Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Handle incoming traffic and deliver it to the control or data planes
   4 *
   5 *
   6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 *
  12 *   * Redistributions of source code must retain the above copyright
  13 *     notice, this list of conditions and the following disclaimer.
  14 *   * Redistributions in binary form must reproduce the above copyright
  15 *     notice, this list of conditions and the following disclaimer in
  16 *     the documentation and/or other materials provided with the
  17 *     distribution.
  18 *   * Neither the name of Intel Corporation nor the names of its
  19 *     contributors may be used to endorse or promote products derived
  20 *     from this software without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33 *
  34 *
  35 * Intel Corporation <linux-wimax@intel.com>
  36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37 *  - Initial implementation
  38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  39 *  - Use skb_clone(), break up processing in chunks
  40 *  - Split transport/device specific
  41 *  - Make buffer size dynamic to exert less memory pressure
  42 *  - RX reorder support
  43 *
  44 * This handles the RX path.
  45 *
  46 * We receive an RX message from the bus-specific driver, which
  47 * contains one or more payloads that have potentially different
  48 * destinataries (data or control paths).
  49 *
  50 * So we just take that payload from the transport specific code in
  51 * the form of an skb, break it up in chunks (a cloned skb each in the
  52 * case of network packets) and pass it to netdev or to the
  53 * command/ack handler (and from there to the WiMAX stack).
  54 *
  55 * PROTOCOL FORMAT
  56 *
  57 * The format of the buffer is:
  58 *
  59 * HEADER                      (struct i2400m_msg_hdr)
  60 * PAYLOAD DESCRIPTOR 0        (struct i2400m_pld)
  61 * PAYLOAD DESCRIPTOR 1
  62 * ...
  63 * PAYLOAD DESCRIPTOR N
  64 * PAYLOAD 0                   (raw bytes)
  65 * PAYLOAD 1
  66 * ...
  67 * PAYLOAD N
  68 *
  69 * See tx.c for a deeper description on alignment requirements and
  70 * other fun facts of it.
  71 *
  72 * DATA PACKETS
  73 *
  74 * In firmwares <= v1.3, data packets have no header for RX, but they
  75 * do for TX (currently unused).
  76 *
  77 * In firmware >= 1.4, RX packets have an extended header (16
  78 * bytes). This header conveys information for management of host
  79 * reordering of packets (the device offloads storage of the packets
  80 * for reordering to the host). Read below for more information.
  81 *
  82 * The header is used as dummy space to emulate an ethernet header and
  83 * thus be able to act as an ethernet device without having to reallocate.
  84 *
  85 * DATA RX REORDERING
  86 *
  87 * Starting in firmware v1.4, the device can deliver packets for
  88 * delivery with special reordering information; this allows it to
  89 * more effectively do packet management when some frames were lost in
  90 * the radio traffic.
  91 *
  92 * Thus, for RX packets that come out of order, the device gives the
  93 * driver enough information to queue them properly and then at some
  94 * point, the signal to deliver the whole (or part) of the queued
  95 * packets to the networking stack. There are 16 such queues.
  96 *
  97 * This only happens when a packet comes in with the "need reorder"
  98 * flag set in the RX header. When such bit is set, the following
  99 * operations might be indicated:
 100 *
 101 *  - reset queue: send all queued packets to the OS
 102 *
 103 *  - queue: queue a packet
 104 *
 105 *  - update ws: update the queue's window start and deliver queued
 106 *    packets that meet the criteria
 107 *
 108 *  - queue & update ws: queue a packet, update the window start and
 109 *    deliver queued packets that meet the criteria
 110 *
 111 * (delivery criteria: the packet's [normalized] sequence number is
 112 * lower than the new [normalized] window start).
 113 *
 114 * See the i2400m_roq_*() functions for details.
 115 *
 116 * ROADMAP
 117 *
 118 * i2400m_rx
 119 *   i2400m_rx_msg_hdr_check
 120 *   i2400m_rx_pl_descr_check
 121 *   i2400m_rx_payload
 122 *     i2400m_net_rx
 123 *     i2400m_rx_edata
 124 *       i2400m_net_erx
 125 *       i2400m_roq_reset
 126 *         i2400m_net_erx
 127 *       i2400m_roq_queue
 128 *         __i2400m_roq_queue
 129 *       i2400m_roq_update_ws
 130 *         __i2400m_roq_update_ws
 131 *           i2400m_net_erx
 132 *       i2400m_roq_queue_update_ws
 133 *         __i2400m_roq_queue
 134 *         __i2400m_roq_update_ws
 135 *           i2400m_net_erx
 136 *     i2400m_rx_ctl
 137 *       i2400m_msg_size_check
 138 *       i2400m_report_hook_work    [in a workqueue]
 139 *         i2400m_report_hook
 140 *       wimax_msg_to_user
 141 *       i2400m_rx_ctl_ack
 142 *         wimax_msg_to_user_alloc
 143 *     i2400m_rx_trace
 144 *       i2400m_msg_size_check
 145 *       wimax_msg
 146 */
 147#include <linux/slab.h>
 148#include <linux/kernel.h>
 149#include <linux/if_arp.h>
 150#include <linux/netdevice.h>
 151#include <linux/workqueue.h>
 152#include <linux/export.h>
 153#include <linux/moduleparam.h>
 154#include "i2400m.h"
 155
 156
 157#define D_SUBMODULE rx
 158#include "debug-levels.h"
 159
 160static int i2400m_rx_reorder_disabled;	/* 0 (rx reorder enabled) by default */
 161module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
 162MODULE_PARM_DESC(rx_reorder_disabled,
 163		 "If true, RX reordering will be disabled.");
 164
 165struct i2400m_report_hook_args {
 166	struct sk_buff *skb_rx;
 167	const struct i2400m_l3l4_hdr *l3l4_hdr;
 168	size_t size;
 169	struct list_head list_node;
 170};
 171
 172
 173/*
 174 * Execute i2400m_report_hook in a workqueue
 175 *
 176 * Goes over the list of queued reports in i2400m->rx_reports and
 177 * processes them.
 178 *
 179 * NOTE: refcounts on i2400m are not needed because we flush the
 180 *     workqueue this runs on (i2400m->work_queue) before destroying
 181 *     i2400m.
 182 */
 183void i2400m_report_hook_work(struct work_struct *ws)
 184{
 185	struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
 186	struct device *dev = i2400m_dev(i2400m);
 187	struct i2400m_report_hook_args *args, *args_next;
 188	LIST_HEAD(list);
 189	unsigned long flags;
 190
 191	while (1) {
 192		spin_lock_irqsave(&i2400m->rx_lock, flags);
 193		list_splice_init(&i2400m->rx_reports, &list);
 194		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 195		if (list_empty(&list))
 196			break;
 197		else
 198			d_printf(1, dev, "processing queued reports\n");
 199		list_for_each_entry_safe(args, args_next, &list, list_node) {
 200			d_printf(2, dev, "processing queued report %p\n", args);
 201			i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
 202			kfree_skb(args->skb_rx);
 203			list_del(&args->list_node);
 204			kfree(args);
 205		}
 206	}
 207}
 208
 209
 210/*
 211 * Flush the list of queued reports
 212 */
 213static
 214void i2400m_report_hook_flush(struct i2400m *i2400m)
 215{
 216	struct device *dev = i2400m_dev(i2400m);
 217	struct i2400m_report_hook_args *args, *args_next;
 218	LIST_HEAD(list);
 219	unsigned long flags;
 220
 221	d_printf(1, dev, "flushing queued reports\n");
 222	spin_lock_irqsave(&i2400m->rx_lock, flags);
 223	list_splice_init(&i2400m->rx_reports, &list);
 224	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 225	list_for_each_entry_safe(args, args_next, &list, list_node) {
 226		d_printf(2, dev, "flushing queued report %p\n", args);
 227		kfree_skb(args->skb_rx);
 228		list_del(&args->list_node);
 229		kfree(args);
 230	}
 231}
 232
 233
 234/*
 235 * Queue a report for later processing
 236 *
 237 * @i2400m: device descriptor
 238 * @skb_rx: skb that contains the payload (for reference counting)
 239 * @l3l4_hdr: pointer to the control
 240 * @size: size of the message
 241 */
 242static
 243void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
 244			      const void *l3l4_hdr, size_t size)
 245{
 246	struct device *dev = i2400m_dev(i2400m);
 247	unsigned long flags;
 248	struct i2400m_report_hook_args *args;
 249
 250	args = kzalloc(sizeof(*args), GFP_NOIO);
 251	if (args) {
 252		args->skb_rx = skb_get(skb_rx);
 253		args->l3l4_hdr = l3l4_hdr;
 254		args->size = size;
 255		spin_lock_irqsave(&i2400m->rx_lock, flags);
 256		list_add_tail(&args->list_node, &i2400m->rx_reports);
 257		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 258		d_printf(2, dev, "queued report %p\n", args);
 259		rmb();		/* see i2400m->ready's documentation  */
 260		if (likely(i2400m->ready))	/* only send if up */
 261			queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
 262	} else  {
 263		if (printk_ratelimit())
 264			dev_err(dev, "%s:%u: Can't allocate %zu B\n",
 265				__func__, __LINE__, sizeof(*args));
 266	}
 267}
 268
 269
 270/*
 271 * Process an ack to a command
 272 *
 273 * @i2400m: device descriptor
 274 * @payload: pointer to message
 275 * @size: size of the message
 276 *
 277 * Pass the acknodledgment (in an skb) to the thread that is waiting
 278 * for it in i2400m->msg_completion.
 279 *
 280 * We need to coordinate properly with the thread waiting for the
 281 * ack. Check if it is waiting or if it is gone. We loose the spinlock
 282 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
 283 * but this is not so speed critical).
 284 */
 285static
 286void i2400m_rx_ctl_ack(struct i2400m *i2400m,
 287		       const void *payload, size_t size)
 288{
 289	struct device *dev = i2400m_dev(i2400m);
 290	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
 291	unsigned long flags;
 292	struct sk_buff *ack_skb;
 293
 294	/* Anyone waiting for an answer? */
 295	spin_lock_irqsave(&i2400m->rx_lock, flags);
 296	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
 297		dev_err(dev, "Huh? reply to command with no waiters\n");
 298		goto error_no_waiter;
 299	}
 300	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 301
 302	ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
 303
 304	/* Check waiter didn't time out waiting for the answer... */
 305	spin_lock_irqsave(&i2400m->rx_lock, flags);
 306	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
 307		d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
 308		goto error_waiter_cancelled;
 309	}
 310	if (IS_ERR(ack_skb))
 311		dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
 312	i2400m->ack_skb = ack_skb;
 313	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 314	complete(&i2400m->msg_completion);
 315	return;
 316
 317error_waiter_cancelled:
 318	if (!IS_ERR(ack_skb))
 319		kfree_skb(ack_skb);
 320error_no_waiter:
 321	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 322}
 323
 324
 325/*
 326 * Receive and process a control payload
 327 *
 328 * @i2400m: device descriptor
 329 * @skb_rx: skb that contains the payload (for reference counting)
 330 * @payload: pointer to message
 331 * @size: size of the message
 332 *
 333 * There are two types of control RX messages: reports (asynchronous,
 334 * like your every day interrupts) and 'acks' (reponses to a command,
 335 * get or set request).
 336 *
 337 * If it is a report, we run hooks on it (to extract information for
 338 * things we need to do in the driver) and then pass it over to the
 339 * WiMAX stack to send it to user space.
 340 *
 341 * NOTE: report processing is done in a workqueue specific to the
 342 *     generic driver, to avoid deadlocks in the system.
