Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  3 *
  4 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc.,
 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18 */
 19
 20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 21
 22#include <linux/module.h>
 23#include <linux/kernel.h>
 24#include <linux/string.h>
 25#include <linux/ptrace.h>
 26#include <linux/errno.h>
 27#include <linux/ioport.h>
 28#include <linux/slab.h>
 29#include <linux/interrupt.h>
 30#include <linux/pci.h>
 31#include <linux/delay.h>
 32#include <linux/netdevice.h>
 33#include <linux/etherdevice.h>
 34#include <linux/skbuff.h>
 35#include <linux/spinlock.h>
 36#include <linux/workqueue.h>
 37#include <linux/bitops.h>
 38#include <linux/io.h>
 39#include <linux/irq.h>
 40#include <linux/clk.h>
 41#include <linux/platform_device.h>
 42#include <linux/phy.h>
 43#include <linux/fec.h>
 44#include <linux/of.h>
 45#include <linux/of_device.h>
 46#include <linux/of_gpio.h>
 47#include <linux/of_net.h>
 48
 49#include "fec.h"
 50
 51/* FEC 1588 register bits */
 52#define FEC_T_CTRL_SLAVE                0x00002000
 53#define FEC_T_CTRL_CAPTURE              0x00000800
 54#define FEC_T_CTRL_RESTART              0x00000200
 55#define FEC_T_CTRL_PERIOD_RST           0x00000030
 56#define FEC_T_CTRL_PERIOD_EN		0x00000010
 57#define FEC_T_CTRL_ENABLE               0x00000001
 58
 59#define FEC_T_INC_MASK                  0x0000007f
 60#define FEC_T_INC_OFFSET                0
 61#define FEC_T_INC_CORR_MASK             0x00007f00
 62#define FEC_T_INC_CORR_OFFSET           8
 63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64#define FEC_ATIME_CTRL		0x400
 65#define FEC_ATIME		0x404
 66#define FEC_ATIME_EVT_OFFSET	0x408
 67#define FEC_ATIME_EVT_PERIOD	0x40c
 68#define FEC_ATIME_CORR		0x410
 69#define FEC_ATIME_INC		0x414
 70#define FEC_TS_TIMESTAMP	0x418
 71
 
 
 
 
 
 
 
 72#define FEC_CC_MULT	(1 << 31)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73/**
 74 * fec_ptp_read - read raw cycle counter (to be used by time counter)
 75 * @cc: the cyclecounter structure
 76 *
 77 * this function reads the cyclecounter registers and is called by the
 78 * cyclecounter structure used to construct a ns counter from the
 79 * arbitrary fixed point registers
 80 */
 81static cycle_t fec_ptp_read(const struct cyclecounter *cc)
 82{
 83	struct fec_enet_private *fep =
 84		container_of(cc, struct fec_enet_private, cc);
 
 
 85	u32 tempval;
 86
 87	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 88	tempval |= FEC_T_CTRL_CAPTURE;
 89	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 90
 
 
 
 91	return readl(fep->hwp + FEC_ATIME);
 92}
 93
 94/**
 95 * fec_ptp_start_cyclecounter - create the cycle counter from hw
 96 * @ndev: network device
 97 *
 98 * this function initializes the timecounter and cyclecounter
 99 * structures for use in generated a ns counter from the arbitrary
100 * fixed point cycles registers in the hardware.
101 */
102void fec_ptp_start_cyclecounter(struct net_device *ndev)
103{
104	struct fec_enet_private *fep = netdev_priv(ndev);
105	unsigned long flags;
106	int inc;
107
108	inc = 1000000000 / fep->cycle_speed;
109
110	/* grab the ptp lock */
111	spin_lock_irqsave(&fep->tmreg_lock, flags);
112
113	/* 1ns counter */
114	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
115
116	/* use free running count */
117	writel(0, fep->hwp + FEC_ATIME_EVT_PERIOD);
118
119	writel(FEC_T_CTRL_ENABLE, fep->hwp + FEC_ATIME_CTRL);
 
