
1131 }
1132
1133 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1134 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1135 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1136
1137 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1138 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1139 dev_info(dev, "RTC can wake from S4\n");
1140
1141 dev->platform_data = &acpi_rtc_info;
1142
1143 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1144 device_init_wakeup(dev, 1);
1145}
1146
1147static void cmos_check_acpi_rtc_status(struct device *dev,
1148 unsigned char *rtc_control)
1149{
1150 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151 acpi_event_status rtc_status;
1152 acpi_status status;
1153
1154 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1155 return;
1156
1157 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1158 if (ACPI_FAILURE(status)) {
1159 dev_err(dev, "Could not get RTC status\n");
1160 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1161 unsigned char mask;
1162 *rtc_control &= ~RTC_AIE;
1163 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1164 mask = CMOS_READ(RTC_INTR_FLAGS);
1165 rtc_update_irq(cmos->rtc, 1, mask);
1166 }
1167}
1168
1169#else
1170
1171static void cmos_wake_setup(struct device *dev)
1172{
1173}
1174
1175static void cmos_check_acpi_rtc_status(struct device *dev,
1176 unsigned char *rtc_control)
1177{
1178}
1179
1180#endif
1181
1182#ifdef CONFIG_PNP
1183
1184#include <linux/pnp.h>
1185
1186static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1187{
1188 cmos_wake_setup(&pnp->dev);
1189
1190 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1191 unsigned int irq = 0;
1192#ifdef CONFIG_X86
1193 /* Some machines contain a PNP entry for the RTC, but
1194 * don't define the IRQ. It should always be safe to
1195 * hardcode it on systems with a legacy PIC.
1196 */
1197 if (nr_legacy_irqs())
1198 irq = 8;
1199#endif
1200 return cmos_do_probe(&pnp->dev,
1201 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1202 } else {
1203 return cmos_do_probe(&pnp->dev,
1204 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1205 pnp_irq(pnp, 0));
1206 }
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211 cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216 struct device *dev = &pnp->dev;
1217 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1218
1219 if (system_state == SYSTEM_POWER_OFF) {
1220 int retval = cmos_poweroff(dev);
1221
1222 if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 return;
1224 }
1225
1226 cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230 { .id = "PNP0b00", },
1231 { .id = "PNP0b01", },
1232 { .id = "PNP0b02", },
1233 { },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238 .name = (char *) driver_name,
1239 .id_table = rtc_ids,
1240 .probe = cmos_pnp_probe,
1241 .remove = cmos_pnp_remove,
1242 .shutdown = cmos_pnp_shutdown,
1243
1244 /* flag ensures resume() gets called, and stops syslog spam */
1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1246 .driver = {
1247 .pm = &cmos_pm_ops,
1248 },
1249};
1250
1251#endif /* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255 {
1256 .compatible = "motorola,mc146818",
1257 },
1258 { },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264 struct device_node *node = pdev->dev.of_node;
1265 const __be32 *val;
1266
1267 if (!node)
1268 return;
1269
1270 val = of_get_property(node, "ctrl-reg", NULL);
1271 if (val)
1272 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1273
1274 val = of_get_property(node, "freq-reg", NULL);
1275 if (val)
1276 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1277}
1278#else
1279static inline void cmos_of_init(struct platform_device *pdev) {}
1280#endif
1281/*----------------------------------------------------------------*/
1282
1283/* Platform setup should have set up an RTC device, when PNP is
1284 * unavailable ... this could happen even on (older) PCs.
1285 */
1286
1287static int __init cmos_platform_probe(struct platform_device *pdev)
1288{
1289 struct resource *resource;
1290 int irq;
1291
1292 cmos_of_init(pdev);
1293 cmos_wake_setup(&pdev->dev);
1294
1295 if (RTC_IOMAPPED)
1296 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1297 else
1298 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299 irq = platform_get_irq(pdev, 0);
1300 if (irq < 0)
1301 irq = -1;
1302
1303 return cmos_do_probe(&pdev->dev, resource, irq);
1304}
1305
1306static int cmos_platform_remove(struct platform_device *pdev)
1307{
1308 cmos_do_remove(&pdev->dev);
1309 return 0;
1310}
1311
1312static void cmos_platform_shutdown(struct platform_device *pdev)
1313{
1314 struct device *dev = &pdev->dev;
1315 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1316
1317 if (system_state == SYSTEM_POWER_OFF) {
1318 int retval = cmos_poweroff(dev);
1319
1320 if (cmos_aie_poweroff(dev) < 0 && !retval)
1321 return;
1322 }
1323
1324 cmos_do_shutdown(cmos->irq);
1325}
1326
1327/* work with hotplug and coldplug */
1328MODULE_ALIAS("platform:rtc_cmos");
1329
1330static struct platform_driver cmos_platform_driver = {
1331 .remove = cmos_platform_remove,
1332 .shutdown = cmos_platform_shutdown,
1333 .driver = {
1334 .name = driver_name,
1335 .pm = &cmos_pm_ops,
1336 .of_match_table = of_match_ptr(of_cmos_match),
1337 }
1338};
1339
1340#ifdef CONFIG_PNP
1341static bool pnp_driver_registered;
1342#endif
1343static bool platform_driver_registered;
1344
1345static int __init cmos_init(void)
1346{
1347 int retval = 0;
1348
1349#ifdef CONFIG_PNP
1350 retval = pnp_register_driver(&cmos_pnp_driver);
1351 if (retval == 0)
1352 pnp_driver_registered = true;
1353#endif
1354
1355 if (!cmos_rtc.dev) {
1356 retval = platform_driver_probe(&cmos_platform_driver,
1357 cmos_platform_probe);
1358 if (retval == 0)
1359 platform_driver_registered = true;
1360 }
1361
1362 if (retval == 0)
1363 return 0;
1364
1365#ifdef CONFIG_PNP
1366 if (pnp_driver_registered)
1367 pnp_unregister_driver(&cmos_pnp_driver);
1368#endif
1369 return retval;
1370}
1371module_init(cmos_init);
1372
1373static void __exit cmos_exit(void)
1374{
1375#ifdef CONFIG_PNP
1376 if (pnp_driver_registered)
1377 pnp_unregister_driver(&cmos_pnp_driver);
1378#endif
1379 if (platform_driver_registered)
1380 platform_driver_unregister(&cmos_platform_driver);
1381}
1382module_exit(cmos_exit);
1383
1384
1385MODULE_AUTHOR("David Brownell");
1386MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1387MODULE_LICENSE("GPL");