 343 *
 344 * If it is not a report, it is an ack to a previously executed
 345 * command, set or get, so wake up whoever is waiting for it from
 346 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
 347 *
 348 * Note that the sizes we pass to other functions from here are the
 349 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
 350 * verified in _msg_size_check() that they are congruent.
 351 *
 352 * For reports: We can't clone the original skb where the data is
 353 * because we need to send this up via netlink; netlink has to add
 354 * headers and we can't overwrite what's preceding the payload...as
 355 * it is another message. So we just dup them.
 356 */
 357static
 358void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
 359		   const void *payload, size_t size)
 360{
 361	int result;
 362	struct device *dev = i2400m_dev(i2400m);
 363	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
 364	unsigned msg_type;
 365
 366	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
 367	if (result < 0) {
 368		dev_err(dev, "HW BUG? device sent a bad message: %d\n",
 369			result);
 370		goto error_check;
 371	}
 372	msg_type = le16_to_cpu(l3l4_hdr->type);
 373	d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
 374		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
 375		 msg_type, size);
 376	d_dump(2, dev, l3l4_hdr, size);
 377	if (msg_type & I2400M_MT_REPORT_MASK) {
 378		/*
 379		 * Process each report
 380		 *
 381		 * - has to be ran serialized as well
 382		 *
 383		 * - the handling might force the execution of
 384		 *   commands. That might cause reentrancy issues with
 385		 *   bus-specific subdrivers and workqueues, so the we
 386		 *   run it in a separate workqueue.
 387		 *
 388		 * - when the driver is not yet ready to handle them,
 389		 *   they are queued and at some point the queue is
 390		 *   restarted [NOTE: we can't queue SKBs directly, as
 391		 *   this might be a piece of a SKB, not the whole
 392		 *   thing, and this is cheaper than cloning the
 393		 *   SKB].
 394		 *
 395		 * Note we don't do refcounting for the device
 396		 * structure; this is because before destroying
 397		 * 'i2400m', we make sure to flush the
 398		 * i2400m->work_queue, so there are no issues.
 399		 */
 400		i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
 401		if (unlikely(i2400m->trace_msg_from_user))
 402			wimax_msg(&i2400m->wimax_dev, "echo",
 403				  l3l4_hdr, size, GFP_KERNEL);
 404		result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
 405				   GFP_KERNEL);
 406		if (result < 0)
 407			dev_err(dev, "error sending report to userspace: %d\n",
 408				result);
 409	} else		/* an ack to a CMD, GET or SET */
 410		i2400m_rx_ctl_ack(i2400m, payload, size);
 411error_check:
 412	return;
 413}
 414
 415
 416/*
 417 * Receive and send up a trace
 418 *
 419 * @i2400m: device descriptor
 420 * @skb_rx: skb that contains the trace (for reference counting)
 421 * @payload: pointer to trace message inside the skb
 422 * @size: size of the message
 423 *
 424 * THe i2400m might produce trace information (diagnostics) and we
 425 * send them through a different kernel-to-user pipe (to avoid
 426 * clogging it).
 427 *
 428 * As in i2400m_rx_ctl(), we can't clone the original skb where the
 429 * data is because we need to send this up via netlink; netlink has to
 430 * add headers and we can't overwrite what's preceding the
 431 * payload...as it is another message. So we just dup them.
 432 */
 433static
 434void i2400m_rx_trace(struct i2400m *i2400m,
 435		     const void *payload, size_t size)
 436{
 437	int result;
 438	struct device *dev = i2400m_dev(i2400m);
 439	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
 440	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
 441	unsigned msg_type;
 442
 443	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
 444	if (result < 0) {
 445		dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
 446			result);
 447		goto error_check;
 448	}
 449	msg_type = le16_to_cpu(l3l4_hdr->type);
 450	d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
 451		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
 452		 msg_type, size);
 453	d_dump(2, dev, l3l4_hdr, size);
 454	result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
 455	if (result < 0)
 456		dev_err(dev, "error sending trace to userspace: %d\n",
 457			result);
 458error_check:
 459	return;
 460}
 461
 462
 463/*
 464 * Reorder queue data stored on skb->cb while the skb is queued in the
 465 * reorder queues.
 466 */
 467struct i2400m_roq_data {
 468	unsigned sn;		/* Serial number for the skb */
 469	enum i2400m_cs cs;	/* packet type for the skb */
 470};
 471
 472
 473/*
 474 * ReOrder Queue
 475 *
 476 * @ws: Window Start; sequence number where the current window start
 477 *     is for this queue
 478 * @queue: the skb queue itself
 479 * @log: circular ring buffer used to log information about the
 480 *     reorder process in this queue that can be displayed in case of
 481 *     error to help diagnose it.
 482 *
 483 * This is the head for a list of skbs. In the skb->cb member of the
 484 * skb when queued here contains a 'struct i2400m_roq_data' were we
 485 * store the sequence number (sn) and the cs (packet type) coming from
 486 * the RX payload header from the device.
 487 */
 488struct i2400m_roq
 489{
 490	unsigned ws;
 491	struct sk_buff_head queue;
 492	struct i2400m_roq_log *log;
 493};
 494
 495
 496static
 497void __i2400m_roq_init(struct i2400m_roq *roq)
 498{
 499	roq->ws = 0;
 500	skb_queue_head_init(&roq->queue);
 501}
 502
 503
 504static
 505unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
 506{
 507	return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
 508		/ sizeof(*roq);
 509}
 510
 511
 512/*
 513 * Normalize a sequence number based on the queue's window start
 514 *
 515 * nsn = (sn - ws) % 2048
 516 *
 517 * Note that if @sn < @roq->ws, we still need a positive number; %'s
 518 * sign is implementation specific, so we normalize it by adding 2048
 519 * to bring it to be positive.
 520 */
 521static
 522unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
 523{
 524	int r;
 525	r =  ((int) sn - (int) roq->ws) % 2048;
 526	if (r < 0)
 527		r += 2048;
 528	return r;
 529}
 530
 531
 532/*
 533 * Circular buffer to keep the last N reorder operations
 534 *
 535 * In case something fails, dumb then to try to come up with what
 536 * happened.
 537 */
 538enum {
 539	I2400M_ROQ_LOG_LENGTH = 32,
 540};
 541
 542struct i2400m_roq_log {
 543	struct i2400m_roq_log_entry {
 544		enum i2400m_ro_type type;
 545		unsigned ws, count, sn, nsn, new_ws;
 546	} entry[I2400M_ROQ_LOG_LENGTH];
 547	unsigned in, out;
 548};
 549
 550
 551/* Print a log entry */
 552static
 553void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
 554				unsigned e_index,
 555				struct i2400m_roq_log_entry *e)
 556{
 557	struct device *dev = i2400m_dev(i2400m);
 558
 559	switch(e->type) {
 560	case I2400M_RO_TYPE_RESET:
 561		dev_err(dev, "q#%d reset           ws %u cnt %u sn %u/%u"
 562			" - new nws %u\n",
 563			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 564		break;
 565	case I2400M_RO_TYPE_PACKET:
 566		dev_err(dev, "q#%d queue           ws %u cnt %u sn %u/%u\n",
 567			index, e->ws, e->count, e->sn, e->nsn);
 568		break;
 569	case I2400M_RO_TYPE_WS:
 570		dev_err(dev, "q#%d update_ws       ws %u cnt %u sn %u/%u"
 571			" - new nws %u\n",
 572			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 573		break;
 574	case I2400M_RO_TYPE_PACKET_WS:
 575		dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
 576			" - new nws %u\n",
 577			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 578		break;
 579	default:
 580		dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
 581			index, e_index, e->type);
 582		break;
 583	}
 584}
 585
 586
 587static
 588void i2400m_roq_log_add(struct i2400m *i2400m,
 589			struct i2400m_roq *roq, enum i2400m_ro_type type,
 590			unsigned ws, unsigned count, unsigned sn,
 591			unsigned nsn, unsigned new_ws)
 592{
 593	struct i2400m_roq_log_entry *e;
 594	unsigned cnt_idx;
 595	int index = __i2400m_roq_index(i2400m, roq);
 596
 597	/* if we run out of space, we eat from the end */
 598	if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
 599		roq->log->out++;
 600	cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
 601	e = &roq->log->entry[cnt_idx];
 602
 603	e->type = type;
 604	e->ws = ws;
 605	e->count = count;
 606	e->sn = sn;
 607	e->nsn = nsn;
 608	e->new_ws = new_ws;
 609
 610	if (d_test(1))
 611		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
 612}
 613
 614
 615/* Dump all the entries in the FIFO and reinitialize it */
 616static
 617void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
 618{
 619	unsigned cnt, cnt_idx;
 620	struct i2400m_roq_log_entry *e;
 621	int index = __i2400m_roq_index(i2400m, roq);
 622
 623	BUG_ON(roq->log->out > roq->log->in);
 624	for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
 625		cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
 626		e = &roq->log->entry[cnt_idx];
 627		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
 628		memset(e, 0, sizeof(*e));
 629	}
 630	roq->log->in = roq->log->out = 0;
 631}
 632
 633
 634/*
 635 * Backbone for the queuing of an skb (by normalized sequence number)
 636 *
 637 * @i2400m: device descriptor
 638 * @roq: reorder queue where to add
 639 * @skb: the skb to add
 640 * @sn: the sequence number of the skb
 641 * @nsn: the normalized sequence number of the skb (pre-computed by the
 642 *     caller from the @sn and @roq->ws).
 643 *
 644 * We try first a couple of quick cases:
 645 *
 646 *   - the queue is empty
 647 *   - the skb would be appended to the queue
 648 *
 649 * These will be the most common operations.
 650 *
 651 * If these fail, then we have to do a sorted insertion in the queue,
 652 * which is the slowest path.
 653 *
 654 * We don't have to acquire a reference count as we are going to own it.
 655 */
 656static
 657void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
 658			struct sk_buff *skb, unsigned sn, unsigned nsn)
 659{
 660	struct device *dev = i2400m_dev(i2400m);
 661	struct sk_buff *skb_itr;
 662	struct i2400m_roq_data *roq_data_itr, *roq_data;
 663	unsigned nsn_itr;
 664
 665	d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
 666		  i2400m, roq, skb, sn, nsn);
 667
 668	roq_data = (struct i2400m_roq_data *) &skb->cb;
 669	BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
 670	roq_data->sn = sn;
 671	d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
 672		 roq, roq->ws, nsn, roq_data->sn);
 673
 674	/* Queues will be empty on not-so-bad environments, so try
 675	 * that first */
 676	if (skb_queue_empty(&roq->queue)) {
 677		d_printf(2, dev, "ERX: roq %p - first one\n", roq);
 678		__skb_queue_head(&roq->queue, skb);
 679		goto out;
 680	}
 681	/* Now try append, as most of the operations will be that */
 682	skb_itr = skb_peek_tail(&roq->queue);
 683	roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 684	nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 685	/* NSN bounds assumed correct (checked when it was queued) */
 686	if (nsn >= nsn_itr) {
 687		d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
 688			 roq, skb_itr, nsn_itr, roq_data_itr->sn);
 689		__skb_queue_tail(&roq->queue, skb);
 690		goto out;
 691	}
 692	/* None of the fast paths option worked. Iterate to find the
 693	 * right spot where to insert the packet; we know the queue is
 694	 * not empty, so we are not the first ones; we also know we
 695	 * are not going to be the last ones. The list is sorted, so
 696	 * we have to insert before the the first guy with an nsn_itr
 697	 * greater that our nsn. */
 698	skb_queue_walk(&roq->queue, skb_itr) {
 699		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 700		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 701		/* NSN bounds assumed correct (checked when it was queued) */
 702		if (nsn_itr > nsn) {
 703			d_printf(2, dev, "ERX: roq %p - queued before %p "
 704				 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
 705				 roq_data_itr->sn);
 706			__skb_queue_before(&roq->queue, skb_itr, skb);
 707			goto out;
 708		}
 709	}
 710	/* If we get here, that is VERY bad -- print info to help
 711	 * diagnose and crash it */
 712	dev_err(dev, "SW BUG? failed to insert packet\n");
 713	dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
 714		roq, roq->ws, skb, nsn, roq_data->sn);
 715	skb_queue_walk(&roq->queue, skb_itr) {
 716		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 717		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 718		/* NSN bounds assumed correct (checked when it was queued) */
 719		dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
 720			roq, skb_itr, nsn_itr, roq_data_itr->sn);
 721	}
 722	BUG();
 723out:
 724	d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
 725		i2400m, roq, skb, sn, nsn);
 726}
 727
 728
 729/*
 730 * Backbone for the update window start operation
 731 *
 732 * @i2400m: device descriptor
 733 * @roq: Reorder queue
 734 * @sn: New sequence number
 735 *
 736 * Updates the window start of a queue; when doing so, it must deliver
 737 * to the networking stack all the queued skb's whose normalized
 738 * sequence number is lower than the new normalized window start.