120
121	memset(&fep->cc, 0, sizeof(fep->cc));
122	fep->cc.read = fec_ptp_read;
123	fep->cc.mask = CLOCKSOURCE_MASK(32);
124	fep->cc.shift = 31;
125	fep->cc.mult = FEC_CC_MULT;
126
127	/* reset the ns time counter */
128	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
129
130	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
131}
132
133/**
134 * fec_ptp_adjfreq - adjust ptp cycle frequency
135 * @ptp: the ptp clock structure
136 * @ppb: parts per billion adjustment from base
137 *
138 * Adjust the frequency of the ptp cycle counter by the
139 * indicated ppb from the base frequency.
140 *
141 * Because ENET hardware frequency adjust is complex,
142 * using software method to do that.
143 */
144static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
145{
146	u64 diff;
147	unsigned long flags;
148	int neg_adj = 0;
149	u32 mult = FEC_CC_MULT;
 
 
 
150
151	struct fec_enet_private *fep =
152	    container_of(ptp, struct fec_enet_private, ptp_caps);
153
 
 
 
154	if (ppb < 0) {
155		ppb = -ppb;
156		neg_adj = 1;
157	}
158
159	diff = mult;
160	diff *= ppb;
161	diff = div_u64(diff, 1000000000ULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
163	spin_lock_irqsave(&fep->tmreg_lock, flags);
164	/*
165	 * dummy read to set cycle_last in tc to now.
166	 * So use adjusted mult to calculate when next call
167	 * timercounter_read.
168	 */
169	timecounter_read(&fep->tc);
170
171	fep->cc.mult = neg_adj ? mult - diff : mult + diff;
 
 
 
 
 
 
172
173	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
174
175	return 0;
176}
177
178/**
179 * fec_ptp_adjtime
180 * @ptp: the ptp clock structure
181 * @delta: offset to adjust the cycle counter by
182 *
183 * adjust the timer by resetting the timecounter structure.
184 */
185static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
186{
187	struct fec_enet_private *fep =
188	    container_of(ptp, struct fec_enet_private, ptp_caps);
189	unsigned long flags;
190	u64 now;
191
192	spin_lock_irqsave(&fep->tmreg_lock, flags);
193
194	now = timecounter_read(&fep->tc);
195	now += delta;
196
197	/* reset the timecounter */
198	timecounter_init(&fep->tc, &fep->cc, now);
199
200	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
201
202	return 0;
203}
204
205/**
206 * fec_ptp_gettime
207 * @ptp: the ptp clock structure
208 * @ts: timespec structure to hold the current time value
209 *
210 * read the timecounter and return the correct value on ns,
211 * after converting it into a struct timespec.
212 */
213static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
214{
215	struct fec_enet_private *adapter =
216	    container_of(ptp, struct fec_enet_private, ptp_caps);
217	u64 ns;
218	u32 remainder;
219	unsigned long flags;
220
221	spin_lock_irqsave(&adapter->tmreg_lock, flags);
222	ns = timecounter_read(&adapter->tc);
223	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
224
225	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
226	ts->tv_nsec = remainder;
227
228	return 0;
229}
230
231/**
232 * fec_ptp_settime
233 * @ptp: the ptp clock structure
234 * @ts: the timespec containing the new time for the cycle counter
235 *
236 * reset the timecounter to use a new base value instead of the kernel
237 * wall timer value.
238 */
239static int fec_ptp_settime(struct ptp_clock_info *ptp,
240			   const struct timespec *ts)
241{
242	struct fec_enet_private *fep =
243	    container_of(ptp, struct fec_enet_private, ptp_caps);
244
245	u64 ns;
246	unsigned long flags;
 
247
248	ns = ts->tv_sec * 1000000000ULL;
249	ns += ts->tv_nsec;
 
 
 
 
 
 
 
 
 
 
250
251	spin_lock_irqsave(&fep->tmreg_lock, flags);
 
252	timecounter_init(&fep->tc, &fep->cc, ns);
253	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 
254	return 0;
255}
256
257/**
258 * fec_ptp_enable
259 * @ptp: the ptp clock structure
260 * @rq: the requested feature to change
261 * @on: whether to enable or disable the feature
262 *
263 */
264static int fec_ptp_enable(struct ptp_clock_info *ptp,
265			  struct ptp_clock_request *rq, int on)
266{
 
 
 
 
 
 
 
 
 
267	return -EOPNOTSUPP;
268}
269
270/**
271 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
272 * @ndev: pointer to net_device
273 * @ifreq: ioctl data
274 * @cmd: particular ioctl requested
275 */
276int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
277{
278	struct fec_enet_private *fep = netdev_priv(ndev);
279
280	struct hwtstamp_config config;
281
282	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
283		return -EFAULT;
284
285	/* reserved for future extensions */
286	if (config.flags)
287		return -EINVAL;
288
289	switch (config.tx_type) {
290	case HWTSTAMP_TX_OFF:
291		fep->hwts_tx_en = 0;
292		break;
293	case HWTSTAMP_TX_ON:
294		fep->hwts_tx_en = 1;
295		break;
296	default:
297		return -ERANGE;
298	}
299
300	switch (config.rx_filter) {
301	case HWTSTAMP_FILTER_NONE:
302		if (fep->hwts_rx_en)
303			fep->hwts_rx_en = 0;
304		config.rx_filter = HWTSTAMP_FILTER_NONE;
305		break;
306
307	default:
308		/*
309		 * register RXMTRL must be set in order to do V1 packets,
310		 * therefore it is not possible to time stamp both V1 Sync and
311		 * Delay_Req messages and hardware does not support
312		 * timestamping all packets => return error
313		 */
314		fep->hwts_rx_en = 1;
315		config.rx_filter = HWTSTAMP_FILTER_ALL;
316		break;
317	}
318
319	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
320	    -EFAULT : 0;
321}
322
323int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
324{
325	struct fec_enet_private *fep = netdev_priv(ndev);
326	struct hwtstamp_config config;
327
328	config.flags = 0;
329	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
330	config.rx_filter = (fep->hwts_rx_en ?
331			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
332
333	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
334		-EFAULT : 0;
335}
336
337/**
338 * fec_time_keep - call timecounter_read every second to avoid timer overrun
339 *                 because ENET just support 32bit counter, will timeout in 4s
340 */
341static void fec_time_keep(unsigned long _data)
342{
343	struct fec_enet_private *fep = (struct fec_enet_private *)_data;
 
344	u64 ns;
345	unsigned long flags;
346
347	spin_lock_irqsave(&fep->tmreg_lock, flags);
348	ns = timecounter_read(&fep->tc);
349	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
351	mod_timer(&fep->time_keep, jiffies + HZ);
352}
353
354/**
355 * fec_ptp_init
356 * @ndev: The FEC network adapter
357 *
358 * This function performs the required steps for enabling ptp
359 * support. If ptp support has already been loaded it simply calls the
360 * cyclecounter init routine and exits.
361 */
362
363void fec_ptp_init(struct platform_device *pdev)
364{
365	struct net_device *ndev = platform_get_drvdata(pdev);
366	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
367
368	fep->ptp_caps.owner = THIS_MODULE;
369	snprintf(fep->ptp_caps.name, 16, "fec ptp");
370
371	fep->ptp_caps.max_adj = 250000000;
372	fep->ptp_caps.n_alarm = 0;
373	fep->ptp_caps.n_ext_ts = 0;
374	fep->ptp_caps.n_per_out = 0;
375	fep->ptp_caps.n_pins = 0;
376	fep->ptp_caps.pps = 0;
377	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
378	fep->ptp_caps.adjtime = fec_ptp_adjtime;
379	fep->ptp_caps.gettime = fec_ptp_gettime;
380	fep->ptp_caps.settime = fec_ptp_settime;
381	fep->ptp_caps.enable = fec_ptp_enable;
382
383	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 
384
385	spin_lock_init(&fep->tmreg_lock);
386
387	fec_ptp_start_cyclecounter(ndev);
388
389	init_timer(&fep->time_keep);
390	fep->time_keep.data = (unsigned long)fep;
391	fep->time_keep.function = fec_time_keep;
392	fep->time_keep.expires = jiffies + HZ;
393	add_timer(&fep->time_keep);
 