 739 */
 740static
 741unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 742				unsigned sn)
 743{
 744	struct device *dev = i2400m_dev(i2400m);
 745	struct sk_buff *skb_itr, *tmp_itr;
 746	struct i2400m_roq_data *roq_data_itr;
 747	unsigned new_nws, nsn_itr;
 748
 749	new_nws = __i2400m_roq_nsn(roq, sn);
 750	/*
 751	 * For type 2(update_window_start) rx messages, there is no
 752	 * need to check if the normalized sequence number is greater 1023.
 753	 * Simply insert and deliver all packets to the host up to the
 754	 * window start.
 755	 */
 756	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
 757		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 758		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 759		/* NSN bounds assumed correct (checked when it was queued) */
 760		if (nsn_itr < new_nws) {
 761			d_printf(2, dev, "ERX: roq %p - release skb %p "
 762				 "(nsn %u/%u new nws %u)\n",
 763				 roq, skb_itr, nsn_itr, roq_data_itr->sn,
 764				 new_nws);
 765			__skb_unlink(skb_itr, &roq->queue);
 766			i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
 767		}
 768		else
 769			break;	/* rest of packets all nsn_itr > nws */
 770	}
 771	roq->ws = sn;
 772	return new_nws;
 773}
 774
 775
 776/*
 777 * Reset a queue
 778 *
 779 * @i2400m: device descriptor
 780 * @cin: Queue Index
 781 *
 782 * Deliver all the packets and reset the window-start to zero. Name is
 783 * kind of misleading.
 784 */
 785static
 786void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
 787{
 788	struct device *dev = i2400m_dev(i2400m);
 789	struct sk_buff *skb_itr, *tmp_itr;
 790	struct i2400m_roq_data *roq_data_itr;
 791
 792	d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
 793	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
 794			     roq->ws, skb_queue_len(&roq->queue),
 795			     ~0, ~0, 0);
 796	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
 797		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 798		d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
 799			 roq, skb_itr, roq_data_itr->sn);
 800		__skb_unlink(skb_itr, &roq->queue);
 801		i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
 802	}
 803	roq->ws = 0;
 804	d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
 805}
 806
 807
 808/*
 809 * Queue a packet
 810 *
 811 * @i2400m: device descriptor
 812 * @cin: Queue Index
 813 * @skb: containing the packet data
 814 * @fbn: First block number of the packet in @skb
 815 * @lbn: Last block number of the packet in @skb
 816 *
 817 * The hardware is asking the driver to queue a packet for later
 818 * delivery to the networking stack.
 819 */
 820static
 821void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
 822		      struct sk_buff * skb, unsigned lbn)
 823{
 824	struct device *dev = i2400m_dev(i2400m);
 825	unsigned nsn, len;
 826
 827	d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
 828		  i2400m, roq, skb, lbn);
 829	len = skb_queue_len(&roq->queue);
 830	nsn = __i2400m_roq_nsn(roq, lbn);
 831	if (unlikely(nsn >= 1024)) {
 832		dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
 833			nsn, lbn, roq->ws);
 834		i2400m_roq_log_dump(i2400m, roq);
 835		i2400m_reset(i2400m, I2400M_RT_WARM);
 836	} else {
 837		__i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
 838		i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
 839				     roq->ws, len, lbn, nsn, ~0);
 840	}
 841	d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
 842		i2400m, roq, skb, lbn);
 843}
 844
 845
 846/*
 847 * Update the window start in a reorder queue and deliver all skbs
 848 * with a lower window start
 849 *
 850 * @i2400m: device descriptor
 851 * @roq: Reorder queue
 852 * @sn: New sequence number
 853 */
 854static
 855void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 856			  unsigned sn)
 857{
 858	struct device *dev = i2400m_dev(i2400m);
 859	unsigned old_ws, nsn, len;
 860
 861	d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
 862	old_ws = roq->ws;
 863	len = skb_queue_len(&roq->queue);
 864	nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
 865	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
 866			     old_ws, len, sn, nsn, roq->ws);
 867	d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
 868}
 869
 870
 871/*
 872 * Queue a packet and update the window start
 873 *
 874 * @i2400m: device descriptor
 875 * @cin: Queue Index
 876 * @skb: containing the packet data
 877 * @fbn: First block number of the packet in @skb
 878 * @sn: Last block number of the packet in @skb
 879 *
 880 * Note that unlike i2400m_roq_update_ws(), which sets the new window
 881 * start to @sn, in here we'll set it to @sn + 1.
 882 */
 883static
 884void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 885				struct sk_buff * skb, unsigned sn)
 886{
 887	struct device *dev = i2400m_dev(i2400m);
 888	unsigned nsn, old_ws, len;
 889
 890	d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
 891		  i2400m, roq, skb, sn);
 892	len = skb_queue_len(&roq->queue);
 893	nsn = __i2400m_roq_nsn(roq, sn);
 894	/*
 895	 * For type 3(queue_update_window_start) rx messages, there is no
 896	 * need to check if the normalized sequence number is greater 1023.
 897	 * Simply insert and deliver all packets to the host up to the
 898	 * window start.
 899	 */
 900	old_ws = roq->ws;
 901	/* If the queue is empty, don't bother as we'd queue
 902	 * it and immediately unqueue it -- just deliver it.
 903	 */
 904	if (len == 0) {
 905		struct i2400m_roq_data *roq_data;
 906		roq_data = (struct i2400m_roq_data *) &skb->cb;
 907		i2400m_net_erx(i2400m, skb, roq_data->cs);
 908	} else
 909		__i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
 910
 911	__i2400m_roq_update_ws(i2400m, roq, sn + 1);
 912	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
 913			   old_ws, len, sn, nsn, roq->ws);
 914
 915	d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
 916		i2400m, roq, skb, sn);
 917}
 918
 919
 920/*
 921 * This routine destroys the memory allocated for rx_roq, when no
 922 * other thread is accessing it. Access to rx_roq is refcounted by
 923 * rx_roq_refcount, hence memory allocated must be destroyed when
 924 * rx_roq_refcount becomes zero. This routine gets executed when
 925 * rx_roq_refcount becomes zero.
 926 */
 927static void i2400m_rx_roq_destroy(struct kref *ref)
 928{
 929	unsigned itr;
 930	struct i2400m *i2400m
 931			= container_of(ref, struct i2400m, rx_roq_refcount);
 932	for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
 933		__skb_queue_purge(&i2400m->rx_roq[itr].queue);
 934	kfree(i2400m->rx_roq[0].log);
 935	kfree(i2400m->rx_roq);
 936	i2400m->rx_roq = NULL;
 937}
 938
 939/*
 940 * Receive and send up an extended data packet
 941 *
 942 * @i2400m: device descriptor
 943 * @skb_rx: skb that contains the extended data packet
 944 * @single_last: 1 if the payload is the only one or the last one of
 945 *     the skb.
 946 * @payload: pointer to the packet's data inside the skb
 947 * @size: size of the payload
 948 *
 949 * Starting in v1.4 of the i2400m's firmware, the device can send data
 950 * packets to the host in an extended format that; this incudes a 16
 951 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
 952 * we can fake ethernet headers for ethernet device emulation without
 953 * having to copy packets around.
 954 *
 955 * This function handles said path.
 956 *
 957 *
 958 * Receive and send up an extended data packet that requires no reordering
 959 *
 960 * @i2400m: device descriptor
 961 * @skb_rx: skb that contains the extended data packet
 962 * @single_last: 1 if the payload is the only one or the last one of
 963 *     the skb.
 964 * @payload: pointer to the packet's data (past the actual extended
 965 *     data payload header).
 966 * @size: size of the payload
 967 *
 968 * Pass over to the networking stack a data packet that might have
 969 * reordering requirements.
 970 *
 971 * This needs to the decide if the skb in which the packet is
 972 * contained can be reused or if it needs to be cloned. Then it has to
 973 * be trimmed in the edges so that the beginning is the space for eth
 974 * header and then pass it to i2400m_net_erx() for the stack
 975 *
 976 * Assumes the caller has verified the sanity of the payload (size,
 977 * etc) already.
 978 */
 979static
 980void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
 981		     unsigned single_last, const void *payload, size_t size)
 982{
 983	struct device *dev = i2400m_dev(i2400m);
 984	const struct i2400m_pl_edata_hdr *hdr = payload;
 985	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 986	struct sk_buff *skb;
 987	enum i2400m_cs cs;
 988	u32 reorder;
 989	unsigned ro_needed, ro_type, ro_cin, ro_sn;
 990	struct i2400m_roq *roq;
 991	struct i2400m_roq_data *roq_data;
 992	unsigned long flags;
 993
 994	BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
 995
 996	d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
 997		  "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
 998	if (size < sizeof(*hdr)) {
 999		dev_err(dev, "ERX: HW BUG? message with short header (%zu "
1000			"vs %zu bytes expected)\n", size, sizeof(*hdr));
1001		goto error;
1002	}
1003
1004	if (single_last) {
1005		skb = skb_get(skb_rx);
1006		d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1007	} else {
1008		skb = skb_clone(skb_rx, GFP_KERNEL);
1009		if (skb == NULL) {
1010			dev_err(dev, "ERX: no memory to clone skb\n");
1011			net_dev->stats.rx_dropped++;
1012			goto error_skb_clone;
1013		}
1014		d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1015	}
1016	/* now we have to pull and trim so that the skb points to the
1017	 * beginning of the IP packet; the netdev part will add the
1018	 * ethernet header as needed - we know there is enough space
1019	 * because we checked in i2400m_rx_edata(). */
1020	skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1021	skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1022
1023	reorder = le32_to_cpu(hdr->reorder);
1024	ro_needed = reorder & I2400M_RO_NEEDED;
1025	cs = hdr->cs;
1026	if (ro_needed) {
1027		ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1028		ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1029		ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1030
1031		spin_lock_irqsave(&i2400m->rx_lock, flags);
1032		if (i2400m->rx_roq == NULL) {
1033			kfree_skb(skb);	/* rx_roq is already destroyed */
1034			spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1035			goto error;
1036		}
1037		roq = &i2400m->rx_roq[ro_cin];
1038		kref_get(&i2400m->rx_roq_refcount);
1039		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1040
1041		roq_data = (struct i2400m_roq_data *) &skb->cb;
1042		roq_data->sn = ro_sn;
1043		roq_data->cs = cs;
1044		d_printf(2, dev, "ERX: reorder needed: "
1045			 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1046			 ro_type, ro_cin, roq->ws, ro_sn,
1047			 __i2400m_roq_nsn(roq, ro_sn), size);
1048		d_dump(2, dev, payload, size);
1049		switch(ro_type) {
1050		case I2400M_RO_TYPE_RESET:
1051			i2400m_roq_reset(i2400m, roq);
1052			kfree_skb(skb);	/* no data here */
1053			break;
1054		case I2400M_RO_TYPE_PACKET:
1055			i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1056			break;
1057		case I2400M_RO_TYPE_WS:
1058			i2400m_roq_update_ws(i2400m, roq, ro_sn);
1059			kfree_skb(skb);	/* no data here */
1060			break;
1061		case I2400M_RO_TYPE_PACKET_WS:
1062			i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1063			break;
1064		default:
1065			dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1066		}
1067
1068		spin_lock_irqsave(&i2400m->rx_lock, flags);
1069		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1070		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1071	}
1072	else
1073		i2400m_net_erx(i2400m, skb, cs);
1074error_skb_clone:
1075error:
1076	d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1077		"size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1078}
1079
1080
1081/*
1082 * Act on a received payload
1083 *
1084 * @i2400m: device instance
1085 * @skb_rx: skb where the transaction was received
1086 * @single_last: 1 this is the only payload or the last one (so the
1087 *     skb can be reused instead of cloned).
1088 * @pld: payload descriptor
1089 * @payload: payload data
1090 *
1091 * Upon reception of a payload, look at its guts in the payload
1092 * descriptor and decide what to do with it. If it is a single payload
1093 * skb or if the last skb is a data packet, the skb will be referenced
1094 * and modified (so it doesn't have to be cloned).
1095 */
1096static
1097void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1098		       unsigned single_last, const struct i2400m_pld *pld,
1099		       const void *payload)
1100{
1101	struct device *dev = i2400m_dev(i2400m);
1102	size_t pl_size = i2400m_pld_size(pld);
1103	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1104
1105	d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1106		 pl_type, pl_size);
1107	d_dump(8, dev, payload, pl_size);
1108
1109	switch (pl_type) {
1110	case I2400M_PT_DATA:
1111		d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1112		i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1113		break;
1114	case I2400M_PT_CTRL:
1115		i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1116		break;
1117	case I2400M_PT_TRACE:
1118		i2400m_rx_trace(i2400m, payload, pl_size);
1119		break;
1120	case I2400M_PT_EDATA:
1121		d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1122		i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1123		break;
1124	default:	/* Anything else shouldn't come to the host */
1125		if (printk_ratelimit())
1126			dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1127				pl_type);
1128	}
1129}
1130
1131
1132/*
1133 * Check a received transaction's message header
1134 *
1135 * @i2400m: device descriptor
1136 * @msg_hdr: message header
1137 * @buf_size: size of the received buffer
1138 *
1139 * Check that the declarations done by a RX buffer message header are
1140 * sane and consistent with the amount of data that was received.
1141 */
1142static
1143int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1144			    const struct i2400m_msg_hdr *msg_hdr,
1145			    size_t buf_size)
1146{
1147	int result = -EIO;
1148	struct device *dev = i2400m_dev(i2400m);
1149	if (buf_size < sizeof(*msg_hdr)) {
1150		dev_err(dev, "RX: HW BUG? message with short header (%zu "
1151			"vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1152		goto error;
1153	}
1154	if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1155		dev_err(dev, "RX: HW BUG? message received with unknown "
1156			"barker 0x%08x (buf_size %zu bytes)\n",
1157			le32_to_cpu(msg_hdr->barker), buf_size);
1158		goto error;
1159	}
1160	if (msg_hdr->num_pls == 0) {
1161		dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1162		goto error;
1163	}
1164	if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1165		dev_err(dev, "RX: HW BUG? message contains more payload "
1166			"than maximum; ignoring.\n");
1167		goto error;
1168	}
1169	result = 0;
1170error:
1171	return result;
1172}
1173
1174
1175/*
1176 * Check a payload descriptor against the received data
1177 *
1178 * @i2400m: device descriptor
1179 * @pld: payload descriptor
1180 * @pl_itr: offset (in bytes) in the received buffer the payload is
1181 *          located
1182 * @buf_size: size of the received buffer
1183 *
1184 * Given a payload descriptor (part of a RX buffer), check it is sane
1185 * and that the data it declares fits in the buffer.
1186 */
1187static
1188int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1189			      const struct i2400m_pld *pld,
1190			      size_t pl_itr, size_t buf_size)
1191{
1192	int result = -EIO;
1193	struct device *dev = i2400m_dev(i2400m);
1194	size_t pl_size = i2400m_pld_size(pld);
1195	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1196
1197	if (pl_size > i2400m->bus_pl_size_max) {
1198		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1199			"bigger than maximum %zu; ignoring message\n",
1200			pl_itr, pl_size, i2400m->bus_pl_size_max);
1201		goto error;
1202	}
1203	if (pl_itr + pl_size > buf_size) {	/* enough? */
1204		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1205			"goes beyond the received buffer "
1206			"size (%zu bytes); ignoring message\n",
1207			pl_itr, pl_size, buf_size);
1208		goto error;
1209	}
1210	if (pl_type >= I2400M_PT_ILLEGAL) {
1211		dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1212			"ignoring message\n", pl_type);
1213		goto error;
1214	}
1215	result = 0;
1216error:
1217	return result;
1218}
1219
1220
1221/**
1222 * i2400m_rx - Receive a buffer of data from the device
1223 *
1224 * @i2400m: device descriptor
1225 * @skb: skbuff where the data has been received
1226 *
1227 * Parse in a buffer of data that contains an RX message sent from the
1228 * device. See the file header for the format. Run all checks on the
1229 * buffer header, then run over each payload's descriptors, verify
1230 * their consistency and act on each payload's contents.  If
1231 * everything is successful, update the device's statistics.
1232 *
1233 * Note: You need to set the skb to contain only the length of the
1234 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1235 *
1236 * Returns:
1237 *
1238 * 0 if ok, < 0 errno on error
1239 *
1240 * If ok, this function owns now the skb and the caller DOESN'T have
1241 * to run kfree_skb() on it. However, on error, the caller still owns
1242 * the skb and it is responsible for releasing it.
1243 */
1244int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1245{
1246	int i, result;
1247	struct device *dev = i2400m_dev(i2400m);
1248	const struct i2400m_msg_hdr *msg_hdr;
1249	size_t pl_itr, pl_size;
1250	unsigned long flags;
1251	unsigned num_pls, single_last, skb_len;
1252
1253	skb_len = skb->len;
1254	d_fnstart(4, dev, "(i2400m %p skb %p [size %u])\n",
1255		  i2400m, skb, skb_len);
1256	result = -EIO;
1257	msg_hdr = (void *) skb->data;
1258	result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb_len);
1259	if (result < 0)
1260		goto error_msg_hdr_check;
1261	result = -EIO;
1262	num_pls = le16_to_cpu(msg_hdr->num_pls);
1263	pl_itr = sizeof(*msg_hdr) +	/* Check payload descriptor(s) */
1264		num_pls * sizeof(msg_hdr->pld[0]);
1265	pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1266	if (pl_itr > skb_len) {	/* got all the payload descriptors? */
1267		dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1268			"%u payload descriptors (%zu each, total %zu)\n",
1269			skb_len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1270		goto error_pl_descr_short;
1271	}
1272	/* Walk each payload payload--check we really got it */
1273	for (i = 0; i < num_pls; i++) {
1274		/* work around old gcc warnings */
1275		pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1276		result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1277						  pl_itr, skb_len);
1278		if (result < 0)
1279			goto error_pl_descr_check;
1280		single_last = num_pls == 1 || i == num_pls - 1;
1281		i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1282				  skb->data + pl_itr);
1283		pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1284		cond_resched();		/* Don't monopolize */
1285	}
1286	kfree_skb(skb);
1287	/* Update device statistics */
1288	spin_lock_irqsave(&i2400m->rx_lock, flags);
1289	i2400m->rx_pl_num += i;
1290	if (i > i2400m->rx_pl_max)
1291		i2400m->rx_pl_max = i;
1292	if (i < i2400m->rx_pl_min)
1293		i2400m->rx_pl_min = i;
1294	i2400m->rx_num++;
1295	i2400m->rx_size_acc += skb_len;
1296	if (skb_len < i2400m->rx_size_min)
1297		i2400m->rx_size_min = skb_len;
1298	if (skb_len > i2400m->rx_size_max)
1299		i2400m->rx_size_max = skb_len;
1300	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1301error_pl_descr_check:
1302error_pl_descr_short:
1303error_msg_hdr_check:
1304	d_fnend(4, dev, "(i2400m %p skb %p [size %u]) = %d\n",
1305		i2400m, skb, skb_len, result);
1306	return result;
1307}
1308EXPORT_SYMBOL_GPL(i2400m_rx);
1309
1310
1311void i2400m_unknown_barker(struct i2400m *i2400m,
1312			   const void *buf, size_t size)
1313{
1314	struct device *dev = i2400m_dev(i2400m);
1315	char prefix[64];
1316	const __le32 *barker = buf;
1317	dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1318		"dropping %zu bytes\n", le32_to_cpu(*barker), size);
1319	snprintf(prefix, sizeof(prefix), "%s %s: ",
1320		 dev_driver_string(dev), dev_name(dev));
1321	if (size > 64) {
1322		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1323			       8, 4, buf, 64, 0);
1324		printk(KERN_ERR "%s... (only first 64 bytes "
1325		       "dumped)\n", prefix);
1326	} else
1327		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1328			       8, 4, buf, size, 0);
1329}
1330EXPORT_SYMBOL(i2400m_unknown_barker);
1331
1332
1333/*
1334 * Initialize the RX queue and infrastructure
1335 *
1336 * This sets up all the RX reordering infrastructures, which will not
1337 * be used if reordering is not enabled or if the firmware does not
1338 * support it. The device is told to do reordering in
1339 * i2400m_dev_initialize(), where it also looks at the value of the
1340 * i2400m->rx_reorder switch before taking a decission.
1341 *
1342 * Note we allocate the roq queues in one chunk and the actual logging
1343 * support for it (logging) in another one and then we setup the
1344 * pointers from the first to the last.
1345 */
1346int i2400m_rx_setup(struct i2400m *i2400m)
1347{
1348	int result = 0;
1349
1350	i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1351	if (i2400m->rx_reorder) {
1352		unsigned itr;
1353		struct i2400m_roq_log *rd;
1354
1355		result = -ENOMEM;
1356
1357		i2400m->rx_roq = kcalloc(I2400M_RO_CIN + 1,
1358					 sizeof(i2400m->rx_roq[0]), GFP_KERNEL);
1359		if (i2400m->rx_roq == NULL)
1360			goto error_roq_alloc;
1361
1362		rd = kcalloc(I2400M_RO_CIN + 1, sizeof(*i2400m->rx_roq[0].log),
1363			     GFP_KERNEL);
1364		if (rd == NULL) {
1365			result = -ENOMEM;
1366			goto error_roq_log_alloc;
1367		}
1368
1369		for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1370			__i2400m_roq_init(&i2400m->rx_roq[itr]);
1371			i2400m->rx_roq[itr].log = &rd[itr];
1372		}
1373		kref_init(&i2400m->rx_roq_refcount);
1374	}
1375	return 0;
1376
1377error_roq_log_alloc:
1378	kfree(i2400m->rx_roq);
1379error_roq_alloc:
1380	return result;
1381}
1382
1383
1384/* Tear down the RX queue and infrastructure */
1385void i2400m_rx_release(struct i2400m *i2400m)
1386{
1387	unsigned long flags;
1388
1389	if (i2400m->rx_reorder) {
1390		spin_lock_irqsave(&i2400m->rx_lock, flags);
1391		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1392		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1393	}
1394	/* at this point, nothing can be received... */
1395	i2400m_report_hook_flush(i2400m);
1396}
v4.17
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Handle incoming traffic and deliver it to the control or data planes
   4 *
   5 *
   6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 *
  12 *   * Redistributions of source code must retain the above copyright
  13 *     notice, this list of conditions and the following disclaimer.