 
 
 
 
 
 
 
 
 
394
395	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
396	if (IS_ERR(fep->ptp_clock)) {
397		fep->ptp_clock = NULL;
398		pr_err("ptp_clock_register failed\n");
399	}
 
 
 
 
 
 
 
 
 
 
 
 
400}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_device.h>
 34#include <linux/of_gpio.h>
 35#include <linux/of_net.h>
 36
 37#include "fec.h"
 38
 39/* FEC 1588 register bits */
 40#define FEC_T_CTRL_SLAVE                0x00002000
 41#define FEC_T_CTRL_CAPTURE              0x00000800
 42#define FEC_T_CTRL_RESTART              0x00000200
 43#define FEC_T_CTRL_PERIOD_RST           0x00000030
 44#define FEC_T_CTRL_PERIOD_EN		0x00000010
 45#define FEC_T_CTRL_ENABLE               0x00000001
 46
 47#define FEC_T_INC_MASK                  0x0000007f
 48#define FEC_T_INC_OFFSET                0
 49#define FEC_T_INC_CORR_MASK             0x00007f00
 50#define FEC_T_INC_CORR_OFFSET           8
 51
 52#define FEC_T_CTRL_PINPER		0x00000080
 53#define FEC_T_TF0_MASK			0x00000001
 54#define FEC_T_TF0_OFFSET		0
 55#define FEC_T_TF1_MASK			0x00000002
 56#define FEC_T_TF1_OFFSET		1
 57#define FEC_T_TF2_MASK			0x00000004
 58#define FEC_T_TF2_OFFSET		2
 59#define FEC_T_TF3_MASK			0x00000008
 60#define FEC_T_TF3_OFFSET		3
 61#define FEC_T_TDRE_MASK			0x00000001
 62#define FEC_T_TDRE_OFFSET		0
 63#define FEC_T_TMODE_MASK		0x0000003C
 64#define FEC_T_TMODE_OFFSET		2
 65#define FEC_T_TIE_MASK			0x00000040
 66#define FEC_T_TIE_OFFSET		6
 67#define FEC_T_TF_MASK			0x00000080
 68#define FEC_T_TF_OFFSET			7
 69
 70#define FEC_ATIME_CTRL		0x400
 71#define FEC_ATIME		0x404
 72#define FEC_ATIME_EVT_OFFSET	0x408
 73#define FEC_ATIME_EVT_PERIOD	0x40c
 74#define FEC_ATIME_CORR		0x410
 75#define FEC_ATIME_INC		0x414
 76#define FEC_TS_TIMESTAMP	0x418
 77
 78#define FEC_TGSR		0x604
 79#define FEC_TCSR(n)		(0x608 + n * 0x08)
 80#define FEC_TCCR(n)		(0x60C + n * 0x08)
 81#define MAX_TIMER_CHANNEL	3
 82#define FEC_TMODE_TOGGLE	0x05
 83#define FEC_HIGH_PULSE		0x0F
 84
 85#define FEC_CC_MULT	(1 << 31)
 86#define FEC_COUNTER_PERIOD	(1 << 31)
 87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 88#define FEC_CHANNLE_0		0
 89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 90
 91/**
 92 * fec_ptp_enable_pps
 93 * @fep: the fec_enet_private structure handle
 94 * @enable: enable the channel pps output
 95 *
 96 * This function enble the PPS ouput on the timer channel.
 97 */
 98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 99{
100	unsigned long flags;
101	u32 val, tempval;
102	int inc;
103	struct timespec64 ts;
104	u64 ns;
105	val = 0;
106
107	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
108		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
109		return -EINVAL;
110	}
111
112	if (fep->pps_enable == enable)
113		return 0;
114
115	fep->pps_channel = DEFAULT_PPS_CHANNEL;
116	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
117	inc = fep->ptp_inc;
118
119	spin_lock_irqsave(&fep->tmreg_lock, flags);
120
121	if (enable) {
122		/* clear capture or output compare interrupt status if have.
123		 */
124		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
125
126		/* It is recommended to double check the TMODE field in the
127		 * TCSR register to be cleared before the first compare counter
128		 * is written into TCCR register. Just add a double check.
129		 */
130		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
131		do {
132			val &= ~(FEC_T_TMODE_MASK);
133			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
134			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
135		} while (val & FEC_T_TMODE_MASK);
136
137		/* Dummy read counter to update the counter */
138		timecounter_read(&fep->tc);
139		/* We want to find the first compare event in the next
140		 * second point. So we need to know what the ptp time
141		 * is now and how many nanoseconds is ahead to get next second.
142		 * The remaining nanosecond ahead before the next second would be
143		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
144		 * to current timer would be next second.
145		 */
146		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
147		tempval |= FEC_T_CTRL_CAPTURE;
148		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
149
150		tempval = readl(fep->hwp + FEC_ATIME);
151		/* Convert the ptp local counter to 1588 timestamp */
152		ns = timecounter_cyc2time(&fep->tc, tempval);
153		ts = ns_to_timespec64(ns);
154
155		/* The tempval is  less than 3 seconds, and  so val is less than
156		 * 4 seconds. No overflow for 32bit calculation.
157		 */
158		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
159
160		/* Need to consider the situation that the current time is