  14 *   * Redistributions in binary form must reproduce the above copyright
  15 *     notice, this list of conditions and the following disclaimer in
  16 *     the documentation and/or other materials provided with the
  17 *     distribution.
  18 *   * Neither the name of Intel Corporation nor the names of its
  19 *     contributors may be used to endorse or promote products derived
  20 *     from this software without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33 *
  34 *
  35 * Intel Corporation <linux-wimax@intel.com>
  36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37 *  - Initial implementation
  38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  39 *  - Use skb_clone(), break up processing in chunks
  40 *  - Split transport/device specific
  41 *  - Make buffer size dynamic to exert less memory pressure
  42 *  - RX reorder support
  43 *
  44 * This handles the RX path.
  45 *
  46 * We receive an RX message from the bus-specific driver, which
  47 * contains one or more payloads that have potentially different
  48 * destinataries (data or control paths).
  49 *
  50 * So we just take that payload from the transport specific code in
  51 * the form of an skb, break it up in chunks (a cloned skb each in the
  52 * case of network packets) and pass it to netdev or to the
  53 * command/ack handler (and from there to the WiMAX stack).
  54 *
  55 * PROTOCOL FORMAT
  56 *
  57 * The format of the buffer is:
  58 *
  59 * HEADER                      (struct i2400m_msg_hdr)
  60 * PAYLOAD DESCRIPTOR 0        (struct i2400m_pld)
  61 * PAYLOAD DESCRIPTOR 1
  62 * ...
  63 * PAYLOAD DESCRIPTOR N
  64 * PAYLOAD 0                   (raw bytes)
  65 * PAYLOAD 1
  66 * ...
  67 * PAYLOAD N
  68 *
  69 * See tx.c for a deeper description on alignment requirements and
  70 * other fun facts of it.
  71 *
  72 * DATA PACKETS
  73 *
  74 * In firmwares <= v1.3, data packets have no header for RX, but they
  75 * do for TX (currently unused).
  76 *
  77 * In firmware >= 1.4, RX packets have an extended header (16
  78 * bytes). This header conveys information for management of host
  79 * reordering of packets (the device offloads storage of the packets
  80 * for reordering to the host). Read below for more information.
  81 *
  82 * The header is used as dummy space to emulate an ethernet header and
  83 * thus be able to act as an ethernet device without having to reallocate.
  84 *
  85 * DATA RX REORDERING
  86 *
  87 * Starting in firmware v1.4, the device can deliver packets for
  88 * delivery with special reordering information; this allows it to
  89 * more effectively do packet management when some frames were lost in
  90 * the radio traffic.
  91 *
  92 * Thus, for RX packets that come out of order, the device gives the
  93 * driver enough information to queue them properly and then at some
  94 * point, the signal to deliver the whole (or part) of the queued
  95 * packets to the networking stack. There are 16 such queues.
  96 *
  97 * This only happens when a packet comes in with the "need reorder"
  98 * flag set in the RX header. When such bit is set, the following
  99 * operations might be indicated:
 100 *
 101 *  - reset queue: send all queued packets to the OS
 102 *
 103 *  - queue: queue a packet
 104 *
 105 *  - update ws: update the queue's window start and deliver queued
 106 *    packets that meet the criteria
 107 *
 108 *  - queue & update ws: queue a packet, update the window start and
 109 *    deliver queued packets that meet the criteria
 110 *
 111 * (delivery criteria: the packet's [normalized] sequence number is
 112 * lower than the new [normalized] window start).
 113 *
 114 * See the i2400m_roq_*() functions for details.
 115 *
 116 * ROADMAP
 117 *
 118 * i2400m_rx
 119 *   i2400m_rx_msg_hdr_check
 120 *   i2400m_rx_pl_descr_check
 121 *   i2400m_rx_payload
 122 *     i2400m_net_rx
 123 *     i2400m_rx_edata
 124 *       i2400m_net_erx
 125 *       i2400m_roq_reset
 126 *         i2400m_net_erx
 127 *       i2400m_roq_queue
 128 *         __i2400m_roq_queue
 129 *       i2400m_roq_update_ws
 130 *         __i2400m_roq_update_ws
 131 *           i2400m_net_erx
 132 *       i2400m_roq_queue_update_ws
 133 *         __i2400m_roq_queue
 134 *         __i2400m_roq_update_ws
 135 *           i2400m_net_erx
 136 *     i2400m_rx_ctl
 137 *       i2400m_msg_size_check
 138 *       i2400m_report_hook_work    [in a workqueue]
 139 *         i2400m_report_hook
 140 *       wimax_msg_to_user
 141 *       i2400m_rx_ctl_ack
 142 *         wimax_msg_to_user_alloc
 143 *     i2400m_rx_trace
 144 *       i2400m_msg_size_check
 145 *       wimax_msg
 146 */
 147#include <linux/slab.h>
 148#include <linux/kernel.h>
 149#include <linux/if_arp.h>
 150#include <linux/netdevice.h>
 151#include <linux/workqueue.h>
 152#include <linux/export.h>
 153#include <linux/moduleparam.h>
 154#include "i2400m.h"
 155
 156
 157#define D_SUBMODULE rx
 158#include "debug-levels.h"
 159
 160static int i2400m_rx_reorder_disabled;	/* 0 (rx reorder enabled) by default */
 161module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
 162MODULE_PARM_DESC(rx_reorder_disabled,
 163		 "If true, RX reordering will be disabled.");
 164
 165struct i2400m_report_hook_args {
 166	struct sk_buff *skb_rx;
 167	const struct i2400m_l3l4_hdr *l3l4_hdr;
 168	size_t size;
 169	struct list_head list_node;
 170};
 171
 172
 173/*
 174 * Execute i2400m_report_hook in a workqueue
 175 *
 176 * Goes over the list of queued reports in i2400m->rx_reports and
 177 * processes them.
 178 *
 179 * NOTE: refcounts on i2400m are not needed because we flush the
 180 *     workqueue this runs on (i2400m->work_queue) before destroying
 181 *     i2400m.
 182 */
 183void i2400m_report_hook_work(struct work_struct *ws)
 184{
 185	struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
 186	struct device *dev = i2400m_dev(i2400m);
 187	struct i2400m_report_hook_args *args, *args_next;
 188	LIST_HEAD(list);
 189	unsigned long flags;
 190
 191	while (1) {
 192		spin_lock_irqsave(&i2400m->rx_lock, flags);
 193		list_splice_init(&i2400m->rx_reports, &list);
 194		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 195		if (list_empty(&list))
 196			break;
 197		else
 198			d_printf(1, dev, "processing queued reports\n");
 199		list_for_each_entry_safe(args, args_next, &list, list_node) {
 200			d_printf(2, dev, "processing queued report %p\n", args);
 201			i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
 202			kfree_skb(args->skb_rx);
 203			list_del(&args->list_node);
 204			kfree(args);
 205		}
 206	}
 207}
 208
 209
 210/*
 211 * Flush the list of queued reports
 212 */
 213static
 214void i2400m_report_hook_flush(struct i2400m *i2400m)
 215{
 216	struct device *dev = i2400m_dev(i2400m);
 217	struct i2400m_report_hook_args *args, *args_next;
 218	LIST_HEAD(list);
 219	unsigned long flags;
 220
 221	d_printf(1, dev, "flushing queued reports\n");
 222	spin_lock_irqsave(&i2400m->rx_lock, flags);
 223	list_splice_init(&i2400m->rx_reports, &list);
 224	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 225	list_for_each_entry_safe(args, args_next, &list, list_node) {
 226		d_printf(2, dev, "flushing queued report %p\n", args);
 227		kfree_skb(args->skb_rx);
 228		list_del(&args->list_node);
 229		kfree(args);
 230	}
 231}
 232
 233
 234/*
 235 * Queue a report for later processing
 236 *
 237 * @i2400m: device descriptor
 238 * @skb_rx: skb that contains the payload (for reference counting)
 239 * @l3l4_hdr: pointer to the control
 240 * @size: size of the message
 241 */
 242static
 243void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
 244			      const void *l3l4_hdr, size_t size)
 245{
 246	struct device *dev = i2400m_dev(i2400m);
 247	unsigned long flags;
 248	struct i2400m_report_hook_args *args;
 249
 250	args = kzalloc(sizeof(*args), GFP_NOIO);
 251	if (args) {
 252		args->skb_rx = skb_get(skb_rx);
 253		args->l3l4_hdr = l3l4_hdr;
 254		args->size = size;
 255		spin_lock_irqsave(&i2400m->rx_lock, flags);
 256		list_add_tail(&args->list_node, &i2400m->rx_reports);
 257		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 258		d_printf(2, dev, "queued report %p\n", args);
 259		rmb();		/* see i2400m->ready's documentation  */
 260		if (likely(i2400m->ready))	/* only send if up */
 261			queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
 262	} else  {
 263		if (printk_ratelimit())
 264			dev_err(dev, "%s:%u: Can't allocate %zu B\n",
 265				__func__, __LINE__, sizeof(*args));
 266	}
 267}
 268
 269
 270/*
 271 * Process an ack to a command
 272 *
 273 * @i2400m: device descriptor
 274 * @payload: pointer to message
 275 * @size: size of the message
 276 *
 277 * Pass the acknodledgment (in an skb) to the thread that is waiting
 278 * for it in i2400m->msg_completion.
 279 *
 280 * We need to coordinate properly with the thread waiting for the
 281 * ack. Check if it is waiting or if it is gone. We loose the spinlock
 282 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
 283 * but this is not so speed critical).
 284 */
 285static
 286void i2400m_rx_ctl_ack(struct i2400m *i2400m,
 287		       const void *payload, size_t size)
 288{
 289	struct device *dev = i2400m_dev(i2400m);
 290	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
 291	unsigned long flags;
 292	struct sk_buff *ack_skb;
 293
 294	/* Anyone waiting for an answer? */
 295	spin_lock_irqsave(&i2400m->rx_lock, flags);
 296	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
 297		dev_err(dev, "Huh? reply to command with no waiters\n");
 298		goto error_no_waiter;
 299	}
 300	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 301
 302	ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
 303
 304	/* Check waiter didn't time out waiting for the answer... */
 305	spin_lock_irqsave(&i2400m->rx_lock, flags);
 306	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
 307		d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
 308		goto error_waiter_cancelled;
 309	}
 310	if (IS_ERR(ack_skb))
 311		dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
 312	i2400m->ack_skb = ack_skb;
 313	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 314	complete(&i2400m->msg_completion);
 315	return;
 316
 317error_waiter_cancelled:
 318	if (!IS_ERR(ack_skb))
 319		kfree_skb(ack_skb);
 320error_no_waiter:
 321	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
 322}
 323
 324
 325/*
 326 * Receive and process a control payload
 327 *
 328 * @i2400m: device descriptor
 329 * @skb_rx: skb that contains the payload (for reference counting)
 330 * @payload: pointer to message
 331 * @size: size of the message
 332 *
 333 * There are two types of control RX messages: reports (asynchronous,
 334 * like your every day interrupts) and 'acks' (reponses to a command,
 335 * get or set request).
 336 *
 337 * If it is a report, we run hooks on it (to extract information for
 338 * things we need to do in the driver) and then pass it over to the
 339 * WiMAX stack to send it to user space.
 340 *
 341 * NOTE: report processing is done in a workqueue specific to the
 342 *     generic driver, to avoid deadlocks in the system.