161		 * very close to the second point, which means NSEC_PER_SEC
162		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
163		 * is still running when we calculate the first compare event, it is
164		 * possible that the remaining nanoseonds run out before the compare
165		 * counter is calculated and written into TCCR register. To avoid
166		 * this possibility, we will set the compare event to be the next
167		 * of next second. The current setting is 31-bit timer and wrap
168		 * around over 2 seconds. So it is okay to set the next of next
169		 * seond for the timer.
170		 */
171		val += NSEC_PER_SEC;
172
173		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
174		 * ptp counter, which maybe cause 32-bit wrap. Since the
175		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
176		 * We can ensure the wrap will not cause issue. If the offset
177		 * is bigger than fep->cc.mask would be a error.
178		 */
179		val &= fep->cc.mask;
180		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
181
182		/* Calculate the second the compare event timestamp */
183		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
184
185		/* * Enable compare event when overflow */
186		val = readl(fep->hwp + FEC_ATIME_CTRL);
187		val |= FEC_T_CTRL_PINPER;
188		writel(val, fep->hwp + FEC_ATIME_CTRL);
189
190		/* Compare channel setting. */
191		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
192		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
193		val &= ~(1 << FEC_T_TDRE_OFFSET);
194		val &= ~(FEC_T_TMODE_MASK);
195		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
196		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
197
198		/* Write the second compare event timestamp and calculate
199		 * the third timestamp. Refer the TCCR register detail in the spec.
200		 */
201		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
202		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
203	} else {
204		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
205	}
206
207	fep->pps_enable = enable;
208	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
209
210	return 0;
211}
212
213/**
214 * fec_ptp_read - read raw cycle counter (to be used by time counter)
215 * @cc: the cyclecounter structure
216 *
217 * this function reads the cyclecounter registers and is called by the
218 * cyclecounter structure used to construct a ns counter from the
219 * arbitrary fixed point registers
220 */
221static u64 fec_ptp_read(const struct cyclecounter *cc)
222{
223	struct fec_enet_private *fep =
224		container_of(cc, struct fec_enet_private, cc);
225	const struct platform_device_id *id_entry =
226		platform_get_device_id(fep->pdev);
227	u32 tempval;
228
229	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
230	tempval |= FEC_T_CTRL_CAPTURE;
231	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
232
233	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
234		udelay(1);
235
236	return readl(fep->hwp + FEC_ATIME);
237}
238
239/**
240 * fec_ptp_start_cyclecounter - create the cycle counter from hw
241 * @ndev: network device
242 *
243 * this function initializes the timecounter and cyclecounter
244 * structures for use in generated a ns counter from the arbitrary
245 * fixed point cycles registers in the hardware.
246 */
247void fec_ptp_start_cyclecounter(struct net_device *ndev)
248{
249	struct fec_enet_private *fep = netdev_priv(ndev);
250	unsigned long flags;
251	int inc;
252
253	inc = 1000000000 / fep->cycle_speed;
254
255	/* grab the ptp lock */
256	spin_lock_irqsave(&fep->tmreg_lock, flags);
257
258	/* 1ns counter */
259	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
260
261	/* use 31-bit timer counter */
262	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
263
264	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
265		fep->hwp + FEC_ATIME_CTRL);
266
267	memset(&fep->cc, 0, sizeof(fep->cc));
268	fep->cc.read = fec_ptp_read;
269	fep->cc.mask = CLOCKSOURCE_MASK(31);
270	fep->cc.shift = 31;
271	fep->cc.mult = FEC_CC_MULT;
272
273	/* reset the ns time counter */
274	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
275
276	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
277}
278
279/**
280 * fec_ptp_adjfreq - adjust ptp cycle frequency
281 * @ptp: the ptp clock structure
282 * @ppb: parts per billion adjustment from base
283 *
284 * Adjust the frequency of the ptp cycle counter by the
285 * indicated ppb from the base frequency.
286 *
287 * Because ENET hardware frequency adjust is complex,
288 * using software method to do that.
289 */
290static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
291{
 