 343 *
 344 * If it is not a report, it is an ack to a previously executed
 345 * command, set or get, so wake up whoever is waiting for it from
 346 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
 347 *
 348 * Note that the sizes we pass to other functions from here are the
 349 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
 350 * verified in _msg_size_check() that they are congruent.
 351 *
 352 * For reports: We can't clone the original skb where the data is
 353 * because we need to send this up via netlink; netlink has to add
 354 * headers and we can't overwrite what's preceding the payload...as
 355 * it is another message. So we just dup them.
 356 */
 357static
 358void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
 359		   const void *payload, size_t size)
 360{
 361	int result;
 362	struct device *dev = i2400m_dev(i2400m);
 363	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
 364	unsigned msg_type;
 365
 366	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
 367	if (result < 0) {
 368		dev_err(dev, "HW BUG? device sent a bad message: %d\n",
 369			result);
 370		goto error_check;
 371	}
 372	msg_type = le16_to_cpu(l3l4_hdr->type);
 373	d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
 374		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
 375		 msg_type, size);
 376	d_dump(2, dev, l3l4_hdr, size);
 377	if (msg_type & I2400M_MT_REPORT_MASK) {
 378		/*
 379		 * Process each report
 380		 *
 381		 * - has to be ran serialized as well
 382		 *
 383		 * - the handling might force the execution of
 384		 *   commands. That might cause reentrancy issues with
 385		 *   bus-specific subdrivers and workqueues, so the we
 386		 *   run it in a separate workqueue.
 387		 *
 388		 * - when the driver is not yet ready to handle them,
 389		 *   they are queued and at some point the queue is
 390		 *   restarted [NOTE: we can't queue SKBs directly, as
 391		 *   this might be a piece of a SKB, not the whole
 392		 *   thing, and this is cheaper than cloning the
 393		 *   SKB].
 394		 *
 395		 * Note we don't do refcounting for the device
 396		 * structure; this is because before destroying
 397		 * 'i2400m', we make sure to flush the
 398		 * i2400m->work_queue, so there are no issues.
 399		 */
 400		i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
 401		if (unlikely(i2400m->trace_msg_from_user))
 402			wimax_msg(&i2400m->wimax_dev, "echo",
 403				  l3l4_hdr, size, GFP_KERNEL);
 404		result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
 405				   GFP_KERNEL);
 406		if (result < 0)
 407			dev_err(dev, "error sending report to userspace: %d\n",
 408				result);
 409	} else		/* an ack to a CMD, GET or SET */
 410		i2400m_rx_ctl_ack(i2400m, payload, size);
 411error_check:
 412	return;
 413}
 414
 415
 416/*
 417 * Receive and send up a trace
 418 *
 419 * @i2400m: device descriptor
 420 * @skb_rx: skb that contains the trace (for reference counting)
 421 * @payload: pointer to trace message inside the skb
 422 * @size: size of the message
 423 *
 424 * THe i2400m might produce trace information (diagnostics) and we
 425 * send them through a different kernel-to-user pipe (to avoid
 426 * clogging it).
 427 *
 428 * As in i2400m_rx_ctl(), we can't clone the original skb where the
 429 * data is because we need to send this up via netlink; netlink has to
 430 * add headers and we can't overwrite what's preceding the
 431 * payload...as it is another message. So we just dup them.
 432 */
 433static
 434void i2400m_rx_trace(struct i2400m *i2400m,
 435		     const void *payload, size_t size)
 436{
 437	int result;
 438	struct device *dev = i2400m_dev(i2400m);
 439	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
 440	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
 441	unsigned msg_type;
 442
 443	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
 444	if (result < 0) {
 445		dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
 446			result);
 447		goto error_check;
 448	}
 449	msg_type = le16_to_cpu(l3l4_hdr->type);
 450	d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
 451		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
 452		 msg_type, size);
 453	d_dump(2, dev, l3l4_hdr, size);
 454	result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
 455	if (result < 0)
 456		dev_err(dev, "error sending trace to userspace: %d\n",
 457			result);
 458error_check:
 459	return;
 460}
 461
 462
 463/*
 464 * Reorder queue data stored on skb->cb while the skb is queued in the
 465 * reorder queues.
 466 */
 467struct i2400m_roq_data {
 468	unsigned sn;		/* Serial number for the skb */
 469	enum i2400m_cs cs;	/* packet type for the skb */
 470};
 471
 472
 473/*
 474 * ReOrder Queue
 475 *
 476 * @ws: Window Start; sequence number where the current window start
 477 *     is for this queue
 478 * @queue: the skb queue itself
 479 * @log: circular ring buffer used to log information about the
 480 *     reorder process in this queue that can be displayed in case of
 481 *     error to help diagnose it.
 482 *
 483 * This is the head for a list of skbs. In the skb->cb member of the
 484 * skb when queued here contains a 'struct i2400m_roq_data' were we
 485 * store the sequence number (sn) and the cs (packet type) coming from
 486 * the RX payload header from the device.
 487 */
 488struct i2400m_roq
 489{
 490	unsigned ws;
 491	struct sk_buff_head queue;
 492	struct i2400m_roq_log *log;
 493};
 494
 495
 496static
 497void __i2400m_roq_init(struct i2400m_roq *roq)
 498{
 499	roq->ws = 0;
 500	skb_queue_head_init(&roq->queue);
 501}
 502
 503
 504static
 505unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
 506{
 507	return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
 508		/ sizeof(*roq);
 509}
 510
 511
 512/*
 513 * Normalize a sequence number based on the queue's window start
 514 *
 515 * nsn = (sn - ws) % 2048
 516 *
 517 * Note that if @sn < @roq->ws, we still need a positive number; %'s
 518 * sign is implementation specific, so we normalize it by adding 2048
 519 * to bring it to be positive.
 520 */
 521static
 522unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
 523{
 524	int r;
 525	r =  ((int) sn - (int) roq->ws) % 2048;
 526	if (r < 0)
 527		r += 2048;
 528	return r;
 529}
 530
 531
 532/*
 533 * Circular buffer to keep the last N reorder operations
 534 *
 535 * In case something fails, dumb then to try to come up with what
 536 * happened.
 537 */
 538enum {
 539	I2400M_ROQ_LOG_LENGTH = 32,
 540};
 541
 542struct i2400m_roq_log {
 543	struct i2400m_roq_log_entry {
 544		enum i2400m_ro_type type;
 545		unsigned ws, count, sn, nsn, new_ws;
 546	} entry[I2400M_ROQ_LOG_LENGTH];
 547	unsigned in, out;
 548};
 549
 550
 551/* Print a log entry */
 552static
 553void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
 554				unsigned e_index,
 555				struct i2400m_roq_log_entry *e)
 556{
 557	struct device *dev = i2400m_dev(i2400m);
 558
 559	switch(e->type) {
 560	case I2400M_RO_TYPE_RESET:
 561		dev_err(dev, "q#%d reset           ws %u cnt %u sn %u/%u"
 562			" - new nws %u\n",
 563			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 564		break;
 565	case I2400M_RO_TYPE_PACKET:
 566		dev_err(dev, "q#%d queue           ws %u cnt %u sn %u/%u\n",
 567			index, e->ws, e->count, e->sn, e->nsn);
 568		break;
 569	case I2400M_RO_TYPE_WS:
 570		dev_err(dev, "q#%d update_ws       ws %u cnt %u sn %u/%u"
 571			" - new nws %u\n",
 572			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 573		break;
 574	case I2400M_RO_TYPE_PACKET_WS:
 575		dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
 576			" - new nws %u\n",
 577			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
 578		break;
 579	default:
 580		dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
 581			index, e_index, e->type);
 582		break;
 583	}
 584}
 585
 586
 587static
 588void i2400m_roq_log_add(struct i2400m *i2400m,
 589			struct i2400m_roq *roq, enum i2400m_ro_type type,
 590			unsigned ws, unsigned count, unsigned sn,
 591			unsigned nsn, unsigned new_ws)
 592{
 593	struct i2400m_roq_log_entry *e;
 594	unsigned cnt_idx;
 595	int index = __i2400m_roq_index(i2400m, roq);
 596
 597	/* if we run out of space, we eat from the end */
 598	if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
 599		roq->log->out++;
 600	cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
 601	e = &roq->log->entry[cnt_idx];
 602
 603	e->type = type;
 604	e->ws = ws;
 605	e->count = count;
 606	e->sn = sn;
 607	e->nsn = nsn;
 608	e->new_ws = new_ws;
 609
 610	if (d_test(1))
 611		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
 612}
 613
 614
 615/* Dump all the entries in the FIFO and reinitialize it */
 616static
 617void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
 618{
 619	unsigned cnt, cnt_idx;
 620	struct i2400m_roq_log_entry *e;
 621	int index = __i2400m_roq_index(i2400m, roq);
 622
 623	BUG_ON(roq->log->out > roq->log->in);
 624	for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
 625		cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
 626		e = &roq->log->entry[cnt_idx];
 627		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
 628		memset(e, 0, sizeof(*e));
 629	}
 630	roq->log->in = roq->log->out = 0;
 631}
 632
 633
 634/*
 635 * Backbone for the queuing of an skb (by normalized sequence number)
 636 *
 637 * @i2400m: device descriptor
 638 * @roq: reorder queue where to add
 639 * @skb: the skb to add
 640 * @sn: the sequence number of the skb
 641 * @nsn: the normalized sequence number of the skb (pre-computed by the
 642 *     caller from the @sn and @roq->ws).
 643 *
 644 * We try first a couple of quick cases:
 645 *
 646 *   - the queue is empty
 647 *   - the skb would be appended to the queue
 648 *
 649 * These will be the most common operations.
 650 *
 651 * If these fail, then we have to do a sorted insertion in the queue,
 652 * which is the slowest path.
 653 *
 654 * We don't have to acquire a reference count as we are going to own it.
 655 */
 656static
 657void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
 658			struct sk_buff *skb, unsigned sn, unsigned nsn)
 659{
 660	struct device *dev = i2400m_dev(i2400m);
 661	struct sk_buff *skb_itr;
 662	struct i2400m_roq_data *roq_data_itr, *roq_data;
 663	unsigned nsn_itr;
 664
 665	d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
 666		  i2400m, roq, skb, sn, nsn);
 667
 668	roq_data = (struct i2400m_roq_data *) &skb->cb;
 669	BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
 670	roq_data->sn = sn;
 671	d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
 672		 roq, roq->ws, nsn, roq_data->sn);
 673
 674	/* Queues will be empty on not-so-bad environments, so try
 675	 * that first */
 676	if (skb_queue_empty(&roq->queue)) {
 677		d_printf(2, dev, "ERX: roq %p - first one\n", roq);
 678		__skb_queue_head(&roq->queue, skb);
 679		goto out;
 680	}
 681	/* Now try append, as most of the operations will be that */
 682	skb_itr = skb_peek_tail(&roq->queue);
 683	roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 684	nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 685	/* NSN bounds assumed correct (checked when it was queued) */
 686	if (nsn >= nsn_itr) {
 687		d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
 688			 roq, skb_itr, nsn_itr, roq_data_itr->sn);
 689		__skb_queue_tail(&roq->queue, skb);
 690		goto out;
 691	}
 692	/* None of the fast paths option worked. Iterate to find the
 693	 * right spot where to insert the packet; we know the queue is
 694	 * not empty, so we are not the first ones; we also know we
 695	 * are not going to be the last ones. The list is sorted, so
 696	 * we have to insert before the the first guy with an nsn_itr
 697	 * greater that our nsn. */
 698	skb_queue_walk(&roq->queue, skb_itr) {
 699		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 700		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 701		/* NSN bounds assumed correct (checked when it was queued) */
 702		if (nsn_itr > nsn) {
 703			d_printf(2, dev, "ERX: roq %p - queued before %p "
 704				 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
 705				 roq_data_itr->sn);
 706			__skb_queue_before(&roq->queue, skb_itr, skb);
 707			goto out;
 708		}
 709	}
 710	/* If we get here, that is VERY bad -- print info to help
 711	 * diagnose and crash it */
 712	dev_err(dev, "SW BUG? failed to insert packet\n");
 713	dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
 714		roq, roq->ws, skb, nsn, roq_data->sn);
 715	skb_queue_walk(&roq->queue, skb_itr) {
 716		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 717		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 718		/* NSN bounds assumed correct (checked when it was queued) */
 719		dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
 720			roq, skb_itr, nsn_itr, roq_data_itr->sn);
 721	}
 722	BUG();
 723out:
 724	d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
 725		i2400m, roq, skb, sn, nsn);
 726}
 727
 728
 729/*
 730 * Backbone for the update window start operation
 731 *
 732 * @i2400m: device descriptor
 733 * @roq: Reorder queue
 734 * @sn: New sequence number
 735 *
 736 * Updates the window start of a queue; when doing so, it must deliver
 737 * to the networking stack all the queued skb's whose normalized
 738 * sequence number is lower than the new normalized window start.