292	unsigned long flags;
293	int neg_adj = 0;
294	u32 i, tmp;
295	u32 corr_inc, corr_period;
296	u32 corr_ns;
297	u64 lhs, rhs;
298
299	struct fec_enet_private *fep =
300	    container_of(ptp, struct fec_enet_private, ptp_caps);
301
302	if (ppb == 0)
303		return 0;
304
305	if (ppb < 0) {
306		ppb = -ppb;
307		neg_adj = 1;
308	}
309
310	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
311	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
312	 * meet adjustment requirement.
313	 */
314	lhs = NSEC_PER_SEC;
315	rhs = (u64)ppb * (u64)fep->ptp_inc;
316	for (i = 1; i <= fep->ptp_inc; i++) {
317		if (lhs >= rhs) {
318			corr_inc = i;
319			corr_period = div_u64(lhs, rhs);
320			break;
321		}
322		lhs += NSEC_PER_SEC;
323	}
324	/* Not found? Set it to high value - double speed
325	 * correct in every clock step.
326	 */
327	if (i > fep->ptp_inc) {
328		corr_inc = fep->ptp_inc;
329		corr_period = 1;
330	}
331
332	if (neg_adj)
333		corr_ns = fep->ptp_inc - corr_inc;
334	else
335		corr_ns = fep->ptp_inc + corr_inc;
336
337	spin_lock_irqsave(&fep->tmreg_lock, flags);
 
 
 
 
 
 
338
339	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
340	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
341	writel(tmp, fep->hwp + FEC_ATIME_INC);
342	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
343	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
344	/* dummy read to update the timer. */
345	timecounter_read(&fep->tc);
346
347	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
348
349	return 0;
350}
351
352/**
353 * fec_ptp_adjtime
354 * @ptp: the ptp clock structure
355 * @delta: offset to adjust the cycle counter by
356 *
357 * adjust the timer by resetting the timecounter structure.
358 */
359static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
360{
361	struct fec_enet_private *fep =
362	    container_of(ptp, struct fec_enet_private, ptp_caps);
363	unsigned long flags;
 
364
365	spin_lock_irqsave(&fep->tmreg_lock, flags);
366	timecounter_adjtime(&fep->tc, delta);
 
 
 
 
 
 
367	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
368
369	return 0;
370}
371
372/**
373 * fec_ptp_gettime
374 * @ptp: the ptp clock structure
375 * @ts: timespec structure to hold the current time value
376 *
377 * read the timecounter and return the correct value on ns,
378 * after converting it into a struct timespec.
379 */
380static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
381{
382	struct fec_enet_private *adapter =
383	    container_of(ptp, struct fec_enet_private, ptp_caps);
384	u64 ns;
 