 739 */
 740static
 741unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 742				unsigned sn)
 743{
 744	struct device *dev = i2400m_dev(i2400m);
 745	struct sk_buff *skb_itr, *tmp_itr;
 746	struct i2400m_roq_data *roq_data_itr;
 747	unsigned new_nws, nsn_itr;
 748
 749	new_nws = __i2400m_roq_nsn(roq, sn);
 750	/*
 751	 * For type 2(update_window_start) rx messages, there is no
 752	 * need to check if the normalized sequence number is greater 1023.
 753	 * Simply insert and deliver all packets to the host up to the
 754	 * window start.
 755	 */
 756	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
 757		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 758		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
 759		/* NSN bounds assumed correct (checked when it was queued) */
 760		if (nsn_itr < new_nws) {
 761			d_printf(2, dev, "ERX: roq %p - release skb %p "
 762				 "(nsn %u/%u new nws %u)\n",
 763				 roq, skb_itr, nsn_itr, roq_data_itr->sn,
 764				 new_nws);
 765			__skb_unlink(skb_itr, &roq->queue);
 766			i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
 767		}
 768		else
 769			break;	/* rest of packets all nsn_itr > nws */
 770	}
 771	roq->ws = sn;
 772	return new_nws;
 773}
 774
 775
 776/*
 777 * Reset a queue
 778 *
 779 * @i2400m: device descriptor
 780 * @cin: Queue Index
 781 *
 782 * Deliver all the packets and reset the window-start to zero. Name is
 783 * kind of misleading.
 784 */
 785static
 786void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
 787{
 788	struct device *dev = i2400m_dev(i2400m);
 789	struct sk_buff *skb_itr, *tmp_itr;
 790	struct i2400m_roq_data *roq_data_itr;
 791
 792	d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
 793	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
 794			     roq->ws, skb_queue_len(&roq->queue),
 795			     ~0, ~0, 0);
 796	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
 797		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
 798		d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
 799			 roq, skb_itr, roq_data_itr->sn);
 800		__skb_unlink(skb_itr, &roq->queue);
 801		i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
 802	}
 803	roq->ws = 0;
 804	d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
 805}
 806
 807
 808/*
 809 * Queue a packet
 810 *
 811 * @i2400m: device descriptor
 812 * @cin: Queue Index
 813 * @skb: containing the packet data
 814 * @fbn: First block number of the packet in @skb
 815 * @lbn: Last block number of the packet in @skb
 816 *
 817 * The hardware is asking the driver to queue a packet for later
 818 * delivery to the networking stack.
 819 */
 820static
 821void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
 822		      struct sk_buff * skb, unsigned lbn)
 823{
 824	struct device *dev = i2400m_dev(i2400m);
 825	unsigned nsn, len;
 826
 827	d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
 828		  i2400m, roq, skb, lbn);
 829	len = skb_queue_len(&roq->queue);
 830	nsn = __i2400m_roq_nsn(roq, lbn);
 831	if (unlikely(nsn >= 1024)) {
 832		dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
 833			nsn, lbn, roq->ws);
 834		i2400m_roq_log_dump(i2400m, roq);
 835		i2400m_reset(i2400m, I2400M_RT_WARM);
 836	} else {
 837		__i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
 838		i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
 839				     roq->ws, len, lbn, nsn, ~0);
 840	}
 841	d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
 842		i2400m, roq, skb, lbn);
 843}
 844
 845
 846/*
 847 * Update the window start in a reorder queue and deliver all skbs
 848 * with a lower window start
 849 *
 850 * @i2400m: device descriptor
 851 * @roq: Reorder queue
 852 * @sn: New sequence number
 853 */
 854static
 855void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 856			  unsigned sn)
 857{
 858	struct device *dev = i2400m_dev(i2400m);
 859	unsigned old_ws, nsn, len;
 860
 861	d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
 862	old_ws = roq->ws;
 863	len = skb_queue_len(&roq->queue);
 864	nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
 865	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
 866			     old_ws, len, sn, nsn, roq->ws);
 867	d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
 868}
 869
 870
 871/*
 872 * Queue a packet and update the window start
 873 *
 874 * @i2400m: device descriptor
 875 * @cin: Queue Index
 876 * @skb: containing the packet data
 877 * @fbn: First block number of the packet in @skb
 878 * @sn: Last block number of the packet in @skb
 879 *
 880 * Note that unlike i2400m_roq_update_ws(), which sets the new window
 881 * start to @sn, in here we'll set it to @sn + 1.
 882 */
 883static
 884void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
 885				struct sk_buff * skb, unsigned sn)
 886{
 887	struct device *dev = i2400m_dev(i2400m);
 888	unsigned nsn, old_ws, len;
 889
 890	d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
 891		  i2400m, roq, skb, sn);
 892	len = skb_queue_len(&roq->queue);
 893	nsn = __i2400m_roq_nsn(roq, sn);
 894	/*
 895	 * For type 3(queue_update_window_start) rx messages, there is no
 896	 * need to check if the normalized sequence number is greater 1023.
 897	 * Simply insert and deliver all packets to the host up to the
 898	 * window start.
 899	 */
 900	old_ws = roq->ws;
 901	/* If the queue is empty, don't bother as we'd queue
 902	 * it and immediately unqueue it -- just deliver it.
 903	 */
 904	if (len == 0) {
 905		struct i2400m_roq_data *roq_data;
 906		roq_data = (struct i2400m_roq_data *) &skb->cb;
 907		i2400m_net_erx(i2400m, skb, roq_data->cs);
 908	} else
 909		__i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
 910
 911	__i2400m_roq_update_ws(i2400m, roq, sn + 1);
 912	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
 913			   old_ws, len, sn, nsn, roq->ws);
 914
 915	d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
 916		i2400m, roq, skb, sn);
 917}
 918
 919
 920/*
 921 * This routine destroys the memory allocated for rx_roq, when no
 922 * other thread is accessing it. Access to rx_roq is refcounted by
 923 * rx_roq_refcount, hence memory allocated must be destroyed when
 924 * rx_roq_refcount becomes zero. This routine gets executed when
 925 * rx_roq_refcount becomes zero.
 926 */
 927static void i2400m_rx_roq_destroy(struct kref *ref)
 928{
 929	unsigned itr;
 930	struct i2400m *i2400m
 931			= container_of(ref, struct i2400m, rx_roq_refcount);
 932	for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
 933		__skb_queue_purge(&i2400m->rx_roq[itr].queue);
 934	kfree(i2400m->rx_roq[0].log);
 935	kfree(i2400m->rx_roq);
 936	i2400m->rx_roq = NULL;
 937}
 938
 939/*
 940 * Receive and send up an extended data packet
 941 *
 942 * @i2400m: device descriptor
 943 * @skb_rx: skb that contains the extended data packet
 944 * @single_last: 1 if the payload is the only one or the last one of
 945 *     the skb.
 946 * @payload: pointer to the packet's data inside the skb
 947 * @size: size of the payload
 948 *
 949 * Starting in v1.4 of the i2400m's firmware, the device can send data
 950 * packets to the host in an extended format that; this incudes a 16
 951 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
 952 * we can fake ethernet headers for ethernet device emulation without
 953 * having to copy packets around.
 954 *
 955 * This function handles said path.
 956 *
 957 *
 958 * Receive and send up an extended data packet that requires no reordering
 959 *
 960 * @i2400m: device descriptor
 961 * @skb_rx: skb that contains the extended data packet
 962 * @single_last: 1 if the payload is the only one or the last one of
 963 *     the skb.
 964 * @payload: pointer to the packet's data (past the actual extended
 965 *     data payload header).
 966 * @size: size of the payload
 967 *
 968 * Pass over to the networking stack a data packet that might have
 969 * reordering requirements.
 970 *
 971 * This needs to the decide if the skb in which the packet is
 972 * contained can be reused or if it needs to be cloned. Then it has to
 973 * be trimmed in the edges so that the beginning is the space for eth
 974 * header and then pass it to i2400m_net_erx() for the stack
 975 *
 976 * Assumes the caller has verified the sanity of the payload (size,
 977 * etc) already.
 978 */
 979static
 980void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
 981		     unsigned single_last, const void *payload, size_t size)
 982{
 983	struct device *dev = i2400m_dev(i2400m);
 984	const struct i2400m_pl_edata_hdr *hdr = payload;
 985	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 986	struct sk_buff *skb;
 987	enum i2400m_cs cs;
 988	u32 reorder;
 989	unsigned ro_needed, ro_type, ro_cin, ro_sn;
 990	struct i2400m_roq *roq;
 991	struct i2400m_roq_data *roq_data;
 992	unsigned long flags;
 993
 994	BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
 995
 996	d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
 997		  "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
 998	if (size < sizeof(*hdr)) {
 999		dev_err(dev, "ERX: HW BUG? message with short header (%zu "
1000			"vs %zu bytes expected)\n", size, sizeof(*hdr));
1001		goto error;
1002	}
1003
1004	if (single_last) {
1005		skb = skb_get(skb_rx);
1006		d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1007	} else {
1008		skb = skb_clone(skb_rx, GFP_KERNEL);
1009		if (skb == NULL) {
1010			dev_err(dev, "ERX: no memory to clone skb\n");
1011			net_dev->stats.rx_dropped++;
1012			goto error_skb_clone;
1013		}
1014		d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1015	}
1016	/* now we have to pull and trim so that the skb points to the
1017	 * beginning of the IP packet; the netdev part will add the
1018	 * ethernet header as needed - we know there is enough space
1019	 * because we checked in i2400m_rx_edata(). */
1020	skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1021	skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1022
1023	reorder = le32_to_cpu(hdr->reorder);
1024	ro_needed = reorder & I2400M_RO_NEEDED;
1025	cs = hdr->cs;
1026	if (ro_needed) {
1027		ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1028		ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1029		ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1030
1031		spin_lock_irqsave(&i2400m->rx_lock, flags);
1032		if (i2400m->rx_roq == NULL) {
1033			kfree_skb(skb);	/* rx_roq is already destroyed */
1034			spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1035			goto error;
1036		}
1037		roq = &i2400m->rx_roq[ro_cin];
1038		kref_get(&i2400m->rx_roq_refcount);
1039		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1040
1041		roq_data = (struct i2400m_roq_data *) &skb->cb;
1042		roq_data->sn = ro_sn;
1043		roq_data->cs = cs;
1044		d_printf(2, dev, "ERX: reorder needed: "
1045			 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1046			 ro_type, ro_cin, roq->ws, ro_sn,
1047			 __i2400m_roq_nsn(roq, ro_sn), size);
1048		d_dump(2, dev, payload, size);
1049		switch(ro_type) {
1050		case I2400M_RO_TYPE_RESET:
1051			i2400m_roq_reset(i2400m, roq);
1052			kfree_skb(skb);	/* no data here */
1053			break;
1054		case I2400M_RO_TYPE_PACKET:
1055			i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1056			break;
1057		case I2400M_RO_TYPE_WS:
1058			i2400m_roq_update_ws(i2400m, roq, ro_sn);
1059			kfree_skb(skb);	/* no data here */
1060			break;
1061		case I2400M_RO_TYPE_PACKET_WS:
1062			i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1063			break;
1064		default:
1065			dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1066		}
1067
1068		spin_lock_irqsave(&i2400m->rx_lock, flags);
1069		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1070		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1071	}
1072	else
1073		i2400m_net_erx(i2400m, skb, cs);
1074error_skb_clone:
1075error:
1076	d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1077		"size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1078}
1079
1080
1081/*
1082 * Act on a received payload
1083 *
1084 * @i2400m: device instance
1085 * @skb_rx: skb where the transaction was received
1086 * @single_last: 1 this is the only payload or the last one (so the
1087 *     skb can be reused instead of cloned).