385	unsigned long flags;
386
387	spin_lock_irqsave(&adapter->tmreg_lock, flags);
388	ns = timecounter_read(&adapter->tc);
389	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
390
391	*ts = ns_to_timespec64(ns);
 
392
393	return 0;
394}
395
396/**
397 * fec_ptp_settime
398 * @ptp: the ptp clock structure
399 * @ts: the timespec containing the new time for the cycle counter
400 *
401 * reset the timecounter to use a new base value instead of the kernel
402 * wall timer value.
403 */
404static int fec_ptp_settime(struct ptp_clock_info *ptp,
405			   const struct timespec64 *ts)
406{
407	struct fec_enet_private *fep =
408	    container_of(ptp, struct fec_enet_private, ptp_caps);
409
410	u64 ns;
411	unsigned long flags;
412	u32 counter;
413
414	mutex_lock(&fep->ptp_clk_mutex);
415	/* Check the ptp clock */
416	if (!fep->ptp_clk_on) {
417		mutex_unlock(&fep->ptp_clk_mutex);
418		return -EINVAL;
419	}
420
421	ns = timespec64_to_ns(ts);
422	/* Get the timer value based on timestamp.
423	 * Update the counter with the masked value.
424	 */
425	counter = ns & fep->cc.mask;
426
427	spin_lock_irqsave(&fep->tmreg_lock, flags);
428	writel(counter, fep->hwp + FEC_ATIME);
429	timecounter_init(&fep->tc, &fep->cc, ns);
430	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
431	mutex_unlock(&fep->ptp_clk_mutex);
432	return 0;
433}
434
435/**
436 * fec_ptp_enable
437 * @ptp: the ptp clock structure
438 * @rq: the requested feature to change
439 * @on: whether to enable or disable the feature
440 *
441 */
442static int fec_ptp_enable(struct ptp_clock_info *ptp,
443			  struct ptp_clock_request *rq, int on)
444{
445	struct fec_enet_private *fep =
446	    container_of(ptp, struct fec_enet_private, ptp_caps);
447	int ret = 0;
448
449	if (rq->type == PTP_CLK_REQ_PPS) {
450		ret = fec_ptp_enable_pps(fep, on);
451
452		return ret;
453	}
454	return -EOPNOTSUPP;
455}
456
457/**
458 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
459 * @ndev: pointer to net_device
460 * @ifreq: ioctl data
461 * @cmd: particular ioctl requested
462 */
463int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
464{
465	struct fec_enet_private *fep = netdev_priv(ndev);
466
467	struct hwtstamp_config config;
468
469	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
470		return -EFAULT;
471
472	/* reserved for future extensions */
473	if (config.flags)
474		return -EINVAL;
475
476	switch (config.tx_type) {
477	case HWTSTAMP_TX_OFF:
478		fep->hwts_tx_en = 0;
479		break;
480	case HWTSTAMP_TX_ON:
481		fep->hwts_tx_en = 1;
482		break;
483	default:
484		return -ERANGE;
485	}
486
487	switch (config.rx_filter) {
488	case HWTSTAMP_FILTER_NONE:
489		if (fep->hwts_rx_en)
490			fep->hwts_rx_en = 0;
491		config.rx_filter = HWTSTAMP_FILTER_NONE;
492		break;
493
494	default:
 
 
 
 
 