1088 * @pld: payload descriptor
1089 * @payload: payload data
1090 *
1091 * Upon reception of a payload, look at its guts in the payload
1092 * descriptor and decide what to do with it. If it is a single payload
1093 * skb or if the last skb is a data packet, the skb will be referenced
1094 * and modified (so it doesn't have to be cloned).
1095 */
1096static
1097void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1098		       unsigned single_last, const struct i2400m_pld *pld,
1099		       const void *payload)
1100{
1101	struct device *dev = i2400m_dev(i2400m);
1102	size_t pl_size = i2400m_pld_size(pld);
1103	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1104
1105	d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1106		 pl_type, pl_size);
1107	d_dump(8, dev, payload, pl_size);
1108
1109	switch (pl_type) {
1110	case I2400M_PT_DATA:
1111		d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1112		i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1113		break;
1114	case I2400M_PT_CTRL:
1115		i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1116		break;
1117	case I2400M_PT_TRACE:
1118		i2400m_rx_trace(i2400m, payload, pl_size);
1119		break;
1120	case I2400M_PT_EDATA:
1121		d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1122		i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1123		break;
1124	default:	/* Anything else shouldn't come to the host */
1125		if (printk_ratelimit())
1126			dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1127				pl_type);
1128	}
1129}
1130
1131
1132/*
1133 * Check a received transaction's message header
1134 *
1135 * @i2400m: device descriptor
1136 * @msg_hdr: message header
1137 * @buf_size: size of the received buffer
1138 *
1139 * Check that the declarations done by a RX buffer message header are
1140 * sane and consistent with the amount of data that was received.
1141 */
1142static
1143int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1144			    const struct i2400m_msg_hdr *msg_hdr,
1145			    size_t buf_size)
1146{
1147	int result = -EIO;
1148	struct device *dev = i2400m_dev(i2400m);
1149	if (buf_size < sizeof(*msg_hdr)) {
1150		dev_err(dev, "RX: HW BUG? message with short header (%zu "
1151			"vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1152		goto error;
1153	}
1154	if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1155		dev_err(dev, "RX: HW BUG? message received with unknown "
1156			"barker 0x%08x (buf_size %zu bytes)\n",
1157			le32_to_cpu(msg_hdr->barker), buf_size);
1158		goto error;
1159	}
1160	if (msg_hdr->num_pls == 0) {
1161		dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1162		goto error;
1163	}
1164	if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1165		dev_err(dev, "RX: HW BUG? message contains more payload "
1166			"than maximum; ignoring.\n");
1167		goto error;
1168	}
1169	result = 0;
1170error:
1171	return result;
1172}
1173
1174
1175/*
1176 * Check a payload descriptor against the received data
1177 *
1178 * @i2400m: device descriptor
1179 * @pld: payload descriptor
1180 * @pl_itr: offset (in bytes) in the received buffer the payload is
1181 *          located
1182 * @buf_size: size of the received buffer
1183 *
1184 * Given a payload descriptor (part of a RX buffer), check it is sane
1185 * and that the data it declares fits in the buffer.
1186 */
1187static
1188int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1189			      const struct i2400m_pld *pld,
1190			      size_t pl_itr, size_t buf_size)
1191{
1192	int result = -EIO;
1193	struct device *dev = i2400m_dev(i2400m);
1194	size_t pl_size = i2400m_pld_size(pld);
1195	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1196
1197	if (pl_size > i2400m->bus_pl_size_max) {
1198		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1199			"bigger than maximum %zu; ignoring message\n",
1200			pl_itr, pl_size, i2400m->bus_pl_size_max);
1201		goto error;
1202	}
1203	if (pl_itr + pl_size > buf_size) {	/* enough? */
1204		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1205			"goes beyond the received buffer "
1206			"size (%zu bytes); ignoring message\n",
1207			pl_itr, pl_size, buf_size);
1208		goto error;
1209	}
1210	if (pl_type >= I2400M_PT_ILLEGAL) {
1211		dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1212			"ignoring message\n", pl_type);
1213		goto error;
1214	}
1215	result = 0;
1216error:
1217	return result;
1218}
1219
1220
1221/**
1222 * i2400m_rx - Receive a buffer of data from the device
1223 *
1224 * @i2400m: device descriptor
1225 * @skb: skbuff where the data has been received
1226 *
1227 * Parse in a buffer of data that contains an RX message sent from the
1228 * device. See the file header for the format. Run all checks on the
1229 * buffer header, then run over each payload's descriptors, verify
1230 * their consistency and act on each payload's contents.  If
1231 * everything is successful, update the device's statistics.
1232 *
1233 * Note: You need to set the skb to contain only the length of the
1234 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1235 *
1236 * Returns:
1237 *
1238 * 0 if ok, < 0 errno on error
1239 *
1240 * If ok, this function owns now the skb and the caller DOESN'T have
1241 * to run kfree_skb() on it. However, on error, the caller still owns
1242 * the skb and it is responsible for releasing it.
1243 */
1244int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1245{
1246	int i, result;
1247	struct device *dev = i2400m_dev(i2400m);
1248	const struct i2400m_msg_hdr *msg_hdr;
1249	size_t pl_itr, pl_size;
1250	unsigned long flags;
1251	unsigned num_pls, single_last, skb_len;
1252
1253	skb_len = skb->len;
1254	d_fnstart(4, dev, "(i2400m %p skb %p [size %u])\n",
1255		  i2400m, skb, skb_len);
1256	result = -EIO;
1257	msg_hdr = (void *) skb->data;
1258	result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb_len);
1259	if (result < 0)
1260		goto error_msg_hdr_check;
1261	result = -EIO;
1262	num_pls = le16_to_cpu(msg_hdr->num_pls);
1263	pl_itr = sizeof(*msg_hdr) +	/* Check payload descriptor(s) */
1264		num_pls * sizeof(msg_hdr->pld[0]);
1265	pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1266	if (pl_itr > skb_len) {	/* got all the payload descriptors? */
1267		dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1268			"%u payload descriptors (%zu each, total %zu)\n",
1269			skb_len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1270		goto error_pl_descr_short;
1271	}
1272	/* Walk each payload payload--check we really got it */
1273	for (i = 0; i < num_pls; i++) {
1274		/* work around old gcc warnings */
1275		pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1276		result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1277						  pl_itr, skb_len);
1278		if (result < 0)
1279			goto error_pl_descr_check;
1280		single_last = num_pls == 1 || i == num_pls - 1;
1281		i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1282				  skb->data + pl_itr);
1283		pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1284		cond_resched();		/* Don't monopolize */
1285	}
1286	kfree_skb(skb);
1287	/* Update device statistics */
1288	spin_lock_irqsave(&i2400m->rx_lock, flags);
1289	i2400m->rx_pl_num += i;
1290	if (i > i2400m->rx_pl_max)
1291		i2400m->rx_pl_max = i;
1292	if (i < i2400m->rx_pl_min)
1293		i2400m->rx_pl_min = i;
1294	i2400m->rx_num++;
1295	i2400m->rx_size_acc += skb_len;
1296	if (skb_len < i2400m->rx_size_min)
1297		i2400m->rx_size_min = skb_len;
1298	if (skb_len > i2400m->rx_size_max)
1299		i2400m->rx_size_max = skb_len;
1300	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1301error_pl_descr_check:
1302error_pl_descr_short:
1303error_msg_hdr_check:
1304	d_fnend(4, dev, "(i2400m %p skb %p [size %u]) = %d\n",
1305		i2400m, skb, skb_len, result);
1306	return result;
1307}
1308EXPORT_SYMBOL_GPL(i2400m_rx);
1309
1310
1311void i2400m_unknown_barker(struct i2400m *i2400m,
1312			   const void *buf, size_t size)
1313{
1314	struct device *dev = i2400m_dev(i2400m);
1315	char prefix[64];
1316	const __le32 *barker = buf;
1317	dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1318		"dropping %zu bytes\n", le32_to_cpu(*barker), size);
1319	snprintf(prefix, sizeof(prefix), "%s %s: ",
1320		 dev_driver_string(dev), dev_name(dev));
1321	if (size > 64) {
1322		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1323			       8, 4, buf, 64, 0);
1324		printk(KERN_ERR "%s... (only first 64 bytes "
1325		       "dumped)\n", prefix);
1326	} else
1327		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1328			       8, 4, buf, size, 0);
1329}
1330EXPORT_SYMBOL(i2400m_unknown_barker);
1331
1332
1333/*
1334 * Initialize the RX queue and infrastructure
1335 *
1336 * This sets up all the RX reordering infrastructures, which will not
1337 * be used if reordering is not enabled or if the firmware does not
1338 * support it. The device is told to do reordering in
1339 * i2400m_dev_initialize(), where it also looks at the value of the
1340 * i2400m->rx_reorder switch before taking a decission.
1341 *
1342 * Note we allocate the roq queues in one chunk and the actual logging
1343 * support for it (logging) in another one and then we setup the
1344 * pointers from the first to the last.
1345 */
1346int i2400m_rx_setup(struct i2400m *i2400m)
1347{
1348	int result = 0;
1349
1350	i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1351	if (i2400m->rx_reorder) {
1352		unsigned itr;
1353		struct i2400m_roq_log *rd;
1354
1355		result = -ENOMEM;
1356
1357		i2400m->rx_roq = kcalloc(I2400M_RO_CIN + 1,
1358					 sizeof(i2400m->rx_roq[0]), GFP_KERNEL);
1359		if (i2400m->rx_roq == NULL)
1360			goto error_roq_alloc;
1361
1362		rd = kcalloc(I2400M_RO_CIN + 1, sizeof(*i2400m->rx_roq[0].log),
1363			     GFP_KERNEL);
1364		if (rd == NULL) {
1365			result = -ENOMEM;
1366			goto error_roq_log_alloc;
1367		}
1368
1369		for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1370			__i2400m_roq_init(&i2400m->rx_roq[itr]);
1371			i2400m->rx_roq[itr].log = &rd[itr];
1372		}
1373		kref_init(&i2400m->rx_roq_refcount);
1374	}
1375	return 0;
1376
1377error_roq_log_alloc:
1378	kfree(i2400m->rx_roq);
1379error_roq_alloc:
1380	return result;
1381}
1382
1383
1384/* Tear down the RX queue and infrastructure */
1385void i2400m_rx_release(struct i2400m *i2400m)
1386{
1387	unsigned long flags;
1388
1389	if (i2400m->rx_reorder) {
1390		spin_lock_irqsave(&i2400m->rx_lock, flags);
1391		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1392		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1393	}
1394	/* at this point, nothing can be received... */
1395	i2400m_report_hook_flush(i2400m);
1396}