 
495		fep->hwts_rx_en = 1;
496		config.rx_filter = HWTSTAMP_FILTER_ALL;
497		break;
498	}
499
500	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
501	    -EFAULT : 0;
502}
503
504int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
505{
506	struct fec_enet_private *fep = netdev_priv(ndev);
507	struct hwtstamp_config config;
508
509	config.flags = 0;
510	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
511	config.rx_filter = (fep->hwts_rx_en ?
512			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
513
514	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
515		-EFAULT : 0;
516}
517
518/**
519 * fec_time_keep - call timecounter_read every second to avoid timer overrun
520 *                 because ENET just support 32bit counter, will timeout in 4s
521 */
522static void fec_time_keep(struct work_struct *work)
523{
524	struct delayed_work *dwork = to_delayed_work(work);
525	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
526	u64 ns;
527	unsigned long flags;
528
529	mutex_lock(&fep->ptp_clk_mutex);
530	if (fep->ptp_clk_on) {
531		spin_lock_irqsave(&fep->tmreg_lock, flags);
532		ns = timecounter_read(&fep->tc);
533		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
534	}
535	mutex_unlock(&fep->ptp_clk_mutex);
536
537	schedule_delayed_work(&fep->time_keep, HZ);
538}
539
540/* This function checks the pps event and reloads the timer compare counter. */
541static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
542{
543	struct net_device *ndev = dev_id;
544	struct fec_enet_private *fep = netdev_priv(ndev);
545	u32 val;
546	u8 channel = fep->pps_channel;
547	struct ptp_clock_event event;
548
549	val = readl(fep->hwp + FEC_TCSR(channel));
550	if (val & FEC_T_TF_MASK) {
551		/* Write the next next compare(not the next according the spec)
552		 * value to the register
553		 */
554		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
555		do {
556			writel(val, fep->hwp + FEC_TCSR(channel));
557		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
558
559		/* Update the counter; */
560		fep->next_counter = (fep->next_counter + fep->reload_period) &
561				fep->cc.mask;
562
563		event.type = PTP_CLOCK_PPS;
564		ptp_clock_event(fep->ptp_clock, &event);
565		return IRQ_HANDLED;
566	}
567
568	return IRQ_NONE;
569}
570
571/**
572 * fec_ptp_init
573 * @ndev: The FEC network adapter
574 *
575 * This function performs the required steps for enabling ptp
576 * support. If ptp support has already been loaded it simply calls the
577 * cyclecounter init routine and exits.
578 */
579
580void fec_ptp_init(struct platform_device *pdev, int irq_idx)
581{
582	struct net_device *ndev = platform_get_drvdata(pdev);
583	struct fec_enet_private *fep = netdev_priv(ndev);
584	int irq;
585	int ret;
586
587	fep->ptp_caps.owner = THIS_MODULE;
588	snprintf(fep->ptp_caps.name, 16, "fec ptp");
589
590	fep->ptp_caps.max_adj = 250000000;
591	fep->ptp_caps.n_alarm = 0;
592	fep->ptp_caps.n_ext_ts = 0;
593	fep->ptp_caps.n_per_out = 0;
594	fep->ptp_caps.n_pins = 0;
595	fep->ptp_caps.pps = 1;
596	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
597	fep->ptp_caps.adjtime = fec_ptp_adjtime;
598	fep->ptp_caps.gettime64 = fec_ptp_gettime;
599	fep->ptp_caps.settime64 = fec_ptp_settime;
600	fep->ptp_caps.enable = fec_ptp_enable;
601
602	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
603	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
604
605	spin_lock_init(&fep->tmreg_lock);
606
607	fec_ptp_start_cyclecounter(ndev);
608
609	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
610
611	irq = platform_get_irq_byname(pdev, "pps");
612	if (irq < 0)
613		irq = platform_get_irq(pdev, irq_idx);
614	/* Failure to get an irq is not fatal,
615	 * only the PTP_CLOCK_PPS clock events should stop
616	 */
617	if (irq >= 0) {
618		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
619				       0, pdev->name, ndev);
620		if (ret < 0)
621			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
622				 ret);
623	}
624
625	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
626	if (IS_ERR(fep->ptp_clock)) {
627		fep->ptp_clock = NULL;
628		pr_err("ptp_clock_register failed\n");
629	}
630
631	schedule_delayed_work(&fep->time_keep, HZ);
632}
633
634void fec_ptp_stop(struct platform_device *pdev)
635{
636	struct net_device *ndev = platform_get_drvdata(pdev);
637	struct fec_enet_private *fep = netdev_priv(ndev);
638
639	cancel_delayed_work_sync(&fep->time_keep);
640	if (fep->ptp_clock)
641		ptp_clock_unregister(fep->ptp_clock);
642}